1 // SPDX-License-Identifier: GPL-2.0+
3 * super.c - NILFS module and super block management.
5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
7 * Written by Ryusuke Konishi.
10 * linux/fs/ext2/super.c
12 * Copyright (C) 1992, 1993, 1994, 1995
13 * Remy Card (card@masi.ibp.fr)
14 * Laboratoire MASI - Institut Blaise Pascal
15 * Universite Pierre et Marie Curie (Paris VI)
19 * linux/fs/minix/inode.c
21 * Copyright (C) 1991, 1992 Linus Torvalds
23 * Big-endian to little-endian byte-swapping/bitmaps by
24 * David S. Miller (davem@caip.rutgers.edu), 1995
27 #include <linux/module.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/init.h>
31 #include <linux/blkdev.h>
32 #include <linux/parser.h>
33 #include <linux/crc32.h>
34 #include <linux/vfs.h>
35 #include <linux/writeback.h>
36 #include <linux/seq_file.h>
37 #include <linux/mount.h>
46 #include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
52 MODULE_AUTHOR("NTT Corp.");
53 MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
55 MODULE_LICENSE("GPL");
57 static struct kmem_cache
*nilfs_inode_cachep
;
58 struct kmem_cache
*nilfs_transaction_cachep
;
59 struct kmem_cache
*nilfs_segbuf_cachep
;
60 struct kmem_cache
*nilfs_btree_path_cache
;
62 static int nilfs_setup_super(struct super_block
*sb
, int is_mount
);
63 static int nilfs_remount(struct super_block
*sb
, int *flags
, char *data
);
65 void __nilfs_msg(struct super_block
*sb
, const char *level
, const char *fmt
,
75 printk("%sNILFS (%s): %pV\n", level
, sb
->s_id
, &vaf
);
77 printk("%sNILFS: %pV\n", level
, &vaf
);
81 static void nilfs_set_error(struct super_block
*sb
)
83 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
84 struct nilfs_super_block
**sbp
;
86 down_write(&nilfs
->ns_sem
);
87 if (!(nilfs
->ns_mount_state
& NILFS_ERROR_FS
)) {
88 nilfs
->ns_mount_state
|= NILFS_ERROR_FS
;
89 sbp
= nilfs_prepare_super(sb
, 0);
91 sbp
[0]->s_state
|= cpu_to_le16(NILFS_ERROR_FS
);
93 sbp
[1]->s_state
|= cpu_to_le16(NILFS_ERROR_FS
);
94 nilfs_commit_super(sb
, NILFS_SB_COMMIT_ALL
);
97 up_write(&nilfs
->ns_sem
);
101 * __nilfs_error() - report failure condition on a filesystem
103 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
104 * reporting an error message. This function should be called when
105 * NILFS detects incoherences or defects of meta data on disk.
107 * This implements the body of nilfs_error() macro. Normally,
108 * nilfs_error() should be used. As for sustainable errors such as a
109 * single-shot I/O error, nilfs_msg() should be used instead.
111 * Callers should not add a trailing newline since this will do it.
113 void __nilfs_error(struct super_block
*sb
, const char *function
,
114 const char *fmt
, ...)
116 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
117 struct va_format vaf
;
125 printk(KERN_CRIT
"NILFS error (device %s): %s: %pV\n",
126 sb
->s_id
, function
, &vaf
);
130 if (!sb_rdonly(sb
)) {
133 if (nilfs_test_opt(nilfs
, ERRORS_RO
)) {
134 printk(KERN_CRIT
"Remounting filesystem read-only\n");
135 sb
->s_flags
|= SB_RDONLY
;
139 if (nilfs_test_opt(nilfs
, ERRORS_PANIC
))
140 panic("NILFS (device %s): panic forced after error\n",
144 struct inode
*nilfs_alloc_inode(struct super_block
*sb
)
146 struct nilfs_inode_info
*ii
;
148 ii
= kmem_cache_alloc(nilfs_inode_cachep
, GFP_NOFS
);
154 nilfs_mapping_init(&ii
->i_btnode_cache
, &ii
->vfs_inode
);
155 return &ii
->vfs_inode
;
158 static void nilfs_free_inode(struct inode
*inode
)
160 if (nilfs_is_metadata_file_inode(inode
))
161 nilfs_mdt_destroy(inode
);
163 kmem_cache_free(nilfs_inode_cachep
, NILFS_I(inode
));
166 static int nilfs_sync_super(struct super_block
*sb
, int flag
)
168 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
172 set_buffer_dirty(nilfs
->ns_sbh
[0]);
173 if (nilfs_test_opt(nilfs
, BARRIER
)) {
174 err
= __sync_dirty_buffer(nilfs
->ns_sbh
[0],
175 REQ_SYNC
| REQ_PREFLUSH
| REQ_FUA
);
177 err
= sync_dirty_buffer(nilfs
->ns_sbh
[0]);
181 nilfs_msg(sb
, KERN_ERR
, "unable to write superblock: err=%d",
183 if (err
== -EIO
&& nilfs
->ns_sbh
[1]) {
185 * sbp[0] points to newer log than sbp[1],
186 * so copy sbp[0] to sbp[1] to take over sbp[0].
188 memcpy(nilfs
->ns_sbp
[1], nilfs
->ns_sbp
[0],
190 nilfs_fall_back_super_block(nilfs
);
194 struct nilfs_super_block
*sbp
= nilfs
->ns_sbp
[0];
196 nilfs
->ns_sbwcount
++;
199 * The latest segment becomes trailable from the position
200 * written in superblock.
