Linux 5.6.13
[linux/fpc-iii.git] / fs / btrfs / volumes.c
blob9cfc668f91f4398bee6c5fb621ff2f52ea7a9ddf
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
6 #include <linux/sched.h>
7 #include <linux/bio.h>
8 #include <linux/slab.h>
9 #include <linux/buffer_head.h>
10 #include <linux/blkdev.h>
11 #include <linux/ratelimit.h>
12 #include <linux/kthread.h>
13 #include <linux/raid/pq.h>
14 #include <linux/semaphore.h>
15 #include <linux/uuid.h>
16 #include <linux/list_sort.h>
17 #include "misc.h"
18 #include "ctree.h"
19 #include "extent_map.h"
20 #include "disk-io.h"
21 #include "transaction.h"
22 #include "print-tree.h"
23 #include "volumes.h"
24 #include "raid56.h"
25 #include "async-thread.h"
26 #include "check-integrity.h"
27 #include "rcu-string.h"
28 #include "dev-replace.h"
29 #include "sysfs.h"
30 #include "tree-checker.h"
31 #include "space-info.h"
32 #include "block-group.h"
33 #include "discard.h"
35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
36 [BTRFS_RAID_RAID10] = {
37 .sub_stripes = 2,
38 .dev_stripes = 1,
39 .devs_max = 0, /* 0 == as many as possible */
40 .devs_min = 4,
41 .tolerated_failures = 1,
42 .devs_increment = 2,
43 .ncopies = 2,
44 .nparity = 0,
45 .raid_name = "raid10",
46 .bg_flag = BTRFS_BLOCK_GROUP_RAID10,
47 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET,
49 [BTRFS_RAID_RAID1] = {
50 .sub_stripes = 1,
51 .dev_stripes = 1,
52 .devs_max = 2,
53 .devs_min = 2,
54 .tolerated_failures = 1,
55 .devs_increment = 2,
56 .ncopies = 2,
57 .nparity = 0,
58 .raid_name = "raid1",
59 .bg_flag = BTRFS_BLOCK_GROUP_RAID1,
60 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET,
62 [BTRFS_RAID_RAID1C3] = {
63 .sub_stripes = 1,
64 .dev_stripes = 1,
65 .devs_max = 3,
66 .devs_min = 3,
67 .tolerated_failures = 2,
68 .devs_increment = 3,
69 .ncopies = 3,
70 .nparity = 0,
71 .raid_name = "raid1c3",
72 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3,
73 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET,
75 [BTRFS_RAID_RAID1C4] = {
76 .sub_stripes = 1,
77 .dev_stripes = 1,
78 .devs_max = 4,
79 .devs_min = 4,
80 .tolerated_failures = 3,
81 .devs_increment = 4,
82 .ncopies = 4,
83 .nparity = 0,
84 .raid_name = "raid1c4",
85 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4,
86 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET,
88 [BTRFS_RAID_DUP] = {
89 .sub_stripes = 1,
90 .dev_stripes = 2,
91 .devs_max = 1,
92 .devs_min = 1,
93 .tolerated_failures = 0,
94 .devs_increment = 1,
95 .ncopies = 2,
96 .nparity = 0,
97 .raid_name = "dup",
98 .bg_flag = BTRFS_BLOCK_GROUP_DUP,
99 .mindev_error = 0,
101 [BTRFS_RAID_RAID0] = {
102 .sub_stripes = 1,
103 .dev_stripes = 1,
104 .devs_max = 0,
105 .devs_min = 2,
106 .tolerated_failures = 0,
107 .devs_increment = 1,
108 .ncopies = 1,
109 .nparity = 0,
110 .raid_name = "raid0",
111 .bg_flag = BTRFS_BLOCK_GROUP_RAID0,
112 .mindev_error = 0,
114 [BTRFS_RAID_SINGLE] = {
115 .sub_stripes = 1,
116 .dev_stripes = 1,
117 .devs_max = 1,
118 .devs_min = 1,
119 .tolerated_failures = 0,
120 .devs_increment = 1,
121 .ncopies = 1,
122 .nparity = 0,
123 .raid_name = "single",
124 .bg_flag = 0,
125 .mindev_error = 0,
127 [BTRFS_RAID_RAID5] = {
128 .sub_stripes = 1,
129 .dev_stripes = 1,
130 .devs_max = 0,
131 .devs_min = 2,
132 .tolerated_failures = 1,
133 .devs_increment = 1,
134 .ncopies = 1,
135 .nparity = 1,
136 .raid_name = "raid5",
137 .bg_flag = BTRFS_BLOCK_GROUP_RAID5,
138 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET,
140 [BTRFS_RAID_RAID6] = {
141 .sub_stripes = 1,
142 .dev_stripes = 1,
143 .devs_max = 0,
144 .devs_min = 3,
145 .tolerated_failures = 2,
146 .devs_increment = 1,
147 .ncopies = 1,
148 .nparity = 2,
149 .raid_name = "raid6",
150 .bg_flag = BTRFS_BLOCK_GROUP_RAID6,
151 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET,
155 const char *btrfs_bg_type_to_raid_name(u64 flags)
157 const int index = btrfs_bg_flags_to_raid_index(flags);
159 if (index >= BTRFS_NR_RAID_TYPES)
160 return NULL;
162 return btrfs_raid_array[index].raid_name;
166 * Fill @buf with textual description of @bg_flags, no more than @size_buf
167 * bytes including terminating null byte.
169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf)
171 int i;
172 int ret;
173 char *bp = buf;
174 u64 flags = bg_flags;
175 u32 size_bp = size_buf;
177 if (!flags) {
178 strcpy(bp, "NONE");
179 return;
182 #define DESCRIBE_FLAG(flag, desc) \
183 do { \
184 if (flags & (flag)) { \
185 ret = snprintf(bp, size_bp, "%s|", (desc)); \
186 if (ret < 0 || ret >= size_bp) \
187 goto out_overflow; \
188 size_bp -= ret; \
189 bp += ret; \
190 flags &= ~(flag); \
192 } while (0)
194 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data");
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system");
196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata");
198 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single");
199 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
200 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag,
201 btrfs_raid_array[i].raid_name);
202 #undef DESCRIBE_FLAG
204 if (flags) {
205 ret = snprintf(bp, size_bp, "0x%llx|", flags);
206 size_bp -= ret;
209 if (size_bp < size_buf)
210 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */
213 * The text is trimmed, it's up to the caller to provide sufficiently
214 * large buffer
216 out_overflow:;
219 static int init_first_rw_device(struct btrfs_trans_handle *trans);
220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info);
221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
224 enum btrfs_map_op op,
225 u64 logical, u64 *length,
226 struct btrfs_bio **bbio_ret,
227 int mirror_num, int need_raid_map);
230 * Device locking
231 * ==============
233 * There are several mutexes that protect manipulation of devices and low-level
234 * structures like chunks but not block groups, extents or files
236 * uuid_mutex (global lock)
237 * ------------------------
238 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
239 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
240 * device) or requested by the device= mount option
242 * the mutex can be very coarse and can cover long-running operations
244 * protects: updates to fs_devices counters like missing devices, rw devices,
245 * seeding, structure cloning, opening/closing devices at mount/umount time
247 * global::fs_devs - add, remove, updates to the global list
249 * does not protect: manipulation of the fs_devices::devices list!
251 * btrfs_device::name - renames (write side), read is RCU
253 * fs_devices::device_list_mutex (per-fs, with RCU)
254 * ------------------------------------------------
255 * protects updates to fs_devices::devices, ie. adding and deleting
257 * simple list traversal with read-only actions can be done with RCU protection
259 * may be used to exclude some operations from running concurrently without any
260 * modifications to the list (see write_all_supers)
262 * balance_mutex
263 * -------------
264 * protects balance structures (status, state) and context accessed from
265 * several places (internally, ioctl)
267 * chunk_mutex
268 * -----------
269 * protects chunks, adding or removing during allocation, trim or when a new
270 * device is added/removed. Additionally it also protects post_commit_list of
271 * individual devices, since they can be added to the transaction's
272 * post_commit_list only with chunk_mutex held.
274 * cleaner_mutex
275 * -------------
276 * a big lock that is held by the cleaner thread and prevents running subvolume
277 * cleaning together with relocation or delayed iputs
280 * Lock nesting
281 * ============
283 * uuid_mutex
284 * volume_mutex
285 * device_list_mutex
286 * chunk_mutex
287 * balance_mutex
290 * Exclusive operations, BTRFS_FS_EXCL_OP
291 * ======================================
293 * Maintains the exclusivity of the following operations that apply to the
294 * whole filesystem and cannot run in parallel.
296 * - Balance (*)
297 * - Device add
298 * - Device remove
299 * - Device replace (*)
300 * - Resize
302 * The device operations (as above) can be in one of the following states:
304 * - Running state
305 * - Paused state
306 * - Completed state
308 * Only device operations marked with (*) can go into the Paused state for the
309 * following reasons:
311 * - ioctl (only Balance can be Paused through ioctl)
312 * - filesystem remounted as read-only
313 * - filesystem unmounted and mounted as read-only
314 * - system power-cycle and filesystem mounted as read-only
315 * - filesystem or device errors leading to forced read-only
317 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
318 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
319 * A device operation in Paused or Running state can be canceled or resumed
320 * either by ioctl (Balance only) or when remounted as read-write.
321 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
322 * completed.
325 DEFINE_MUTEX(uuid_mutex);
326 static LIST_HEAD(fs_uuids);
327 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void)
329 return &fs_uuids;
333 * alloc_fs_devices - allocate struct btrfs_fs_devices
334 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
335 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
337 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
338 * The returned struct is not linked onto any lists and can be destroyed with
339 * kfree() right away.
341 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid,
342 const u8 *metadata_fsid)
344 struct btrfs_fs_devices *fs_devs;
346 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL);
347 if (!fs_devs)
348 return ERR_PTR(-ENOMEM);
350 mutex_init(&fs_devs->device_list_mutex);
352 INIT_LIST_HEAD(&fs_devs->devices);
353 INIT_LIST_HEAD(&fs_devs->alloc_list);
354 INIT_LIST_HEAD(&fs_devs->fs_list);
355 if (fsid)
356 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
358 if (metadata_fsid)
359 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE);
360 else if (fsid)
361 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE);
363 return fs_devs;
366 void btrfs_free_device(struct btrfs_device *device)
368 WARN_ON(!list_empty(&device->post_commit_list));
369 rcu_string_free(device->name);
370 extent_io_tree_release(&device->alloc_state);
371 bio_put(device->flush_bio);
372 kfree(device);
375 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
377 struct btrfs_device *device;
378 WARN_ON(fs_devices->opened);
379 while (!list_empty(&fs_devices->devices)) {
380 device = list_entry(fs_devices->devices.next,
381 struct btrfs_device, dev_list);
382 list_del(&device->dev_list);
383 btrfs_free_device(device);
385 kfree(fs_devices);
388 void __exit btrfs_cleanup_fs_uuids(void)
390 struct btrfs_fs_devices *fs_devices;
392 while (!list_empty(&fs_uuids)) {
393 fs_devices = list_entry(fs_uuids.next,
394 struct btrfs_fs_devices, fs_list);
395 list_del(&fs_devices->fs_list);
396 free_fs_devices(fs_devices);
401 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
402 * Returned struct is not linked onto any lists and must be destroyed using
403 * btrfs_free_device.
405 static struct btrfs_device *__alloc_device(void)
407 struct btrfs_device *dev;
409 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
410 if (!dev)
411 return ERR_PTR(-ENOMEM);
414 * Preallocate a bio that's always going to be used for flushing device
415 * barriers and matches the device lifespan
417 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL);
418 if (!dev->flush_bio) {
419 kfree(dev);
420 return ERR_PTR(-ENOMEM);
423 INIT_LIST_HEAD(&dev->dev_list);
424 INIT_LIST_HEAD(&dev->dev_alloc_list);
425 INIT_LIST_HEAD(&dev->post_commit_list);
427 atomic_set(&dev->reada_in_flight, 0);
428 atomic_set(&dev->dev_stats_ccnt, 0);
429 btrfs_device_data_ordered_init(dev);
430 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
431 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
432 extent_io_tree_init(NULL, &dev->alloc_state, 0, NULL);
434 return dev;
437 static noinline struct btrfs_fs_devices *find_fsid(
438 const u8 *fsid, const u8 *metadata_fsid)
440 struct btrfs_fs_devices *fs_devices;
442 ASSERT(fsid);
444 /* Handle non-split brain cases */
445 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
446 if (metadata_fsid) {
447 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0
448 && memcmp(metadata_fsid, fs_devices->metadata_uuid,
449 BTRFS_FSID_SIZE) == 0)
450 return fs_devices;
451 } else {
452 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
453 return fs_devices;
456 return NULL;
459 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid(
460 struct btrfs_super_block *disk_super)
463 struct btrfs_fs_devices *fs_devices;
466 * Handle scanned device having completed its fsid change but
467 * belonging to a fs_devices that was created by first scanning
468 * a device which didn't have its fsid/metadata_uuid changed
469 * at all and the CHANGING_FSID_V2 flag set.
471 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
472 if (fs_devices->fsid_change &&
473 memcmp(disk_super->metadata_uuid, fs_devices->fsid,
474 BTRFS_FSID_SIZE) == 0 &&
475 memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
476 BTRFS_FSID_SIZE) == 0) {
477 return fs_devices;
481 * Handle scanned device having completed its fsid change but
482 * belonging to a fs_devices that was created by a device that
483 * has an outdated pair of fsid/metadata_uuid and
484 * CHANGING_FSID_V2 flag set.
486 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
487 if (fs_devices->fsid_change &&
488 memcmp(fs_devices->metadata_uuid,
489 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 &&
490 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid,
491 BTRFS_FSID_SIZE) == 0) {
492 return fs_devices;
496 return find_fsid(disk_super->fsid, disk_super->metadata_uuid);
500 static int
501 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
502 int flush, struct block_device **bdev,
503 struct buffer_head **bh)
505 int ret;
507 *bdev = blkdev_get_by_path(device_path, flags, holder);
509 if (IS_ERR(*bdev)) {
510 ret = PTR_ERR(*bdev);
511 goto error;
514 if (flush)
515 filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
516 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE);
517 if (ret) {
518 blkdev_put(*bdev, flags);
519 goto error;
521 invalidate_bdev(*bdev);
522 *bh = btrfs_read_dev_super(*bdev);
523 if (IS_ERR(*bh)) {
524 ret = PTR_ERR(*bh);
525 blkdev_put(*bdev, flags);
526 goto error;
529 return 0;
531 error:
532 *bdev = NULL;
533 *bh = NULL;
534 return ret;
537 static bool device_path_matched(const char *path, struct btrfs_device *device)
539 int found;
541 rcu_read_lock();
542 found = strcmp(rcu_str_deref(device->name), path);
543 rcu_read_unlock();
545 return found == 0;
549 * Search and remove all stale (devices which are not mounted) devices.
550 * When both inputs are NULL, it will search and release all stale devices.
551 * path: Optional. When provided will it release all unmounted devices
552 * matching this path only.
553 * skip_dev: Optional. Will skip this device when searching for the stale
554 * devices.
555 * Return: 0 for success or if @path is NULL.
556 * -EBUSY if @path is a mounted device.
557 * -ENOENT if @path does not match any device in the list.
559 static int btrfs_free_stale_devices(const char *path,
560 struct btrfs_device *skip_device)
562 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices;
563 struct btrfs_device *device, *tmp_device;
564 int ret = 0;
566 if (path)
567 ret = -ENOENT;
569 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) {
571 mutex_lock(&fs_devices->device_list_mutex);
572 list_for_each_entry_safe(device, tmp_device,
573 &fs_devices->devices, dev_list) {
574 if (skip_device && skip_device == device)
575 continue;
576 if (path && !device->name)
577 continue;
578 if (path && !device_path_matched(path, device))
579 continue;
580 if (fs_devices->opened) {
581 /* for an already deleted device return 0 */
582 if (path && ret != 0)
583 ret = -EBUSY;
584 break;
587 /* delete the stale device */
588 fs_devices->num_devices--;
589 list_del(&device->dev_list);
590 btrfs_free_device(device);
592 ret = 0;
593 if (fs_devices->num_devices == 0)
594 break;
596 mutex_unlock(&fs_devices->device_list_mutex);
598 if (fs_devices->num_devices == 0) {
599 btrfs_sysfs_remove_fsid(fs_devices);
600 list_del(&fs_devices->fs_list);
601 free_fs_devices(fs_devices);
605 return ret;
608 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices,
609 struct btrfs_device *device, fmode_t flags,
610 void *holder)
612 struct request_queue *q;
613 struct block_device *bdev;
614 struct buffer_head *bh;
615 struct btrfs_super_block *disk_super;
616 u64 devid;
617 int ret;
619 if (device->bdev)
620 return -EINVAL;
621 if (!device->name)
622 return -EINVAL;
624 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
625 &bdev, &bh);
626 if (ret)
627 return ret;
629 disk_super = (struct btrfs_super_block *)bh->b_data;
630 devid = btrfs_stack_device_id(&disk_super->dev_item);
631 if (devid != device->devid)
632 goto error_brelse;
634 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE))
635 goto error_brelse;
637 device->generation = btrfs_super_generation(disk_super);
639 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
640 if (btrfs_super_incompat_flags(disk_super) &
641 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) {
642 pr_err(
643 "BTRFS: Invalid seeding and uuid-changed device detected\n");
644 goto error_brelse;
647 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
648 fs_devices->seeding = true;
649 } else {
650 if (bdev_read_only(bdev))
651 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
652 else
653 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
656 q = bdev_get_queue(bdev);
657 if (!blk_queue_nonrot(q))
658 fs_devices->rotating = true;
660 device->bdev = bdev;
661 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
662 device->mode = flags;
664 fs_devices->open_devices++;
665 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
666 device->devid != BTRFS_DEV_REPLACE_DEVID) {
667 fs_devices->rw_devices++;
668 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list);
670 brelse(bh);
672 return 0;
674 error_brelse:
675 brelse(bh);
676 blkdev_put(bdev, flags);
678 return -EINVAL;
682 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
683 * being created with a disk that has already completed its fsid change. Such
684 * disk can belong to an fs which has its FSID changed or to one which doesn't.
685 * Handle both cases here.
687 static struct btrfs_fs_devices *find_fsid_inprogress(
688 struct btrfs_super_block *disk_super)
690 struct btrfs_fs_devices *fs_devices;
692 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
693 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
694 BTRFS_FSID_SIZE) != 0 &&
695 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
696 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) {
697 return fs_devices;
701 return find_fsid(disk_super->fsid, NULL);
705 static struct btrfs_fs_devices *find_fsid_changed(
706 struct btrfs_super_block *disk_super)
708 struct btrfs_fs_devices *fs_devices;
711 * Handles the case where scanned device is part of an fs that had
712 * multiple successful changes of FSID but curently device didn't
713 * observe it. Meaning our fsid will be different than theirs. We need
714 * to handle two subcases :
715 * 1 - The fs still continues to have different METADATA/FSID uuids.
716 * 2 - The fs is switched back to its original FSID (METADATA/FSID
717 * are equal).
719 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
720 /* Changed UUIDs */
721 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
722 BTRFS_FSID_SIZE) != 0 &&
723 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid,
724 BTRFS_FSID_SIZE) == 0 &&
725 memcmp(fs_devices->fsid, disk_super->fsid,
726 BTRFS_FSID_SIZE) != 0)
727 return fs_devices;
729 /* Unchanged UUIDs */
730 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid,
731 BTRFS_FSID_SIZE) == 0 &&
732 memcmp(fs_devices->fsid, disk_super->metadata_uuid,
733 BTRFS_FSID_SIZE) == 0)
734 return fs_devices;
737 return NULL;
740 static struct btrfs_fs_devices *find_fsid_reverted_metadata(
741 struct btrfs_super_block *disk_super)
743 struct btrfs_fs_devices *fs_devices;
746 * Handle the case where the scanned device is part of an fs whose last
747 * metadata UUID change reverted it to the original FSID. At the same
748 * time * fs_devices was first created by another constitutent device
749 * which didn't fully observe the operation. This results in an
750 * btrfs_fs_devices created with metadata/fsid different AND
751 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
752 * fs_devices equal to the FSID of the disk.
754 list_for_each_entry(fs_devices, &fs_uuids, fs_list) {
755 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid,
756 BTRFS_FSID_SIZE) != 0 &&
757 memcmp(fs_devices->metadata_uuid, disk_super->fsid,
758 BTRFS_FSID_SIZE) == 0 &&
759 fs_devices->fsid_change)
760 return fs_devices;
763 return NULL;
766 * Add new device to list of registered devices
768 * Returns:
769 * device pointer which was just added or updated when successful
770 * error pointer when failed
772 static noinline struct btrfs_device *device_list_add(const char *path,
773 struct btrfs_super_block *disk_super,
774 bool *new_device_added)
776 struct btrfs_device *device;
777 struct btrfs_fs_devices *fs_devices = NULL;
778 struct rcu_string *name;
779 u64 found_transid = btrfs_super_generation(disk_super);
780 u64 devid = btrfs_stack_device_id(&disk_super->dev_item);
781 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) &
782 BTRFS_FEATURE_INCOMPAT_METADATA_UUID);
783 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) &
784 BTRFS_SUPER_FLAG_CHANGING_FSID_V2);
786 if (fsid_change_in_progress) {
787 if (!has_metadata_uuid)
788 fs_devices = find_fsid_inprogress(disk_super);
789 else
790 fs_devices = find_fsid_changed(disk_super);
791 } else if (has_metadata_uuid) {
792 fs_devices = find_fsid_with_metadata_uuid(disk_super);
793 } else {
794 fs_devices = find_fsid_reverted_metadata(disk_super);
795 if (!fs_devices)
796 fs_devices = find_fsid(disk_super->fsid, NULL);
800 if (!fs_devices) {
801 if (has_metadata_uuid)
802 fs_devices = alloc_fs_devices(disk_super->fsid,
803 disk_super->metadata_uuid);
804 else
805 fs_devices = alloc_fs_devices(disk_super->fsid, NULL);
807 if (IS_ERR(fs_devices))
808 return ERR_CAST(fs_devices);
810 fs_devices->fsid_change = fsid_change_in_progress;
812 mutex_lock(&fs_devices->device_list_mutex);
813 list_add(&fs_devices->fs_list, &fs_uuids);
815 device = NULL;
816 } else {
817 mutex_lock(&fs_devices->device_list_mutex);
818 device = btrfs_find_device(fs_devices, devid,
819 disk_super->dev_item.uuid, NULL, false);
822 * If this disk has been pulled into an fs devices created by
823 * a device which had the CHANGING_FSID_V2 flag then replace the
824 * metadata_uuid/fsid values of the fs_devices.
826 if (fs_devices->fsid_change &&
827 found_transid > fs_devices->latest_generation) {
828 memcpy(fs_devices->fsid, disk_super->fsid,
829 BTRFS_FSID_SIZE);
831 if (has_metadata_uuid)
832 memcpy(fs_devices->metadata_uuid,
833 disk_super->metadata_uuid,
834 BTRFS_FSID_SIZE);
835 else
836 memcpy(fs_devices->metadata_uuid,
837 disk_super->fsid, BTRFS_FSID_SIZE);
839 fs_devices->fsid_change = false;
843 if (!device) {
844 if (fs_devices->opened) {
845 mutex_unlock(&fs_devices->device_list_mutex);
846 return ERR_PTR(-EBUSY);
849 device = btrfs_alloc_device(NULL, &devid,
850 disk_super->dev_item.uuid);
851 if (IS_ERR(device)) {
852 mutex_unlock(&fs_devices->device_list_mutex);
853 /* we can safely leave the fs_devices entry around */
854 return device;
857 name = rcu_string_strdup(path, GFP_NOFS);
858 if (!name) {
859 btrfs_free_device(device);
860 mutex_unlock(&fs_devices->device_list_mutex);
861 return ERR_PTR(-ENOMEM);
863 rcu_assign_pointer(device->name, name);
865 list_add_rcu(&device->dev_list, &fs_devices->devices);
866 fs_devices->num_devices++;
868 device->fs_devices = fs_devices;
869 *new_device_added = true;
871 if (disk_super->label[0])
872 pr_info(
873 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
874 disk_super->label, devid, found_transid, path,
875 current->comm, task_pid_nr(current));
876 else
877 pr_info(
878 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
879 disk_super->fsid, devid, found_transid, path,
880 current->comm, task_pid_nr(current));
882 } else if (!device->name || strcmp(device->name->str, path)) {
884 * When FS is already mounted.
885 * 1. If you are here and if the device->name is NULL that
886 * means this device was missing at time of FS mount.
887 * 2. If you are here and if the device->name is different
888 * from 'path' that means either
889 * a. The same device disappeared and reappeared with
890 * different name. or
891 * b. The missing-disk-which-was-replaced, has
892 * reappeared now.
894 * We must allow 1 and 2a above. But 2b would be a spurious
895 * and unintentional.
897 * Further in case of 1 and 2a above, the disk at 'path'
898 * would have missed some transaction when it was away and
899 * in case of 2a the stale bdev has to be updated as well.
900 * 2b must not be allowed at all time.
904 * For now, we do allow update to btrfs_fs_device through the
905 * btrfs dev scan cli after FS has been mounted. We're still
906 * tracking a problem where systems fail mount by subvolume id
907 * when we reject replacement on a mounted FS.
909 if (!fs_devices->opened && found_transid < device->generation) {
911 * That is if the FS is _not_ mounted and if you
912 * are here, that means there is more than one
913 * disk with same uuid and devid.We keep the one
914 * with larger generation number or the last-in if
915 * generation are equal.
917 mutex_unlock(&fs_devices->device_list_mutex);
918 return ERR_PTR(-EEXIST);
922 * We are going to replace the device path for a given devid,
923 * make sure it's the same device if the device is mounted
925 if (device->bdev) {
926 struct block_device *path_bdev;
928 path_bdev = lookup_bdev(path);
929 if (IS_ERR(path_bdev)) {
930 mutex_unlock(&fs_devices->device_list_mutex);
931 return ERR_CAST(path_bdev);
934 if (device->bdev != path_bdev) {
935 bdput(path_bdev);
936 mutex_unlock(&fs_devices->device_list_mutex);
937 btrfs_warn_in_rcu(device->fs_info,
938 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
939 disk_super->fsid, devid,
940 rcu_str_deref(device->name), path);
941 return ERR_PTR(-EEXIST);
943 bdput(path_bdev);
944 btrfs_info_in_rcu(device->fs_info,
945 "device fsid %pU devid %llu moved old:%s new:%s",
946 disk_super->fsid, devid,
947 rcu_str_deref(device->name), path);
950 name = rcu_string_strdup(path, GFP_NOFS);
951 if (!name) {
952 mutex_unlock(&fs_devices->device_list_mutex);
953 return ERR_PTR(-ENOMEM);
955 rcu_string_free(device->name);
956 rcu_assign_pointer(device->name, name);
957 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
958 fs_devices->missing_devices--;
959 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
964 * Unmount does not free the btrfs_device struct but would zero
965 * generation along with most of the other members. So just update
966 * it back. We need it to pick the disk with largest generation
967 * (as above).
