Linux 5.6.13
[linux/fpc-iii.git] / fs / kernfs / dir.c
blob9aec80b9d7c6c6bd35fcd3c8ea8983c9463b27c3
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/dir.c - kernfs directory implementation
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
10 #include <linux/sched.h>
11 #include <linux/fs.h>
12 #include <linux/namei.h>
13 #include <linux/idr.h>
14 #include <linux/slab.h>
15 #include <linux/security.h>
16 #include <linux/hash.h>
18 #include "kernfs-internal.h"
20 DEFINE_MUTEX(kernfs_mutex);
21 static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
22 static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
23 static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */
25 #define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
27 static bool kernfs_active(struct kernfs_node *kn)
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
33 static bool kernfs_lockdep(struct kernfs_node *kn)
35 #ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37 #else
38 return false;
39 #endif
42 static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
44 if (!kn)
45 return strlcpy(buf, "(null)", buflen);
47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
50 /* kernfs_node_depth - compute depth from @from to @to */
51 static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
53 size_t depth = 0;
55 while (to->parent && to != from) {
56 depth++;
57 to = to->parent;
59 return depth;
62 static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 struct kernfs_node *b)
65 size_t da, db;
66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
68 if (ra != rb)
69 return NULL;
71 da = kernfs_depth(ra->kn, a);
72 db = kernfs_depth(rb->kn, b);
74 while (da > db) {
75 a = a->parent;
76 da--;
78 while (db > da) {
79 b = b->parent;
80 db--;
83 /* worst case b and a will be the same at root */
84 while (b != a) {
85 b = b->parent;
86 a = a->parent;
89 return a;
92 /**
93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94 * where kn_from is treated as root of the path.
95 * @kn_from: kernfs node which should be treated as root for the path
96 * @kn_to: kernfs node to which path is needed
97 * @buf: buffer to copy the path into
98 * @buflen: size of @buf
100 * We need to handle couple of scenarios here:
101 * [1] when @kn_from is an ancestor of @kn_to at some level
102 * kn_from: /n1/n2/n3
103 * kn_to: /n1/n2/n3/n4/n5
104 * result: /n4/n5
106 * [2] when @kn_from is on a different hierarchy and we need to find common
107 * ancestor between @kn_from and @kn_to.
108 * kn_from: /n1/n2/n3/n4
109 * kn_to: /n1/n2/n5
110 * result: /../../n5
111 * OR
112 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
113 * kn_to: /n1/n2/n3 [depth=3]
114 * result: /../..
116 * [3] when @kn_to is NULL result will be "(null)"
118 * Returns the length of the full path. If the full length is equal to or
119 * greater than @buflen, @buf contains the truncated path with the trailing
120 * '\0'. On error, -errno is returned.
122 static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 struct kernfs_node *kn_from,
124 char *buf, size_t buflen)
126 struct kernfs_node *kn, *common;
127 const char parent_str[] = "/..";
128 size_t depth_from, depth_to, len = 0;
129 int i, j;
131 if (!kn_to)
132 return strlcpy(buf, "(null)", buflen);
134 if (!kn_from)
135 kn_from = kernfs_root(kn_to)->kn;
137 if (kn_from == kn_to)
138 return strlcpy(buf, "/", buflen);
140 if (!buf)
141 return -EINVAL;
143 common = kernfs_common_ancestor(kn_from, kn_to);
144 if (WARN_ON(!common))
145 return -EINVAL;
147 depth_to = kernfs_depth(common, kn_to);
148 depth_from = kernfs_depth(common, kn_from);
150 buf[0] = '\0';
152 for (i = 0; i < depth_from; i++)
153 len += strlcpy(buf + len, parent_str,
154 len < buflen ? buflen - len : 0);
156 /* Calculate how many bytes we need for the rest */
157 for (i = depth_to - 1; i >= 0; i--) {
158 for (kn = kn_to, j = 0; j < i; j++)
159 kn = kn->parent;
160 len += strlcpy(buf + len, "/",
161 len < buflen ? buflen - len : 0);
162 len += strlcpy(buf + len, kn->name,
163 len < buflen ? buflen - len : 0);
166 return len;
170 * kernfs_name - obtain the name of a given node
171 * @kn: kernfs_node of interest
172 * @buf: buffer to copy @kn's name into
173 * @buflen: size of @buf
175 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
176 * similar to strlcpy(). It returns the length of @kn's name and if @buf
177 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
179 * Fills buffer with "(null)" if @kn is NULL.
181 * This function can be called from any context.
183 int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
185 unsigned long flags;
186 int ret;
188 spin_lock_irqsave(&kernfs_rename_lock, flags);
189 ret = kernfs_name_locked(kn, buf, buflen);
190 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
191 return ret;
195 * kernfs_path_from_node - build path of node @to relative to @from.
196 * @from: parent kernfs_node relative to which we need to build the path
197 * @to: kernfs_node of interest
198 * @buf: buffer to copy @to's path into
199 * @buflen: size of @buf
201 * Builds @to's path relative to @from in @buf. @from and @to must
202 * be on the same kernfs-root. If @from is not parent of @to, then a relative
203 * path (which includes '..'s) as needed to reach from @from to @to is
204 * returned.
206 * Returns the length of the full path. If the full length is equal to or
207 * greater than @buflen, @buf contains the truncated path with the trailing
208 * '\0'. On error, -errno is returned.
210 int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
211 char *buf, size_t buflen)
213 unsigned long flags;
214 int ret;
216 spin_lock_irqsave(&kernfs_rename_lock, flags);
217 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
218 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
219 return ret;
221 EXPORT_SYMBOL_GPL(kernfs_path_from_node);
224 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
225 * @kn: kernfs_node of interest
227 * This function can be called from any context.
