1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
9 #include <linux/f2fs_fs.h>
10 #include <linux/mpage.h>
11 #include <linux/backing-dev.h>
12 #include <linux/blkdev.h>
13 #include <linux/pagevec.h>
14 #include <linux/swap.h>
21 #include <trace/events/f2fs.h>
23 #define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
25 static struct kmem_cache
*nat_entry_slab
;
26 static struct kmem_cache
*free_nid_slab
;
27 static struct kmem_cache
*nat_entry_set_slab
;
28 static struct kmem_cache
*fsync_node_entry_slab
;
31 * Check whether the given nid is within node id range.
33 int f2fs_check_nid_range(struct f2fs_sb_info
*sbi
, nid_t nid
)
35 if (unlikely(nid
< F2FS_ROOT_INO(sbi
) || nid
>= NM_I(sbi
)->max_nid
)) {
36 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
37 f2fs_warn(sbi
, "%s: out-of-range nid=%x, run fsck to fix.",
44 bool f2fs_available_free_memory(struct f2fs_sb_info
*sbi
, int type
)
46 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
48 unsigned long avail_ram
;
49 unsigned long mem_size
= 0;
54 /* only uses low memory */
55 avail_ram
= val
.totalram
- val
.totalhigh
;
58 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
60 if (type
== FREE_NIDS
) {
61 mem_size
= (nm_i
->nid_cnt
[FREE_NID
] *
62 sizeof(struct free_nid
)) >> PAGE_SHIFT
;
63 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
64 } else if (type
== NAT_ENTRIES
) {
65 mem_size
= (nm_i
->nat_cnt
* sizeof(struct nat_entry
)) >>
67 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
68 if (excess_cached_nats(sbi
))
70 } else if (type
== DIRTY_DENTS
) {
71 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
73 mem_size
= get_pages(sbi
, F2FS_DIRTY_DENTS
);
74 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
75 } else if (type
== INO_ENTRIES
) {
78 for (i
= 0; i
< MAX_INO_ENTRY
; i
++)
79 mem_size
+= sbi
->im
[i
].ino_num
*
80 sizeof(struct ino_entry
);
81 mem_size
>>= PAGE_SHIFT
;
82 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
83 } else if (type
== EXTENT_CACHE
) {
84 mem_size
= (atomic_read(&sbi
->total_ext_tree
) *
85 sizeof(struct extent_tree
) +
86 atomic_read(&sbi
->total_ext_node
) *
87 sizeof(struct extent_node
)) >> PAGE_SHIFT
;
88 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
89 } else if (type
== INMEM_PAGES
) {
90 /* it allows 20% / total_ram for inmemory pages */
91 mem_size
= get_pages(sbi
, F2FS_INMEM_PAGES
);
92 res
= mem_size
< (val
.totalram
/ 5);
94 if (!sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
100 static void clear_node_page_dirty(struct page
*page
)
102 if (PageDirty(page
)) {
103 f2fs_clear_page_cache_dirty_tag(page
);
104 clear_page_dirty_for_io(page
);
105 dec_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
107 ClearPageUptodate(page
);
110 static struct page
*get_current_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
112 return f2fs_get_meta_page_nofail(sbi
, current_nat_addr(sbi
, nid
));
115 static struct page
*get_next_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
117 struct page
*src_page
;
118 struct page
*dst_page
;
122 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
124 dst_off
= next_nat_addr(sbi
, current_nat_addr(sbi
, nid
));
126 /* get current nat block page with lock */
127 src_page
= get_current_nat_page(sbi
, nid
);
128 if (IS_ERR(src_page
))
130 dst_page
= f2fs_grab_meta_page(sbi
, dst_off
);
131 f2fs_bug_on(sbi
, PageDirty(src_page
));
133 src_addr
= page_address(src_page
);
134 dst_addr
= page_address(dst_page
);
135 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
136 set_page_dirty(dst_page
);
137 f2fs_put_page(src_page
, 1);
139 set_to_next_nat(nm_i
, nid
);
144 static struct nat_entry
*__alloc_nat_entry(nid_t nid
, bool no_fail
)
146 struct nat_entry
*new;
149 new = f2fs_kmem_cache_alloc(nat_entry_slab
, GFP_F2FS_ZERO
);
151 new = kmem_cache_alloc(nat_entry_slab
, GFP_F2FS_ZERO
);
153 nat_set_nid(new, nid
);
159 static void __free_nat_entry(struct nat_entry
*e
)
161 kmem_cache_free(nat_entry_slab
, e
);
164 /* must be locked by nat_tree_lock */
165 static struct nat_entry
*__init_nat_entry(struct f2fs_nm_info
*nm_i
,
166 struct nat_entry
*ne
, struct f2fs_nat_entry
*raw_ne
, bool no_fail
)
169 f2fs_radix_tree_insert(&nm_i
->nat_root
, nat_get_nid(ne
), ne
);
170 else if (radix_tree_insert(&nm_i
->nat_root
, nat_get_nid(ne
), ne
))
174 node_info_from_raw_nat(&ne
->ni
, raw_ne
);
176 spin_lock(&nm_i
->nat_list_lock
);
177 list_add_tail(&ne
->list
, &nm_i
->nat_entries
);
178 spin_unlock(&nm_i
->nat_list_lock
);
184 static struct nat_entry
*__lookup_nat_cache(struct f2fs_nm_info
*nm_i
, nid_t n
)
186 struct nat_entry
*ne
;
188 ne
= radix_tree_lookup(&nm_i
->nat_root
, n
);
190 /* for recent accessed nat entry, move it to tail of lru list */
191 if (ne
&& !get_nat_flag(ne
, IS_DIRTY
)) {
192 spin_lock(&nm_i
->nat_list_lock
);
193 if (!list_empty(&ne
->list
))
194 list_move_tail(&ne
->list
, &nm_i
->nat_entries
);
195 spin_unlock(&nm_i
->nat_list_lock
);
201 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info
*nm_i
,
202 nid_t start
, unsigned int nr
, struct nat_entry
**ep
)
204 return radix_tree_gang_lookup(&nm_i
->nat_root
, (void **)ep
, start
, nr
);
207 static void __del_from_nat_cache(struct f2fs_nm_info
*nm_i
, struct nat_entry
*e
)
209 radix_tree_delete(&nm_i
->nat_root
, nat_get_nid(e
));
214 static struct nat_entry_set
*__grab_nat_entry_set(struct f2fs_nm_info
*nm_i
,
215 struct nat_entry
*ne
)
217 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
218 struct nat_entry_set
*head
;
220 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
222 head
= f2fs_kmem_cache_alloc(nat_entry_set_slab
, GFP_NOFS
);
224 INIT_LIST_HEAD(&head
->entry_list
);
225 INIT_LIST_HEAD(&head
->set_list
);
228 f2fs_radix_tree_insert(&nm_i
->nat_set_root
, set
, head
);
233 static void __set_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
234 struct nat_entry
*ne
)
236 struct nat_entry_set
*head
;
237 bool new_ne
= nat_get_blkaddr(ne
) == NEW_ADDR
;
240 head
= __grab_nat_entry_set(nm_i
, ne
);
243 * update entry_cnt in below condition:
244 * 1. update NEW_ADDR to valid block address;
245 * 2. update old block address to new one;
247 if (!new_ne
&& (get_nat_flag(ne
, IS_PREALLOC
) ||
248 !get_nat_flag(ne
, IS_DIRTY
)))
251 set_nat_flag(ne
, IS_PREALLOC
, new_ne
);
253 if (get_nat_flag(ne
, IS_DIRTY
))
256 nm_i
->dirty_nat_cnt
++;
257 set_nat_flag(ne
, IS_DIRTY
, true);
259 spin_lock(&nm_i
->nat_list_lock
);
261 list_del_init(&ne
->list
);
263 list_move_tail(&ne
->list
, &head
->entry_list
);
264 spin_unlock(&nm_i
->nat_list_lock
);
267 static void __clear_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
268 struct nat_entry_set
*set
, struct nat_entry
*ne
)
270 spin_lock(&nm_i
->nat_list_lock
);
271 list_move_tail(&ne
->list
, &nm_i
->nat_entries
);
272 spin_unlock(&nm_i
->nat_list_lock
);
274 set_nat_flag(ne
, IS_DIRTY
, false);
276 nm_i
->dirty_nat_cnt
--;
279 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info
*nm_i
,
280 nid_t start
, unsigned int nr
, struct nat_entry_set
**ep
)
282 return radix_tree_gang_lookup(&nm_i
->nat_set_root
, (void **)ep
,
286 bool f2fs_in_warm_node_list(struct f2fs_sb_info
*sbi
, struct page
*page
)
288 return NODE_MAPPING(sbi
) == page
->mapping
&&
289 IS_DNODE(page
) && is_cold_node(page
);
292 void f2fs_init_fsync_node_info(struct f2fs_sb_info
*sbi
)
294 spin_lock_init(&sbi
->fsync_node_lock
);
295 INIT_LIST_HEAD(&sbi
->fsync_node_list
);
296 sbi
->fsync_seg_id
= 0;
297 sbi
->fsync_node_num
= 0;
300 static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info
*sbi
,
303 struct fsync_node_entry
*fn
;
307 fn
= f2fs_kmem_cache_alloc(fsync_node_entry_slab
, GFP_NOFS
);
311 INIT_LIST_HEAD(&fn
->list
);
313 spin_lock_irqsave(&sbi
->fsync_node_lock
, flags
);
314 list_add_tail(&fn
->list
, &sbi
->fsync_node_list
);
315 fn
->seq_id
= sbi
->fsync_seg_id
++;
317 sbi
->fsync_node_num
++;
318 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
323 void f2fs_del_fsync_node_entry(struct f2fs_sb_info
*sbi
, struct page
*page
)
325 struct fsync_node_entry
*fn
;
328 spin_lock_irqsave(&sbi
->fsync_node_lock
, flags
);
329 list_for_each_entry(fn
, &sbi
->fsync_node_list
, list
) {
330 if (fn
->page
== page
) {
332 sbi
->fsync_node_num
--;
333 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
334 kmem_cache_free(fsync_node_entry_slab
, fn
);
339 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
343 void f2fs_reset_fsync_node_info(struct f2fs_sb_info
*sbi
)
347 spin_lock_irqsave(&sbi
->fsync_node_lock
, flags
);
348 sbi
->fsync_seg_id
= 0;
349 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
352 int f2fs_need_dentry_mark(struct f2fs_sb_info
*sbi
, nid_t nid
)
354 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
358 down_read(&nm_i
->nat_tree_lock
);
359 e
= __lookup_nat_cache(nm_i
, nid
);
361 if (!get_nat_flag(e
, IS_CHECKPOINTED
) &&
362 !get_nat_flag(e
, HAS_FSYNCED_INODE
))
365 up_read(&nm_i
->nat_tree_lock
);
369 bool f2fs_is_checkpointed_node(struct f2fs_sb_info
*sbi
, nid_t nid
)
371 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
375 down_read(&nm_i
->nat_tree_lock
);
376 e
= __lookup_nat_cache(nm_i
, nid
);
377 if (e
&& !get_nat_flag(e
, IS_CHECKPOINTED
))
379 up_read(&nm_i
->nat_tree_lock
);
383 bool f2fs_need_inode_block_update(struct f2fs_sb_info
*sbi
, nid_t ino
)
385 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
387 bool need_update
= true;
389 down_read(&nm_i
->nat_tree_lock
);
390 e
= __lookup_nat_cache(nm_i
, ino
);
391 if (e
&& get_nat_flag(e
, HAS_LAST_FSYNC
) &&
392 (get_nat_flag(e
, IS_CHECKPOINTED
) ||
393 get_nat_flag(e
, HAS_FSYNCED_INODE
)))
395 up_read(&nm_i
->nat_tree_lock
);
399 /* must be locked by nat_tree_lock */
400 static void cache_nat_entry(struct f2fs_sb_info
*sbi
, nid_t nid
,
401 struct f2fs_nat_entry
*ne
)
403 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
404 struct nat_entry
*new, *e
;
406 new = __alloc_nat_entry(nid
, false);
410 down_write(&nm_i
->nat_tree_lock
);
411 e
= __lookup_nat_cache(nm_i
, nid
);
413 e
= __init_nat_entry(nm_i
, new, ne
, false);
415 f2fs_bug_on(sbi
, nat_get_ino(e
) != le32_to_cpu(ne
->ino
) ||
416 nat_get_blkaddr(e
) !=
417 le32_to_cpu(ne
->block_addr
) ||
418 nat_get_version(e
) != ne
->version
);
419 up_write(&nm_i
->nat_tree_lock
);
421 __free_nat_entry(new);
424 static void set_node_addr(struct f2fs_sb_info
*sbi
, struct node_info
*ni
,
425 block_t new_blkaddr
, bool fsync_done
)
427 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
429 struct nat_entry
*new = __alloc_nat_entry(ni
->nid
, true);
431 down_write(&nm_i
->nat_tree_lock
);
432 e
= __lookup_nat_cache(nm_i
, ni
->nid
);
434 e
= __init_nat_entry(nm_i
, new, NULL
, true);
435 copy_node_info(&e
->ni
, ni
);
436 f2fs_bug_on(sbi
, ni
->blk_addr
== NEW_ADDR
);
437 } else if (new_blkaddr
== NEW_ADDR
) {
439 * when nid is reallocated,
440 * previous nat entry can be remained in nat cache.