202 clear_nilfs_discontinued(nilfs
);
204 /* update GC protection for recent segments */
205 if (nilfs
->ns_sbh
[1]) {
206 if (flag
== NILFS_SB_COMMIT_ALL
) {
207 set_buffer_dirty(nilfs
->ns_sbh
[1]);
208 if (sync_dirty_buffer(nilfs
->ns_sbh
[1]) < 0)
211 if (le64_to_cpu(nilfs
->ns_sbp
[1]->s_last_cno
) <
212 le64_to_cpu(nilfs
->ns_sbp
[0]->s_last_cno
))
213 sbp
= nilfs
->ns_sbp
[1];
216 spin_lock(&nilfs
->ns_last_segment_lock
);
217 nilfs
->ns_prot_seq
= le64_to_cpu(sbp
->s_last_seq
);
218 spin_unlock(&nilfs
->ns_last_segment_lock
);
224 void nilfs_set_log_cursor(struct nilfs_super_block
*sbp
,
225 struct the_nilfs
*nilfs
)
227 sector_t nfreeblocks
;
229 /* nilfs->ns_sem must be locked by the caller. */
230 nilfs_count_free_blocks(nilfs
, &nfreeblocks
);
231 sbp
->s_free_blocks_count
= cpu_to_le64(nfreeblocks
);
233 spin_lock(&nilfs
->ns_last_segment_lock
);
234 sbp
->s_last_seq
= cpu_to_le64(nilfs
->ns_last_seq
);
235 sbp
->s_last_pseg
= cpu_to_le64(nilfs
->ns_last_pseg
);
236 sbp
->s_last_cno
= cpu_to_le64(nilfs
->ns_last_cno
);
237 spin_unlock(&nilfs
->ns_last_segment_lock
);
240 struct nilfs_super_block
**nilfs_prepare_super(struct super_block
*sb
,
243 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
244 struct nilfs_super_block
**sbp
= nilfs
->ns_sbp
;
246 /* nilfs->ns_sem must be locked by the caller. */
247 if (sbp
[0]->s_magic
!= cpu_to_le16(NILFS_SUPER_MAGIC
)) {
249 sbp
[1]->s_magic
== cpu_to_le16(NILFS_SUPER_MAGIC
)) {
250 memcpy(sbp
[0], sbp
[1], nilfs
->ns_sbsize
);
252 nilfs_msg(sb
, KERN_CRIT
, "superblock broke");
256 sbp
[1]->s_magic
!= cpu_to_le16(NILFS_SUPER_MAGIC
)) {
257 memcpy(sbp
[1], sbp
[0], nilfs
->ns_sbsize
);
261 nilfs_swap_super_block(nilfs
);
266 int nilfs_commit_super(struct super_block
*sb
, int flag
)
268 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
269 struct nilfs_super_block
**sbp
= nilfs
->ns_sbp
;
272 /* nilfs->ns_sem must be locked by the caller. */
273 t
= ktime_get_real_seconds();
274 nilfs
->ns_sbwtime
= t
;
275 sbp
[0]->s_wtime
= cpu_to_le64(t
);
277 sbp
[0]->s_sum
= cpu_to_le32(crc32_le(nilfs
->ns_crc_seed
,
278 (unsigned char *)sbp
[0],
280 if (flag
== NILFS_SB_COMMIT_ALL
&& sbp
[1]) {
281 sbp
[1]->s_wtime
= sbp
[0]->s_wtime
;
283 sbp
[1]->s_sum
= cpu_to_le32(crc32_le(nilfs
->ns_crc_seed
,
284 (unsigned char *)sbp
[1],
287 clear_nilfs_sb_dirty(nilfs
);
288 nilfs
->ns_flushed_device
= 1;
289 /* make sure store to ns_flushed_device cannot be reordered */
291 return nilfs_sync_super(sb
, flag
);
295 * nilfs_cleanup_super() - write filesystem state for cleanup
296 * @sb: super block instance to be unmounted or degraded to read-only
298 * This function restores state flags in the on-disk super block.
299 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
300 * filesystem was not clean previously.
302 int nilfs_cleanup_super(struct super_block
*sb
)
304 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
305 struct nilfs_super_block
**sbp
;
306 int flag
= NILFS_SB_COMMIT
;
309 sbp
= nilfs_prepare_super(sb
, 0);
311 sbp
[0]->s_state
= cpu_to_le16(nilfs
->ns_mount_state
);
312 nilfs_set_log_cursor(sbp
[0], nilfs
);
313 if (sbp
[1] && sbp
[0]->s_last_cno
== sbp
[1]->s_last_cno
) {
315 * make the "clean" flag also to the opposite
316 * super block if both super blocks point to
317 * the same checkpoint.
