1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
6 #include <linux/bsearch.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
23 #include "btrfs_inode.h"
24 #include "transaction.h"
25 #include "compression.h"
28 * Maximum number of references an extent can have in order for us to attempt to
29 * issue clone operations instead of write operations. This currently exists to
30 * avoid hitting limitations of the backreference walking code (taking a lot of
31 * time and using too much memory for extents with large number of references).
33 #define SEND_MAX_EXTENT_REFS 64
36 * A fs_path is a helper to dynamically build path names with unknown size.
37 * It reallocates the internal buffer on demand.
38 * It allows fast adding of path elements on the right side (normal path) and
39 * fast adding to the left side (reversed path). A reversed path can also be
40 * unreversed if needed.
49 unsigned short buf_len
:15;
50 unsigned short reversed
:1;
54 * Average path length does not exceed 200 bytes, we'll have
55 * better packing in the slab and higher chance to satisfy
56 * a allocation later during send.
61 #define FS_PATH_INLINE_SIZE \
62 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
65 /* reused for each extent */
67 struct btrfs_root
*root
;
74 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
75 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
78 struct file
*send_filp
;
84 u64 cmd_send_size
[BTRFS_SEND_C_MAX
+ 1];
85 u64 flags
; /* 'flags' member of btrfs_ioctl_send_args is u64 */
87 struct btrfs_root
*send_root
;
88 struct btrfs_root
*parent_root
;
89 struct clone_root
*clone_roots
;
92 /* current state of the compare_tree call */
93 struct btrfs_path
*left_path
;
94 struct btrfs_path
*right_path
;
95 struct btrfs_key
*cmp_key
;
98 * infos of the currently processed inode. In case of deleted inodes,
99 * these are the values from the deleted inode.
104 int cur_inode_new_gen
;
105 int cur_inode_deleted
;
109 u64 cur_inode_last_extent
;
110 u64 cur_inode_next_write_offset
;
111 bool ignore_cur_inode
;
115 struct list_head new_refs
;
116 struct list_head deleted_refs
;
118 struct radix_tree_root name_cache
;
119 struct list_head name_cache_list
;
122 struct file_ra_state ra
;
127 * We process inodes by their increasing order, so if before an
128 * incremental send we reverse the parent/child relationship of
129 * directories such that a directory with a lower inode number was
130 * the parent of a directory with a higher inode number, and the one
131 * becoming the new parent got renamed too, we can't rename/move the
132 * directory with lower inode number when we finish processing it - we
133 * must process the directory with higher inode number first, then
134 * rename/move it and then rename/move the directory with lower inode
135 * number. Example follows.
137 * Tree state when the first send was performed:
149 * Tree state when the second (incremental) send is performed:
158 * The sequence of steps that lead to the second state was:
160 * mv /a/b/c/d /a/b/c2/d2
161 * mv /a/b/c /a/b/c2/d2/cc
163 * "c" has lower inode number, but we can't move it (2nd mv operation)
164 * before we move "d", which has higher inode number.
166 * So we just memorize which move/rename operations must be performed
167 * later when their respective parent is processed and moved/renamed.
170 /* Indexed by parent directory inode number. */
171 struct rb_root pending_dir_moves
;
174 * Reverse index, indexed by the inode number of a directory that
175 * is waiting for the move/rename of its immediate parent before its
176 * own move/rename can be performed.
178 struct rb_root waiting_dir_moves
;
181 * A directory that is going to be rm'ed might have a child directory
182 * which is in the pending directory moves index above. In this case,
183 * the directory can only be removed after the move/rename of its child
184 * is performed. Example:
204 * Sequence of steps that lead to the send snapshot:
205 * rm -f /a/b/c/foo.txt
207 * mv /a/b/c/x /a/b/YY
210 * When the child is processed, its move/rename is delayed until its
211 * parent is processed (as explained above), but all other operations
212 * like update utimes, chown, chgrp, etc, are performed and the paths
213 * that it uses for those operations must use the orphanized name of
214 * its parent (the directory we're going to rm later), so we need to
215 * memorize that name.
217 * Indexed by the inode number of the directory to be deleted.
219 struct rb_root orphan_dirs
;
222 struct pending_dir_move
{
224 struct list_head list
;
228 struct list_head update_refs
;
231 struct waiting_dir_move
{
235 * There might be some directory that could not be removed because it
236 * was waiting for this directory inode to be moved first. Therefore
237 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
243 struct orphan_dir_info
{
247 u64 last_dir_index_offset
;
250 struct name_cache_entry
{
251 struct list_head list
;
253 * radix_tree has only 32bit entries but we need to handle 64bit inums.
254 * We use the lower 32bit of the 64bit inum to store it in the tree. If
255 * more then one inum would fall into the same entry, we use radix_list
256 * to store the additional entries. radix_list is also used to store
257 * entries where two entries have the same inum but different
260 struct list_head radix_list
;
266 int need_later_update
;
272 #define ADVANCE_ONLY_NEXT -1
274 enum btrfs_compare_tree_result
{
275 BTRFS_COMPARE_TREE_NEW
,
276 BTRFS_COMPARE_TREE_DELETED
,
277 BTRFS_COMPARE_TREE_CHANGED
,
278 BTRFS_COMPARE_TREE_SAME
,
280 typedef int (*btrfs_changed_cb_t
)(struct btrfs_path
*left_path
,
281 struct btrfs_path
*right_path
,
282 struct btrfs_key
*key
,
283 enum btrfs_compare_tree_result result
,
287 static void inconsistent_snapshot_error(struct send_ctx
*sctx
,
288 enum btrfs_compare_tree_result result
,
291 const char *result_string
;
294 case BTRFS_COMPARE_TREE_NEW
:
295 result_string
= "new";
297 case BTRFS_COMPARE_TREE_DELETED
:
298 result_string
= "deleted";
300 case BTRFS_COMPARE_TREE_CHANGED
:
301 result_string
= "updated";
303 case BTRFS_COMPARE_TREE_SAME
:
305 result_string
= "unchanged";
309 result_string
= "unexpected";
312 btrfs_err(sctx
->send_root
->fs_info
,
313 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
314 result_string
, what
, sctx
->cmp_key
->objectid
,
315 sctx
->send_root
->root_key
.objectid
,
317 sctx
->parent_root
->root_key
.objectid
: 0));
320 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
);
322 static struct waiting_dir_move
*
323 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
);
325 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
);
327 static int need_send_hole(struct send_ctx
*sctx
)
329 return (sctx
->parent_root
&& !sctx
->cur_inode_new
&&
330 !sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
&&
331 S_ISREG(sctx
->cur_inode_mode
));
334 static void fs_path_reset(struct fs_path
*p
)
337 p
->start
= p
->buf
+ p
->buf_len
- 1;
347 static struct fs_path
*fs_path_alloc(void)
351 p
= kmalloc(sizeof(*p
), GFP_KERNEL
);
355 p
->buf
= p
->inline_buf
;
356 p
->buf_len
= FS_PATH_INLINE_SIZE
;
361 static struct fs_path
*fs_path_alloc_reversed(void)
373 static void fs_path_free(struct fs_path
*p
)
377 if (p
->buf
!= p
->inline_buf
)
382 static int fs_path_len(struct fs_path
*p
)
384 return p
->end
- p
->start
;
387 static int fs_path_ensure_buf(struct fs_path
*p
, int len
)
395 if (p
->buf_len
>= len
)
398 if (len
> PATH_MAX
) {
403 path_len
= p
->end
- p
->start
;
404 old_buf_len
= p
->buf_len
;
407 * First time the inline_buf does not suffice
409 if (p
->buf
== p
->inline_buf
) {
410 tmp_buf
= kmalloc(len
, GFP_KERNEL
);
412 memcpy(tmp_buf
, p
->buf
, old_buf_len
);
414 tmp_buf
= krealloc(p
->buf
, len
, GFP_KERNEL
);
420 * The real size of the buffer is bigger, this will let the fast path
421 * happen most of the time
423 p
->buf_len
= ksize(p
->buf
);
426 tmp_buf
= p
->buf
+ old_buf_len
- path_len
- 1;
427 p
->end
= p
->buf
+ p
->buf_len
- 1;
428 p
->start
= p
->end
- path_len
;
429 memmove(p
->start
, tmp_buf
, path_len
+ 1);
432 p
->end
= p
->start
+ path_len
;
437 static int fs_path_prepare_for_add(struct fs_path
*p
, int name_len
,
443 new_len
= p
->end
- p
->start
+ name_len
;
444 if (p
->start
!= p
->end
)
446 ret
= fs_path_ensure_buf(p
, new_len
);
451 if (p
->start
!= p
->end
)
453 p
->start
-= name_len
;
454 *prepared
= p
->start
;
456 if (p
->start
!= p
->end
)
467 static int fs_path_add(struct fs_path
*p
, const char *name
, int name_len
)
472 ret
= fs_path_prepare_for_add(p
, name_len
, &prepared
);
475 memcpy(prepared
, name
, name_len
);
481 static int fs_path_add_path(struct fs_path
*p
, struct fs_path
*p2
)
486 ret
= fs_path_prepare_for_add(p
, p2
->end
- p2
->start
, &prepared
);
489 memcpy(prepared
, p2
->start
, p2
->end
- p2
->start
);
495 static int fs_path_add_from_extent_buffer(struct fs_path
*p
,
496 struct extent_buffer
*eb
,
497 unsigned long off
, int len
)
502 ret
= fs_path_prepare_for_add(p
, len
, &prepared
);
506 read_extent_buffer(eb
, prepared
, off
, len
);
512 static int fs_path_copy(struct fs_path
*p
, struct fs_path
*from
)
516 p
->reversed
= from
->reversed
;
519 ret
= fs_path_add_path(p
, from
);
525 static void fs_path_unreverse(struct fs_path
*p
)
534 len
= p
->end
- p
->start
;
536 p
->end
= p
->start
+ len
;
537 memmove(p
->start
, tmp
, len
+ 1);
541 static struct btrfs_path
*alloc_path_for_send(void)
543 struct btrfs_path
*path
;
545 path
= btrfs_alloc_path();
548 path
->search_commit_root
= 1;
549 path
->skip_locking
= 1;
550 path
->need_commit_sem
= 1;
554 static int write_buf(struct file
*filp
, const void *buf
, u32 len
, loff_t
*off
)
560 ret
= kernel_write(filp
, buf
+ pos
, len
- pos
, off
);
561 /* TODO handle that correctly */
562 /*if (ret == -ERESTARTSYS) {
576 static int tlv_put(struct send_ctx
*sctx
, u16 attr
, const void *data
, int len
)
578 struct btrfs_tlv_header
*hdr
;
579 int total_len
= sizeof(*hdr
) + len
;
580 int left
= sctx
->send_max_size
- sctx
->send_size
;
582 if (unlikely(left
< total_len
))
585 hdr
= (struct btrfs_tlv_header
*) (sctx
->send_buf
+ sctx
->send_size
);
586 hdr
->tlv_type
= cpu_to_le16(attr
);
587 hdr
->tlv_len
= cpu_to_le16(len
);
588 memcpy(hdr
+ 1, data
, len
);
589 sctx
->send_size
+= total_len
;
594 #define TLV_PUT_DEFINE_INT(bits) \
595 static int tlv_put_u##bits(struct send_ctx *sctx, \
596 u##bits attr, u##bits value) \
598 __le##bits __tmp = cpu_to_le##bits(value); \
599 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
602 TLV_PUT_DEFINE_INT(64)
604 static int tlv_put_string(struct send_ctx
*sctx
, u16 attr
,
605 const char *str
, int len
)
609 return tlv_put(sctx
, attr
, str
, len
);
612 static int tlv_put_uuid(struct send_ctx
*sctx
, u16 attr
,
615 return tlv_put(sctx
, attr
, uuid
, BTRFS_UUID_SIZE
);
618 static int tlv_put_btrfs_timespec(struct send_ctx
*sctx
, u16 attr
,
619 struct extent_buffer
*eb
,
620 struct btrfs_timespec
*ts
)
622 struct btrfs_timespec bts
;
623 read_extent_buffer(eb
, &bts
, (unsigned long)ts
, sizeof(bts
));
624 return tlv_put(sctx
, attr
, &bts
, sizeof(bts
));
628 #define TLV_PUT(sctx, attrtype, data, attrlen) \
630 ret = tlv_put(sctx, attrtype, data, attrlen); \
632 goto tlv_put_failure; \
635 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
637 ret = tlv_put_u##bits(sctx, attrtype, value); \
639 goto tlv_put_failure; \
642 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
643 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
644 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
645 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
646 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
648 ret = tlv_put_string(sctx, attrtype, str, len); \
650 goto tlv_put_failure; \
652 #define TLV_PUT_PATH(sctx, attrtype, p) \
654 ret = tlv_put_string(sctx, attrtype, p->start, \
655 p->end - p->start); \
657 goto tlv_put_failure; \
659 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
661 ret = tlv_put_uuid(sctx, attrtype, uuid); \
663 goto tlv_put_failure; \
665 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
667 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
669 goto tlv_put_failure; \
672 static int send_header(struct send_ctx
*sctx
)
674 struct btrfs_stream_header hdr
;
676 strcpy(hdr
.magic
, BTRFS_SEND_STREAM_MAGIC
);
677 hdr
.version
= cpu_to_le32(BTRFS_SEND_STREAM_VERSION
);
679 return write_buf(sctx
->send_filp
, &hdr
, sizeof(hdr
),
684 * For each command/item we want to send to userspace, we call this function.
686 static int begin_cmd(struct send_ctx
*sctx
, int cmd
)
688 struct btrfs_cmd_header
*hdr
;
690 if (WARN_ON(!sctx
->send_buf
))
693 BUG_ON(sctx
->send_size
);
695 sctx
->send_size
+= sizeof(*hdr
);
696 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
697 hdr
->cmd
= cpu_to_le16(cmd
);
702 static int send_cmd(struct send_ctx
*sctx
)
705 struct btrfs_cmd_header
*hdr
;
708 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
709 hdr
->len
= cpu_to_le32(sctx
->send_size
- sizeof(*hdr
));
712 crc
= btrfs_crc32c(0, (unsigned char *)sctx
->send_buf
, sctx
->send_size
);
713 hdr
->crc
= cpu_to_le32(crc
);
715 ret
= write_buf(sctx
->send_filp
, sctx
->send_buf
, sctx
->send_size
,
718 sctx
->total_send_size
+= sctx
->send_size
;
719 sctx
->cmd_send_size
[le16_to_cpu(hdr
->cmd
)] += sctx
->send_size
;
726 * Sends a move instruction to user space
728 static int send_rename(struct send_ctx
*sctx
,
729 struct fs_path
*from
, struct fs_path
*to
)
731 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
734 btrfs_debug(fs_info
, "send_rename %s -> %s", from
->start
, to
->start
);
736 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RENAME
);
740 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, from
);
741 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_TO
, to
);
743 ret
= send_cmd(sctx
);
751 * Sends a link instruction to user space
753 static int send_link(struct send_ctx
*sctx
,
754 struct fs_path
*path
, struct fs_path
*lnk
)
756 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
759 btrfs_debug(fs_info
, "send_link %s -> %s", path
->start
, lnk
->start
);
761 ret
= begin_cmd(sctx
, BTRFS_SEND_C_LINK
);
765 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
766 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, lnk
);
768 ret
= send_cmd(sctx
);
776 * Sends an unlink instruction to user space
778 static int send_unlink(struct send_ctx
*sctx
, struct fs_path
*path
)
780 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
783 btrfs_debug(fs_info
, "send_unlink %s", path
->start
);
785 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UNLINK
);
789 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
791 ret
= send_cmd(sctx
);
799 * Sends a rmdir instruction to user space
801 static int send_rmdir(struct send_ctx
*sctx
, struct fs_path
*path
)
803 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
806 btrfs_debug(fs_info
, "send_rmdir %s", path
->start
);
808 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RMDIR
);
812 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
814 ret
= send_cmd(sctx
);
822 * Helper function to retrieve some fields from an inode item.
824 static int __get_inode_info(struct btrfs_root
*root
, struct btrfs_path
*path
,
825 u64 ino
, u64
*size
, u64
*gen
, u64
*mode
, u64
*uid
,
829 struct btrfs_inode_item
*ii
;
830 struct btrfs_key key
;
833 key
.type
= BTRFS_INODE_ITEM_KEY
;
835 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
842 ii
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
843 struct btrfs_inode_item
);
845 *size
= btrfs_inode_size(path
->nodes
[0], ii
);
847 *gen
= btrfs_inode_generation(path
->nodes
[0], ii
);
849 *mode
= btrfs_inode_mode(path
->nodes
[0], ii
);
851 *uid
= btrfs_inode_uid(path
->nodes
[0], ii
);
853 *gid
= btrfs_inode_gid(path
->nodes
[0], ii
);
855 *rdev
= btrfs_inode_rdev(path
->nodes
[0], ii
);
860 static int get_inode_info(struct btrfs_root
*root
,
861 u64 ino
, u64
*size
, u64
*gen
,
862 u64
*mode
, u64
*uid
, u64
*gid
,
865 struct btrfs_path
*path
;
868 path
= alloc_path_for_send();
871 ret
= __get_inode_info(root
, path
, ino
, size
, gen
, mode
, uid
, gid
,
873 btrfs_free_path(path
);
877 typedef int (*iterate_inode_ref_t
)(int num
, u64 dir
, int index
,
882 * Helper function to iterate the entries in ONE btrfs_inode_ref or
883 * btrfs_inode_extref.
884 * The iterate callback may return a non zero value to stop iteration. This can
885 * be a negative value for error codes or 1 to simply stop it.
887 * path must point to the INODE_REF or INODE_EXTREF when called.
889 static int iterate_inode_ref(struct btrfs_root
*root
, struct btrfs_path
*path
,
890 struct btrfs_key
*found_key
, int resolve
,
891 iterate_inode_ref_t iterate
, void *ctx
)
893 struct extent_buffer
*eb
= path
->nodes
[0];
894 struct btrfs_item
*item
;
895 struct btrfs_inode_ref
*iref
;
896 struct btrfs_inode_extref
*extref
;
897 struct btrfs_path
*tmp_path
;
901 int slot
= path
->slots
[0];
908 unsigned long name_off
;
909 unsigned long elem_size
;
912 p
= fs_path_alloc_reversed();
916 tmp_path
= alloc_path_for_send();
923 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
924 ptr
= (unsigned long)btrfs_item_ptr(eb
, slot
,
925 struct btrfs_inode_ref
);
926 item
= btrfs_item_nr(slot
);
927 total
= btrfs_item_size(eb
, item
);
928 elem_size
= sizeof(*iref
);
930 ptr
= btrfs_item_ptr_offset(eb
, slot
);
931 total
= btrfs_item_size_nr(eb
, slot
);
932 elem_size
= sizeof(*extref
);
935 while (cur
< total
) {
938 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
939 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur
);
940 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
941 name_off
= (unsigned long)(iref
+ 1);
942 index
= btrfs_inode_ref_index(eb
, iref
);
943 dir
= found_key
->offset
;
945 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur
);
946 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
947 name_off
= (unsigned long)&extref
->name
;
948 index
= btrfs_inode_extref_index(eb
, extref
);
949 dir
= btrfs_inode_extref_parent(eb
, extref
);
953 start
= btrfs_ref_to_path(root
, tmp_path
, name_len
,
957 ret
= PTR_ERR(start
);
960 if (start
< p
->buf
) {
961 /* overflow , try again with larger buffer */
962 ret
= fs_path_ensure_buf(p
,
963 p
->buf_len
+ p
->buf
- start
);
966 start
= btrfs_ref_to_path(root
, tmp_path
,
971 ret
= PTR_ERR(start
);
974 BUG_ON(start
< p
->buf
);
978 ret
= fs_path_add_from_extent_buffer(p
, eb
, name_off
,
984 cur
+= elem_size
+ name_len
;
985 ret
= iterate(num
, dir
, index
, p
, ctx
);
992 btrfs_free_path(tmp_path
);
997 typedef int (*iterate_dir_item_t
)(int num
, struct btrfs_key
*di_key
,
998 const char *name
, int name_len
,
999 const char *data
, int data_len
,
1000 u8 type
, void *ctx
);
1003 * Helper function to iterate the entries in ONE btrfs_dir_item.
1004 * The iterate callback may return a non zero value to stop iteration. This can
1005 * be a negative value for error codes or 1 to simply stop it.
1007 * path must point to the dir item when called.
