1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 * Copyright (C) 2006, 2007 University of Szeged, Hungary
8 * Authors: Artem Bityutskiy (Битюцкий Артём)
14 * This file implements UBIFS I/O subsystem which provides various I/O-related
15 * helper functions (reading/writing/checking/validating nodes) and implements
16 * write-buffering support. Write buffers help to save space which otherwise
17 * would have been wasted for padding to the nearest minimal I/O unit boundary.
18 * Instead, data first goes to the write-buffer and is flushed when the
19 * buffer is full or when it is not used for some time (by timer). This is
20 * similar to the mechanism is used by JFFS2.
22 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
23 * write size (@c->max_write_size). The latter is the maximum amount of bytes
24 * the underlying flash is able to program at a time, and writing in
25 * @c->max_write_size units should presumably be faster. Obviously,
26 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
27 * @c->max_write_size bytes in size for maximum performance. However, when a
28 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
29 * boundary) which contains data is written, not the whole write-buffer,
30 * because this is more space-efficient.
32 * This optimization adds few complications to the code. Indeed, on the one
33 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
34 * also means aligning writes at the @c->max_write_size bytes offsets. On the
35 * other hand, we do not want to waste space when synchronizing the write
36 * buffer, so during synchronization we writes in smaller chunks. And this makes
37 * the next write offset to be not aligned to @c->max_write_size bytes. So the
38 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
39 * to @c->max_write_size bytes again. We do this by temporarily shrinking
40 * write-buffer size (@wbuf->size).
42 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
43 * mutexes defined inside these objects. Since sometimes upper-level code
44 * has to lock the write-buffer (e.g. journal space reservation code), many
45 * functions related to write-buffers have "nolock" suffix which means that the
46 * caller has to lock the write-buffer before calling this function.
48 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
49 * aligned, UBIFS starts the next node from the aligned address, and the padded
50 * bytes may contain any rubbish. In other words, UBIFS does not put padding
51 * bytes in those small gaps. Common headers of nodes store real node lengths,
52 * not aligned lengths. Indexing nodes also store real lengths in branches.
54 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
55 * uses padding nodes or padding bytes, if the padding node does not fit.
57 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
58 * they are read from the flash media.
61 #include <linux/crc32.h>
62 #include <linux/slab.h>
66 * ubifs_ro_mode - switch UBIFS to read read-only mode.
67 * @c: UBIFS file-system description object
68 * @err: error code which is the reason of switching to R/O mode
70 void ubifs_ro_mode(struct ubifs_info
*c
, int err
)
74 c
->no_chk_data_crc
= 0;
75 c
->vfs_sb
->s_flags
|= SB_RDONLY
;
76 ubifs_warn(c
, "switched to read-only mode, error %d", err
);
82 * Below are simple wrappers over UBI I/O functions which include some
83 * additional checks and UBIFS debugging stuff. See corresponding UBI function
84 * for more information.
87 int ubifs_leb_read(const struct ubifs_info
*c
, int lnum
, void *buf
, int offs
,
88 int len
, int even_ebadmsg
)
92 err
= ubi_read(c
->ubi
, lnum
, buf
, offs
, len
);
94 * In case of %-EBADMSG print the error message only if the
95 * @even_ebadmsg is true.