229 void pr_cont_kernfs_name(struct kernfs_node *kn)
231 unsigned long flags;
233 spin_lock_irqsave(&kernfs_rename_lock, flags);
235 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
236 pr_cont("%s", kernfs_pr_cont_buf);
238 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
242 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
243 * @kn: kernfs_node of interest
245 * This function can be called from any context.
247 void pr_cont_kernfs_path(struct kernfs_node *kn)
249 unsigned long flags;
250 int sz;
252 spin_lock_irqsave(&kernfs_rename_lock, flags);
254 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
255 sizeof(kernfs_pr_cont_buf));
256 if (sz < 0) {
257 pr_cont("(error)");
258 goto out;
261 if (sz >= sizeof(kernfs_pr_cont_buf)) {
262 pr_cont("(name too long)");
263 goto out;
266 pr_cont("%s", kernfs_pr_cont_buf);
268 out:
269 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
273 * kernfs_get_parent - determine the parent node and pin it
274 * @kn: kernfs_node of interest
276 * Determines @kn's parent, pins and returns it. This function can be
277 * called from any context.
279 struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
281 struct kernfs_node *parent;
282 unsigned long flags;
284 spin_lock_irqsave(&kernfs_rename_lock, flags);
285 parent = kn->parent;
286 kernfs_get(parent);
287 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
289 return parent;
293 * kernfs_name_hash
294 * @name: Null terminated string to hash
295 * @ns: Namespace tag to hash
297 * Returns 31 bit hash of ns + name (so it fits in an off_t )
299 static unsigned int kernfs_name_hash(const char *name, const void *ns)
301 unsigned long hash = init_name_hash(ns);
302 unsigned int len = strlen(name);
303 while (len--)
304 hash = partial_name_hash(*name++, hash);
305 hash = end_name_hash(hash);
306 hash &= 0x7fffffffU;
307 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
308 if (hash < 2)
309 hash += 2;
310 if (hash >= INT_MAX)
311 hash = INT_MAX - 1;
312 return hash;
315 static int kernfs_name_compare(unsigned int hash, const char *name,
316 const void *ns, const struct kernfs_node *kn)
318 if (hash < kn->hash)
319 return -1;
320 if (hash > kn->hash)
321 return 1;
322 if (ns < kn->ns)
323 return -1;
324 if (ns > kn->ns)
325 return 1;
326 return strcmp(name, kn->name);
329 static int kernfs_sd_compare(const struct kernfs_node *left,
330 const struct kernfs_node *right)
332 return kernfs_name_compare(left->hash, left->name, left->ns, right);
336 * kernfs_link_sibling - link kernfs_node into sibling rbtree
337 * @kn: kernfs_node of interest
339 * Link @kn into its sibling rbtree which starts from
340 * @kn->parent->dir.children.
342 * Locking:
343 * mutex_lock(kernfs_mutex)
345 * RETURNS:
346 * 0 on susccess -EEXIST on failure.
348 static int kernfs_link_sibling(struct kernfs_node *kn)
350 struct rb_node **node = &kn->parent->dir.children.rb_node;
351 struct rb_node *parent = NULL;
353 while (*node) {
354 struct kernfs_node *pos;
355 int result;
357 pos = rb_to_kn(*node);
358 parent = *node;
359 result = kernfs_sd_compare(kn, pos);
360 if (result < 0)
361 node = &pos->rb.rb_left;
362 else if (result > 0)
363 node = &pos->rb.rb_right;
364 else
365 return -EEXIST;
368 /* add new node and rebalance the tree */
369 rb_link_node(&kn->rb, parent, node);
370 rb_insert_color(&kn->rb, &kn->parent->dir.children);
372 /* successfully added, account subdir number */
373 if (kernfs_type(kn) == KERNFS_DIR)
374 kn->parent->dir.subdirs++;
376 return 0;
380 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
381 * @kn: kernfs_node of interest
383 * Try to unlink @kn from its sibling rbtree which starts from
384 * kn->parent->dir.children. Returns %true if @kn was actually
385 * removed, %false if @kn wasn't on the rbtree.
387 * Locking:
388 * mutex_lock(kernfs_mutex)
390 static bool kernfs_unlink_sibling(struct kernfs_node *kn)
392 if (RB_EMPTY_NODE(&kn->rb))
393 return false;
395 if (kernfs_type(kn) == KERNFS_DIR)
396 kn->parent->dir.subdirs--;
398 rb_erase(&kn->rb, &kn->parent->dir.children);
399 RB_CLEAR_NODE(&kn->rb);
400 return true;
404 * kernfs_get_active - get an active reference to kernfs_node
405 * @kn: kernfs_node to get an active reference to
407 * Get an active reference of @kn. This function is noop if @kn
408 * is NULL.
410 * RETURNS:
411 * Pointer to @kn on success, NULL on failure.
413 struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
415 if (unlikely(!kn))
416 return NULL;
418 if (!atomic_inc_unless_negative(&kn->active))
419 return NULL;
421 if (kernfs_lockdep(kn))
422 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
423 return kn;
427 * kernfs_put_active - put an active reference to kernfs_node
428 * @kn: kernfs_node to put an active reference to
430 * Put an active reference to @kn. This function is noop if @kn
431 * is NULL.
433 void kernfs_put_active(struct kernfs_node *kn)
435 int v;
437 if (unlikely(!kn))
438 return;
440 if (kernfs_lockdep(kn))
441 rwsem_release(&kn->dep_map, _RET_IP_);
442 v = atomic_dec_return(&kn->active);
443 if (likely(v != KN_DEACTIVATED_BIAS))
444 return;
446 wake_up_all(&kernfs_root(kn)->deactivate_waitq);
450 * kernfs_drain - drain kernfs_node
451 * @kn: kernfs_node to drain
453 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
454 * removers may invoke this function concurrently on @kn and all will
455 * return after draining is complete.