441 * So, reinitialize it with new information.
443 copy_node_info(&e
->ni
, ni
);
444 f2fs_bug_on(sbi
, ni
->blk_addr
!= NULL_ADDR
);
446 /* let's free early to reduce memory consumption */
448 __free_nat_entry(new);
451 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != ni
->blk_addr
);
452 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NULL_ADDR
&&
453 new_blkaddr
== NULL_ADDR
);
454 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NEW_ADDR
&&
455 new_blkaddr
== NEW_ADDR
);
456 f2fs_bug_on(sbi
, __is_valid_data_blkaddr(nat_get_blkaddr(e
)) &&
457 new_blkaddr
== NEW_ADDR
);
459 /* increment version no as node is removed */
460 if (nat_get_blkaddr(e
) != NEW_ADDR
&& new_blkaddr
== NULL_ADDR
) {
461 unsigned char version
= nat_get_version(e
);
462 nat_set_version(e
, inc_node_version(version
));
466 nat_set_blkaddr(e
, new_blkaddr
);
467 if (!__is_valid_data_blkaddr(new_blkaddr
))
468 set_nat_flag(e
, IS_CHECKPOINTED
, false);
469 __set_nat_cache_dirty(nm_i
, e
);
471 /* update fsync_mark if its inode nat entry is still alive */
472 if (ni
->nid
!= ni
->ino
)
473 e
= __lookup_nat_cache(nm_i
, ni
->ino
);
475 if (fsync_done
&& ni
->nid
== ni
->ino
)
476 set_nat_flag(e
, HAS_FSYNCED_INODE
, true);
477 set_nat_flag(e
, HAS_LAST_FSYNC
, fsync_done
);
479 up_write(&nm_i
->nat_tree_lock
);
482 int f2fs_try_to_free_nats(struct f2fs_sb_info
*sbi
, int nr_shrink
)
484 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
487 if (!down_write_trylock(&nm_i
->nat_tree_lock
))
490 spin_lock(&nm_i
->nat_list_lock
);
492 struct nat_entry
*ne
;
494 if (list_empty(&nm_i
->nat_entries
))
497 ne
= list_first_entry(&nm_i
->nat_entries
,
498 struct nat_entry
, list
);
500 spin_unlock(&nm_i
->nat_list_lock
);
502 __del_from_nat_cache(nm_i
, ne
);
505 spin_lock(&nm_i
->nat_list_lock
);
507 spin_unlock(&nm_i
->nat_list_lock
);
509 up_write(&nm_i
->nat_tree_lock
);
510 return nr
- nr_shrink
;
514 * This function always returns success
516 int f2fs_get_node_info(struct f2fs_sb_info
*sbi
, nid_t nid
,
517 struct node_info
*ni
)
519 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
520 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
521 struct f2fs_journal
*journal
= curseg
->journal
;
522 nid_t start_nid
= START_NID(nid
);
523 struct f2fs_nat_block
*nat_blk
;
524 struct page
*page
= NULL
;
525 struct f2fs_nat_entry ne
;
533 /* Check nat cache */
534 down_read(&nm_i
->nat_tree_lock
);
535 e
= __lookup_nat_cache(nm_i
, nid
);
537 ni
->ino
= nat_get_ino(e
);
538 ni
->blk_addr
= nat_get_blkaddr(e
);
539 ni
->version
= nat_get_version(e
);
540 up_read(&nm_i
->nat_tree_lock
);
544 memset(&ne
, 0, sizeof(struct f2fs_nat_entry
));
546 /* Check current segment summary */
547 down_read(&curseg
->journal_rwsem
);
548 i
= f2fs_lookup_journal_in_cursum(journal
, NAT_JOURNAL
, nid
, 0);
550 ne
= nat_in_journal(journal
, i
);
551 node_info_from_raw_nat(ni
, &ne
);
553 up_read(&curseg
->journal_rwsem
);
555 up_read(&nm_i
->nat_tree_lock
);
559 /* Fill node_info from nat page */
560 index
= current_nat_addr(sbi
, nid
);
561 up_read(&nm_i
->nat_tree_lock
);
563 page
= f2fs_get_meta_page(sbi
, index
);
565 return PTR_ERR(page
);
567 nat_blk
= (struct f2fs_nat_block
*)page_address(page
);
568 ne
= nat_blk
->entries
[nid
- start_nid
];
569 node_info_from_raw_nat(ni
, &ne
);
570 f2fs_put_page(page
, 1);
572 blkaddr
= le32_to_cpu(ne
.block_addr
);
573 if (__is_valid_data_blkaddr(blkaddr
) &&
574 !f2fs_is_valid_blkaddr(sbi
, blkaddr
, DATA_GENERIC_ENHANCE
))
577 /* cache nat entry */
578 cache_nat_entry(sbi
, nid
, &ne
);
583 * readahead MAX_RA_NODE number of node pages.
585 static void f2fs_ra_node_pages(struct page
*parent
, int start
, int n
)
587 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
588 struct blk_plug plug
;
592 blk_start_plug(&plug
);
594 /* Then, try readahead for siblings of the desired node */
596 end
= min(end
, NIDS_PER_BLOCK
);
597 for (i
= start
; i
< end
; i
++) {
598 nid
= get_nid(parent
, i
, false);
599 f2fs_ra_node_page(sbi
, nid
);
602 blk_finish_plug(&plug
);
605 pgoff_t
f2fs_get_next_page_offset(struct dnode_of_data
*dn
, pgoff_t pgofs
)
607 const long direct_index
= ADDRS_PER_INODE(dn
->inode
);
608 const long direct_blks
= ADDRS_PER_BLOCK(dn
->inode
);
609 const long indirect_blks
= ADDRS_PER_BLOCK(dn
->inode
) * NIDS_PER_BLOCK
;
610 unsigned int skipped_unit
= ADDRS_PER_BLOCK(dn
->inode
);
611 int cur_level
= dn
->cur_level
;
612 int max_level
= dn
->max_level
;
618 while (max_level
-- > cur_level
)
619 skipped_unit
*= NIDS_PER_BLOCK
;
621 switch (dn
->max_level
) {
623 base
+= 2 * indirect_blks
;
626 base
+= 2 * direct_blks
;
629 base
+= direct_index
;
632 f2fs_bug_on(F2FS_I_SB(dn
->inode
), 1);
635 return ((pgofs
- base
) / skipped_unit
+ 1) * skipped_unit
+ base
;
639 * The maximum depth is four.
640 * Offset[0] will have raw inode offset.
642 static int get_node_path(struct inode
*inode
, long block
,
643 int offset
[4], unsigned int noffset
[4])
645 const long direct_index
= ADDRS_PER_INODE(inode
);
646 const long direct_blks
= ADDRS_PER_BLOCK(inode
);
647 const long dptrs_per_blk
= NIDS_PER_BLOCK
;
648 const long indirect_blks
= ADDRS_PER_BLOCK(inode
) * NIDS_PER_BLOCK
;
649 const long dindirect_blks
= indirect_blks
* NIDS_PER_BLOCK
;
655 if (block
< direct_index
) {
659 block
-= direct_index
;
660 if (block
< direct_blks
) {
661 offset
[n
++] = NODE_DIR1_BLOCK
;
667 block
-= direct_blks
;
668 if (block
< direct_blks
) {
669 offset
[n
++] = NODE_DIR2_BLOCK
;
675 block
-= direct_blks
;
676 if (block
< indirect_blks
) {
677 offset
[n
++] = NODE_IND1_BLOCK
;
679 offset
[n
++] = block
/ direct_blks
;
680 noffset
[n
] = 4 + offset
[n
- 1];
681 offset
[n
] = block
% direct_blks
;
685 block
-= indirect_blks
;
686 if (block
< indirect_blks
) {
687 offset
[n
++] = NODE_IND2_BLOCK
;
688 noffset
[n
] = 4 + dptrs_per_blk
;
689 offset
[n
++] = block
/ direct_blks
;
690 noffset
[n
] = 5 + dptrs_per_blk
+ offset
[n
- 1];
691 offset
[n
] = block
% direct_blks
;
695 block
-= indirect_blks
;
696 if (block
< dindirect_blks
) {
697 offset
[n
++] = NODE_DIND_BLOCK
;
698 noffset
[n
] = 5 + (dptrs_per_blk
* 2);
699 offset
[n
++] = block
/ indirect_blks
;
700 noffset
[n
] = 6 + (dptrs_per_blk
* 2) +
701 offset
[n
- 1] * (dptrs_per_blk
+ 1);
702 offset
[n
++] = (block
/ direct_blks
) % dptrs_per_blk
;
703 noffset
[n
] = 7 + (dptrs_per_blk
* 2) +
704 offset
[n
- 2] * (dptrs_per_blk
+ 1) +
706 offset
[n
] = block
% direct_blks
;
717 * Caller should call f2fs_put_dnode(dn).
718 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
719 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
720 * In the case of RDONLY_NODE, we don't need to care about mutex.