1009 static int iterate_dir_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
1010 iterate_dir_item_t iterate
, void *ctx
)
1013 struct extent_buffer
*eb
;
1014 struct btrfs_item
*item
;
1015 struct btrfs_dir_item
*di
;
1016 struct btrfs_key di_key
;
1029 * Start with a small buffer (1 page). If later we end up needing more
1030 * space, which can happen for xattrs on a fs with a leaf size greater
1031 * then the page size, attempt to increase the buffer. Typically xattr
1035 buf
= kmalloc(buf_len
, GFP_KERNEL
);
1041 eb
= path
->nodes
[0];
1042 slot
= path
->slots
[0];
1043 item
= btrfs_item_nr(slot
);
1044 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
1047 total
= btrfs_item_size(eb
, item
);
1050 while (cur
< total
) {
1051 name_len
= btrfs_dir_name_len(eb
, di
);
1052 data_len
= btrfs_dir_data_len(eb
, di
);
1053 type
= btrfs_dir_type(eb
, di
);
1054 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1056 if (type
== BTRFS_FT_XATTR
) {
1057 if (name_len
> XATTR_NAME_MAX
) {
1058 ret
= -ENAMETOOLONG
;
1061 if (name_len
+ data_len
>
1062 BTRFS_MAX_XATTR_SIZE(root
->fs_info
)) {
1070 if (name_len
+ data_len
> PATH_MAX
) {
1071 ret
= -ENAMETOOLONG
;
1076 if (name_len
+ data_len
> buf_len
) {
1077 buf_len
= name_len
+ data_len
;
1078 if (is_vmalloc_addr(buf
)) {
1082 char *tmp
= krealloc(buf
, buf_len
,
1083 GFP_KERNEL
| __GFP_NOWARN
);
1090 buf
= kvmalloc(buf_len
, GFP_KERNEL
);
1098 read_extent_buffer(eb
, buf
, (unsigned long)(di
+ 1),
1099 name_len
+ data_len
);
1101 len
= sizeof(*di
) + name_len
+ data_len
;
1102 di
= (struct btrfs_dir_item
*)((char *)di
+ len
);
1105 ret
= iterate(num
, &di_key
, buf
, name_len
, buf
+ name_len
,
1106 data_len
, type
, ctx
);
1122 static int __copy_first_ref(int num
, u64 dir
, int index
,
1123 struct fs_path
*p
, void *ctx
)
1126 struct fs_path
*pt
= ctx
;
1128 ret
= fs_path_copy(pt
, p
);
1132 /* we want the first only */
1137 * Retrieve the first path of an inode. If an inode has more then one
1138 * ref/hardlink, this is ignored.
1140 static int get_inode_path(struct btrfs_root
*root
,
1141 u64 ino
, struct fs_path
*path
)
1144 struct btrfs_key key
, found_key
;
1145 struct btrfs_path
*p
;
1147 p
= alloc_path_for_send();
1151 fs_path_reset(path
);
1154 key
.type
= BTRFS_INODE_REF_KEY
;
1157 ret
= btrfs_search_slot_for_read(root
, &key
, p
, 1, 0);
1164 btrfs_item_key_to_cpu(p
->nodes
[0], &found_key
, p
->slots
[0]);
1165 if (found_key
.objectid
!= ino
||
1166 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1167 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1172 ret
= iterate_inode_ref(root
, p
, &found_key
, 1,
1173 __copy_first_ref
, path
);
1183 struct backref_ctx
{
1184 struct send_ctx
*sctx
;
1186 /* number of total found references */
1190 * used for clones found in send_root. clones found behind cur_objectid
1191 * and cur_offset are not considered as allowed clones.
1196 /* may be truncated in case it's the last extent in a file */
1199 /* data offset in the file extent item */
1202 /* Just to check for bugs in backref resolving */
1206 static int __clone_root_cmp_bsearch(const void *key
, const void *elt
)
1208 u64 root
= (u64
)(uintptr_t)key
;
1209 struct clone_root
*cr
= (struct clone_root
*)elt
;
1211 if (root
< cr
->root
->root_key
.objectid
)
1213 if (root
> cr
->root
->root_key
.objectid
)
1218 static int __clone_root_cmp_sort(const void *e1
, const void *e2
)
1220 struct clone_root
*cr1
= (struct clone_root
*)e1
;
1221 struct clone_root
*cr2
= (struct clone_root
*)e2
;
1223 if (cr1
->root
->root_key
.objectid
< cr2
->root
->root_key
.objectid
)
1225 if (cr1
->root
->root_key
.objectid
> cr2
->root
->root_key
.objectid
)
1231 * Called for every backref that is found for the current extent.
1232 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1234 static int __iterate_backrefs(u64 ino
, u64 offset
, u64 root
, void *ctx_
)
1236 struct backref_ctx
*bctx
= ctx_
;
1237 struct clone_root
*found
;
1239 /* First check if the root is in the list of accepted clone sources */
1240 found
= bsearch((void *)(uintptr_t)root
, bctx
->sctx
->clone_roots
,
1241 bctx
->sctx
->clone_roots_cnt
,
1242 sizeof(struct clone_root
),
1243 __clone_root_cmp_bsearch
);
1247 if (found
->root
== bctx
->sctx
->send_root
&&
1248 ino
== bctx
->cur_objectid
&&
1249 offset
== bctx
->cur_offset
) {
1250 bctx
->found_itself
= 1;
1254 * Make sure we don't consider clones from send_root that are
1255 * behind the current inode/offset.
1257 if (found
->root
== bctx
->sctx
->send_root
) {
1259 * If the source inode was not yet processed we can't issue a
1260 * clone operation, as the source extent does not exist yet at
1261 * the destination of the stream.
1263 if (ino
> bctx
->cur_objectid
)
1266 * We clone from the inode currently being sent as long as the
1267 * source extent is already processed, otherwise we could try
1268 * to clone from an extent that does not exist yet at the
1269 * destination of the stream.
1271 if (ino
== bctx
->cur_objectid
&&
1272 offset
+ bctx
->extent_len
>
1273 bctx
->sctx
->cur_inode_next_write_offset
)
1278 found
->found_refs
++;
1279 if (ino
< found
->ino
) {
1281 found
->offset
= offset
;
1282 } else if (found
->ino
== ino
) {
1284 * same extent found more then once in the same file.
1286 if (found
->offset
> offset
+ bctx
->extent_len
)
1287 found
->offset
= offset
;
1294 * Given an inode, offset and extent item, it finds a good clone for a clone
1295 * instruction. Returns -ENOENT when none could be found. The function makes
1296 * sure that the returned clone is usable at the point where sending is at the
1297 * moment. This means, that no clones are accepted which lie behind the current
1300 * path must point to the extent item when called.
1302 static int find_extent_clone(struct send_ctx
*sctx
,
1303 struct btrfs_path
*path
,
1304 u64 ino
, u64 data_offset
,
1306 struct clone_root
**found
)
1308 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
1314 u64 extent_item_pos
;
1316 struct btrfs_file_extent_item
*fi
;
1317 struct extent_buffer
*eb
= path
->nodes
[0];
1318 struct backref_ctx
*backref_ctx
= NULL
;
1319 struct clone_root
*cur_clone_root
;
1320 struct btrfs_key found_key
;
1321 struct btrfs_path
*tmp_path
;
1322 struct btrfs_extent_item
*ei
;
1326 tmp_path
= alloc_path_for_send();
1330 /* We only use this path under the commit sem */
1331 tmp_path
->need_commit_sem
= 0;
1333 backref_ctx
= kmalloc(sizeof(*backref_ctx
), GFP_KERNEL
);
1339 if (data_offset
>= ino_size
) {
1341 * There may be extents that lie behind the file's size.
1342 * I at least had this in combination with snapshotting while
1343 * writing large files.
1349 fi
= btrfs_item_ptr(eb
, path
->slots
[0],
1350 struct btrfs_file_extent_item
);
1351 extent_type
= btrfs_file_extent_type(eb
, fi
);
1352 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1356 compressed
= btrfs_file_extent_compression(eb
, fi
);
1358 num_bytes
= btrfs_file_extent_num_bytes(eb
, fi
);
1359 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
1360 if (disk_byte
== 0) {
1364 logical
= disk_byte
+ btrfs_file_extent_offset(eb
, fi
);
1366 down_read(&fs_info
->commit_root_sem
);
1367 ret
= extent_from_logical(fs_info
, disk_byte
, tmp_path
,
1368 &found_key
, &flags
);
1369 up_read(&fs_info
->commit_root_sem
);
1373 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1378 ei
= btrfs_item_ptr(tmp_path
->nodes
[0], tmp_path
->slots
[0],
1379 struct btrfs_extent_item
);
1381 * Backreference walking (iterate_extent_inodes() below) is currently
1382 * too expensive when an extent has a large number of references, both
1383 * in time spent and used memory. So for now just fallback to write
1384 * operations instead of clone operations when an extent has more than
1385 * a certain amount of references.
1387 if (btrfs_extent_refs(tmp_path
->nodes
[0], ei
) > SEND_MAX_EXTENT_REFS
) {
1391 btrfs_release_path(tmp_path
);
1394 * Setup the clone roots.
1396 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1397 cur_clone_root
= sctx
->clone_roots
+ i
;
1398 cur_clone_root
->ino
= (u64
)-1;
1399 cur_clone_root
->offset
= 0;
1400 cur_clone_root
->found_refs
= 0;
1403 backref_ctx
->sctx
= sctx
;
1404 backref_ctx
->found
= 0;
1405 backref_ctx
->cur_objectid
= ino
;
1406 backref_ctx
->cur_offset
= data_offset
;
1407 backref_ctx
->found_itself
= 0;
1408 backref_ctx
->extent_len
= num_bytes
;
1410 * For non-compressed extents iterate_extent_inodes() gives us extent
1411 * offsets that already take into account the data offset, but not for
1412 * compressed extents, since the offset is logical and not relative to
1413 * the physical extent locations. We must take this into account to
1414 * avoid sending clone offsets that go beyond the source file's size,
1415 * which would result in the clone ioctl failing with -EINVAL on the
1418 if (compressed
== BTRFS_COMPRESS_NONE
)
1419 backref_ctx
->data_offset
= 0;
1421 backref_ctx
->data_offset
= btrfs_file_extent_offset(eb
, fi
);
1424 * The last extent of a file may be too large due to page alignment.
1425 * We need to adjust extent_len in this case so that the checks in
1426 * __iterate_backrefs work.
1428 if (data_offset
+ num_bytes
>= ino_size
)
1429 backref_ctx
->extent_len
= ino_size
- data_offset
;
1432 * Now collect all backrefs.
1434 if (compressed
== BTRFS_COMPRESS_NONE
)
1435 extent_item_pos
= logical
- found_key
.objectid
;
1437 extent_item_pos
= 0;
1438 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1439 extent_item_pos
, 1, __iterate_backrefs
,
1440 backref_ctx
, false);
1445 if (!backref_ctx
->found_itself
) {
1446 /* found a bug in backref code? */
1449 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1450 ino
, data_offset
, disk_byte
, found_key
.objectid
);
1454 btrfs_debug(fs_info
,
1455 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1456 data_offset
, ino
, num_bytes
, logical
);
1458 if (!backref_ctx
->found
)
1459 btrfs_debug(fs_info
, "no clones found");
1461 cur_clone_root
= NULL
;
1462 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1463 if (sctx
->clone_roots
[i
].found_refs
) {
1464 if (!cur_clone_root
)
1465 cur_clone_root
= sctx
->clone_roots
+ i
;
1466 else if (sctx
->clone_roots
[i
].root
== sctx
->send_root
)
1467 /* prefer clones from send_root over others */
1468 cur_clone_root
= sctx
->clone_roots
+ i
;
1473 if (cur_clone_root
) {
1474 *found
= cur_clone_root
;
1481 btrfs_free_path(tmp_path
);
1486 static int read_symlink(struct btrfs_root
*root
,
1488 struct fs_path
*dest
)
1491 struct btrfs_path
*path
;
1492 struct btrfs_key key
;
1493 struct btrfs_file_extent_item
*ei
;
1499 path
= alloc_path_for_send();
1504 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1506 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1511 * An empty symlink inode. Can happen in rare error paths when
1512 * creating a symlink (transaction committed before the inode
1513 * eviction handler removed the symlink inode items and a crash
1514 * happened in between or the subvol was snapshoted in between).
1515 * Print an informative message to dmesg/syslog so that the user
1516 * can delete the symlink.
1518 btrfs_err(root
->fs_info
,
1519 "Found empty symlink inode %llu at root %llu",
1520 ino
, root
->root_key
.objectid
);
1525 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1526 struct btrfs_file_extent_item
);
1527 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
1528 compression
= btrfs_file_extent_compression(path
->nodes
[0], ei
);
1529 BUG_ON(type
!= BTRFS_FILE_EXTENT_INLINE
);
1530 BUG_ON(compression
);
1532 off
= btrfs_file_extent_inline_start(ei
);
1533 len
= btrfs_file_extent_ram_bytes(path
->nodes
[0], ei
);
1535 ret
= fs_path_add_from_extent_buffer(dest
, path
->nodes
[0], off
, len
);
1538 btrfs_free_path(path
);
1543 * Helper function to generate a file name that is unique in the root of
1544 * send_root and parent_root. This is used to generate names for orphan inodes.
1546 static int gen_unique_name(struct send_ctx
*sctx
,
1548 struct fs_path
*dest
)
1551 struct btrfs_path
*path
;
1552 struct btrfs_dir_item
*di
;
1557 path
= alloc_path_for_send();
1562 len
= snprintf(tmp
, sizeof(tmp
), "o%llu-%llu-%llu",
1564 ASSERT(len
< sizeof(tmp
));
1566 di
= btrfs_lookup_dir_item(NULL
, sctx
->send_root
,
1567 path
, BTRFS_FIRST_FREE_OBJECTID
,
1568 tmp
, strlen(tmp
), 0);
1569 btrfs_release_path(path
);
1575 /* not unique, try again */
1580 if (!sctx
->parent_root
) {
1586 di
= btrfs_lookup_dir_item(NULL
, sctx
->parent_root
,
1587 path
, BTRFS_FIRST_FREE_OBJECTID
,
1588 tmp
, strlen(tmp
), 0);
1589 btrfs_release_path(path
);
1595 /* not unique, try again */
1603 ret
= fs_path_add(dest
, tmp
, strlen(tmp
));
1606 btrfs_free_path(path
);
1611 inode_state_no_change
,
1612 inode_state_will_create
,
1613 inode_state_did_create
,
1614 inode_state_will_delete
,
1615 inode_state_did_delete
,
1618 static int get_cur_inode_state(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1626 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &left_gen
, NULL
, NULL
,
1628 if (ret
< 0 && ret
!= -ENOENT
)
1632 if (!sctx
->parent_root
) {
1633 right_ret
= -ENOENT
;
1635 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
, &right_gen
,
1636 NULL
, NULL
, NULL
, NULL
);
1637 if (ret
< 0 && ret
!= -ENOENT
)
1642 if (!left_ret
&& !right_ret
) {
1643 if (left_gen
== gen
&& right_gen
== gen
) {
1644 ret
= inode_state_no_change
;
1645 } else if (left_gen
== gen
) {
1646 if (ino
< sctx
->send_progress
)
1647 ret
= inode_state_did_create
;
1649 ret
= inode_state_will_create
;
1650 } else if (right_gen
== gen
) {
1651 if (ino
< sctx
->send_progress
)
1652 ret
= inode_state_did_delete
;
1654 ret
= inode_state_will_delete
;
1658 } else if (!left_ret
) {
1659 if (left_gen
== gen
) {
1660 if (ino
< sctx
->send_progress
)
1661 ret
= inode_state_did_create
;
1663 ret
= inode_state_will_create
;
1667 } else if (!right_ret
) {
1668 if (right_gen
== gen
) {
1669 if (ino
< sctx
->send_progress
)
1670 ret
= inode_state_did_delete
;
1672 ret
= inode_state_will_delete
;
1684 static int is_inode_existent(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1688 if (ino
== BTRFS_FIRST_FREE_OBJECTID
)
1691 ret
= get_cur_inode_state(sctx
, ino
, gen
);
1695 if (ret
== inode_state_no_change
||
1696 ret
== inode_state_did_create
||
1697 ret
== inode_state_will_delete
)
1707 * Helper function to lookup a dir item in a dir.
1709 static int lookup_dir_item_inode(struct btrfs_root
*root
,
1710 u64 dir
, const char *name
, int name_len
,
1715 struct btrfs_dir_item
*di
;
1716 struct btrfs_key key
;
1717 struct btrfs_path
*path
;
1719 path
= alloc_path_for_send();
1723 di
= btrfs_lookup_dir_item(NULL
, root
, path
,
1724 dir
, name
, name_len
, 0);
1725 if (IS_ERR_OR_NULL(di
)) {
1726 ret
= di
? PTR_ERR(di
) : -ENOENT
;
1729 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1730 if (key
.type
== BTRFS_ROOT_ITEM_KEY
) {
1734 *found_inode
= key
.objectid
;
1735 *found_type
= btrfs_dir_type(path
->nodes
[0], di
);
1738 btrfs_free_path(path
);
1743 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1744 * generation of the parent dir and the name of the dir entry.
1746 static int get_first_ref(struct btrfs_root
*root
, u64 ino
,
1747 u64
*dir
, u64
*dir_gen
, struct fs_path
*name
)
1750 struct btrfs_key key
;
1751 struct btrfs_key found_key
;
1752 struct btrfs_path
*path
;
1756 path
= alloc_path_for_send();
1761 key
.type
= BTRFS_INODE_REF_KEY
;
1764 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
1768 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1770 if (ret
|| found_key
.objectid
!= ino
||
1771 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1772 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1777 if (found_key
.type
== BTRFS_INODE_REF_KEY
) {
1778 struct btrfs_inode_ref
*iref
;
1779 iref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1780 struct btrfs_inode_ref
);
1781 len
= btrfs_inode_ref_name_len(path
->nodes
[0], iref
);
1782 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1783 (unsigned long)(iref
+ 1),
1785 parent_dir
= found_key
.offset
;
1787 struct btrfs_inode_extref
*extref
;
1788 extref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1789 struct btrfs_inode_extref
);
1790 len
= btrfs_inode_extref_name_len(path
->nodes
[0], extref
);
1791 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1792 (unsigned long)&extref
->name
, len
);
1793 parent_dir
= btrfs_inode_extref_parent(path
->nodes
[0], extref
);
1797 btrfs_release_path(path
);
1800 ret
= get_inode_info(root
, parent_dir
, NULL
, dir_gen
, NULL
,
1809 btrfs_free_path(path
);
1813 static int is_first_ref(struct btrfs_root
*root
,
1815 const char *name
, int name_len
)
1818 struct fs_path
*tmp_name
;
1821 tmp_name
= fs_path_alloc();
1825 ret
= get_first_ref(root
, ino
, &tmp_dir
, NULL
, tmp_name
);
1829 if (dir
!= tmp_dir
|| name_len
!= fs_path_len(tmp_name
)) {
1834 ret
= !memcmp(tmp_name
->start
, name
, name_len
);
1837 fs_path_free(tmp_name
);
1842 * Used by process_recorded_refs to determine if a new ref would overwrite an
1843 * already existing ref. In case it detects an overwrite, it returns the
1844 * inode/gen in who_ino/who_gen.
1845 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1846 * to make sure later references to the overwritten inode are possible.
1847 * Orphanizing is however only required for the first ref of an inode.
1848 * process_recorded_refs does an additional is_first_ref check to see if
1849 * orphanizing is really required.
1851 static int will_overwrite_ref(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
1852 const char *name
, int name_len
,
1853 u64
*who_ino
, u64
*who_gen
, u64
*who_mode
)
1857 u64 other_inode
= 0;
1860 if (!sctx
->parent_root
)
1863 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1868 * If we have a parent root we need to verify that the parent dir was
1869 * not deleted and then re-created, if it was then we have no overwrite
1870 * and we can just unlink this entry.
1872 if (sctx
->parent_root
&& dir
!= BTRFS_FIRST_FREE_OBJECTID
) {
1873 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &gen
, NULL
,
1875 if (ret
< 0 && ret
!= -ENOENT
)
1885 ret
= lookup_dir_item_inode(sctx
->parent_root
, dir
, name
, name_len
,
1886 &other_inode
, &other_type
);
1887 if (ret
< 0 && ret
!= -ENOENT
)
1895 * Check if the overwritten ref was already processed. If yes, the ref
1896 * was already unlinked/moved, so we can safely assume that we will not
1897 * overwrite anything at this point in time.
1899 if (other_inode
> sctx
->send_progress
||
1900 is_waiting_for_move(sctx
, other_inode
)) {
1901 ret
= get_inode_info(sctx
->parent_root
, other_inode
, NULL
,
1902 who_gen
, who_mode
, NULL
, NULL
, NULL
);
1907 *who_ino
= other_inode
;
1917 * Checks if the ref was overwritten by an already processed inode. This is
1918 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1919 * thus the orphan name needs be used.
1920 * process_recorded_refs also uses it to avoid unlinking of refs that were
1923 static int did_overwrite_ref(struct send_ctx
*sctx
,
1924 u64 dir
, u64 dir_gen
,
1925 u64 ino
, u64 ino_gen
,
1926 const char *name
, int name_len
)
1933 if (!sctx
->parent_root
)
1936 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1940 if (dir
!= BTRFS_FIRST_FREE_OBJECTID
) {
1941 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &gen
, NULL
,
1943 if (ret
< 0 && ret
!= -ENOENT
)
1953 /* check if the ref was overwritten by another ref */
1954 ret
= lookup_dir_item_inode(sctx
->send_root
, dir
, name
, name_len
,
1955 &ow_inode
, &other_type
);
1956 if (ret
< 0 && ret
!= -ENOENT
)
1959 /* was never and will never be overwritten */
1964 ret
= get_inode_info(sctx
->send_root
, ow_inode
, NULL
, &gen
, NULL
, NULL
,
1969 if (ow_inode
== ino
&& gen
== ino_gen
) {
1975 * We know that it is or will be overwritten. Check this now.
1976 * The current inode being processed might have been the one that caused
1977 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1978 * the current inode being processed.
1980 if ((ow_inode
< sctx
->send_progress
) ||
1981 (ino
!= sctx
->cur_ino
&& ow_inode
== sctx
->cur_ino
&&
1982 gen
== sctx
->cur_inode_gen
))
1992 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1993 * that got overwritten. This is used by process_recorded_refs to determine
1994 * if it has to use the path as returned by get_cur_path or the orphan name.
1996 static int did_overwrite_first_ref(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1999 struct fs_path
*name
= NULL
;
2003 if (!sctx
->parent_root
)
2006 name
= fs_path_alloc();
2010 ret
= get_first_ref(sctx
->parent_root
, ino
, &dir
, &dir_gen
, name
);
2014 ret
= did_overwrite_ref(sctx
, dir
, dir_gen
, ino
, gen
,
2015 name
->start
, fs_path_len(name
));
2023 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2024 * so we need to do some special handling in case we have clashes. This function
2025 * takes care of this with the help of name_cache_entry::radix_list.