969 if (!fs_devices->opened) {
970 device->generation = found_transid;
971 fs_devices->latest_generation = max_t(u64, found_transid,
972 fs_devices->latest_generation);
975 fs_devices->total_devices = btrfs_super_num_devices(disk_super);
977 mutex_unlock(&fs_devices->device_list_mutex);
978 return device;
981 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
983 struct btrfs_fs_devices *fs_devices;
984 struct btrfs_device *device;
985 struct btrfs_device *orig_dev;
986 int ret = 0;
988 fs_devices = alloc_fs_devices(orig->fsid, NULL);
989 if (IS_ERR(fs_devices))
990 return fs_devices;
992 mutex_lock(&orig->device_list_mutex);
993 fs_devices->total_devices = orig->total_devices;
995 list_for_each_entry(orig_dev, &orig->devices, dev_list) {
996 struct rcu_string *name;
998 device = btrfs_alloc_device(NULL, &orig_dev->devid,
999 orig_dev->uuid);
1000 if (IS_ERR(device)) {
1001 ret = PTR_ERR(device);
1002 goto error;
1006 * This is ok to do without rcu read locked because we hold the
1007 * uuid mutex so nothing we touch in here is going to disappear.
1009 if (orig_dev->name) {
1010 name = rcu_string_strdup(orig_dev->name->str,
1011 GFP_KERNEL);
1012 if (!name) {
1013 btrfs_free_device(device);
1014 ret = -ENOMEM;
1015 goto error;
1017 rcu_assign_pointer(device->name, name);
1020 list_add(&device->dev_list, &fs_devices->devices);
1021 device->fs_devices = fs_devices;
1022 fs_devices->num_devices++;
1024 mutex_unlock(&orig->device_list_mutex);
1025 return fs_devices;
1026 error:
1027 mutex_unlock(&orig->device_list_mutex);
1028 free_fs_devices(fs_devices);
1029 return ERR_PTR(ret);
1033 * After we have read the system tree and know devids belonging to
1034 * this filesystem, remove the device which does not belong there.
1036 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step)
1038 struct btrfs_device *device, *next;
1039 struct btrfs_device *latest_dev = NULL;
1041 mutex_lock(&uuid_mutex);
1042 again:
1043 /* This is the initialized path, it is safe to release the devices. */
1044 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
1045 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1046 &device->dev_state)) {
1047 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1048 &device->dev_state) &&
1049 (!latest_dev ||
1050 device->generation > latest_dev->generation)) {
1051 latest_dev = device;
1053 continue;
1056 if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
1058 * In the first step, keep the device which has
1059 * the correct fsid and the devid that is used
1060 * for the dev_replace procedure.
1061 * In the second step, the dev_replace state is
1062 * read from the device tree and it is known
1063 * whether the procedure is really active or
1064 * not, which means whether this device is
1065 * used or whether it should be removed.
1067 if (step == 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1068 &device->dev_state)) {
1069 continue;
1072 if (device->bdev) {
1073 blkdev_put(device->bdev, device->mode);
1074 device->bdev = NULL;
1075 fs_devices->open_devices--;
1077 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1078 list_del_init(&device->dev_alloc_list);
1079 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1080 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT,
1081 &device->dev_state))
1082 fs_devices->rw_devices--;
1084 list_del_init(&device->dev_list);
1085 fs_devices->num_devices--;
1086 btrfs_free_device(device);
1089 if (fs_devices->seed) {
1090 fs_devices = fs_devices->seed;
1091 goto again;
1094 fs_devices->latest_bdev = latest_dev->bdev;
1096 mutex_unlock(&uuid_mutex);
1099 static void btrfs_close_bdev(struct btrfs_device *device)
1101 if (!device->bdev)
1102 return;
1104 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1105 sync_blockdev(device->bdev);
1106 invalidate_bdev(device->bdev);
1109 blkdev_put(device->bdev, device->mode);
1112 static void btrfs_close_one_device(struct btrfs_device *device)
1114 struct btrfs_fs_devices *fs_devices = device->fs_devices;
1116 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1117 device->devid != BTRFS_DEV_REPLACE_DEVID) {
1118 list_del_init(&device->dev_alloc_list);
1119 fs_devices->rw_devices--;
1122 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
1123 fs_devices->missing_devices--;
1125 btrfs_close_bdev(device);
1126 if (device->bdev) {
1127 fs_devices->open_devices--;
1128 device->bdev = NULL;
1130 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
1132 device->fs_info = NULL;
1133 atomic_set(&device->dev_stats_ccnt, 0);
1134 extent_io_tree_release(&device->alloc_state);
1136 /* Verify the device is back in a pristine state */
1137 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state));
1138 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1139 ASSERT(list_empty(&device->dev_alloc_list));
1140 ASSERT(list_empty(&device->post_commit_list));
1141 ASSERT(atomic_read(&device->reada_in_flight) == 0);
1144 static int close_fs_devices(struct btrfs_fs_devices *fs_devices)
1146 struct btrfs_device *device, *tmp;
1148 if (--fs_devices->opened > 0)
1149 return 0;
1151 mutex_lock(&fs_devices->device_list_mutex);
1152 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) {
1153 btrfs_close_one_device(device);
1155 mutex_unlock(&fs_devices->device_list_mutex);
1157 WARN_ON(fs_devices->open_devices);
1158 WARN_ON(fs_devices->rw_devices);
1159 fs_devices->opened = 0;
1160 fs_devices->seeding = false;
1162 return 0;
1165 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
1167 struct btrfs_fs_devices *seed_devices = NULL;
1168 int ret;
1170 mutex_lock(&uuid_mutex);
1171 ret = close_fs_devices(fs_devices);
1172 if (!fs_devices->opened) {
1173 seed_devices = fs_devices->seed;
1174 fs_devices->seed = NULL;
1176 mutex_unlock(&uuid_mutex);
1178 while (seed_devices) {
1179 fs_devices = seed_devices;
1180 seed_devices = fs_devices->seed;
1181 close_fs_devices(fs_devices);
1182 free_fs_devices(fs_devices);
1184 return ret;
1187 static int open_fs_devices(struct btrfs_fs_devices *fs_devices,
1188 fmode_t flags, void *holder)
1190 struct btrfs_device *device;
1191 struct btrfs_device *latest_dev = NULL;
1192 int ret = 0;
1194 flags |= FMODE_EXCL;
1196 list_for_each_entry(device, &fs_devices->devices, dev_list) {
1197 /* Just open everything we can; ignore failures here */
1198 if (btrfs_open_one_device(fs_devices, device, flags, holder))
1199 continue;
1201 if (!latest_dev ||
1202 device->generation > latest_dev->generation)
1203 latest_dev = device;
1205 if (fs_devices->open_devices == 0) {
1206 ret = -EINVAL;
1207 goto out;
1209 fs_devices->opened = 1;
1210 fs_devices->latest_bdev = latest_dev->bdev;
1211 fs_devices->total_rw_bytes = 0;
1212 out:
1213 return ret;
1216 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b)
1218 struct btrfs_device *dev1, *dev2;
1220 dev1 = list_entry(a, struct btrfs_device, dev_list);
1221 dev2 = list_entry(b, struct btrfs_device, dev_list);
1223 if (dev1->devid < dev2->devid)
1224 return -1;
1225 else if (dev1->devid > dev2->devid)
1226 return 1;
1227 return 0;
1230 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
1231 fmode_t flags, void *holder)
1233 int ret;
1235 lockdep_assert_held(&uuid_mutex);
1237 mutex_lock(&fs_devices->device_list_mutex);
1238 if (fs_devices->opened) {
1239 fs_devices->opened++;
1240 ret = 0;
1241 } else {
1242 list_sort(NULL, &fs_devices->devices, devid_cmp);
1243 ret = open_fs_devices(fs_devices, flags, holder);
1245 mutex_unlock(&fs_devices->device_list_mutex);
1247 return ret;
1250 static void btrfs_release_disk_super(struct page *page)
1252 kunmap(page);
1253 put_page(page);
1256 static int btrfs_read_disk_super(struct block_device *bdev, u64 bytenr,
1257 struct page **page,
1258 struct btrfs_super_block **disk_super)
1260 void *p;
1261 pgoff_t index;
1263 /* make sure our super fits in the device */
1264 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode))
1265 return 1;
1267 /* make sure our super fits in the page */
1268 if (sizeof(**disk_super) > PAGE_SIZE)
1269 return 1;
1271 /* make sure our super doesn't straddle pages on disk */
1272 index = bytenr >> PAGE_SHIFT;
1273 if ((bytenr + sizeof(**disk_super) - 1) >> PAGE_SHIFT != index)
1274 return 1;
1276 /* pull in the page with our super */
1277 *page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
1278 index, GFP_KERNEL);
1280 if (IS_ERR_OR_NULL(*page))
1281 return 1;
1283 p = kmap(*page);
1285 /* align our pointer to the offset of the super block */
1286 *disk_super = p + offset_in_page(bytenr);
1288 if (btrfs_super_bytenr(*disk_super) != bytenr ||
1289 btrfs_super_magic(*disk_super) != BTRFS_MAGIC) {
1290 btrfs_release_disk_super(*page);
1291 return 1;
1294 if ((*disk_super)->label[0] &&
1295 (*disk_super)->label[BTRFS_LABEL_SIZE - 1])
1296 (*disk_super)->label[BTRFS_LABEL_SIZE - 1] = '\0';
1298 return 0;
1301 int btrfs_forget_devices(const char *path)
1303 int ret;
1305 mutex_lock(&uuid_mutex);
1306 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL);
1307 mutex_unlock(&uuid_mutex);
1309 return ret;
1313 * Look for a btrfs signature on a device. This may be called out of the mount path
1314 * and we are not allowed to call set_blocksize during the scan. The superblock
1315 * is read via pagecache
1317 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags,
1318 void *holder)
1320 struct btrfs_super_block *disk_super;
1321 bool new_device_added = false;
1322 struct btrfs_device *device = NULL;
1323 struct block_device *bdev;
1324 struct page *page;
1325 u64 bytenr;
1327 lockdep_assert_held(&uuid_mutex);
1330 * we would like to check all the supers, but that would make
1331 * a btrfs mount succeed after a mkfs from a different FS.
1332 * So, we need to add a special mount option to scan for
1333 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1335 bytenr = btrfs_sb_offset(0);
1336 flags |= FMODE_EXCL;
1338 bdev = blkdev_get_by_path(path, flags, holder);
1339 if (IS_ERR(bdev))
1340 return ERR_CAST(bdev);
1342 if (btrfs_read_disk_super(bdev, bytenr, &page, &disk_super)) {
1343 device = ERR_PTR(-EINVAL);
1344 goto error_bdev_put;
1347 device = device_list_add(path, disk_super, &new_device_added);
1348 if (!IS_ERR(device)) {
1349 if (new_device_added)
1350 btrfs_free_stale_devices(path, device);
1353 btrfs_release_disk_super(page);
1355 error_bdev_put:
1356 blkdev_put(bdev, flags);
1358 return device;
1362 * Try to find a chunk that intersects [start, start + len] range and when one
1363 * such is found, record the end of it in *start
1365 static bool contains_pending_extent(struct btrfs_device *device, u64 *start,
1366 u64 len)
1368 u64 physical_start, physical_end;
1370 lockdep_assert_held(&device->fs_info->chunk_mutex);
1372 if (!find_first_extent_bit(&device->alloc_state, *start,
1373 &physical_start, &physical_end,
1374 CHUNK_ALLOCATED, NULL)) {
1376 if (in_range(physical_start, *start, len) ||
1377 in_range(*start, physical_start,
1378 physical_end - physical_start)) {
1379 *start = physical_end + 1;
1380 return true;
1383 return false;
1388 * find_free_dev_extent_start - find free space in the specified device
1389 * @device: the device which we search the free space in
1390 * @num_bytes: the size of the free space that we need
1391 * @search_start: the position from which to begin the search
1392 * @start: store the start of the free space.
1393 * @len: the size of the free space. that we find, or the size
1394 * of the max free space if we don't find suitable free space
1396 * this uses a pretty simple search, the expectation is that it is
1397 * called very infrequently and that a given device has a small number
1398 * of extents
1400 * @start is used to store the start of the free space if we find. But if we
1401 * don't find suitable free space, it will be used to store the start position
1402 * of the max free space.
1404 * @len is used to store the size of the free space that we find.
1405 * But if we don't find suitable free space, it is used to store the size of
1406 * the max free space.
1408 * NOTE: This function will search *commit* root of device tree, and does extra
1409 * check to ensure dev extents are not double allocated.
1410 * This makes the function safe to allocate dev extents but may not report
1411 * correct usable device space, as device extent freed in current transaction
1412 * is not reported as avaiable.
1414 static int find_free_dev_extent_start(struct btrfs_device *device,
1415 u64 num_bytes, u64 search_start, u64 *start,
1416 u64 *len)
1418 struct btrfs_fs_info *fs_info = device->fs_info;
1419 struct btrfs_root *root = fs_info->dev_root;
1420 struct btrfs_key key;
1421 struct btrfs_dev_extent *dev_extent;
1422 struct btrfs_path *path;
1423 u64 hole_size;
1424 u64 max_hole_start;
1425 u64 max_hole_size;
1426 u64 extent_end;
1427 u64 search_end = device->total_bytes;
1428 int ret;
1429 int slot;
1430 struct extent_buffer *l;
1433 * We don't want to overwrite the superblock on the drive nor any area
1434 * used by the boot loader (grub for example), so we make sure to start
1435 * at an offset of at least 1MB.
1437 search_start = max_t(u64, search_start, SZ_1M);
1439 path = btrfs_alloc_path();
1440 if (!path)
1441 return -ENOMEM;
1443 max_hole_start = search_start;
1444 max_hole_size = 0;
1446 again:
1447 if (search_start >= search_end ||
1448 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1449 ret = -ENOSPC;
1450 goto out;
1453 path->reada = READA_FORWARD;
1454 path->search_commit_root = 1;
1455 path->skip_locking = 1;
1457 key.objectid = device->devid;
1458 key.offset = search_start;
1459 key.type = BTRFS_DEV_EXTENT_KEY;
1461 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1462 if (ret < 0)
1463 goto out;
1464 if (ret > 0) {
1465 ret = btrfs_previous_item(root, path, key.objectid, key.type);
1466 if (ret < 0)
1467 goto out;
1470 while (1) {
1471 l = path->nodes[0];
1472 slot = path->slots[0];
1473 if (slot >= btrfs_header_nritems(l)) {
1474 ret = btrfs_next_leaf(root, path);
1475 if (ret == 0)
1476 continue;
1477 if (ret < 0)
1478 goto out;
1480 break;
1482 btrfs_item_key_to_cpu(l, &key, slot);
1484 if (key.objectid < device->devid)
1485 goto next;
1487 if (key.objectid > device->devid)
1488 break;
1490 if (key.type != BTRFS_DEV_EXTENT_KEY)
1491 goto next;
1493 if (key.offset > search_start) {
1494 hole_size = key.offset - search_start;
1497 * Have to check before we set max_hole_start, otherwise
1498 * we could end up sending back this offset anyway.
1500 if (contains_pending_extent(device, &search_start,
1501 hole_size)) {
1502 if (key.offset >= search_start)
1503 hole_size = key.offset - search_start;
1504 else
1505 hole_size = 0;
1508 if (hole_size > max_hole_size) {
1509 max_hole_start = search_start;
1510 max_hole_size = hole_size;
1514 * If this free space is greater than which we need,
1515 * it must be the max free space that we have found
1516 * until now, so max_hole_start must point to the start
1517 * of this free space and the length of this free space
1518 * is stored in max_hole_size. Thus, we return
1519 * max_hole_start and max_hole_size and go back to the
1520 * caller.
1522 if (hole_size >= num_bytes) {
1523 ret = 0;
1524 goto out;
1528 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1529 extent_end = key.offset + btrfs_dev_extent_length(l,
1530 dev_extent);
1531 if (extent_end > search_start)
1532 search_start = extent_end;
1533 next:
1534 path->slots[0]++;
1535 cond_resched();
1539 * At this point, search_start should be the end of
1540 * allocated dev extents, and when shrinking the device,
1541 * search_end may be smaller than search_start.
1543 if (search_end > search_start) {
1544 hole_size = search_end - search_start;
1546 if (contains_pending_extent(device, &search_start, hole_size)) {
1547 btrfs_release_path(path);
1548 goto again;
1551 if (hole_size > max_hole_size) {
1552 max_hole_start = search_start;
1553 max_hole_size = hole_size;
1557 /* See above. */
1558 if (max_hole_size < num_bytes)
1559 ret = -ENOSPC;
1560 else
1561 ret = 0;
1563 out:
1564 btrfs_free_path(path);
1565 *start = max_hole_start;
1566 if (len)
1567 *len = max_hole_size;
1568 return ret;
1571 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes,
1572 u64 *start, u64 *len)
1574 /* FIXME use last free of some kind */
1575 return find_free_dev_extent_start(device, num_bytes, 0, start, len);
1578 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1579 struct btrfs_device *device,
1580 u64 start, u64 *dev_extent_len)
1582 struct btrfs_fs_info *fs_info = device->fs_info;
1583 struct btrfs_root *root = fs_info->dev_root;
1584 int ret;
1585 struct btrfs_path *path;
1586 struct btrfs_key key;
1587 struct btrfs_key found_key;
1588 struct extent_buffer *leaf = NULL;
1589 struct btrfs_dev_extent *extent = NULL;
1591 path = btrfs_alloc_path();
1592 if (!path)
1593 return -ENOMEM;
1595 key.objectid = device->devid;
1596 key.offset = start;
1597 key.type = BTRFS_DEV_EXTENT_KEY;
1598 again:
1599 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1600 if (ret > 0) {
1601 ret = btrfs_previous_item(root, path, key.objectid,
1602 BTRFS_DEV_EXTENT_KEY);
1603 if (ret)
1604 goto out;
1605 leaf = path->nodes[0];
1606 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1607 extent = btrfs_item_ptr(leaf, path->slots[0],
1608 struct btrfs_dev_extent);
1609 BUG_ON(found_key.offset > start || found_key.offset +
1610 btrfs_dev_extent_length(leaf, extent) < start);
1611 key = found_key;
1612 btrfs_release_path(path);
1613 goto again;
1614 } else if (ret == 0) {
1615 leaf = path->nodes[0];
1616 extent = btrfs_item_ptr(leaf, path->slots[0],
1617 struct btrfs_dev_extent);
1618 } else {
1619 btrfs_handle_fs_error(fs_info, ret, "Slot search failed");
1620 goto out;
1623 *dev_extent_len = btrfs_dev_extent_length(leaf, extent);
1625 ret = btrfs_del_item(trans, root, path);
1626 if (ret) {
1627 btrfs_handle_fs_error(fs_info, ret,
1628 "Failed to remove dev extent item");
1629 } else {
1630 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags);
1632 out:
1633 btrfs_free_path(path);
1634 return ret;
1637 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1638 struct btrfs_device *device,
1639 u64 chunk_offset, u64 start, u64 num_bytes)
1641 int ret;
1642 struct btrfs_path *path;
1643 struct btrfs_fs_info *fs_info = device->fs_info;
1644 struct btrfs_root *root = fs_info->dev_root;
1645 struct btrfs_dev_extent *extent;
1646 struct extent_buffer *leaf;
1647 struct btrfs_key key;
1649 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
1650 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
1651 path = btrfs_alloc_path();
1652 if (!path)
1653 return -ENOMEM;
1655 key.objectid = device->devid;
1656 key.offset = start;
1657 key.type = BTRFS_DEV_EXTENT_KEY;
1658 ret = btrfs_insert_empty_item(trans, root, path, &key,
1659 sizeof(*extent));
1660 if (ret)
1661 goto out;
1663 leaf = path->nodes[0];
1664 extent = btrfs_item_ptr(leaf, path->slots[0],
1665 struct btrfs_dev_extent);
1666 btrfs_set_dev_extent_chunk_tree(leaf, extent,
1667 BTRFS_CHUNK_TREE_OBJECTID);
1668 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
1669 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
1670 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1672 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1673 btrfs_mark_buffer_dirty(leaf);
1674 out:
1675 btrfs_free_path(path);
1676 return ret;
1679 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1681 struct extent_map_tree *em_tree;
1682 struct extent_map *em;
1683 struct rb_node *n;
1684 u64 ret = 0;
1686 em_tree = &fs_info->mapping_tree;
1687 read_lock(&em_tree->lock);
1688 n = rb_last(&em_tree->map.rb_root);
1689 if (n) {
1690 em = rb_entry(n, struct extent_map, rb_node);
1691 ret = em->start + em->len;
1693 read_unlock(&em_tree->lock);
1695 return ret;
1698 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1699 u64 *devid_ret)
1701 int ret;
1702 struct btrfs_key key;
1703 struct btrfs_key found_key;
1704 struct btrfs_path *path;
1706 path = btrfs_alloc_path();
1707 if (!path)
1708 return -ENOMEM;
1710 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1711 key.type = BTRFS_DEV_ITEM_KEY;
1712 key.offset = (u64)-1;
1714 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1715 if (ret < 0)
1716 goto error;
1718 if (ret == 0) {
1719 /* Corruption */
1720 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched");
1721 ret = -EUCLEAN;
1722 goto error;
1725 ret = btrfs_previous_item(fs_info->chunk_root, path,
1726 BTRFS_DEV_ITEMS_OBJECTID,
1727 BTRFS_DEV_ITEM_KEY);
1728 if (ret) {
1729 *devid_ret = 1;
1730 } else {
1731 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1732 path->slots[0]);
1733 *devid_ret = found_key.offset + 1;
1735 ret = 0;
1736 error:
1737 btrfs_free_path(path);
1738 return ret;
1742 * the device information is stored in the chunk root
1743 * the btrfs_device struct should be fully filled in
1745 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans,
1746 struct btrfs_device *device)
1748 int ret;
1749 struct btrfs_path *path;
1750 struct btrfs_dev_item *dev_item;
1751 struct extent_buffer *leaf;
1752 struct btrfs_key key;
1753 unsigned long ptr;
1755 path = btrfs_alloc_path();
1756 if (!path)
1757 return -ENOMEM;
1759 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1760 key.type = BTRFS_DEV_ITEM_KEY;
1761 key.offset = device->devid;
1763 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path,
1764 &key, sizeof(*dev_item));
1765 if (ret)
1766 goto out;
1768 leaf = path->nodes[0];
1769 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1771 btrfs_set_device_id(leaf, dev_item, device->devid);
1772 btrfs_set_device_generation(leaf, dev_item, 0);
1773 btrfs_set_device_type(leaf, dev_item, device->type);
1774 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1775 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1776 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1777 btrfs_set_device_total_bytes(leaf, dev_item,
1778 btrfs_device_get_disk_total_bytes(device));
1779 btrfs_set_device_bytes_used(leaf, dev_item,
1780 btrfs_device_get_bytes_used(device));
1781 btrfs_set_device_group(leaf, dev_item, 0);
1782 btrfs_set_device_seek_speed(leaf, dev_item, 0);
1783 btrfs_set_device_bandwidth(leaf, dev_item, 0);
1784 btrfs_set_device_start_offset(leaf, dev_item, 0);
1786 ptr = btrfs_device_uuid(dev_item);
1787 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1788 ptr = btrfs_device_fsid(dev_item);
1789 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid,
1790 ptr, BTRFS_FSID_SIZE);
1791 btrfs_mark_buffer_dirty(leaf);
1793 ret = 0;
1794 out:
1795 btrfs_free_path(path);
1796 return ret;
1800 * Function to update ctime/mtime for a given device path.
1801 * Mainly used for ctime/mtime based probe like libblkid.
1803 static void update_dev_time(const char *path_name)
1805 struct file *filp;
1807 filp = filp_open(path_name, O_RDWR, 0);
1808 if (IS_ERR(filp))
1809 return;
1810 file_update_time(filp);
1811 filp_close(filp, NULL);
1814 static int btrfs_rm_dev_item(struct btrfs_device *device)
1816 struct btrfs_root *root = device->fs_info->chunk_root;
1817 int ret;
1818 struct btrfs_path *path;
1819 struct btrfs_key key;
1820 struct btrfs_trans_handle *trans;
1822 path = btrfs_alloc_path();
1823 if (!path)
1824 return -ENOMEM;
1826 trans = btrfs_start_transaction(root, 0);
1827 if (IS_ERR(trans)) {
1828 btrfs_free_path(path);
1829 return PTR_ERR(trans);
1831 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1832 key.type = BTRFS_DEV_ITEM_KEY;
1833 key.offset = device->devid;
1835 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1836 if (ret) {
1837 if (ret > 0)
1838 ret = -ENOENT;
1839 btrfs_abort_transaction(trans, ret);
1840 btrfs_end_transaction(trans);
1841 goto out;
1844 ret = btrfs_del_item(trans, root, path);
1845 if (ret) {
1846 btrfs_abort_transaction(trans, ret);
1847 btrfs_end_transaction(trans);
1850 out:
1851 btrfs_free_path(path);
1852 if (!ret)
1853 ret = btrfs_commit_transaction(trans);
1854 return ret;
1858 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1859 * filesystem. It's up to the caller to adjust that number regarding eg. device
1860 * replace.
1862 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info,
1863 u64 num_devices)
1865 u64 all_avail;
1866 unsigned seq;
1867 int i;
1869 do {
1870 seq = read_seqbegin(&fs_info->profiles_lock);
1872 all_avail = fs_info->avail_data_alloc_bits |
1873 fs_info->avail_system_alloc_bits |
1874 fs_info->avail_metadata_alloc_bits;
1875 } while (read_seqretry(&fs_info->profiles_lock, seq));
1877 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1878 if (!(all_avail & btrfs_raid_array[i].bg_flag))
1879 continue;
1881 if (num_devices < btrfs_raid_array[i].devs_min) {
1882 int ret = btrfs_raid_array[i].mindev_error;
1884 if (ret)
1885 return ret;
1889 return 0;
1892 static struct btrfs_device * btrfs_find_next_active_device(
1893 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device)
1895 struct btrfs_device *next_device;
1897 list_for_each_entry(next_device, &fs_devs->devices, dev_list) {
1898 if (next_device != device &&
1899 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state)
1900 && next_device->bdev)
1901 return next_device;
1904 return NULL;
1908 * Helper function to check if the given device is part of s_bdev / latest_bdev
1909 * and replace it with the provided or the next active device, in the context
1910 * where this function called, there should be always be another device (or
1911 * this_dev) which is active.
1913 void __cold btrfs_assign_next_active_device(struct btrfs_device *device,
1914 struct btrfs_device *this_dev)
1916 struct btrfs_fs_info *fs_info = device->fs_info;
1917 struct btrfs_device *next_device;
1919 if (this_dev)
1920 next_device = this_dev;
1921 else
1922 next_device = btrfs_find_next_active_device(fs_info->fs_devices,
1923 device);
1924 ASSERT(next_device);
1926 if (fs_info->sb->s_bdev &&
1927 (fs_info->sb->s_bdev == device->bdev))
1928 fs_info->sb->s_bdev = next_device->bdev;
1930 if (fs_info->fs_devices->latest_bdev == device->bdev)
1931 fs_info->fs_devices->latest_bdev = next_device->bdev;
1935 * Return btrfs_fs_devices::num_devices excluding the device that's being
1936 * currently replaced.