722 int f2fs_get_dnode_of_data(struct dnode_of_data
*dn
, pgoff_t index
, int mode
)
724 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
725 struct page
*npage
[4];
726 struct page
*parent
= NULL
;
728 unsigned int noffset
[4];
733 level
= get_node_path(dn
->inode
, index
, offset
, noffset
);
737 nids
[0] = dn
->inode
->i_ino
;
738 npage
[0] = dn
->inode_page
;
741 npage
[0] = f2fs_get_node_page(sbi
, nids
[0]);
742 if (IS_ERR(npage
[0]))
743 return PTR_ERR(npage
[0]);
746 /* if inline_data is set, should not report any block indices */
747 if (f2fs_has_inline_data(dn
->inode
) && index
) {
749 f2fs_put_page(npage
[0], 1);
755 nids
[1] = get_nid(parent
, offset
[0], true);
756 dn
->inode_page
= npage
[0];
757 dn
->inode_page_locked
= true;
759 /* get indirect or direct nodes */
760 for (i
= 1; i
<= level
; i
++) {
763 if (!nids
[i
] && mode
== ALLOC_NODE
) {
765 if (!f2fs_alloc_nid(sbi
, &(nids
[i
]))) {
771 npage
[i
] = f2fs_new_node_page(dn
, noffset
[i
]);
772 if (IS_ERR(npage
[i
])) {
773 f2fs_alloc_nid_failed(sbi
, nids
[i
]);
774 err
= PTR_ERR(npage
[i
]);
778 set_nid(parent
, offset
[i
- 1], nids
[i
], i
== 1);
779 f2fs_alloc_nid_done(sbi
, nids
[i
]);
781 } else if (mode
== LOOKUP_NODE_RA
&& i
== level
&& level
> 1) {
782 npage
[i
] = f2fs_get_node_page_ra(parent
, offset
[i
- 1]);
783 if (IS_ERR(npage
[i
])) {
784 err
= PTR_ERR(npage
[i
]);
790 dn
->inode_page_locked
= false;
793 f2fs_put_page(parent
, 1);
797 npage
[i
] = f2fs_get_node_page(sbi
, nids
[i
]);
798 if (IS_ERR(npage
[i
])) {
799 err
= PTR_ERR(npage
[i
]);
800 f2fs_put_page(npage
[0], 0);
806 nids
[i
+ 1] = get_nid(parent
, offset
[i
], false);
809 dn
->nid
= nids
[level
];
810 dn
->ofs_in_node
= offset
[level
];
811 dn
->node_page
= npage
[level
];
812 dn
->data_blkaddr
= datablock_addr(dn
->inode
,
813 dn
->node_page
, dn
->ofs_in_node
);
817 f2fs_put_page(parent
, 1);
819 f2fs_put_page(npage
[0], 0);
821 dn
->inode_page
= NULL
;
822 dn
->node_page
= NULL
;
823 if (err
== -ENOENT
) {
825 dn
->max_level
= level
;
826 dn
->ofs_in_node
= offset
[level
];
831 static int truncate_node(struct dnode_of_data
*dn
)
833 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
838 err
= f2fs_get_node_info(sbi
, dn
->nid
, &ni
);
842 /* Deallocate node address */
843 f2fs_invalidate_blocks(sbi
, ni
.blk_addr
);
844 dec_valid_node_count(sbi
, dn
->inode
, dn
->nid
== dn
->inode
->i_ino
);
845 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
847 if (dn
->nid
== dn
->inode
->i_ino
) {
848 f2fs_remove_orphan_inode(sbi
, dn
->nid
);
849 dec_valid_inode_count(sbi
);
850 f2fs_inode_synced(dn
->inode
);
853 clear_node_page_dirty(dn
->node_page
);
854 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
856 index
= dn
->node_page
->index
;
857 f2fs_put_page(dn
->node_page
, 1);
859 invalidate_mapping_pages(NODE_MAPPING(sbi
),
862 dn
->node_page
= NULL
;
863 trace_f2fs_truncate_node(dn
->inode
, dn
->nid
, ni
.blk_addr
);
868 static int truncate_dnode(struct dnode_of_data
*dn
)
876 /* get direct node */
877 page
= f2fs_get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
878 if (PTR_ERR(page
) == -ENOENT
)
880 else if (IS_ERR(page
))
881 return PTR_ERR(page
);
883 /* Make dnode_of_data for parameter */
884 dn
->node_page
= page
;
886 f2fs_truncate_data_blocks(dn
);
887 err
= truncate_node(dn
);
894 static int truncate_nodes(struct dnode_of_data
*dn
, unsigned int nofs
,
897 struct dnode_of_data rdn
= *dn
;
899 struct f2fs_node
*rn
;
901 unsigned int child_nofs
;
906 return NIDS_PER_BLOCK
+ 1;
908 trace_f2fs_truncate_nodes_enter(dn
->inode
, dn
->nid
, dn
->data_blkaddr
);
910 page
= f2fs_get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
912 trace_f2fs_truncate_nodes_exit(dn
->inode
, PTR_ERR(page
));
913 return PTR_ERR(page
);
916 f2fs_ra_node_pages(page
, ofs
, NIDS_PER_BLOCK
);
918 rn
= F2FS_NODE(page
);
920 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++, freed
++) {
921 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
925 ret
= truncate_dnode(&rdn
);
928 if (set_nid(page
, i
, 0, false))
929 dn
->node_changed
= true;
932 child_nofs
= nofs
+ ofs
* (NIDS_PER_BLOCK
+ 1) + 1;
933 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++) {
934 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
935 if (child_nid
== 0) {
936 child_nofs
+= NIDS_PER_BLOCK
+ 1;
940 ret
= truncate_nodes(&rdn
, child_nofs
, 0, depth
- 1);
941 if (ret
== (NIDS_PER_BLOCK
+ 1)) {
942 if (set_nid(page
, i
, 0, false))
943 dn
->node_changed
= true;
945 } else if (ret
< 0 && ret
!= -ENOENT
) {
953 /* remove current indirect node */
954 dn
->node_page
= page
;
955 ret
= truncate_node(dn
);
960 f2fs_put_page(page
, 1);
962 trace_f2fs_truncate_nodes_exit(dn
->inode
, freed
);
966 f2fs_put_page(page
, 1);
967 trace_f2fs_truncate_nodes_exit(dn
->inode
, ret
);
971 static int truncate_partial_nodes(struct dnode_of_data
*dn
,
972 struct f2fs_inode
*ri
, int *offset
, int depth
)
974 struct page
*pages
[2];
981 nid
[0] = le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
985 /* get indirect nodes in the path */
986 for (i
= 0; i
< idx
+ 1; i
++) {
987 /* reference count'll be increased */
988 pages
[i
] = f2fs_get_node_page(F2FS_I_SB(dn
->inode
), nid
[i
]);
989 if (IS_ERR(pages
[i
])) {
990 err
= PTR_ERR(pages
[i
]);
994 nid
[i
+ 1] = get_nid(pages
[i
], offset
[i
+ 1], false);
997 f2fs_ra_node_pages(pages
[idx
], offset
[idx
+ 1], NIDS_PER_BLOCK
);
999 /* free direct nodes linked to a partial indirect node */
1000 for (i
= offset
[idx
+ 1]; i
< NIDS_PER_BLOCK
; i
++) {
1001 child_nid
= get_nid(pages
[idx
], i
, false);
1004 dn
->nid
= child_nid
;
1005 err
= truncate_dnode(dn
);
1008 if (set_nid(pages
[idx
], i
, 0, false))
1009 dn
->node_changed
= true;
1012 if (offset
[idx
+ 1] == 0) {
1013 dn
->node_page
= pages
[idx
];
1015 err
= truncate_node(dn
);
1019 f2fs_put_page(pages
[idx
], 1);
1022 offset
[idx
+ 1] = 0;
1025 for (i
= idx
; i
>= 0; i
--)
1026 f2fs_put_page(pages
[i
], 1);
1028 trace_f2fs_truncate_partial_nodes(dn
->inode
, nid
, depth
, err
);
1034 * All the block addresses of data and nodes should be nullified.
1036 int f2fs_truncate_inode_blocks(struct inode
*inode
, pgoff_t from
)
1038 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1039 int err
= 0, cont
= 1;
1040 int level
, offset
[4], noffset
[4];
1041 unsigned int nofs
= 0;
1042 struct f2fs_inode
*ri
;
1043 struct dnode_of_data dn
;
1046 trace_f2fs_truncate_inode_blocks_enter(inode
, from
);
1048 level
= get_node_path(inode
, from
, offset
, noffset
);
1052 page
= f2fs_get_node_page(sbi
, inode
->i_ino
);
1054 trace_f2fs_truncate_inode_blocks_exit(inode
, PTR_ERR(page
));
1055 return PTR_ERR(page
);
1058 set_new_dnode(&dn
, inode
, page
, NULL
, 0);
1061 ri
= F2FS_INODE(page
);
1069 if (!offset
[level
- 1])
1071 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
1072 if (err
< 0 && err
!= -ENOENT
)
1074 nofs
+= 1 + NIDS_PER_BLOCK
;
1077 nofs
= 5 + 2 * NIDS_PER_BLOCK
;
1078 if (!offset
[level
- 1])
1080 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
1081 if (err
< 0 && err
!= -ENOENT
)
1090 dn
.nid
= le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
1091 switch (offset
[0]) {
1092 case NODE_DIR1_BLOCK
:
1093 case NODE_DIR2_BLOCK
:
1094 err
= truncate_dnode(&dn
);
1097 case NODE_IND1_BLOCK
:
1098 case NODE_IND2_BLOCK
:
1099 err
= truncate_nodes(&dn
, nofs
, offset
[1], 2);
1102 case NODE_DIND_BLOCK
:
1103 err
= truncate_nodes(&dn
, nofs
, offset
[1], 3);
1110 if (err
< 0 && err
!= -ENOENT
)
1112 if (offset
[1] == 0 &&
1113 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]) {
1115 BUG_ON(page
->mapping
!= NODE_MAPPING(sbi
));
1116 f2fs_wait_on_page_writeback(page
, NODE
, true, true);
1117 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
] = 0;
1118 set_page_dirty(page
);
1126 f2fs_put_page(page
, 0);
1127 trace_f2fs_truncate_inode_blocks_exit(inode
, err
);
1128 return err
> 0 ? 0 : err
;
1131 /* caller must lock inode page */
1132 int f2fs_truncate_xattr_node(struct inode
*inode
)
1134 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1135 nid_t nid
= F2FS_I(inode
)->i_xattr_nid
;
1136 struct dnode_of_data dn
;
1143 npage
= f2fs_get_node_page(sbi
, nid
);
1145 return PTR_ERR(npage
);
1147 set_new_dnode(&dn
, inode
, NULL
, npage
, nid
);
1148 err
= truncate_node(&dn
);
1150 f2fs_put_page(npage
, 1);
1154 f2fs_i_xnid_write(inode
, 0);
1160 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1163 int f2fs_remove_inode_page(struct inode
*inode
)
1165 struct dnode_of_data dn
;
1168 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
1169 err
= f2fs_get_dnode_of_data(&dn
, 0, LOOKUP_NODE
);
1173 err
= f2fs_truncate_xattr_node(inode
);
1175 f2fs_put_dnode(&dn
);
1179 /* remove potential inline_data blocks */
1180 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1181 S_ISLNK(inode
->i_mode
))
1182 f2fs_truncate_data_blocks_range(&dn
, 1);
1184 /* 0 is possible, after f2fs_new_inode() has failed */
1185 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode
)))) {
1186 f2fs_put_dnode(&dn
);
1190 if (unlikely(inode
->i_blocks
!= 0 && inode
->i_blocks
!= 8)) {
1191 f2fs_warn(F2FS_I_SB(inode
), "Inconsistent i_blocks, ino:%lu, iblocks:%llu",
1192 inode
->i_ino
, (unsigned long long)inode
->i_blocks
);
1193 set_sbi_flag(F2FS_I_SB(inode
), SBI_NEED_FSCK
);
1196 /* will put inode & node pages */
1197 err
= truncate_node(&dn
);
1199 f2fs_put_dnode(&dn
);
1205 struct page
*f2fs_new_inode_page(struct inode
*inode
)
1207 struct dnode_of_data dn
;
1209 /* allocate inode page for new inode */
1210 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
1212 /* caller should f2fs_put_page(page, 1); */
1213 return f2fs_new_node_page(&dn
, 0);
1216 struct page
*f2fs_new_node_page(struct dnode_of_data
*dn
, unsigned int ofs
)
1218 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
1219 struct node_info new_ni
;
1223 if (unlikely(is_inode_flag_set(dn
->inode
, FI_NO_ALLOC
)))
1224 return ERR_PTR(-EPERM
);
1226 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), dn
->nid
, false);
1228 return ERR_PTR(-ENOMEM
);
1230 if (unlikely((err
= inc_valid_node_count(sbi
, dn
->inode
, !ofs
))))
1233 #ifdef CONFIG_F2FS_CHECK_FS
1234 err
= f2fs_get_node_info(sbi
, dn
->nid
, &new_ni
);
1236 dec_valid_node_count(sbi
, dn
->inode
, !ofs
);
1239 f2fs_bug_on(sbi
, new_ni
.blk_addr
!= NULL_ADDR
);
1241 new_ni
.nid
= dn
->nid
;
1242 new_ni
.ino
= dn
->inode
->i_ino
;
1243 new_ni
.blk_addr
= NULL_ADDR
;
1246 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
1248 f2fs_wait_on_page_writeback(page
, NODE
, true, true);
1249 fill_node_footer(page
, dn
->nid
, dn
->inode
->i_ino
, ofs
, true);
1250 set_cold_node(page
, S_ISDIR(dn
->inode
->i_mode
));
1251 if (!PageUptodate(page
))
1252 SetPageUptodate(page
);
1253 if (set_page_dirty(page
))
1254 dn
->node_changed
= true;
1256 if (f2fs_has_xattr_block(ofs
))
1257 f2fs_i_xnid_write(dn
->inode
, dn
->nid
);
1260 inc_valid_inode_count(sbi
);
1264 clear_node_page_dirty(page
);
1265 f2fs_put_page(page
, 1);
1266 return ERR_PTR(err
);
1270 * Caller should do after getting the following values.