97 if (err
&& (err
!= -EBADMSG
|| even_ebadmsg
)) {
98 ubifs_err(c
, "reading %d bytes from LEB %d:%d failed, error %d",
99 len
, lnum
, offs
, err
);
105 int ubifs_leb_write(struct ubifs_info
*c
, int lnum
, const void *buf
, int offs
,
110 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
113 if (!dbg_is_tst_rcvry(c
))
114 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, len
);
116 err
= dbg_leb_write(c
, lnum
, buf
, offs
, len
);
118 ubifs_err(c
, "writing %d bytes to LEB %d:%d failed, error %d",
119 len
, lnum
, offs
, err
);
120 ubifs_ro_mode(c
, err
);
126 int ubifs_leb_change(struct ubifs_info
*c
, int lnum
, const void *buf
, int len
)
130 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
133 if (!dbg_is_tst_rcvry(c
))
134 err
= ubi_leb_change(c
->ubi
, lnum
, buf
, len
);
136 err
= dbg_leb_change(c
, lnum
, buf
, len
);
138 ubifs_err(c
, "changing %d bytes in LEB %d failed, error %d",
140 ubifs_ro_mode(c
, err
);
146 int ubifs_leb_unmap(struct ubifs_info
*c
, int lnum
)
150 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
153 if (!dbg_is_tst_rcvry(c
))
154 err
= ubi_leb_unmap(c
->ubi
, lnum
);
156 err
= dbg_leb_unmap(c
, lnum
);
158 ubifs_err(c
, "unmap LEB %d failed, error %d", lnum
, err
);
159 ubifs_ro_mode(c
, err
);
165 int ubifs_leb_map(struct ubifs_info
*c
, int lnum
)
169 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
172 if (!dbg_is_tst_rcvry(c
))
173 err
= ubi_leb_map(c
->ubi
, lnum
);
175 err
= dbg_leb_map(c
, lnum
);
177 ubifs_err(c
, "mapping LEB %d failed, error %d", lnum
, err
);
178 ubifs_ro_mode(c
, err
);
184 int ubifs_is_mapped(const struct ubifs_info
*c
, int lnum
)
188 err
= ubi_is_mapped(c
->ubi
, lnum
);
190 ubifs_err(c
, "ubi_is_mapped failed for LEB %d, error %d",
198 * ubifs_check_node - check node.
199 * @c: UBIFS file-system description object
200 * @buf: node to check
201 * @lnum: logical eraseblock number
202 * @offs: offset within the logical eraseblock
203 * @quiet: print no messages
204 * @must_chk_crc: indicates whether to always check the CRC
206 * This function checks node magic number and CRC checksum. This function also
207 * validates node length to prevent UBIFS from becoming crazy when an attacker
208 * feeds it a file-system image with incorrect nodes. For example, too large
209 * node length in the common header could cause UBIFS to read memory outside of
210 * allocated buffer when checking the CRC checksum.
212 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
213 * true, which is controlled by corresponding UBIFS mount option. However, if
214 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
215 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
216 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
217 * is checked. This is because during mounting or re-mounting from R/O mode to
218 * R/W mode we may read journal nodes (when replying the journal or doing the
219 * recovery) and the journal nodes may potentially be corrupted, so checking is
222 * This function returns zero in case of success and %-EUCLEAN in case of bad
225 int ubifs_check_node(const struct ubifs_info
*c
, const void *buf
, int lnum
,
226 int offs
, int quiet
, int must_chk_crc
)
228 int err
= -EINVAL
, type
, node_len
;
229 uint32_t crc
, node_crc
, magic
;
230 const struct ubifs_ch
*ch
= buf
;
232 ubifs_assert(c
, lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
233 ubifs_assert(c
, !(offs
& 7) && offs
< c
->leb_size
);
235 magic
= le32_to_cpu(ch
->magic
);
236 if (magic
!= UBIFS_NODE_MAGIC
) {
238 ubifs_err(c
, "bad magic %#08x, expected %#08x",
239 magic
, UBIFS_NODE_MAGIC
);
244 type
= ch
->node_type
;
245 if (type
< 0 || type
>= UBIFS_NODE_TYPES_CNT
) {
247 ubifs_err(c
, "bad node type %d", type
);
251 node_len
= le32_to_cpu(ch
->len
);
252 if (node_len
+ offs
> c
->leb_size
)
255 if (c
->ranges
[type
].max_len
== 0) {
256 if (node_len
!= c
->ranges
[type
].len
)
258 } else if (node_len
< c
->ranges
[type
].min_len
||
259 node_len
> c
->ranges
[type
].max_len
)
262 if (!must_chk_crc
&& type
== UBIFS_DATA_NODE
&& !c
->mounting
&&
263 !c
->remounting_rw
&& c
->no_chk_data_crc
)
266 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, node_len
- 8);
267 node_crc
= le32_to_cpu(ch
->crc
);
268 if (crc
!= node_crc
) {
270 ubifs_err(c
, "bad CRC: calculated %#08x, read %#08x",
280 ubifs_err(c
, "bad node length %d", node_len
);
283 ubifs_err(c
, "bad node at LEB %d:%d", lnum
, offs
);
284 ubifs_dump_node(c
, buf
);
291 * ubifs_pad - pad flash space.