2026 * In case of error, nce is kfreed.
2028 static int name_cache_insert(struct send_ctx
*sctx
,
2029 struct name_cache_entry
*nce
)
2032 struct list_head
*nce_head
;
2034 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
2035 (unsigned long)nce
->ino
);
2037 nce_head
= kmalloc(sizeof(*nce_head
), GFP_KERNEL
);
2042 INIT_LIST_HEAD(nce_head
);
2044 ret
= radix_tree_insert(&sctx
->name_cache
, nce
->ino
, nce_head
);
2051 list_add_tail(&nce
->radix_list
, nce_head
);
2052 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2053 sctx
->name_cache_size
++;
2058 static void name_cache_delete(struct send_ctx
*sctx
,
2059 struct name_cache_entry
*nce
)
2061 struct list_head
*nce_head
;
2063 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
2064 (unsigned long)nce
->ino
);
2066 btrfs_err(sctx
->send_root
->fs_info
,
2067 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2068 nce
->ino
, sctx
->name_cache_size
);
2071 list_del(&nce
->radix_list
);
2072 list_del(&nce
->list
);
2073 sctx
->name_cache_size
--;
2076 * We may not get to the final release of nce_head if the lookup fails
2078 if (nce_head
&& list_empty(nce_head
)) {
2079 radix_tree_delete(&sctx
->name_cache
, (unsigned long)nce
->ino
);
2084 static struct name_cache_entry
*name_cache_search(struct send_ctx
*sctx
,
2087 struct list_head
*nce_head
;
2088 struct name_cache_entry
*cur
;
2090 nce_head
= radix_tree_lookup(&sctx
->name_cache
, (unsigned long)ino
);
2094 list_for_each_entry(cur
, nce_head
, radix_list
) {
2095 if (cur
->ino
== ino
&& cur
->gen
== gen
)
2102 * Removes the entry from the list and adds it back to the end. This marks the
2103 * entry as recently used so that name_cache_clean_unused does not remove it.
2105 static void name_cache_used(struct send_ctx
*sctx
, struct name_cache_entry
*nce
)
2107 list_del(&nce
->list
);
2108 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2112 * Remove some entries from the beginning of name_cache_list.
2114 static void name_cache_clean_unused(struct send_ctx
*sctx
)
2116 struct name_cache_entry
*nce
;
2118 if (sctx
->name_cache_size
< SEND_CTX_NAME_CACHE_CLEAN_SIZE
)
2121 while (sctx
->name_cache_size
> SEND_CTX_MAX_NAME_CACHE_SIZE
) {
2122 nce
= list_entry(sctx
->name_cache_list
.next
,
2123 struct name_cache_entry
, list
);
2124 name_cache_delete(sctx
, nce
);
2129 static void name_cache_free(struct send_ctx
*sctx
)
2131 struct name_cache_entry
*nce
;
2133 while (!list_empty(&sctx
->name_cache_list
)) {
2134 nce
= list_entry(sctx
->name_cache_list
.next
,
2135 struct name_cache_entry
, list
);
2136 name_cache_delete(sctx
, nce
);
2142 * Used by get_cur_path for each ref up to the root.
2143 * Returns 0 if it succeeded.
2144 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2145 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2146 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2147 * Returns <0 in case of error.
2149 static int __get_cur_name_and_parent(struct send_ctx
*sctx
,
2153 struct fs_path
*dest
)
2157 struct name_cache_entry
*nce
= NULL
;
2160 * First check if we already did a call to this function with the same
2161 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2162 * return the cached result.
2164 nce
= name_cache_search(sctx
, ino
, gen
);
2166 if (ino
< sctx
->send_progress
&& nce
->need_later_update
) {
2167 name_cache_delete(sctx
, nce
);
2171 name_cache_used(sctx
, nce
);
2172 *parent_ino
= nce
->parent_ino
;
2173 *parent_gen
= nce
->parent_gen
;
2174 ret
= fs_path_add(dest
, nce
->name
, nce
->name_len
);
2183 * If the inode is not existent yet, add the orphan name and return 1.
2184 * This should only happen for the parent dir that we determine in
2187 ret
= is_inode_existent(sctx
, ino
, gen
);
2192 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2200 * Depending on whether the inode was already processed or not, use
2201 * send_root or parent_root for ref lookup.
2203 if (ino
< sctx
->send_progress
)
2204 ret
= get_first_ref(sctx
->send_root
, ino
,
2205 parent_ino
, parent_gen
, dest
);
2207 ret
= get_first_ref(sctx
->parent_root
, ino
,
2208 parent_ino
, parent_gen
, dest
);
2213 * Check if the ref was overwritten by an inode's ref that was processed
2214 * earlier. If yes, treat as orphan and return 1.
2216 ret
= did_overwrite_ref(sctx
, *parent_ino
, *parent_gen
, ino
, gen
,
2217 dest
->start
, dest
->end
- dest
->start
);
2221 fs_path_reset(dest
);
2222 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2230 * Store the result of the lookup in the name cache.
2232 nce
= kmalloc(sizeof(*nce
) + fs_path_len(dest
) + 1, GFP_KERNEL
);
2240 nce
->parent_ino
= *parent_ino
;
2241 nce
->parent_gen
= *parent_gen
;
2242 nce
->name_len
= fs_path_len(dest
);
2244 strcpy(nce
->name
, dest
->start
);
2246 if (ino
< sctx
->send_progress
)
2247 nce
->need_later_update
= 0;
2249 nce
->need_later_update
= 1;
2251 nce_ret
= name_cache_insert(sctx
, nce
);
2254 name_cache_clean_unused(sctx
);
2261 * Magic happens here. This function returns the first ref to an inode as it
2262 * would look like while receiving the stream at this point in time.
2263 * We walk the path up to the root. For every inode in between, we check if it
2264 * was already processed/sent. If yes, we continue with the parent as found
2265 * in send_root. If not, we continue with the parent as found in parent_root.
2266 * If we encounter an inode that was deleted at this point in time, we use the
2267 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2268 * that were not created yet and overwritten inodes/refs.
2270 * When do we have orphan inodes:
2271 * 1. When an inode is freshly created and thus no valid refs are available yet
2272 * 2. When a directory lost all it's refs (deleted) but still has dir items
2273 * inside which were not processed yet (pending for move/delete). If anyone
2274 * tried to get the path to the dir items, it would get a path inside that
2276 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2277 * of an unprocessed inode. If in that case the first ref would be
2278 * overwritten, the overwritten inode gets "orphanized". Later when we
2279 * process this overwritten inode, it is restored at a new place by moving
2282 * sctx->send_progress tells this function at which point in time receiving
2285 static int get_cur_path(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2286 struct fs_path
*dest
)
2289 struct fs_path
*name
= NULL
;
2290 u64 parent_inode
= 0;
2294 name
= fs_path_alloc();
2301 fs_path_reset(dest
);
2303 while (!stop
&& ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
2304 struct waiting_dir_move
*wdm
;
2306 fs_path_reset(name
);
2308 if (is_waiting_for_rm(sctx
, ino
)) {
2309 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2312 ret
= fs_path_add_path(dest
, name
);
2316 wdm
= get_waiting_dir_move(sctx
, ino
);
2317 if (wdm
&& wdm
->orphanized
) {
2318 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2321 ret
= get_first_ref(sctx
->parent_root
, ino
,
2322 &parent_inode
, &parent_gen
, name
);
2324 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
2334 ret
= fs_path_add_path(dest
, name
);
2345 fs_path_unreverse(dest
);
2350 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2352 static int send_subvol_begin(struct send_ctx
*sctx
)
2355 struct btrfs_root
*send_root
= sctx
->send_root
;
2356 struct btrfs_root
*parent_root
= sctx
->parent_root
;
2357 struct btrfs_path
*path
;
2358 struct btrfs_key key
;
2359 struct btrfs_root_ref
*ref
;
2360 struct extent_buffer
*leaf
;
2364 path
= btrfs_alloc_path();
2368 name
= kmalloc(BTRFS_PATH_NAME_MAX
, GFP_KERNEL
);
2370 btrfs_free_path(path
);
2374 key
.objectid
= send_root
->root_key
.objectid
;
2375 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
2378 ret
= btrfs_search_slot_for_read(send_root
->fs_info
->tree_root
,
2387 leaf
= path
->nodes
[0];
2388 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2389 if (key
.type
!= BTRFS_ROOT_BACKREF_KEY
||
2390 key
.objectid
!= send_root
->root_key
.objectid
) {
2394 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
2395 namelen
= btrfs_root_ref_name_len(leaf
, ref
);
2396 read_extent_buffer(leaf
, name
, (unsigned long)(ref
+ 1), namelen
);
2397 btrfs_release_path(path
);
2400 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SNAPSHOT
);
2404 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SUBVOL
);
2409 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_PATH
, name
, namelen
);
2411 if (!btrfs_is_empty_uuid(sctx
->send_root
->root_item
.received_uuid
))
2412 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2413 sctx
->send_root
->root_item
.received_uuid
);
2415 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2416 sctx
->send_root
->root_item
.uuid
);
2418 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CTRANSID
,
2419 le64_to_cpu(sctx
->send_root
->root_item
.ctransid
));
2421 if (!btrfs_is_empty_uuid(parent_root
->root_item
.received_uuid
))
2422 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2423 parent_root
->root_item
.received_uuid
);
2425 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2426 parent_root
->root_item
.uuid
);
2427 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
2428 le64_to_cpu(sctx
->parent_root
->root_item
.ctransid
));
2431 ret
= send_cmd(sctx
);
2435 btrfs_free_path(path
);
2440 static int send_truncate(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 size
)
2442 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2446 btrfs_debug(fs_info
, "send_truncate %llu size=%llu", ino
, size
);
2448 p
= fs_path_alloc();
2452 ret
= begin_cmd(sctx
, BTRFS_SEND_C_TRUNCATE
);
2456 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2459 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2460 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, size
);
2462 ret
= send_cmd(sctx
);
2470 static int send_chmod(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 mode
)
2472 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2476 btrfs_debug(fs_info
, "send_chmod %llu mode=%llu", ino
, mode
);
2478 p
= fs_path_alloc();
2482 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHMOD
);
2486 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2489 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2490 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
& 07777);
2492 ret
= send_cmd(sctx
);
2500 static int send_chown(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 uid
, u64 gid
)
2502 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2506 btrfs_debug(fs_info
, "send_chown %llu uid=%llu, gid=%llu",
2509 p
= fs_path_alloc();
2513 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHOWN
);
2517 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2520 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2521 TLV_PUT_U64(sctx
, BTRFS_SEND_A_UID
, uid
);
2522 TLV_PUT_U64(sctx
, BTRFS_SEND_A_GID
, gid
);
2524 ret
= send_cmd(sctx
);
2532 static int send_utimes(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
2534 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2536 struct fs_path
*p
= NULL
;
2537 struct btrfs_inode_item
*ii
;
2538 struct btrfs_path
*path
= NULL
;
2539 struct extent_buffer
*eb
;
2540 struct btrfs_key key
;
2543 btrfs_debug(fs_info
, "send_utimes %llu", ino
);
2545 p
= fs_path_alloc();
2549 path
= alloc_path_for_send();
2556 key
.type
= BTRFS_INODE_ITEM_KEY
;
2558 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2564 eb
= path
->nodes
[0];
2565 slot
= path
->slots
[0];
2566 ii
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
2568 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UTIMES
);
2572 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2575 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2576 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_ATIME
, eb
, &ii
->atime
);
2577 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_MTIME
, eb
, &ii
->mtime
);
2578 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_CTIME
, eb
, &ii
->ctime
);
2579 /* TODO Add otime support when the otime patches get into upstream */
2581 ret
= send_cmd(sctx
);
2586 btrfs_free_path(path
);
2591 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2592 * a valid path yet because we did not process the refs yet. So, the inode
2593 * is created as orphan.
2595 static int send_create_inode(struct send_ctx
*sctx
, u64 ino
)
2597 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2605 btrfs_debug(fs_info
, "send_create_inode %llu", ino
);
2607 p
= fs_path_alloc();
2611 if (ino
!= sctx
->cur_ino
) {
2612 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &gen
, &mode
,
2617 gen
= sctx
->cur_inode_gen
;
2618 mode
= sctx
->cur_inode_mode
;
2619 rdev
= sctx
->cur_inode_rdev
;
2622 if (S_ISREG(mode
)) {
2623 cmd
= BTRFS_SEND_C_MKFILE
;
2624 } else if (S_ISDIR(mode
)) {
2625 cmd
= BTRFS_SEND_C_MKDIR
;
2626 } else if (S_ISLNK(mode
)) {
2627 cmd
= BTRFS_SEND_C_SYMLINK
;
2628 } else if (S_ISCHR(mode
) || S_ISBLK(mode
)) {
2629 cmd
= BTRFS_SEND_C_MKNOD
;
2630 } else if (S_ISFIFO(mode
)) {
2631 cmd
= BTRFS_SEND_C_MKFIFO
;
2632 } else if (S_ISSOCK(mode
)) {
2633 cmd
= BTRFS_SEND_C_MKSOCK
;
2635 btrfs_warn(sctx
->send_root
->fs_info
, "unexpected inode type %o",
2636 (int)(mode
& S_IFMT
));
2641 ret
= begin_cmd(sctx
, cmd
);
2645 ret
= gen_unique_name(sctx
, ino
, gen
, p
);
2649 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2650 TLV_PUT_U64(sctx
, BTRFS_SEND_A_INO
, ino
);
2652 if (S_ISLNK(mode
)) {
2654 ret
= read_symlink(sctx
->send_root
, ino
, p
);
2657 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, p
);
2658 } else if (S_ISCHR(mode
) || S_ISBLK(mode
) ||
2659 S_ISFIFO(mode
) || S_ISSOCK(mode
)) {
2660 TLV_PUT_U64(sctx
, BTRFS_SEND_A_RDEV
, new_encode_dev(rdev
));
2661 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
);
2664 ret
= send_cmd(sctx
);
2676 * We need some special handling for inodes that get processed before the parent
2677 * directory got created. See process_recorded_refs for details.
2678 * This function does the check if we already created the dir out of order.
2680 static int did_create_dir(struct send_ctx
*sctx
, u64 dir
)
2683 struct btrfs_path
*path
= NULL
;
2684 struct btrfs_key key
;
2685 struct btrfs_key found_key
;
2686 struct btrfs_key di_key
;
2687 struct extent_buffer
*eb
;
2688 struct btrfs_dir_item
*di
;
2691 path
= alloc_path_for_send();
2698 key
.type
= BTRFS_DIR_INDEX_KEY
;
2700 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2705 eb
= path
->nodes
[0];
2706 slot
= path
->slots
[0];
2707 if (slot
>= btrfs_header_nritems(eb
)) {
2708 ret
= btrfs_next_leaf(sctx
->send_root
, path
);
2711 } else if (ret
> 0) {
2718 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
2719 if (found_key
.objectid
!= key
.objectid
||
2720 found_key
.type
!= key
.type
) {
2725 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
2726 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
2728 if (di_key
.type
!= BTRFS_ROOT_ITEM_KEY
&&
2729 di_key
.objectid
< sctx
->send_progress
) {
2738 btrfs_free_path(path
);
2743 * Only creates the inode if it is:
2744 * 1. Not a directory
2745 * 2. Or a directory which was not created already due to out of order
2746 * directories. See did_create_dir and process_recorded_refs for details.
2748 static int send_create_inode_if_needed(struct send_ctx
*sctx
)
2752 if (S_ISDIR(sctx
->cur_inode_mode
)) {
2753 ret
= did_create_dir(sctx
, sctx
->cur_ino
);
2762 ret
= send_create_inode(sctx
, sctx
->cur_ino
);
2770 struct recorded_ref
{
2771 struct list_head list
;
2773 struct fs_path
*full_path
;
2779 static void set_ref_path(struct recorded_ref
*ref
, struct fs_path
*path
)
2781 ref
->full_path
= path
;
2782 ref
->name
= (char *)kbasename(ref
->full_path
->start
);
2783 ref
->name_len
= ref
->full_path
->end
- ref
->name
;
2787 * We need to process new refs before deleted refs, but compare_tree gives us
2788 * everything mixed. So we first record all refs and later process them.
2789 * This function is a helper to record one ref.
2791 static int __record_ref(struct list_head
*head
, u64 dir
,
2792 u64 dir_gen
, struct fs_path
*path
)
2794 struct recorded_ref
*ref
;
2796 ref
= kmalloc(sizeof(*ref
), GFP_KERNEL
);
2801 ref
->dir_gen
= dir_gen
;
2802 set_ref_path(ref
, path
);
2803 list_add_tail(&ref
->list
, head
);
2807 static int dup_ref(struct recorded_ref
*ref
, struct list_head
*list
)
2809 struct recorded_ref
*new;
2811 new = kmalloc(sizeof(*ref
), GFP_KERNEL
);
2815 new->dir
= ref
->dir
;
2816 new->dir_gen
= ref
->dir_gen
;
2817 new->full_path
= NULL
;
2818 INIT_LIST_HEAD(&new->list
);
2819 list_add_tail(&new->list
, list
);
2823 static void __free_recorded_refs(struct list_head
*head
)
2825 struct recorded_ref
*cur
;
2827 while (!list_empty(head
)) {
2828 cur
= list_entry(head
->next
, struct recorded_ref
, list
);
2829 fs_path_free(cur
->full_path
);
2830 list_del(&cur
->list
);
2835 static void free_recorded_refs(struct send_ctx
*sctx
)
2837 __free_recorded_refs(&sctx
->new_refs
);
2838 __free_recorded_refs(&sctx
->deleted_refs
);
2842 * Renames/moves a file/dir to its orphan name. Used when the first
2843 * ref of an unprocessed inode gets overwritten and for all non empty
2846 static int orphanize_inode(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2847 struct fs_path
*path
)
2850 struct fs_path
*orphan
;
2852 orphan
= fs_path_alloc();
2856 ret
= gen_unique_name(sctx
, ino
, gen
, orphan
);
2860 ret
= send_rename(sctx
, path
, orphan
);
2863 fs_path_free(orphan
);
2867 static struct orphan_dir_info
*
2868 add_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2870 struct rb_node
**p
= &sctx
->orphan_dirs
.rb_node
;
2871 struct rb_node
*parent
= NULL
;
2872 struct orphan_dir_info
*entry
, *odi
;
2876 entry
= rb_entry(parent
, struct orphan_dir_info
, node
);
2877 if (dir_ino
< entry
->ino
) {
2879 } else if (dir_ino
> entry
->ino
) {
2880 p
= &(*p
)->rb_right
;
2886 odi
= kmalloc(sizeof(*odi
), GFP_KERNEL
);
2888 return ERR_PTR(-ENOMEM
);
2891 odi
->last_dir_index_offset
= 0;
2893 rb_link_node(&odi
->node
, parent
, p
);
2894 rb_insert_color(&odi
->node
, &sctx
->orphan_dirs
);
2898 static struct orphan_dir_info
*
2899 get_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2901 struct rb_node
*n
= sctx
->orphan_dirs
.rb_node
;
2902 struct orphan_dir_info
*entry
;
2905 entry
= rb_entry(n
, struct orphan_dir_info
, node
);
2906 if (dir_ino
< entry
->ino
)
2908 else if (dir_ino
> entry
->ino
)
2916 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
)
2918 struct orphan_dir_info
*odi
= get_orphan_dir_info(sctx
, dir_ino
);
2923 static void free_orphan_dir_info(struct send_ctx
*sctx
,
2924 struct orphan_dir_info
*odi
)
2928 rb_erase(&odi
->node
, &sctx
->orphan_dirs
);
2933 * Returns 1 if a directory can be removed at this point in time.
2934 * We check this by iterating all dir items and checking if the inode behind
2935 * the dir item was already processed.
2937 static int can_rmdir(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
2941 struct btrfs_root
*root
= sctx
->parent_root
;
2942 struct btrfs_path
*path
;
2943 struct btrfs_key key
;
2944 struct btrfs_key found_key
;
2945 struct btrfs_key loc
;
2946 struct btrfs_dir_item
*di
;
2947 struct orphan_dir_info
*odi
= NULL
;
2950 * Don't try to rmdir the top/root subvolume dir.