1271 * 0: f2fs_put_page(page, 0)
1272 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1274 static int read_node_page(struct page
*page
, int op_flags
)
1276 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1277 struct node_info ni
;
1278 struct f2fs_io_info fio
= {
1282 .op_flags
= op_flags
,
1284 .encrypted_page
= NULL
,
1288 if (PageUptodate(page
)) {
1289 if (!f2fs_inode_chksum_verify(sbi
, page
)) {
1290 ClearPageUptodate(page
);
1296 err
= f2fs_get_node_info(sbi
, page
->index
, &ni
);
1300 if (unlikely(ni
.blk_addr
== NULL_ADDR
) ||
1301 is_sbi_flag_set(sbi
, SBI_IS_SHUTDOWN
)) {
1302 ClearPageUptodate(page
);
1306 fio
.new_blkaddr
= fio
.old_blkaddr
= ni
.blk_addr
;
1307 return f2fs_submit_page_bio(&fio
);
1311 * Readahead a node page
1313 void f2fs_ra_node_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
1320 if (f2fs_check_nid_range(sbi
, nid
))
1323 apage
= xa_load(&NODE_MAPPING(sbi
)->i_pages
, nid
);
1327 apage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1331 err
= read_node_page(apage
, REQ_RAHEAD
);
1332 f2fs_put_page(apage
, err
? 1 : 0);
1335 static struct page
*__get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
,
1336 struct page
*parent
, int start
)
1342 return ERR_PTR(-ENOENT
);
1343 if (f2fs_check_nid_range(sbi
, nid
))
1344 return ERR_PTR(-EINVAL
);
1346 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1348 return ERR_PTR(-ENOMEM
);
1350 err
= read_node_page(page
, 0);
1352 f2fs_put_page(page
, 1);
1353 return ERR_PTR(err
);
1354 } else if (err
== LOCKED_PAGE
) {
1360 f2fs_ra_node_pages(parent
, start
+ 1, MAX_RA_NODE
);
1364 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1365 f2fs_put_page(page
, 1);
1369 if (unlikely(!PageUptodate(page
))) {
1374 if (!f2fs_inode_chksum_verify(sbi
, page
)) {
1379 if(unlikely(nid
!= nid_of_node(page
))) {
1380 f2fs_warn(sbi
, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1381 nid
, nid_of_node(page
), ino_of_node(page
),
1382 ofs_of_node(page
), cpver_of_node(page
),
1383 next_blkaddr_of_node(page
));
1386 ClearPageUptodate(page
);
1387 f2fs_put_page(page
, 1);
1388 return ERR_PTR(err
);
1393 struct page
*f2fs_get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
)
1395 return __get_node_page(sbi
, nid
, NULL
, 0);
1398 struct page
*f2fs_get_node_page_ra(struct page
*parent
, int start
)
1400 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
1401 nid_t nid
= get_nid(parent
, start
, false);
1403 return __get_node_page(sbi
, nid
, parent
, start
);
1406 static void flush_inline_data(struct f2fs_sb_info
*sbi
, nid_t ino
)
1408 struct inode
*inode
;
1412 /* should flush inline_data before evict_inode */
1413 inode
= ilookup(sbi
->sb
, ino
);
1417 page
= f2fs_pagecache_get_page(inode
->i_mapping
, 0,
1418 FGP_LOCK
|FGP_NOWAIT
, 0);
1422 if (!PageUptodate(page
))
1425 if (!PageDirty(page
))
1428 if (!clear_page_dirty_for_io(page
))
1431 ret
= f2fs_write_inline_data(inode
, page
);
1432 inode_dec_dirty_pages(inode
);
1433 f2fs_remove_dirty_inode(inode
);
1435 set_page_dirty(page
);
1437 f2fs_put_page(page
, 1);
1442 static struct page
*last_fsync_dnode(struct f2fs_sb_info
*sbi
, nid_t ino
)
1445 struct pagevec pvec
;
1446 struct page
*last_page
= NULL
;
1449 pagevec_init(&pvec
);
1452 while ((nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1453 PAGECACHE_TAG_DIRTY
))) {
1456 for (i
= 0; i
< nr_pages
; i
++) {
1457 struct page
*page
= pvec
.pages
[i
];
1459 if (unlikely(f2fs_cp_error(sbi
))) {
1460 f2fs_put_page(last_page
, 0);
1461 pagevec_release(&pvec
);
1462 return ERR_PTR(-EIO
);
1465 if (!IS_DNODE(page
) || !is_cold_node(page
))
1467 if (ino_of_node(page
) != ino
)
1472 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1477 if (ino_of_node(page
) != ino
)
1478 goto continue_unlock
;
1480 if (!PageDirty(page
)) {
1481 /* someone wrote it for us */
1482 goto continue_unlock
;
1486 f2fs_put_page(last_page
, 0);
1492 pagevec_release(&pvec
);
1498 static int __write_node_page(struct page
*page
, bool atomic
, bool *submitted
,
1499 struct writeback_control
*wbc
, bool do_balance
,
1500 enum iostat_type io_type
, unsigned int *seq_id
)
1502 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1504 struct node_info ni
;
1505 struct f2fs_io_info fio
= {
1507 .ino
= ino_of_node(page
),
1510 .op_flags
= wbc_to_write_flags(wbc
),
1512 .encrypted_page
= NULL
,
1519 trace_f2fs_writepage(page
, NODE
);
1521 if (unlikely(f2fs_cp_error(sbi
)))
1524 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1527 if (!is_sbi_flag_set(sbi
, SBI_CP_DISABLED
) &&
1528 wbc
->sync_mode
== WB_SYNC_NONE
&&
1529 IS_DNODE(page
) && is_cold_node(page
))
1532 /* get old block addr of this node page */
1533 nid
= nid_of_node(page
);
1534 f2fs_bug_on(sbi
, page
->index
!= nid
);
1536 if (f2fs_get_node_info(sbi
, nid
, &ni
))
1539 if (wbc
->for_reclaim
) {
1540 if (!down_read_trylock(&sbi
->node_write
))
1543 down_read(&sbi
->node_write
);
1546 /* This page is already truncated */
1547 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1548 ClearPageUptodate(page
);
1549 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1550 up_read(&sbi
->node_write
);
1555 if (__is_valid_data_blkaddr(ni
.blk_addr
) &&
1556 !f2fs_is_valid_blkaddr(sbi
, ni
.blk_addr
,
1557 DATA_GENERIC_ENHANCE
)) {
1558 up_read(&sbi
->node_write
);
1562 if (atomic
&& !test_opt(sbi
, NOBARRIER
))
1563 fio
.op_flags
|= REQ_PREFLUSH
| REQ_FUA
;
1565 /* should add to global list before clearing PAGECACHE status */
1566 if (f2fs_in_warm_node_list(sbi
, page
)) {
1567 seq
= f2fs_add_fsync_node_entry(sbi
, page
);
1572 set_page_writeback(page
);
1573 ClearPageError(page
);
1575 fio
.old_blkaddr
= ni
.blk_addr
;
1576 f2fs_do_write_node_page(nid
, &fio
);
1577 set_node_addr(sbi
, &ni
, fio
.new_blkaddr
, is_fsync_dnode(page
));
1578 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1579 up_read(&sbi
->node_write
);
1581 if (wbc
->for_reclaim
) {
1582 f2fs_submit_merged_write_cond(sbi
, NULL
, page
, 0, NODE
);
1588 if (unlikely(f2fs_cp_error(sbi
))) {
1589 f2fs_submit_merged_write(sbi
, NODE
);
1593 *submitted
= fio
.submitted
;
1596 f2fs_balance_fs(sbi
, false);
1600 redirty_page_for_writepage(wbc
, page
);
1601 return AOP_WRITEPAGE_ACTIVATE
;
1604 int f2fs_move_node_page(struct page
*node_page
, int gc_type
)
1608 if (gc_type
== FG_GC
) {
1609 struct writeback_control wbc
= {
1610 .sync_mode
= WB_SYNC_ALL
,
1615 f2fs_wait_on_page_writeback(node_page
, NODE
, true, true);
1617 set_page_dirty(node_page
);
1619 if (!clear_page_dirty_for_io(node_page
)) {
1624 if (__write_node_page(node_page
, false, NULL
,
1625 &wbc
, false, FS_GC_NODE_IO
, NULL
)) {
1627 unlock_page(node_page
);
1631 /* set page dirty and write it */
1632 if (!PageWriteback(node_page
))
1633 set_page_dirty(node_page
);
1636 unlock_page(node_page
);
1638 f2fs_put_page(node_page
, 0);
1642 static int f2fs_write_node_page(struct page
*page
,
1643 struct writeback_control
*wbc
)
1645 return __write_node_page(page
, false, NULL
, wbc
, false,
1649 int f2fs_fsync_node_pages(struct f2fs_sb_info
*sbi
, struct inode
*inode
,
1650 struct writeback_control
*wbc
, bool atomic
,
1651 unsigned int *seq_id
)
1654 struct pagevec pvec
;
1656 struct page
*last_page
= NULL
;
1657 bool marked
= false;
1658 nid_t ino
= inode
->i_ino
;
1663 last_page
= last_fsync_dnode(sbi
, ino
);
1664 if (IS_ERR_OR_NULL(last_page
))
1665 return PTR_ERR_OR_ZERO(last_page
);
1668 pagevec_init(&pvec
);
1671 while ((nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1672 PAGECACHE_TAG_DIRTY
))) {
1675 for (i
= 0; i
< nr_pages
; i
++) {
1676 struct page
*page
= pvec
.pages
[i
];
1677 bool submitted
= false;
1679 if (unlikely(f2fs_cp_error(sbi
))) {
1680 f2fs_put_page(last_page
, 0);
1681 pagevec_release(&pvec
);
1686 if (!IS_DNODE(page
) || !is_cold_node(page
))
1688 if (ino_of_node(page
) != ino
)
1693 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1698 if (ino_of_node(page
) != ino
)
1699 goto continue_unlock
;
1701 if (!PageDirty(page
) && page
!= last_page
) {
1702 /* someone wrote it for us */
1703 goto continue_unlock
;
1706 f2fs_wait_on_page_writeback(page
, NODE
, true, true);
1708 set_fsync_mark(page
, 0);
1709 set_dentry_mark(page
, 0);
1711 if (!atomic
|| page
== last_page
) {
1712 set_fsync_mark(page
, 1);
1713 if (IS_INODE(page
)) {
1714 if (is_inode_flag_set(inode
,
1716 f2fs_update_inode(inode
, page
);
1717 set_dentry_mark(page
,
1718 f2fs_need_dentry_mark(sbi
, ino
));
1720 /* may be written by other thread */
1721 if (!PageDirty(page
))
1722 set_page_dirty(page
);
1725 if (!clear_page_dirty_for_io(page
))
1726 goto continue_unlock
;
1728 ret
= __write_node_page(page
, atomic
&&
1730 &submitted
, wbc
, true,
1731 FS_NODE_IO
, seq_id
);
1734 f2fs_put_page(last_page
, 0);
1736 } else if (submitted
) {
1740 if (page
== last_page
) {
1741 f2fs_put_page(page
, 0);
1746 pagevec_release(&pvec