292 * @c: UBIFS file-system description object
293 * @buf: buffer to put padding to
294 * @pad: how many bytes to pad
296 * The flash media obliges us to write only in chunks of %c->min_io_size and
297 * when we have to write less data we add padding node to the write-buffer and
298 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
299 * media is being scanned. If the amount of wasted space is not enough to fit a
300 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
301 * pattern (%UBIFS_PADDING_BYTE).
303 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
306 void ubifs_pad(const struct ubifs_info
*c
, void *buf
, int pad
)
310 ubifs_assert(c
, pad
>= 0 && !(pad
& 7));
312 if (pad
>= UBIFS_PAD_NODE_SZ
) {
313 struct ubifs_ch
*ch
= buf
;
314 struct ubifs_pad_node
*pad_node
= buf
;
316 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
317 ch
->node_type
= UBIFS_PAD_NODE
;
318 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
319 ch
->padding
[0] = ch
->padding
[1] = 0;
321 ch
->len
= cpu_to_le32(UBIFS_PAD_NODE_SZ
);
322 pad
-= UBIFS_PAD_NODE_SZ
;
323 pad_node
->pad_len
= cpu_to_le32(pad
);
324 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, UBIFS_PAD_NODE_SZ
- 8);
325 ch
->crc
= cpu_to_le32(crc
);
326 memset(buf
+ UBIFS_PAD_NODE_SZ
, 0, pad
);
328 /* Too little space, padding node won't fit */
329 memset(buf
, UBIFS_PADDING_BYTE
, pad
);
333 * next_sqnum - get next sequence number.
334 * @c: UBIFS file-system description object
336 static unsigned long long next_sqnum(struct ubifs_info
*c
)
338 unsigned long long sqnum
;
340 spin_lock(&c
->cnt_lock
);
341 sqnum
= ++c
->max_sqnum
;
342 spin_unlock(&c
->cnt_lock
);
344 if (unlikely(sqnum
>= SQNUM_WARN_WATERMARK
)) {
345 if (sqnum
>= SQNUM_WATERMARK
) {
346 ubifs_err(c
, "sequence number overflow %llu, end of life",
348 ubifs_ro_mode(c
, -EINVAL
);
350 ubifs_warn(c
, "running out of sequence numbers, end of life soon");
356 void ubifs_init_node(struct ubifs_info
*c
, void *node
, int len
, int pad
)
358 struct ubifs_ch
*ch
= node
;
359 unsigned long long sqnum
= next_sqnum(c
);
361 ubifs_assert(c
, len
>= UBIFS_CH_SZ
);
363 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
364 ch
->len
= cpu_to_le32(len
);
365 ch
->group_type
= UBIFS_NO_NODE_GROUP
;
366 ch
->sqnum
= cpu_to_le64(sqnum
);
367 ch
->padding
[0] = ch
->padding
[1] = 0;
371 pad
= ALIGN(len
, c
->min_io_size
) - len
;
372 ubifs_pad(c
, node
+ len
, pad
);
376 void ubifs_crc_node(struct ubifs_info
*c
, void *node
, int len
)
378 struct ubifs_ch
*ch
= node
;
381 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
382 ch
->crc
= cpu_to_le32(crc
);
386 * ubifs_prepare_node_hmac - prepare node to be written to flash.
387 * @c: UBIFS file-system description object
388 * @node: the node to pad
390 * @hmac_offs: offset of the HMAC in the node
391 * @pad: if the buffer has to be padded
393 * This function prepares node at @node to be written to the media - it
394 * calculates node CRC, fills the common header, and adds proper padding up to
395 * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then
396 * a HMAC is inserted into the node at the given offset.
398 * This function returns 0 for success or a negative error code otherwise.