1938 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info)
1940 u64 num_devices = fs_info->fs_devices->num_devices;
1942 down_read(&fs_info->dev_replace.rwsem);
1943 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
1944 ASSERT(num_devices > 1);
1945 num_devices--;
1947 up_read(&fs_info->dev_replace.rwsem);
1949 return num_devices;
1952 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path,
1953 u64 devid)
1955 struct btrfs_device *device;
1956 struct btrfs_fs_devices *cur_devices;
1957 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1958 u64 num_devices;
1959 int ret = 0;
1961 mutex_lock(&uuid_mutex);
1963 num_devices = btrfs_num_devices(fs_info);
1965 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1);
1966 if (ret)
1967 goto out;
1969 device = btrfs_find_device_by_devspec(fs_info, devid, device_path);
1971 if (IS_ERR(device)) {
1972 if (PTR_ERR(device) == -ENOENT &&
1973 strcmp(device_path, "missing") == 0)
1974 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1975 else
1976 ret = PTR_ERR(device);
1977 goto out;
1980 if (btrfs_pinned_by_swapfile(fs_info, device)) {
1981 btrfs_warn_in_rcu(fs_info,
1982 "cannot remove device %s (devid %llu) due to active swapfile",
1983 rcu_str_deref(device->name), device->devid);
1984 ret = -ETXTBSY;
1985 goto out;
1988 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1989 ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1990 goto out;
1993 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
1994 fs_info->fs_devices->rw_devices == 1) {
1995 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1996 goto out;
1999 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2000 mutex_lock(&fs_info->chunk_mutex);
2001 list_del_init(&device->dev_alloc_list);
2002 device->fs_devices->rw_devices--;
2003 mutex_unlock(&fs_info->chunk_mutex);
2006 mutex_unlock(&uuid_mutex);
2007 ret = btrfs_shrink_device(device, 0);
2008 mutex_lock(&uuid_mutex);
2009 if (ret)
2010 goto error_undo;
2013 * TODO: the superblock still includes this device in its num_devices
2014 * counter although write_all_supers() is not locked out. This
2015 * could give a filesystem state which requires a degraded mount.
2017 ret = btrfs_rm_dev_item(device);
2018 if (ret)
2019 goto error_undo;
2021 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2022 btrfs_scrub_cancel_dev(device);
2025 * the device list mutex makes sure that we don't change
2026 * the device list while someone else is writing out all
2027 * the device supers. Whoever is writing all supers, should
2028 * lock the device list mutex before getting the number of
2029 * devices in the super block (super_copy). Conversely,
2030 * whoever updates the number of devices in the super block
2031 * (super_copy) should hold the device list mutex.
2035 * In normal cases the cur_devices == fs_devices. But in case
2036 * of deleting a seed device, the cur_devices should point to
2037 * its own fs_devices listed under the fs_devices->seed.
2039 cur_devices = device->fs_devices;
2040 mutex_lock(&fs_devices->device_list_mutex);
2041 list_del_rcu(&device->dev_list);
2043 cur_devices->num_devices--;
2044 cur_devices->total_devices--;
2045 /* Update total_devices of the parent fs_devices if it's seed */
2046 if (cur_devices != fs_devices)
2047 fs_devices->total_devices--;
2049 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
2050 cur_devices->missing_devices--;
2052 btrfs_assign_next_active_device(device, NULL);
2054 if (device->bdev) {
2055 cur_devices->open_devices--;
2056 /* remove sysfs entry */
2057 btrfs_sysfs_rm_device_link(fs_devices, device);
2060 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1;
2061 btrfs_set_super_num_devices(fs_info->super_copy, num_devices);
2062 mutex_unlock(&fs_devices->device_list_mutex);
2065 * at this point, the device is zero sized and detached from
2066 * the devices list. All that's left is to zero out the old
2067 * supers and free the device.
2069 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2070 btrfs_scratch_superblocks(device->bdev, device->name->str);
2072 btrfs_close_bdev(device);
2073 synchronize_rcu();
2074 btrfs_free_device(device);
2076 if (cur_devices->open_devices == 0) {
2077 while (fs_devices) {
2078 if (fs_devices->seed == cur_devices) {
2079 fs_devices->seed = cur_devices->seed;
2080 break;
2082 fs_devices = fs_devices->seed;
2084 cur_devices->seed = NULL;
2085 close_fs_devices(cur_devices);
2086 free_fs_devices(cur_devices);
2089 out:
2090 mutex_unlock(&uuid_mutex);
2091 return ret;
2093 error_undo:
2094 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
2095 mutex_lock(&fs_info->chunk_mutex);
2096 list_add(&device->dev_alloc_list,
2097 &fs_devices->alloc_list);
2098 device->fs_devices->rw_devices++;
2099 mutex_unlock(&fs_info->chunk_mutex);
2101 goto out;
2104 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev)
2106 struct btrfs_fs_devices *fs_devices;
2108 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex);
2111 * in case of fs with no seed, srcdev->fs_devices will point
2112 * to fs_devices of fs_info. However when the dev being replaced is
2113 * a seed dev it will point to the seed's local fs_devices. In short
2114 * srcdev will have its correct fs_devices in both the cases.
2116 fs_devices = srcdev->fs_devices;
2118 list_del_rcu(&srcdev->dev_list);
2119 list_del(&srcdev->dev_alloc_list);
2120 fs_devices->num_devices--;
2121 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state))
2122 fs_devices->missing_devices--;
2124 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state))
2125 fs_devices->rw_devices--;
2127 if (srcdev->bdev)
2128 fs_devices->open_devices--;
2131 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev)
2133 struct btrfs_fs_info *fs_info = srcdev->fs_info;
2134 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices;
2136 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) {
2137 /* zero out the old super if it is writable */
2138 btrfs_scratch_superblocks(srcdev->bdev, srcdev->name->str);
2141 btrfs_close_bdev(srcdev);
2142 synchronize_rcu();
2143 btrfs_free_device(srcdev);
2145 /* if this is no devs we rather delete the fs_devices */
2146 if (!fs_devices->num_devices) {
2147 struct btrfs_fs_devices *tmp_fs_devices;
2150 * On a mounted FS, num_devices can't be zero unless it's a
2151 * seed. In case of a seed device being replaced, the replace
2152 * target added to the sprout FS, so there will be no more
2153 * device left under the seed FS.
2155 ASSERT(fs_devices->seeding);
2157 tmp_fs_devices = fs_info->fs_devices;
2158 while (tmp_fs_devices) {
2159 if (tmp_fs_devices->seed == fs_devices) {
2160 tmp_fs_devices->seed = fs_devices->seed;
2161 break;
2163 tmp_fs_devices = tmp_fs_devices->seed;
2165 fs_devices->seed = NULL;
2166 close_fs_devices(fs_devices);
2167 free_fs_devices(fs_devices);
2171 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev)
2173 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices;
2175 mutex_lock(&fs_devices->device_list_mutex);
2177 btrfs_sysfs_rm_device_link(fs_devices, tgtdev);
2179 if (tgtdev->bdev)
2180 fs_devices->open_devices--;
2182 fs_devices->num_devices--;
2184 btrfs_assign_next_active_device(tgtdev, NULL);
2186 list_del_rcu(&tgtdev->dev_list);
2188 mutex_unlock(&fs_devices->device_list_mutex);
2191 * The update_dev_time() with in btrfs_scratch_superblocks()
2192 * may lead to a call to btrfs_show_devname() which will try
2193 * to hold device_list_mutex. And here this device
2194 * is already out of device list, so we don't have to hold
2195 * the device_list_mutex lock.
2197 btrfs_scratch_superblocks(tgtdev->bdev, tgtdev->name->str);
2199 btrfs_close_bdev(tgtdev);
2200 synchronize_rcu();
2201 btrfs_free_device(tgtdev);
2204 static struct btrfs_device *btrfs_find_device_by_path(
2205 struct btrfs_fs_info *fs_info, const char *device_path)
2207 int ret = 0;
2208 struct btrfs_super_block *disk_super;
2209 u64 devid;
2210 u8 *dev_uuid;
2211 struct block_device *bdev;
2212 struct buffer_head *bh;
2213 struct btrfs_device *device;
2215 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
2216 fs_info->bdev_holder, 0, &bdev, &bh);
2217 if (ret)
2218 return ERR_PTR(ret);
2219 disk_super = (struct btrfs_super_block *)bh->b_data;
2220 devid = btrfs_stack_device_id(&disk_super->dev_item);
2221 dev_uuid = disk_super->dev_item.uuid;
2222 if (btrfs_fs_incompat(fs_info, METADATA_UUID))
2223 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2224 disk_super->metadata_uuid, true);
2225 else
2226 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2227 disk_super->fsid, true);
2229 brelse(bh);
2230 if (!device)
2231 device = ERR_PTR(-ENOENT);
2232 blkdev_put(bdev, FMODE_READ);
2233 return device;
2237 * Lookup a device given by device id, or the path if the id is 0.
2239 struct btrfs_device *btrfs_find_device_by_devspec(
2240 struct btrfs_fs_info *fs_info, u64 devid,
2241 const char *device_path)
2243 struct btrfs_device *device;
2245 if (devid) {
2246 device = btrfs_find_device(fs_info->fs_devices, devid, NULL,
2247 NULL, true);
2248 if (!device)
2249 return ERR_PTR(-ENOENT);
2250 return device;
2253 if (!device_path || !device_path[0])
2254 return ERR_PTR(-EINVAL);
2256 if (strcmp(device_path, "missing") == 0) {
2257 /* Find first missing device */
2258 list_for_each_entry(device, &fs_info->fs_devices->devices,
2259 dev_list) {
2260 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
2261 &device->dev_state) && !device->bdev)
2262 return device;
2264 return ERR_PTR(-ENOENT);
2267 return btrfs_find_device_by_path(fs_info, device_path);
2271 * does all the dirty work required for changing file system's UUID.
2273 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info)
2275 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2276 struct btrfs_fs_devices *old_devices;
2277 struct btrfs_fs_devices *seed_devices;
2278 struct btrfs_super_block *disk_super = fs_info->super_copy;
2279 struct btrfs_device *device;
2280 u64 super_flags;
2282 lockdep_assert_held(&uuid_mutex);
2283 if (!fs_devices->seeding)
2284 return -EINVAL;
2286 seed_devices = alloc_fs_devices(NULL, NULL);
2287 if (IS_ERR(seed_devices))
2288 return PTR_ERR(seed_devices);
2290 old_devices = clone_fs_devices(fs_devices);
2291 if (IS_ERR(old_devices)) {
2292 kfree(seed_devices);
2293 return PTR_ERR(old_devices);
2296 list_add(&old_devices->fs_list, &fs_uuids);
2298 memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
2299 seed_devices->opened = 1;
2300 INIT_LIST_HEAD(&seed_devices->devices);
2301 INIT_LIST_HEAD(&seed_devices->alloc_list);
2302 mutex_init(&seed_devices->device_list_mutex);
2304 mutex_lock(&fs_devices->device_list_mutex);
2305 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
2306 synchronize_rcu);
2307 list_for_each_entry(device, &seed_devices->devices, dev_list)
2308 device->fs_devices = seed_devices;
2310 mutex_lock(&fs_info->chunk_mutex);
2311 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
2312 mutex_unlock(&fs_info->chunk_mutex);
2314 fs_devices->seeding = false;
2315 fs_devices->num_devices = 0;
2316 fs_devices->open_devices = 0;
2317 fs_devices->missing_devices = 0;
2318 fs_devices->rotating = false;
2319 fs_devices->seed = seed_devices;
2321 generate_random_uuid(fs_devices->fsid);
2322 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE);
2323 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
2324 mutex_unlock(&fs_devices->device_list_mutex);
2326 super_flags = btrfs_super_flags(disk_super) &
2327 ~BTRFS_SUPER_FLAG_SEEDING;
2328 btrfs_set_super_flags(disk_super, super_flags);
2330 return 0;
2334 * Store the expected generation for seed devices in device items.
2336 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans)
2338 struct btrfs_fs_info *fs_info = trans->fs_info;
2339 struct btrfs_root *root = fs_info->chunk_root;
2340 struct btrfs_path *path;
2341 struct extent_buffer *leaf;
2342 struct btrfs_dev_item *dev_item;
2343 struct btrfs_device *device;
2344 struct btrfs_key key;
2345 u8 fs_uuid[BTRFS_FSID_SIZE];
2346 u8 dev_uuid[BTRFS_UUID_SIZE];
2347 u64 devid;
2348 int ret;
2350 path = btrfs_alloc_path();
2351 if (!path)
2352 return -ENOMEM;
2354 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2355 key.offset = 0;
2356 key.type = BTRFS_DEV_ITEM_KEY;
2358 while (1) {
2359 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2360 if (ret < 0)
2361 goto error;
2363 leaf = path->nodes[0];
2364 next_slot:
2365 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
2366 ret = btrfs_next_leaf(root, path);
2367 if (ret > 0)
2368 break;
2369 if (ret < 0)
2370 goto error;
2371 leaf = path->nodes[0];
2372 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2373 btrfs_release_path(path);
2374 continue;
2377 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2378 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
2379 key.type != BTRFS_DEV_ITEM_KEY)
2380 break;
2382 dev_item = btrfs_item_ptr(leaf, path->slots[0],
2383 struct btrfs_dev_item);
2384 devid = btrfs_device_id(leaf, dev_item);
2385 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
2386 BTRFS_UUID_SIZE);
2387 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
2388 BTRFS_FSID_SIZE);
2389 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
2390 fs_uuid, true);
2391 BUG_ON(!device); /* Logic error */
2393 if (device->fs_devices->seeding) {
2394 btrfs_set_device_generation(leaf, dev_item,
2395 device->generation);
2396 btrfs_mark_buffer_dirty(leaf);
2399 path->slots[0]++;
2400 goto next_slot;
2402 ret = 0;
2403 error:
2404 btrfs_free_path(path);
2405 return ret;
2408 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path)
2410 struct btrfs_root *root = fs_info->dev_root;
2411 struct request_queue *q;
2412 struct btrfs_trans_handle *trans;
2413 struct btrfs_device *device;
2414 struct block_device *bdev;
2415 struct super_block *sb = fs_info->sb;
2416 struct rcu_string *name;
2417 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2418 u64 orig_super_total_bytes;
2419 u64 orig_super_num_devices;
2420 int seeding_dev = 0;
2421 int ret = 0;
2422 bool unlocked = false;
2424 if (sb_rdonly(sb) && !fs_devices->seeding)
2425 return -EROFS;
2427 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2428 fs_info->bdev_holder);
2429 if (IS_ERR(bdev))
2430 return PTR_ERR(bdev);
2432 if (fs_devices->seeding) {
2433 seeding_dev = 1;
2434 down_write(&sb->s_umount);
2435 mutex_lock(&uuid_mutex);
2438 filemap_write_and_wait(bdev->bd_inode->i_mapping);
2440 mutex_lock(&fs_devices->device_list_mutex);
2441 list_for_each_entry(device, &fs_devices->devices, dev_list) {
2442 if (device->bdev == bdev) {
2443 ret = -EEXIST;
2444 mutex_unlock(
2445 &fs_devices->device_list_mutex);
2446 goto error;
2449 mutex_unlock(&fs_devices->device_list_mutex);
2451 device = btrfs_alloc_device(fs_info, NULL, NULL);
2452 if (IS_ERR(device)) {
2453 /* we can safely leave the fs_devices entry around */
2454 ret = PTR_ERR(device);
2455 goto error;
2458 name = rcu_string_strdup(device_path, GFP_KERNEL);
2459 if (!name) {
2460 ret = -ENOMEM;
2461 goto error_free_device;
2463 rcu_assign_pointer(device->name, name);
2465 trans = btrfs_start_transaction(root, 0);
2466 if (IS_ERR(trans)) {
2467 ret = PTR_ERR(trans);
2468 goto error_free_device;
2471 q = bdev_get_queue(bdev);
2472 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state);
2473 device->generation = trans->transid;
2474 device->io_width = fs_info->sectorsize;
2475 device->io_align = fs_info->sectorsize;
2476 device->sector_size = fs_info->sectorsize;
2477 device->total_bytes = round_down(i_size_read(bdev->bd_inode),
2478 fs_info->sectorsize);
2479 device->disk_total_bytes = device->total_bytes;
2480 device->commit_total_bytes = device->total_bytes;
2481 device->fs_info = fs_info;
2482 device->bdev = bdev;
2483 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
2484 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
2485 device->mode = FMODE_EXCL;
2486 device->dev_stats_valid = 1;
2487 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE);
2489 if (seeding_dev) {
2490 sb->s_flags &= ~SB_RDONLY;
2491 ret = btrfs_prepare_sprout(fs_info);
2492 if (ret) {
2493 btrfs_abort_transaction(trans, ret);
2494 goto error_trans;
2498 device->fs_devices = fs_devices;
2500 mutex_lock(&fs_devices->device_list_mutex);
2501 mutex_lock(&fs_info->chunk_mutex);
2502 list_add_rcu(&device->dev_list, &fs_devices->devices);
2503 list_add(&device->dev_alloc_list, &fs_devices->alloc_list);
2504 fs_devices->num_devices++;
2505 fs_devices->open_devices++;
2506 fs_devices->rw_devices++;
2507 fs_devices->total_devices++;
2508 fs_devices->total_rw_bytes += device->total_bytes;
2510 atomic64_add(device->total_bytes, &fs_info->free_chunk_space);
2512 if (!blk_queue_nonrot(q))
2513 fs_devices->rotating = true;
2515 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
2516 btrfs_set_super_total_bytes(fs_info->super_copy,
2517 round_down(orig_super_total_bytes + device->total_bytes,
2518 fs_info->sectorsize));
2520 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy);
2521 btrfs_set_super_num_devices(fs_info->super_copy,
2522 orig_super_num_devices + 1);
2524 /* add sysfs device entry */
2525 btrfs_sysfs_add_device_link(fs_devices, device);
2528 * we've got more storage, clear any full flags on the space
2529 * infos
2531 btrfs_clear_space_info_full(fs_info);
2533 mutex_unlock(&fs_info->chunk_mutex);
2534 mutex_unlock(&fs_devices->device_list_mutex);
2536 if (seeding_dev) {
2537 mutex_lock(&fs_info->chunk_mutex);
2538 ret = init_first_rw_device(trans);
2539 mutex_unlock(&fs_info->chunk_mutex);
2540 if (ret) {
2541 btrfs_abort_transaction(trans, ret);
2542 goto error_sysfs;
2546 ret = btrfs_add_dev_item(trans, device);
2547 if (ret) {
2548 btrfs_abort_transaction(trans, ret);
2549 goto error_sysfs;
2552 if (seeding_dev) {
2553 ret = btrfs_finish_sprout(trans);
2554 if (ret) {
2555 btrfs_abort_transaction(trans, ret);
2556 goto error_sysfs;
2559 btrfs_sysfs_update_sprout_fsid(fs_devices,
2560 fs_info->fs_devices->fsid);
2563 ret = btrfs_commit_transaction(trans);
2565 if (seeding_dev) {
2566 mutex_unlock(&uuid_mutex);
2567 up_write(&sb->s_umount);
2568 unlocked = true;
2570 if (ret) /* transaction commit */
2571 return ret;
2573 ret = btrfs_relocate_sys_chunks(fs_info);
2574 if (ret < 0)
2575 btrfs_handle_fs_error(fs_info, ret,
2576 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2577 trans = btrfs_attach_transaction(root);
2578 if (IS_ERR(trans)) {
2579 if (PTR_ERR(trans) == -ENOENT)
2580 return 0;
2581 ret = PTR_ERR(trans);
2582 trans = NULL;
2583 goto error_sysfs;
2585 ret = btrfs_commit_transaction(trans);
2588 /* Update ctime/mtime for libblkid */
2589 update_dev_time(device_path);
2590 return ret;
2592 error_sysfs:
2593 btrfs_sysfs_rm_device_link(fs_devices, device);
2594 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2595 mutex_lock(&fs_info->chunk_mutex);
2596 list_del_rcu(&device->dev_list);
2597 list_del(&device->dev_alloc_list);
2598 fs_info->fs_devices->num_devices--;
2599 fs_info->fs_devices->open_devices--;
2600 fs_info->fs_devices->rw_devices--;
2601 fs_info->fs_devices->total_devices--;
2602 fs_info->fs_devices->total_rw_bytes -= device->total_bytes;
2603 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space);
2604 btrfs_set_super_total_bytes(fs_info->super_copy,
2605 orig_super_total_bytes);
2606 btrfs_set_super_num_devices(fs_info->super_copy,
2607 orig_super_num_devices);
2608 mutex_unlock(&fs_info->chunk_mutex);
2609 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2610 error_trans:
2611 if (seeding_dev)
2612 sb->s_flags |= SB_RDONLY;
2613 if (trans)
2614 btrfs_end_transaction(trans);
2615 error_free_device:
2616 btrfs_free_device(device);
2617 error:
2618 blkdev_put(bdev, FMODE_EXCL);
2619 if (seeding_dev && !unlocked) {
2620 mutex_unlock(&uuid_mutex);
2621 up_write(&sb->s_umount);
2623 return ret;
2626 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2627 struct btrfs_device *device)
2629 int ret;
2630 struct btrfs_path *path;
2631 struct btrfs_root *root = device->fs_info->chunk_root;
2632 struct btrfs_dev_item *dev_item;
2633 struct extent_buffer *leaf;
2634 struct btrfs_key key;
2636 path = btrfs_alloc_path();
2637 if (!path)
2638 return -ENOMEM;
2640 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2641 key.type = BTRFS_DEV_ITEM_KEY;
2642 key.offset = device->devid;
2644 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2645 if (ret < 0)
2646 goto out;
2648 if (ret > 0) {
2649 ret = -ENOENT;
2650 goto out;
2653 leaf = path->nodes[0];
2654 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2656 btrfs_set_device_id(leaf, dev_item, device->devid);
2657 btrfs_set_device_type(leaf, dev_item, device->type);
2658 btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2659 btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2660 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2661 btrfs_set_device_total_bytes(leaf, dev_item,
2662 btrfs_device_get_disk_total_bytes(device));
2663 btrfs_set_device_bytes_used(leaf, dev_item,
2664 btrfs_device_get_bytes_used(device));
2665 btrfs_mark_buffer_dirty(leaf);
2667 out:
2668 btrfs_free_path(path);
2669 return ret;
2672 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2673 struct btrfs_device *device, u64 new_size)
2675 struct btrfs_fs_info *fs_info = device->fs_info;
2676 struct btrfs_super_block *super_copy = fs_info->super_copy;
2677 u64 old_total;
2678 u64 diff;
2680 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
2681 return -EACCES;
2683 new_size = round_down(new_size, fs_info->sectorsize);
2685 mutex_lock(&fs_info->chunk_mutex);
2686 old_total = btrfs_super_total_bytes(super_copy);
2687 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize);
2689 if (new_size <= device->total_bytes ||
2690 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
2691 mutex_unlock(&fs_info->chunk_mutex);
2692 return -EINVAL;
2695 btrfs_set_super_total_bytes(super_copy,
2696 round_down(old_total + diff, fs_info->sectorsize));
2697 device->fs_devices->total_rw_bytes += diff;
2699 btrfs_device_set_total_bytes(device, new_size);
2700 btrfs_device_set_disk_total_bytes(device, new_size);
2701 btrfs_clear_space_info_full(device->fs_info);
2702 if (list_empty(&device->post_commit_list))
2703 list_add_tail(&device->post_commit_list,
2704 &trans->transaction->dev_update_list);
2705 mutex_unlock(&fs_info->chunk_mutex);
2707 return btrfs_update_device(trans, device);
2710 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2712 struct btrfs_fs_info *fs_info = trans->fs_info;
2713 struct btrfs_root *root = fs_info->chunk_root;
2714 int ret;
2715 struct btrfs_path *path;
2716 struct btrfs_key key;
2718 path = btrfs_alloc_path();
2719 if (!path)
2720 return -ENOMEM;
2722 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2723 key.offset = chunk_offset;
2724 key.type = BTRFS_CHUNK_ITEM_KEY;
2726 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2727 if (ret < 0)
2728 goto out;
2729 else if (ret > 0) { /* Logic error or corruption */
2730 btrfs_handle_fs_error(fs_info, -ENOENT,
2731 "Failed lookup while freeing chunk.");
2732 ret = -ENOENT;
2733 goto out;
2736 ret = btrfs_del_item(trans, root, path);
2737 if (ret < 0)
2738 btrfs_handle_fs_error(fs_info, ret,
2739 "Failed to delete chunk item.");
2740 out:
2741 btrfs_free_path(path);
2742 return ret;
2745 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2747 struct btrfs_super_block *super_copy = fs_info->super_copy;
2748 struct btrfs_disk_key *disk_key;
2749 struct btrfs_chunk *chunk;
2750 u8 *ptr;
2751 int ret = 0;
2752 u32 num_stripes;
2753 u32 array_size;
2754 u32 len = 0;
2755 u32 cur;
2756 struct btrfs_key key;
2758 mutex_lock(&fs_info->chunk_mutex);
2759 array_size = btrfs_super_sys_array_size(super_copy);
2761 ptr = super_copy->sys_chunk_array;
2762 cur = 0;
2764 while (cur < array_size) {
2765 disk_key = (struct btrfs_disk_key *)ptr;
2766 btrfs_disk_key_to_cpu(&key, disk_key);
2768 len = sizeof(*disk_key);
2770 if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2771 chunk = (struct btrfs_chunk *)(ptr + len);
2772 num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2773 len += btrfs_chunk_item_size(num_stripes);
2774 } else {
2775 ret = -EIO;
2776 break;
2778 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID &&
2779 key.offset == chunk_offset) {
2780 memmove(ptr, ptr + len, array_size - (cur + len));
2781 array_size -= len;
2782 btrfs_set_super_sys_array_size(super_copy, array_size);
2783 } else {
2784 ptr += len;
2785 cur += len;
2788 mutex_unlock(&fs_info->chunk_mutex);
2789 return ret;
2793 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2794 * @logical: Logical block offset in bytes.
2795 * @length: Length of extent in bytes.
2797 * Return: Chunk mapping or ERR_PTR.
2799 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info,
2800 u64 logical, u64 length)
2802 struct extent_map_tree *em_tree;
2803 struct extent_map *em;
2805 em_tree = &fs_info->mapping_tree;
2806 read_lock(&em_tree->lock);
2807 em = lookup_extent_mapping(em_tree, logical, length);
2808 read_unlock(&em_tree->lock);
2810 if (!em) {
2811 btrfs_crit(fs_info, "unable to find logical %llu length %llu",
2812 logical, length);
2813 return ERR_PTR(-EINVAL);
2816 if (em->start > logical || em->start + em->len < logical) {
2817 btrfs_crit(fs_info,
2818 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2819 logical, length, em->start, em->start + em->len);
2820 free_extent_map(em);
2821 return ERR_PTR(-EINVAL);
2824 /* callers are responsible for dropping em's ref. */
2825 return em;
2828 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset)
2830 struct btrfs_fs_info *fs_info = trans->fs_info;
2831 struct extent_map *em;
2832 struct map_lookup *map;
2833 u64 dev_extent_len = 0;
2834 int i, ret = 0;
2835 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2837 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
2838 if (IS_ERR(em)) {
2840 * This is a logic error, but we don't want to just rely on the
2841 * user having built with ASSERT enabled, so if ASSERT doesn't
2842 * do anything we still error out.