319 sbp
[1]->s_state
= sbp
[0]->s_state
;
320 flag
= NILFS_SB_COMMIT_ALL
;
322 ret
= nilfs_commit_super(sb
, flag
);
328 * nilfs_move_2nd_super - relocate secondary super block
329 * @sb: super block instance
330 * @sb2off: new offset of the secondary super block (in bytes)
332 static int nilfs_move_2nd_super(struct super_block
*sb
, loff_t sb2off
)
334 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
335 struct buffer_head
*nsbh
;
336 struct nilfs_super_block
*nsbp
;
337 sector_t blocknr
, newblocknr
;
338 unsigned long offset
;
339 int sb2i
; /* array index of the secondary superblock */
342 /* nilfs->ns_sem must be locked by the caller. */
343 if (nilfs
->ns_sbh
[1] &&
344 nilfs
->ns_sbh
[1]->b_blocknr
> nilfs
->ns_first_data_block
) {
346 blocknr
= nilfs
->ns_sbh
[1]->b_blocknr
;
347 } else if (nilfs
->ns_sbh
[0]->b_blocknr
> nilfs
->ns_first_data_block
) {
349 blocknr
= nilfs
->ns_sbh
[0]->b_blocknr
;
354 if (sb2i
>= 0 && (u64
)blocknr
<< nilfs
->ns_blocksize_bits
== sb2off
)
355 goto out
; /* super block location is unchanged */
357 /* Get new super block buffer */
358 newblocknr
= sb2off
>> nilfs
->ns_blocksize_bits
;
359 offset
= sb2off
& (nilfs
->ns_blocksize
- 1);
360 nsbh
= sb_getblk(sb
, newblocknr
);
362 nilfs_msg(sb
, KERN_WARNING
,
363 "unable to move secondary superblock to block %llu",
364 (unsigned long long)newblocknr
);
368 nsbp
= (void *)nsbh
->b_data
+ offset
;
369 memset(nsbp
, 0, nilfs
->ns_blocksize
);
372 memcpy(nsbp
, nilfs
->ns_sbp
[sb2i
], nilfs
->ns_sbsize
);
373 brelse(nilfs
->ns_sbh
[sb2i
]);
374 nilfs
->ns_sbh
[sb2i
] = nsbh
;
375 nilfs
->ns_sbp
[sb2i
] = nsbp
;
376 } else if (nilfs
->ns_sbh
[0]->b_blocknr
< nilfs
->ns_first_data_block
) {
377 /* secondary super block will be restored to index 1 */
378 nilfs
->ns_sbh
[1] = nsbh
;
379 nilfs
->ns_sbp
[1] = nsbp
;
388 * nilfs_resize_fs - resize the filesystem
389 * @sb: super block instance
390 * @newsize: new size of the filesystem (in bytes)
392 int nilfs_resize_fs(struct super_block
*sb
, __u64 newsize
)
394 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
395 struct nilfs_super_block
**sbp
;
396 __u64 devsize
, newnsegs
;
401 devsize
= i_size_read(sb
->s_bdev
->bd_inode
);
402 if (newsize
> devsize
)
406 * Write lock is required to protect some functions depending
407 * on the number of segments, the number of reserved segments,
410 down_write(&nilfs
->ns_segctor_sem
);
412 sb2off
= NILFS_SB2_OFFSET_BYTES(newsize
);
413 newnsegs
= sb2off
>> nilfs
->ns_blocksize_bits
;
414 do_div(newnsegs
, nilfs
->ns_blocks_per_segment
);
416 ret
= nilfs_sufile_resize(nilfs
->ns_sufile
, newnsegs
);
417 up_write(&nilfs
->ns_segctor_sem
);
421 ret
= nilfs_construct_segment(sb
);
425 down_write(&nilfs
->ns_sem
);
426 nilfs_move_2nd_super(sb
, sb2off
);
428 sbp
= nilfs_prepare_super(sb
, 0);
430 nilfs_set_log_cursor(sbp
[0], nilfs
);
432 * Drop NILFS_RESIZE_FS flag for compatibility with
433 * mount-time resize which may be implemented in a
436 sbp
[0]->s_state
= cpu_to_le16(le16_to_cpu(sbp
[0]->s_state
) &
438 sbp
[0]->s_dev_size
= cpu_to_le64(newsize
);
439 sbp
[0]->s_nsegments
= cpu_to_le64(nilfs
->ns_nsegments
);
441 memcpy(sbp
[1], sbp
[0], nilfs
->ns_sbsize
);
442 ret
= nilfs_commit_super(sb
, NILFS_SB_COMMIT_ALL
);
444 up_write(&nilfs
->ns_sem
);
447 * Reset the range of allocatable segments last. This order
448 * is important in the case of expansion because the secondary
449 * superblock must be protected from log write until migration
453 nilfs_sufile_set_alloc_range(nilfs
->ns_sufile
, 0, newnsegs
- 1);
458 static void nilfs_put_super(struct super_block
*sb
)
460 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
462 nilfs_detach_log_writer(sb
);
464 if (!sb_rdonly(sb
)) {
465 down_write(&nilfs
->ns_sem
);
466 nilfs_cleanup_super(sb
);
467 up_write(&nilfs
->ns_sem
);
470 iput(nilfs
->ns_sufile
);
471 iput(nilfs
->ns_cpfile
);
474 destroy_nilfs(nilfs
);
475 sb
->s_fs_info
= NULL
;
478 static int nilfs_sync_fs(struct super_block
*sb
, int wait
)
480 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
481 struct nilfs_super_block
**sbp
;