400 int ubifs_prepare_node_hmac(struct ubifs_info
*c
, void *node
, int len
,
401 int hmac_offs
, int pad
)
405 ubifs_init_node(c
, node
, len
, pad
);
408 err
= ubifs_node_insert_hmac(c
, node
, len
, hmac_offs
);
413 ubifs_crc_node(c
, node
, len
);
419 * ubifs_prepare_node - prepare node to be written to flash.
420 * @c: UBIFS file-system description object
421 * @node: the node to pad
423 * @pad: if the buffer has to be padded
425 * This function prepares node at @node to be written to the media - it
426 * calculates node CRC, fills the common header, and adds proper padding up to
427 * the next minimum I/O unit if @pad is not zero.
429 void ubifs_prepare_node(struct ubifs_info
*c
, void *node
, int len
, int pad
)
432 * Deliberately ignore return value since this function can only fail
433 * when a hmac offset is given.
435 ubifs_prepare_node_hmac(c
, node
, len
, 0, pad
);
439 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
440 * @c: UBIFS file-system description object
441 * @node: the node to pad
443 * @last: indicates the last node of the group
445 * This function prepares node at @node to be written to the media - it
446 * calculates node CRC and fills the common header.
448 void ubifs_prep_grp_node(struct ubifs_info
*c
, void *node
, int len
, int last
)
451 struct ubifs_ch
*ch
= node
;
452 unsigned long long sqnum
= next_sqnum(c
);
454 ubifs_assert(c
, len
>= UBIFS_CH_SZ
);
456 ch
->magic
= cpu_to_le32(UBIFS_NODE_MAGIC
);
457 ch
->len
= cpu_to_le32(len
);
459 ch
->group_type
= UBIFS_LAST_OF_NODE_GROUP
;
461 ch
->group_type
= UBIFS_IN_NODE_GROUP
;
462 ch
->sqnum
= cpu_to_le64(sqnum
);
463 ch
->padding
[0] = ch
->padding
[1] = 0;
464 crc
= crc32(UBIFS_CRC32_INIT
, node
+ 8, len
- 8);
465 ch
->crc
= cpu_to_le32(crc
);
469 * wbuf_timer_callback - write-buffer timer callback function.
470 * @timer: timer data (write-buffer descriptor)
472 * This function is called when the write-buffer timer expires.
474 static enum hrtimer_restart
wbuf_timer_callback_nolock(struct hrtimer
*timer
)
476 struct ubifs_wbuf
*wbuf
= container_of(timer
, struct ubifs_wbuf
, timer
);
478 dbg_io("jhead %s", dbg_jhead(wbuf
->jhead
));
480 wbuf
->c
->need_wbuf_sync
= 1;
481 ubifs_wake_up_bgt(wbuf
->c
);
482 return HRTIMER_NORESTART
;
486 * new_wbuf_timer - start new write-buffer timer.
487 * @c: UBIFS file-system description object
488 * @wbuf: write-buffer descriptor
490 static void new_wbuf_timer_nolock(struct ubifs_info
*c
, struct ubifs_wbuf
*wbuf
)
492 ktime_t softlimit
= ms_to_ktime(dirty_writeback_interval
* 10);
493 unsigned long long delta
= dirty_writeback_interval
;
495 /* centi to milli, milli to nano, then 10% */
496 delta
*= 10ULL * NSEC_PER_MSEC
/ 10ULL;
498 ubifs_assert(c
, !hrtimer_active(&wbuf
->timer
));
499 ubifs_assert(c
, delta
<= ULONG_MAX
);
503 dbg_io("set timer for jhead %s, %llu-%llu millisecs",
504 dbg_jhead(wbuf
->jhead
),
505 div_u64(ktime_to_ns(softlimit
), USEC_PER_SEC
),
506 div_u64(ktime_to_ns(softlimit
) + delta
, USEC_PER_SEC
));
507 hrtimer_start_range_ns(&wbuf
->timer
, softlimit
, delta
,
512 * cancel_wbuf_timer - cancel write-buffer timer.
513 * @wbuf: write-buffer descriptor
515 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf
*wbuf
)
520 hrtimer_cancel(&wbuf
->timer
);
524 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
525 * @wbuf: write-buffer to synchronize
527 * This function synchronizes write-buffer @buf and returns zero in case of
528 * success or a negative error code in case of failure.