2844 ASSERT(0);
2845 return PTR_ERR(em);
2847 map = em->map_lookup;
2848 mutex_lock(&fs_info->chunk_mutex);
2849 check_system_chunk(trans, map->type);
2850 mutex_unlock(&fs_info->chunk_mutex);
2853 * Take the device list mutex to prevent races with the final phase of
2854 * a device replace operation that replaces the device object associated
2855 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2857 mutex_lock(&fs_devices->device_list_mutex);
2858 for (i = 0; i < map->num_stripes; i++) {
2859 struct btrfs_device *device = map->stripes[i].dev;
2860 ret = btrfs_free_dev_extent(trans, device,
2861 map->stripes[i].physical,
2862 &dev_extent_len);
2863 if (ret) {
2864 mutex_unlock(&fs_devices->device_list_mutex);
2865 btrfs_abort_transaction(trans, ret);
2866 goto out;
2869 if (device->bytes_used > 0) {
2870 mutex_lock(&fs_info->chunk_mutex);
2871 btrfs_device_set_bytes_used(device,
2872 device->bytes_used - dev_extent_len);
2873 atomic64_add(dev_extent_len, &fs_info->free_chunk_space);
2874 btrfs_clear_space_info_full(fs_info);
2875 mutex_unlock(&fs_info->chunk_mutex);
2878 ret = btrfs_update_device(trans, device);
2879 if (ret) {
2880 mutex_unlock(&fs_devices->device_list_mutex);
2881 btrfs_abort_transaction(trans, ret);
2882 goto out;
2885 mutex_unlock(&fs_devices->device_list_mutex);
2887 ret = btrfs_free_chunk(trans, chunk_offset);
2888 if (ret) {
2889 btrfs_abort_transaction(trans, ret);
2890 goto out;
2893 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len);
2895 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2896 ret = btrfs_del_sys_chunk(fs_info, chunk_offset);
2897 if (ret) {
2898 btrfs_abort_transaction(trans, ret);
2899 goto out;
2903 ret = btrfs_remove_block_group(trans, chunk_offset, em);
2904 if (ret) {
2905 btrfs_abort_transaction(trans, ret);
2906 goto out;
2909 out:
2910 /* once for us */
2911 free_extent_map(em);
2912 return ret;
2915 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset)
2917 struct btrfs_root *root = fs_info->chunk_root;
2918 struct btrfs_trans_handle *trans;
2919 struct btrfs_block_group *block_group;
2920 int ret;
2923 * Prevent races with automatic removal of unused block groups.
2924 * After we relocate and before we remove the chunk with offset
2925 * chunk_offset, automatic removal of the block group can kick in,
2926 * resulting in a failure when calling btrfs_remove_chunk() below.
2928 * Make sure to acquire this mutex before doing a tree search (dev
2929 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
2930 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
2931 * we release the path used to search the chunk/dev tree and before
2932 * the current task acquires this mutex and calls us.
2934 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex);
2936 /* step one, relocate all the extents inside this chunk */
2937 btrfs_scrub_pause(fs_info);
2938 ret = btrfs_relocate_block_group(fs_info, chunk_offset);
2939 btrfs_scrub_continue(fs_info);
2940 if (ret)
2941 return ret;
2943 block_group = btrfs_lookup_block_group(fs_info, chunk_offset);
2944 if (!block_group)
2945 return -ENOENT;
2946 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
2947 btrfs_put_block_group(block_group);
2949 trans = btrfs_start_trans_remove_block_group(root->fs_info,
2950 chunk_offset);
2951 if (IS_ERR(trans)) {
2952 ret = PTR_ERR(trans);
2953 btrfs_handle_fs_error(root->fs_info, ret, NULL);
2954 return ret;
2958 * step two, delete the device extents and the
2959 * chunk tree entries
2961 ret = btrfs_remove_chunk(trans, chunk_offset);
2962 btrfs_end_transaction(trans);
2963 return ret;
2966 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info)
2968 struct btrfs_root *chunk_root = fs_info->chunk_root;
2969 struct btrfs_path *path;
2970 struct extent_buffer *leaf;
2971 struct btrfs_chunk *chunk;
2972 struct btrfs_key key;
2973 struct btrfs_key found_key;
2974 u64 chunk_type;
2975 bool retried = false;
2976 int failed = 0;
2977 int ret;
2979 path = btrfs_alloc_path();
2980 if (!path)
2981 return -ENOMEM;
2983 again:
2984 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2985 key.offset = (u64)-1;
2986 key.type = BTRFS_CHUNK_ITEM_KEY;
2988 while (1) {
2989 mutex_lock(&fs_info->delete_unused_bgs_mutex);
2990 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2991 if (ret < 0) {
2992 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
2993 goto error;
2995 BUG_ON(ret == 0); /* Corruption */
2997 ret = btrfs_previous_item(chunk_root, path, key.objectid,
2998 key.type);
2999 if (ret)
3000 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3001 if (ret < 0)
3002 goto error;
3003 if (ret > 0)
3004 break;
3006 leaf = path->nodes[0];
3007 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3009 chunk = btrfs_item_ptr(leaf, path->slots[0],
3010 struct btrfs_chunk);
3011 chunk_type = btrfs_chunk_type(leaf, chunk);
3012 btrfs_release_path(path);
3014 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
3015 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3016 if (ret == -ENOSPC)
3017 failed++;
3018 else
3019 BUG_ON(ret);
3021 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3023 if (found_key.offset == 0)
3024 break;
3025 key.offset = found_key.offset - 1;
3027 ret = 0;
3028 if (failed && !retried) {
3029 failed = 0;
3030 retried = true;
3031 goto again;
3032 } else if (WARN_ON(failed && retried)) {
3033 ret = -ENOSPC;
3035 error:
3036 btrfs_free_path(path);
3037 return ret;
3041 * return 1 : allocate a data chunk successfully,
3042 * return <0: errors during allocating a data chunk,
3043 * return 0 : no need to allocate a data chunk.
3045 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info,
3046 u64 chunk_offset)
3048 struct btrfs_block_group *cache;
3049 u64 bytes_used;
3050 u64 chunk_type;
3052 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3053 ASSERT(cache);
3054 chunk_type = cache->flags;
3055 btrfs_put_block_group(cache);
3057 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA))
3058 return 0;
3060 spin_lock(&fs_info->data_sinfo->lock);
3061 bytes_used = fs_info->data_sinfo->bytes_used;
3062 spin_unlock(&fs_info->data_sinfo->lock);
3064 if (!bytes_used) {
3065 struct btrfs_trans_handle *trans;
3066 int ret;
3068 trans = btrfs_join_transaction(fs_info->tree_root);
3069 if (IS_ERR(trans))
3070 return PTR_ERR(trans);
3072 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA);
3073 btrfs_end_transaction(trans);
3074 if (ret < 0)
3075 return ret;
3076 return 1;
3079 return 0;
3082 static int insert_balance_item(struct btrfs_fs_info *fs_info,
3083 struct btrfs_balance_control *bctl)
3085 struct btrfs_root *root = fs_info->tree_root;
3086 struct btrfs_trans_handle *trans;
3087 struct btrfs_balance_item *item;
3088 struct btrfs_disk_balance_args disk_bargs;
3089 struct btrfs_path *path;
3090 struct extent_buffer *leaf;
3091 struct btrfs_key key;
3092 int ret, err;
3094 path = btrfs_alloc_path();
3095 if (!path)
3096 return -ENOMEM;
3098 trans = btrfs_start_transaction(root, 0);
3099 if (IS_ERR(trans)) {
3100 btrfs_free_path(path);
3101 return PTR_ERR(trans);
3104 key.objectid = BTRFS_BALANCE_OBJECTID;
3105 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3106 key.offset = 0;
3108 ret = btrfs_insert_empty_item(trans, root, path, &key,
3109 sizeof(*item));
3110 if (ret)
3111 goto out;
3113 leaf = path->nodes[0];
3114 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3116 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3118 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
3119 btrfs_set_balance_data(leaf, item, &disk_bargs);
3120 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
3121 btrfs_set_balance_meta(leaf, item, &disk_bargs);
3122 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
3123 btrfs_set_balance_sys(leaf, item, &disk_bargs);
3125 btrfs_set_balance_flags(leaf, item, bctl->flags);
3127 btrfs_mark_buffer_dirty(leaf);
3128 out:
3129 btrfs_free_path(path);
3130 err = btrfs_commit_transaction(trans);
3131 if (err && !ret)
3132 ret = err;
3133 return ret;
3136 static int del_balance_item(struct btrfs_fs_info *fs_info)
3138 struct btrfs_root *root = fs_info->tree_root;
3139 struct btrfs_trans_handle *trans;
3140 struct btrfs_path *path;
3141 struct btrfs_key key;
3142 int ret, err;
3144 path = btrfs_alloc_path();
3145 if (!path)
3146 return -ENOMEM;
3148 trans = btrfs_start_transaction(root, 0);
3149 if (IS_ERR(trans)) {
3150 btrfs_free_path(path);
3151 return PTR_ERR(trans);
3154 key.objectid = BTRFS_BALANCE_OBJECTID;
3155 key.type = BTRFS_TEMPORARY_ITEM_KEY;
3156 key.offset = 0;
3158 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3159 if (ret < 0)
3160 goto out;
3161 if (ret > 0) {
3162 ret = -ENOENT;
3163 goto out;
3166 ret = btrfs_del_item(trans, root, path);
3167 out:
3168 btrfs_free_path(path);
3169 err = btrfs_commit_transaction(trans);
3170 if (err && !ret)
3171 ret = err;
3172 return ret;
3176 * This is a heuristic used to reduce the number of chunks balanced on
3177 * resume after balance was interrupted.
3179 static void update_balance_args(struct btrfs_balance_control *bctl)
3182 * Turn on soft mode for chunk types that were being converted.
3184 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
3185 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
3186 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
3187 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
3188 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
3189 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
3192 * Turn on usage filter if is not already used. The idea is
3193 * that chunks that we have already balanced should be
3194 * reasonably full. Don't do it for chunks that are being
3195 * converted - that will keep us from relocating unconverted
3196 * (albeit full) chunks.
3198 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3199 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3200 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3201 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
3202 bctl->data.usage = 90;
3204 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3205 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3206 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3207 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
3208 bctl->sys.usage = 90;
3210 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
3211 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3212 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
3213 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
3214 bctl->meta.usage = 90;
3219 * Clear the balance status in fs_info and delete the balance item from disk.
3221 static void reset_balance_state(struct btrfs_fs_info *fs_info)
3223 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3224 int ret;
3226 BUG_ON(!fs_info->balance_ctl);
3228 spin_lock(&fs_info->balance_lock);
3229 fs_info->balance_ctl = NULL;
3230 spin_unlock(&fs_info->balance_lock);
3232 kfree(bctl);
3233 ret = del_balance_item(fs_info);
3234 if (ret)
3235 btrfs_handle_fs_error(fs_info, ret, NULL);
3239 * Balance filters. Return 1 if chunk should be filtered out
3240 * (should not be balanced).
3242 static int chunk_profiles_filter(u64 chunk_type,
3243 struct btrfs_balance_args *bargs)
3245 chunk_type = chunk_to_extended(chunk_type) &
3246 BTRFS_EXTENDED_PROFILE_MASK;
3248 if (bargs->profiles & chunk_type)
3249 return 0;
3251 return 1;
3254 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
3255 struct btrfs_balance_args *bargs)
3257 struct btrfs_block_group *cache;
3258 u64 chunk_used;
3259 u64 user_thresh_min;
3260 u64 user_thresh_max;
3261 int ret = 1;
3263 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3264 chunk_used = cache->used;
3266 if (bargs->usage_min == 0)
3267 user_thresh_min = 0;
3268 else
3269 user_thresh_min = div_factor_fine(cache->length,
3270 bargs->usage_min);
3272 if (bargs->usage_max == 0)
3273 user_thresh_max = 1;
3274 else if (bargs->usage_max > 100)
3275 user_thresh_max = cache->length;
3276 else
3277 user_thresh_max = div_factor_fine(cache->length,
3278 bargs->usage_max);
3280 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max)
3281 ret = 0;
3283 btrfs_put_block_group(cache);
3284 return ret;
3287 static int chunk_usage_filter(struct btrfs_fs_info *fs_info,
3288 u64 chunk_offset, struct btrfs_balance_args *bargs)
3290 struct btrfs_block_group *cache;
3291 u64 chunk_used, user_thresh;
3292 int ret = 1;
3294 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3295 chunk_used = cache->used;
3297 if (bargs->usage_min == 0)
3298 user_thresh = 1;
3299 else if (bargs->usage > 100)
3300 user_thresh = cache->length;
3301 else
3302 user_thresh = div_factor_fine(cache->length, bargs->usage);
3304 if (chunk_used < user_thresh)
3305 ret = 0;
3307 btrfs_put_block_group(cache);
3308 return ret;
3311 static int chunk_devid_filter(struct extent_buffer *leaf,
3312 struct btrfs_chunk *chunk,
3313 struct btrfs_balance_args *bargs)
3315 struct btrfs_stripe *stripe;
3316 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3317 int i;
3319 for (i = 0; i < num_stripes; i++) {
3320 stripe = btrfs_stripe_nr(chunk, i);
3321 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
3322 return 0;
3325 return 1;
3328 static u64 calc_data_stripes(u64 type, int num_stripes)
3330 const int index = btrfs_bg_flags_to_raid_index(type);
3331 const int ncopies = btrfs_raid_array[index].ncopies;
3332 const int nparity = btrfs_raid_array[index].nparity;
3334 if (nparity)
3335 return num_stripes - nparity;
3336 else
3337 return num_stripes / ncopies;
3340 /* [pstart, pend) */
3341 static int chunk_drange_filter(struct extent_buffer *leaf,
3342 struct btrfs_chunk *chunk,
3343 struct btrfs_balance_args *bargs)
3345 struct btrfs_stripe *stripe;
3346 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3347 u64 stripe_offset;
3348 u64 stripe_length;
3349 u64 type;
3350 int factor;
3351 int i;
3353 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
3354 return 0;
3356 type = btrfs_chunk_type(leaf, chunk);
3357 factor = calc_data_stripes(type, num_stripes);
3359 for (i = 0; i < num_stripes; i++) {
3360 stripe = btrfs_stripe_nr(chunk, i);
3361 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
3362 continue;
3364 stripe_offset = btrfs_stripe_offset(leaf, stripe);
3365 stripe_length = btrfs_chunk_length(leaf, chunk);
3366 stripe_length = div_u64(stripe_length, factor);
3368 if (stripe_offset < bargs->pend &&
3369 stripe_offset + stripe_length > bargs->pstart)
3370 return 0;
3373 return 1;
3376 /* [vstart, vend) */
3377 static int chunk_vrange_filter(struct extent_buffer *leaf,
3378 struct btrfs_chunk *chunk,
3379 u64 chunk_offset,
3380 struct btrfs_balance_args *bargs)
3382 if (chunk_offset < bargs->vend &&
3383 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
3384 /* at least part of the chunk is inside this vrange */
3385 return 0;
3387 return 1;
3390 static int chunk_stripes_range_filter(struct extent_buffer *leaf,
3391 struct btrfs_chunk *chunk,
3392 struct btrfs_balance_args *bargs)
3394 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3396 if (bargs->stripes_min <= num_stripes
3397 && num_stripes <= bargs->stripes_max)
3398 return 0;
3400 return 1;
3403 static int chunk_soft_convert_filter(u64 chunk_type,
3404 struct btrfs_balance_args *bargs)
3406 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
3407 return 0;
3409 chunk_type = chunk_to_extended(chunk_type) &
3410 BTRFS_EXTENDED_PROFILE_MASK;
3412 if (bargs->target == chunk_type)
3413 return 1;
3415 return 0;
3418 static int should_balance_chunk(struct extent_buffer *leaf,
3419 struct btrfs_chunk *chunk, u64 chunk_offset)
3421 struct btrfs_fs_info *fs_info = leaf->fs_info;
3422 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3423 struct btrfs_balance_args *bargs = NULL;
3424 u64 chunk_type = btrfs_chunk_type(leaf, chunk);
3426 /* type filter */
3427 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
3428 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
3429 return 0;
3432 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3433 bargs = &bctl->data;
3434 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3435 bargs = &bctl->sys;
3436 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3437 bargs = &bctl->meta;
3439 /* profiles filter */
3440 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
3441 chunk_profiles_filter(chunk_type, bargs)) {
3442 return 0;
3445 /* usage filter */
3446 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
3447 chunk_usage_filter(fs_info, chunk_offset, bargs)) {
3448 return 0;
3449 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) &&
3450 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) {
3451 return 0;
3454 /* devid filter */
3455 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
3456 chunk_devid_filter(leaf, chunk, bargs)) {
3457 return 0;
3460 /* drange filter, makes sense only with devid filter */
3461 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
3462 chunk_drange_filter(leaf, chunk, bargs)) {
3463 return 0;
3466 /* vrange filter */
3467 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
3468 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
3469 return 0;
3472 /* stripes filter */
3473 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) &&
3474 chunk_stripes_range_filter(leaf, chunk, bargs)) {
3475 return 0;
3478 /* soft profile changing mode */
3479 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
3480 chunk_soft_convert_filter(chunk_type, bargs)) {
3481 return 0;
3485 * limited by count, must be the last filter
3487 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) {
3488 if (bargs->limit == 0)
3489 return 0;
3490 else
3491 bargs->limit--;
3492 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) {
3494 * Same logic as the 'limit' filter; the minimum cannot be
3495 * determined here because we do not have the global information
3496 * about the count of all chunks that satisfy the filters.
3498 if (bargs->limit_max == 0)
3499 return 0;
3500 else
3501 bargs->limit_max--;
3504 return 1;
3507 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
3509 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3510 struct btrfs_root *chunk_root = fs_info->chunk_root;
3511 u64 chunk_type;
3512 struct btrfs_chunk *chunk;
3513 struct btrfs_path *path = NULL;
3514 struct btrfs_key key;
3515 struct btrfs_key found_key;
3516 struct extent_buffer *leaf;
3517 int slot;
3518 int ret;
3519 int enospc_errors = 0;
3520 bool counting = true;
3521 /* The single value limit and min/max limits use the same bytes in the */
3522 u64 limit_data = bctl->data.limit;
3523 u64 limit_meta = bctl->meta.limit;
3524 u64 limit_sys = bctl->sys.limit;
3525 u32 count_data = 0;
3526 u32 count_meta = 0;
3527 u32 count_sys = 0;
3528 int chunk_reserved = 0;
3530 path = btrfs_alloc_path();
3531 if (!path) {
3532 ret = -ENOMEM;
3533 goto error;
3536 /* zero out stat counters */
3537 spin_lock(&fs_info->balance_lock);
3538 memset(&bctl->stat, 0, sizeof(bctl->stat));
3539 spin_unlock(&fs_info->balance_lock);
3540 again:
3541 if (!counting) {
3543 * The single value limit and min/max limits use the same bytes
3544 * in the
3546 bctl->data.limit = limit_data;
3547 bctl->meta.limit = limit_meta;
3548 bctl->sys.limit = limit_sys;
3550 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
3551 key.offset = (u64)-1;
3552 key.type = BTRFS_CHUNK_ITEM_KEY;
3554 while (1) {
3555 if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
3556 atomic_read(&fs_info->balance_cancel_req)) {
3557 ret = -ECANCELED;
3558 goto error;
3561 mutex_lock(&fs_info->delete_unused_bgs_mutex);
3562 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
3563 if (ret < 0) {
3564 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3565 goto error;
3569 * this shouldn't happen, it means the last relocate
3570 * failed
3572 if (ret == 0)
3573 BUG(); /* FIXME break ? */
3575 ret = btrfs_previous_item(chunk_root, path, 0,
3576 BTRFS_CHUNK_ITEM_KEY);
3577 if (ret) {
3578 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3579 ret = 0;
3580 break;
3583 leaf = path->nodes[0];
3584 slot = path->slots[0];
3585 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3587 if (found_key.objectid != key.objectid) {
3588 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3589 break;
3592 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3593 chunk_type = btrfs_chunk_type(leaf, chunk);
3595 if (!counting) {
3596 spin_lock(&fs_info->balance_lock);
3597 bctl->stat.considered++;
3598 spin_unlock(&fs_info->balance_lock);
3601 ret = should_balance_chunk(leaf, chunk, found_key.offset);
3603 btrfs_release_path(path);
3604 if (!ret) {
3605 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3606 goto loop;
3609 if (counting) {
3610 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3611 spin_lock(&fs_info->balance_lock);
3612 bctl->stat.expected++;
3613 spin_unlock(&fs_info->balance_lock);
3615 if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
3616 count_data++;
3617 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
3618 count_sys++;
3619 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
3620 count_meta++;
3622 goto loop;
3626 * Apply limit_min filter, no need to check if the LIMITS
3627 * filter is used, limit_min is 0 by default
3629 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) &&
3630 count_data < bctl->data.limit_min)
3631 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) &&
3632 count_meta < bctl->meta.limit_min)
3633 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) &&
3634 count_sys < bctl->sys.limit_min)) {
3635 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3636 goto loop;
3639 if (!chunk_reserved) {
3641 * We may be relocating the only data chunk we have,
3642 * which could potentially end up with losing data's
3643 * raid profile, so lets allocate an empty one in
3644 * advance.
3646 ret = btrfs_may_alloc_data_chunk(fs_info,
3647 found_key.offset);
3648 if (ret < 0) {
3649 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3650 goto error;
3651 } else if (ret == 1) {
3652 chunk_reserved = 1;
3656 ret = btrfs_relocate_chunk(fs_info, found_key.offset);
3657 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
3658 if (ret == -ENOSPC) {
3659 enospc_errors++;
3660 } else if (ret == -ETXTBSY) {
3661 btrfs_info(fs_info,
3662 "skipping relocation of block group %llu due to active swapfile",
3663 found_key.offset);
3664 ret = 0;
3665 } else if (ret) {
3666 goto error;
3667 } else {
3668 spin_lock(&fs_info->balance_lock);
3669 bctl->stat.completed++;
3670 spin_unlock(&fs_info->balance_lock);
3672 loop:
3673 if (found_key.offset == 0)
3674 break;
3675 key.offset = found_key.offset - 1;
3678 if (counting) {
3679 btrfs_release_path(path);
3680 counting = false;
3681 goto again;
3683 error:
3684 btrfs_free_path(path);
3685 if (enospc_errors) {
3686 btrfs_info(fs_info, "%d enospc errors during balance",
3687 enospc_errors);
3688 if (!ret)
3689 ret = -ENOSPC;
3692 return ret;
3696 * alloc_profile_is_valid - see if a given profile is valid and reduced
3697 * @flags: profile to validate
3698 * @extended: if true @flags is treated as an extended profile
3700 static int alloc_profile_is_valid(u64 flags, int extended)
3702 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3703 BTRFS_BLOCK_GROUP_PROFILE_MASK);
3705 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3707 /* 1) check that all other bits are zeroed */
3708 if (flags & ~mask)
3709 return 0;
3711 /* 2) see if profile is reduced */
3712 if (flags == 0)
3713 return !extended; /* "0" is valid for usual profiles */
3715 return has_single_bit_set(flags);
3718 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3720 /* cancel requested || normal exit path */
3721 return atomic_read(&fs_info->balance_cancel_req) ||
3722 (atomic_read(&fs_info->balance_pause_req) == 0 &&
3723 atomic_read(&fs_info->balance_cancel_req) == 0);
3726 /* Non-zero return value signifies invalidity */
3727 static inline int validate_convert_profile(struct btrfs_balance_args *bctl_arg,
3728 u64 allowed)
3730 return ((bctl_arg->flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3731 (!alloc_profile_is_valid(bctl_arg->target, 1) ||
3732 (bctl_arg->target & ~allowed)));
3736 * Fill @buf with textual description of balance filter flags @bargs, up to
3737 * @size_buf including the terminating null. The output may be trimmed if it
3738 * does not fit into the provided buffer.
3740 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf,
3741 u32 size_buf)
3743 int ret;
3744 u32 size_bp = size_buf;
3745 char *bp = buf;
3746 u64 flags = bargs->flags;
3747 char tmp_buf[128] = {'\0'};
3749 if (!flags)
3750 return;
3752 #define CHECK_APPEND_NOARG(a) \
3753 do { \
3754 ret = snprintf(bp, size_bp, (a)); \
3755 if (ret < 0 || ret >= size_bp) \
3756 goto out_overflow; \
3757 size_bp -= ret; \
3758 bp += ret; \
3759 } while (0)
3761 #define CHECK_APPEND_1ARG(a, v1) \
3762 do { \
3763 ret = snprintf(bp, size_bp, (a), (v1)); \
3764 if (ret < 0 || ret >= size_bp) \
3765 goto out_overflow; \
3766 size_bp -= ret; \
3767 bp += ret; \
3768 } while (0)
3770 #define CHECK_APPEND_2ARG(a, v1, v2) \
3771 do { \
3772 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3773 if (ret < 0 || ret >= size_bp) \
3774 goto out_overflow; \
3775 size_bp -= ret; \
3776 bp += ret; \
3777 } while (0)
3779 if (flags & BTRFS_BALANCE_ARGS_CONVERT)
3780 CHECK_APPEND_1ARG("convert=%s,",
3781 btrfs_bg_type_to_raid_name(bargs->target));
3783 if (flags & BTRFS_BALANCE_ARGS_SOFT)
3784 CHECK_APPEND_NOARG("soft,");
3786 if (flags & BTRFS_BALANCE_ARGS_PROFILES) {
3787 btrfs_describe_block_groups(bargs->profiles, tmp_buf,
3788 sizeof(tmp_buf));
3789 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf);
3792 if (flags & BTRFS_BALANCE_ARGS_USAGE)
3793 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage);
3795 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE)
3796 CHECK_APPEND_2ARG("usage=%u..%u,",
3797 bargs->usage_min, bargs->usage_max);
3799 if (flags & BTRFS_BALANCE_ARGS_DEVID)
3800 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid);
3802 if (flags & BTRFS_BALANCE_ARGS_DRANGE)
3803 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3804 bargs->pstart, bargs->pend);
3806 if (flags & BTRFS_BALANCE_ARGS_VRANGE)
3807 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3808 bargs->vstart, bargs->vend);
3810 if (flags & BTRFS_BALANCE_ARGS_LIMIT)
3811 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit);
3813 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)
3814 CHECK_APPEND_2ARG("limit=%u..%u,",
3815 bargs->limit_min, bargs->limit_max);
3817 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE)
3818 CHECK_APPEND_2ARG("stripes=%u..%u,",
3819 bargs->stripes_min, bargs->stripes_max);
3821 #undef CHECK_APPEND_2ARG
3822 #undef CHECK_APPEND_1ARG
3823 #undef CHECK_APPEND_NOARG
3825 out_overflow:
3827 if (size_bp < size_buf)
3828 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */
3829 else
3830 buf[0] = '\0';
3833 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info)
3835 u32 size_buf = 1024;
3836 char tmp_buf[192] = {'\0'};
3837 char *buf;
3838 char *bp;
3839 u32 size_bp = size_buf;
3840 int ret;
3841 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3843 buf = kzalloc(size_buf, GFP_KERNEL);
3844 if (!buf)
3845 return;
3847 bp = buf;
3849 #define CHECK_APPEND_1ARG(a, v1) \
3850 do { \
3851 ret = snprintf(bp, size_bp, (a), (v1)); \
3852 if (ret < 0 || ret >= size_bp) \
3853 goto out_overflow; \
3854 size_bp -= ret; \
3855 bp += ret; \
3856 } while (0)
3858 if (bctl->flags & BTRFS_BALANCE_FORCE)
3859 CHECK_APPEND_1ARG("%s", "-f ");
3861 if (bctl->flags & BTRFS_BALANCE_DATA) {
3862 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf));
3863 CHECK_APPEND_1ARG("-d%s ", tmp_buf);
3866 if (bctl->flags & BTRFS_BALANCE_METADATA) {
3867 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf));
3868 CHECK_APPEND_1ARG("-m%s ", tmp_buf);
3871 if (bctl->flags & BTRFS_BALANCE_SYSTEM) {
3872 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf));
3873 CHECK_APPEND_1ARG("-s%s ", tmp_buf);
3876 #undef CHECK_APPEND_1ARG
3878 out_overflow:
3880 if (size_bp < size_buf)
3881 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */
3882 btrfs_info(fs_info, "balance: %s %s",
3883 (bctl->flags & BTRFS_BALANCE_RESUME) ?