484 /* This function is called when super block should be written back */
486 err
= nilfs_construct_segment(sb
);
488 down_write(&nilfs
->ns_sem
);
489 if (nilfs_sb_dirty(nilfs
)) {
490 sbp
= nilfs_prepare_super(sb
, nilfs_sb_will_flip(nilfs
));
492 nilfs_set_log_cursor(sbp
[0], nilfs
);
493 nilfs_commit_super(sb
, NILFS_SB_COMMIT
);
496 up_write(&nilfs
->ns_sem
);
499 err
= nilfs_flush_device(nilfs
);
504 int nilfs_attach_checkpoint(struct super_block
*sb
, __u64 cno
, int curr_mnt
,
505 struct nilfs_root
**rootp
)
507 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
508 struct nilfs_root
*root
;
509 struct nilfs_checkpoint
*raw_cp
;
510 struct buffer_head
*bh_cp
;
513 root
= nilfs_find_or_create_root(
514 nilfs
, curr_mnt
? NILFS_CPTREE_CURRENT_CNO
: cno
);
519 goto reuse
; /* already attached checkpoint */
521 down_read(&nilfs
->ns_segctor_sem
);
522 err
= nilfs_cpfile_get_checkpoint(nilfs
->ns_cpfile
, cno
, 0, &raw_cp
,
524 up_read(&nilfs
->ns_segctor_sem
);
526 if (err
== -ENOENT
|| err
== -EINVAL
) {
527 nilfs_msg(sb
, KERN_ERR
,
528 "Invalid checkpoint (checkpoint number=%llu)",
529 (unsigned long long)cno
);
535 err
= nilfs_ifile_read(sb
, root
, nilfs
->ns_inode_size
,
536 &raw_cp
->cp_ifile_inode
, &root
->ifile
);
540 atomic64_set(&root
->inodes_count
,
541 le64_to_cpu(raw_cp
->cp_inodes_count
));
542 atomic64_set(&root
->blocks_count
,
543 le64_to_cpu(raw_cp
->cp_blocks_count
));
545 nilfs_cpfile_put_checkpoint(nilfs
->ns_cpfile
, cno
, bh_cp
);
552 nilfs_cpfile_put_checkpoint(nilfs
->ns_cpfile
, cno
, bh_cp
);
554 nilfs_put_root(root
);
559 static int nilfs_freeze(struct super_block
*sb
)
561 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
567 /* Mark super block clean */
568 down_write(&nilfs
->ns_sem
);
569 err
= nilfs_cleanup_super(sb
);
570 up_write(&nilfs
->ns_sem
);
574 static int nilfs_unfreeze(struct super_block
*sb
)
576 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
581 down_write(&nilfs
->ns_sem
);
582 nilfs_setup_super(sb
, false);
583 up_write(&nilfs
->ns_sem
);
587 static int nilfs_statfs(struct dentry
*dentry
, struct kstatfs
*buf
)
589 struct super_block
*sb
= dentry
->d_sb
;
590 struct nilfs_root
*root
= NILFS_I(d_inode(dentry
))->i_root
;
591 struct the_nilfs
*nilfs
= root
->nilfs
;
592 u64 id
= huge_encode_dev(sb
->s_bdev
->bd_dev
);
593 unsigned long long blocks
;
594 unsigned long overhead
;
595 unsigned long nrsvblocks
;
596 sector_t nfreeblocks
;
597 u64 nmaxinodes
, nfreeinodes
;
601 * Compute all of the segment blocks
603 * The blocks before first segment and after last segment
606 blocks
= nilfs
->ns_blocks_per_segment
* nilfs
->ns_nsegments
607 - nilfs
->ns_first_data_block
;
608 nrsvblocks
= nilfs
->ns_nrsvsegs
* nilfs
->ns_blocks_per_segment
;
611 * Compute the overhead
613 * When distributing meta data blocks outside segment structure,
614 * We must count them as the overhead.
618 err
= nilfs_count_free_blocks(nilfs
, &nfreeblocks
);
622 err
= nilfs_ifile_count_free_inodes(root
->ifile
,
623 &nmaxinodes
, &nfreeinodes
);
625 nilfs_msg(sb
, KERN_WARNING
,
626 "failed to count free inodes: err=%d", err
);
627 if (err
== -ERANGE
) {
629 * If nilfs_palloc_count_max_entries() returns
630 * -ERANGE error code then we simply treat
631 * curent inodes count as maximum possible and
632 * zero as free inodes value.
634 nmaxinodes
= atomic64_read(&root
->inodes_count
);
641 buf
->f_type
= NILFS_SUPER_MAGIC
;
642 buf
->f_bsize
= sb
->s_blocksize
;
643 buf
->f_blocks
= blocks
- overhead
;
644 buf
->f_bfree
= nfreeblocks
;
645 buf
->f_bavail
= (buf
->f_bfree
>= nrsvblocks
) ?
646 (buf
->f_bfree
- nrsvblocks
) : 0;
647 buf
->f_files
= nmaxinodes
;
648 buf
->f_ffree
= nfreeinodes
;
649 buf
->f_namelen
= NILFS_NAME_LEN
;
650 buf
->f_fsid
.val
[0] = (u32
)id
;
651 buf
->f_fsid
.val
[1] = (u32
)(id
>> 32);
656 static int nilfs_show_options(struct seq_file
*seq
, struct dentry
*dentry
)
658 struct super_block
*sb
= dentry
->d_sb
;
659 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
660 struct nilfs_root
*root
= NILFS_I(d_inode(dentry
))->i_root
;
662 if (!nilfs_test_opt(nilfs
, BARRIER
))