);
1752 if (!ret
&& atomic
&& !marked
) {
1753 f2fs_debug(sbi
, "Retry to write fsync mark: ino=%u, idx=%lx",
1754 ino
, last_page
->index
);
1755 lock_page(last_page
);
1756 f2fs_wait_on_page_writeback(last_page
, NODE
, true, true);
1757 set_page_dirty(last_page
);
1758 unlock_page(last_page
);
1763 f2fs_submit_merged_write_cond(sbi
, NULL
, NULL
, ino
, NODE
);
1764 return ret
? -EIO
: 0;
1767 static int f2fs_match_ino(struct inode
*inode
, unsigned long ino
, void *data
)
1769 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
1772 if (inode
->i_ino
!= ino
)
1775 if (!is_inode_flag_set(inode
, FI_DIRTY_INODE
))
1778 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
1779 clean
= list_empty(&F2FS_I(inode
)->gdirty_list
);
1780 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
1785 inode
= igrab(inode
);
1791 static bool flush_dirty_inode(struct page
*page
)
1793 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1794 struct inode
*inode
;
1795 nid_t ino
= ino_of_node(page
);
1797 inode
= find_inode_nowait(sbi
->sb
, ino
, f2fs_match_ino
, NULL
);
1801 f2fs_update_inode(inode
, page
);
1808 int f2fs_sync_node_pages(struct f2fs_sb_info
*sbi
,
1809 struct writeback_control
*wbc
,
1810 bool do_balance
, enum iostat_type io_type
)
1813 struct pagevec pvec
;
1817 int nr_pages
, done
= 0;
1819 pagevec_init(&pvec
);
1824 while (!done
&& (nr_pages
= pagevec_lookup_tag(&pvec
,
1825 NODE_MAPPING(sbi
), &index
, PAGECACHE_TAG_DIRTY
))) {
1828 for (i
= 0; i
< nr_pages
; i
++) {
1829 struct page
*page
= pvec
.pages
[i
];
1830 bool submitted
= false;
1831 bool may_dirty
= true;
1833 /* give a priority to WB_SYNC threads */
1834 if (atomic_read(&sbi
->wb_sync_req
[NODE
]) &&
1835 wbc
->sync_mode
== WB_SYNC_NONE
) {
1841 * flushing sequence with step:
1846 if (step
== 0 && IS_DNODE(page
))
1848 if (step
== 1 && (!IS_DNODE(page
) ||
1849 is_cold_node(page
)))
1851 if (step
== 2 && (!IS_DNODE(page
) ||
1852 !is_cold_node(page
)))
1855 if (wbc
->sync_mode
== WB_SYNC_ALL
)
1857 else if (!trylock_page(page
))
1860 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1866 if (!PageDirty(page
)) {
1867 /* someone wrote it for us */
1868 goto continue_unlock
;
1871 /* flush inline_data */
1872 if (is_inline_node(page
)) {
1873 clear_inline_node(page
);
1875 flush_inline_data(sbi
, ino_of_node(page
));
1879 /* flush dirty inode */
1880 if (IS_INODE(page
) && may_dirty
) {
1882 if (flush_dirty_inode(page
))
1886 f2fs_wait_on_page_writeback(page
, NODE
, true, true);
1888 if (!clear_page_dirty_for_io(page
))
1889 goto continue_unlock
;
1891 set_fsync_mark(page
, 0);
1892 set_dentry_mark(page
, 0);
1894 ret
= __write_node_page(page
, false, &submitted
,
1895 wbc
, do_balance
, io_type
, NULL
);
1901 if (--wbc
->nr_to_write
== 0)
1904 pagevec_release(&pvec
);
1907 if (wbc
->nr_to_write
== 0) {
1914 if (!is_sbi_flag_set(sbi
, SBI_CP_DISABLED
) &&
1915 wbc
->sync_mode
== WB_SYNC_NONE
&& step
== 1)
1922 f2fs_submit_merged_write(sbi
, NODE
);
1924 if (unlikely(f2fs_cp_error(sbi
)))
1929 int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info
*sbi
,
1930 unsigned int seq_id
)
1932 struct fsync_node_entry
*fn
;
1934 struct list_head
*head
= &sbi
->fsync_node_list
;
1935 unsigned long flags
;
1936 unsigned int cur_seq_id
= 0;
1939 while (seq_id
&& cur_seq_id
< seq_id
) {
1940 spin_lock_irqsave(&sbi
->fsync_node_lock
, flags
);
1941 if (list_empty(head
)) {
1942 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
1945 fn
= list_first_entry(head
, struct fsync_node_entry
, list
);
1946 if (fn
->seq_id
> seq_id
) {
1947 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
1950 cur_seq_id
= fn
->seq_id
;
1953 spin_unlock_irqrestore(&sbi
->fsync_node_lock
, flags
);
1955 f2fs_wait_on_page_writeback(page
, NODE
, true, false);
1956 if (TestClearPageError(page
))
1965 ret2
= filemap_check_errors(NODE_MAPPING(sbi
));
1972 static int f2fs_write_node_pages(struct address_space
*mapping
,
1973 struct writeback_control
*wbc
)
1975 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
1976 struct blk_plug plug
;
1979 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1982 /* balancing f2fs's metadata in background */
1983 f2fs_balance_fs_bg(sbi
);
1985 /* collect a number of dirty node pages and write together */
1986 if (wbc
->sync_mode
!= WB_SYNC_ALL
&&
1987 get_pages(sbi
, F2FS_DIRTY_NODES
) <
1988 nr_pages_to_skip(sbi
, NODE
))
1991 if (wbc
->sync_mode
== WB_SYNC_ALL
)
1992 atomic_inc(&sbi
->wb_sync_req
[NODE
]);
1993 else if (atomic_read(&sbi
->wb_sync_req
[NODE
]))
1996 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1998 diff
= nr_pages_to_write(sbi
, NODE
, wbc
);
1999 blk_start_plug(&plug
);
2000 f2fs_sync_node_pages(sbi
, wbc
, true, FS_NODE_IO
);
2001 blk_finish_plug(&plug
);
2002 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- diff
);
2004 if (wbc
->sync_mode
== WB_SYNC_ALL
)
2005 atomic_dec(&sbi
->wb_sync_req
[NODE
]);
2009 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_NODES
);
2010 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
2014 static int f2fs_set_node_page_dirty(struct page
*page
)
2016 trace_f2fs_set_page_dirty(page
, NODE
);
2018 if (!PageUptodate(page
))
2019 SetPageUptodate(page
);
2020 #ifdef CONFIG_F2FS_CHECK_FS
2022 f2fs_inode_chksum_set(F2FS_P_SB(page
), page
);
2024 if (!PageDirty(page
)) {
2025 __set_page_dirty_nobuffers(page
);
2026 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
2027 f2fs_set_page_private(page
, 0);
2028 f2fs_trace_pid(page
);
2035 * Structure of the f2fs node operations
2037 const struct address_space_operations f2fs_node_aops
= {
2038 .writepage
= f2fs_write_node_page
,
2039 .writepages
= f2fs_write_node_pages
,
2040 .set_page_dirty
= f2fs_set_node_page_dirty
,
2041 .invalidatepage
= f2fs_invalidate_page
,
2042 .releasepage
= f2fs_release_page
,
2043 #ifdef CONFIG_MIGRATION
2044 .migratepage
= f2fs_migrate_page
,
2048 static struct free_nid
*__lookup_free_nid_list(struct f2fs_nm_info
*nm_i
,
2051 return radix_tree_lookup(&nm_i
->free_nid_root
, n
);
2054 static int __insert_free_nid(struct f2fs_sb_info
*sbi
,
2055 struct free_nid
*i
, enum nid_state state
)
2057 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2059 int err
= radix_tree_insert(&nm_i
->free_nid_root
, i
->nid
, i
);
2063 f2fs_bug_on(sbi
, state
!= i
->state
);
2064 nm_i
->nid_cnt
[state
]++;
2065 if (state
== FREE_NID
)
2066 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
2070 static void __remove_free_nid(struct f2fs_sb_info
*sbi
,
2071 struct free_nid
*i
, enum nid_state state
)
2073 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2075 f2fs_bug_on(sbi
, state
!= i
->state
);
2076 nm_i
->nid_cnt
[state
]--;
2077 if (state
== FREE_NID
)
2079 radix_tree_delete(&nm_i
->free_nid_root
, i
->nid
);
2082 static void __move_free_nid(struct f2fs_sb_info
*sbi
, struct free_nid
*i
,
2083 enum nid_state org_state
, enum nid_state dst_state
)
2085 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2087 f2fs_bug_on(sbi
, org_state
!= i
->state
);
2088 i
->state
= dst_state
;
2089 nm_i
->nid_cnt
[org_state
]--;
2090 nm_i
->nid_cnt
[dst_state
]++;
2092 switch (dst_state
) {
2097 list_add_tail(&i
->list
, &nm_i
->free_nid_list
);
2104 static void update_free_nid_bitmap(struct f2fs_sb_info
*sbi
, nid_t nid
,
2105 bool set
, bool build
)
2107 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2108 unsigned int nat_ofs
= NAT_BLOCK_OFFSET(nid
);
2109 unsigned int nid_ofs
= nid
- START_NID(nid
);
2111 if (!test_bit_le(nat_ofs
, nm_i
->nat_block_bitmap
))
2115 if (test_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]))
2117 __set_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]);
2118 nm_i
->free_nid_count
[nat_ofs
]++;
2120 if (!test_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]))
2122 __clear_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]);
2124 nm_i
->free_nid_count
[nat_ofs
]--;
2128 /* return if the nid is recognized as free */
2129 static bool add_free_nid(struct f2fs_sb_info
*sbi
,
2130 nid_t nid
, bool build
, bool update
)
2132 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2133 struct free_nid
*i
, *e
;
2134 struct nat_entry
*ne
;
2138 /* 0 nid should not be used */
2139 if (unlikely(nid
== 0))
2142 if (unlikely(f2fs_check_nid_range(sbi
, nid
)))
2145 i
= f2fs_kmem_cache_alloc(free_nid_slab
, GFP_NOFS
);
2147 i
->state
= FREE_NID
;
2149 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
2151 spin_lock(&nm_i
->nid_list_lock
);
2159 * - __insert_nid_to_list(PREALLOC_NID)
2160 * - f2fs_balance_fs_bg
2161 * - f2fs_build_free_nids
2162 * - __f2fs_build_free_nids
2165 * - __lookup_nat_cache
2167 * - f2fs_init_inode_metadata
2168 * - f2fs_new_inode_page
2169 * - f2fs_new_node_page
2171 * - f2fs_alloc_nid_done
2172 * - __remove_nid_from_list(PREALLOC_NID)
2173 * - __insert_nid_to_list(FREE_NID)
2175 ne
= __lookup_nat_cache(nm_i