457 static void kernfs_drain(struct kernfs_node *kn)
458 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
460 struct kernfs_root *root = kernfs_root(kn);
462 lockdep_assert_held(&kernfs_mutex);
463 WARN_ON_ONCE(kernfs_active(kn));
465 mutex_unlock(&kernfs_mutex);
467 if (kernfs_lockdep(kn)) {
468 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
469 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
470 lock_contended(&kn->dep_map, _RET_IP_);
473 /* but everyone should wait for draining */
474 wait_event(root->deactivate_waitq,
475 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
477 if (kernfs_lockdep(kn)) {
478 lock_acquired(&kn->dep_map, _RET_IP_);
479 rwsem_release(&kn->dep_map, _RET_IP_);
482 kernfs_drain_open_files(kn);
484 mutex_lock(&kernfs_mutex);
488 * kernfs_get - get a reference count on a kernfs_node
489 * @kn: the target kernfs_node
491 void kernfs_get(struct kernfs_node *kn)
493 if (kn) {
494 WARN_ON(!atomic_read(&kn->count));
495 atomic_inc(&kn->count);
498 EXPORT_SYMBOL_GPL(kernfs_get);
501 * kernfs_put - put a reference count on a kernfs_node
502 * @kn: the target kernfs_node
504 * Put a reference count of @kn and destroy it if it reached zero.
506 void kernfs_put(struct kernfs_node *kn)
508 struct kernfs_node *parent;
509 struct kernfs_root *root;
511 if (!kn || !atomic_dec_and_test(&kn->count))
512 return;
513 root = kernfs_root(kn);
514 repeat:
516 * Moving/renaming is always done while holding reference.
517 * kn->parent won't change beneath us.
519 parent = kn->parent;
521 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
522 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
523 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
525 if (kernfs_type(kn) == KERNFS_LINK)
526 kernfs_put(kn->symlink.target_kn);
528 kfree_const(kn->name);
530 if (kn->iattr) {
531 simple_xattrs_free(&kn->iattr->xattrs);
532 kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
534 spin_lock(&kernfs_idr_lock);
535 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
536 spin_unlock(&kernfs_idr_lock);
537 kmem_cache_free(kernfs_node_cache, kn);
539 kn = parent;
540 if (kn) {
541 if (atomic_dec_and_test(&kn->count))
542 goto repeat;
543 } else {
544 /* just released the root kn, free @root too */
545 idr_destroy(&root->ino_idr);
546 kfree(root);
549 EXPORT_SYMBOL_GPL(kernfs_put);
551 static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
553 struct kernfs_node *kn;
555 if (flags & LOOKUP_RCU)
556 return -ECHILD;
558 /* Always perform fresh lookup for negatives */
559 if (d_really_is_negative(dentry))
560 goto out_bad_unlocked;
562 kn = kernfs_dentry_node(dentry);
563 mutex_lock(&kernfs_mutex);
565 /* The kernfs node has been deactivated */
566 if (!kernfs_active(kn))
567 goto out_bad;
569 /* The kernfs node has been moved? */
570 if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
571 goto out_bad;
573 /* The kernfs node has been renamed */
574 if (strcmp(dentry->d_name.name, kn->name) != 0)
575 goto out_bad;
577 /* The kernfs node has been moved to a different namespace */
578 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
579 kernfs_info(dentry->d_sb)->ns != kn->ns)
580 goto out_bad;
582 mutex_unlock(&kernfs_mutex);
583 return 1;
584 out_bad:
585 mutex_unlock(&kernfs_mutex);
586 out_bad_unlocked:
587 return 0;
590 const struct dentry_operations kernfs_dops = {
591 .d_revalidate = kernfs_dop_revalidate,
595 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
596 * @dentry: the dentry in question
598 * Return the kernfs_node associated with @dentry. If @dentry is not a
599 * kernfs one, %NULL is returned.
601 * While the returned kernfs_node will stay accessible as long as @dentry
602 * is accessible, the returned node can be in any state and the caller is
603 * fully responsible for determining what's accessible.
605 struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
607 if (dentry->d_sb->s_op == &kernfs_sops &&
608 !d_really_is_negative(dentry))
609 return kernfs_dentry_node(dentry);
610 return NULL;
613 static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
614 struct kernfs_node *parent,
615 const char *name, umode_t mode,
616 kuid_t uid, kgid_t gid,
617 unsigned flags)
619 struct kernfs_node *kn;
620 u32 id_highbits;
621 int ret;
623 name = kstrdup_const(name, GFP_KERNEL);
624 if (!name)
625 return NULL;
627 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
628 if (!kn)
629 goto err_out1;
631 idr_preload(GFP_KERNEL);
632 spin_lock(&kernfs_idr_lock);
633 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
634 if (ret >= 0 && ret < root->last_id_lowbits)
635 root->id_highbits++;
636 id_highbits = root->id_highbits;
637 root->last_id_lowbits = ret;
638 spin_unlock(&kernfs_idr_lock);
639 idr_preload_end();
640 if (ret < 0)
641 goto err_out2;
643 kn->id = (u64)id_highbits << 32 | ret;
645 atomic_set(&kn->count, 1);
646 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
647 RB_CLEAR_NODE(&kn->rb);
649 kn->name = name;
650 kn->mode = mode;
651 kn->flags = flags;
653 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
654 struct iattr iattr = {
655 .ia_valid = ATTR_UID | ATTR_GID,
656 .ia_uid = uid,
657 .ia_gid = gid,
660 ret = __kernfs_setattr(kn, &iattr);
661 if (ret < 0)
662 goto err_out3;
665 if (parent) {
666 ret = security_kernfs_init_security(parent, kn);
667 if (ret)
668 goto err_out3;
671 return kn;
673 err_out3:
674 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
675 err_out2:
676 kmem_cache_free(kernfs_node_cache, kn);
677 err_out1:
678 kfree_const(name);
679 return NULL;
682 struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
683 const char *name, umode_t mode,
684 kuid_t uid, kgid_t gid,
685 unsigned flags)
687 struct kernfs_node *kn;
689 kn = __kernfs_new_node(kernfs_root(parent), parent,
690 name, mode, uid, gid, flags);
691 if (kn) {
692 kernfs_get(parent);
693 kn->parent = parent;
695 return kn;
699 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
700 * @root: the kernfs root
701 * @id: the target node id
703 * @id's lower 32bits encode ino and upper gen. If the gen portion is
704 * zero, all generations are matched.