2952 if (dir
== BTRFS_FIRST_FREE_OBJECTID
)
2955 path
= alloc_path_for_send();
2960 key
.type
= BTRFS_DIR_INDEX_KEY
;
2963 odi
= get_orphan_dir_info(sctx
, dir
);
2965 key
.offset
= odi
->last_dir_index_offset
;
2967 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2972 struct waiting_dir_move
*dm
;
2974 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
2975 ret
= btrfs_next_leaf(root
, path
);
2982 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2984 if (found_key
.objectid
!= key
.objectid
||
2985 found_key
.type
!= key
.type
)
2988 di
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2989 struct btrfs_dir_item
);
2990 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &loc
);
2992 dm
= get_waiting_dir_move(sctx
, loc
.objectid
);
2994 odi
= add_orphan_dir_info(sctx
, dir
);
3000 odi
->last_dir_index_offset
= found_key
.offset
;
3001 dm
->rmdir_ino
= dir
;
3006 if (loc
.objectid
> send_progress
) {
3007 odi
= add_orphan_dir_info(sctx
, dir
);
3013 odi
->last_dir_index_offset
= found_key
.offset
;
3020 free_orphan_dir_info(sctx
, odi
);
3025 btrfs_free_path(path
);
3029 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
)
3031 struct waiting_dir_move
*entry
= get_waiting_dir_move(sctx
, ino
);
3033 return entry
!= NULL
;
3036 static int add_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
, bool orphanized
)
3038 struct rb_node
**p
= &sctx
->waiting_dir_moves
.rb_node
;
3039 struct rb_node
*parent
= NULL
;
3040 struct waiting_dir_move
*entry
, *dm
;
3042 dm
= kmalloc(sizeof(*dm
), GFP_KERNEL
);
3047 dm
->orphanized
= orphanized
;
3051 entry
= rb_entry(parent
, struct waiting_dir_move
, node
);
3052 if (ino
< entry
->ino
) {
3054 } else if (ino
> entry
->ino
) {
3055 p
= &(*p
)->rb_right
;
3062 rb_link_node(&dm
->node
, parent
, p
);
3063 rb_insert_color(&dm
->node
, &sctx
->waiting_dir_moves
);
3067 static struct waiting_dir_move
*
3068 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
)
3070 struct rb_node
*n
= sctx
->waiting_dir_moves
.rb_node
;
3071 struct waiting_dir_move
*entry
;
3074 entry
= rb_entry(n
, struct waiting_dir_move
, node
);
3075 if (ino
< entry
->ino
)
3077 else if (ino
> entry
->ino
)
3085 static void free_waiting_dir_move(struct send_ctx
*sctx
,
3086 struct waiting_dir_move
*dm
)
3090 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
3094 static int add_pending_dir_move(struct send_ctx
*sctx
,
3098 struct list_head
*new_refs
,
3099 struct list_head
*deleted_refs
,
3100 const bool is_orphan
)
3102 struct rb_node
**p
= &sctx
->pending_dir_moves
.rb_node
;
3103 struct rb_node
*parent
= NULL
;
3104 struct pending_dir_move
*entry
= NULL
, *pm
;
3105 struct recorded_ref
*cur
;
3109 pm
= kmalloc(sizeof(*pm
), GFP_KERNEL
);
3112 pm
->parent_ino
= parent_ino
;
3115 INIT_LIST_HEAD(&pm
->list
);
3116 INIT_LIST_HEAD(&pm
->update_refs
);
3117 RB_CLEAR_NODE(&pm
->node
);
3121 entry
= rb_entry(parent
, struct pending_dir_move
, node
);
3122 if (parent_ino
< entry
->parent_ino
) {
3124 } else if (parent_ino
> entry
->parent_ino
) {
3125 p
= &(*p
)->rb_right
;
3132 list_for_each_entry(cur
, deleted_refs
, list
) {
3133 ret
= dup_ref(cur
, &pm
->update_refs
);
3137 list_for_each_entry(cur
, new_refs
, list
) {
3138 ret
= dup_ref(cur
, &pm
->update_refs
);
3143 ret
= add_waiting_dir_move(sctx
, pm
->ino
, is_orphan
);
3148 list_add_tail(&pm
->list
, &entry
->list
);
3150 rb_link_node(&pm
->node
, parent
, p
);
3151 rb_insert_color(&pm
->node
, &sctx
->pending_dir_moves
);
3156 __free_recorded_refs(&pm
->update_refs
);
3162 static struct pending_dir_move
*get_pending_dir_moves(struct send_ctx
*sctx
,
3165 struct rb_node
*n
= sctx
->pending_dir_moves
.rb_node
;
3166 struct pending_dir_move
*entry
;
3169 entry
= rb_entry(n
, struct pending_dir_move
, node
);
3170 if (parent_ino
< entry
->parent_ino
)
3172 else if (parent_ino
> entry
->parent_ino
)
3180 static int path_loop(struct send_ctx
*sctx
, struct fs_path
*name
,
3181 u64 ino
, u64 gen
, u64
*ancestor_ino
)
3184 u64 parent_inode
= 0;
3186 u64 start_ino
= ino
;
3189 while (ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
3190 fs_path_reset(name
);
3192 if (is_waiting_for_rm(sctx
, ino
))
3194 if (is_waiting_for_move(sctx
, ino
)) {
3195 if (*ancestor_ino
== 0)
3196 *ancestor_ino
= ino
;
3197 ret
= get_first_ref(sctx
->parent_root
, ino
,
3198 &parent_inode
, &parent_gen
, name
);
3200 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
3210 if (parent_inode
== start_ino
) {
3212 if (*ancestor_ino
== 0)
3213 *ancestor_ino
= ino
;
3222 static int apply_dir_move(struct send_ctx
*sctx
, struct pending_dir_move
*pm
)
3224 struct fs_path
*from_path
= NULL
;
3225 struct fs_path
*to_path
= NULL
;
3226 struct fs_path
*name
= NULL
;
3227 u64 orig_progress
= sctx
->send_progress
;
3228 struct recorded_ref
*cur
;
3229 u64 parent_ino
, parent_gen
;
3230 struct waiting_dir_move
*dm
= NULL
;
3236 name
= fs_path_alloc();
3237 from_path
= fs_path_alloc();
3238 if (!name
|| !from_path
) {
3243 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3245 rmdir_ino
= dm
->rmdir_ino
;
3246 is_orphan
= dm
->orphanized
;
3247 free_waiting_dir_move(sctx
, dm
);
3250 ret
= gen_unique_name(sctx
, pm
->ino
,
3251 pm
->gen
, from_path
);
3253 ret
= get_first_ref(sctx
->parent_root
, pm
->ino
,
3254 &parent_ino
, &parent_gen
, name
);
3257 ret
= get_cur_path(sctx
, parent_ino
, parent_gen
,
3261 ret
= fs_path_add_path(from_path
, name
);
3266 sctx
->send_progress
= sctx
->cur_ino
+ 1;
3267 ret
= path_loop(sctx
, name
, pm
->ino
, pm
->gen
, &ancestor
);
3271 LIST_HEAD(deleted_refs
);
3272 ASSERT(ancestor
> BTRFS_FIRST_FREE_OBJECTID
);
3273 ret
= add_pending_dir_move(sctx
, pm
->ino
, pm
->gen
, ancestor
,
3274 &pm
->update_refs
, &deleted_refs
,
3279 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3281 dm
->rmdir_ino
= rmdir_ino
;
3285 fs_path_reset(name
);
3288 ret
= get_cur_path(sctx
, pm
->ino
, pm
->gen
, to_path
);
3292 ret
= send_rename(sctx
, from_path
, to_path
);
3297 struct orphan_dir_info
*odi
;
3300 odi
= get_orphan_dir_info(sctx
, rmdir_ino
);
3302 /* already deleted */
3307 ret
= can_rmdir(sctx
, rmdir_ino
, gen
, sctx
->cur_ino
);
3313 name
= fs_path_alloc();
3318 ret
= get_cur_path(sctx
, rmdir_ino
, gen
, name
);
3321 ret
= send_rmdir(sctx
, name
);
3327 ret
= send_utimes(sctx
, pm
->ino
, pm
->gen
);
3332 * After rename/move, need to update the utimes of both new parent(s)
3333 * and old parent(s).
3335 list_for_each_entry(cur
, &pm
->update_refs
, list
) {
3337 * The parent inode might have been deleted in the send snapshot
3339 ret
= get_inode_info(sctx
->send_root
, cur
->dir
, NULL
,
3340 NULL
, NULL
, NULL
, NULL
, NULL
);
3341 if (ret
== -ENOENT
) {
3348 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
3355 fs_path_free(from_path
);
3356 fs_path_free(to_path
);
3357 sctx
->send_progress
= orig_progress
;
3362 static void free_pending_move(struct send_ctx
*sctx
, struct pending_dir_move
*m
)
3364 if (!list_empty(&m
->list
))
3366 if (!RB_EMPTY_NODE(&m
->node
))
3367 rb_erase(&m
->node
, &sctx
->pending_dir_moves
);
3368 __free_recorded_refs(&m
->update_refs
);
3372 static void tail_append_pending_moves(struct send_ctx
*sctx
,
3373 struct pending_dir_move
*moves
,
3374 struct list_head
*stack
)
3376 if (list_empty(&moves
->list
)) {
3377 list_add_tail(&moves
->list
, stack
);
3380 list_splice_init(&moves
->list
, &list
);
3381 list_add_tail(&moves
->list
, stack
);
3382 list_splice_tail(&list
, stack
);
3384 if (!RB_EMPTY_NODE(&moves
->node
)) {
3385 rb_erase(&moves
->node
, &sctx
->pending_dir_moves
);
3386 RB_CLEAR_NODE(&moves
->node
);
3390 static int apply_children_dir_moves(struct send_ctx
*sctx
)
3392 struct pending_dir_move
*pm
;
3393 struct list_head stack
;
3394 u64 parent_ino
= sctx
->cur_ino
;
3397 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3401 INIT_LIST_HEAD(&stack
);
3402 tail_append_pending_moves(sctx
, pm
, &stack
);
3404 while (!list_empty(&stack
)) {
3405 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3406 parent_ino
= pm
->ino
;
3407 ret
= apply_dir_move(sctx
, pm
);
3408 free_pending_move(sctx
, pm
);
3411 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3413 tail_append_pending_moves(sctx
, pm
, &stack
);
3418 while (!list_empty(&stack
)) {
3419 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3420 free_pending_move(sctx
, pm
);
3426 * We might need to delay a directory rename even when no ancestor directory
3427 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3428 * renamed. This happens when we rename a directory to the old name (the name
3429 * in the parent root) of some other unrelated directory that got its rename
3430 * delayed due to some ancestor with higher number that got renamed.
3436 * |---- a/ (ino 257)
3437 * | |---- file (ino 260)
3439 * |---- b/ (ino 258)
3440 * |---- c/ (ino 259)
3444 * |---- a/ (ino 258)
3445 * |---- x/ (ino 259)
3446 * |---- y/ (ino 257)
3447 * |----- file (ino 260)
3449 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3450 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3451 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3454 * 1 - rename 259 from 'c' to 'x'
3455 * 2 - rename 257 from 'a' to 'x/y'
3456 * 3 - rename 258 from 'b' to 'a'
3458 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3459 * be done right away and < 0 on error.
3461 static int wait_for_dest_dir_move(struct send_ctx
*sctx
,
3462 struct recorded_ref
*parent_ref
,
3463 const bool is_orphan
)
3465 struct btrfs_fs_info
*fs_info
= sctx
->parent_root
->fs_info
;
3466 struct btrfs_path
*path
;
3467 struct btrfs_key key
;
3468 struct btrfs_key di_key
;
3469 struct btrfs_dir_item
*di
;
3473 struct waiting_dir_move
*wdm
;
3475 if (RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
))
3478 path
= alloc_path_for_send();
3482 key
.objectid
= parent_ref
->dir
;
3483 key
.type
= BTRFS_DIR_ITEM_KEY
;
3484 key
.offset
= btrfs_name_hash(parent_ref
->name
, parent_ref
->name_len
);
3486 ret
= btrfs_search_slot(NULL
, sctx
->parent_root
, &key
, path
, 0, 0);
3489 } else if (ret
> 0) {
3494 di
= btrfs_match_dir_item_name(fs_info
, path
, parent_ref
->name
,
3495 parent_ref
->name_len
);
3501 * di_key.objectid has the number of the inode that has a dentry in the
3502 * parent directory with the same name that sctx->cur_ino is being
3503 * renamed to. We need to check if that inode is in the send root as
3504 * well and if it is currently marked as an inode with a pending rename,
3505 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3506 * that it happens after that other inode is renamed.
3508 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &di_key
);
3509 if (di_key
.type
!= BTRFS_INODE_ITEM_KEY
) {
3514 ret
= get_inode_info(sctx
->parent_root
, di_key
.objectid
, NULL
,
3515 &left_gen
, NULL
, NULL
, NULL
, NULL
);
3518 ret
= get_inode_info(sctx
->send_root
, di_key
.objectid
, NULL
,
3519 &right_gen
, NULL
, NULL
, NULL
, NULL
);
3526 /* Different inode, no need to delay the rename of sctx->cur_ino */
3527 if (right_gen
!= left_gen
) {
3532 wdm
= get_waiting_dir_move(sctx
, di_key
.objectid
);
3533 if (wdm
&& !wdm
->orphanized
) {
3534 ret
= add_pending_dir_move(sctx
,
3536 sctx
->cur_inode_gen
,
3539 &sctx
->deleted_refs
,
3545 btrfs_free_path(path
);
3550 * Check if inode ino2, or any of its ancestors, is inode ino1.
3551 * Return 1 if true, 0 if false and < 0 on error.
3553 static int check_ino_in_path(struct btrfs_root
*root
,
3558 struct fs_path
*fs_path
)
3563 return ino1_gen
== ino2_gen
;
3565 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3570 fs_path_reset(fs_path
);
3571 ret
= get_first_ref(root
, ino
, &parent
, &parent_gen
, fs_path
);
3575 return parent_gen
== ino1_gen
;
3582 * Check if ino ino1 is an ancestor of inode ino2 in the given root for any
3583 * possible path (in case ino2 is not a directory and has multiple hard links).
3584 * Return 1 if true, 0 if false and < 0 on error.
3586 static int is_ancestor(struct btrfs_root
*root
,
3590 struct fs_path
*fs_path
)
3592 bool free_fs_path
= false;
3594 struct btrfs_path
*path
= NULL
;
3595 struct btrfs_key key
;
3598 fs_path
= fs_path_alloc();
3601 free_fs_path
= true;
3604 path
= alloc_path_for_send();
3610 key
.objectid
= ino2
;
3611 key
.type
= BTRFS_INODE_REF_KEY
;
3614 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3619 struct extent_buffer
*leaf
= path
->nodes
[0];
3620 int slot
= path
->slots
[0];
3624 if (slot
>= btrfs_header_nritems(leaf
)) {
3625 ret
= btrfs_next_leaf(root
, path
);
3633 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
3634 if (key
.objectid
!= ino2
)
3636 if (key
.type
!= BTRFS_INODE_REF_KEY
&&
3637 key
.type
!= BTRFS_INODE_EXTREF_KEY
)
3640 item_size
= btrfs_item_size_nr(leaf
, slot
);
3641 while (cur_offset
< item_size
) {
3645 if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
3647 struct btrfs_inode_extref
*extref
;
3649 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
3650 extref
= (struct btrfs_inode_extref
*)
3652 parent
= btrfs_inode_extref_parent(leaf
,
3654 cur_offset
+= sizeof(*extref
);
3655 cur_offset
+= btrfs_inode_extref_name_len(leaf
,
3658 parent
= key
.offset
;
3659 cur_offset
= item_size
;
3662 ret
= get_inode_info(root
, parent
, NULL
, &parent_gen
,
3663 NULL
, NULL
, NULL
, NULL
);
3666 ret
= check_ino_in_path(root
, ino1
, ino1_gen
,
3667 parent
, parent_gen
, fs_path
);
3675 btrfs_free_path(path
);
3677 fs_path_free(fs_path
);
3681 static int wait_for_parent_move(struct send_ctx
*sctx
,
3682 struct recorded_ref
*parent_ref
,
3683 const bool is_orphan
)
3686 u64 ino
= parent_ref
->dir
;
3687 u64 ino_gen
= parent_ref
->dir_gen
;
3688 u64 parent_ino_before
, parent_ino_after
;
3689 struct fs_path
*path_before
= NULL
;
3690 struct fs_path
*path_after
= NULL
;
3693 path_after
= fs_path_alloc();
3694 path_before
= fs_path_alloc();
3695 if (!path_after
|| !path_before
) {
3701 * Our current directory inode may not yet be renamed/moved because some
3702 * ancestor (immediate or not) has to be renamed/moved first. So find if
3703 * such ancestor exists and make sure our own rename/move happens after
3704 * that ancestor is processed to avoid path build infinite loops (done
3705 * at get_cur_path()).
3707 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3708 u64 parent_ino_after_gen
;
3710 if (is_waiting_for_move(sctx
, ino
)) {
3712 * If the current inode is an ancestor of ino in the
3713 * parent root, we need to delay the rename of the
3714 * current inode, otherwise don't delayed the rename
3715 * because we can end up with a circular dependency
3716 * of renames, resulting in some directories never
3717 * getting the respective rename operations issued in
3718 * the send stream or getting into infinite path build
3721 ret
= is_ancestor(sctx
->parent_root
,
3722 sctx
->cur_ino
, sctx
->cur_inode_gen
,
3728 fs_path_reset(path_before
);
3729 fs_path_reset(path_after
);
3731 ret
= get_first_ref(sctx
->send_root
, ino
, &parent_ino_after
,
3732 &parent_ino_after_gen
, path_after
);
3735 ret
= get_first_ref(sctx
->parent_root
, ino
, &parent_ino_before
,
3737 if (ret
< 0 && ret
!= -ENOENT
) {
3739 } else if (ret
== -ENOENT
) {
3744 len1
= fs_path_len(path_before
);
3745 len2
= fs_path_len(path_after
);
3746 if (ino
> sctx
->cur_ino
&&
3747 (parent_ino_before
!= parent_ino_after
|| len1
!= len2
||
3748 memcmp(path_before
->start
, path_after
->start
, len1
))) {
3751 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
,
3752 &parent_ino_gen
, NULL
, NULL
, NULL
,
3756 if (ino_gen
== parent_ino_gen
) {
3761 ino
= parent_ino_after
;
3762 ino_gen
= parent_ino_after_gen
;
3766 fs_path_free(path_before
);
3767 fs_path_free(path_after
);
3770 ret
= add_pending_dir_move(sctx
,
3772 sctx
->cur_inode_gen
,
3775 &sctx
->deleted_refs
,
3784 static int update_ref_path(struct send_ctx
*sctx
, struct recorded_ref
*ref
)
3787 struct fs_path
*new_path
;
3790 * Our reference's name member points to its full_path member string, so
3791 * we use here a new path.
3793 new_path
= fs_path_alloc();
3797 ret
= get_cur_path(sctx
, ref
->dir
, ref
->dir_gen
, new_path
);
3799 fs_path_free(new_path
);
3802 ret
= fs_path_add(new_path
, ref
->name
, ref
->name_len
);
3804 fs_path_free(new_path
);
3808 fs_path_free(ref
->full_path
);
3809 set_ref_path(ref
, new_path
);
3815 * This does all the move/link/unlink/rmdir magic.
3817 static int process_recorded_refs(struct send_ctx
*sctx
, int *pending_move
)
3819 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
3821 struct recorded_ref
*cur
;
3822 struct recorded_ref
*cur2
;
3823 struct list_head check_dirs
;
3824 struct fs_path
*valid_path
= NULL
;
3828 int did_overwrite
= 0;
3830 u64 last_dir_ino_rm
= 0;
3831 bool can_rename
= true;
3832 bool orphanized_dir
= false;
3833 bool orphanized_ancestor
= false;
3835 btrfs_debug(fs_info
, "process_recorded_refs %llu", sctx
->cur_ino
);
3838 * This should never happen as the root dir always has the same ref
3839 * which is always '..'
3841 BUG_ON(sctx
->cur_ino
<= BTRFS_FIRST_FREE_OBJECTID
);
3842 INIT_LIST_HEAD(&check_dirs
);
3844 valid_path
= fs_path_alloc();
3851 * First, check if the first ref of the current inode was overwritten
3852 * before. If yes, we know that the current inode was already orphanized
3853 * and thus use the orphan name. If not, we can use get_cur_path to
3854 * get the path of the first ref as it would like while receiving at
3855 * this point in time.
3856 * New inodes are always orphan at the beginning, so force to use the
3857 * orphan name in this case.
3858 * The first ref is stored in valid_path and will be updated if it
3859 * gets moved around.
3861 if (!sctx
->cur_inode_new
) {
3862 ret
= did_overwrite_first_ref(sctx
, sctx
->cur_ino
,
3863 sctx
->cur_inode_gen
);
3869 if (sctx
->cur_inode_new
|| did_overwrite
) {
3870 ret
= gen_unique_name(sctx
, sctx
->cur_ino
,
3871 sctx
->cur_inode_gen
, valid_path
);
3876 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
3882 list_for_each_entry(cur
, &sctx
->new_refs
, list
) {
3884 * We may have refs where the parent directory does not exist
3885 * yet. This happens if the parent directories inum is higher
3886 * than the current inum. To handle this case, we create the
3887 * parent directory out of order. But we need to check if this
3888 * did already happen before due to other refs in the same dir.
3890 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
3893 if (ret
== inode_state_will_create
) {
3896 * First check if any of the current inodes refs did
3897 * already create the dir.
3899 list_for_each_entry(cur2
, &sctx
->new_refs
, list
) {
3902 if (cur2
->dir
== cur
->dir
) {
3909 * If that did not happen, check if a previous inode
3910 * did already create the dir.
3913 ret
= did_create_dir(sctx
, cur
->dir
);
3917 ret
= send_create_inode(sctx
, cur
->dir
);
3924 * Check if this new ref would overwrite the first ref of
3925 * another unprocessed inode. If yes, orphanize the
3926 * overwritten inode. If we find an overwritten ref that is
3927 * not the first ref, simply unlink it.
3929 ret
= will_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
3930 cur
->name
, cur
->name_len
,
3931 &ow_inode
, &ow_gen
, &ow_mode
);
3935 ret
= is_first_ref(sctx
->parent_root
,
3936 ow_inode
, cur
->dir
, cur
->name
,
3941 struct name_cache_entry
*nce
;
3942 struct waiting_dir_move
*wdm
;
3944 ret
= orphanize_inode(sctx
, ow_inode
, ow_gen
,
3948 if (S_ISDIR(ow_mode
))
3949 orphanized_dir
= true;
3952 * If ow_inode has its rename operation delayed
3953 * make sure that its orphanized name is used in
3954 * the source path when performing its rename
3957 if (is_waiting_for_move(sctx
, ow_inode
)) {
3958 wdm
= get_waiting_dir_move(sctx
,
3961 wdm
->orphanized
= true;
3965 * Make sure we clear our orphanized inode's
3966 * name from the name cache. This is because the
3967 * inode ow_inode might be an ancestor of some
3968 * other inode that will be orphanized as well
3969 * later and has an inode number greater than
3970 * sctx->send_progress. We need to prevent
3971 * future name lookups from using the old name
3972 * and get instead the orphan name.