, nid
);
2176 if (ne
&& (!get_nat_flag(ne
, IS_CHECKPOINTED
) ||
2177 nat_get_blkaddr(ne
) != NULL_ADDR
))
2180 e
= __lookup_free_nid_list(nm_i
, nid
);
2182 if (e
->state
== FREE_NID
)
2188 err
= __insert_free_nid(sbi
, i
, FREE_NID
);
2191 update_free_nid_bitmap(sbi
, nid
, ret
, build
);
2193 nm_i
->available_nids
++;
2195 spin_unlock(&nm_i
->nid_list_lock
);
2196 radix_tree_preload_end();
2199 kmem_cache_free(free_nid_slab
, i
);
2203 static void remove_free_nid(struct f2fs_sb_info
*sbi
, nid_t nid
)
2205 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2207 bool need_free
= false;
2209 spin_lock(&nm_i
->nid_list_lock
);
2210 i
= __lookup_free_nid_list(nm_i
, nid
);
2211 if (i
&& i
->state
== FREE_NID
) {
2212 __remove_free_nid(sbi
, i
, FREE_NID
);
2215 spin_unlock(&nm_i
->nid_list_lock
);
2218 kmem_cache_free(free_nid_slab
, i
);
2221 static int scan_nat_page(struct f2fs_sb_info
*sbi
,
2222 struct page
*nat_page
, nid_t start_nid
)
2224 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2225 struct f2fs_nat_block
*nat_blk
= page_address(nat_page
);
2227 unsigned int nat_ofs
= NAT_BLOCK_OFFSET(start_nid
);
2230 __set_bit_le(nat_ofs
, nm_i
->nat_block_bitmap
);
2232 i
= start_nid
% NAT_ENTRY_PER_BLOCK
;
2234 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++, start_nid
++) {
2235 if (unlikely(start_nid
>= nm_i
->max_nid
))
2238 blk_addr
= le32_to_cpu(nat_blk
->entries
[i
].block_addr
);
2240 if (blk_addr
== NEW_ADDR
)
2243 if (blk_addr
== NULL_ADDR
) {
2244 add_free_nid(sbi
, start_nid
, true, true);
2246 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2247 update_free_nid_bitmap(sbi
, start_nid
, false, true);
2248 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2255 static void scan_curseg_cache(struct f2fs_sb_info
*sbi
)
2257 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2258 struct f2fs_journal
*journal
= curseg
->journal
;
2261 down_read(&curseg
->journal_rwsem
);
2262 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2266 addr
= le32_to_cpu(nat_in_journal(journal
, i
).block_addr
);
2267 nid
= le32_to_cpu(nid_in_journal(journal
, i
));
2268 if (addr
== NULL_ADDR
)
2269 add_free_nid(sbi
, nid
, true, false);
2271 remove_free_nid(sbi
, nid
);
2273 up_read(&curseg
->journal_rwsem
);
2276 static void scan_free_nid_bits(struct f2fs_sb_info
*sbi
)
2278 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2279 unsigned int i
, idx
;
2282 down_read(&nm_i
->nat_tree_lock
);
2284 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2285 if (!test_bit_le(i
, nm_i
->nat_block_bitmap
))
2287 if (!nm_i
->free_nid_count
[i
])
2289 for (idx
= 0; idx
< NAT_ENTRY_PER_BLOCK
; idx
++) {
2290 idx
= find_next_bit_le(nm_i
->free_nid_bitmap
[i
],
2291 NAT_ENTRY_PER_BLOCK
, idx
);
2292 if (idx
>= NAT_ENTRY_PER_BLOCK
)
2295 nid
= i
* NAT_ENTRY_PER_BLOCK
+ idx
;
2296 add_free_nid(sbi
, nid
, true, false);
2298 if (nm_i
->nid_cnt
[FREE_NID
] >= MAX_FREE_NIDS
)
2303 scan_curseg_cache(sbi
);
2305 up_read(&nm_i
->nat_tree_lock
);
2308 static int __f2fs_build_free_nids(struct f2fs_sb_info
*sbi
,
2309 bool sync
, bool mount
)
2311 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2313 nid_t nid
= nm_i
->next_scan_nid
;
2315 if (unlikely(nid
>= nm_i
->max_nid
))
2318 /* Enough entries */
2319 if (nm_i
->nid_cnt
[FREE_NID
] >= NAT_ENTRY_PER_BLOCK
)
2322 if (!sync
&& !f2fs_available_free_memory(sbi
, FREE_NIDS
))
2326 /* try to find free nids in free_nid_bitmap */
2327 scan_free_nid_bits(sbi
);
2329 if (nm_i
->nid_cnt
[FREE_NID
] >= NAT_ENTRY_PER_BLOCK
)
2333 /* readahead nat pages to be scanned */
2334 f2fs_ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), FREE_NID_PAGES
,
2337 down_read(&nm_i
->nat_tree_lock
);
2340 if (!test_bit_le(NAT_BLOCK_OFFSET(nid
),
2341 nm_i
->nat_block_bitmap
)) {
2342 struct page
*page
= get_current_nat_page(sbi
, nid
);
2345 ret
= PTR_ERR(page
);
2347 ret
= scan_nat_page(sbi
, page
, nid
);
2348 f2fs_put_page(page
, 1);
2352 up_read(&nm_i
->nat_tree_lock
);
2353 f2fs_err(sbi
, "NAT is corrupt, run fsck to fix it");
2358 nid
+= (NAT_ENTRY_PER_BLOCK
- (nid
% NAT_ENTRY_PER_BLOCK
));
2359 if (unlikely(nid
>= nm_i
->max_nid
))
2362 if (++i
>= FREE_NID_PAGES
)
2366 /* go to the next free nat pages to find free nids abundantly */
2367 nm_i
->next_scan_nid
= nid
;
2369 /* find free nids from current sum_pages */
2370 scan_curseg_cache(sbi
);
2372 up_read(&nm_i
->nat_tree_lock
);
2374 f2fs_ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nm_i
->next_scan_nid
),
2375 nm_i
->ra_nid_pages
, META_NAT
, false);
2380 int f2fs_build_free_nids(struct f2fs_sb_info
*sbi
, bool sync
, bool mount
)
2384 mutex_lock(&NM_I(sbi
)->build_lock
);
2385 ret
= __f2fs_build_free_nids(sbi
, sync
, mount
);
2386 mutex_unlock(&NM_I(sbi
)->build_lock
);
2392 * If this function returns success, caller can obtain a new nid
2393 * from second parameter of this function.
2394 * The returned nid could be used ino as well as nid when inode is created.
2396 bool f2fs_alloc_nid(struct f2fs_sb_info
*sbi
, nid_t
*nid
)
2398 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2399 struct free_nid
*i
= NULL
;
2401 if (time_to_inject(sbi
, FAULT_ALLOC_NID
)) {
2402 f2fs_show_injection_info(sbi
, FAULT_ALLOC_NID
);
2406 spin_lock(&nm_i
->nid_list_lock
);
2408 if (unlikely(nm_i
->available_nids
== 0)) {
2409 spin_unlock(&nm_i
->nid_list_lock
);
2413 /* We should not use stale free nids created by f2fs_build_free_nids */
2414 if (nm_i
->nid_cnt
[FREE_NID
] && !on_f2fs_build_free_nids(nm_i
)) {
2415 f2fs_bug_on(sbi
, list_empty(&nm_i
->free_nid_list
));
2416 i
= list_first_entry(&nm_i
->free_nid_list
,
2417 struct free_nid
, list
);
2420 __move_free_nid(sbi
, i
, FREE_NID
, PREALLOC_NID
);
2421 nm_i
->available_nids
--;
2423 update_free_nid_bitmap(sbi
, *nid
, false, false);
2425 spin_unlock(&nm_i
->nid_list_lock
);
2428 spin_unlock(&nm_i
->nid_list_lock
);
2430 /* Let's scan nat pages and its caches to get free nids */
2431 if (!f2fs_build_free_nids(sbi
, true, false))
2437 * f2fs_alloc_nid() should be called prior to this function.
2439 void f2fs_alloc_nid_done(struct f2fs_sb_info
*sbi
, nid_t nid
)
2441 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2444 spin_lock(&nm_i
->nid_list_lock
);
2445 i
= __lookup_free_nid_list(nm_i
, nid
);
2446 f2fs_bug_on(sbi
, !i
);
2447 __remove_free_nid(sbi
, i
, PREALLOC_NID
);
2448 spin_unlock(&nm_i
->nid_list_lock
);
2450 kmem_cache_free(free_nid_slab
, i
);
2454 * f2fs_alloc_nid() should be called prior to this function.
2456 void f2fs_alloc_nid_failed(struct f2fs_sb_info
*sbi
, nid_t nid
)
2458 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2460 bool need_free
= false;
2465 spin_lock(&nm_i
->nid_list_lock
);
2466 i
= __lookup_free_nid_list(nm_i
, nid
);
2467 f2fs_bug_on(sbi
, !i
);
2469 if (!f2fs_available_free_memory(sbi
, FREE_NIDS
)) {
2470 __remove_free_nid(sbi
, i
, PREALLOC_NID
);
2473 __move_free_nid(sbi
, i
, PREALLOC_NID
, FREE_NID
);
2476 nm_i
->available_nids
++;
2478 update_free_nid_bitmap(sbi
, nid
, true, false);
2480 spin_unlock(&nm_i
->nid_list_lock
);
2483 kmem_cache_free(free_nid_slab
, i
);
2486 int f2fs_try_to_free_nids(struct f2fs_sb_info
*sbi
, int nr_shrink
)
2488 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2489 struct free_nid
*i
, *next
;
2492 if (nm_i
->nid_cnt
[FREE_NID
] <= MAX_FREE_NIDS
)
2495 if (!mutex_trylock(&nm_i
->build_lock
))
2498 spin_lock(&nm_i
->nid_list_lock
);
2499 list_for_each_entry_safe(i
, next
, &nm_i
->free_nid_list
, list
) {
2500 if (nr_shrink
<= 0 ||
2501 nm_i
->nid_cnt
[FREE_NID
] <= MAX_FREE_NIDS
)
2504 __remove_free_nid(sbi
, i
, FREE_NID
);
2505 kmem_cache_free(free_nid_slab
, i
);
2508 spin_unlock(&nm_i
->nid_list_lock
);
2509 mutex_unlock(&nm_i
->build_lock
);
2511 return nr
- nr_shrink
;
2514 void f2fs_recover_inline_xattr(struct inode
*inode
, struct page
*page
)
2516 void *src_addr
, *dst_addr
;
2519 struct f2fs_inode
*ri
;
2521 ipage
= f2fs_get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
2522 f2fs_bug_on(F2FS_I_SB(inode
), IS_ERR(ipage
));
2524 ri
= F2FS_INODE(page
);
2525 if (ri
->i_inline
& F2FS_INLINE_XATTR
) {
2526 set_inode_flag(inode
, FI_INLINE_XATTR
);
2528 clear_inode_flag(inode
, FI_INLINE_XATTR
);
2532 dst_addr
= inline_xattr_addr(inode
, ipage
);
2533 src_addr
= inline_xattr_addr(inode
, page
);
2534 inline_size
= inline_xattr_size(inode
);
2536 f2fs_wait_on_page_writeback(ipage
, NODE
, true, true);
2537 memcpy(dst_addr
, src_addr
, inline_size
);
2539 f2fs_update_inode(inode
, ipage
);
2540 f2fs_put_page(ipage
, 1);
2543 int f2fs_recover_xattr_data(struct inode
*inode
, struct page
*page
)
2545 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2546 nid_t prev_xnid
= F2FS_I(inode
)->i_xattr_nid
;
2548 struct dnode_of_data dn
;
2549 struct node_info ni
;
2556 /* 1: invalidate the previous xattr nid */
2557 err
= f2fs_get_node_info(sbi