706 * RETURNS:
707 * NULL on failure. Return a kernfs node with reference counter incremented
709 struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
710 u64 id)
712 struct kernfs_node *kn;
713 ino_t ino = kernfs_id_ino(id);
714 u32 gen = kernfs_id_gen(id);
716 spin_lock(&kernfs_idr_lock);
718 kn = idr_find(&root->ino_idr, (u32)ino);
719 if (!kn)
720 goto err_unlock;
722 if (sizeof(ino_t) >= sizeof(u64)) {
723 /* we looked up with the low 32bits, compare the whole */
724 if (kernfs_ino(kn) != ino)
725 goto err_unlock;
726 } else {
727 /* 0 matches all generations */
728 if (unlikely(gen && kernfs_gen(kn) != gen))
729 goto err_unlock;
733 * ACTIVATED is protected with kernfs_mutex but it was clear when
734 * @kn was added to idr and we just wanna see it set. No need to
735 * grab kernfs_mutex.
737 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
738 !atomic_inc_not_zero(&kn->count)))
739 goto err_unlock;
741 spin_unlock(&kernfs_idr_lock);
742 return kn;
743 err_unlock:
744 spin_unlock(&kernfs_idr_lock);
745 return NULL;
749 * kernfs_add_one - add kernfs_node to parent without warning
750 * @kn: kernfs_node to be added
752 * The caller must already have initialized @kn->parent. This
753 * function increments nlink of the parent's inode if @kn is a
754 * directory and link into the children list of the parent.
756 * RETURNS:
757 * 0 on success, -EEXIST if entry with the given name already
758 * exists.
760 int kernfs_add_one(struct kernfs_node *kn)
762 struct kernfs_node *parent = kn->parent;
763 struct kernfs_iattrs *ps_iattr;
764 bool has_ns;
765 int ret;
767 mutex_lock(&kernfs_mutex);
769 ret = -EINVAL;
770 has_ns = kernfs_ns_enabled(parent);
771 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
772 has_ns ? "required" : "invalid", parent->name, kn->name))
773 goto out_unlock;
775 if (kernfs_type(parent) != KERNFS_DIR)
776 goto out_unlock;
778 ret = -ENOENT;
779 if (parent->flags & KERNFS_EMPTY_DIR)
780 goto out_unlock;
782 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
783 goto out_unlock;
785 kn->hash = kernfs_name_hash(kn->name, kn->ns);
787 ret = kernfs_link_sibling(kn);
788 if (ret)
789 goto out_unlock;
791 /* Update timestamps on the parent */
792 ps_iattr = parent->iattr;
793 if (ps_iattr) {
794 ktime_get_real_ts64(&ps_iattr->ia_ctime);
795 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
798 mutex_unlock(&kernfs_mutex);
801 * Activate the new node unless CREATE_DEACTIVATED is requested.
802 * If not activated here, the kernfs user is responsible for
803 * activating the node with kernfs_activate(). A node which hasn't
804 * been activated is not visible to userland and its removal won't
805 * trigger deactivation.
807 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
808 kernfs_activate(kn);
809 return 0;
811 out_unlock:
812 mutex_unlock(&kernfs_mutex);
813 return ret;
817 * kernfs_find_ns - find kernfs_node with the given name
818 * @parent: kernfs_node to search under
819 * @name: name to look for
820 * @ns: the namespace tag to use
822 * Look for kernfs_node with name @name under @parent. Returns pointer to
823 * the found kernfs_node on success, %NULL on failure.
825 static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
826 const unsigned char *name,
827 const void *ns)
829 struct rb_node *node = parent->dir.children.rb_node;
830 bool has_ns = kernfs_ns_enabled(parent);
831 unsigned int hash;
833 lockdep_assert_held(&kernfs_mutex);
835 if (has_ns != (bool)ns) {
836 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
837 has_ns ? "required" : "invalid", parent->name, name);
838 return NULL;
841 hash = kernfs_name_hash(name, ns);
842 while (node) {
843 struct kernfs_node *kn;
844 int result;
846 kn = rb_to_kn(node);
847 result = kernfs_name_compare(hash, name, ns, kn);
848 if (result < 0)
849 node = node->rb_left;
850 else if (result > 0)
851 node = node->rb_right;
852 else
853 return kn;
855 return NULL;
858 static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
859 const unsigned char *path,
860 const void *ns)
862 size_t len;
863 char *p, *name;
865 lockdep_assert_held(&kernfs_mutex);
867 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
868 spin_lock_irq(&kernfs_rename_lock);
870 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
872 if (len >= sizeof(kernfs_pr_cont_buf)) {
873 spin_unlock_irq(&kernfs_rename_lock);
874 return NULL;
877 p = kernfs_pr_cont_buf;
879 while ((name = strsep(&p, "/")) && parent) {
880 if (*name == '\0')
881 continue;
882 parent = kernfs_find_ns(parent, name, ns);
885 spin_unlock_irq(&kernfs_rename_lock);
887 return parent;
891 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
892 * @parent: kernfs_node to search under
893 * @name: name to look for
894 * @ns: the namespace tag to use
896 * Look for kernfs_node with name @name under @parent and get a reference
897 * if found. This function may sleep and returns pointer to the found
898 * kernfs_node on success, %NULL on failure.