530 * Note, although write-buffers are of @c->max_write_size, this function does
531 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
532 * if the write-buffer is only partially filled with data, only the used part
533 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
534 * This way we waste less space.
536 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf
*wbuf
)
538 struct ubifs_info
*c
= wbuf
->c
;
539 int err
, dirt
, sync_len
;
541 cancel_wbuf_timer_nolock(wbuf
);
542 if (!wbuf
->used
|| wbuf
->lnum
== -1)
543 /* Write-buffer is empty or not seeked */
546 dbg_io("LEB %d:%d, %d bytes, jhead %s",
547 wbuf
->lnum
, wbuf
->offs
, wbuf
->used
, dbg_jhead(wbuf
->jhead
));
548 ubifs_assert(c
, !(wbuf
->avail
& 7));
549 ubifs_assert(c
, wbuf
->offs
+ wbuf
->size
<= c
->leb_size
);
550 ubifs_assert(c
, wbuf
->size
>= c
->min_io_size
);
551 ubifs_assert(c
, wbuf
->size
<= c
->max_write_size
);
552 ubifs_assert(c
, wbuf
->size
% c
->min_io_size
== 0);
553 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
554 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
555 ubifs_assert(c
, !((wbuf
->offs
+ wbuf
->size
) % c
->max_write_size
));
561 * Do not write whole write buffer but write only the minimum necessary
562 * amount of min. I/O units.
564 sync_len
= ALIGN(wbuf
->used
, c
->min_io_size
);
565 dirt
= sync_len
- wbuf
->used
;
567 ubifs_pad(c
, wbuf
->buf
+ wbuf
->used
, dirt
);
568 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
, sync_len
);
572 spin_lock(&wbuf
->lock
);
573 wbuf
->offs
+= sync_len
;
575 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
576 * But our goal is to optimize writes and make sure we write in
577 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
578 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
579 * sure that @wbuf->offs + @wbuf->size is aligned to
580 * @c->max_write_size. This way we make sure that after next
581 * write-buffer flush we are again at the optimal offset (aligned to
582 * @c->max_write_size).
584 if (c
->leb_size
- wbuf
->offs
< c
->max_write_size
)
585 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
586 else if (wbuf
->offs
& (c
->max_write_size
- 1))
587 wbuf
->size
= ALIGN(wbuf
->offs
, c
->max_write_size
) - wbuf
->offs
;
589 wbuf
->size
= c
->max_write_size
;
590 wbuf
->avail
= wbuf
->size
;
593 spin_unlock(&wbuf
->lock
);
595 if (wbuf
->sync_callback
)
596 err
= wbuf
->sync_callback(c
, wbuf
->lnum
,
597 c
->leb_size
- wbuf
->offs
, dirt
);
602 * ubifs_wbuf_seek_nolock - seek write-buffer.
603 * @wbuf: write-buffer
604 * @lnum: logical eraseblock number to seek to
605 * @offs: logical eraseblock offset to seek to
607 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
608 * The write-buffer has to be empty. Returns zero in case of success and a
609 * negative error code in case of failure.
611 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf
*wbuf
, int lnum
, int offs
)
613 const struct ubifs_info
*c
= wbuf
->c
;
615 dbg_io("LEB %d:%d, jhead %s", lnum
, offs
, dbg_jhead(wbuf
->jhead
));
616 ubifs_assert(c
, lnum
>= 0 && lnum
< c
->leb_cnt
);
617 ubifs_assert(c
, offs
>= 0 && offs
<= c
->leb_size
);
618 ubifs_assert(c
, offs
% c
->min_io_size
== 0 && !(offs
& 7));
619 ubifs_assert(c
, lnum
!= wbuf
->lnum
);
620 ubifs_assert(c
, wbuf
->used
== 0);
622 spin_lock(&wbuf
->lock
);
625 if (c
->leb_size
- wbuf
->offs
< c
->max_write_size
)
626 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
627 else if (wbuf
->offs
& (c
->max_write_size
- 1))
628 wbuf
->size
= ALIGN(wbuf
->offs
, c
->max_write_size
) - wbuf
->offs
;
630 wbuf
->size
= c
->max_write_size
;
631 wbuf
->avail
= wbuf
->size
;
633 spin_unlock(&wbuf
->lock
);
639 * ubifs_bg_wbufs_sync - synchronize write-buffers.