663 seq_puts(seq
, ",nobarrier");
664 if (root
->cno
!= NILFS_CPTREE_CURRENT_CNO
)
665 seq_printf(seq
, ",cp=%llu", (unsigned long long)root
->cno
);
666 if (nilfs_test_opt(nilfs
, ERRORS_PANIC
))
667 seq_puts(seq
, ",errors=panic");
668 if (nilfs_test_opt(nilfs
, ERRORS_CONT
))
669 seq_puts(seq
, ",errors=continue");
670 if (nilfs_test_opt(nilfs
, STRICT_ORDER
))
671 seq_puts(seq
, ",order=strict");
672 if (nilfs_test_opt(nilfs
, NORECOVERY
))
673 seq_puts(seq
, ",norecovery");
674 if (nilfs_test_opt(nilfs
, DISCARD
))
675 seq_puts(seq
, ",discard");
680 static const struct super_operations nilfs_sops
= {
681 .alloc_inode
= nilfs_alloc_inode
,
682 .free_inode
= nilfs_free_inode
,
683 .dirty_inode
= nilfs_dirty_inode
,
684 .evict_inode
= nilfs_evict_inode
,
685 .put_super
= nilfs_put_super
,
686 .sync_fs
= nilfs_sync_fs
,
687 .freeze_fs
= nilfs_freeze
,
688 .unfreeze_fs
= nilfs_unfreeze
,
689 .statfs
= nilfs_statfs
,
690 .remount_fs
= nilfs_remount
,
691 .show_options
= nilfs_show_options
695 Opt_err_cont
, Opt_err_panic
, Opt_err_ro
,
696 Opt_barrier
, Opt_nobarrier
, Opt_snapshot
, Opt_order
, Opt_norecovery
,
697 Opt_discard
, Opt_nodiscard
, Opt_err
,
700 static match_table_t tokens
= {
701 {Opt_err_cont
, "errors=continue"},
702 {Opt_err_panic
, "errors=panic"},
703 {Opt_err_ro
, "errors=remount-ro"},
704 {Opt_barrier
, "barrier"},
705 {Opt_nobarrier
, "nobarrier"},
706 {Opt_snapshot
, "cp=%u"},
707 {Opt_order
, "order=%s"},
708 {Opt_norecovery
, "norecovery"},
709 {Opt_discard
, "discard"},
710 {Opt_nodiscard
, "nodiscard"},
714 static int parse_options(char *options
, struct super_block
*sb
, int is_remount
)
716 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
718 substring_t args
[MAX_OPT_ARGS
];
723 while ((p
= strsep(&options
, ",")) != NULL
) {
729 token
= match_token(p
, tokens
, args
);
732 nilfs_set_opt(nilfs
, BARRIER
);
735 nilfs_clear_opt(nilfs
, BARRIER
);
738 if (strcmp(args
[0].from
, "relaxed") == 0)
739 /* Ordered data semantics */
740 nilfs_clear_opt(nilfs
, STRICT_ORDER
);
741 else if (strcmp(args
[0].from
, "strict") == 0)
742 /* Strict in-order semantics */
743 nilfs_set_opt(nilfs
, STRICT_ORDER
);
748 nilfs_write_opt(nilfs
, ERROR_MODE
, ERRORS_PANIC
);
751 nilfs_write_opt(nilfs
, ERROR_MODE
, ERRORS_RO
);
754 nilfs_write_opt(nilfs
, ERROR_MODE
, ERRORS_CONT
);
758 nilfs_msg(sb
, KERN_ERR
,
759 "\"%s\" option is invalid for remount",
765 nilfs_set_opt(nilfs
, NORECOVERY
);
768 nilfs_set_opt(nilfs
, DISCARD
);
771 nilfs_clear_opt(nilfs
, DISCARD
);
774 nilfs_msg(sb
, KERN_ERR
,
775 "unrecognized mount option \"%s\"", p
);
783 nilfs_set_default_options(struct super_block
*sb
,
784 struct nilfs_super_block
*sbp
)
786 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
788 nilfs
->ns_mount_opt
=
789 NILFS_MOUNT_ERRORS_RO
| NILFS_MOUNT_BARRIER
;
792 static int nilfs_setup_super(struct super_block
*sb
, int is_mount
)
794 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
795 struct nilfs_super_block
**sbp
;
799 /* nilfs->ns_sem must be locked by the caller. */
800 sbp
= nilfs_prepare_super(sb
, 0);
805 goto skip_mount_setup
;
807 max_mnt_count
= le16_to_cpu(sbp
[0]->s_max_mnt_count
);
808 mnt_count
= le16_to_cpu(sbp
[0]->s_mnt_count
);
810 if (nilfs
->ns_mount_state
& NILFS_ERROR_FS
) {
811 nilfs_msg(sb
, KERN_WARNING
, "mounting fs with errors");
813 } else if (max_mnt_count
>= 0 && mnt_count
>= max_mnt_count
) {
814 nilfs_msg(sb
, KERN_WARNING
, "maximal mount count reached");
818 sbp
[0]->s_max_mnt_count
= cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT
);
820 sbp
[0]->s_mnt_count
= cpu_to_le16(mnt_count
+ 1);
821 sbp
[0]->s_mtime
= cpu_to_le64(ktime_get_real_seconds());
825 cpu_to_le16(le16_to_cpu(sbp
[0]->s_state
) & ~NILFS_VALID_FS
);
826 /* synchronize sbp[1] with sbp[0] */
828 memcpy(sbp
[1], sbp
[0], nilfs
->ns_sbsize
);
829 return nilfs_commit_super(sb
, NILFS_SB_COMMIT_ALL
);
832 struct nilfs_super_block
*nilfs_read_super_block(struct super_block
*sb
,
833 u64 pos
, int blocksize
,
834 struct buffer_head
**pbh
)
836 unsigned long long sb_index
= pos
;
837 unsigned long offset
;