900 struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
901 const char *name, const void *ns)
903 struct kernfs_node *kn;
905 mutex_lock(&kernfs_mutex);
906 kn = kernfs_find_ns(parent, name, ns);
907 kernfs_get(kn);
908 mutex_unlock(&kernfs_mutex);
910 return kn;
912 EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
915 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
916 * @parent: kernfs_node to search under
917 * @path: path to look for
918 * @ns: the namespace tag to use
920 * Look for kernfs_node with path @path under @parent and get a reference
921 * if found. This function may sleep and returns pointer to the found
922 * kernfs_node on success, %NULL on failure.
924 struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
925 const char *path, const void *ns)
927 struct kernfs_node *kn;
929 mutex_lock(&kernfs_mutex);
930 kn = kernfs_walk_ns(parent, path, ns);
931 kernfs_get(kn);
932 mutex_unlock(&kernfs_mutex);
934 return kn;
938 * kernfs_create_root - create a new kernfs hierarchy
939 * @scops: optional syscall operations for the hierarchy
940 * @flags: KERNFS_ROOT_* flags
941 * @priv: opaque data associated with the new directory
943 * Returns the root of the new hierarchy on success, ERR_PTR() value on
944 * failure.
946 struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
947 unsigned int flags, void *priv)
949 struct kernfs_root *root;
950 struct kernfs_node *kn;
952 root = kzalloc(sizeof(*root), GFP_KERNEL);
953 if (!root)
954 return ERR_PTR(-ENOMEM);
956 idr_init(&root->ino_idr);
957 INIT_LIST_HEAD(&root->supers);
960 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino.
961 * High bits generation. The starting value for both ino and
962 * genenration is 1. Initialize upper 32bit allocation
963 * accordingly.
965 if (sizeof(ino_t) >= sizeof(u64))
966 root->id_highbits = 0;
967 else
968 root->id_highbits = 1;
970 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
971 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
972 KERNFS_DIR);
973 if (!kn) {
974 idr_destroy(&root->ino_idr);
975 kfree(root);
976 return ERR_PTR(-ENOMEM);
979 kn->priv = priv;
980 kn->dir.root = root;
982 root->syscall_ops = scops;
983 root->flags = flags;
984 root->kn = kn;
985 init_waitqueue_head(&root->deactivate_waitq);
987 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
988 kernfs_activate(kn);
990 return root;
994 * kernfs_destroy_root - destroy a kernfs hierarchy
995 * @root: root of the hierarchy to destroy
997 * Destroy the hierarchy anchored at @root by removing all existing
998 * directories and destroying @root.
1000 void kernfs_destroy_root(struct kernfs_root *root)
1002 kernfs_remove(root->kn); /* will also free @root */
1006 * kernfs_create_dir_ns - create a directory
1007 * @parent: parent in which to create a new directory
1008 * @name: name of the new directory
1009 * @mode: mode of the new directory
1010 * @uid: uid of the new directory
1011 * @gid: gid of the new directory
1012 * @priv: opaque data associated with the new directory
1013 * @ns: optional namespace tag of the directory
1015 * Returns the created node on success, ERR_PTR() value on failure.
1017 struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1018 const char *name, umode_t mode,
1019 kuid_t uid, kgid_t gid,
1020 void *priv, const void *ns)
1022 struct kernfs_node *kn;
1023 int rc;
1025 /* allocate */
1026 kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1027 uid, gid, KERNFS_DIR);
1028 if (!kn)
1029 return ERR_PTR(-ENOMEM);
1031 kn->dir.root = parent->dir.root;
1032 kn->ns = ns;
1033 kn->priv = priv;
1035 /* link in */
1036 rc = kernfs_add_one(kn);
1037 if (!rc)
1038 return kn;
1040 kernfs_put(kn);
1041 return ERR_PTR(rc);
1045 * kernfs_create_empty_dir - create an always empty directory
1046 * @parent: parent in which to create a new directory
1047 * @name: name of the new directory
1049 * Returns the created node on success, ERR_PTR() value on failure.