3884 "resume" : "start", buf);
3886 kfree(buf);
3890 * Should be called with balance mutexe held
3892 int btrfs_balance(struct btrfs_fs_info *fs_info,
3893 struct btrfs_balance_control *bctl,
3894 struct btrfs_ioctl_balance_args *bargs)
3896 u64 meta_target, data_target;
3897 u64 allowed;
3898 int mixed = 0;
3899 int ret;
3900 u64 num_devices;
3901 unsigned seq;
3902 bool reducing_redundancy;
3903 int i;
3905 if (btrfs_fs_closing(fs_info) ||
3906 atomic_read(&fs_info->balance_pause_req) ||
3907 atomic_read(&fs_info->balance_cancel_req)) {
3908 ret = -EINVAL;
3909 goto out;
3912 allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3913 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3914 mixed = 1;
3917 * In case of mixed groups both data and meta should be picked,
3918 * and identical options should be given for both of them.
3920 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3921 if (mixed && (bctl->flags & allowed)) {
3922 if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3923 !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3924 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3925 btrfs_err(fs_info,
3926 "balance: mixed groups data and metadata options must be the same");
3927 ret = -EINVAL;
3928 goto out;
3933 * rw_devices will not change at the moment, device add/delete/replace
3934 * are excluded by EXCL_OP
3936 num_devices = fs_info->fs_devices->rw_devices;
3939 * SINGLE profile on-disk has no profile bit, but in-memory we have a
3940 * special bit for it, to make it easier to distinguish. Thus we need
3941 * to set it manually, or balance would refuse the profile.
3943 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3944 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++)
3945 if (num_devices >= btrfs_raid_array[i].devs_min)
3946 allowed |= btrfs_raid_array[i].bg_flag;
3948 if (validate_convert_profile(&bctl->data, allowed)) {
3949 btrfs_err(fs_info,
3950 "balance: invalid convert data profile %s",
3951 btrfs_bg_type_to_raid_name(bctl->data.target));
3952 ret = -EINVAL;
3953 goto out;
3955 if (validate_convert_profile(&bctl->meta, allowed)) {
3956 btrfs_err(fs_info,
3957 "balance: invalid convert metadata profile %s",
3958 btrfs_bg_type_to_raid_name(bctl->meta.target));
3959 ret = -EINVAL;
3960 goto out;
3962 if (validate_convert_profile(&bctl->sys, allowed)) {
3963 btrfs_err(fs_info,
3964 "balance: invalid convert system profile %s",
3965 btrfs_bg_type_to_raid_name(bctl->sys.target));
3966 ret = -EINVAL;
3967 goto out;
3971 * Allow to reduce metadata or system integrity only if force set for
3972 * profiles with redundancy (copies, parity)
3974 allowed = 0;
3975 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) {
3976 if (btrfs_raid_array[i].ncopies >= 2 ||
3977 btrfs_raid_array[i].tolerated_failures >= 1)
3978 allowed |= btrfs_raid_array[i].bg_flag;
3980 do {
3981 seq = read_seqbegin(&fs_info->profiles_lock);
3983 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3984 (fs_info->avail_system_alloc_bits & allowed) &&
3985 !(bctl->sys.target & allowed)) ||
3986 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3987 (fs_info->avail_metadata_alloc_bits & allowed) &&
3988 !(bctl->meta.target & allowed)))
3989 reducing_redundancy = true;
3990 else
3991 reducing_redundancy = false;
3993 /* if we're not converting, the target field is uninitialized */
3994 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3995 bctl->meta.target : fs_info->avail_metadata_alloc_bits;
3996 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ?
3997 bctl->data.target : fs_info->avail_data_alloc_bits;
3998 } while (read_seqretry(&fs_info->profiles_lock, seq));
4000 if (reducing_redundancy) {
4001 if (bctl->flags & BTRFS_BALANCE_FORCE) {
4002 btrfs_info(fs_info,
4003 "balance: force reducing metadata redundancy");
4004 } else {
4005 btrfs_err(fs_info,
4006 "balance: reduces metadata redundancy, use --force if you want this");
4007 ret = -EINVAL;
4008 goto out;
4012 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) <
4013 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) {
4014 btrfs_warn(fs_info,
4015 "balance: metadata profile %s has lower redundancy than data profile %s",
4016 btrfs_bg_type_to_raid_name(meta_target),
4017 btrfs_bg_type_to_raid_name(data_target));
4020 if (fs_info->send_in_progress) {
4021 btrfs_warn_rl(fs_info,
4022 "cannot run balance while send operations are in progress (%d in progress)",
4023 fs_info->send_in_progress);
4024 ret = -EAGAIN;
4025 goto out;
4028 ret = insert_balance_item(fs_info, bctl);
4029 if (ret && ret != -EEXIST)
4030 goto out;
4032 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
4033 BUG_ON(ret == -EEXIST);
4034 BUG_ON(fs_info->balance_ctl);
4035 spin_lock(&fs_info->balance_lock);
4036 fs_info->balance_ctl = bctl;
4037 spin_unlock(&fs_info->balance_lock);
4038 } else {
4039 BUG_ON(ret != -EEXIST);
4040 spin_lock(&fs_info->balance_lock);
4041 update_balance_args(bctl);
4042 spin_unlock(&fs_info->balance_lock);
4045 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4046 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4047 describe_balance_start_or_resume(fs_info);
4048 mutex_unlock(&fs_info->balance_mutex);
4050 ret = __btrfs_balance(fs_info);
4052 mutex_lock(&fs_info->balance_mutex);
4053 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req))
4054 btrfs_info(fs_info, "balance: paused");
4055 else if (ret == -ECANCELED && atomic_read(&fs_info->balance_cancel_req))
4056 btrfs_info(fs_info, "balance: canceled");
4057 else
4058 btrfs_info(fs_info, "balance: ended with status: %d", ret);
4060 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags);
4062 if (bargs) {
4063 memset(bargs, 0, sizeof(*bargs));
4064 btrfs_update_ioctl_balance_args(fs_info, bargs);
4067 if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
4068 balance_need_close(fs_info)) {
4069 reset_balance_state(fs_info);
4070 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4073 wake_up(&fs_info->balance_wait_q);
4075 return ret;
4076 out:
4077 if (bctl->flags & BTRFS_BALANCE_RESUME)
4078 reset_balance_state(fs_info);
4079 else
4080 kfree(bctl);
4081 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4083 return ret;
4086 static int balance_kthread(void *data)
4088 struct btrfs_fs_info *fs_info = data;
4089 int ret = 0;
4091 mutex_lock(&fs_info->balance_mutex);
4092 if (fs_info->balance_ctl)
4093 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL);
4094 mutex_unlock(&fs_info->balance_mutex);
4096 return ret;
4099 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
4101 struct task_struct *tsk;
4103 mutex_lock(&fs_info->balance_mutex);
4104 if (!fs_info->balance_ctl) {
4105 mutex_unlock(&fs_info->balance_mutex);
4106 return 0;
4108 mutex_unlock(&fs_info->balance_mutex);
4110 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) {
4111 btrfs_info(fs_info, "balance: resume skipped");
4112 return 0;
4116 * A ro->rw remount sequence should continue with the paused balance
4117 * regardless of who pauses it, system or the user as of now, so set
4118 * the resume flag.
4120 spin_lock(&fs_info->balance_lock);
4121 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME;
4122 spin_unlock(&fs_info->balance_lock);
4124 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
4125 return PTR_ERR_OR_ZERO(tsk);
4128 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
4130 struct btrfs_balance_control *bctl;
4131 struct btrfs_balance_item *item;
4132 struct btrfs_disk_balance_args disk_bargs;
4133 struct btrfs_path *path;
4134 struct extent_buffer *leaf;
4135 struct btrfs_key key;
4136 int ret;
4138 path = btrfs_alloc_path();
4139 if (!path)
4140 return -ENOMEM;
4142 key.objectid = BTRFS_BALANCE_OBJECTID;
4143 key.type = BTRFS_TEMPORARY_ITEM_KEY;
4144 key.offset = 0;
4146 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4147 if (ret < 0)
4148 goto out;
4149 if (ret > 0) { /* ret = -ENOENT; */
4150 ret = 0;
4151 goto out;
4154 bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4155 if (!bctl) {
4156 ret = -ENOMEM;
4157 goto out;
4160 leaf = path->nodes[0];
4161 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
4163 bctl->flags = btrfs_balance_flags(leaf, item);
4164 bctl->flags |= BTRFS_BALANCE_RESUME;
4166 btrfs_balance_data(leaf, item, &disk_bargs);
4167 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
4168 btrfs_balance_meta(leaf, item, &disk_bargs);
4169 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
4170 btrfs_balance_sys(leaf, item, &disk_bargs);
4171 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
4174 * This should never happen, as the paused balance state is recovered
4175 * during mount without any chance of other exclusive ops to collide.
4177 * This gives the exclusive op status to balance and keeps in paused
4178 * state until user intervention (cancel or umount). If the ownership
4179 * cannot be assigned, show a message but do not fail. The balance
4180 * is in a paused state and must have fs_info::balance_ctl properly
4181 * set up.
4183 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
4184 btrfs_warn(fs_info,
4185 "balance: cannot set exclusive op status, resume manually");
4187 mutex_lock(&fs_info->balance_mutex);
4188 BUG_ON(fs_info->balance_ctl);
4189 spin_lock(&fs_info->balance_lock);
4190 fs_info->balance_ctl = bctl;
4191 spin_unlock(&fs_info->balance_lock);
4192 mutex_unlock(&fs_info->balance_mutex);
4193 out:
4194 btrfs_free_path(path);
4195 return ret;
4198 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
4200 int ret = 0;
4202 mutex_lock(&fs_info->balance_mutex);
4203 if (!fs_info->balance_ctl) {
4204 mutex_unlock(&fs_info->balance_mutex);
4205 return -ENOTCONN;
4208 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4209 atomic_inc(&fs_info->balance_pause_req);
4210 mutex_unlock(&fs_info->balance_mutex);
4212 wait_event(fs_info->balance_wait_q,
4213 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4215 mutex_lock(&fs_info->balance_mutex);
4216 /* we are good with balance_ctl ripped off from under us */
4217 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4218 atomic_dec(&fs_info->balance_pause_req);
4219 } else {
4220 ret = -ENOTCONN;
4223 mutex_unlock(&fs_info->balance_mutex);
4224 return ret;
4227 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
4229 mutex_lock(&fs_info->balance_mutex);
4230 if (!fs_info->balance_ctl) {
4231 mutex_unlock(&fs_info->balance_mutex);
4232 return -ENOTCONN;
4236 * A paused balance with the item stored on disk can be resumed at
4237 * mount time if the mount is read-write. Otherwise it's still paused
4238 * and we must not allow cancelling as it deletes the item.
4240 if (sb_rdonly(fs_info->sb)) {
4241 mutex_unlock(&fs_info->balance_mutex);
4242 return -EROFS;
4245 atomic_inc(&fs_info->balance_cancel_req);
4247 * if we are running just wait and return, balance item is
4248 * deleted in btrfs_balance in this case
4250 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4251 mutex_unlock(&fs_info->balance_mutex);
4252 wait_event(fs_info->balance_wait_q,
4253 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4254 mutex_lock(&fs_info->balance_mutex);
4255 } else {
4256 mutex_unlock(&fs_info->balance_mutex);
4258 * Lock released to allow other waiters to continue, we'll
4259 * reexamine the status again.
4261 mutex_lock(&fs_info->balance_mutex);
4263 if (fs_info->balance_ctl) {
4264 reset_balance_state(fs_info);
4265 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4266 btrfs_info(fs_info, "balance: canceled");
4270 BUG_ON(fs_info->balance_ctl ||
4271 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags));
4272 atomic_dec(&fs_info->balance_cancel_req);
4273 mutex_unlock(&fs_info->balance_mutex);
4274 return 0;
4277 static int btrfs_uuid_scan_kthread(void *data)
4279 struct btrfs_fs_info *fs_info = data;
4280 struct btrfs_root *root = fs_info->tree_root;
4281 struct btrfs_key key;
4282 struct btrfs_path *path = NULL;
4283 int ret = 0;
4284 struct extent_buffer *eb;
4285 int slot;
4286 struct btrfs_root_item root_item;
4287 u32 item_size;
4288 struct btrfs_trans_handle *trans = NULL;
4290 path = btrfs_alloc_path();
4291 if (!path) {
4292 ret = -ENOMEM;
4293 goto out;
4296 key.objectid = 0;
4297 key.type = BTRFS_ROOT_ITEM_KEY;
4298 key.offset = 0;
4300 while (1) {
4301 ret = btrfs_search_forward(root, &key, path,
4302 BTRFS_OLDEST_GENERATION);
4303 if (ret) {
4304 if (ret > 0)
4305 ret = 0;
4306 break;
4309 if (key.type != BTRFS_ROOT_ITEM_KEY ||
4310 (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
4311 key.objectid != BTRFS_FS_TREE_OBJECTID) ||
4312 key.objectid > BTRFS_LAST_FREE_OBJECTID)
4313 goto skip;
4315 eb = path->nodes[0];
4316 slot = path->slots[0];
4317 item_size = btrfs_item_size_nr(eb, slot);
4318 if (item_size < sizeof(root_item))
4319 goto skip;
4321 read_extent_buffer(eb, &root_item,
4322 btrfs_item_ptr_offset(eb, slot),
4323 (int)sizeof(root_item));
4324 if (btrfs_root_refs(&root_item) == 0)
4325 goto skip;
4327 if (!btrfs_is_empty_uuid(root_item.uuid) ||
4328 !btrfs_is_empty_uuid(root_item.received_uuid)) {
4329 if (trans)
4330 goto update_tree;
4332 btrfs_release_path(path);
4334 * 1 - subvol uuid item
4335 * 1 - received_subvol uuid item
4337 trans = btrfs_start_transaction(fs_info->uuid_root, 2);
4338 if (IS_ERR(trans)) {
4339 ret = PTR_ERR(trans);
4340 break;
4342 continue;
4343 } else {
4344 goto skip;
4346 update_tree:
4347 if (!btrfs_is_empty_uuid(root_item.uuid)) {
4348 ret = btrfs_uuid_tree_add(trans, root_item.uuid,
4349 BTRFS_UUID_KEY_SUBVOL,
4350 key.objectid);
4351 if (ret < 0) {
4352 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4353 ret);
4354 break;
4358 if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
4359 ret = btrfs_uuid_tree_add(trans,
4360 root_item.received_uuid,
4361 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4362 key.objectid);
4363 if (ret < 0) {
4364 btrfs_warn(fs_info, "uuid_tree_add failed %d",
4365 ret);
4366 break;
4370 skip:
4371 if (trans) {
4372 ret = btrfs_end_transaction(trans);
4373 trans = NULL;
4374 if (ret)
4375 break;
4378 btrfs_release_path(path);
4379 if (key.offset < (u64)-1) {
4380 key.offset++;
4381 } else if (key.type < BTRFS_ROOT_ITEM_KEY) {
4382 key.offset = 0;
4383 key.type = BTRFS_ROOT_ITEM_KEY;
4384 } else if (key.objectid < (u64)-1) {
4385 key.offset = 0;
4386 key.type = BTRFS_ROOT_ITEM_KEY;
4387 key.objectid++;
4388 } else {
4389 break;
4391 cond_resched();
4394 out:
4395 btrfs_free_path(path);
4396 if (trans && !IS_ERR(trans))
4397 btrfs_end_transaction(trans);
4398 if (ret)
4399 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret);
4400 else
4401 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
4402 up(&fs_info->uuid_tree_rescan_sem);
4403 return 0;
4407 * Callback for btrfs_uuid_tree_iterate().
4408 * returns:
4409 * 0 check succeeded, the entry is not outdated.
4410 * < 0 if an error occurred.
4411 * > 0 if the check failed, which means the caller shall remove the entry.
4413 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
4414 u8 *uuid, u8 type, u64 subid)
4416 struct btrfs_key key;
4417 int ret = 0;
4418 struct btrfs_root *subvol_root;
4420 if (type != BTRFS_UUID_KEY_SUBVOL &&
4421 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
4422 goto out;
4424 key.objectid = subid;
4425 key.type = BTRFS_ROOT_ITEM_KEY;
4426 key.offset = (u64)-1;
4427 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
4428 if (IS_ERR(subvol_root)) {
4429 ret = PTR_ERR(subvol_root);
4430 if (ret == -ENOENT)
4431 ret = 1;
4432 goto out;
4435 switch (type) {
4436 case BTRFS_UUID_KEY_SUBVOL:
4437 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
4438 ret = 1;
4439 break;
4440 case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
4441 if (memcmp(uuid, subvol_root->root_item.received_uuid,
4442 BTRFS_UUID_SIZE))
4443 ret = 1;
4444 break;
4447 out:
4448 return ret;
4451 static int btrfs_uuid_rescan_kthread(void *data)
4453 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
4454 int ret;
4457 * 1st step is to iterate through the existing UUID tree and
4458 * to delete all entries that contain outdated data.
4459 * 2nd step is to add all missing entries to the UUID tree.
4461 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
4462 if (ret < 0) {
4463 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret);
4464 up(&fs_info->uuid_tree_rescan_sem);
4465 return ret;
4467 return btrfs_uuid_scan_kthread(data);
4470 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
4472 struct btrfs_trans_handle *trans;
4473 struct btrfs_root *tree_root = fs_info->tree_root;
4474 struct btrfs_root *uuid_root;
4475 struct task_struct *task;
4476 int ret;
4479 * 1 - root node
4480 * 1 - root item
4482 trans = btrfs_start_transaction(tree_root, 2);
4483 if (IS_ERR(trans))
4484 return PTR_ERR(trans);
4486 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID);
4487 if (IS_ERR(uuid_root)) {
4488 ret = PTR_ERR(uuid_root);
4489 btrfs_abort_transaction(trans, ret);
4490 btrfs_end_transaction(trans);
4491 return ret;
4494 fs_info->uuid_root = uuid_root;
4496 ret = btrfs_commit_transaction(trans);
4497 if (ret)
4498 return ret;
4500 down(&fs_info->uuid_tree_rescan_sem);
4501 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
4502 if (IS_ERR(task)) {
4503 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4504 btrfs_warn(fs_info, "failed to start uuid_scan task");
4505 up(&fs_info->uuid_tree_rescan_sem);
4506 return PTR_ERR(task);
4509 return 0;
4512 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
4514 struct task_struct *task;
4516 down(&fs_info->uuid_tree_rescan_sem);
4517 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
4518 if (IS_ERR(task)) {
4519 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4520 btrfs_warn(fs_info, "failed to start uuid_rescan task");
4521 up(&fs_info->uuid_tree_rescan_sem);
4522 return PTR_ERR(task);
4525 return 0;
4529 * shrinking a device means finding all of the device extents past
4530 * the new size, and then following the back refs to the chunks.
4531 * The chunk relocation code actually frees the device extent
4533 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
4535 struct btrfs_fs_info *fs_info = device->fs_info;
4536 struct btrfs_root *root = fs_info->dev_root;
4537 struct btrfs_trans_handle *trans;
4538 struct btrfs_dev_extent *dev_extent = NULL;
4539 struct btrfs_path *path;
4540 u64 length;
4541 u64 chunk_offset;
4542 int ret;
4543 int slot;
4544 int failed = 0;
4545 bool retried = false;
4546 struct extent_buffer *l;
4547 struct btrfs_key key;
4548 struct btrfs_super_block *super_copy = fs_info->super_copy;
4549 u64 old_total = btrfs_super_total_bytes(super_copy);
4550 u64 old_size = btrfs_device_get_total_bytes(device);
4551 u64 diff;
4552 u64 start;
4554 new_size = round_down(new_size, fs_info->sectorsize);
4555 start = new_size;
4556 diff = round_down(old_size - new_size, fs_info->sectorsize);
4558 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4559 return -EINVAL;
4561 path = btrfs_alloc_path();
4562 if (!path)
4563 return -ENOMEM;
4565 path->reada = READA_BACK;
4567 trans = btrfs_start_transaction(root, 0);
4568 if (IS_ERR(trans)) {
4569 btrfs_free_path(path);
4570 return PTR_ERR(trans);
4573 mutex_lock(&fs_info->chunk_mutex);
4575 btrfs_device_set_total_bytes(device, new_size);
4576 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4577 device->fs_devices->total_rw_bytes -= diff;
4578 atomic64_sub(diff, &fs_info->free_chunk_space);
4582 * Once the device's size has been set to the new size, ensure all
4583 * in-memory chunks are synced to disk so that the loop below sees them
4584 * and relocates them accordingly.
4586 if (contains_pending_extent(device, &start, diff)) {
4587 mutex_unlock(&fs_info->chunk_mutex);
4588 ret = btrfs_commit_transaction(trans);
4589 if (ret)
4590 goto done;
4591 } else {
4592 mutex_unlock(&fs_info->chunk_mutex);
4593 btrfs_end_transaction(trans);
4596 again:
4597 key.objectid = device->devid;
4598 key.offset = (u64)-1;
4599 key.type = BTRFS_DEV_EXTENT_KEY;
4601 do {
4602 mutex_lock(&fs_info->delete_unused_bgs_mutex);
4603 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4604 if (ret < 0) {
4605 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4606 goto done;
4609 ret = btrfs_previous_item(root, path, 0, key.type);
4610 if (ret)
4611 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4612 if (ret < 0)
4613 goto done;
4614 if (ret) {
4615 ret = 0;
4616 btrfs_release_path(path);
4617 break;
4620 l = path->nodes[0];
4621 slot = path->slots[0];
4622 btrfs_item_key_to_cpu(l, &key, path->slots[0]);
4624 if (key.objectid != device->devid) {
4625 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4626 btrfs_release_path(path);
4627 break;
4630 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
4631 length = btrfs_dev_extent_length(l, dev_extent);
4633 if (key.offset + length <= new_size) {
4634 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4635 btrfs_release_path(path);
4636 break;
4639 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
4640 btrfs_release_path(path);
4643 * We may be relocating the only data chunk we have,
4644 * which could potentially end up with losing data's
4645 * raid profile, so lets allocate an empty one in
4646 * advance.
4648 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset);
4649 if (ret < 0) {
4650 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4651 goto done;
4654 ret = btrfs_relocate_chunk(fs_info, chunk_offset);
4655 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
4656 if (ret == -ENOSPC) {
4657 failed++;
4658 } else if (ret) {
4659 if (ret == -ETXTBSY) {
4660 btrfs_warn(fs_info,
4661 "could not shrink block group %llu due to active swapfile",
4662 chunk_offset);
4664 goto done;
4666 } while (key.offset-- > 0);
4668 if (failed && !retried) {
4669 failed = 0;
4670 retried = true;
4671 goto again;
4672 } else if (failed && retried) {
4673 ret = -ENOSPC;
4674 goto done;
4677 /* Shrinking succeeded, else we would be at "done". */
4678 trans = btrfs_start_transaction(root, 0);
4679 if (IS_ERR(trans)) {
4680 ret = PTR_ERR(trans);
4681 goto done;
4684 mutex_lock(&fs_info->chunk_mutex);
4685 btrfs_device_set_disk_total_bytes(device, new_size);
4686 if (list_empty(&device->post_commit_list))
4687 list_add_tail(&device->post_commit_list,
4688 &trans->transaction->dev_update_list);
4690 WARN_ON(diff > old_total);
4691 btrfs_set_super_total_bytes(super_copy,
4692 round_down(old_total - diff, fs_info->sectorsize));
4693 mutex_unlock(&fs_info->chunk_mutex);
4695 /* Now btrfs_update_device() will change the on-disk size. */
4696 ret = btrfs_update_device(trans, device);
4697 if (ret < 0) {
4698 btrfs_abort_transaction(trans, ret);
4699 btrfs_end_transaction(trans);
4700 } else {
4701 ret = btrfs_commit_transaction(trans);
4703 done:
4704 btrfs_free_path(path);
4705 if (ret) {
4706 mutex_lock(&fs_info->chunk_mutex);
4707 btrfs_device_set_total_bytes(device, old_size);
4708 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
4709 device->fs_devices->total_rw_bytes += diff;
4710 atomic64_add(diff, &fs_info->free_chunk_space);
4711 mutex_unlock(&fs_info->chunk_mutex);
4713 return ret;
4716 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info,
4717 struct btrfs_key *key,
4718 struct btrfs_chunk *chunk, int item_size)
4720 struct btrfs_super_block *super_copy = fs_info->super_copy;
4721 struct btrfs_disk_key disk_key;
4722 u32 array_size;
4723 u8 *ptr;
4725 mutex_lock(&fs_info->chunk_mutex);
4726 array_size = btrfs_super_sys_array_size(super_copy);
4727 if (array_size + item_size + sizeof(disk_key)
4728 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4729 mutex_unlock(&fs_info->chunk_mutex);
4730 return -EFBIG;
4733 ptr = super_copy->sys_chunk_array + array_size;
4734 btrfs_cpu_key_to_disk(&disk_key, key);
4735 memcpy(ptr, &disk_key, sizeof(disk_key));
4736 ptr += sizeof(disk_key);
4737 memcpy(ptr, chunk, item_size);
4738 item_size += sizeof(disk_key);
4739 btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
4740 mutex_unlock(&fs_info->chunk_mutex);
4742 return 0;
4746 * sort the devices in descending order by max_avail, total_avail
4748 static int btrfs_cmp_device_info(const void *a, const void *b)
4750 const struct btrfs_device_info *di_a = a;
4751 const struct btrfs_device_info *di_b = b;
4753 if (di_a->max_avail > di_b->max_avail)
4754 return -1;
4755 if (di_a->max_avail < di_b->max_avail)
4756 return 1;
4757 if (di_a->total_avail > di_b->total_avail)
4758 return -1;
4759 if (di_a->total_avail < di_b->total_avail)
4760 return 1;
4761 return 0;
4764 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
4766 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK))
4767 return;
4769 btrfs_set_fs_incompat(info, RAID56);
4772 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type)
4774 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4)))
4775 return;
4777 btrfs_set_fs_incompat(info, RAID1C34);
4780 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4781 u64 start, u64 type)
4783 struct btrfs_fs_info *info = trans->fs_info;
4784 struct btrfs_fs_devices *fs_devices = info->fs_devices;
4785 struct btrfs_device *device;
4786 struct map_lookup *map = NULL;
4787 struct extent_map_tree *em_tree;
4788 struct extent_map *em;
4789 struct btrfs_device_info *devices_info = NULL;
4790 u64 total_avail;
4791 int num_stripes; /* total number of stripes to allocate */
4792 int data_stripes; /* number of stripes that count for
4793 block group size */
4794 int sub_stripes; /* sub_stripes info for map */
4795 int dev_stripes; /* stripes per dev */
4796 int devs_max; /* max devs to use */
4797 int devs_min; /* min devs needed */
4798 int devs_increment; /* ndevs has to be a multiple of this */
4799 int ncopies; /* how many copies to data has */
4800 int nparity; /* number of stripes worth of bytes to
4801 store parity information */
4802 int ret;
4803 u64 max_stripe_size;
4804 u64 max_chunk_size;
4805 u64 stripe_size;
4806 u64 chunk_size;
4807 int ndevs;
4808 int i;
4809 int j;
4810 int index;
4812 BUG_ON(!alloc_profile_is_valid(type, 0));
4814 if (list_empty(&fs_devices->alloc_list)) {
4815 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4816 btrfs_debug(info, "%s: no writable device", __func__);
4817 return -ENOSPC;
4820 index = btrfs_bg_flags_to_raid_index(type);
4822 sub_stripes = btrfs_raid_array[index].sub_stripes;
4823 dev_stripes = btrfs_raid_array[index].dev_stripes;
4824 devs_max = btrfs_raid_array[index].devs_max;
4825 if (!devs_max)
4826 devs_max = BTRFS_MAX_DEVS(info);
4827 devs_min = btrfs_raid_array[index].devs_min;
4828 devs_increment = btrfs_raid_array[index].devs_increment;
4829 ncopies = btrfs_raid_array[index].ncopies;
4830 nparity = btrfs_raid_array[index].nparity;
4832 if (type & BTRFS_BLOCK_GROUP_DATA) {
4833 max_stripe_size = SZ_1G;
4834 max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE;
4835 } else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4836 /* for larger filesystems, use larger metadata chunks */
4837 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G)
4838 max_stripe_size = SZ_1G;
4839 else
4840 max_stripe_size = SZ_256M;
4841 max_chunk_size = max_stripe_size;
4842 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4843 max_stripe_size = SZ_32M;
4844 max_chunk_size = 2 * max_stripe_size;
4845 devs_max = min_t(int, devs_max, BTRFS_MAX_DEVS_SYS_CHUNK);
4846 } else {
4847 btrfs_err(info, "invalid chunk type 0x%llx requested",
4848 type);
4849 BUG();
4852 /* We don't want a chunk larger than 10% of writable space */
4853 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4854 max_chunk_size);
4856 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info),
4857 GFP_NOFS);
4858 if (!devices_info)
4859 return -ENOMEM;
4862 * in the first pass through the devices list, we gather information
4863 * about the available holes on each device.