839 offset
= do_div(sb_index
, blocksize
);
840 *pbh
= sb_bread(sb
, sb_index
);
843 return (struct nilfs_super_block
*)((char *)(*pbh
)->b_data
+ offset
);
846 int nilfs_store_magic_and_option(struct super_block
*sb
,
847 struct nilfs_super_block
*sbp
,
850 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
852 sb
->s_magic
= le16_to_cpu(sbp
->s_magic
);
854 /* FS independent flags */
855 #ifdef NILFS_ATIME_DISABLE
856 sb
->s_flags
|= SB_NOATIME
;
859 nilfs_set_default_options(sb
, sbp
);
861 nilfs
->ns_resuid
= le16_to_cpu(sbp
->s_def_resuid
);
862 nilfs
->ns_resgid
= le16_to_cpu(sbp
->s_def_resgid
);
863 nilfs
->ns_interval
= le32_to_cpu(sbp
->s_c_interval
);
864 nilfs
->ns_watermark
= le32_to_cpu(sbp
->s_c_block_max
);
866 return !parse_options(data
, sb
, 0) ? -EINVAL
: 0;
869 int nilfs_check_feature_compatibility(struct super_block
*sb
,
870 struct nilfs_super_block
*sbp
)
874 features
= le64_to_cpu(sbp
->s_feature_incompat
) &
875 ~NILFS_FEATURE_INCOMPAT_SUPP
;
877 nilfs_msg(sb
, KERN_ERR
,
878 "couldn't mount because of unsupported optional features (%llx)",
879 (unsigned long long)features
);
882 features
= le64_to_cpu(sbp
->s_feature_compat_ro
) &
883 ~NILFS_FEATURE_COMPAT_RO_SUPP
;
884 if (!sb_rdonly(sb
) && features
) {
885 nilfs_msg(sb
, KERN_ERR
,
886 "couldn't mount RDWR because of unsupported optional features (%llx)",
887 (unsigned long long)features
);
893 static int nilfs_get_root_dentry(struct super_block
*sb
,
894 struct nilfs_root
*root
,
895 struct dentry
**root_dentry
)
898 struct dentry
*dentry
;
901 inode
= nilfs_iget(sb
, root
, NILFS_ROOT_INO
);
903 ret
= PTR_ERR(inode
);
904 nilfs_msg(sb
, KERN_ERR
, "error %d getting root inode", ret
);
907 if (!S_ISDIR(inode
->i_mode
) || !inode
->i_blocks
|| !inode
->i_size
) {
909 nilfs_msg(sb
, KERN_ERR
, "corrupt root inode");
914 if (root
->cno
== NILFS_CPTREE_CURRENT_CNO
) {
915 dentry
= d_find_alias(inode
);
917 dentry
= d_make_root(inode
);
926 dentry
= d_obtain_root(inode
);
927 if (IS_ERR(dentry
)) {
928 ret
= PTR_ERR(dentry
);
932 *root_dentry
= dentry
;
937 nilfs_msg(sb
, KERN_ERR
, "error %d getting root dentry", ret
);
941 static int nilfs_attach_snapshot(struct super_block
*s
, __u64 cno
,
942 struct dentry
**root_dentry
)
944 struct the_nilfs
*nilfs
= s
->s_fs_info
;
945 struct nilfs_root
*root
;
948 mutex_lock(&nilfs
->ns_snapshot_mount_mutex
);
950 down_read(&nilfs
->ns_segctor_sem
);
951 ret
= nilfs_cpfile_is_snapshot(nilfs
->ns_cpfile
, cno
);
952 up_read(&nilfs
->ns_segctor_sem
);
954 ret
= (ret
== -ENOENT
) ? -EINVAL
: ret
;
957 nilfs_msg(s
, KERN_ERR
,
958 "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
959 (unsigned long long)cno
);
964 ret
= nilfs_attach_checkpoint(s
, cno
, false, &root
);
966 nilfs_msg(s
, KERN_ERR
,
967 "error %d while loading snapshot (checkpoint number=%llu)",
968 ret
, (unsigned long long)cno
);
971 ret
= nilfs_get_root_dentry(s
, root
, root_dentry
);
972 nilfs_put_root(root
);
974 mutex_unlock(&nilfs
->ns_snapshot_mount_mutex
);
979 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
980 * @root_dentry: root dentry of the tree to be shrunk
982 * This function returns true if the tree was in-use.
984 static bool nilfs_tree_is_busy(struct dentry
*root_dentry
)
986 shrink_dcache_parent(root_dentry
);
987 return d_count(root_dentry
) > 1;
990 int nilfs_checkpoint_is_mounted(struct super_block
*sb
, __u64 cno
)
992 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
993 struct nilfs_root
*root
;
995 struct dentry
*dentry
;
998 if (cno
> nilfs
->ns_cno
)
1001 if (cno
>= nilfs_last_cno(nilfs
))
1002 return true; /* protect recent checkpoints */
1005 root
= nilfs_lookup_root(nilfs
, cno
);
1007 inode
= nilfs_ilookup(sb
, root
, NILFS_ROOT_INO
);
1009 dentry
= d_find_alias(inode
);
1011 ret
= nilfs_tree_is_busy(dentry
);
1016 nilfs_put_root(root
);
1022 * nilfs_fill_super() - initialize a super block instance
1024 * @data: mount options
1025 * @silent: silent mode flag
1027 * This function is called exclusively by nilfs->ns_mount_mutex.
1028 * So, the recovery process is protected from other simultaneous mounts.