3974 nce
= name_cache_search(sctx
, ow_inode
, ow_gen
);
3976 name_cache_delete(sctx
, nce
);
3981 * ow_inode might currently be an ancestor of
3982 * cur_ino, therefore compute valid_path (the
3983 * current path of cur_ino) again because it
3984 * might contain the pre-orphanization name of
3985 * ow_inode, which is no longer valid.
3987 ret
= is_ancestor(sctx
->parent_root
,
3989 sctx
->cur_ino
, NULL
);
3991 orphanized_ancestor
= true;
3992 fs_path_reset(valid_path
);
3993 ret
= get_cur_path(sctx
, sctx
->cur_ino
,
3994 sctx
->cur_inode_gen
,
4000 ret
= send_unlink(sctx
, cur
->full_path
);
4006 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
) {
4007 ret
= wait_for_dest_dir_move(sctx
, cur
, is_orphan
);
4016 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
&&
4018 ret
= wait_for_parent_move(sctx
, cur
, is_orphan
);
4028 * link/move the ref to the new place. If we have an orphan
4029 * inode, move it and update valid_path. If not, link or move
4030 * it depending on the inode mode.
4032 if (is_orphan
&& can_rename
) {
4033 ret
= send_rename(sctx
, valid_path
, cur
->full_path
);
4037 ret
= fs_path_copy(valid_path
, cur
->full_path
);
4040 } else if (can_rename
) {
4041 if (S_ISDIR(sctx
->cur_inode_mode
)) {
4043 * Dirs can't be linked, so move it. For moved
4044 * dirs, we always have one new and one deleted
4045 * ref. The deleted ref is ignored later.
4047 ret
= send_rename(sctx
, valid_path
,
4050 ret
= fs_path_copy(valid_path
,
4056 * We might have previously orphanized an inode
4057 * which is an ancestor of our current inode,
4058 * so our reference's full path, which was
4059 * computed before any such orphanizations, must
4062 if (orphanized_dir
) {
4063 ret
= update_ref_path(sctx
, cur
);
4067 ret
= send_link(sctx
, cur
->full_path
,
4073 ret
= dup_ref(cur
, &check_dirs
);
4078 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->cur_inode_deleted
) {
4080 * Check if we can already rmdir the directory. If not,
4081 * orphanize it. For every dir item inside that gets deleted
4082 * later, we do this check again and rmdir it then if possible.
4083 * See the use of check_dirs for more details.
4085 ret
= can_rmdir(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
4090 ret
= send_rmdir(sctx
, valid_path
);
4093 } else if (!is_orphan
) {
4094 ret
= orphanize_inode(sctx
, sctx
->cur_ino
,
4095 sctx
->cur_inode_gen
, valid_path
);
4101 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
4102 ret
= dup_ref(cur
, &check_dirs
);
4106 } else if (S_ISDIR(sctx
->cur_inode_mode
) &&
4107 !list_empty(&sctx
->deleted_refs
)) {
4109 * We have a moved dir. Add the old parent to check_dirs
4111 cur
= list_entry(sctx
->deleted_refs
.next
, struct recorded_ref
,
4113 ret
= dup_ref(cur
, &check_dirs
);
4116 } else if (!S_ISDIR(sctx
->cur_inode_mode
)) {
4118 * We have a non dir inode. Go through all deleted refs and
4119 * unlink them if they were not already overwritten by other
4122 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
4123 ret
= did_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
4124 sctx
->cur_ino
, sctx
->cur_inode_gen
,
4125 cur
->name
, cur
->name_len
);
4130 * If we orphanized any ancestor before, we need
4131 * to recompute the full path for deleted names,
4132 * since any such path was computed before we
4133 * processed any references and orphanized any
4136 if (orphanized_ancestor
) {
4137 ret
= update_ref_path(sctx
, cur
);
4141 ret
= send_unlink(sctx
, cur
->full_path
);
4145 ret
= dup_ref(cur
, &check_dirs
);
4150 * If the inode is still orphan, unlink the orphan. This may
4151 * happen when a previous inode did overwrite the first ref
4152 * of this inode and no new refs were added for the current
4153 * inode. Unlinking does not mean that the inode is deleted in
4154 * all cases. There may still be links to this inode in other
4158 ret
= send_unlink(sctx
, valid_path
);
4165 * We did collect all parent dirs where cur_inode was once located. We
4166 * now go through all these dirs and check if they are pending for
4167 * deletion and if it's finally possible to perform the rmdir now.
4168 * We also update the inode stats of the parent dirs here.
4170 list_for_each_entry(cur
, &check_dirs
, list
) {
4172 * In case we had refs into dirs that were not processed yet,
4173 * we don't need to do the utime and rmdir logic for these dirs.
4174 * The dir will be processed later.
4176 if (cur
->dir
> sctx
->cur_ino
)
4179 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
4183 if (ret
== inode_state_did_create
||
4184 ret
== inode_state_no_change
) {
4185 /* TODO delayed utimes */
4186 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
4189 } else if (ret
== inode_state_did_delete
&&
4190 cur
->dir
!= last_dir_ino_rm
) {
4191 ret
= can_rmdir(sctx
, cur
->dir
, cur
->dir_gen
,
4196 ret
= get_cur_path(sctx
, cur
->dir
,
4197 cur
->dir_gen
, valid_path
);
4200 ret
= send_rmdir(sctx
, valid_path
);
4203 last_dir_ino_rm
= cur
->dir
;
4211 __free_recorded_refs(&check_dirs
);
4212 free_recorded_refs(sctx
);
4213 fs_path_free(valid_path
);
4217 static int record_ref(struct btrfs_root
*root
, u64 dir
, struct fs_path
*name
,
4218 void *ctx
, struct list_head
*refs
)
4221 struct send_ctx
*sctx
= ctx
;
4225 p
= fs_path_alloc();
4229 ret
= get_inode_info(root
, dir
, NULL
, &gen
, NULL
, NULL
,
4234 ret
= get_cur_path(sctx
, dir
, gen
, p
);
4237 ret
= fs_path_add_path(p
, name
);
4241 ret
= __record_ref(refs
, dir
, gen
, p
);
4249 static int __record_new_ref(int num
, u64 dir
, int index
,
4250 struct fs_path
*name
,
4253 struct send_ctx
*sctx
= ctx
;
4254 return record_ref(sctx
->send_root
, dir
, name
, ctx
, &sctx
->new_refs
);
4258 static int __record_deleted_ref(int num
, u64 dir
, int index
,
4259 struct fs_path
*name
,
4262 struct send_ctx
*sctx
= ctx
;
4263 return record_ref(sctx
->parent_root
, dir
, name
, ctx
,
4264 &sctx
->deleted_refs
);
4267 static int record_new_ref(struct send_ctx
*sctx
)
4271 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
4272 sctx
->cmp_key
, 0, __record_new_ref
, sctx
);
4281 static int record_deleted_ref(struct send_ctx
*sctx
)
4285 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
4286 sctx
->cmp_key
, 0, __record_deleted_ref
, sctx
);
4295 struct find_ref_ctx
{
4298 struct btrfs_root
*root
;
4299 struct fs_path
*name
;
4303 static int __find_iref(int num
, u64 dir
, int index
,
4304 struct fs_path
*name
,
4307 struct find_ref_ctx
*ctx
= ctx_
;
4311 if (dir
== ctx
->dir
&& fs_path_len(name
) == fs_path_len(ctx
->name
) &&
4312 strncmp(name
->start
, ctx
->name
->start
, fs_path_len(name
)) == 0) {
4314 * To avoid doing extra lookups we'll only do this if everything
4317 ret
= get_inode_info(ctx
->root
, dir
, NULL
, &dir_gen
, NULL
,
4321 if (dir_gen
!= ctx
->dir_gen
)
4323 ctx
->found_idx
= num
;
4329 static int find_iref(struct btrfs_root
*root
,
4330 struct btrfs_path
*path
,
4331 struct btrfs_key
*key
,
4332 u64 dir
, u64 dir_gen
, struct fs_path
*name
)
4335 struct find_ref_ctx ctx
;
4339 ctx
.dir_gen
= dir_gen
;
4343 ret
= iterate_inode_ref(root
, path
, key
, 0, __find_iref
, &ctx
);
4347 if (ctx
.found_idx
== -1)
4350 return ctx
.found_idx
;
4353 static int __record_changed_new_ref(int num
, u64 dir
, int index
,
4354 struct fs_path
*name
,
4359 struct send_ctx
*sctx
= ctx
;
4361 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &dir_gen
, NULL
,
4366 ret
= find_iref(sctx
->parent_root
, sctx
->right_path
,
4367 sctx
->cmp_key
, dir
, dir_gen
, name
);
4369 ret
= __record_new_ref(num
, dir
, index
, name
, sctx
);
4376 static int __record_changed_deleted_ref(int num
, u64 dir
, int index
,
4377 struct fs_path
*name
,
4382 struct send_ctx
*sctx
= ctx
;
4384 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &dir_gen
, NULL
,
4389 ret
= find_iref(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4390 dir
, dir_gen
, name
);
4392 ret
= __record_deleted_ref(num
, dir
, index
, name
, sctx
);
4399 static int record_changed_ref(struct send_ctx
*sctx
)
4403 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
4404 sctx
->cmp_key
, 0, __record_changed_new_ref
, sctx
);
4407 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
4408 sctx
->cmp_key
, 0, __record_changed_deleted_ref
, sctx
);
4418 * Record and process all refs at once. Needed when an inode changes the
4419 * generation number, which means that it was deleted and recreated.
4421 static int process_all_refs(struct send_ctx
*sctx
,
4422 enum btrfs_compare_tree_result cmd
)
4425 struct btrfs_root
*root
;
4426 struct btrfs_path
*path
;
4427 struct btrfs_key key
;
4428 struct btrfs_key found_key
;
4429 struct extent_buffer
*eb
;
4431 iterate_inode_ref_t cb
;
4432 int pending_move
= 0;
4434 path
= alloc_path_for_send();
4438 if (cmd
== BTRFS_COMPARE_TREE_NEW
) {
4439 root
= sctx
->send_root
;
4440 cb
= __record_new_ref
;
4441 } else if (cmd
== BTRFS_COMPARE_TREE_DELETED
) {
4442 root
= sctx
->parent_root
;
4443 cb
= __record_deleted_ref
;
4445 btrfs_err(sctx
->send_root
->fs_info
,
4446 "Wrong command %d in process_all_refs", cmd
);
4451 key
.objectid
= sctx
->cmp_key
->objectid
;
4452 key
.type
= BTRFS_INODE_REF_KEY
;
4454 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4459 eb
= path
->nodes
[0];
4460 slot
= path
->slots
[0];
4461 if (slot
>= btrfs_header_nritems(eb
)) {
4462 ret
= btrfs_next_leaf(root
, path
);
4470 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4472 if (found_key
.objectid
!= key
.objectid
||
4473 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
4474 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
))
4477 ret
= iterate_inode_ref(root
, path
, &found_key
, 0, cb
, sctx
);
4483 btrfs_release_path(path
);
4486 * We don't actually care about pending_move as we are simply
4487 * re-creating this inode and will be rename'ing it into place once we
4488 * rename the parent directory.
4490 ret
= process_recorded_refs(sctx
, &pending_move
);
4492 btrfs_free_path(path
);
4496 static int send_set_xattr(struct send_ctx
*sctx
,
4497 struct fs_path
*path
,
4498 const char *name
, int name_len
,
4499 const char *data
, int data_len
)
4503 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SET_XATTR
);
4507 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4508 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4509 TLV_PUT(sctx
, BTRFS_SEND_A_XATTR_DATA
, data
, data_len
);
4511 ret
= send_cmd(sctx
);
4518 static int send_remove_xattr(struct send_ctx
*sctx
,
4519 struct fs_path
*path
,
4520 const char *name
, int name_len
)
4524 ret
= begin_cmd(sctx
, BTRFS_SEND_C_REMOVE_XATTR
);
4528 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4529 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4531 ret
= send_cmd(sctx
);
4538 static int __process_new_xattr(int num
, struct btrfs_key
*di_key
,
4539 const char *name
, int name_len
,
4540 const char *data
, int data_len
,
4544 struct send_ctx
*sctx
= ctx
;
4546 struct posix_acl_xattr_header dummy_acl
;
4548 p
= fs_path_alloc();
4553 * This hack is needed because empty acls are stored as zero byte
4554 * data in xattrs. Problem with that is, that receiving these zero byte
4555 * acls will fail later. To fix this, we send a dummy acl list that
4556 * only contains the version number and no entries.
4558 if (!strncmp(name
, XATTR_NAME_POSIX_ACL_ACCESS
, name_len
) ||
4559 !strncmp(name
, XATTR_NAME_POSIX_ACL_DEFAULT
, name_len
)) {
4560 if (data_len
== 0) {
4561 dummy_acl
.a_version
=
4562 cpu_to_le32(POSIX_ACL_XATTR_VERSION
);
4563 data
= (char *)&dummy_acl
;
4564 data_len
= sizeof(dummy_acl
);
4568 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4572 ret
= send_set_xattr(sctx
, p
, name
, name_len
, data
, data_len
);
4579 static int __process_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4580 const char *name
, int name_len
,
4581 const char *data
, int data_len
,
4585 struct send_ctx
*sctx
= ctx
;
4588 p
= fs_path_alloc();
4592 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4596 ret
= send_remove_xattr(sctx
, p
, name
, name_len
);
4603 static int process_new_xattr(struct send_ctx
*sctx
)
4607 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4608 __process_new_xattr
, sctx
);
4613 static int process_deleted_xattr(struct send_ctx
*sctx
)
4615 return iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4616 __process_deleted_xattr
, sctx
);
4619 struct find_xattr_ctx
{
4627 static int __find_xattr(int num
, struct btrfs_key
*di_key
,
4628 const char *name
, int name_len
,
4629 const char *data
, int data_len
,
4630 u8 type
, void *vctx
)
4632 struct find_xattr_ctx
*ctx
= vctx
;
4634 if (name_len
== ctx
->name_len
&&
4635 strncmp(name
, ctx
->name
, name_len
) == 0) {
4636 ctx
->found_idx
= num
;
4637 ctx
->found_data_len
= data_len
;
4638 ctx
->found_data
= kmemdup(data
, data_len
, GFP_KERNEL
);
4639 if (!ctx
->found_data
)
4646 static int find_xattr(struct btrfs_root
*root
,
4647 struct btrfs_path
*path
,
4648 struct btrfs_key
*key
,
4649 const char *name
, int name_len
,
4650 char **data
, int *data_len
)
4653 struct find_xattr_ctx ctx
;
4656 ctx
.name_len
= name_len
;
4658 ctx
.found_data
= NULL
;
4659 ctx
.found_data_len
= 0;
4661 ret
= iterate_dir_item(root
, path
, __find_xattr
, &ctx
);
4665 if (ctx
.found_idx
== -1)
4668 *data
= ctx
.found_data
;
4669 *data_len
= ctx
.found_data_len
;
4671 kfree(ctx
.found_data
);
4673 return ctx
.found_idx
;
4677 static int __process_changed_new_xattr(int num
, struct btrfs_key
*di_key
,
4678 const char *name
, int name_len
,
4679 const char *data
, int data_len
,
4683 struct send_ctx
*sctx
= ctx
;
4684 char *found_data
= NULL
;
4685 int found_data_len
= 0;
4687 ret
= find_xattr(sctx
->parent_root
, sctx
->right_path
,
4688 sctx
->cmp_key
, name
, name_len
, &found_data
,
4690 if (ret
== -ENOENT
) {
4691 ret
= __process_new_xattr(num
, di_key
, name
, name_len
, data
,
4692 data_len
, type
, ctx
);
4693 } else if (ret
>= 0) {
4694 if (data_len
!= found_data_len
||
4695 memcmp(data
, found_data
, data_len
)) {
4696 ret
= __process_new_xattr(num
, di_key
, name
, name_len
,
4697 data
, data_len
, type
, ctx
);
4707 static int __process_changed_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4708 const char *name
, int name_len
,
4709 const char *data
, int data_len
,
4713 struct send_ctx
*sctx
= ctx
;
4715 ret
= find_xattr(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4716 name
, name_len
, NULL
, NULL
);
4718 ret
= __process_deleted_xattr(num
, di_key
, name
, name_len
, data
,
4719 data_len
, type
, ctx
);
4726 static int process_changed_xattr(struct send_ctx
*sctx
)
4730 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4731 __process_changed_new_xattr
, sctx
);
4734 ret
= iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4735 __process_changed_deleted_xattr
, sctx
);
4741 static int process_all_new_xattrs(struct send_ctx
*sctx
)
4744 struct btrfs_root
*root
;
4745 struct btrfs_path
*path
;
4746 struct btrfs_key key
;
4747 struct btrfs_key found_key
;
4748 struct extent_buffer
*eb
;
4751 path
= alloc_path_for_send();
4755 root
= sctx
->send_root
;
4757 key
.objectid
= sctx
->cmp_key
->objectid
;
4758 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4760 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4765 eb
= path
->nodes
[0];
4766 slot
= path
->slots
[0];
4767 if (slot
>= btrfs_header_nritems(eb
)) {
4768 ret
= btrfs_next_leaf(root
, path
);
4771 } else if (ret
> 0) {
4778 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4779 if (found_key
.objectid
!= key
.objectid
||
4780 found_key
.type
!= key
.type
) {
4785 ret
= iterate_dir_item(root
, path
, __process_new_xattr
, sctx
);
4793 btrfs_free_path(path
);
4797 static ssize_t
fill_read_buf(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4799 struct btrfs_root
*root
= sctx
->send_root
;
4800 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4801 struct inode
*inode
;
4804 struct btrfs_key key
;
4805 pgoff_t index
= offset
>> PAGE_SHIFT
;
4807 unsigned pg_offset
= offset_in_page(offset
);
4810 key
.objectid
= sctx
->cur_ino
;
4811 key
.type
= BTRFS_INODE_ITEM_KEY
;
4814 inode
= btrfs_iget(fs_info
->sb
, &key
, root
);
4816 return PTR_ERR(inode
);
4818 if (offset
+ len
> i_size_read(inode
)) {
4819 if (offset
> i_size_read(inode
))
4822 len
= offset
- i_size_read(inode
);
4827 last_index
= (offset
+ len
- 1) >> PAGE_SHIFT
;
4829 /* initial readahead */
4830 memset(&sctx
->ra
, 0, sizeof(struct file_ra_state
));
4831 file_ra_state_init(&sctx
->ra
, inode
->i_mapping
);
4833 while (index
<= last_index
) {
4834 unsigned cur_len
= min_t(unsigned, len
,
4835 PAGE_SIZE
- pg_offset
);
4837 page
= find_lock_page(inode
->i_mapping
, index
);
4839 page_cache_sync_readahead(inode
->i_mapping
, &sctx
->ra
,
4840 NULL
, index
, last_index
+ 1 - index
);
4842 page
= find_or_create_page(inode
->i_mapping
, index
,
4850 if (PageReadahead(page
)) {
4851 page_cache_async_readahead(inode
->i_mapping
, &sctx
->ra
,
4852 NULL
, page
, index
, last_index
+ 1 - index
);
4855 if (!PageUptodate(page
)) {
4856 btrfs_readpage(NULL
, page
);
4858 if (!PageUptodate(page
)) {
4867 memcpy(sctx
->read_buf
+ ret
, addr
+ pg_offset
, cur_len
);
4882 * Read some bytes from the current inode/file and send a write command to
4885 static int send_write(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4887 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
4890 ssize_t num_read
= 0;
4892 p
= fs_path_alloc();
4896 btrfs_debug(fs_info
, "send_write offset=%llu, len=%d", offset
, len
);
4898 num_read
= fill_read_buf(sctx
, offset
, len
);
4899 if (num_read
<= 0) {
4905 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
4909 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4913 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4914 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4915 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, num_read
);
4917 ret
= send_cmd(sctx
);
4928 * Send a clone command to user space.
4930 static int send_clone(struct send_ctx
*sctx
,
4931 u64 offset
, u32 len
,
4932 struct clone_root
*clone_root
)
4938 btrfs_debug(sctx
->send_root
->fs_info
,
4939 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4940 offset
, len
, clone_root
->root
->root_key
.objectid
,
4941 clone_root
->ino
, clone_root
->offset
);
4943 p
= fs_path_alloc();
4947 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CLONE
);
4951 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4955 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4956 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_LEN
, len
);
4957 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4959 if (clone_root
->root
== sctx
->send_root
) {
4960 ret
= get_inode_info(sctx
->send_root
, clone_root
->ino
, NULL
,
4961 &gen
, NULL
, NULL
, NULL
, NULL
);
4964 ret
= get_cur_path(sctx
, clone_root
->ino
, gen
, p
);
4966 ret
= get_inode_path(clone_root
->root
, clone_root
->ino
, p
);
4972 * If the parent we're using has a received_uuid set then use that as
4973 * our clone source as that is what we will look for when doing a
4976 * This covers the case that we create a snapshot off of a received
4977 * subvolume and then use that as the parent and try to receive on a
4980 if (!btrfs_is_empty_uuid(clone_root
->root
->root_item
.received_uuid
))
4981 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
4982 clone_root
->root
->root_item
.received_uuid
);
4984 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
4985 clone_root
->root
->root_item
.uuid
);
4986 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
4987 le64_to_cpu(clone_root
->root
->root_item
.ctransid
));
4988 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_CLONE_PATH
, p
);
4989 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_OFFSET
,
4990 clone_root
->offset
);
4992 ret
= send_cmd(sctx
);
5001 * Send an update extent command to user space.