1051 struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1052 const char *name)
1054 struct kernfs_node *kn;
1055 int rc;
1057 /* allocate */
1058 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1059 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1060 if (!kn)
1061 return ERR_PTR(-ENOMEM);
1063 kn->flags |= KERNFS_EMPTY_DIR;
1064 kn->dir.root = parent->dir.root;
1065 kn->ns = NULL;
1066 kn->priv = NULL;
1068 /* link in */
1069 rc = kernfs_add_one(kn);
1070 if (!rc)
1071 return kn;
1073 kernfs_put(kn);
1074 return ERR_PTR(rc);
1077 static struct dentry *kernfs_iop_lookup(struct inode *dir,
1078 struct dentry *dentry,
1079 unsigned int flags)
1081 struct dentry *ret;
1082 struct kernfs_node *parent = dir->i_private;
1083 struct kernfs_node *kn;
1084 struct inode *inode;
1085 const void *ns = NULL;
1087 mutex_lock(&kernfs_mutex);
1089 if (kernfs_ns_enabled(parent))
1090 ns = kernfs_info(dir->i_sb)->ns;
1092 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1094 /* no such entry */
1095 if (!kn || !kernfs_active(kn)) {
1096 ret = NULL;
1097 goto out_unlock;
1100 /* attach dentry and inode */
1101 inode = kernfs_get_inode(dir->i_sb, kn);
1102 if (!inode) {
1103 ret = ERR_PTR(-ENOMEM);
1104 goto out_unlock;
1107 /* instantiate and hash dentry */
1108 ret = d_splice_alias(inode, dentry);
1109 out_unlock:
1110 mutex_unlock(&kernfs_mutex);
1111 return ret;
1114 static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1115 umode_t mode)
1117 struct kernfs_node *parent = dir->i_private;
1118 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1119 int ret;
1121 if (!scops || !scops->mkdir)
1122 return -EPERM;
1124 if (!kernfs_get_active(parent))
1125 return -ENODEV;
1127 ret = scops->mkdir(parent, dentry->d_name.name, mode);
1129 kernfs_put_active(parent);
1130 return ret;
1133 static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1135 struct kernfs_node *kn = kernfs_dentry_node(dentry);
1136 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1137 int ret;
1139 if (!scops || !scops->rmdir)
1140 return -EPERM;
1142 if (!kernfs_get_active(kn))
1143 return -ENODEV;
1145 ret = scops->rmdir(kn);
1147 kernfs_put_active(kn);
1148 return ret;
1151 static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1152 struct inode *new_dir, struct dentry *new_dentry,
1153 unsigned int flags)
1155 struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1156 struct kernfs_node *new_parent = new_dir->i_private;
1157 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1158 int ret;
1160 if (flags)
1161 return -EINVAL;
1163 if (!scops || !scops->rename)
1164 return -EPERM;
1166 if (!kernfs_get_active(kn))
1167 return -ENODEV;
1169 if (!kernfs_get_active(new_parent)) {
1170 kernfs_put_active(kn);
1171 return -ENODEV;
1174 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1176 kernfs_put_active(new_parent);
1177 kernfs_put_active(kn);
1178 return ret;
1181 const struct inode_operations kernfs_dir_iops = {
1182 .lookup = kernfs_iop_lookup,
1183 .permission = kernfs_iop_permission,
1184 .setattr = kernfs_iop_setattr,
1185 .getattr = kernfs_iop_getattr,
1186 .listxattr = kernfs_iop_listxattr,
1188 .mkdir = kernfs_iop_mkdir,
1189 .rmdir = kernfs_iop_rmdir,
1190 .rename = kernfs_iop_rename,
1193 static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1195 struct kernfs_node *last;
1197 while (true) {
1198 struct rb_node *rbn;
1200 last = pos;
1202 if (kernfs_type(pos) != KERNFS_DIR)
1203 break;
1205 rbn = rb_first(&pos->dir.children);
1206 if (!rbn)
1207 break;
1209 pos = rb_to_kn(rbn);
1212 return last;
1216 * kernfs_next_descendant_post - find the next descendant for post-order walk
1217 * @pos: the current position (%NULL to initiate traversal)
1218 * @root: kernfs_node whose descendants to walk
1220 * Find the next descendant to visit for post-order traversal of @root's
1221 * descendants. @root is included in the iteration and the last node to be
1222 * visited.
1224 static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1225 struct kernfs_node *root)
1227 struct rb_node *rbn;
1229 lockdep_assert_held(&kernfs_mutex);
1231 /* if first iteration, visit leftmost descendant which may be root */
1232 if (!pos)
1233 return kernfs_leftmost_descendant(root);
1235 /* if we visited @root, we're done */
1236 if (pos == root)
1237 return NULL;
1239 /* if there's an unvisited sibling, visit its leftmost descendant */
1240 rbn = rb_next(&pos->rb);
1241 if (rbn)
1242 return kernfs_leftmost_descendant(rb_to_kn(rbn));
1244 /* no sibling left, visit parent */
1245 return pos->parent;
1249 * kernfs_activate - activate a node which started deactivated
1250 * @kn: kernfs_node whose subtree is to be activated
1252 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1253 * needs to be explicitly activated. A node which hasn't been activated
1254 * isn't visible to userland and deactivation is skipped during its
1255 * removal. This is useful to construct atomic init sequences where
1256 * creation of multiple nodes should either succeed or fail atomically.
1258 * The caller is responsible for ensuring that this function is not called
1259 * after kernfs_remove*() is invoked on @kn.
1261 void kernfs_activate(struct kernfs_node *kn)
1263 struct kernfs_node *pos;
1265 mutex_lock(&kernfs_mutex);
1267 pos = NULL;
1268 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1269 if (pos->flags & KERNFS_ACTIVATED)
1270 continue;
1272 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1273 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1275 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1276 pos->flags |= KERNFS_ACTIVATED;
1279 mutex_unlock(&kernfs_mutex);
1282 static void __kernfs_remove(struct kernfs_node *kn)
1284 struct kernfs_node *pos;
1286 lockdep_assert_held(&kernfs_mutex);
1289 * Short-circuit if non-root @kn has already finished removal.
1290 * This is for kernfs_remove_self() which plays with active ref
1291 * after removal.
1293 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1294 return;
1296 pr_debug("kernfs %s: removing\n", kn->name);
1298 /* prevent any new usage under @kn by deactivating all nodes */
1299 pos = NULL;
1300 while ((pos = kernfs_next_descendant_post(pos, kn)))
1301 if (kernfs_active(pos))
1302 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1304 /* deactivate and unlink the subtree node-by-node */
1305 do {
1306 pos = kernfs_leftmost_descendant(kn);
1309 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1310 * base ref could have been put by someone else by the time
1311 * the function returns. Make sure it doesn't go away
1312 * underneath us.
1314 kernfs_get(pos);
1317 * Drain iff @kn was activated. This avoids draining and
1318 * its lockdep annotations for nodes which have never been
1319 * activated and allows embedding kernfs_remove() in create
1320 * error paths without worrying about draining.