4865 ndevs = 0;
4866 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
4867 u64 max_avail;
4868 u64 dev_offset;
4870 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
4871 WARN(1, KERN_ERR
4872 "BTRFS: read-only device in alloc_list\n");
4873 continue;
4876 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
4877 &device->dev_state) ||
4878 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
4879 continue;
4881 if (device->total_bytes > device->bytes_used)
4882 total_avail = device->total_bytes - device->bytes_used;
4883 else
4884 total_avail = 0;
4886 /* If there is no space on this device, skip it. */
4887 if (total_avail == 0)
4888 continue;
4890 ret = find_free_dev_extent(device,
4891 max_stripe_size * dev_stripes,
4892 &dev_offset, &max_avail);
4893 if (ret && ret != -ENOSPC)
4894 goto error;
4896 if (ret == 0)
4897 max_avail = max_stripe_size * dev_stripes;
4899 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) {
4900 if (btrfs_test_opt(info, ENOSPC_DEBUG))
4901 btrfs_debug(info,
4902 "%s: devid %llu has no free space, have=%llu want=%u",
4903 __func__, device->devid, max_avail,
4904 BTRFS_STRIPE_LEN * dev_stripes);
4905 continue;
4908 if (ndevs == fs_devices->rw_devices) {
4909 WARN(1, "%s: found more than %llu devices\n",
4910 __func__, fs_devices->rw_devices);
4911 break;
4913 devices_info[ndevs].dev_offset = dev_offset;
4914 devices_info[ndevs].max_avail = max_avail;
4915 devices_info[ndevs].total_avail = total_avail;
4916 devices_info[ndevs].dev = device;
4917 ++ndevs;
4921 * now sort the devices by hole size / available space
4923 sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4924 btrfs_cmp_device_info, NULL);
4927 * Round down to number of usable stripes, devs_increment can be any
4928 * number so we can't use round_down()
4930 ndevs -= ndevs % devs_increment;
4932 if (ndevs < devs_min) {
4933 ret = -ENOSPC;
4934 if (btrfs_test_opt(info, ENOSPC_DEBUG)) {
4935 btrfs_debug(info,
4936 "%s: not enough devices with free space: have=%d minimum required=%d",
4937 __func__, ndevs, devs_min);
4939 goto error;
4942 ndevs = min(ndevs, devs_max);
4945 * The primary goal is to maximize the number of stripes, so use as
4946 * many devices as possible, even if the stripes are not maximum sized.
4948 * The DUP profile stores more than one stripe per device, the
4949 * max_avail is the total size so we have to adjust.
4951 stripe_size = div_u64(devices_info[ndevs - 1].max_avail, dev_stripes);
4952 num_stripes = ndevs * dev_stripes;
4955 * this will have to be fixed for RAID1 and RAID10 over
4956 * more drives
4958 data_stripes = (num_stripes - nparity) / ncopies;
4961 * Use the number of data stripes to figure out how big this chunk
4962 * is really going to be in terms of logical address space,
4963 * and compare that answer with the max chunk size. If it's higher,
4964 * we try to reduce stripe_size.
4966 if (stripe_size * data_stripes > max_chunk_size) {
4968 * Reduce stripe_size, round it up to a 16MB boundary again and
4969 * then use it, unless it ends up being even bigger than the
4970 * previous value we had already.
4972 stripe_size = min(round_up(div_u64(max_chunk_size,
4973 data_stripes), SZ_16M),
4974 stripe_size);
4977 /* align to BTRFS_STRIPE_LEN */
4978 stripe_size = round_down(stripe_size, BTRFS_STRIPE_LEN);
4980 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4981 if (!map) {
4982 ret = -ENOMEM;
4983 goto error;
4985 map->num_stripes = num_stripes;
4987 for (i = 0; i < ndevs; ++i) {
4988 for (j = 0; j < dev_stripes; ++j) {
4989 int s = i * dev_stripes + j;
4990 map->stripes[s].dev = devices_info[i].dev;
4991 map->stripes[s].physical = devices_info[i].dev_offset +
4992 j * stripe_size;
4995 map->stripe_len = BTRFS_STRIPE_LEN;
4996 map->io_align = BTRFS_STRIPE_LEN;
4997 map->io_width = BTRFS_STRIPE_LEN;
4998 map->type = type;
4999 map->sub_stripes = sub_stripes;
5001 chunk_size = stripe_size * data_stripes;
5003 trace_btrfs_chunk_alloc(info, map, start, chunk_size);
5005 em = alloc_extent_map();
5006 if (!em) {
5007 kfree(map);
5008 ret = -ENOMEM;
5009 goto error;
5011 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
5012 em->map_lookup = map;
5013 em->start = start;
5014 em->len = chunk_size;
5015 em->block_start = 0;
5016 em->block_len = em->len;
5017 em->orig_block_len = stripe_size;
5019 em_tree = &info->mapping_tree;
5020 write_lock(&em_tree->lock);
5021 ret = add_extent_mapping(em_tree, em, 0);
5022 if (ret) {
5023 write_unlock(&em_tree->lock);
5024 free_extent_map(em);
5025 goto error;
5027 write_unlock(&em_tree->lock);
5029 ret = btrfs_make_block_group(trans, 0, type, start, chunk_size);
5030 if (ret)
5031 goto error_del_extent;
5033 for (i = 0; i < map->num_stripes; i++) {
5034 struct btrfs_device *dev = map->stripes[i].dev;
5036 btrfs_device_set_bytes_used(dev, dev->bytes_used + stripe_size);
5037 if (list_empty(&dev->post_commit_list))
5038 list_add_tail(&dev->post_commit_list,
5039 &trans->transaction->dev_update_list);
5042 atomic64_sub(stripe_size * map->num_stripes, &info->free_chunk_space);
5044 free_extent_map(em);
5045 check_raid56_incompat_flag(info, type);
5046 check_raid1c34_incompat_flag(info, type);
5048 kfree(devices_info);
5049 return 0;
5051 error_del_extent:
5052 write_lock(&em_tree->lock);
5053 remove_extent_mapping(em_tree, em);
5054 write_unlock(&em_tree->lock);
5056 /* One for our allocation */
5057 free_extent_map(em);
5058 /* One for the tree reference */
5059 free_extent_map(em);
5060 error:
5061 kfree(devices_info);
5062 return ret;
5065 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
5066 u64 chunk_offset, u64 chunk_size)
5068 struct btrfs_fs_info *fs_info = trans->fs_info;
5069 struct btrfs_root *extent_root = fs_info->extent_root;
5070 struct btrfs_root *chunk_root = fs_info->chunk_root;
5071 struct btrfs_key key;
5072 struct btrfs_device *device;
5073 struct btrfs_chunk *chunk;
5074 struct btrfs_stripe *stripe;
5075 struct extent_map *em;
5076 struct map_lookup *map;
5077 size_t item_size;
5078 u64 dev_offset;
5079 u64 stripe_size;
5080 int i = 0;
5081 int ret = 0;
5083 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
5084 if (IS_ERR(em))
5085 return PTR_ERR(em);
5087 map = em->map_lookup;
5088 item_size = btrfs_chunk_item_size(map->num_stripes);
5089 stripe_size = em->orig_block_len;
5091 chunk = kzalloc(item_size, GFP_NOFS);
5092 if (!chunk) {
5093 ret = -ENOMEM;
5094 goto out;
5098 * Take the device list mutex to prevent races with the final phase of
5099 * a device replace operation that replaces the device object associated
5100 * with the map's stripes, because the device object's id can change
5101 * at any time during that final phase of the device replace operation
5102 * (dev-replace.c:btrfs_dev_replace_finishing()).
5104 mutex_lock(&fs_info->fs_devices->device_list_mutex);
5105 for (i = 0; i < map->num_stripes; i++) {
5106 device = map->stripes[i].dev;
5107 dev_offset = map->stripes[i].physical;
5109 ret = btrfs_update_device(trans, device);
5110 if (ret)
5111 break;
5112 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset,
5113 dev_offset, stripe_size);
5114 if (ret)
5115 break;
5117 if (ret) {
5118 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5119 goto out;
5122 stripe = &chunk->stripe;
5123 for (i = 0; i < map->num_stripes; i++) {
5124 device = map->stripes[i].dev;
5125 dev_offset = map->stripes[i].physical;
5127 btrfs_set_stack_stripe_devid(stripe, device->devid);
5128 btrfs_set_stack_stripe_offset(stripe, dev_offset);
5129 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
5130 stripe++;
5132 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
5134 btrfs_set_stack_chunk_length(chunk, chunk_size);
5135 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
5136 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
5137 btrfs_set_stack_chunk_type(chunk, map->type);
5138 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
5139 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
5140 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
5141 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize);
5142 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
5144 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
5145 key.type = BTRFS_CHUNK_ITEM_KEY;
5146 key.offset = chunk_offset;
5148 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
5149 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
5151 * TODO: Cleanup of inserted chunk root in case of
5152 * failure.
5154 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size);
5157 out:
5158 kfree(chunk);
5159 free_extent_map(em);
5160 return ret;
5164 * Chunk allocation falls into two parts. The first part does work
5165 * that makes the new allocated chunk usable, but does not do any operation
5166 * that modifies the chunk tree. The second part does the work that
5167 * requires modifying the chunk tree. This division is important for the
5168 * bootstrap process of adding storage to a seed btrfs.
5170 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type)
5172 u64 chunk_offset;
5174 lockdep_assert_held(&trans->fs_info->chunk_mutex);
5175 chunk_offset = find_next_chunk(trans->fs_info);
5176 return __btrfs_alloc_chunk(trans, chunk_offset, type);
5179 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans)
5181 struct btrfs_fs_info *fs_info = trans->fs_info;
5182 u64 chunk_offset;
5183 u64 sys_chunk_offset;
5184 u64 alloc_profile;
5185 int ret;
5187 chunk_offset = find_next_chunk(fs_info);
5188 alloc_profile = btrfs_metadata_alloc_profile(fs_info);
5189 ret = __btrfs_alloc_chunk(trans, chunk_offset, alloc_profile);
5190 if (ret)
5191 return ret;
5193 sys_chunk_offset = find_next_chunk(fs_info);
5194 alloc_profile = btrfs_system_alloc_profile(fs_info);
5195 ret = __btrfs_alloc_chunk(trans, sys_chunk_offset, alloc_profile);
5196 return ret;
5199 static inline int btrfs_chunk_max_errors(struct map_lookup *map)
5201 const int index = btrfs_bg_flags_to_raid_index(map->type);
5203 return btrfs_raid_array[index].tolerated_failures;
5206 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset)
5208 struct extent_map *em;
5209 struct map_lookup *map;
5210 int readonly = 0;
5211 int miss_ndevs = 0;
5212 int i;
5214 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1);
5215 if (IS_ERR(em))
5216 return 1;
5218 map = em->map_lookup;
5219 for (i = 0; i < map->num_stripes; i++) {
5220 if (test_bit(BTRFS_DEV_STATE_MISSING,
5221 &map->stripes[i].dev->dev_state)) {
5222 miss_ndevs++;
5223 continue;
5225 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
5226 &map->stripes[i].dev->dev_state)) {
5227 readonly = 1;
5228 goto end;
5233 * If the number of missing devices is larger than max errors,
5234 * we can not write the data into that chunk successfully, so
5235 * set it readonly.
5237 if (miss_ndevs > btrfs_chunk_max_errors(map))
5238 readonly = 1;
5239 end:
5240 free_extent_map(em);
5241 return readonly;
5244 void btrfs_mapping_tree_free(struct extent_map_tree *tree)
5246 struct extent_map *em;
5248 while (1) {
5249 write_lock(&tree->lock);
5250 em = lookup_extent_mapping(tree, 0, (u64)-1);
5251 if (em)
5252 remove_extent_mapping(tree, em);
5253 write_unlock(&tree->lock);
5254 if (!em)
5255 break;
5256 /* once for us */
5257 free_extent_map(em);
5258 /* once for the tree */
5259 free_extent_map(em);
5263 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5265 struct extent_map *em;
5266 struct map_lookup *map;
5267 int ret;
5269 em = btrfs_get_chunk_map(fs_info, logical, len);
5270 if (IS_ERR(em))
5272 * We could return errors for these cases, but that could get
5273 * ugly and we'd probably do the same thing which is just not do
5274 * anything else and exit, so return 1 so the callers don't try
5275 * to use other copies.
5277 return 1;
5279 map = em->map_lookup;
5280 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK))
5281 ret = map->num_stripes;
5282 else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5283 ret = map->sub_stripes;
5284 else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
5285 ret = 2;
5286 else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
5288 * There could be two corrupted data stripes, we need
5289 * to loop retry in order to rebuild the correct data.
5291 * Fail a stripe at a time on every retry except the
5292 * stripe under reconstruction.
5294 ret = map->num_stripes;
5295 else
5296 ret = 1;
5297 free_extent_map(em);
5299 down_read(&fs_info->dev_replace.rwsem);
5300 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) &&
5301 fs_info->dev_replace.tgtdev)
5302 ret++;
5303 up_read(&fs_info->dev_replace.rwsem);
5305 return ret;
5308 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info,
5309 u64 logical)
5311 struct extent_map *em;
5312 struct map_lookup *map;
5313 unsigned long len = fs_info->sectorsize;
5315 em = btrfs_get_chunk_map(fs_info, logical, len);
5317 if (!WARN_ON(IS_ERR(em))) {
5318 map = em->map_lookup;
5319 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5320 len = map->stripe_len * nr_data_stripes(map);
5321 free_extent_map(em);
5323 return len;
5326 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
5328 struct extent_map *em;
5329 struct map_lookup *map;
5330 int ret = 0;
5332 em = btrfs_get_chunk_map(fs_info, logical, len);
5334 if(!WARN_ON(IS_ERR(em))) {
5335 map = em->map_lookup;
5336 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
5337 ret = 1;
5338 free_extent_map(em);
5340 return ret;
5343 static int find_live_mirror(struct btrfs_fs_info *fs_info,
5344 struct map_lookup *map, int first,
5345 int dev_replace_is_ongoing)
5347 int i;
5348 int num_stripes;
5349 int preferred_mirror;
5350 int tolerance;
5351 struct btrfs_device *srcdev;
5353 ASSERT((map->type &
5354 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10)));
5356 if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5357 num_stripes = map->sub_stripes;
5358 else
5359 num_stripes = map->num_stripes;
5361 preferred_mirror = first + current->pid % num_stripes;
5363 if (dev_replace_is_ongoing &&
5364 fs_info->dev_replace.cont_reading_from_srcdev_mode ==
5365 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
5366 srcdev = fs_info->dev_replace.srcdev;
5367 else
5368 srcdev = NULL;
5371 * try to avoid the drive that is the source drive for a
5372 * dev-replace procedure, only choose it if no other non-missing
5373 * mirror is available
5375 for (tolerance = 0; tolerance < 2; tolerance++) {
5376 if (map->stripes[preferred_mirror].dev->bdev &&
5377 (tolerance || map->stripes[preferred_mirror].dev != srcdev))
5378 return preferred_mirror;
5379 for (i = first; i < first + num_stripes; i++) {
5380 if (map->stripes[i].dev->bdev &&
5381 (tolerance || map->stripes[i].dev != srcdev))
5382 return i;
5386 /* we couldn't find one that doesn't fail. Just return something
5387 * and the io error handling code will clean up eventually
5389 return preferred_mirror;
5392 static inline int parity_smaller(u64 a, u64 b)
5394 return a > b;
5397 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5398 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes)
5400 struct btrfs_bio_stripe s;
5401 int i;
5402 u64 l;
5403 int again = 1;
5405 while (again) {
5406 again = 0;
5407 for (i = 0; i < num_stripes - 1; i++) {
5408 if (parity_smaller(bbio->raid_map[i],
5409 bbio->raid_map[i+1])) {
5410 s = bbio->stripes[i];
5411 l = bbio->raid_map[i];
5412 bbio->stripes[i] = bbio->stripes[i+1];
5413 bbio->raid_map[i] = bbio->raid_map[i+1];
5414 bbio->stripes[i+1] = s;
5415 bbio->raid_map[i+1] = l;
5417 again = 1;
5423 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes)
5425 struct btrfs_bio *bbio = kzalloc(
5426 /* the size of the btrfs_bio */
5427 sizeof(struct btrfs_bio) +
5428 /* plus the variable array for the stripes */
5429 sizeof(struct btrfs_bio_stripe) * (total_stripes) +
5430 /* plus the variable array for the tgt dev */
5431 sizeof(int) * (real_stripes) +
5433 * plus the raid_map, which includes both the tgt dev
5434 * and the stripes
5436 sizeof(u64) * (total_stripes),
5437 GFP_NOFS|__GFP_NOFAIL);
5439 atomic_set(&bbio->error, 0);
5440 refcount_set(&bbio->refs, 1);
5442 return bbio;
5445 void btrfs_get_bbio(struct btrfs_bio *bbio)
5447 WARN_ON(!refcount_read(&bbio->refs));
5448 refcount_inc(&bbio->refs);
5451 void btrfs_put_bbio(struct btrfs_bio *bbio)
5453 if (!bbio)
5454 return;
5455 if (refcount_dec_and_test(&bbio->refs))
5456 kfree(bbio);
5459 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5461 * Please note that, discard won't be sent to target device of device
5462 * replace.
5464 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info,
5465 u64 logical, u64 *length_ret,
5466 struct btrfs_bio **bbio_ret)
5468 struct extent_map *em;
5469 struct map_lookup *map;
5470 struct btrfs_bio *bbio;
5471 u64 length = *length_ret;
5472 u64 offset;
5473 u64 stripe_nr;
5474 u64 stripe_nr_end;
5475 u64 stripe_end_offset;
5476 u64 stripe_cnt;
5477 u64 stripe_len;
5478 u64 stripe_offset;
5479 u64 num_stripes;
5480 u32 stripe_index;
5481 u32 factor = 0;
5482 u32 sub_stripes = 0;
5483 u64 stripes_per_dev = 0;
5484 u32 remaining_stripes = 0;
5485 u32 last_stripe = 0;
5486 int ret = 0;
5487 int i;
5489 /* discard always return a bbio */
5490 ASSERT(bbio_ret);
5492 em = btrfs_get_chunk_map(fs_info, logical, length);
5493 if (IS_ERR(em))
5494 return PTR_ERR(em);
5496 map = em->map_lookup;
5497 /* we don't discard raid56 yet */
5498 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5499 ret = -EOPNOTSUPP;
5500 goto out;
5503 offset = logical - em->start;
5504 length = min_t(u64, em->start + em->len - logical, length);
5505 *length_ret = length;
5507 stripe_len = map->stripe_len;
5509 * stripe_nr counts the total number of stripes we have to stride
5510 * to get to this block
5512 stripe_nr = div64_u64(offset, stripe_len);
5514 /* stripe_offset is the offset of this block in its stripe */
5515 stripe_offset = offset - stripe_nr * stripe_len;
5517 stripe_nr_end = round_up(offset + length, map->stripe_len);
5518 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len);
5519 stripe_cnt = stripe_nr_end - stripe_nr;
5520 stripe_end_offset = stripe_nr_end * map->stripe_len -
5521 (offset + length);
5523 * after this, stripe_nr is the number of stripes on this
5524 * device we have to walk to find the data, and stripe_index is
5525 * the number of our device in the stripe array
5527 num_stripes = 1;
5528 stripe_index = 0;
5529 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5530 BTRFS_BLOCK_GROUP_RAID10)) {
5531 if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5532 sub_stripes = 1;
5533 else
5534 sub_stripes = map->sub_stripes;
5536 factor = map->num_stripes / sub_stripes;
5537 num_stripes = min_t(u64, map->num_stripes,
5538 sub_stripes * stripe_cnt);
5539 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5540 stripe_index *= sub_stripes;
5541 stripes_per_dev = div_u64_rem(stripe_cnt, factor,
5542 &remaining_stripes);
5543 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
5544 last_stripe *= sub_stripes;
5545 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK |
5546 BTRFS_BLOCK_GROUP_DUP)) {
5547 num_stripes = map->num_stripes;
5548 } else {
5549 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5550 &stripe_index);
5553 bbio = alloc_btrfs_bio(num_stripes, 0);
5554 if (!bbio) {
5555 ret = -ENOMEM;
5556 goto out;
5559 for (i = 0; i < num_stripes; i++) {
5560 bbio->stripes[i].physical =
5561 map->stripes[stripe_index].physical +
5562 stripe_offset + stripe_nr * map->stripe_len;
5563 bbio->stripes[i].dev = map->stripes[stripe_index].dev;
5565 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
5566 BTRFS_BLOCK_GROUP_RAID10)) {
5567 bbio->stripes[i].length = stripes_per_dev *
5568 map->stripe_len;
5570 if (i / sub_stripes < remaining_stripes)
5571 bbio->stripes[i].length +=
5572 map->stripe_len;
5575 * Special for the first stripe and
5576 * the last stripe:
5578 * |-------|...|-------|
5579 * |----------|
5580 * off end_off
5582 if (i < sub_stripes)
5583 bbio->stripes[i].length -=
5584 stripe_offset;
5586 if (stripe_index >= last_stripe &&
5587 stripe_index <= (last_stripe +
5588 sub_stripes - 1))
5589 bbio->stripes[i].length -=
5590 stripe_end_offset;
5592 if (i == sub_stripes - 1)
5593 stripe_offset = 0;
5594 } else {
5595 bbio->stripes[i].length = length;
5598 stripe_index++;
5599 if (stripe_index == map->num_stripes) {
5600 stripe_index = 0;
5601 stripe_nr++;
5605 *bbio_ret = bbio;
5606 bbio->map_type = map->type;
5607 bbio->num_stripes = num_stripes;
5608 out:
5609 free_extent_map(em);
5610 return ret;
5614 * In dev-replace case, for repair case (that's the only case where the mirror
5615 * is selected explicitly when calling btrfs_map_block), blocks left of the
5616 * left cursor can also be read from the target drive.
5618 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5619 * array of stripes.
5620 * For READ, it also needs to be supported using the same mirror number.
5622 * If the requested block is not left of the left cursor, EIO is returned. This
5623 * can happen because btrfs_num_copies() returns one more in the dev-replace
5624 * case.
5626 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info,
5627 u64 logical, u64 length,
5628 u64 srcdev_devid, int *mirror_num,
5629 u64 *physical)
5631 struct btrfs_bio *bbio = NULL;
5632 int num_stripes;
5633 int index_srcdev = 0;
5634 int found = 0;
5635 u64 physical_of_found = 0;
5636 int i;
5637 int ret = 0;
5639 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
5640 logical, &length, &bbio, 0, 0);
5641 if (ret) {
5642 ASSERT(bbio == NULL);
5643 return ret;
5646 num_stripes = bbio->num_stripes;
5647 if (*mirror_num > num_stripes) {
5649 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5650 * that means that the requested area is not left of the left
5651 * cursor
5653 btrfs_put_bbio(bbio);
5654 return -EIO;
5658 * process the rest of the function using the mirror_num of the source
5659 * drive. Therefore look it up first. At the end, patch the device
5660 * pointer to the one of the target drive.
5662 for (i = 0; i < num_stripes; i++) {
5663 if (bbio->stripes[i].dev->devid != srcdev_devid)
5664 continue;
5667 * In case of DUP, in order to keep it simple, only add the
5668 * mirror with the lowest physical address
5670 if (found &&
5671 physical_of_found <= bbio->stripes[i].physical)
5672 continue;
5674 index_srcdev = i;
5675 found = 1;
5676 physical_of_found = bbio->stripes[i].physical;
5679 btrfs_put_bbio(bbio);
5681 ASSERT(found);
5682 if (!found)
5683 return -EIO;
5685 *mirror_num = index_srcdev + 1;
5686 *physical = physical_of_found;
5687 return ret;
5690 static void handle_ops_on_dev_replace(enum btrfs_map_op op,
5691 struct btrfs_bio **bbio_ret,
5692 struct btrfs_dev_replace *dev_replace,
5693 int *num_stripes_ret, int *max_errors_ret)
5695 struct btrfs_bio *bbio = *bbio_ret;
5696 u64 srcdev_devid = dev_replace->srcdev->devid;
5697 int tgtdev_indexes = 0;
5698 int num_stripes = *num_stripes_ret;
5699 int max_errors = *max_errors_ret;
5700 int i;
5702 if (op == BTRFS_MAP_WRITE) {
5703 int index_where_to_add;
5706 * duplicate the write operations while the dev replace
5707 * procedure is running. Since the copying of the old disk to
5708 * the new disk takes place at run time while the filesystem is
5709 * mounted writable, the regular write operations to the old
5710 * disk have to be duplicated to go to the new disk as well.
5712 * Note that device->missing is handled by the caller, and that
5713 * the write to the old disk is already set up in the stripes
5714 * array.
5716 index_where_to_add = num_stripes;
5717 for (i = 0; i < num_stripes; i++) {
5718 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5719 /* write to new disk, too */
5720 struct btrfs_bio_stripe *new =
5721 bbio->stripes + index_where_to_add;
5722 struct btrfs_bio_stripe *old =
5723 bbio->stripes + i;
5725 new->physical = old->physical;
5726 new->length = old->length;
5727 new->dev = dev_replace->tgtdev;
5728 bbio->tgtdev_map[i] = index_where_to_add;
5729 index_where_to_add++;
5730 max_errors++;
5731 tgtdev_indexes++;
5734 num_stripes = index_where_to_add;
5735 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) {
5736 int index_srcdev = 0;
5737 int found = 0;
5738 u64 physical_of_found = 0;
5741 * During the dev-replace procedure, the target drive can also
5742 * be used to read data in case it is needed to repair a corrupt
5743 * block elsewhere. This is possible if the requested area is
5744 * left of the left cursor. In this area, the target drive is a
5745 * full copy of the source drive.