5003 static int send_update_extent(struct send_ctx
*sctx
,
5004 u64 offset
, u32 len
)
5009 p
= fs_path_alloc();
5013 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UPDATE_EXTENT
);
5017 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
5021 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
5022 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
5023 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, len
);
5025 ret
= send_cmd(sctx
);
5033 static int send_hole(struct send_ctx
*sctx
, u64 end
)
5035 struct fs_path
*p
= NULL
;
5036 u64 offset
= sctx
->cur_inode_last_extent
;
5041 * A hole that starts at EOF or beyond it. Since we do not yet support
5042 * fallocate (for extent preallocation and hole punching), sending a
5043 * write of zeroes starting at EOF or beyond would later require issuing
5044 * a truncate operation which would undo the write and achieve nothing.
5046 if (offset
>= sctx
->cur_inode_size
)
5050 * Don't go beyond the inode's i_size due to prealloc extents that start
5053 end
= min_t(u64
, end
, sctx
->cur_inode_size
);
5055 if (sctx
->flags
& BTRFS_SEND_FLAG_NO_FILE_DATA
)
5056 return send_update_extent(sctx
, offset
, end
- offset
);
5058 p
= fs_path_alloc();
5061 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
5063 goto tlv_put_failure
;
5064 memset(sctx
->read_buf
, 0, BTRFS_SEND_READ_SIZE
);
5065 while (offset
< end
) {
5066 len
= min_t(u64
, end
- offset
, BTRFS_SEND_READ_SIZE
);
5068 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
5071 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
5072 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
5073 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, len
);
5074 ret
= send_cmd(sctx
);
5079 sctx
->cur_inode_next_write_offset
= offset
;
5085 static int send_extent_data(struct send_ctx
*sctx
,
5091 if (sctx
->flags
& BTRFS_SEND_FLAG_NO_FILE_DATA
)
5092 return send_update_extent(sctx
, offset
, len
);
5094 while (sent
< len
) {
5095 u64 size
= len
- sent
;
5098 if (size
> BTRFS_SEND_READ_SIZE
)
5099 size
= BTRFS_SEND_READ_SIZE
;
5100 ret
= send_write(sctx
, offset
+ sent
, size
);
5110 static int clone_range(struct send_ctx
*sctx
,
5111 struct clone_root
*clone_root
,
5112 const u64 disk_byte
,
5117 struct btrfs_path
*path
;
5118 struct btrfs_key key
;
5120 u64 clone_src_i_size
= 0;
5123 * Prevent cloning from a zero offset with a length matching the sector
5124 * size because in some scenarios this will make the receiver fail.
5126 * For example, if in the source filesystem the extent at offset 0
5127 * has a length of sectorsize and it was written using direct IO, then
5128 * it can never be an inline extent (even if compression is enabled).
5129 * Then this extent can be cloned in the original filesystem to a non
5130 * zero file offset, but it may not be possible to clone in the
5131 * destination filesystem because it can be inlined due to compression
5132 * on the destination filesystem (as the receiver's write operations are
5133 * always done using buffered IO). The same happens when the original
5134 * filesystem does not have compression enabled but the destination
5137 if (clone_root
->offset
== 0 &&
5138 len
== sctx
->send_root
->fs_info
->sectorsize
)
5139 return send_extent_data(sctx
, offset
, len
);
5141 path
= alloc_path_for_send();
5146 * There are inodes that have extents that lie behind its i_size. Don't
5147 * accept clones from these extents.
5149 ret
= __get_inode_info(clone_root
->root
, path
, clone_root
->ino
,
5150 &clone_src_i_size
, NULL
, NULL
, NULL
, NULL
, NULL
);
5151 btrfs_release_path(path
);
5156 * We can't send a clone operation for the entire range if we find
5157 * extent items in the respective range in the source file that
5158 * refer to different extents or if we find holes.
5159 * So check for that and do a mix of clone and regular write/copy
5160 * operations if needed.
5164 * mkfs.btrfs -f /dev/sda
5165 * mount /dev/sda /mnt
5166 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5167 * cp --reflink=always /mnt/foo /mnt/bar
5168 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5169 * btrfs subvolume snapshot -r /mnt /mnt/snap
5171 * If when we send the snapshot and we are processing file bar (which
5172 * has a higher inode number than foo) we blindly send a clone operation
5173 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5174 * a file bar that matches the content of file foo - iow, doesn't match
5175 * the content from bar in the original filesystem.
5177 key
.objectid
= clone_root
->ino
;
5178 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5179 key
.offset
= clone_root
->offset
;
5180 ret
= btrfs_search_slot(NULL
, clone_root
->root
, &key
, path
, 0, 0);
5183 if (ret
> 0 && path
->slots
[0] > 0) {
5184 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0] - 1);
5185 if (key
.objectid
== clone_root
->ino
&&
5186 key
.type
== BTRFS_EXTENT_DATA_KEY
)
5191 struct extent_buffer
*leaf
= path
->nodes
[0];
5192 int slot
= path
->slots
[0];
5193 struct btrfs_file_extent_item
*ei
;
5197 u64 clone_data_offset
;
5199 if (slot
>= btrfs_header_nritems(leaf
)) {
5200 ret
= btrfs_next_leaf(clone_root
->root
, path
);
5208 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5211 * We might have an implicit trailing hole (NO_HOLES feature
5212 * enabled). We deal with it after leaving this loop.
5214 if (key
.objectid
!= clone_root
->ino
||
5215 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5218 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5219 type
= btrfs_file_extent_type(leaf
, ei
);
5220 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5221 ext_len
= btrfs_file_extent_ram_bytes(leaf
, ei
);
5222 ext_len
= PAGE_ALIGN(ext_len
);
5224 ext_len
= btrfs_file_extent_num_bytes(leaf
, ei
);
5227 if (key
.offset
+ ext_len
<= clone_root
->offset
)
5230 if (key
.offset
> clone_root
->offset
) {
5231 /* Implicit hole, NO_HOLES feature enabled. */
5232 u64 hole_len
= key
.offset
- clone_root
->offset
;
5236 ret
= send_extent_data(sctx
, offset
, hole_len
);
5244 clone_root
->offset
+= hole_len
;
5245 data_offset
+= hole_len
;
5248 if (key
.offset
>= clone_root
->offset
+ len
)
5251 if (key
.offset
>= clone_src_i_size
)
5254 if (key
.offset
+ ext_len
> clone_src_i_size
)
5255 ext_len
= clone_src_i_size
- key
.offset
;
5257 clone_data_offset
= btrfs_file_extent_offset(leaf
, ei
);
5258 if (btrfs_file_extent_disk_bytenr(leaf
, ei
) == disk_byte
) {
5259 clone_root
->offset
= key
.offset
;
5260 if (clone_data_offset
< data_offset
&&
5261 clone_data_offset
+ ext_len
> data_offset
) {
5264 extent_offset
= data_offset
- clone_data_offset
;
5265 ext_len
-= extent_offset
;
5266 clone_data_offset
+= extent_offset
;
5267 clone_root
->offset
+= extent_offset
;
5271 clone_len
= min_t(u64
, ext_len
, len
);
5273 if (btrfs_file_extent_disk_bytenr(leaf
, ei
) == disk_byte
&&
5274 clone_data_offset
== data_offset
) {
5275 const u64 src_end
= clone_root
->offset
+ clone_len
;
5276 const u64 sectorsize
= SZ_64K
;
5279 * We can't clone the last block, when its size is not
5280 * sector size aligned, into the middle of a file. If we
5281 * do so, the receiver will get a failure (-EINVAL) when
5282 * trying to clone or will silently corrupt the data in
5283 * the destination file if it's on a kernel without the
5284 * fix introduced by commit ac765f83f1397646
5285 * ("Btrfs: fix data corruption due to cloning of eof
5288 * So issue a clone of the aligned down range plus a
5289 * regular write for the eof block, if we hit that case.
5291 * Also, we use the maximum possible sector size, 64K,
5292 * because we don't know what's the sector size of the
5293 * filesystem that receives the stream, so we have to
5294 * assume the largest possible sector size.
5296 if (src_end
== clone_src_i_size
&&
5297 !IS_ALIGNED(src_end
, sectorsize
) &&
5298 offset
+ clone_len
< sctx
->cur_inode_size
) {
5301 slen
= ALIGN_DOWN(src_end
- clone_root
->offset
,
5304 ret
= send_clone(sctx
, offset
, slen
,
5309 ret
= send_extent_data(sctx
, offset
+ slen
,
5312 ret
= send_clone(sctx
, offset
, clone_len
,
5316 ret
= send_extent_data(sctx
, offset
, clone_len
);
5325 offset
+= clone_len
;
5326 clone_root
->offset
+= clone_len
;
5327 data_offset
+= clone_len
;
5333 ret
= send_extent_data(sctx
, offset
, len
);
5337 btrfs_free_path(path
);
5341 static int send_write_or_clone(struct send_ctx
*sctx
,
5342 struct btrfs_path
*path
,
5343 struct btrfs_key
*key
,
5344 struct clone_root
*clone_root
)
5347 struct btrfs_file_extent_item
*ei
;
5348 u64 offset
= key
->offset
;
5351 u64 bs
= sctx
->send_root
->fs_info
->sb
->s_blocksize
;
5353 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5354 struct btrfs_file_extent_item
);
5355 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
5356 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5357 len
= btrfs_file_extent_ram_bytes(path
->nodes
[0], ei
);
5359 * it is possible the inline item won't cover the whole page,
5360 * but there may be items after this page. Make
5361 * sure to send the whole thing
5363 len
= PAGE_ALIGN(len
);
5365 len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
5368 if (offset
>= sctx
->cur_inode_size
) {
5372 if (offset
+ len
> sctx
->cur_inode_size
)
5373 len
= sctx
->cur_inode_size
- offset
;
5379 if (clone_root
&& IS_ALIGNED(offset
+ len
, bs
)) {
5383 disk_byte
= btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
);
5384 data_offset
= btrfs_file_extent_offset(path
->nodes
[0], ei
);
5385 ret
= clone_range(sctx
, clone_root
, disk_byte
, data_offset
,
5388 ret
= send_extent_data(sctx
, offset
, len
);
5390 sctx
->cur_inode_next_write_offset
= offset
+ len
;
5395 static int is_extent_unchanged(struct send_ctx
*sctx
,
5396 struct btrfs_path
*left_path
,
5397 struct btrfs_key
*ekey
)
5400 struct btrfs_key key
;
5401 struct btrfs_path
*path
= NULL
;
5402 struct extent_buffer
*eb
;
5404 struct btrfs_key found_key
;
5405 struct btrfs_file_extent_item
*ei
;
5410 u64 left_offset_fixed
;
5418 path
= alloc_path_for_send();
5422 eb
= left_path
->nodes
[0];
5423 slot
= left_path
->slots
[0];
5424 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
5425 left_type
= btrfs_file_extent_type(eb
, ei
);
5427 if (left_type
!= BTRFS_FILE_EXTENT_REG
) {
5431 left_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
5432 left_len
= btrfs_file_extent_num_bytes(eb
, ei
);
5433 left_offset
= btrfs_file_extent_offset(eb
, ei
);
5434 left_gen
= btrfs_file_extent_generation(eb
, ei
);
5437 * Following comments will refer to these graphics. L is the left
5438 * extents which we are checking at the moment. 1-8 are the right
5439 * extents that we iterate.
5442 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5445 * |--1--|-2b-|...(same as above)
5447 * Alternative situation. Happens on files where extents got split.
5449 * |-----------7-----------|-6-|
5451 * Alternative situation. Happens on files which got larger.
5454 * Nothing follows after 8.
5457 key
.objectid
= ekey
->objectid
;
5458 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5459 key
.offset
= ekey
->offset
;
5460 ret
= btrfs_search_slot_for_read(sctx
->parent_root
, &key
, path
, 0, 0);
5469 * Handle special case where the right side has no extents at all.
5471 eb
= path
->nodes
[0];
5472 slot
= path
->slots
[0];
5473 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5474 if (found_key
.objectid
!= key
.objectid
||
5475 found_key
.type
!= key
.type
) {
5476 /* If we're a hole then just pretend nothing changed */
5477 ret
= (left_disknr
) ? 0 : 1;
5482 * We're now on 2a, 2b or 7.
5485 while (key
.offset
< ekey
->offset
+ left_len
) {
5486 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
5487 right_type
= btrfs_file_extent_type(eb
, ei
);
5488 if (right_type
!= BTRFS_FILE_EXTENT_REG
&&
5489 right_type
!= BTRFS_FILE_EXTENT_INLINE
) {
5494 if (right_type
== BTRFS_FILE_EXTENT_INLINE
) {
5495 right_len
= btrfs_file_extent_ram_bytes(eb
, ei
);
5496 right_len
= PAGE_ALIGN(right_len
);
5498 right_len
= btrfs_file_extent_num_bytes(eb
, ei
);
5502 * Are we at extent 8? If yes, we know the extent is changed.
5503 * This may only happen on the first iteration.
5505 if (found_key
.offset
+ right_len
<= ekey
->offset
) {
5506 /* If we're a hole just pretend nothing changed */
5507 ret
= (left_disknr
) ? 0 : 1;
5512 * We just wanted to see if when we have an inline extent, what
5513 * follows it is a regular extent (wanted to check the above
5514 * condition for inline extents too). This should normally not
5515 * happen but it's possible for example when we have an inline
5516 * compressed extent representing data with a size matching
5517 * the page size (currently the same as sector size).
5519 if (right_type
== BTRFS_FILE_EXTENT_INLINE
) {
5524 right_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
5525 right_offset
= btrfs_file_extent_offset(eb
, ei
);
5526 right_gen
= btrfs_file_extent_generation(eb
, ei
);
5528 left_offset_fixed
= left_offset
;
5529 if (key
.offset
< ekey
->offset
) {
5530 /* Fix the right offset for 2a and 7. */
5531 right_offset
+= ekey
->offset
- key
.offset
;
5533 /* Fix the left offset for all behind 2a and 2b */
5534 left_offset_fixed
+= key
.offset
- ekey
->offset
;
5538 * Check if we have the same extent.
5540 if (left_disknr
!= right_disknr
||
5541 left_offset_fixed
!= right_offset
||
5542 left_gen
!= right_gen
) {
5548 * Go to the next extent.
5550 ret
= btrfs_next_item(sctx
->parent_root
, path
);
5554 eb
= path
->nodes
[0];
5555 slot
= path
->slots
[0];
5556 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5558 if (ret
|| found_key
.objectid
!= key
.objectid
||
5559 found_key
.type
!= key
.type
) {
5560 key
.offset
+= right_len
;
5563 if (found_key
.offset
!= key
.offset
+ right_len
) {
5571 * We're now behind the left extent (treat as unchanged) or at the end
5572 * of the right side (treat as changed).
5574 if (key
.offset
>= ekey
->offset
+ left_len
)
5581 btrfs_free_path(path
);
5585 static int get_last_extent(struct send_ctx
*sctx
, u64 offset
)
5587 struct btrfs_path
*path
;
5588 struct btrfs_root
*root
= sctx
->send_root
;
5589 struct btrfs_file_extent_item
*fi
;
5590 struct btrfs_key key
;
5595 path
= alloc_path_for_send();
5599 sctx
->cur_inode_last_extent
= 0;
5601 key
.objectid
= sctx
->cur_ino
;
5602 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5603 key
.offset
= offset
;
5604 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 0, 1);
5608 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
5609 if (key
.objectid
!= sctx
->cur_ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5612 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5613 struct btrfs_file_extent_item
);
5614 type
= btrfs_file_extent_type(path
->nodes
[0], fi
);
5615 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5616 u64 size
= btrfs_file_extent_ram_bytes(path
->nodes
[0], fi
);
5617 extent_end
= ALIGN(key
.offset
+ size
,
5618 sctx
->send_root
->fs_info
->sectorsize
);
5620 extent_end
= key
.offset
+
5621 btrfs_file_extent_num_bytes(path
->nodes
[0], fi
);
5623 sctx
->cur_inode_last_extent
= extent_end
;
5625 btrfs_free_path(path
);
5629 static int range_is_hole_in_parent(struct send_ctx
*sctx
,
5633 struct btrfs_path
*path
;
5634 struct btrfs_key key
;
5635 struct btrfs_root
*root
= sctx
->parent_root
;
5636 u64 search_start
= start
;
5639 path
= alloc_path_for_send();
5643 key
.objectid
= sctx
->cur_ino
;
5644 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5645 key
.offset
= search_start
;
5646 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5649 if (ret
> 0 && path
->slots
[0] > 0)
5652 while (search_start
< end
) {
5653 struct extent_buffer
*leaf
= path
->nodes
[0];
5654 int slot
= path
->slots
[0];
5655 struct btrfs_file_extent_item
*fi
;
5658 if (slot
>= btrfs_header_nritems(leaf
)) {
5659 ret
= btrfs_next_leaf(root
, path
);
5667 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5668 if (key
.objectid
< sctx
->cur_ino
||
5669 key
.type
< BTRFS_EXTENT_DATA_KEY
)
5671 if (key
.objectid
> sctx
->cur_ino
||
5672 key
.type
> BTRFS_EXTENT_DATA_KEY
||
5676 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5677 if (btrfs_file_extent_type(leaf
, fi
) ==
5678 BTRFS_FILE_EXTENT_INLINE
) {
5679 u64 size
= btrfs_file_extent_ram_bytes(leaf
, fi
);
5681 extent_end
= ALIGN(key
.offset
+ size
,
5682 root
->fs_info
->sectorsize
);
5684 extent_end
= key
.offset
+
5685 btrfs_file_extent_num_bytes(leaf
, fi
);
5687 if (extent_end
<= start
)
5689 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0) {
5690 search_start
= extent_end
;
5700 btrfs_free_path(path
);
5704 static int maybe_send_hole(struct send_ctx
*sctx
, struct btrfs_path
*path
,
5705 struct btrfs_key
*key
)
5707 struct btrfs_file_extent_item
*fi
;
5712 if (sctx
->cur_ino
!= key
->objectid
|| !need_send_hole(sctx
))
5715 if (sctx
->cur_inode_last_extent
== (u64
)-1) {
5716 ret
= get_last_extent(sctx
, key
->offset
- 1);
5721 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5722 struct btrfs_file_extent_item
);
5723 type
= btrfs_file_extent_type(path
->nodes
[0], fi
);
5724 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5725 u64 size
= btrfs_file_extent_ram_bytes(path
->nodes
[0], fi
);
5726 extent_end
= ALIGN(key
->offset
+ size
,
5727 sctx
->send_root
->fs_info
->sectorsize
);
5729 extent_end
= key
->offset
+
5730 btrfs_file_extent_num_bytes(path
->nodes
[0], fi
);
5733 if (path
->slots
[0] == 0 &&
5734 sctx
->cur_inode_last_extent
< key
->offset
) {
5736 * We might have skipped entire leafs that contained only
5737 * file extent items for our current inode. These leafs have
5738 * a generation number smaller (older) than the one in the
5739 * current leaf and the leaf our last extent came from, and
5740 * are located between these 2 leafs.
5742 ret
= get_last_extent(sctx
, key
->offset
- 1);
5747 if (sctx
->cur_inode_last_extent
< key
->offset
) {
5748 ret
= range_is_hole_in_parent(sctx
,
5749 sctx
->cur_inode_last_extent
,
5754 ret
= send_hole(sctx
, key
->offset
);
5758 sctx
->cur_inode_last_extent
= extent_end
;
5762 static int process_extent(struct send_ctx
*sctx
,
5763 struct btrfs_path
*path
,
5764 struct btrfs_key
*key
)
5766 struct clone_root
*found_clone
= NULL
;
5769 if (S_ISLNK(sctx
->cur_inode_mode
))
5772 if (sctx
->parent_root
&& !sctx
->cur_inode_new
) {
5773 ret
= is_extent_unchanged(sctx
, path
, key
);
5781 struct btrfs_file_extent_item
*ei
;
5784 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5785 struct btrfs_file_extent_item
);
5786 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
5787 if (type
== BTRFS_FILE_EXTENT_PREALLOC
||
5788 type
== BTRFS_FILE_EXTENT_REG
) {
5790 * The send spec does not have a prealloc command yet,
5791 * so just leave a hole for prealloc'ed extents until
5792 * we have enough commands queued up to justify rev'ing
5795 if (type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5800 /* Have a hole, just skip it. */
5801 if (btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
) == 0) {
5808 ret
= find_extent_clone(sctx
, path
, key
->objectid
, key
->offset
,
5809 sctx
->cur_inode_size
, &found_clone
);
5810 if (ret
!= -ENOENT
&& ret
< 0)
5813 ret
= send_write_or_clone(sctx
, path
, key
, found_clone
);
5817 ret
= maybe_send_hole(sctx
, path
, key
);
5822 static int process_all_extents(struct send_ctx
*sctx
)
5825 struct btrfs_root
*root
;
5826 struct btrfs_path
*path
;
5827 struct btrfs_key key
;
5828 struct btrfs_key found_key
;
5829 struct extent_buffer
*eb
;
5832 root
= sctx
->send_root
;
5833 path
= alloc_path_for_send();
5837 key
.objectid
= sctx
->cmp_key
->objectid
;
5838 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5840 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5845 eb
= path
->nodes
[0];
5846 slot
= path
->slots
[0];
5848 if (slot
>= btrfs_header_nritems(eb
)) {
5849 ret
= btrfs_next_leaf(root
, path
);
5852 } else if (ret
> 0) {
5859 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5861 if (found_key
.objectid
!= key
.objectid
||
5862 found_key
.type
!= key
.type
) {
5867 ret
= process_extent(sctx
, path
, &found_key
);
5875 btrfs_free_path(path
);
5879 static int process_recorded_refs_if_needed(struct send_ctx
*sctx
, int at_end
,
5881 int *refs_processed
)
5885 if (sctx
->cur_ino
== 0)
5887 if (!at_end
&& sctx
->cur_ino
== sctx
->cmp_key
->objectid
&&
5888 sctx
->cmp_key
->type
<= BTRFS_INODE_EXTREF_KEY
)
5890 if (list_empty(&sctx
->new_refs
) && list_empty(&sctx
->deleted_refs
))
5893 ret
= process_recorded_refs(sctx
, pending_move
);
5897 *refs_processed
= 1;
5902 static int finish_inode_if_needed(struct send_ctx
*sctx
, int at_end
)
5913 int need_truncate
= 1;
5914 int pending_move
= 0;
5915 int refs_processed
= 0;
5917 if (sctx
->ignore_cur_inode
)
5920 ret
= process_recorded_refs_if_needed(sctx
, at_end
, &pending_move
,
5926 * We have processed the refs and thus need to advance send_progress.