1031 nilfs_fill_super(struct super_block
*sb
, void *data
, int silent
)
1033 struct the_nilfs
*nilfs
;
1034 struct nilfs_root
*fsroot
;
1038 nilfs
= alloc_nilfs(sb
);
1042 sb
->s_fs_info
= nilfs
;
1044 err
= init_nilfs(nilfs
, sb
, (char *)data
);
1048 sb
->s_op
= &nilfs_sops
;
1049 sb
->s_export_op
= &nilfs_export_ops
;
1051 sb
->s_time_gran
= 1;
1052 sb
->s_max_links
= NILFS_LINK_MAX
;
1054 sb
->s_bdi
= bdi_get(sb
->s_bdev
->bd_bdi
);
1056 err
= load_nilfs(nilfs
, sb
);
1060 cno
= nilfs_last_cno(nilfs
);
1061 err
= nilfs_attach_checkpoint(sb
, cno
, true, &fsroot
);
1063 nilfs_msg(sb
, KERN_ERR
,
1064 "error %d while loading last checkpoint (checkpoint number=%llu)",
1065 err
, (unsigned long long)cno
);
1069 if (!sb_rdonly(sb
)) {
1070 err
= nilfs_attach_log_writer(sb
, fsroot
);
1072 goto failed_checkpoint
;
1075 err
= nilfs_get_root_dentry(sb
, fsroot
, &sb
->s_root
);
1077 goto failed_segctor
;
1079 nilfs_put_root(fsroot
);
1081 if (!sb_rdonly(sb
)) {
1082 down_write(&nilfs
->ns_sem
);
1083 nilfs_setup_super(sb
, true);
1084 up_write(&nilfs
->ns_sem
);
1090 nilfs_detach_log_writer(sb
);
1093 nilfs_put_root(fsroot
);
1096 iput(nilfs
->ns_sufile
);
1097 iput(nilfs
->ns_cpfile
);
1098 iput(nilfs
->ns_dat
);
1101 destroy_nilfs(nilfs
);
1105 static int nilfs_remount(struct super_block
*sb
, int *flags
, char *data
)
1107 struct the_nilfs
*nilfs
= sb
->s_fs_info
;
1108 unsigned long old_sb_flags
;
1109 unsigned long old_mount_opt
;
1112 sync_filesystem(sb
);
1113 old_sb_flags
= sb
->s_flags
;
1114 old_mount_opt
= nilfs
->ns_mount_opt
;
1116 if (!parse_options(data
, sb
, 1)) {
1120 sb
->s_flags
= (sb
->s_flags
& ~SB_POSIXACL
);
1124 if (!nilfs_valid_fs(nilfs
)) {
1125 nilfs_msg(sb
, KERN_WARNING
,
1126 "couldn't remount because the filesystem is in an incomplete recovery state");
1130 if ((bool)(*flags
& SB_RDONLY
) == sb_rdonly(sb
))
1132 if (*flags
& SB_RDONLY
) {
1133 /* Shutting down log writer */
1134 nilfs_detach_log_writer(sb
);
1135 sb
->s_flags
|= SB_RDONLY
;
1138 * Remounting a valid RW partition RDONLY, so set
1139 * the RDONLY flag and then mark the partition as valid again.
1141 down_write(&nilfs
->ns_sem
);
1142 nilfs_cleanup_super(sb
);
1143 up_write(&nilfs
->ns_sem
);
1146 struct nilfs_root
*root
;
1149 * Mounting a RDONLY partition read-write, so reread and
1150 * store the current valid flag. (It may have been changed
1151 * by fsck since we originally mounted the partition.)
1153 down_read(&nilfs
->ns_sem
);
1154 features
= le64_to_cpu(nilfs
->ns_sbp
[0]->s_feature_compat_ro
) &
1155 ~NILFS_FEATURE_COMPAT_RO_SUPP
;
1156 up_read(&nilfs
->ns_sem
);
1158 nilfs_msg(sb
, KERN_WARNING
,
1159 "couldn't remount RDWR because of unsupported optional features (%llx)",
1160 (unsigned long long)features
);
1165 sb
->s_flags
&= ~SB_RDONLY
;
1167 root
= NILFS_I(d_inode(sb
->s_root
))->i_root
;
1168 err
= nilfs_attach_log_writer(sb
, root
);
1172 down_write(&nilfs
->ns_sem
);
1173 nilfs_setup_super(sb
, true);
1174 up_write(&nilfs
->ns_sem
);
1180 sb
->s_flags
= old_sb_flags
;
1181 nilfs
->ns_mount_opt
= old_mount_opt
;
1185 struct nilfs_super_data
{
1186 struct block_device
*bdev
;
1191 static int nilfs_parse_snapshot_option(const char *option
,
1192 const substring_t
*arg
,
1193 struct nilfs_super_data
*sd
)
1195 unsigned long long val
;
1196 const char *msg
= NULL
;
1199 if (!(sd
->flags
& SB_RDONLY
)) {
1200 msg
= "read-only option is not specified";
1204 err
= kstrtoull(arg
->from
, 0, &val
);
1207 msg
= "too large checkpoint number";
1209 msg
= "malformed argument";
1211 } else if (val
== 0) {
1212 msg
= "invalid checkpoint number 0";
1219 nilfs_msg(NULL
, KERN_ERR
, "invalid option \"%s\": %s", option
, msg
);
1224 * nilfs_identify - pre-read mount options needed to identify mount instance
1225 * @data: mount options
1226 * @sd: nilfs_super_data
1228 static int nilfs_identify(char *data
, struct nilfs_super_data
*sd
)
1230 char *p
, *options
= data
;
1231 substring_t args
[MAX_OPT_ARGS
];
1236 p
= strsep(&options
, ",");
1237 if (p
!= NULL
&& *p
) {
1238 token
= match_token(p
, tokens
, args
);
1239 if (token
== Opt_snapshot
)
1240 ret
= nilfs_parse_snapshot_option(p
, &args
[0],
1245 BUG_ON(options
== data
);
1246 *(options
- 1) = ',';
1251 static int nilfs_set_bdev_super(struct super_block
*s