5747 for (i = 0; i < num_stripes; i++) {
5748 if (bbio->stripes[i].dev->devid == srcdev_devid) {
5750 * In case of DUP, in order to keep it simple,
5751 * only add the mirror with the lowest physical
5752 * address
5754 if (found &&
5755 physical_of_found <=
5756 bbio->stripes[i].physical)
5757 continue;
5758 index_srcdev = i;
5759 found = 1;
5760 physical_of_found = bbio->stripes[i].physical;
5763 if (found) {
5764 struct btrfs_bio_stripe *tgtdev_stripe =
5765 bbio->stripes + num_stripes;
5767 tgtdev_stripe->physical = physical_of_found;
5768 tgtdev_stripe->length =
5769 bbio->stripes[index_srcdev].length;
5770 tgtdev_stripe->dev = dev_replace->tgtdev;
5771 bbio->tgtdev_map[index_srcdev] = num_stripes;
5773 tgtdev_indexes++;
5774 num_stripes++;
5778 *num_stripes_ret = num_stripes;
5779 *max_errors_ret = max_errors;
5780 bbio->num_tgtdevs = tgtdev_indexes;
5781 *bbio_ret = bbio;
5784 static bool need_full_stripe(enum btrfs_map_op op)
5786 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS);
5790 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5791 * tuple. This information is used to calculate how big a
5792 * particular bio can get before it straddles a stripe.
5794 * @fs_info - the filesystem
5795 * @logical - address that we want to figure out the geometry of
5796 * @len - the length of IO we are going to perform, starting at @logical
5797 * @op - type of operation - write or read
5798 * @io_geom - pointer used to return values
5800 * Returns < 0 in case a chunk for the given logical address cannot be found,
5801 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5803 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
5804 u64 logical, u64 len, struct btrfs_io_geometry *io_geom)
5806 struct extent_map *em;
5807 struct map_lookup *map;
5808 u64 offset;
5809 u64 stripe_offset;
5810 u64 stripe_nr;
5811 u64 stripe_len;
5812 u64 raid56_full_stripe_start = (u64)-1;
5813 int data_stripes;
5814 int ret = 0;
5816 ASSERT(op != BTRFS_MAP_DISCARD);
5818 em = btrfs_get_chunk_map(fs_info, logical, len);
5819 if (IS_ERR(em))
5820 return PTR_ERR(em);
5822 map = em->map_lookup;
5823 /* Offset of this logical address in the chunk */
5824 offset = logical - em->start;
5825 /* Len of a stripe in a chunk */
5826 stripe_len = map->stripe_len;
5827 /* Stripe wher this block falls in */
5828 stripe_nr = div64_u64(offset, stripe_len);
5829 /* Offset of stripe in the chunk */
5830 stripe_offset = stripe_nr * stripe_len;
5831 if (offset < stripe_offset) {
5832 btrfs_crit(fs_info,
5833 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5834 stripe_offset, offset, em->start, logical, stripe_len);
5835 ret = -EINVAL;
5836 goto out;
5839 /* stripe_offset is the offset of this block in its stripe */
5840 stripe_offset = offset - stripe_offset;
5841 data_stripes = nr_data_stripes(map);
5843 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
5844 u64 max_len = stripe_len - stripe_offset;
5847 * In case of raid56, we need to know the stripe aligned start
5849 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
5850 unsigned long full_stripe_len = stripe_len * data_stripes;
5851 raid56_full_stripe_start = offset;
5854 * Allow a write of a full stripe, but make sure we
5855 * don't allow straddling of stripes
5857 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start,
5858 full_stripe_len);
5859 raid56_full_stripe_start *= full_stripe_len;
5862 * For writes to RAID[56], allow a full stripeset across
5863 * all disks. For other RAID types and for RAID[56]
5864 * reads, just allow a single stripe (on a single disk).
5866 if (op == BTRFS_MAP_WRITE) {
5867 max_len = stripe_len * data_stripes -
5868 (offset - raid56_full_stripe_start);
5871 len = min_t(u64, em->len - offset, max_len);
5872 } else {
5873 len = em->len - offset;
5876 io_geom->len = len;
5877 io_geom->offset = offset;
5878 io_geom->stripe_len = stripe_len;
5879 io_geom->stripe_nr = stripe_nr;
5880 io_geom->stripe_offset = stripe_offset;
5881 io_geom->raid56_stripe_offset = raid56_full_stripe_start;
5883 out:
5884 /* once for us */
5885 free_extent_map(em);
5886 return ret;
5889 static int __btrfs_map_block(struct btrfs_fs_info *fs_info,
5890 enum btrfs_map_op op,
5891 u64 logical, u64 *length,
5892 struct btrfs_bio **bbio_ret,
5893 int mirror_num, int need_raid_map)
5895 struct extent_map *em;
5896 struct map_lookup *map;
5897 u64 stripe_offset;
5898 u64 stripe_nr;
5899 u64 stripe_len;
5900 u32 stripe_index;
5901 int data_stripes;
5902 int i;
5903 int ret = 0;
5904 int num_stripes;
5905 int max_errors = 0;
5906 int tgtdev_indexes = 0;
5907 struct btrfs_bio *bbio = NULL;
5908 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
5909 int dev_replace_is_ongoing = 0;
5910 int num_alloc_stripes;
5911 int patch_the_first_stripe_for_dev_replace = 0;
5912 u64 physical_to_patch_in_first_stripe = 0;
5913 u64 raid56_full_stripe_start = (u64)-1;
5914 struct btrfs_io_geometry geom;
5916 ASSERT(bbio_ret);
5918 if (op == BTRFS_MAP_DISCARD)
5919 return __btrfs_map_block_for_discard(fs_info, logical,
5920 length, bbio_ret);
5922 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom);
5923 if (ret < 0)
5924 return ret;
5926 em = btrfs_get_chunk_map(fs_info, logical, *length);
5927 ASSERT(!IS_ERR(em));
5928 map = em->map_lookup;
5930 *length = geom.len;
5931 stripe_len = geom.stripe_len;
5932 stripe_nr = geom.stripe_nr;
5933 stripe_offset = geom.stripe_offset;
5934 raid56_full_stripe_start = geom.raid56_stripe_offset;
5935 data_stripes = nr_data_stripes(map);
5937 down_read(&dev_replace->rwsem);
5938 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
5940 * Hold the semaphore for read during the whole operation, write is
5941 * requested at commit time but must wait.
5943 if (!dev_replace_is_ongoing)
5944 up_read(&dev_replace->rwsem);
5946 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
5947 !need_full_stripe(op) && dev_replace->tgtdev != NULL) {
5948 ret = get_extra_mirror_from_replace(fs_info, logical, *length,
5949 dev_replace->srcdev->devid,
5950 &mirror_num,
5951 &physical_to_patch_in_first_stripe);
5952 if (ret)
5953 goto out;
5954 else
5955 patch_the_first_stripe_for_dev_replace = 1;
5956 } else if (mirror_num > map->num_stripes) {
5957 mirror_num = 0;
5960 num_stripes = 1;
5961 stripe_index = 0;
5962 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5963 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
5964 &stripe_index);
5965 if (!need_full_stripe(op))
5966 mirror_num = 1;
5967 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) {
5968 if (need_full_stripe(op))
5969 num_stripes = map->num_stripes;
5970 else if (mirror_num)
5971 stripe_index = mirror_num - 1;
5972 else {
5973 stripe_index = find_live_mirror(fs_info, map, 0,
5974 dev_replace_is_ongoing);
5975 mirror_num = stripe_index + 1;
5978 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
5979 if (need_full_stripe(op)) {
5980 num_stripes = map->num_stripes;
5981 } else if (mirror_num) {
5982 stripe_index = mirror_num - 1;
5983 } else {
5984 mirror_num = 1;
5987 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5988 u32 factor = map->num_stripes / map->sub_stripes;
5990 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index);
5991 stripe_index *= map->sub_stripes;
5993 if (need_full_stripe(op))
5994 num_stripes = map->sub_stripes;
5995 else if (mirror_num)
5996 stripe_index += mirror_num - 1;
5997 else {
5998 int old_stripe_index = stripe_index;
5999 stripe_index = find_live_mirror(fs_info, map,
6000 stripe_index,
6001 dev_replace_is_ongoing);
6002 mirror_num = stripe_index - old_stripe_index + 1;
6005 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
6006 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) {
6007 /* push stripe_nr back to the start of the full stripe */
6008 stripe_nr = div64_u64(raid56_full_stripe_start,
6009 stripe_len * data_stripes);
6011 /* RAID[56] write or recovery. Return all stripes */
6012 num_stripes = map->num_stripes;
6013 max_errors = nr_parity_stripes(map);
6015 *length = map->stripe_len;
6016 stripe_index = 0;
6017 stripe_offset = 0;
6018 } else {
6020 * Mirror #0 or #1 means the original data block.
6021 * Mirror #2 is RAID5 parity block.
6022 * Mirror #3 is RAID6 Q block.
6024 stripe_nr = div_u64_rem(stripe_nr,
6025 data_stripes, &stripe_index);
6026 if (mirror_num > 1)
6027 stripe_index = data_stripes + mirror_num - 2;
6029 /* We distribute the parity blocks across stripes */
6030 div_u64_rem(stripe_nr + stripe_index, map->num_stripes,
6031 &stripe_index);
6032 if (!need_full_stripe(op) && mirror_num <= 1)
6033 mirror_num = 1;
6035 } else {
6037 * after this, stripe_nr is the number of stripes on this
6038 * device we have to walk to find the data, and stripe_index is
6039 * the number of our device in the stripe array
6041 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes,
6042 &stripe_index);
6043 mirror_num = stripe_index + 1;
6045 if (stripe_index >= map->num_stripes) {
6046 btrfs_crit(fs_info,
6047 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6048 stripe_index, map->num_stripes);
6049 ret = -EINVAL;
6050 goto out;
6053 num_alloc_stripes = num_stripes;
6054 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) {
6055 if (op == BTRFS_MAP_WRITE)
6056 num_alloc_stripes <<= 1;
6057 if (op == BTRFS_MAP_GET_READ_MIRRORS)
6058 num_alloc_stripes++;
6059 tgtdev_indexes = num_stripes;
6062 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes);
6063 if (!bbio) {
6064 ret = -ENOMEM;
6065 goto out;
6067 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
6068 bbio->tgtdev_map = (int *)(bbio->stripes + num_alloc_stripes);
6070 /* build raid_map */
6071 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map &&
6072 (need_full_stripe(op) || mirror_num > 1)) {
6073 u64 tmp;
6074 unsigned rot;
6076 bbio->raid_map = (u64 *)((void *)bbio->stripes +
6077 sizeof(struct btrfs_bio_stripe) *
6078 num_alloc_stripes +
6079 sizeof(int) * tgtdev_indexes);
6081 /* Work out the disk rotation on this stripe-set */
6082 div_u64_rem(stripe_nr, num_stripes, &rot);
6084 /* Fill in the logical address of each stripe */
6085 tmp = stripe_nr * data_stripes;
6086 for (i = 0; i < data_stripes; i++)
6087 bbio->raid_map[(i+rot) % num_stripes] =
6088 em->start + (tmp + i) * map->stripe_len;
6090 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
6091 if (map->type & BTRFS_BLOCK_GROUP_RAID6)
6092 bbio->raid_map[(i+rot+1) % num_stripes] =
6093 RAID6_Q_STRIPE;
6097 for (i = 0; i < num_stripes; i++) {
6098 bbio->stripes[i].physical =
6099 map->stripes[stripe_index].physical +
6100 stripe_offset +
6101 stripe_nr * map->stripe_len;
6102 bbio->stripes[i].dev =
6103 map->stripes[stripe_index].dev;
6104 stripe_index++;
6107 if (need_full_stripe(op))
6108 max_errors = btrfs_chunk_max_errors(map);
6110 if (bbio->raid_map)
6111 sort_parity_stripes(bbio, num_stripes);
6113 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL &&
6114 need_full_stripe(op)) {
6115 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes,
6116 &max_errors);
6119 *bbio_ret = bbio;
6120 bbio->map_type = map->type;
6121 bbio->num_stripes = num_stripes;
6122 bbio->max_errors = max_errors;
6123 bbio->mirror_num = mirror_num;
6126 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6127 * mirror_num == num_stripes + 1 && dev_replace target drive is
6128 * available as a mirror
6130 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
6131 WARN_ON(num_stripes > 1);
6132 bbio->stripes[0].dev = dev_replace->tgtdev;
6133 bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
6134 bbio->mirror_num = map->num_stripes + 1;
6136 out:
6137 if (dev_replace_is_ongoing) {
6138 lockdep_assert_held(&dev_replace->rwsem);
6139 /* Unlock and let waiting writers proceed */
6140 up_read(&dev_replace->rwsem);
6142 free_extent_map(em);
6143 return ret;
6146 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6147 u64 logical, u64 *length,
6148 struct btrfs_bio **bbio_ret, int mirror_num)
6150 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret,
6151 mirror_num, 0);
6154 /* For Scrub/replace */
6155 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op,
6156 u64 logical, u64 *length,
6157 struct btrfs_bio **bbio_ret)
6159 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1);
6162 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio)
6164 bio->bi_private = bbio->private;
6165 bio->bi_end_io = bbio->end_io;
6166 bio_endio(bio);
6168 btrfs_put_bbio(bbio);
6171 static void btrfs_end_bio(struct bio *bio)
6173 struct btrfs_bio *bbio = bio->bi_private;
6174 int is_orig_bio = 0;
6176 if (bio->bi_status) {
6177 atomic_inc(&bbio->error);
6178 if (bio->bi_status == BLK_STS_IOERR ||
6179 bio->bi_status == BLK_STS_TARGET) {
6180 unsigned int stripe_index =
6181 btrfs_io_bio(bio)->stripe_index;
6182 struct btrfs_device *dev;
6184 BUG_ON(stripe_index >= bbio->num_stripes);
6185 dev = bbio->stripes[stripe_index].dev;
6186 if (dev->bdev) {
6187 if (bio_op(bio) == REQ_OP_WRITE)
6188 btrfs_dev_stat_inc_and_print(dev,
6189 BTRFS_DEV_STAT_WRITE_ERRS);
6190 else if (!(bio->bi_opf & REQ_RAHEAD))
6191 btrfs_dev_stat_inc_and_print(dev,
6192 BTRFS_DEV_STAT_READ_ERRS);
6193 if (bio->bi_opf & REQ_PREFLUSH)
6194 btrfs_dev_stat_inc_and_print(dev,
6195 BTRFS_DEV_STAT_FLUSH_ERRS);
6200 if (bio == bbio->orig_bio)
6201 is_orig_bio = 1;
6203 btrfs_bio_counter_dec(bbio->fs_info);
6205 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6206 if (!is_orig_bio) {
6207 bio_put(bio);
6208 bio = bbio->orig_bio;
6211 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6212 /* only send an error to the higher layers if it is
6213 * beyond the tolerance of the btrfs bio
6215 if (atomic_read(&bbio->error) > bbio->max_errors) {
6216 bio->bi_status = BLK_STS_IOERR;
6217 } else {
6219 * this bio is actually up to date, we didn't
6220 * go over the max number of errors
6222 bio->bi_status = BLK_STS_OK;
6225 btrfs_end_bbio(bbio, bio);
6226 } else if (!is_orig_bio) {
6227 bio_put(bio);
6231 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio,
6232 u64 physical, int dev_nr)
6234 struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
6235 struct btrfs_fs_info *fs_info = bbio->fs_info;
6237 bio->bi_private = bbio;
6238 btrfs_io_bio(bio)->stripe_index = dev_nr;
6239 bio->bi_end_io = btrfs_end_bio;
6240 bio->bi_iter.bi_sector = physical >> 9;
6241 btrfs_debug_in_rcu(fs_info,
6242 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6243 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector,
6244 (u_long)dev->bdev->bd_dev, rcu_str_deref(dev->name), dev->devid,
6245 bio->bi_iter.bi_size);
6246 bio_set_dev(bio, dev->bdev);
6248 btrfs_bio_counter_inc_noblocked(fs_info);
6250 btrfsic_submit_bio(bio);
6253 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
6255 atomic_inc(&bbio->error);
6256 if (atomic_dec_and_test(&bbio->stripes_pending)) {
6257 /* Should be the original bio. */
6258 WARN_ON(bio != bbio->orig_bio);
6260 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
6261 bio->bi_iter.bi_sector = logical >> 9;
6262 if (atomic_read(&bbio->error) > bbio->max_errors)
6263 bio->bi_status = BLK_STS_IOERR;
6264 else
6265 bio->bi_status = BLK_STS_OK;
6266 btrfs_end_bbio(bbio, bio);
6270 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio,
6271 int mirror_num)
6273 struct btrfs_device *dev;
6274 struct bio *first_bio = bio;
6275 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
6276 u64 length = 0;
6277 u64 map_length;
6278 int ret;
6279 int dev_nr;
6280 int total_devs;
6281 struct btrfs_bio *bbio = NULL;
6283 length = bio->bi_iter.bi_size;
6284 map_length = length;
6286 btrfs_bio_counter_inc_blocked(fs_info);
6287 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical,
6288 &map_length, &bbio, mirror_num, 1);
6289 if (ret) {
6290 btrfs_bio_counter_dec(fs_info);
6291 return errno_to_blk_status(ret);
6294 total_devs = bbio->num_stripes;
6295 bbio->orig_bio = first_bio;
6296 bbio->private = first_bio->bi_private;
6297 bbio->end_io = first_bio->bi_end_io;
6298 bbio->fs_info = fs_info;
6299 atomic_set(&bbio->stripes_pending, bbio->num_stripes);
6301 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) &&
6302 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) {
6303 /* In this case, map_length has been set to the length of
6304 a single stripe; not the whole write */
6305 if (bio_op(bio) == REQ_OP_WRITE) {
6306 ret = raid56_parity_write(fs_info, bio, bbio,
6307 map_length);
6308 } else {
6309 ret = raid56_parity_recover(fs_info, bio, bbio,
6310 map_length, mirror_num, 1);
6313 btrfs_bio_counter_dec(fs_info);
6314 return errno_to_blk_status(ret);
6317 if (map_length < length) {
6318 btrfs_crit(fs_info,
6319 "mapping failed logical %llu bio len %llu len %llu",
6320 logical, length, map_length);
6321 BUG();
6324 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) {
6325 dev = bbio->stripes[dev_nr].dev;
6326 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING,
6327 &dev->dev_state) ||
6328 (bio_op(first_bio) == REQ_OP_WRITE &&
6329 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) {
6330 bbio_error(bbio, first_bio, logical);
6331 continue;
6334 if (dev_nr < total_devs - 1)
6335 bio = btrfs_bio_clone(first_bio);
6336 else
6337 bio = first_bio;
6339 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical,
6340 dev_nr);
6342 btrfs_bio_counter_dec(fs_info);
6343 return BLK_STS_OK;
6347 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6348 * return NULL.
6350 * If devid and uuid are both specified, the match must be exact, otherwise
6351 * only devid is used.
6353 * If @seed is true, traverse through the seed devices.
6355 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices,
6356 u64 devid, u8 *uuid, u8 *fsid,
6357 bool seed)
6359 struct btrfs_device *device;
6361 while (fs_devices) {
6362 if (!fsid ||
6363 !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) {
6364 list_for_each_entry(device, &fs_devices->devices,
6365 dev_list) {
6366 if (device->devid == devid &&
6367 (!uuid || memcmp(device->uuid, uuid,
6368 BTRFS_UUID_SIZE) == 0))
6369 return device;
6372 if (seed)
6373 fs_devices = fs_devices->seed;
6374 else
6375 return NULL;
6377 return NULL;
6380 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices,
6381 u64 devid, u8 *dev_uuid)
6383 struct btrfs_device *device;
6385 device = btrfs_alloc_device(NULL, &devid, dev_uuid);
6386 if (IS_ERR(device))
6387 return device;
6389 list_add(&device->dev_list, &fs_devices->devices);
6390 device->fs_devices = fs_devices;
6391 fs_devices->num_devices++;
6393 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6394 fs_devices->missing_devices++;
6396 return device;
6400 * btrfs_alloc_device - allocate struct btrfs_device
6401 * @fs_info: used only for generating a new devid, can be NULL if
6402 * devid is provided (i.e. @devid != NULL).
6403 * @devid: a pointer to devid for this device. If NULL a new devid
6404 * is generated.
6405 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6406 * is generated.
6408 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6409 * on error. Returned struct is not linked onto any lists and must be
6410 * destroyed with btrfs_free_device.
6412 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
6413 const u64 *devid,
6414 const u8 *uuid)
6416 struct btrfs_device *dev;
6417 u64 tmp;
6419 if (WARN_ON(!devid && !fs_info))
6420 return ERR_PTR(-EINVAL);
6422 dev = __alloc_device();
6423 if (IS_ERR(dev))
6424 return dev;
6426 if (devid)
6427 tmp = *devid;
6428 else {
6429 int ret;
6431 ret = find_next_devid(fs_info, &tmp);
6432 if (ret) {
6433 btrfs_free_device(dev);
6434 return ERR_PTR(ret);
6437 dev->devid = tmp;
6439 if (uuid)
6440 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
6441 else
6442 generate_random_uuid(dev->uuid);
6444 return dev;
6447 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info,
6448 u64 devid, u8 *uuid, bool error)
6450 if (error)
6451 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing",
6452 devid, uuid);
6453 else
6454 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing",
6455 devid, uuid);
6458 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes)
6460 int index = btrfs_bg_flags_to_raid_index(type);
6461 int ncopies = btrfs_raid_array[index].ncopies;
6462 const int nparity = btrfs_raid_array[index].nparity;
6463 int data_stripes;
6465 if (nparity)
6466 data_stripes = num_stripes - nparity;
6467 else
6468 data_stripes = num_stripes / ncopies;
6470 return div_u64(chunk_len, data_stripes);
6473 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf,
6474 struct btrfs_chunk *chunk)
6476 struct btrfs_fs_info *fs_info = leaf->fs_info;
6477 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6478 struct map_lookup *map;
6479 struct extent_map *em;
6480 u64 logical;
6481 u64 length;
6482 u64 devid;
6483 u8 uuid[BTRFS_UUID_SIZE];
6484 int num_stripes;
6485 int ret;
6486 int i;
6488 logical = key->offset;
6489 length = btrfs_chunk_length(leaf, chunk);
6490 num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
6493 * Only need to verify chunk item if we're reading from sys chunk array,
6494 * as chunk item in tree block is already verified by tree-checker.
6496 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) {
6497 ret = btrfs_check_chunk_valid(leaf, chunk, logical);
6498 if (ret)
6499 return ret;
6502 read_lock(&map_tree->lock);
6503 em = lookup_extent_mapping(map_tree, logical, 1);
6504 read_unlock(&map_tree->lock);
6506 /* already mapped? */
6507 if (em && em->start <= logical && em->start + em->len > logical) {
6508 free_extent_map(em);
6509 return 0;
6510 } else if (em) {
6511 free_extent_map(em);
6514 em = alloc_extent_map();
6515 if (!em)
6516 return -ENOMEM;
6517 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
6518 if (!map) {
6519 free_extent_map(em);
6520 return -ENOMEM;
6523 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags);
6524 em->map_lookup = map;
6525 em->start = logical;
6526 em->len = length;
6527 em->orig_start = 0;
6528 em->block_start = 0;
6529 em->block_len = em->len;
6531 map->num_stripes = num_stripes;
6532 map->io_width = btrfs_chunk_io_width(leaf, chunk);
6533 map->io_align = btrfs_chunk_io_align(leaf, chunk);
6534 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
6535 map->type = btrfs_chunk_type(leaf, chunk);
6536 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
6537 map->verified_stripes = 0;
6538 em->orig_block_len = calc_stripe_length(map->type, em->len,
6539 map->num_stripes);
6540 for (i = 0; i < num_stripes; i++) {
6541 map->stripes[i].physical =
6542 btrfs_stripe_offset_nr(leaf, chunk, i);
6543 devid = btrfs_stripe_devid_nr(leaf, chunk, i);
6544 read_extent_buffer(leaf, uuid, (unsigned long)
6545 btrfs_stripe_dev_uuid_nr(chunk, i),
6546 BTRFS_UUID_SIZE);
6547 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices,
6548 devid, uuid, NULL, true);
6549 if (!map->stripes[i].dev &&
6550 !btrfs_test_opt(fs_info, DEGRADED)) {
6551 free_extent_map(em);
6552 btrfs_report_missing_device(fs_info, devid, uuid, true);
6553 return -ENOENT;
6555 if (!map->stripes[i].dev) {
6556 map->stripes[i].dev =
6557 add_missing_dev(fs_info->fs_devices, devid,
6558 uuid);
6559 if (IS_ERR(map->stripes[i].dev)) {
6560 free_extent_map(em);
6561 btrfs_err(fs_info,
6562 "failed to init missing dev %llu: %ld",
6563 devid, PTR_ERR(map->stripes[i].dev));
6564 return PTR_ERR(map->stripes[i].dev);
6566 btrfs_report_missing_device(fs_info, devid, uuid, false);
6568 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
6569 &(map->stripes[i].dev->dev_state));
6573 write_lock(&map_tree->lock);
6574 ret = add_extent_mapping(map_tree, em, 0);
6575 write_unlock(&map_tree->lock);
6576 if (ret < 0) {
6577 btrfs_err(fs_info,
6578 "failed to add chunk map, start=%llu len=%llu: %d",
6579 em->start, em->len, ret);
6581 free_extent_map(em);
6583 return ret;
6586 static void fill_device_from_item(struct extent_buffer *leaf,
6587 struct btrfs_dev_item *dev_item,
6588 struct btrfs_device *device)
6590 unsigned long ptr;
6592 device->devid = btrfs_device_id(leaf, dev_item);
6593 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
6594 device->total_bytes = device->disk_total_bytes;
6595 device->commit_total_bytes = device->disk_total_bytes;
6596 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
6597 device->commit_bytes_used = device->bytes_used;
6598 device->type = btrfs_device_type(leaf, dev_item);
6599 device->io_align = btrfs_device_io_align(leaf, dev_item);
6600 device->io_width = btrfs_device_io_width(leaf, dev_item);
6601 device->sector_size = btrfs_device_sector_size(leaf, dev_item);
6602 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
6603 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state);
6605 ptr = btrfs_device_uuid(dev_item);
6606 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
6609 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info,
6610 u8 *fsid)
6612 struct btrfs_fs_devices *fs_devices;
6613 int ret;
6615 lockdep_assert_held(&uuid_mutex);
6616 ASSERT(fsid);
6618 fs_devices = fs_info->fs_devices->seed;
6619 while (fs_devices) {
6620 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE))
6621 return fs_devices;
6623 fs_devices = fs_devices->seed;
6626 fs_devices = find_fsid(fsid, NULL);
6627 if (!fs_devices) {
6628 if (!btrfs_test_opt(fs_info, DEGRADED))
6629 return ERR_PTR(-ENOENT);
6631 fs_devices = alloc_fs_devices(fsid, NULL);
6632 if (IS_ERR(fs_devices))
6633 return fs_devices;
6635 fs_devices->seeding = true;
6636 fs_devices->opened = 1;
6637 return fs_devices;
6640 fs_devices = clone_fs_devices(fs_devices);
6641 if (IS_ERR(fs_devices))
6642 return fs_devices;
6644 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder);
6645 if (ret) {
6646 free_fs_devices(fs_devices);
6647 fs_devices = ERR_PTR(ret);
6648 goto out;
6651 if (!fs_devices->seeding) {
6652 close_fs_devices(fs_devices);
6653 free_fs_devices(fs_devices);
6654 fs_devices = ERR_PTR(-EINVAL);
6655 goto out;
6658 fs_devices->seed = fs_info->fs_devices->seed;
6659 fs_info->fs_devices->seed = fs_devices;
6660 out:
6661 return fs_devices;
6664 static int read_one_dev(struct extent_buffer *leaf,
6665 struct btrfs_dev_item *dev_item)
6667 struct btrfs_fs_info *fs_info = leaf->fs_info;
6668 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6669 struct btrfs_device *device;
6670 u64 devid;
6671 int ret;
6672 u8 fs_uuid[BTRFS_FSID_SIZE];
6673 u8 dev_uuid[BTRFS_UUID_SIZE];
6675 devid = btrfs_device_id(leaf, dev_item);
6676 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item),
6677 BTRFS_UUID_SIZE);
6678 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item),
6679 BTRFS_FSID_SIZE);
6681 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) {
6682 fs_devices = open_seed_devices(fs_info, fs_uuid);
6683 if (IS_ERR(fs_devices))
6684 return PTR_ERR(fs_devices);
6687 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid,
6688 fs_uuid, true);
6689 if (!device) {
6690 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6691 btrfs_report_missing_device(fs_info, devid,
6692 dev_uuid, true);
6693 return -ENOENT;
6696 device = add_missing_dev(fs_devices, devid, dev_uuid);
6697 if (IS_ERR(device)) {
6698 btrfs_err(fs_info,
6699 "failed to add missing dev %llu: %ld",
6700 devid, PTR_ERR(device));
6701 return PTR_ERR(device);
6703 btrfs_report_missing_device(fs_info, devid, dev_uuid, false);
6704 } else {
6705 if (!device->bdev) {
6706 if (!btrfs_test_opt(fs_info, DEGRADED)) {
6707 btrfs_report_missing_device(fs_info,
6708 devid, dev_uuid, true);
6709 return -ENOENT;
6711 btrfs_report_missing_device(fs_info, devid,
6712 dev_uuid, false);
6715 if (!device->bdev &&
6716 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) {
6718 * this happens when a device that was properly setup
6719 * in the device info lists suddenly goes bad.