, prev_xnid
, &ni
);
2561 f2fs_invalidate_blocks(sbi
, ni
.blk_addr
);
2562 dec_valid_node_count(sbi
, inode
, false);
2563 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
2566 /* 2: update xattr nid in inode */
2567 if (!f2fs_alloc_nid(sbi
, &new_xnid
))
2570 set_new_dnode(&dn
, inode
, NULL
, NULL
, new_xnid
);
2571 xpage
= f2fs_new_node_page(&dn
, XATTR_NODE_OFFSET
);
2572 if (IS_ERR(xpage
)) {
2573 f2fs_alloc_nid_failed(sbi
, new_xnid
);
2574 return PTR_ERR(xpage
);
2577 f2fs_alloc_nid_done(sbi
, new_xnid
);
2578 f2fs_update_inode_page(inode
);
2580 /* 3: update and set xattr node page dirty */
2581 memcpy(F2FS_NODE(xpage
), F2FS_NODE(page
), VALID_XATTR_BLOCK_SIZE
);
2583 set_page_dirty(xpage
);
2584 f2fs_put_page(xpage
, 1);
2589 int f2fs_recover_inode_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
2591 struct f2fs_inode
*src
, *dst
;
2592 nid_t ino
= ino_of_node(page
);
2593 struct node_info old_ni
, new_ni
;
2597 err
= f2fs_get_node_info(sbi
, ino
, &old_ni
);
2601 if (unlikely(old_ni
.blk_addr
!= NULL_ADDR
))
2604 ipage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), ino
, false);
2606 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
2610 /* Should not use this inode from free nid list */
2611 remove_free_nid(sbi
, ino
);
2613 if (!PageUptodate(ipage
))
2614 SetPageUptodate(ipage
);
2615 fill_node_footer(ipage
, ino
, ino
, 0, true);
2616 set_cold_node(ipage
, false);
2618 src
= F2FS_INODE(page
);
2619 dst
= F2FS_INODE(ipage
);
2621 memcpy(dst
, src
, (unsigned long)&src
->i_ext
- (unsigned long)src
);
2623 dst
->i_blocks
= cpu_to_le64(1);
2624 dst
->i_links
= cpu_to_le32(1);
2625 dst
->i_xattr_nid
= 0;
2626 dst
->i_inline
= src
->i_inline
& (F2FS_INLINE_XATTR
| F2FS_EXTRA_ATTR
);
2627 if (dst
->i_inline
& F2FS_EXTRA_ATTR
) {
2628 dst
->i_extra_isize
= src
->i_extra_isize
;
2630 if (f2fs_sb_has_flexible_inline_xattr(sbi
) &&
2631 F2FS_FITS_IN_INODE(src
, le16_to_cpu(src
->i_extra_isize
),
2632 i_inline_xattr_size
))
2633 dst
->i_inline_xattr_size
= src
->i_inline_xattr_size
;
2635 if (f2fs_sb_has_project_quota(sbi
) &&
2636 F2FS_FITS_IN_INODE(src
, le16_to_cpu(src
->i_extra_isize
),
2638 dst
->i_projid
= src
->i_projid
;
2640 if (f2fs_sb_has_inode_crtime(sbi
) &&
2641 F2FS_FITS_IN_INODE(src
, le16_to_cpu(src
->i_extra_isize
),
2643 dst
->i_crtime
= src
->i_crtime
;
2644 dst
->i_crtime_nsec
= src
->i_crtime_nsec
;
2651 if (unlikely(inc_valid_node_count(sbi
, NULL
, true)))
2653 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
2654 inc_valid_inode_count(sbi
);
2655 set_page_dirty(ipage
);
2656 f2fs_put_page(ipage
, 1);
2660 int f2fs_restore_node_summary(struct f2fs_sb_info
*sbi
,
2661 unsigned int segno
, struct f2fs_summary_block
*sum
)
2663 struct f2fs_node
*rn
;
2664 struct f2fs_summary
*sum_entry
;
2666 int i
, idx
, last_offset
, nrpages
;
2668 /* scan the node segment */
2669 last_offset
= sbi
->blocks_per_seg
;
2670 addr
= START_BLOCK(sbi
, segno
);
2671 sum_entry
= &sum
->entries
[0];
2673 for (i
= 0; i
< last_offset
; i
+= nrpages
, addr
+= nrpages
) {
2674 nrpages
= min(last_offset
- i
, BIO_MAX_PAGES
);
2676 /* readahead node pages */
2677 f2fs_ra_meta_pages(sbi
, addr
, nrpages
, META_POR
, true);
2679 for (idx
= addr
; idx
< addr
+ nrpages
; idx
++) {
2680 struct page
*page
= f2fs_get_tmp_page(sbi
, idx
);
2683 return PTR_ERR(page
);
2685 rn
= F2FS_NODE(page
);
2686 sum_entry
->nid
= rn
->footer
.nid
;
2687 sum_entry
->version
= 0;
2688 sum_entry
->ofs_in_node
= 0;
2690 f2fs_put_page(page
, 1);
2693 invalidate_mapping_pages(META_MAPPING(sbi
), addr
,
2699 static void remove_nats_in_journal(struct f2fs_sb_info
*sbi
)
2701 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2702 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2703 struct f2fs_journal
*journal
= curseg
->journal
;
2706 down_write(&curseg
->journal_rwsem
);
2707 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2708 struct nat_entry
*ne
;
2709 struct f2fs_nat_entry raw_ne
;
2710 nid_t nid
= le32_to_cpu(nid_in_journal(journal
, i
));
2712 raw_ne
= nat_in_journal(journal
, i
);
2714 ne
= __lookup_nat_cache(nm_i
, nid
);
2716 ne
= __alloc_nat_entry(nid
, true);
2717 __init_nat_entry(nm_i
, ne
, &raw_ne
, true);
2721 * if a free nat in journal has not been used after last
2722 * checkpoint, we should remove it from available nids,
2723 * since later we will add it again.
2725 if (!get_nat_flag(ne
, IS_DIRTY
) &&
2726 le32_to_cpu(raw_ne
.block_addr
) == NULL_ADDR
) {
2727 spin_lock(&nm_i
->nid_list_lock
);
2728 nm_i
->available_nids
--;
2729 spin_unlock(&nm_i
->nid_list_lock
);
2732 __set_nat_cache_dirty(nm_i
, ne
);
2734 update_nats_in_cursum(journal
, -i
);
2735 up_write(&curseg
->journal_rwsem
);
2738 static void __adjust_nat_entry_set(struct nat_entry_set
*nes
,
2739 struct list_head
*head
, int max
)
2741 struct nat_entry_set
*cur
;
2743 if (nes
->entry_cnt
>= max
)
2746 list_for_each_entry(cur
, head
, set_list
) {
2747 if (cur
->entry_cnt
>= nes
->entry_cnt
) {
2748 list_add(&nes
->set_list
, cur
->set_list
.prev
);
2753 list_add_tail(&nes
->set_list
, head
);
2756 static void __update_nat_bits(struct f2fs_sb_info
*sbi
, nid_t start_nid
,
2759 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2760 unsigned int nat_index
= start_nid
/ NAT_ENTRY_PER_BLOCK
;
2761 struct f2fs_nat_block
*nat_blk
= page_address(page
);
2765 if (!enabled_nat_bits(sbi
, NULL
))
2768 if (nat_index
== 0) {
2772 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++) {
2773 if (le32_to_cpu(nat_blk
->entries
[i
].block_addr
) != NULL_ADDR
)
2777 __set_bit_le(nat_index
, nm_i
->empty_nat_bits
);
2778 __clear_bit_le(nat_index
, nm_i
->full_nat_bits
);
2782 __clear_bit_le(nat_index
, nm_i
->empty_nat_bits
);
2783 if (valid
== NAT_ENTRY_PER_BLOCK
)
2784 __set_bit_le(nat_index
, nm_i
->full_nat_bits
);
2786 __clear_bit_le(nat_index
, nm_i
->full_nat_bits
);
2789 static int __flush_nat_entry_set(struct f2fs_sb_info
*sbi
,
2790 struct nat_entry_set
*set
, struct cp_control
*cpc
)
2792 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2793 struct f2fs_journal
*journal
= curseg
->journal
;
2794 nid_t start_nid
= set
->set
* NAT_ENTRY_PER_BLOCK
;
2795 bool to_journal
= true;
2796 struct f2fs_nat_block
*nat_blk
;
2797 struct nat_entry
*ne
, *cur
;
2798 struct page
*page
= NULL
;
2801 * there are two steps to flush nat entries:
2802 * #1, flush nat entries to journal in current hot data summary block.
2803 * #2, flush nat entries to nat page.
2805 if (enabled_nat_bits(sbi
, cpc
) ||
2806 !__has_cursum_space(journal
, set
->entry_cnt
, NAT_JOURNAL
))
2810 down_write(&curseg
->journal_rwsem
);
2812 page
= get_next_nat_page(sbi
, start_nid
);
2814 return PTR_ERR(page
);
2816 nat_blk
= page_address(page
);
2817 f2fs_bug_on(sbi
, !nat_blk
);
2820 /* flush dirty nats in nat entry set */
2821 list_for_each_entry_safe(ne
, cur
, &set
->entry_list
, list
) {
2822 struct f2fs_nat_entry
*raw_ne
;
2823 nid_t nid
= nat_get_nid(ne
);
2826 f2fs_bug_on(sbi
, nat_get_blkaddr(ne
) == NEW_ADDR
);
2829 offset
= f2fs_lookup_journal_in_cursum(journal
,
2830 NAT_JOURNAL
, nid
, 1);
2831 f2fs_bug_on(sbi
, offset
< 0);
2832 raw_ne
= &nat_in_journal(journal
, offset
);
2833 nid_in_journal(journal
, offset
) = cpu_to_le32(nid
);
2835 raw_ne
= &nat_blk
->entries
[nid
- start_nid
];
2837 raw_nat_from_node_info(raw_ne
, &ne
->ni
);
2839 __clear_nat_cache_dirty(NM_I(sbi
), set
, ne
);
2840 if (nat_get_blkaddr(ne
) == NULL_ADDR
) {
2841 add_free_nid(sbi
, nid
, false, true);
2843 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2844 update_free_nid_bitmap(sbi
, nid
, false, false);
2845 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2850 up_write(&curseg
->journal_rwsem
);
2852 __update_nat_bits(sbi
, start_nid
, page
);
2853 f2fs_put_page(page
, 1);
2856 /* Allow dirty nats by node block allocation in write_begin */
2857 if (!set
->entry_cnt
) {
2858 radix_tree_delete(&NM_I(sbi
)->nat_set_root
, set
->set
);
2859 kmem_cache_free(nat_entry_set_slab
, set
);
2865 * This function is called during the checkpointing process.
2867 int f2fs_flush_nat_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
2869 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2870 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2871 struct f2fs_journal
*journal
= curseg
->journal
;
2872 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2873 struct nat_entry_set
*set
, *tmp
;
2879 /* during unmount, let's flush nat_bits before checking dirty_nat_cnt */
2880 if (enabled_nat_bits(sbi
, cpc
)) {
2881 down_write(&nm_i
->nat_tree_lock
);
2882 remove_nats_in_journal(sbi
);
2883 up_write(&nm_i
->nat_tree_lock
);
2886 if (!nm_i
->dirty_nat_cnt
)
2889 down_write(&nm_i
->nat_tree_lock
);
2892 * if there are no enough space in journal to store dirty nat
2893 * entries, remove all entries from journal and merge them
2894 * into nat entry set.