640 * @c: UBIFS file-system description object
642 * This function is called by background thread to synchronize write-buffers.
643 * Returns zero in case of success and a negative error code in case of
646 int ubifs_bg_wbufs_sync(struct ubifs_info
*c
)
650 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
651 if (!c
->need_wbuf_sync
)
653 c
->need_wbuf_sync
= 0;
660 dbg_io("synchronize");
661 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
662 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
667 * If the mutex is locked then wbuf is being changed, so
668 * synchronization is not necessary.
670 if (mutex_is_locked(&wbuf
->io_mutex
))
673 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
674 if (!wbuf
->need_sync
) {
675 mutex_unlock(&wbuf
->io_mutex
);
679 err
= ubifs_wbuf_sync_nolock(wbuf
);
680 mutex_unlock(&wbuf
->io_mutex
);
682 ubifs_err(c
, "cannot sync write-buffer, error %d", err
);
683 ubifs_ro_mode(c
, err
);
691 /* Cancel all timers to prevent repeated errors */
692 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
693 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
695 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
696 cancel_wbuf_timer_nolock(wbuf
);
697 mutex_unlock(&wbuf
->io_mutex
);
703 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
704 * @wbuf: write-buffer
705 * @buf: node to write
708 * This function writes data to flash via write-buffer @wbuf. This means that
709 * the last piece of the node won't reach the flash media immediately if it
710 * does not take whole max. write unit (@c->max_write_size). Instead, the node
711 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
712 * because more data are appended to the write-buffer).
714 * This function returns zero in case of success and a negative error code in
715 * case of failure. If the node cannot be written because there is no more
716 * space in this logical eraseblock, %-ENOSPC is returned.
718 int ubifs_wbuf_write_nolock(struct ubifs_wbuf
*wbuf
, void *buf
, int len
)
720 struct ubifs_info
*c
= wbuf
->c
;
721 int err
, written
, n
, aligned_len
= ALIGN(len
, 8);
723 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len
,
724 dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
),
725 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
+ wbuf
->used
);
726 ubifs_assert(c
, len
> 0 && wbuf
->lnum
>= 0 && wbuf
->lnum
< c
->leb_cnt
);
727 ubifs_assert(c
, wbuf
->offs
>= 0 && wbuf
->offs
% c
->min_io_size
== 0);
728 ubifs_assert(c
, !(wbuf
->offs
& 7) && wbuf
->offs
<= c
->leb_size
);
729 ubifs_assert(c
, wbuf
->avail
> 0 && wbuf
->avail
<= wbuf
->size
);
730 ubifs_assert(c
, wbuf
->size
>= c
->min_io_size
);
731 ubifs_assert(c
, wbuf
->size
<= c
->max_write_size
);
732 ubifs_assert(c
, wbuf
->size
% c
->min_io_size
== 0);
733 ubifs_assert(c
, mutex_is_locked(&wbuf
->io_mutex
));
734 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
735 ubifs_assert(c
, !c
->space_fixup
);
736 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
737 ubifs_assert(c
, !((wbuf
->offs
+ wbuf
->size
) % c
->max_write_size
));
739 if (c
->leb_size
- wbuf
->offs
- wbuf
->used
< aligned_len
) {
744 cancel_wbuf_timer_nolock(wbuf
);
749 if (aligned_len
<= wbuf
->avail
) {
751 * The node is not very large and fits entirely within
754 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, len
);
756 if (aligned_len
== wbuf
->avail
) {
757 dbg_io("flush jhead %s wbuf to LEB %d:%d",
758 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
);
759 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
,
760 wbuf
->offs
, wbuf
->size
);
764 spin_lock(&wbuf
->lock
);
765 wbuf
->offs
+= wbuf
->size
;
766 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
767 wbuf
->size
= c
->max_write_size
;
769 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
770 wbuf
->avail
= wbuf
->size
;
773 spin_unlock(&wbuf
->lock
);
775 spin_lock(&wbuf
->lock
);
776 wbuf
->avail
-= aligned_len
;
777 wbuf
->used
+= aligned_len
;
778 spin_unlock(&wbuf
->lock
);
788 * The node is large enough and does not fit entirely within
789 * current available space. We have to fill and flush
790 * write-buffer and switch to the next max. write unit.