6720 * device->bdev is NULL, and so we have to set
6721 * device->missing to one here
6723 device->fs_devices->missing_devices++;
6724 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state);
6727 /* Move the device to its own fs_devices */
6728 if (device->fs_devices != fs_devices) {
6729 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING,
6730 &device->dev_state));
6732 list_move(&device->dev_list, &fs_devices->devices);
6733 device->fs_devices->num_devices--;
6734 fs_devices->num_devices++;
6736 device->fs_devices->missing_devices--;
6737 fs_devices->missing_devices++;
6739 device->fs_devices = fs_devices;
6743 if (device->fs_devices != fs_info->fs_devices) {
6744 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state));
6745 if (device->generation !=
6746 btrfs_device_generation(leaf, dev_item))
6747 return -EINVAL;
6750 fill_device_from_item(leaf, dev_item, device);
6751 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state);
6752 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) &&
6753 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
6754 device->fs_devices->total_rw_bytes += device->total_bytes;
6755 atomic64_add(device->total_bytes - device->bytes_used,
6756 &fs_info->free_chunk_space);
6758 ret = 0;
6759 return ret;
6762 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info)
6764 struct btrfs_root *root = fs_info->tree_root;
6765 struct btrfs_super_block *super_copy = fs_info->super_copy;
6766 struct extent_buffer *sb;
6767 struct btrfs_disk_key *disk_key;
6768 struct btrfs_chunk *chunk;
6769 u8 *array_ptr;
6770 unsigned long sb_array_offset;
6771 int ret = 0;
6772 u32 num_stripes;
6773 u32 array_size;
6774 u32 len = 0;
6775 u32 cur_offset;
6776 u64 type;
6777 struct btrfs_key key;
6779 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize);
6781 * This will create extent buffer of nodesize, superblock size is
6782 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6783 * overallocate but we can keep it as-is, only the first page is used.
6785 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET);
6786 if (IS_ERR(sb))
6787 return PTR_ERR(sb);
6788 set_extent_buffer_uptodate(sb);
6789 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
6791 * The sb extent buffer is artificial and just used to read the system array.
6792 * set_extent_buffer_uptodate() call does not properly mark all it's
6793 * pages up-to-date when the page is larger: extent does not cover the
6794 * whole page and consequently check_page_uptodate does not find all
6795 * the page's extents up-to-date (the hole beyond sb),
6796 * write_extent_buffer then triggers a WARN_ON.
6798 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6799 * but sb spans only this function. Add an explicit SetPageUptodate call
6800 * to silence the warning eg. on PowerPC 64.
6802 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE)
6803 SetPageUptodate(sb->pages[0]);
6805 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
6806 array_size = btrfs_super_sys_array_size(super_copy);
6808 array_ptr = super_copy->sys_chunk_array;
6809 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array);
6810 cur_offset = 0;
6812 while (cur_offset < array_size) {
6813 disk_key = (struct btrfs_disk_key *)array_ptr;
6814 len = sizeof(*disk_key);
6815 if (cur_offset + len > array_size)
6816 goto out_short_read;
6818 btrfs_disk_key_to_cpu(&key, disk_key);
6820 array_ptr += len;
6821 sb_array_offset += len;
6822 cur_offset += len;
6824 if (key.type != BTRFS_CHUNK_ITEM_KEY) {
6825 btrfs_err(fs_info,
6826 "unexpected item type %u in sys_array at offset %u",
6827 (u32)key.type, cur_offset);
6828 ret = -EIO;
6829 break;
6832 chunk = (struct btrfs_chunk *)sb_array_offset;
6834 * At least one btrfs_chunk with one stripe must be present,
6835 * exact stripe count check comes afterwards
6837 len = btrfs_chunk_item_size(1);
6838 if (cur_offset + len > array_size)
6839 goto out_short_read;
6841 num_stripes = btrfs_chunk_num_stripes(sb, chunk);
6842 if (!num_stripes) {
6843 btrfs_err(fs_info,
6844 "invalid number of stripes %u in sys_array at offset %u",
6845 num_stripes, cur_offset);
6846 ret = -EIO;
6847 break;
6850 type = btrfs_chunk_type(sb, chunk);
6851 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) {
6852 btrfs_err(fs_info,
6853 "invalid chunk type %llu in sys_array at offset %u",
6854 type, cur_offset);
6855 ret = -EIO;
6856 break;
6859 len = btrfs_chunk_item_size(num_stripes);
6860 if (cur_offset + len > array_size)
6861 goto out_short_read;
6863 ret = read_one_chunk(&key, sb, chunk);
6864 if (ret)
6865 break;
6867 array_ptr += len;
6868 sb_array_offset += len;
6869 cur_offset += len;
6871 clear_extent_buffer_uptodate(sb);
6872 free_extent_buffer_stale(sb);
6873 return ret;
6875 out_short_read:
6876 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u",
6877 len, cur_offset);
6878 clear_extent_buffer_uptodate(sb);
6879 free_extent_buffer_stale(sb);
6880 return -EIO;
6884 * Check if all chunks in the fs are OK for read-write degraded mount
6886 * If the @failing_dev is specified, it's accounted as missing.
6888 * Return true if all chunks meet the minimal RW mount requirements.
6889 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6891 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info,
6892 struct btrfs_device *failing_dev)
6894 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
6895 struct extent_map *em;
6896 u64 next_start = 0;
6897 bool ret = true;
6899 read_lock(&map_tree->lock);
6900 em = lookup_extent_mapping(map_tree, 0, (u64)-1);
6901 read_unlock(&map_tree->lock);
6902 /* No chunk at all? Return false anyway */
6903 if (!em) {
6904 ret = false;
6905 goto out;
6907 while (em) {
6908 struct map_lookup *map;
6909 int missing = 0;
6910 int max_tolerated;
6911 int i;
6913 map = em->map_lookup;
6914 max_tolerated =
6915 btrfs_get_num_tolerated_disk_barrier_failures(
6916 map->type);
6917 for (i = 0; i < map->num_stripes; i++) {
6918 struct btrfs_device *dev = map->stripes[i].dev;
6920 if (!dev || !dev->bdev ||
6921 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) ||
6922 dev->last_flush_error)
6923 missing++;
6924 else if (failing_dev && failing_dev == dev)
6925 missing++;
6927 if (missing > max_tolerated) {
6928 if (!failing_dev)
6929 btrfs_warn(fs_info,
6930 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
6931 em->start, missing, max_tolerated);
6932 free_extent_map(em);
6933 ret = false;
6934 goto out;
6936 next_start = extent_map_end(em);
6937 free_extent_map(em);
6939 read_lock(&map_tree->lock);
6940 em = lookup_extent_mapping(map_tree, next_start,
6941 (u64)(-1) - next_start);
6942 read_unlock(&map_tree->lock);
6944 out:
6945 return ret;
6948 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info)
6950 struct btrfs_root *root = fs_info->chunk_root;
6951 struct btrfs_path *path;
6952 struct extent_buffer *leaf;
6953 struct btrfs_key key;
6954 struct btrfs_key found_key;
6955 int ret;
6956 int slot;
6957 u64 total_dev = 0;
6959 path = btrfs_alloc_path();
6960 if (!path)
6961 return -ENOMEM;
6964 * uuid_mutex is needed only if we are mounting a sprout FS
6965 * otherwise we don't need it.
6967 mutex_lock(&uuid_mutex);
6968 mutex_lock(&fs_info->chunk_mutex);
6971 * Read all device items, and then all the chunk items. All
6972 * device items are found before any chunk item (their object id
6973 * is smaller than the lowest possible object id for a chunk
6974 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
6976 key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
6977 key.offset = 0;
6978 key.type = 0;
6979 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6980 if (ret < 0)
6981 goto error;
6982 while (1) {
6983 leaf = path->nodes[0];
6984 slot = path->slots[0];
6985 if (slot >= btrfs_header_nritems(leaf)) {
6986 ret = btrfs_next_leaf(root, path);
6987 if (ret == 0)
6988 continue;
6989 if (ret < 0)
6990 goto error;
6991 break;
6993 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6994 if (found_key.type == BTRFS_DEV_ITEM_KEY) {
6995 struct btrfs_dev_item *dev_item;
6996 dev_item = btrfs_item_ptr(leaf, slot,
6997 struct btrfs_dev_item);
6998 ret = read_one_dev(leaf, dev_item);
6999 if (ret)
7000 goto error;
7001 total_dev++;
7002 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
7003 struct btrfs_chunk *chunk;
7004 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
7005 ret = read_one_chunk(&found_key, leaf, chunk);
7006 if (ret)
7007 goto error;
7009 path->slots[0]++;
7013 * After loading chunk tree, we've got all device information,
7014 * do another round of validation checks.
7016 if (total_dev != fs_info->fs_devices->total_devices) {
7017 btrfs_err(fs_info,
7018 "super_num_devices %llu mismatch with num_devices %llu found here",
7019 btrfs_super_num_devices(fs_info->super_copy),
7020 total_dev);
7021 ret = -EINVAL;
7022 goto error;
7024 if (btrfs_super_total_bytes(fs_info->super_copy) <
7025 fs_info->fs_devices->total_rw_bytes) {
7026 btrfs_err(fs_info,
7027 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7028 btrfs_super_total_bytes(fs_info->super_copy),
7029 fs_info->fs_devices->total_rw_bytes);
7030 ret = -EINVAL;
7031 goto error;
7033 ret = 0;
7034 error:
7035 mutex_unlock(&fs_info->chunk_mutex);
7036 mutex_unlock(&uuid_mutex);
7038 btrfs_free_path(path);
7039 return ret;
7042 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
7044 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7045 struct btrfs_device *device;
7047 while (fs_devices) {
7048 mutex_lock(&fs_devices->device_list_mutex);
7049 list_for_each_entry(device, &fs_devices->devices, dev_list)
7050 device->fs_info = fs_info;
7051 mutex_unlock(&fs_devices->device_list_mutex);
7053 fs_devices = fs_devices->seed;
7057 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb,
7058 const struct btrfs_dev_stats_item *ptr,
7059 int index)
7061 u64 val;
7063 read_extent_buffer(eb, &val,
7064 offsetof(struct btrfs_dev_stats_item, values) +
7065 ((unsigned long)ptr) + (index * sizeof(u64)),
7066 sizeof(val));
7067 return val;
7070 static void btrfs_set_dev_stats_value(struct extent_buffer *eb,
7071 struct btrfs_dev_stats_item *ptr,
7072 int index, u64 val)
7074 write_extent_buffer(eb, &val,
7075 offsetof(struct btrfs_dev_stats_item, values) +
7076 ((unsigned long)ptr) + (index * sizeof(u64)),
7077 sizeof(val));
7080 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
7082 struct btrfs_key key;
7083 struct btrfs_root *dev_root = fs_info->dev_root;
7084 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7085 struct extent_buffer *eb;
7086 int slot;
7087 int ret = 0;
7088 struct btrfs_device *device;
7089 struct btrfs_path *path = NULL;
7090 int i;
7092 path = btrfs_alloc_path();
7093 if (!path)
7094 return -ENOMEM;
7096 mutex_lock(&fs_devices->device_list_mutex);
7097 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7098 int item_size;
7099 struct btrfs_dev_stats_item *ptr;
7101 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7102 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7103 key.offset = device->devid;
7104 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
7105 if (ret) {
7106 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7107 btrfs_dev_stat_set(device, i, 0);
7108 device->dev_stats_valid = 1;
7109 btrfs_release_path(path);
7110 continue;
7112 slot = path->slots[0];
7113 eb = path->nodes[0];
7114 item_size = btrfs_item_size_nr(eb, slot);
7116 ptr = btrfs_item_ptr(eb, slot,
7117 struct btrfs_dev_stats_item);
7119 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7120 if (item_size >= (1 + i) * sizeof(__le64))
7121 btrfs_dev_stat_set(device, i,
7122 btrfs_dev_stats_value(eb, ptr, i));
7123 else
7124 btrfs_dev_stat_set(device, i, 0);
7127 device->dev_stats_valid = 1;
7128 btrfs_dev_stat_print_on_load(device);
7129 btrfs_release_path(path);
7131 mutex_unlock(&fs_devices->device_list_mutex);
7133 btrfs_free_path(path);
7134 return ret < 0 ? ret : 0;
7137 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
7138 struct btrfs_device *device)
7140 struct btrfs_fs_info *fs_info = trans->fs_info;
7141 struct btrfs_root *dev_root = fs_info->dev_root;
7142 struct btrfs_path *path;
7143 struct btrfs_key key;
7144 struct extent_buffer *eb;
7145 struct btrfs_dev_stats_item *ptr;
7146 int ret;
7147 int i;
7149 key.objectid = BTRFS_DEV_STATS_OBJECTID;
7150 key.type = BTRFS_PERSISTENT_ITEM_KEY;
7151 key.offset = device->devid;
7153 path = btrfs_alloc_path();
7154 if (!path)
7155 return -ENOMEM;
7156 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
7157 if (ret < 0) {
7158 btrfs_warn_in_rcu(fs_info,
7159 "error %d while searching for dev_stats item for device %s",
7160 ret, rcu_str_deref(device->name));
7161 goto out;
7164 if (ret == 0 &&
7165 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
7166 /* need to delete old one and insert a new one */
7167 ret = btrfs_del_item(trans, dev_root, path);
7168 if (ret != 0) {
7169 btrfs_warn_in_rcu(fs_info,
7170 "delete too small dev_stats item for device %s failed %d",
7171 rcu_str_deref(device->name), ret);
7172 goto out;
7174 ret = 1;
7177 if (ret == 1) {
7178 /* need to insert a new item */
7179 btrfs_release_path(path);
7180 ret = btrfs_insert_empty_item(trans, dev_root, path,
7181 &key, sizeof(*ptr));
7182 if (ret < 0) {
7183 btrfs_warn_in_rcu(fs_info,
7184 "insert dev_stats item for device %s failed %d",
7185 rcu_str_deref(device->name), ret);
7186 goto out;
7190 eb = path->nodes[0];
7191 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
7192 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7193 btrfs_set_dev_stats_value(eb, ptr, i,
7194 btrfs_dev_stat_read(device, i));
7195 btrfs_mark_buffer_dirty(eb);
7197 out:
7198 btrfs_free_path(path);
7199 return ret;
7203 * called from commit_transaction. Writes all changed device stats to disk.
7205 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans)
7207 struct btrfs_fs_info *fs_info = trans->fs_info;
7208 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7209 struct btrfs_device *device;
7210 int stats_cnt;
7211 int ret = 0;
7213 mutex_lock(&fs_devices->device_list_mutex);
7214 list_for_each_entry(device, &fs_devices->devices, dev_list) {
7215 stats_cnt = atomic_read(&device->dev_stats_ccnt);
7216 if (!device->dev_stats_valid || stats_cnt == 0)
7217 continue;
7221 * There is a LOAD-LOAD control dependency between the value of
7222 * dev_stats_ccnt and updating the on-disk values which requires
7223 * reading the in-memory counters. Such control dependencies
7224 * require explicit read memory barriers.
7226 * This memory barriers pairs with smp_mb__before_atomic in
7227 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7228 * barrier implied by atomic_xchg in
7229 * btrfs_dev_stats_read_and_reset
7231 smp_rmb();
7233 ret = update_dev_stat_item(trans, device);
7234 if (!ret)
7235 atomic_sub(stats_cnt, &device->dev_stats_ccnt);
7237 mutex_unlock(&fs_devices->device_list_mutex);
7239 return ret;
7242 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
7244 btrfs_dev_stat_inc(dev, index);
7245 btrfs_dev_stat_print_on_error(dev);
7248 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
7250 if (!dev->dev_stats_valid)
7251 return;
7252 btrfs_err_rl_in_rcu(dev->fs_info,
7253 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7254 rcu_str_deref(dev->name),
7255 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7256 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7257 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7258 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7259 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7262 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
7264 int i;
7266 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7267 if (btrfs_dev_stat_read(dev, i) != 0)
7268 break;
7269 if (i == BTRFS_DEV_STAT_VALUES_MAX)
7270 return; /* all values == 0, suppress message */
7272 btrfs_info_in_rcu(dev->fs_info,
7273 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7274 rcu_str_deref(dev->name),
7275 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
7276 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
7277 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
7278 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
7279 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
7282 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info,
7283 struct btrfs_ioctl_get_dev_stats *stats)
7285 struct btrfs_device *dev;
7286 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7287 int i;
7289 mutex_lock(&fs_devices->device_list_mutex);
7290 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL,
7291 true);
7292 mutex_unlock(&fs_devices->device_list_mutex);
7294 if (!dev) {
7295 btrfs_warn(fs_info, "get dev_stats failed, device not found");
7296 return -ENODEV;
7297 } else if (!dev->dev_stats_valid) {
7298 btrfs_warn(fs_info, "get dev_stats failed, not yet valid");
7299 return -ENODEV;
7300 } else if (stats->flags & BTRFS_DEV_STATS_RESET) {
7301 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
7302 if (stats->nr_items > i)
7303 stats->values[i] =
7304 btrfs_dev_stat_read_and_reset(dev, i);
7305 else
7306 btrfs_dev_stat_set(dev, i, 0);
7308 btrfs_info(fs_info, "device stats zeroed by %s (%d)",
7309 current->comm, task_pid_nr(current));
7310 } else {
7311 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
7312 if (stats->nr_items > i)
7313 stats->values[i] = btrfs_dev_stat_read(dev, i);
7315 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
7316 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
7317 return 0;
7320 void btrfs_scratch_superblocks(struct block_device *bdev, const char *device_path)
7322 struct buffer_head *bh;
7323 struct btrfs_super_block *disk_super;
7324 int copy_num;
7326 if (!bdev)
7327 return;
7329 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX;
7330 copy_num++) {
7332 if (btrfs_read_dev_one_super(bdev, copy_num, &bh))
7333 continue;
7335 disk_super = (struct btrfs_super_block *)bh->b_data;
7337 memset(&disk_super->magic, 0, sizeof(disk_super->magic));
7338 set_buffer_dirty(bh);
7339 sync_dirty_buffer(bh);
7340 brelse(bh);
7343 /* Notify udev that device has changed */
7344 btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
7346 /* Update ctime/mtime for device path for libblkid */
7347 update_dev_time(device_path);
7351 * Update the size and bytes used for each device where it changed. This is
7352 * delayed since we would otherwise get errors while writing out the
7353 * superblocks.
7355 * Must be invoked during transaction commit.
7357 void btrfs_commit_device_sizes(struct btrfs_transaction *trans)
7359 struct btrfs_device *curr, *next;
7361 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING);
7363 if (list_empty(&trans->dev_update_list))
7364 return;
7367 * We don't need the device_list_mutex here. This list is owned by the
7368 * transaction and the transaction must complete before the device is
7369 * released.
7371 mutex_lock(&trans->fs_info->chunk_mutex);
7372 list_for_each_entry_safe(curr, next, &trans->dev_update_list,
7373 post_commit_list) {
7374 list_del_init(&curr->post_commit_list);
7375 curr->commit_total_bytes = curr->disk_total_bytes;
7376 curr->commit_bytes_used = curr->bytes_used;
7378 mutex_unlock(&trans->fs_info->chunk_mutex);
7381 void btrfs_set_fs_info_ptr(struct btrfs_fs_info *fs_info)
7383 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7384 while (fs_devices) {
7385 fs_devices->fs_info = fs_info;
7386 fs_devices = fs_devices->seed;
7390 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info *fs_info)
7392 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
7393 while (fs_devices) {
7394 fs_devices->fs_info = NULL;
7395 fs_devices = fs_devices->seed;
7400 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7402 int btrfs_bg_type_to_factor(u64 flags)
7404 const int index = btrfs_bg_flags_to_raid_index(flags);
7406 return btrfs_raid_array[index].ncopies;
7411 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info,
7412 u64 chunk_offset, u64 devid,
7413 u64 physical_offset, u64 physical_len)
7415 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7416 struct extent_map *em;
7417 struct map_lookup *map;
7418 struct btrfs_device *dev;
7419 u64 stripe_len;
7420 bool found = false;
7421 int ret = 0;
7422 int i;
7424 read_lock(&em_tree->lock);
7425 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
7426 read_unlock(&em_tree->lock);
7428 if (!em) {
7429 btrfs_err(fs_info,
7430 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7431 physical_offset, devid);
7432 ret = -EUCLEAN;
7433 goto out;
7436 map = em->map_lookup;
7437 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes);
7438 if (physical_len != stripe_len) {
7439 btrfs_err(fs_info,
7440 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7441 physical_offset, devid, em->start, physical_len,
7442 stripe_len);
7443 ret = -EUCLEAN;
7444 goto out;
7447 for (i = 0; i < map->num_stripes; i++) {
7448 if (map->stripes[i].dev->devid == devid &&
7449 map->stripes[i].physical == physical_offset) {
7450 found = true;
7451 if (map->verified_stripes >= map->num_stripes) {
7452 btrfs_err(fs_info,
7453 "too many dev extents for chunk %llu found",
7454 em->start);
7455 ret = -EUCLEAN;
7456 goto out;
7458 map->verified_stripes++;
7459 break;
7462 if (!found) {
7463 btrfs_err(fs_info,
7464 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7465 physical_offset, devid);
7466 ret = -EUCLEAN;
7469 /* Make sure no dev extent is beyond device bondary */
7470 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true);
7471 if (!dev) {
7472 btrfs_err(fs_info, "failed to find devid %llu", devid);
7473 ret = -EUCLEAN;
7474 goto out;
7477 /* It's possible this device is a dummy for seed device */
7478 if (dev->disk_total_bytes == 0) {
7479 dev = btrfs_find_device(fs_info->fs_devices->seed, devid, NULL,
7480 NULL, false);
7481 if (!dev) {
7482 btrfs_err(fs_info, "failed to find seed devid %llu",
7483 devid);
7484 ret = -EUCLEAN;
7485 goto out;
7489 if (physical_offset + physical_len > dev->disk_total_bytes) {
7490 btrfs_err(fs_info,
7491 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7492 devid, physical_offset, physical_len,
7493 dev->disk_total_bytes);
7494 ret = -EUCLEAN;
7495 goto out;
7497 out:
7498 free_extent_map(em);
7499 return ret;
7502 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info)
7504 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
7505 struct extent_map *em;
7506 struct rb_node *node;
7507 int ret = 0;
7509 read_lock(&em_tree->lock);
7510 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
7511 em = rb_entry(node, struct extent_map, rb_node);
7512 if (em->map_lookup->num_stripes !=
7513 em->map_lookup->verified_stripes) {
7514 btrfs_err(fs_info,
7515 "chunk %llu has missing dev extent, have %d expect %d",
7516 em->start, em->map_lookup->verified_stripes,
7517 em->map_lookup->num_stripes);
7518 ret = -EUCLEAN;
7519 goto out;
7522 out:
7523 read_unlock(&em_tree->lock);
7524 return ret;
7528 * Ensure that all dev extents are mapped to correct chunk, otherwise
7529 * later chunk allocation/free would cause unexpected behavior.
7531 * NOTE: This will iterate through the whole device tree, which should be of
7532 * the same size level as the chunk tree. This slightly increases mount time.
7534 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info)
7536 struct btrfs_path *path;
7537 struct btrfs_root *root = fs_info->dev_root;
7538 struct btrfs_key key;
7539 u64 prev_devid = 0;
7540 u64 prev_dev_ext_end = 0;
7541 int ret = 0;
7543 key.objectid = 1;
7544 key.type = BTRFS_DEV_EXTENT_KEY;
7545 key.offset = 0;
7547 path = btrfs_alloc_path();
7548 if (!path)
7549 return -ENOMEM;
7551 path->reada = READA_FORWARD;
7552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
7553 if (ret < 0)
7554 goto out;
7556 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
7557 ret = btrfs_next_item(root, path);
7558 if (ret < 0)
7559 goto out;
7560 /* No dev extents at all? Not good */
7561 if (ret > 0) {
7562 ret = -EUCLEAN;
7563 goto out;
7566 while (1) {
7567 struct extent_buffer *leaf = path->nodes[0];
7568 struct btrfs_dev_extent *dext;
7569 int slot = path->slots[0];
7570 u64 chunk_offset;
7571 u64 physical_offset;
7572 u64 physical_len;
7573 u64 devid;
7575 btrfs_item_key_to_cpu(leaf, &key, slot);
7576 if (key.type != BTRFS_DEV_EXTENT_KEY)
7577 break;
7578 devid = key.objectid;
7579 physical_offset = key.offset;
7581 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent);
7582 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext);
7583 physical_len = btrfs_dev_extent_length(leaf, dext);
7585 /* Check if this dev extent overlaps with the previous one */
7586 if (devid == prev_devid && physical_offset < prev_dev_ext_end) {
7587 btrfs_err(fs_info,
7588 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7589 devid, physical_offset, prev_dev_ext_end);
7590 ret = -EUCLEAN;
7591 goto out;
7594 ret = verify_one_dev_extent(fs_info, chunk_offset, devid,
7595 physical_offset, physical_len);
7596 if (ret < 0)
7597 goto out;
7598 prev_devid = devid;
7599 prev_dev_ext_end = physical_offset + physical_len;
7601 ret = btrfs_next_item(root, path);
7602 if (ret < 0)
7603 goto out;
7604 if (ret > 0) {
7605 ret = 0;
7606 break;
7610 /* Ensure all chunks have corresponding dev extents */
7611 ret = verify_chunk_dev_extent_mapping(fs_info);
7612 out:
7613 btrfs_free_path(path);
7614 return ret;
7618 * Check whether the given block group or device is pinned by any inode being
7619 * used as a swapfile.
7621 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr)
7623 struct btrfs_swapfile_pin *sp;
7624 struct rb_node *node;
7626 spin_lock(&fs_info->swapfile_pins_lock);
7627 node = fs_info->swapfile_pins.rb_node;
7628 while (node) {
7629 sp = rb_entry(node, struct btrfs_swapfile_pin, node);
7630 if (ptr < sp->ptr)
7631 node = node->rb_left;
7632 else if (ptr > sp->ptr)
7633 node = node->rb_right;
7634 else
7635 break;
7637 spin_unlock(&fs_info->swapfile_pins_lock);
7638 return node != NULL;