2896 if (enabled_nat_bits(sbi
, cpc
) ||
2897 !__has_cursum_space(journal
, nm_i
->dirty_nat_cnt
, NAT_JOURNAL
))
2898 remove_nats_in_journal(sbi
);
2900 while ((found
= __gang_lookup_nat_set(nm_i
,
2901 set_idx
, SETVEC_SIZE
, setvec
))) {
2903 set_idx
= setvec
[found
- 1]->set
+ 1;
2904 for (idx
= 0; idx
< found
; idx
++)
2905 __adjust_nat_entry_set(setvec
[idx
], &sets
,
2906 MAX_NAT_JENTRIES(journal
));
2909 /* flush dirty nats in nat entry set */
2910 list_for_each_entry_safe(set
, tmp
, &sets
, set_list
) {
2911 err
= __flush_nat_entry_set(sbi
, set
, cpc
);
2916 up_write(&nm_i
->nat_tree_lock
);
2917 /* Allow dirty nats by node block allocation in write_begin */
2922 static int __get_nat_bitmaps(struct f2fs_sb_info
*sbi
)
2924 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2925 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2926 unsigned int nat_bits_bytes
= nm_i
->nat_blocks
/ BITS_PER_BYTE
;
2928 __u64 cp_ver
= cur_cp_version(ckpt
);
2929 block_t nat_bits_addr
;
2931 if (!enabled_nat_bits(sbi
, NULL
))
2934 nm_i
->nat_bits_blocks
= F2FS_BLK_ALIGN((nat_bits_bytes
<< 1) + 8);
2935 nm_i
->nat_bits
= f2fs_kzalloc(sbi
,
2936 nm_i
->nat_bits_blocks
<< F2FS_BLKSIZE_BITS
, GFP_KERNEL
);
2937 if (!nm_i
->nat_bits
)
2940 nat_bits_addr
= __start_cp_addr(sbi
) + sbi
->blocks_per_seg
-
2941 nm_i
->nat_bits_blocks
;
2942 for (i
= 0; i
< nm_i
->nat_bits_blocks
; i
++) {
2945 page
= f2fs_get_meta_page(sbi
, nat_bits_addr
++);
2947 return PTR_ERR(page
);
2949 memcpy(nm_i
->nat_bits
+ (i
<< F2FS_BLKSIZE_BITS
),
2950 page_address(page
), F2FS_BLKSIZE
);
2951 f2fs_put_page(page
, 1);
2954 cp_ver
|= (cur_cp_crc(ckpt
) << 32);
2955 if (cpu_to_le64(cp_ver
) != *(__le64
*)nm_i
->nat_bits
) {
2956 disable_nat_bits(sbi
, true);
2960 nm_i
->full_nat_bits
= nm_i
->nat_bits
+ 8;
2961 nm_i
->empty_nat_bits
= nm_i
->full_nat_bits
+ nat_bits_bytes
;
2963 f2fs_notice(sbi
, "Found nat_bits in checkpoint");
2967 static inline void load_free_nid_bitmap(struct f2fs_sb_info
*sbi
)
2969 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2971 nid_t nid
, last_nid
;
2973 if (!enabled_nat_bits(sbi
, NULL
))
2976 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2977 i
= find_next_bit_le(nm_i
->empty_nat_bits
, nm_i
->nat_blocks
, i
);
2978 if (i
>= nm_i
->nat_blocks
)
2981 __set_bit_le(i
, nm_i
->nat_block_bitmap
);
2983 nid
= i
* NAT_ENTRY_PER_BLOCK
;
2984 last_nid
= nid
+ NAT_ENTRY_PER_BLOCK
;
2986 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2987 for (; nid
< last_nid
; nid
++)
2988 update_free_nid_bitmap(sbi
, nid
, true, true);
2989 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2992 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2993 i
= find_next_bit_le(nm_i
->full_nat_bits
, nm_i
->nat_blocks
, i
);
2994 if (i
>= nm_i
->nat_blocks
)
2997 __set_bit_le(i
, nm_i
->nat_block_bitmap
);
3001 static int init_node_manager(struct f2fs_sb_info
*sbi
)
3003 struct f2fs_super_block
*sb_raw
= F2FS_RAW_SUPER(sbi
);
3004 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
3005 unsigned char *version_bitmap
;
3006 unsigned int nat_segs
;
3009 nm_i
->nat_blkaddr
= le32_to_cpu(sb_raw
->nat_blkaddr
);
3011 /* segment_count_nat includes pair segment so divide to 2. */
3012 nat_segs
= le32_to_cpu(sb_raw
->segment_count_nat
) >> 1;
3013 nm_i
->nat_blocks
= nat_segs
<< le32_to_cpu(sb_raw
->log_blocks_per_seg
);
3014 nm_i
->max_nid
= NAT_ENTRY_PER_BLOCK
* nm_i
->nat_blocks
;
3016 /* not used nids: 0, node, meta, (and root counted as valid node) */
3017 nm_i
->available_nids
= nm_i
->max_nid
- sbi
->total_valid_node_count
-
3018 F2FS_RESERVED_NODE_NUM
;
3019 nm_i
->nid_cnt
[FREE_NID
] = 0;
3020 nm_i
->nid_cnt
[PREALLOC_NID
] = 0;
3022 nm_i
->ram_thresh
= DEF_RAM_THRESHOLD
;
3023 nm_i
->ra_nid_pages
= DEF_RA_NID_PAGES
;
3024 nm_i
->dirty_nats_ratio
= DEF_DIRTY_NAT_RATIO_THRESHOLD
;
3026 INIT_RADIX_TREE(&nm_i
->free_nid_root
, GFP_ATOMIC
);
3027 INIT_LIST_HEAD(&nm_i
->free_nid_list
);
3028 INIT_RADIX_TREE(&nm_i
->nat_root
, GFP_NOIO
);
3029 INIT_RADIX_TREE(&nm_i
->nat_set_root
, GFP_NOIO
);
3030 INIT_LIST_HEAD(&nm_i
->nat_entries
);
3031 spin_lock_init(&nm_i
->nat_list_lock
);
3033 mutex_init(&nm_i
->build_lock
);
3034 spin_lock_init(&nm_i
->nid_list_lock
);
3035 init_rwsem(&nm_i
->nat_tree_lock
);
3037 nm_i
->next_scan_nid
= le32_to_cpu(sbi
->ckpt
->next_free_nid
);
3038 nm_i
->bitmap_size
= __bitmap_size(sbi
, NAT_BITMAP
);
3039 version_bitmap
= __bitmap_ptr(sbi
, NAT_BITMAP
);
3040 if (!version_bitmap
)
3043 nm_i
->nat_bitmap
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
3045 if (!nm_i
->nat_bitmap
)
3048 err
= __get_nat_bitmaps(sbi
);
3052 #ifdef CONFIG_F2FS_CHECK_FS
3053 nm_i
->nat_bitmap_mir
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
3055 if (!nm_i
->nat_bitmap_mir
)
3062 static int init_free_nid_cache(struct f2fs_sb_info
*sbi
)
3064 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
3067 nm_i
->free_nid_bitmap
=
3068 f2fs_kzalloc(sbi
, array_size(sizeof(unsigned char *),
3071 if (!nm_i
->free_nid_bitmap
)
3074 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
3075 nm_i
->free_nid_bitmap
[i
] = f2fs_kvzalloc(sbi
,
3076 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK
), GFP_KERNEL
);
3077 if (!nm_i
->free_nid_bitmap
[i
])
3081 nm_i
->nat_block_bitmap
= f2fs_kvzalloc(sbi
, nm_i
->nat_blocks
/ 8,
3083 if (!nm_i
->nat_block_bitmap
)
3086 nm_i
->free_nid_count
=
3087 f2fs_kvzalloc(sbi
, array_size(sizeof(unsigned short),
3090 if (!nm_i
->free_nid_count
)
3095 int f2fs_build_node_manager(struct f2fs_sb_info
*sbi
)
3099 sbi
->nm_info
= f2fs_kzalloc(sbi
, sizeof(struct f2fs_nm_info
),
3104 err
= init_node_manager(sbi
);
3108 err
= init_free_nid_cache(sbi
);
3112 /* load free nid status from nat_bits table */
3113 load_free_nid_bitmap(sbi
);
3115 return f2fs_build_free_nids(sbi
, true, true);
3118 void f2fs_destroy_node_manager(struct f2fs_sb_info
*sbi
)
3120 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
3121 struct free_nid
*i
, *next_i
;
3122 struct nat_entry
*natvec
[NATVEC_SIZE
];
3123 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
3130 /* destroy free nid list */
3131 spin_lock(&nm_i
->nid_list_lock
);
3132 list_for_each_entry_safe(i
, next_i
, &nm_i
->free_nid_list
, list
) {
3133 __remove_free_nid(sbi
, i
, FREE_NID
);
3134 spin_unlock(&nm_i
->nid_list_lock
);
3135 kmem_cache_free(free_nid_slab
, i
);
3136 spin_lock(&nm_i
->nid_list_lock
);
3138 f2fs_bug_on(sbi
, nm_i
->nid_cnt
[FREE_NID
]);
3139 f2fs_bug_on(sbi
, nm_i
->nid_cnt
[PREALLOC_NID
]);
3140 f2fs_bug_on(sbi
, !list_empty(&nm_i
->free_nid_list
));
3141 spin_unlock(&nm_i
->nid_list_lock
);
3143 /* destroy nat cache */
3144 down_write(&nm_i
->nat_tree_lock
);
3145 while ((found
= __gang_lookup_nat_cache(nm_i
,
3146 nid
, NATVEC_SIZE
, natvec
))) {
3149 nid
= nat_get_nid(natvec
[found
- 1]) + 1;
3150 for (idx
= 0; idx
< found
; idx
++) {
3151 spin_lock(&nm_i
->nat_list_lock
);
3152 list_del(&natvec
[idx
]->list
);
3153 spin_unlock(&nm_i
->nat_list_lock
);
3155 __del_from_nat_cache(nm_i
, natvec
[idx
]);
3158 f2fs_bug_on(sbi
, nm_i
->nat_cnt
);
3160 /* destroy nat set cache */
3162 while ((found
= __gang_lookup_nat_set(nm_i
,
3163 nid
, SETVEC_SIZE
, setvec
))) {
3166 nid
= setvec
[found
- 1]->set
+ 1;
3167 for (idx
= 0; idx
< found
; idx
++) {
3168 /* entry_cnt is not zero, when cp_error was occurred */
3169 f2fs_bug_on(sbi
, !list_empty(&setvec
[idx
]->entry_list
));
3170 radix_tree_delete(&nm_i
->nat_set_root
, setvec
[idx
]->set
);
3171 kmem_cache_free(nat_entry_set_slab
, setvec
[idx
]);
3174 up_write(&nm_i
->nat_tree_lock
);
3176 kvfree(nm_i
->nat_block_bitmap
);
3177 if (nm_i
->free_nid_bitmap
) {
3180 for (i
= 0; i
< nm_i
->nat_blocks
; i
++)
3181 kvfree(nm_i
->free_nid_bitmap
[i
]);
3182 kvfree(nm_i
->free_nid_bitmap
);
3184 kvfree(nm_i
->free_nid_count
);
3186 kvfree(nm_i
->nat_bitmap
);
3187 kvfree(nm_i
->nat_bits
);
3188 #ifdef CONFIG_F2FS_CHECK_FS
3189 kvfree(nm_i
->nat_bitmap_mir
);
3191 sbi
->nm_info
= NULL
;
3195 int __init
f2fs_create_node_manager_caches(void)
3197 nat_entry_slab
= f2fs_kmem_cache_create("nat_entry",
3198 sizeof(struct nat_entry
));
3199 if (!nat_entry_slab
)
3202 free_nid_slab
= f2fs_kmem_cache_create("free_nid",
3203 sizeof(struct free_nid
));
3205 goto destroy_nat_entry
;
3207 nat_entry_set_slab
= f2fs_kmem_cache_create("nat_entry_set",
3208 sizeof(struct nat_entry_set
));
3209 if (!nat_entry_set_slab
)
3210 goto destroy_free_nid
;
3212 fsync_node_entry_slab
= f2fs_kmem_cache_create("fsync_node_entry",
3213 sizeof(struct fsync_node_entry
));
3214 if (!fsync_node_entry_slab
)
3215 goto destroy_nat_entry_set
;
3218 destroy_nat_entry_set
:
3219 kmem_cache_destroy(nat_entry_set_slab
);
3221 kmem_cache_destroy(free_nid_slab
);
3223 kmem_cache_destroy(nat_entry_slab
);
3228 void f2fs_destroy_node_manager_caches(void)
3230 kmem_cache_destroy(fsync_node_entry_slab
);
3231 kmem_cache_destroy(nat_entry_set_slab
);
3232 kmem_cache_destroy(free_nid_slab
);
3233 kmem_cache_destroy(nat_entry_slab
);