1322 if (kn->flags & KERNFS_ACTIVATED)
1323 kernfs_drain(pos);
1324 else
1325 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1328 * kernfs_unlink_sibling() succeeds once per node. Use it
1329 * to decide who's responsible for cleanups.
1331 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1332 struct kernfs_iattrs *ps_iattr =
1333 pos->parent ? pos->parent->iattr : NULL;
1335 /* update timestamps on the parent */
1336 if (ps_iattr) {
1337 ktime_get_real_ts64(&ps_iattr->ia_ctime);
1338 ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1341 kernfs_put(pos);
1344 kernfs_put(pos);
1345 } while (pos != kn);
1349 * kernfs_remove - remove a kernfs_node recursively
1350 * @kn: the kernfs_node to remove
1352 * Remove @kn along with all its subdirectories and files.
1354 void kernfs_remove(struct kernfs_node *kn)
1356 mutex_lock(&kernfs_mutex);
1357 __kernfs_remove(kn);
1358 mutex_unlock(&kernfs_mutex);
1362 * kernfs_break_active_protection - break out of active protection
1363 * @kn: the self kernfs_node
1365 * The caller must be running off of a kernfs operation which is invoked
1366 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1367 * this function must also be matched with an invocation of
1368 * kernfs_unbreak_active_protection().
1370 * This function releases the active reference of @kn the caller is
1371 * holding. Once this function is called, @kn may be removed at any point
1372 * and the caller is solely responsible for ensuring that the objects it
1373 * dereferences are accessible.
1375 void kernfs_break_active_protection(struct kernfs_node *kn)
1378 * Take out ourself out of the active ref dependency chain. If
1379 * we're called without an active ref, lockdep will complain.
1381 kernfs_put_active(kn);
1385 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1386 * @kn: the self kernfs_node
1388 * If kernfs_break_active_protection() was called, this function must be
1389 * invoked before finishing the kernfs operation. Note that while this
1390 * function restores the active reference, it doesn't and can't actually
1391 * restore the active protection - @kn may already or be in the process of
1392 * being removed. Once kernfs_break_active_protection() is invoked, that
1393 * protection is irreversibly gone for the kernfs operation instance.
1395 * While this function may be called at any point after
1396 * kernfs_break_active_protection() is invoked, its most useful location
1397 * would be right before the enclosing kernfs operation returns.
1399 void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1402 * @kn->active could be in any state; however, the increment we do
1403 * here will be undone as soon as the enclosing kernfs operation
1404 * finishes and this temporary bump can't break anything. If @kn
1405 * is alive, nothing changes. If @kn is being deactivated, the
1406 * soon-to-follow put will either finish deactivation or restore
1407 * deactivated state. If @kn is already removed, the temporary
1408 * bump is guaranteed to be gone before @kn is released.
1410 atomic_inc(&kn->active);
1411 if (kernfs_lockdep(kn))
1412 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1416 * kernfs_remove_self - remove a kernfs_node from its own method
1417 * @kn: the self kernfs_node to remove
1419 * The caller must be running off of a kernfs operation which is invoked
1420 * with an active reference - e.g. one of kernfs_ops. This can be used to
1421 * implement a file operation which deletes itself.
1423 * For example, the "delete" file for a sysfs device directory can be
1424 * implemented by invoking kernfs_remove_self() on the "delete" file
1425 * itself. This function breaks the circular dependency of trying to
1426 * deactivate self while holding an active ref itself. It isn't necessary
1427 * to modify the usual removal path to use kernfs_remove_self(). The
1428 * "delete" implementation can simply invoke kernfs_remove_self() on self
1429 * before proceeding with the usual removal path. kernfs will ignore later
1430 * kernfs_remove() on self.
1432 * kernfs_remove_self() can be called multiple times concurrently on the
1433 * same kernfs_node. Only the first one actually performs removal and
1434 * returns %true. All others will wait until the kernfs operation which
1435 * won self-removal finishes and return %false. Note that the losers wait
1436 * for the completion of not only the winning kernfs_remove_self() but also
1437 * the whole kernfs_ops which won the arbitration. This can be used to
1438 * guarantee, for example, all concurrent writes to a "delete" file to
1439 * finish only after the whole operation is complete.
1441 bool kernfs_remove_self(struct kernfs_node *kn)
1443 bool ret;
1445 mutex_lock(&kernfs_mutex);
1446 kernfs_break_active_protection(kn);
1449 * SUICIDAL is used to arbitrate among competing invocations. Only
1450 * the first one will actually perform removal. When the removal
1451 * is complete, SUICIDED is set and the active ref is restored
1452 * while holding kernfs_mutex. The ones which lost arbitration
1453 * waits for SUICDED && drained which can happen only after the
1454 * enclosing kernfs operation which executed the winning instance
1455 * of kernfs_remove_self() finished.
1457 if (!(kn->flags & KERNFS_SUICIDAL)) {
1458 kn->flags |= KERNFS_SUICIDAL;
1459 __kernfs_remove(kn);
1460 kn->flags |= KERNFS_SUICIDED;
1461 ret = true;
1462 } else {
1463 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1464 DEFINE_WAIT(wait);
1466 while (true) {
1467 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1469 if ((kn->flags & KERNFS_SUICIDED) &&
1470 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1471 break;
1473 mutex_unlock(&kernfs_mutex);
1474 schedule();
1475 mutex_lock(&kernfs_mutex);
1477 finish_wait(waitq, &wait);
1478 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1479 ret = false;
1483 * This must be done while holding kernfs_mutex; otherwise, waiting
1484 * for SUICIDED && deactivated could finish prematurely.