, void *data
)
1254 s
->s_dev
= s
->s_bdev
->bd_dev
;
1258 static int nilfs_test_bdev_super(struct super_block
*s
, void *data
)
1260 return (void *)s
->s_bdev
== data
;
1263 static struct dentry
*
1264 nilfs_mount(struct file_system_type
*fs_type
, int flags
,
1265 const char *dev_name
, void *data
)
1267 struct nilfs_super_data sd
;
1268 struct super_block
*s
;
1269 fmode_t mode
= FMODE_READ
| FMODE_EXCL
;
1270 struct dentry
*root_dentry
;
1271 int err
, s_new
= false;
1273 if (!(flags
& SB_RDONLY
))
1274 mode
|= FMODE_WRITE
;
1276 sd
.bdev
= blkdev_get_by_path(dev_name
, mode
, fs_type
);
1277 if (IS_ERR(sd
.bdev
))
1278 return ERR_CAST(sd
.bdev
);
1282 if (nilfs_identify((char *)data
, &sd
)) {
1288 * once the super is inserted into the list by sget, s_umount
1289 * will protect the lockfs code from trying to start a snapshot
1290 * while we are mounting
1292 mutex_lock(&sd
.bdev
->bd_fsfreeze_mutex
);
1293 if (sd
.bdev
->bd_fsfreeze_count
> 0) {
1294 mutex_unlock(&sd
.bdev
->bd_fsfreeze_mutex
);
1298 s
= sget(fs_type
, nilfs_test_bdev_super
, nilfs_set_bdev_super
, flags
,
1300 mutex_unlock(&sd
.bdev
->bd_fsfreeze_mutex
);
1309 /* New superblock instance created */
1311 snprintf(s
->s_id
, sizeof(s
->s_id
), "%pg", sd
.bdev
);
1312 sb_set_blocksize(s
, block_size(sd
.bdev
));
1314 err
= nilfs_fill_super(s
, data
, flags
& SB_SILENT
? 1 : 0);
1318 s
->s_flags
|= SB_ACTIVE
;
1319 } else if (!sd
.cno
) {
1320 if (nilfs_tree_is_busy(s
->s_root
)) {
1321 if ((flags
^ s
->s_flags
) & SB_RDONLY
) {
1322 nilfs_msg(s
, KERN_ERR
,
1323 "the device already has a %s mount.",
1324 sb_rdonly(s
) ? "read-only" : "read/write");
1330 * Try remount to setup mount states if the current
1331 * tree is not mounted and only snapshots use this sb.
1333 err
= nilfs_remount(s
, &flags
, data
);
1340 err
= nilfs_attach_snapshot(s
, sd
.cno
, &root_dentry
);
1344 root_dentry
= dget(s
->s_root
);
1348 blkdev_put(sd
.bdev
, mode
);
1353 deactivate_locked_super(s
);
1357 blkdev_put(sd
.bdev
, mode
);
1358 return ERR_PTR(err
);
1361 struct file_system_type nilfs_fs_type
= {
1362 .owner
= THIS_MODULE
,
1364 .mount
= nilfs_mount
,
1365 .kill_sb
= kill_block_super
,
1366 .fs_flags
= FS_REQUIRES_DEV
,
1368 MODULE_ALIAS_FS("nilfs2");
1370 static void nilfs_inode_init_once(void *obj
)
1372 struct nilfs_inode_info
*ii
= obj
;
1374 INIT_LIST_HEAD(&ii
->i_dirty
);
1375 #ifdef CONFIG_NILFS_XATTR
1376 init_rwsem(&ii
->xattr_sem
);
1378 address_space_init_once(&ii
->i_btnode_cache
);
1379 ii
->i_bmap
= &ii
->i_bmap_data
;
1380 inode_init_once(&ii
->vfs_inode
);
1383 static void nilfs_segbuf_init_once(void *obj
)
1385 memset(obj
, 0, sizeof(struct nilfs_segment_buffer
));
1388 static void nilfs_destroy_cachep(void)
1391 * Make sure all delayed rcu free inodes are flushed before we
1396 kmem_cache_destroy(nilfs_inode_cachep
);
1397 kmem_cache_destroy(nilfs_transaction_cachep
);
1398 kmem_cache_destroy(nilfs_segbuf_cachep
);
1399 kmem_cache_destroy(nilfs_btree_path_cache
);
1402 static int __init
nilfs_init_cachep(void)
1404 nilfs_inode_cachep
= kmem_cache_create("nilfs2_inode_cache",
1405 sizeof(struct nilfs_inode_info
), 0,
1406 SLAB_RECLAIM_ACCOUNT
|SLAB_ACCOUNT
,
1407 nilfs_inode_init_once
);
1408 if (!nilfs_inode_cachep
)
1411 nilfs_transaction_cachep
= kmem_cache_create("nilfs2_transaction_cache",
1412 sizeof(struct nilfs_transaction_info
), 0,
1413 SLAB_RECLAIM_ACCOUNT
, NULL
);
1414 if (!nilfs_transaction_cachep
)
1417 nilfs_segbuf_cachep
= kmem_cache_create("nilfs2_segbuf_cache",
1418 sizeof(struct nilfs_segment_buffer
), 0,
1419 SLAB_RECLAIM_ACCOUNT
, nilfs_segbuf_init_once
);
1420 if (!nilfs_segbuf_cachep
)
1423 nilfs_btree_path_cache
= kmem_cache_create("nilfs2_btree_path_cache",
1424 sizeof(struct nilfs_btree_path
) * NILFS_BTREE_LEVEL_MAX
,
1426 if (!nilfs_btree_path_cache
)
1432 nilfs_destroy_cachep();
1436 static int __init
init_nilfs_fs(void)
1440 err
= nilfs_init_cachep();
1444 err
= nilfs_sysfs_init();
1448 err
= register_filesystem(&nilfs_fs_type
);
1450 goto deinit_sysfs_entry
;
1452 printk(KERN_INFO
"NILFS version 2 loaded\n");
1458 nilfs_destroy_cachep();
1463 static void __exit
exit_nilfs_fs(void)
1465 nilfs_destroy_cachep();
1467 unregister_filesystem(&nilfs_fs_type
);
1470 module_init(init_nilfs_fs
)
1471 module_exit(exit_nilfs_fs
)