5927 * Now, calls to get_cur_xxx will take the updated refs of the current
5928 * inode into account.
5930 * On the other hand, if our current inode is a directory and couldn't
5931 * be moved/renamed because its parent was renamed/moved too and it has
5932 * a higher inode number, we can only move/rename our current inode
5933 * after we moved/renamed its parent. Therefore in this case operate on
5934 * the old path (pre move/rename) of our current inode, and the
5935 * move/rename will be performed later.
5937 if (refs_processed
&& !pending_move
)
5938 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5940 if (sctx
->cur_ino
== 0 || sctx
->cur_inode_deleted
)
5942 if (!at_end
&& sctx
->cmp_key
->objectid
== sctx
->cur_ino
)
5945 ret
= get_inode_info(sctx
->send_root
, sctx
->cur_ino
, NULL
, NULL
,
5946 &left_mode
, &left_uid
, &left_gid
, NULL
);
5950 if (!sctx
->parent_root
|| sctx
->cur_inode_new
) {
5952 if (!S_ISLNK(sctx
->cur_inode_mode
))
5954 if (sctx
->cur_inode_next_write_offset
== sctx
->cur_inode_size
)
5959 ret
= get_inode_info(sctx
->parent_root
, sctx
->cur_ino
,
5960 &old_size
, NULL
, &right_mode
, &right_uid
,
5965 if (left_uid
!= right_uid
|| left_gid
!= right_gid
)
5967 if (!S_ISLNK(sctx
->cur_inode_mode
) && left_mode
!= right_mode
)
5969 if ((old_size
== sctx
->cur_inode_size
) ||
5970 (sctx
->cur_inode_size
> old_size
&&
5971 sctx
->cur_inode_next_write_offset
== sctx
->cur_inode_size
))
5975 if (S_ISREG(sctx
->cur_inode_mode
)) {
5976 if (need_send_hole(sctx
)) {
5977 if (sctx
->cur_inode_last_extent
== (u64
)-1 ||
5978 sctx
->cur_inode_last_extent
<
5979 sctx
->cur_inode_size
) {
5980 ret
= get_last_extent(sctx
, (u64
)-1);
5984 if (sctx
->cur_inode_last_extent
<
5985 sctx
->cur_inode_size
) {
5986 ret
= send_hole(sctx
, sctx
->cur_inode_size
);
5991 if (need_truncate
) {
5992 ret
= send_truncate(sctx
, sctx
->cur_ino
,
5993 sctx
->cur_inode_gen
,
5994 sctx
->cur_inode_size
);
6001 ret
= send_chown(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
6002 left_uid
, left_gid
);
6007 ret
= send_chmod(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
6014 * If other directory inodes depended on our current directory
6015 * inode's move/rename, now do their move/rename operations.
6017 if (!is_waiting_for_move(sctx
, sctx
->cur_ino
)) {
6018 ret
= apply_children_dir_moves(sctx
);
6022 * Need to send that every time, no matter if it actually
6023 * changed between the two trees as we have done changes to
6024 * the inode before. If our inode is a directory and it's
6025 * waiting to be moved/renamed, we will send its utimes when
6026 * it's moved/renamed, therefore we don't need to do it here.
6028 sctx
->send_progress
= sctx
->cur_ino
+ 1;
6029 ret
= send_utimes(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
);
6038 struct parent_paths_ctx
{
6039 struct list_head
*refs
;
6040 struct send_ctx
*sctx
;
6043 static int record_parent_ref(int num
, u64 dir
, int index
, struct fs_path
*name
,
6046 struct parent_paths_ctx
*ppctx
= ctx
;
6048 return record_ref(ppctx
->sctx
->parent_root
, dir
, name
, ppctx
->sctx
,
6053 * Issue unlink operations for all paths of the current inode found in the
6056 static int btrfs_unlink_all_paths(struct send_ctx
*sctx
)
6058 LIST_HEAD(deleted_refs
);
6059 struct btrfs_path
*path
;
6060 struct btrfs_key key
;
6061 struct parent_paths_ctx ctx
;
6064 path
= alloc_path_for_send();
6068 key
.objectid
= sctx
->cur_ino
;
6069 key
.type
= BTRFS_INODE_REF_KEY
;
6071 ret
= btrfs_search_slot(NULL
, sctx
->parent_root
, &key
, path
, 0, 0);
6075 ctx
.refs
= &deleted_refs
;
6079 struct extent_buffer
*eb
= path
->nodes
[0];
6080 int slot
= path
->slots
[0];
6082 if (slot
>= btrfs_header_nritems(eb
)) {
6083 ret
= btrfs_next_leaf(sctx
->parent_root
, path
);
6091 btrfs_item_key_to_cpu(eb
, &key
, slot
);
6092 if (key
.objectid
!= sctx
->cur_ino
)
6094 if (key
.type
!= BTRFS_INODE_REF_KEY
&&
6095 key
.type
!= BTRFS_INODE_EXTREF_KEY
)
6098 ret
= iterate_inode_ref(sctx
->parent_root
, path
, &key
, 1,
6099 record_parent_ref
, &ctx
);
6106 while (!list_empty(&deleted_refs
)) {
6107 struct recorded_ref
*ref
;
6109 ref
= list_first_entry(&deleted_refs
, struct recorded_ref
, list
);
6110 ret
= send_unlink(sctx
, ref
->full_path
);
6113 fs_path_free(ref
->full_path
);
6114 list_del(&ref
->list
);
6119 btrfs_free_path(path
);
6121 __free_recorded_refs(&deleted_refs
);
6125 static int changed_inode(struct send_ctx
*sctx
,
6126 enum btrfs_compare_tree_result result
)
6129 struct btrfs_key
*key
= sctx
->cmp_key
;
6130 struct btrfs_inode_item
*left_ii
= NULL
;
6131 struct btrfs_inode_item
*right_ii
= NULL
;
6135 sctx
->cur_ino
= key
->objectid
;
6136 sctx
->cur_inode_new_gen
= 0;
6137 sctx
->cur_inode_last_extent
= (u64
)-1;
6138 sctx
->cur_inode_next_write_offset
= 0;
6139 sctx
->ignore_cur_inode
= false;
6142 * Set send_progress to current inode. This will tell all get_cur_xxx
6143 * functions that the current inode's refs are not updated yet. Later,
6144 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6146 sctx
->send_progress
= sctx
->cur_ino
;
6148 if (result
== BTRFS_COMPARE_TREE_NEW
||
6149 result
== BTRFS_COMPARE_TREE_CHANGED
) {
6150 left_ii
= btrfs_item_ptr(sctx
->left_path
->nodes
[0],
6151 sctx
->left_path
->slots
[0],
6152 struct btrfs_inode_item
);
6153 left_gen
= btrfs_inode_generation(sctx
->left_path
->nodes
[0],
6156 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
6157 sctx
->right_path
->slots
[0],
6158 struct btrfs_inode_item
);
6159 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
6162 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
6163 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
6164 sctx
->right_path
->slots
[0],
6165 struct btrfs_inode_item
);
6167 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
6171 * The cur_ino = root dir case is special here. We can't treat
6172 * the inode as deleted+reused because it would generate a
6173 * stream that tries to delete/mkdir the root dir.
6175 if (left_gen
!= right_gen
&&
6176 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
6177 sctx
->cur_inode_new_gen
= 1;
6181 * Normally we do not find inodes with a link count of zero (orphans)
6182 * because the most common case is to create a snapshot and use it
6183 * for a send operation. However other less common use cases involve
6184 * using a subvolume and send it after turning it to RO mode just
6185 * after deleting all hard links of a file while holding an open
6186 * file descriptor against it or turning a RO snapshot into RW mode,
6187 * keep an open file descriptor against a file, delete it and then
6188 * turn the snapshot back to RO mode before using it for a send
6189 * operation. So if we find such cases, ignore the inode and all its
6190 * items completely if it's a new inode, or if it's a changed inode
6191 * make sure all its previous paths (from the parent snapshot) are all
6192 * unlinked and all other the inode items are ignored.
6194 if (result
== BTRFS_COMPARE_TREE_NEW
||
6195 result
== BTRFS_COMPARE_TREE_CHANGED
) {
6198 nlinks
= btrfs_inode_nlink(sctx
->left_path
->nodes
[0], left_ii
);
6200 sctx
->ignore_cur_inode
= true;
6201 if (result
== BTRFS_COMPARE_TREE_CHANGED
)
6202 ret
= btrfs_unlink_all_paths(sctx
);
6207 if (result
== BTRFS_COMPARE_TREE_NEW
) {
6208 sctx
->cur_inode_gen
= left_gen
;
6209 sctx
->cur_inode_new
= 1;
6210 sctx
->cur_inode_deleted
= 0;
6211 sctx
->cur_inode_size
= btrfs_inode_size(
6212 sctx
->left_path
->nodes
[0], left_ii
);
6213 sctx
->cur_inode_mode
= btrfs_inode_mode(
6214 sctx
->left_path
->nodes
[0], left_ii
);
6215 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
6216 sctx
->left_path
->nodes
[0], left_ii
);
6217 if (sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
6218 ret
= send_create_inode_if_needed(sctx
);
6219 } else if (result
== BTRFS_COMPARE_TREE_DELETED
) {
6220 sctx
->cur_inode_gen
= right_gen
;
6221 sctx
->cur_inode_new
= 0;
6222 sctx
->cur_inode_deleted
= 1;
6223 sctx
->cur_inode_size
= btrfs_inode_size(
6224 sctx
->right_path
->nodes
[0], right_ii
);
6225 sctx
->cur_inode_mode
= btrfs_inode_mode(
6226 sctx
->right_path
->nodes
[0], right_ii
);
6227 } else if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
6229 * We need to do some special handling in case the inode was
6230 * reported as changed with a changed generation number. This
6231 * means that the original inode was deleted and new inode
6232 * reused the same inum. So we have to treat the old inode as
6233 * deleted and the new one as new.
6235 if (sctx
->cur_inode_new_gen
) {
6237 * First, process the inode as if it was deleted.
6239 sctx
->cur_inode_gen
= right_gen
;
6240 sctx
->cur_inode_new
= 0;
6241 sctx
->cur_inode_deleted
= 1;
6242 sctx
->cur_inode_size
= btrfs_inode_size(
6243 sctx
->right_path
->nodes
[0], right_ii
);
6244 sctx
->cur_inode_mode
= btrfs_inode_mode(
6245 sctx
->right_path
->nodes
[0], right_ii
);
6246 ret
= process_all_refs(sctx
,
6247 BTRFS_COMPARE_TREE_DELETED
);
6252 * Now process the inode as if it was new.
6254 sctx
->cur_inode_gen
= left_gen
;
6255 sctx
->cur_inode_new
= 1;
6256 sctx
->cur_inode_deleted
= 0;
6257 sctx
->cur_inode_size
= btrfs_inode_size(
6258 sctx
->left_path
->nodes
[0], left_ii
);
6259 sctx
->cur_inode_mode
= btrfs_inode_mode(
6260 sctx
->left_path
->nodes
[0], left_ii
);
6261 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
6262 sctx
->left_path
->nodes
[0], left_ii
);
6263 ret
= send_create_inode_if_needed(sctx
);
6267 ret
= process_all_refs(sctx
, BTRFS_COMPARE_TREE_NEW
);
6271 * Advance send_progress now as we did not get into
6272 * process_recorded_refs_if_needed in the new_gen case.
6274 sctx
->send_progress
= sctx
->cur_ino
+ 1;
6277 * Now process all extents and xattrs of the inode as if
6278 * they were all new.
6280 ret
= process_all_extents(sctx
);
6283 ret
= process_all_new_xattrs(sctx
);
6287 sctx
->cur_inode_gen
= left_gen
;
6288 sctx
->cur_inode_new
= 0;
6289 sctx
->cur_inode_new_gen
= 0;
6290 sctx
->cur_inode_deleted
= 0;
6291 sctx
->cur_inode_size
= btrfs_inode_size(
6292 sctx
->left_path
->nodes
[0], left_ii
);
6293 sctx
->cur_inode_mode
= btrfs_inode_mode(
6294 sctx
->left_path
->nodes
[0], left_ii
);
6303 * We have to process new refs before deleted refs, but compare_trees gives us
6304 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6305 * first and later process them in process_recorded_refs.
6306 * For the cur_inode_new_gen case, we skip recording completely because
6307 * changed_inode did already initiate processing of refs. The reason for this is
6308 * that in this case, compare_tree actually compares the refs of 2 different
6309 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6310 * refs of the right tree as deleted and all refs of the left tree as new.
6312 static int changed_ref(struct send_ctx
*sctx
,
6313 enum btrfs_compare_tree_result result
)
6317 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
6318 inconsistent_snapshot_error(sctx
, result
, "reference");
6322 if (!sctx
->cur_inode_new_gen
&&
6323 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
6324 if (result
== BTRFS_COMPARE_TREE_NEW
)
6325 ret
= record_new_ref(sctx
);
6326 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
6327 ret
= record_deleted_ref(sctx
);
6328 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
6329 ret
= record_changed_ref(sctx
);
6336 * Process new/deleted/changed xattrs. We skip processing in the
6337 * cur_inode_new_gen case because changed_inode did already initiate processing
6338 * of xattrs. The reason is the same as in changed_ref
6340 static int changed_xattr(struct send_ctx
*sctx
,
6341 enum btrfs_compare_tree_result result
)
6345 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
6346 inconsistent_snapshot_error(sctx
, result
, "xattr");
6350 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
6351 if (result
== BTRFS_COMPARE_TREE_NEW
)
6352 ret
= process_new_xattr(sctx
);
6353 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
6354 ret
= process_deleted_xattr(sctx
);
6355 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
6356 ret
= process_changed_xattr(sctx
);
6363 * Process new/deleted/changed extents. We skip processing in the
6364 * cur_inode_new_gen case because changed_inode did already initiate processing
6365 * of extents. The reason is the same as in changed_ref
6367 static int changed_extent(struct send_ctx
*sctx
,
6368 enum btrfs_compare_tree_result result
)
6373 * We have found an extent item that changed without the inode item
6374 * having changed. This can happen either after relocation (where the
6375 * disk_bytenr of an extent item is replaced at
6376 * relocation.c:replace_file_extents()) or after deduplication into a
6377 * file in both the parent and send snapshots (where an extent item can
6378 * get modified or replaced with a new one). Note that deduplication
6379 * updates the inode item, but it only changes the iversion (sequence
6380 * field in the inode item) of the inode, so if a file is deduplicated
6381 * the same amount of times in both the parent and send snapshots, its
6382 * iversion becames the same in both snapshots, whence the inode item is
6383 * the same on both snapshots.
6385 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
)
6388 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
6389 if (result
!= BTRFS_COMPARE_TREE_DELETED
)
6390 ret
= process_extent(sctx
, sctx
->left_path
,
6397 static int dir_changed(struct send_ctx
*sctx
, u64 dir
)
6399 u64 orig_gen
, new_gen
;
6402 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &new_gen
, NULL
, NULL
,
6407 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &orig_gen
, NULL
,
6412 return (orig_gen
!= new_gen
) ? 1 : 0;
6415 static int compare_refs(struct send_ctx
*sctx
, struct btrfs_path
*path
,
6416 struct btrfs_key
*key
)
6418 struct btrfs_inode_extref
*extref
;
6419 struct extent_buffer
*leaf
;
6420 u64 dirid
= 0, last_dirid
= 0;
6427 /* Easy case, just check this one dirid */
6428 if (key
->type
== BTRFS_INODE_REF_KEY
) {
6429 dirid
= key
->offset
;
6431 ret
= dir_changed(sctx
, dirid
);
6435 leaf
= path
->nodes
[0];
6436 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
6437 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
6438 while (cur_offset
< item_size
) {
6439 extref
= (struct btrfs_inode_extref
*)(ptr
+
6441 dirid
= btrfs_inode_extref_parent(leaf
, extref
);
6442 ref_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
6443 cur_offset
+= ref_name_len
+ sizeof(*extref
);
6444 if (dirid
== last_dirid
)
6446 ret
= dir_changed(sctx
, dirid
);
6456 * Updates compare related fields in sctx and simply forwards to the actual
6457 * changed_xxx functions.
6459 static int changed_cb(struct btrfs_path
*left_path
,
6460 struct btrfs_path
*right_path
,
6461 struct btrfs_key
*key
,
6462 enum btrfs_compare_tree_result result
,
6466 struct send_ctx
*sctx
= ctx
;
6468 if (result
== BTRFS_COMPARE_TREE_SAME
) {
6469 if (key
->type
== BTRFS_INODE_REF_KEY
||
6470 key
->type
== BTRFS_INODE_EXTREF_KEY
) {
6471 ret
= compare_refs(sctx
, left_path
, key
);
6476 } else if (key
->type
== BTRFS_EXTENT_DATA_KEY
) {
6477 return maybe_send_hole(sctx
, left_path
, key
);
6481 result
= BTRFS_COMPARE_TREE_CHANGED
;
6485 sctx
->left_path
= left_path
;
6486 sctx
->right_path
= right_path
;
6487 sctx
->cmp_key
= key
;
6489 ret
= finish_inode_if_needed(sctx
, 0);
6493 /* Ignore non-FS objects */
6494 if (key
->objectid
== BTRFS_FREE_INO_OBJECTID
||
6495 key
->objectid
== BTRFS_FREE_SPACE_OBJECTID
)
6498 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
6499 ret
= changed_inode(sctx
, result
);
6500 } else if (!sctx
->ignore_cur_inode
) {
6501 if (key
->type
== BTRFS_INODE_REF_KEY
||
6502 key
->type
== BTRFS_INODE_EXTREF_KEY
)
6503 ret
= changed_ref(sctx
, result
);
6504 else if (key
->type
== BTRFS_XATTR_ITEM_KEY
)
6505 ret
= changed_xattr(sctx
, result
);
6506 else if (key
->type
== BTRFS_EXTENT_DATA_KEY
)
6507 ret
= changed_extent(sctx
, result
);
6514 static int full_send_tree(struct send_ctx
*sctx
)
6517 struct btrfs_root
*send_root
= sctx
->send_root
;
6518 struct btrfs_key key
;
6519 struct btrfs_path
*path
;
6520 struct extent_buffer
*eb
;
6523 path
= alloc_path_for_send();
6527 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
6528 key
.type
= BTRFS_INODE_ITEM_KEY
;
6531 ret
= btrfs_search_slot_for_read(send_root
, &key
, path
, 1, 0);
6538 eb
= path
->nodes
[0];
6539 slot
= path
->slots
[0];
6540 btrfs_item_key_to_cpu(eb
, &key
, slot
);
6542 ret
= changed_cb(path
, NULL
, &key
,
6543 BTRFS_COMPARE_TREE_NEW
, sctx
);
6547 ret
= btrfs_next_item(send_root
, path
);
6557 ret
= finish_inode_if_needed(sctx
, 1);
6560 btrfs_free_path(path
);
6564 static int tree_move_down(struct btrfs_path
*path
, int *level
)
6566 struct extent_buffer
*eb
;
6568 BUG_ON(*level
== 0);
6569 eb
= btrfs_read_node_slot(path
->nodes
[*level
], path
->slots
[*level
]);
6573 path
->nodes
[*level
- 1] = eb
;
6574 path
->slots
[*level
- 1] = 0;
6579 static int tree_move_next_or_upnext(struct btrfs_path
*path
,
6580 int *level
, int root_level
)
6584 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
6586 path
->slots
[*level
]++;
6588 while (path
->slots
[*level
] >= nritems
) {
6589 if (*level
== root_level
)
6593 path
->slots
[*level
] = 0;
6594 free_extent_buffer(path
->nodes
[*level
]);
6595 path
->nodes
[*level
] = NULL
;
6597 path
->slots
[*level
]++;
6599 nritems
= btrfs_header_nritems(path
->nodes
[*level
]);
6606 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
6609 static int tree_advance(struct btrfs_path
*path
,
6610 int *level
, int root_level
,
6612 struct btrfs_key
*key
)
6616 if (*level
== 0 || !allow_down
) {
6617 ret
= tree_move_next_or_upnext(path
, level
, root_level
);
6619 ret
= tree_move_down(path
, level
);
6623 btrfs_item_key_to_cpu(path
->nodes
[*level
], key
,
6624 path
->slots
[*level
]);
6626 btrfs_node_key_to_cpu(path
->nodes
[*level
], key
,
6627 path
->slots
[*level
]);
6632 static int tree_compare_item(struct btrfs_path
*left_path
,
6633 struct btrfs_path
*right_path
,
6638 unsigned long off1
, off2
;
6640 len1
= btrfs_item_size_nr(left_path
->nodes
[0], left_path
->slots
[0]);
6641 len2
= btrfs_item_size_nr(right_path
->nodes
[0], right_path
->slots
[0]);
6645 off1
= btrfs_item_ptr_offset(left_path
->nodes
[0], left_path
->slots
[0]);
6646 off2
= btrfs_item_ptr_offset(right_path
->nodes
[0],
6647 right_path
->slots
[0]);
6649 read_extent_buffer(left_path
->nodes
[0], tmp_buf
, off1
, len1
);
6651 cmp
= memcmp_extent_buffer(right_path
->nodes
[0], tmp_buf
, off2
, len1
);
6658 * This function compares two trees and calls the provided callback for
6659 * every changed/new/deleted item it finds.