1486 kernfs_unbreak_active_protection(kn);
1488 mutex_unlock(&kernfs_mutex);
1489 return ret;
1493 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1494 * @parent: parent of the target
1495 * @name: name of the kernfs_node to remove
1496 * @ns: namespace tag of the kernfs_node to remove
1498 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1499 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1501 int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1502 const void *ns)
1504 struct kernfs_node *kn;
1506 if (!parent) {
1507 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1508 name);
1509 return -ENOENT;
1512 mutex_lock(&kernfs_mutex);
1514 kn = kernfs_find_ns(parent, name, ns);
1515 if (kn)
1516 __kernfs_remove(kn);
1518 mutex_unlock(&kernfs_mutex);
1520 if (kn)
1521 return 0;
1522 else
1523 return -ENOENT;
1527 * kernfs_rename_ns - move and rename a kernfs_node
1528 * @kn: target node
1529 * @new_parent: new parent to put @sd under
1530 * @new_name: new name
1531 * @new_ns: new namespace tag
1533 int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1534 const char *new_name, const void *new_ns)
1536 struct kernfs_node *old_parent;
1537 const char *old_name = NULL;
1538 int error;
1540 /* can't move or rename root */
1541 if (!kn->parent)
1542 return -EINVAL;
1544 mutex_lock(&kernfs_mutex);
1546 error = -ENOENT;
1547 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1548 (new_parent->flags & KERNFS_EMPTY_DIR))
1549 goto out;
1551 error = 0;
1552 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1553 (strcmp(kn->name, new_name) == 0))
1554 goto out; /* nothing to rename */
1556 error = -EEXIST;
1557 if (kernfs_find_ns(new_parent, new_name, new_ns))
1558 goto out;
1560 /* rename kernfs_node */
1561 if (strcmp(kn->name, new_name) != 0) {
1562 error = -ENOMEM;
1563 new_name = kstrdup_const(new_name, GFP_KERNEL);
1564 if (!new_name)
1565 goto out;
1566 } else {
1567 new_name = NULL;
1571 * Move to the appropriate place in the appropriate directories rbtree.
1573 kernfs_unlink_sibling(kn);
1574 kernfs_get(new_parent);
1576 /* rename_lock protects ->parent and ->name accessors */
1577 spin_lock_irq(&kernfs_rename_lock);
1579 old_parent = kn->parent;
1580 kn->parent = new_parent;
1582 kn->ns = new_ns;
1583 if (new_name) {
1584 old_name = kn->name;
1585 kn->name = new_name;
1588 spin_unlock_irq(&kernfs_rename_lock);
1590 kn->hash = kernfs_name_hash(kn->name, kn->ns);
1591 kernfs_link_sibling(kn);
1593 kernfs_put(old_parent);
1594 kfree_const(old_name);
1596 error = 0;
1597 out:
1598 mutex_unlock(&kernfs_mutex);
1599 return error;
1602 /* Relationship between s_mode and the DT_xxx types */
1603 static inline unsigned char dt_type(struct kernfs_node *kn)
1605 return (kn->mode >> 12) & 15;
1608 static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1610 kernfs_put(filp->private_data);
1611 return 0;
1614 static struct kernfs_node *kernfs_dir_pos(const void *ns,
1615 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1617 if (pos) {
1618 int valid = kernfs_active(pos) &&
1619 pos->parent == parent && hash == pos->hash;
1620 kernfs_put(pos);
1621 if (!valid)
1622 pos = NULL;
1624 if (!pos && (hash > 1) && (hash < INT_MAX)) {
1625 struct rb_node *node = parent->dir.children.rb_node;
1626 while (node) {
1627 pos = rb_to_kn(node);
1629 if (hash < pos->hash)
1630 node = node->rb_left;
1631 else if (hash > pos->hash)
1632 node = node->rb_right;
1633 else
1634 break;
1637 /* Skip over entries which are dying/dead or in the wrong namespace */
1638 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1639 struct rb_node *node = rb_next(&pos->rb);
1640 if (!node)
1641 pos = NULL;
1642 else
1643 pos = rb_to_kn(node);
1645 return pos;
1648 static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1649 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1651 pos = kernfs_dir_pos(ns, parent, ino, pos);
1652 if (pos) {
1653 do {
1654 struct rb_node *node = rb_next(&pos->rb);
1655 if (!node)
1656 pos = NULL;
1657 else
1658 pos = rb_to_kn(node);
1659 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1661 return pos;
1664 static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1666 struct dentry *dentry = file->f_path.dentry;
1667 struct kernfs_node *parent = kernfs_dentry_node(dentry);
1668 struct kernfs_node *pos = file->private_data;
1669 const void *ns = NULL;
1671 if (!dir_emit_dots(file, ctx))
1672 return 0;
1673 mutex_lock(&kernfs_mutex);
1675 if (kernfs_ns_enabled(parent))
1676 ns = kernfs_info(dentry->d_sb)->ns;
1678 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1679 pos;
1680 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1681 const char *name = pos->name;
1682 unsigned int type = dt_type(pos);
1683 int len = strlen(name);
1684 ino_t ino = kernfs_ino(pos);
1686 ctx->pos = pos->hash;
1687 file->private_data = pos;
1688 kernfs_get(pos);
1690 mutex_unlock(&kernfs_mutex);
1691 if (!dir_emit(ctx, name, len, ino, type))
1692 return 0;
1693 mutex_lock(&kernfs_mutex);
1695 mutex_unlock(&kernfs_mutex);
1696 file->private_data = NULL;
1697 ctx->pos = INT_MAX;
1698 return 0;
1701 const struct file_operations kernfs_dir_fops = {
1702 .read = generic_read_dir,
1703 .iterate_shared = kernfs_fop_readdir,
1704 .release = kernfs_dir_fop_release,
1705 .llseek = generic_file_llseek,