6660 * If shared tree blocks are encountered, whole subtrees are skipped, making
6661 * the compare pretty fast on snapshotted subvolumes.
6663 * This currently works on commit roots only. As commit roots are read only,
6664 * we don't do any locking. The commit roots are protected with transactions.
6665 * Transactions are ended and rejoined when a commit is tried in between.
6667 * This function checks for modifications done to the trees while comparing.
6668 * If it detects a change, it aborts immediately.
6670 static int btrfs_compare_trees(struct btrfs_root
*left_root
,
6671 struct btrfs_root
*right_root
,
6672 btrfs_changed_cb_t changed_cb
, void *ctx
)
6674 struct btrfs_fs_info
*fs_info
= left_root
->fs_info
;
6677 struct btrfs_path
*left_path
= NULL
;
6678 struct btrfs_path
*right_path
= NULL
;
6679 struct btrfs_key left_key
;
6680 struct btrfs_key right_key
;
6681 char *tmp_buf
= NULL
;
6682 int left_root_level
;
6683 int right_root_level
;
6686 int left_end_reached
;
6687 int right_end_reached
;
6695 left_path
= btrfs_alloc_path();
6700 right_path
= btrfs_alloc_path();
6706 tmp_buf
= kvmalloc(fs_info
->nodesize
, GFP_KERNEL
);
6712 left_path
->search_commit_root
= 1;
6713 left_path
->skip_locking
= 1;
6714 right_path
->search_commit_root
= 1;
6715 right_path
->skip_locking
= 1;
6718 * Strategy: Go to the first items of both trees. Then do
6720 * If both trees are at level 0
6721 * Compare keys of current items
6722 * If left < right treat left item as new, advance left tree
6724 * If left > right treat right item as deleted, advance right tree
6726 * If left == right do deep compare of items, treat as changed if
6727 * needed, advance both trees and repeat
6728 * If both trees are at the same level but not at level 0
6729 * Compare keys of current nodes/leafs
6730 * If left < right advance left tree and repeat
6731 * If left > right advance right tree and repeat
6732 * If left == right compare blockptrs of the next nodes/leafs
6733 * If they match advance both trees but stay at the same level
6735 * If they don't match advance both trees while allowing to go
6737 * If tree levels are different
6738 * Advance the tree that needs it and repeat
6740 * Advancing a tree means:
6741 * If we are at level 0, try to go to the next slot. If that's not
6742 * possible, go one level up and repeat. Stop when we found a level
6743 * where we could go to the next slot. We may at this point be on a
6746 * If we are not at level 0 and not on shared tree blocks, go one
6749 * If we are not at level 0 and on shared tree blocks, go one slot to
6750 * the right if possible or go up and right.
6753 down_read(&fs_info
->commit_root_sem
);
6754 left_level
= btrfs_header_level(left_root
->commit_root
);
6755 left_root_level
= left_level
;
6756 left_path
->nodes
[left_level
] =
6757 btrfs_clone_extent_buffer(left_root
->commit_root
);
6758 if (!left_path
->nodes
[left_level
]) {
6759 up_read(&fs_info
->commit_root_sem
);
6764 right_level
= btrfs_header_level(right_root
->commit_root
);
6765 right_root_level
= right_level
;
6766 right_path
->nodes
[right_level
] =
6767 btrfs_clone_extent_buffer(right_root
->commit_root
);
6768 if (!right_path
->nodes
[right_level
]) {
6769 up_read(&fs_info
->commit_root_sem
);
6773 up_read(&fs_info
->commit_root_sem
);
6775 if (left_level
== 0)
6776 btrfs_item_key_to_cpu(left_path
->nodes
[left_level
],
6777 &left_key
, left_path
->slots
[left_level
]);
6779 btrfs_node_key_to_cpu(left_path
->nodes
[left_level
],
6780 &left_key
, left_path
->slots
[left_level
]);
6781 if (right_level
== 0)
6782 btrfs_item_key_to_cpu(right_path
->nodes
[right_level
],
6783 &right_key
, right_path
->slots
[right_level
]);
6785 btrfs_node_key_to_cpu(right_path
->nodes
[right_level
],
6786 &right_key
, right_path
->slots
[right_level
]);
6788 left_end_reached
= right_end_reached
= 0;
6789 advance_left
= advance_right
= 0;
6793 if (advance_left
&& !left_end_reached
) {
6794 ret
= tree_advance(left_path
, &left_level
,
6796 advance_left
!= ADVANCE_ONLY_NEXT
,
6799 left_end_reached
= ADVANCE
;
6804 if (advance_right
&& !right_end_reached
) {
6805 ret
= tree_advance(right_path
, &right_level
,
6807 advance_right
!= ADVANCE_ONLY_NEXT
,
6810 right_end_reached
= ADVANCE
;
6816 if (left_end_reached
&& right_end_reached
) {
6819 } else if (left_end_reached
) {
6820 if (right_level
== 0) {
6821 ret
= changed_cb(left_path
, right_path
,
6823 BTRFS_COMPARE_TREE_DELETED
,
6828 advance_right
= ADVANCE
;
6830 } else if (right_end_reached
) {
6831 if (left_level
== 0) {
6832 ret
= changed_cb(left_path
, right_path
,
6834 BTRFS_COMPARE_TREE_NEW
,
6839 advance_left
= ADVANCE
;
6843 if (left_level
== 0 && right_level
== 0) {
6844 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
6846 ret
= changed_cb(left_path
, right_path
,
6848 BTRFS_COMPARE_TREE_NEW
,
6852 advance_left
= ADVANCE
;
6853 } else if (cmp
> 0) {
6854 ret
= changed_cb(left_path
, right_path
,
6856 BTRFS_COMPARE_TREE_DELETED
,
6860 advance_right
= ADVANCE
;
6862 enum btrfs_compare_tree_result result
;
6864 WARN_ON(!extent_buffer_uptodate(left_path
->nodes
[0]));
6865 ret
= tree_compare_item(left_path
, right_path
,
6868 result
= BTRFS_COMPARE_TREE_CHANGED
;
6870 result
= BTRFS_COMPARE_TREE_SAME
;
6871 ret
= changed_cb(left_path
, right_path
,
6872 &left_key
, result
, ctx
);
6875 advance_left
= ADVANCE
;
6876 advance_right
= ADVANCE
;
6878 } else if (left_level
== right_level
) {
6879 cmp
= btrfs_comp_cpu_keys(&left_key
, &right_key
);
6881 advance_left
= ADVANCE
;
6882 } else if (cmp
> 0) {
6883 advance_right
= ADVANCE
;
6885 left_blockptr
= btrfs_node_blockptr(
6886 left_path
->nodes
[left_level
],
6887 left_path
->slots
[left_level
]);
6888 right_blockptr
= btrfs_node_blockptr(
6889 right_path
->nodes
[right_level
],
6890 right_path
->slots
[right_level
]);
6891 left_gen
= btrfs_node_ptr_generation(
6892 left_path
->nodes
[left_level
],
6893 left_path
->slots
[left_level
]);
6894 right_gen
= btrfs_node_ptr_generation(
6895 right_path
->nodes
[right_level
],
6896 right_path
->slots
[right_level
]);
6897 if (left_blockptr
== right_blockptr
&&
6898 left_gen
== right_gen
) {
6900 * As we're on a shared block, don't
6901 * allow to go deeper.
6903 advance_left
= ADVANCE_ONLY_NEXT
;
6904 advance_right
= ADVANCE_ONLY_NEXT
;
6906 advance_left
= ADVANCE
;
6907 advance_right
= ADVANCE
;
6910 } else if (left_level
< right_level
) {
6911 advance_right
= ADVANCE
;
6913 advance_left
= ADVANCE
;
6918 btrfs_free_path(left_path
);
6919 btrfs_free_path(right_path
);
6924 static int send_subvol(struct send_ctx
*sctx
)
6928 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_STREAM_HEADER
)) {
6929 ret
= send_header(sctx
);
6934 ret
= send_subvol_begin(sctx
);
6938 if (sctx
->parent_root
) {
6939 ret
= btrfs_compare_trees(sctx
->send_root
, sctx
->parent_root
,
6943 ret
= finish_inode_if_needed(sctx
, 1);
6947 ret
= full_send_tree(sctx
);
6953 free_recorded_refs(sctx
);
6958 * If orphan cleanup did remove any orphans from a root, it means the tree
6959 * was modified and therefore the commit root is not the same as the current
6960 * root anymore. This is a problem, because send uses the commit root and
6961 * therefore can see inode items that don't exist in the current root anymore,
6962 * and for example make calls to btrfs_iget, which will do tree lookups based
6963 * on the current root and not on the commit root. Those lookups will fail,
6964 * returning a -ESTALE error, and making send fail with that error. So make
6965 * sure a send does not see any orphans we have just removed, and that it will
6966 * see the same inodes regardless of whether a transaction commit happened
6967 * before it started (meaning that the commit root will be the same as the
6968 * current root) or not.
6970 static int ensure_commit_roots_uptodate(struct send_ctx
*sctx
)
6973 struct btrfs_trans_handle
*trans
= NULL
;
6976 if (sctx
->parent_root
&&
6977 sctx
->parent_root
->node
!= sctx
->parent_root
->commit_root
)
6980 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
6981 if (sctx
->clone_roots
[i
].root
->node
!=
6982 sctx
->clone_roots
[i
].root
->commit_root
)
6986 return btrfs_end_transaction(trans
);
6991 /* Use any root, all fs roots will get their commit roots updated. */
6993 trans
= btrfs_join_transaction(sctx
->send_root
);
6995 return PTR_ERR(trans
);
6999 return btrfs_commit_transaction(trans
);
7003 * Make sure any existing dellaloc is flushed for any root used by a send
7004 * operation so that we do not miss any data and we do not race with writeback
7005 * finishing and changing a tree while send is using the tree. This could
7006 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7007 * a send operation then uses the subvolume.
7008 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7010 static int flush_delalloc_roots(struct send_ctx
*sctx
)
7012 struct btrfs_root
*root
= sctx
->parent_root
;
7017 ret
= btrfs_start_delalloc_snapshot(root
);
7020 btrfs_wait_ordered_extents(root
, U64_MAX
, 0, U64_MAX
);
7023 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
7024 root
= sctx
->clone_roots
[i
].root
;
7025 ret
= btrfs_start_delalloc_snapshot(root
);
7028 btrfs_wait_ordered_extents(root
, U64_MAX
, 0, U64_MAX
);
7034 static void btrfs_root_dec_send_in_progress(struct btrfs_root
* root
)
7036 spin_lock(&root
->root_item_lock
);
7037 root
->send_in_progress
--;
7039 * Not much left to do, we don't know why it's unbalanced and
7040 * can't blindly reset it to 0.
7042 if (root
->send_in_progress
< 0)
7043 btrfs_err(root
->fs_info
,
7044 "send_in_progress unbalanced %d root %llu",
7045 root
->send_in_progress
, root
->root_key
.objectid
);
7046 spin_unlock(&root
->root_item_lock
);
7049 static void dedupe_in_progress_warn(const struct btrfs_root
*root
)
7051 btrfs_warn_rl(root
->fs_info
,
7052 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7053 root
->root_key
.objectid
, root
->dedupe_in_progress
);
7056 long btrfs_ioctl_send(struct file
*mnt_file
, struct btrfs_ioctl_send_args
*arg
)
7059 struct btrfs_root
*send_root
= BTRFS_I(file_inode(mnt_file
))->root
;
7060 struct btrfs_fs_info
*fs_info
= send_root
->fs_info
;
7061 struct btrfs_root
*clone_root
;
7062 struct btrfs_key key
;
7063 struct send_ctx
*sctx
= NULL
;
7065 u64
*clone_sources_tmp
= NULL
;
7066 int clone_sources_to_rollback
= 0;
7067 unsigned alloc_size
;
7068 int sort_clone_roots
= 0;
7071 if (!capable(CAP_SYS_ADMIN
))
7075 * The subvolume must remain read-only during send, protect against
7076 * making it RW. This also protects against deletion.
7078 spin_lock(&send_root
->root_item_lock
);
7079 if (btrfs_root_readonly(send_root
) && send_root
->dedupe_in_progress
) {
7080 dedupe_in_progress_warn(send_root
);
7081 spin_unlock(&send_root
->root_item_lock
);
7084 send_root
->send_in_progress
++;
7085 spin_unlock(&send_root
->root_item_lock
);
7088 * Userspace tools do the checks and warn the user if it's
7091 if (!btrfs_root_readonly(send_root
)) {
7097 * Check that we don't overflow at later allocations, we request
7098 * clone_sources_count + 1 items, and compare to unsigned long inside
7101 if (arg
->clone_sources_count
>
7102 ULONG_MAX
/ sizeof(struct clone_root
) - 1) {
7107 if (!access_ok(arg
->clone_sources
,
7108 sizeof(*arg
->clone_sources
) *
7109 arg
->clone_sources_count
)) {
7114 if (arg
->flags
& ~BTRFS_SEND_FLAG_MASK
) {
7119 sctx
= kzalloc(sizeof(struct send_ctx
), GFP_KERNEL
);
7125 INIT_LIST_HEAD(&sctx
->new_refs
);
7126 INIT_LIST_HEAD(&sctx
->deleted_refs
);
7127 INIT_RADIX_TREE(&sctx
->name_cache
, GFP_KERNEL
);
7128 INIT_LIST_HEAD(&sctx
->name_cache_list
);
7130 sctx
->flags
= arg
->flags
;
7132 sctx
->send_filp
= fget(arg
->send_fd
);
7133 if (!sctx
->send_filp
) {
7138 sctx
->send_root
= send_root
;
7140 * Unlikely but possible, if the subvolume is marked for deletion but
7141 * is slow to remove the directory entry, send can still be started
7143 if (btrfs_root_dead(sctx
->send_root
)) {
7148 sctx
->clone_roots_cnt
= arg
->clone_sources_count
;
7150 sctx
->send_max_size
= BTRFS_SEND_BUF_SIZE
;
7151 sctx
->send_buf
= kvmalloc(sctx
->send_max_size
, GFP_KERNEL
);
7152 if (!sctx
->send_buf
) {
7157 sctx
->read_buf
= kvmalloc(BTRFS_SEND_READ_SIZE
, GFP_KERNEL
);
7158 if (!sctx
->read_buf
) {
7163 sctx
->pending_dir_moves
= RB_ROOT
;
7164 sctx
->waiting_dir_moves
= RB_ROOT
;
7165 sctx
->orphan_dirs
= RB_ROOT
;
7167 alloc_size
= sizeof(struct clone_root
) * (arg
->clone_sources_count
+ 1);
7169 sctx
->clone_roots
= kzalloc(alloc_size
, GFP_KERNEL
);
7170 if (!sctx
->clone_roots
) {
7175 alloc_size
= arg
->clone_sources_count
* sizeof(*arg
->clone_sources
);
7177 if (arg
->clone_sources_count
) {
7178 clone_sources_tmp
= kvmalloc(alloc_size
, GFP_KERNEL
);
7179 if (!clone_sources_tmp
) {
7184 ret
= copy_from_user(clone_sources_tmp
, arg
->clone_sources
,
7191 for (i
= 0; i
< arg
->clone_sources_count
; i
++) {
7192 key
.objectid
= clone_sources_tmp
[i
];
7193 key
.type
= BTRFS_ROOT_ITEM_KEY
;
7194 key
.offset
= (u64
)-1;
7196 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
7198 clone_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
7199 if (IS_ERR(clone_root
)) {
7200 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
7201 ret
= PTR_ERR(clone_root
);
7204 spin_lock(&clone_root
->root_item_lock
);
7205 if (!btrfs_root_readonly(clone_root
) ||
7206 btrfs_root_dead(clone_root
)) {
7207 spin_unlock(&clone_root
->root_item_lock
);
7208 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
7212 if (clone_root
->dedupe_in_progress
) {
7213 dedupe_in_progress_warn(clone_root
);
7214 spin_unlock(&clone_root
->root_item_lock
);
7215 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
7219 clone_root
->send_in_progress
++;
7220 spin_unlock(&clone_root
->root_item_lock
);
7221 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
7223 sctx
->clone_roots
[i
].root
= clone_root
;
7224 clone_sources_to_rollback
= i
+ 1;
7226 kvfree(clone_sources_tmp
);
7227 clone_sources_tmp
= NULL
;
7230 if (arg
->parent_root
) {
7231 key
.objectid
= arg
->parent_root
;
7232 key
.type
= BTRFS_ROOT_ITEM_KEY
;
7233 key
.offset
= (u64
)-1;
7235 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
7237 sctx
->parent_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
7238 if (IS_ERR(sctx
->parent_root
)) {
7239 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
7240 ret
= PTR_ERR(sctx
->parent_root
);
7244 spin_lock(&sctx
->parent_root
->root_item_lock
);
7245 sctx
->parent_root
->send_in_progress
++;
7246 if (!btrfs_root_readonly(sctx
->parent_root
) ||
7247 btrfs_root_dead(sctx
->parent_root
)) {
7248 spin_unlock(&sctx
->parent_root
->root_item_lock
);
7249 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
7253 if (sctx
->parent_root
->dedupe_in_progress
) {
7254 dedupe_in_progress_warn(sctx
->parent_root
);
7255 spin_unlock(&sctx
->parent_root
->root_item_lock
);
7256 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
7260 spin_unlock(&sctx
->parent_root
->root_item_lock
);
7262 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
7266 * Clones from send_root are allowed, but only if the clone source
7267 * is behind the current send position. This is checked while searching
7268 * for possible clone sources.
7270 sctx
->clone_roots
[sctx
->clone_roots_cnt
++].root
= sctx
->send_root
;
7272 /* We do a bsearch later */
7273 sort(sctx
->clone_roots
, sctx
->clone_roots_cnt
,
7274 sizeof(*sctx
->clone_roots
), __clone_root_cmp_sort
,
7276 sort_clone_roots
= 1;
7278 ret
= flush_delalloc_roots(sctx
);
7282 ret
= ensure_commit_roots_uptodate(sctx
);
7286 mutex_lock(&fs_info
->balance_mutex
);
7287 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
7288 mutex_unlock(&fs_info
->balance_mutex
);
7289 btrfs_warn_rl(fs_info
,
7290 "cannot run send because a balance operation is in progress");
7294 fs_info
->send_in_progress
++;
7295 mutex_unlock(&fs_info
->balance_mutex
);
7297 current
->journal_info
= BTRFS_SEND_TRANS_STUB
;
7298 ret
= send_subvol(sctx
);
7299 current
->journal_info
= NULL
;
7300 mutex_lock(&fs_info
->balance_mutex
);
7301 fs_info
->send_in_progress
--;
7302 mutex_unlock(&fs_info
->balance_mutex
);
7306 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_END_CMD
)) {
7307 ret
= begin_cmd(sctx
, BTRFS_SEND_C_END
);
7310 ret
= send_cmd(sctx
);
7316 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
));
7317 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
)) {
7319 struct pending_dir_move
*pm
;
7321 n
= rb_first(&sctx
->pending_dir_moves
);
7322 pm
= rb_entry(n
, struct pending_dir_move
, node
);
7323 while (!list_empty(&pm
->list
)) {
7324 struct pending_dir_move
*pm2
;
7326 pm2
= list_first_entry(&pm
->list
,
7327 struct pending_dir_move
, list
);
7328 free_pending_move(sctx
, pm2
);
7330 free_pending_move(sctx
, pm
);
7333 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
));
7334 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
)) {
7336 struct waiting_dir_move
*dm
;
7338 n
= rb_first(&sctx
->waiting_dir_moves
);
7339 dm
= rb_entry(n
, struct waiting_dir_move
, node
);
7340 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
7344 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
));
7345 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
)) {
7347 struct orphan_dir_info
*odi
;
7349 n
= rb_first(&sctx
->orphan_dirs
);
7350 odi
= rb_entry(n
, struct orphan_dir_info
, node
);
7351 free_orphan_dir_info(sctx
, odi
);
7354 if (sort_clone_roots
) {
7355 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
7356 btrfs_root_dec_send_in_progress(
7357 sctx
->clone_roots
[i
].root
);
7359 for (i
= 0; sctx
&& i
< clone_sources_to_rollback
; i
++)
7360 btrfs_root_dec_send_in_progress(
7361 sctx
->clone_roots
[i
].root
);
7363 btrfs_root_dec_send_in_progress(send_root
);
7365 if (sctx
&& !IS_ERR_OR_NULL(sctx
->parent_root
))
7366 btrfs_root_dec_send_in_progress(sctx
->parent_root
);
7368 kvfree(clone_sources_tmp
);
7371 if (sctx
->send_filp
)
7372 fput(sctx
->send_filp
);
7374 kvfree(sctx
->clone_roots
);
7375 kvfree(sctx
->send_buf
);
7376 kvfree(sctx
->read_buf
);
7378 name_cache_free(sctx
);