792 dbg_io("flush jhead %s wbuf to LEB %d:%d",
793 dbg_jhead(wbuf
->jhead
), wbuf
->lnum
, wbuf
->offs
);
794 memcpy(wbuf
->buf
+ wbuf
->used
, buf
, wbuf
->avail
);
795 err
= ubifs_leb_write(c
, wbuf
->lnum
, wbuf
->buf
, wbuf
->offs
,
800 wbuf
->offs
+= wbuf
->size
;
802 aligned_len
-= wbuf
->avail
;
803 written
+= wbuf
->avail
;
804 } else if (wbuf
->offs
& (c
->max_write_size
- 1)) {
806 * The write-buffer offset is not aligned to
807 * @c->max_write_size and @wbuf->size is less than
808 * @c->max_write_size. Write @wbuf->size bytes to make sure the
809 * following writes are done in optimal @c->max_write_size
812 dbg_io("write %d bytes to LEB %d:%d",
813 wbuf
->size
, wbuf
->lnum
, wbuf
->offs
);
814 err
= ubifs_leb_write(c
, wbuf
->lnum
, buf
, wbuf
->offs
,
819 wbuf
->offs
+= wbuf
->size
;
821 aligned_len
-= wbuf
->size
;
822 written
+= wbuf
->size
;
826 * The remaining data may take more whole max. write units, so write the
827 * remains multiple to max. write unit size directly to the flash media.
828 * We align node length to 8-byte boundary because we anyway flash wbuf
829 * if the remaining space is less than 8 bytes.
831 n
= aligned_len
>> c
->max_write_shift
;
833 n
<<= c
->max_write_shift
;
834 dbg_io("write %d bytes to LEB %d:%d", n
, wbuf
->lnum
,
836 err
= ubifs_leb_write(c
, wbuf
->lnum
, buf
+ written
,
846 spin_lock(&wbuf
->lock
);
849 * And now we have what's left and what does not take whole
850 * max. write unit, so write it to the write-buffer and we are
853 memcpy(wbuf
->buf
, buf
+ written
, len
);
855 if (c
->leb_size
- wbuf
->offs
>= c
->max_write_size
)
856 wbuf
->size
= c
->max_write_size
;
858 wbuf
->size
= c
->leb_size
- wbuf
->offs
;
859 wbuf
->avail
= wbuf
->size
- aligned_len
;
860 wbuf
->used
= aligned_len
;
862 spin_unlock(&wbuf
->lock
);
865 if (wbuf
->sync_callback
) {
866 int free
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
868 err
= wbuf
->sync_callback(c
, wbuf
->lnum
, free
, 0);
874 new_wbuf_timer_nolock(c
, wbuf
);
879 ubifs_err(c
, "cannot write %d bytes to LEB %d:%d, error %d",
880 len
, wbuf
->lnum
, wbuf
->offs
, err
);
881 ubifs_dump_node(c
, buf
);
883 ubifs_dump_leb(c
, wbuf
->lnum
);
888 * ubifs_write_node_hmac - write node to the media.
889 * @c: UBIFS file-system description object
890 * @buf: the node to write
892 * @lnum: logical eraseblock number
893 * @offs: offset within the logical eraseblock
894 * @hmac_offs: offset of the HMAC within the node
896 * This function automatically fills node magic number, assigns sequence
897 * number, and calculates node CRC checksum. The length of the @buf buffer has
898 * to be aligned to the minimal I/O unit size. This function automatically
899 * appends padding node and padding bytes if needed. Returns zero in case of
900 * success and a negative error code in case of failure.
902 int ubifs_write_node_hmac(struct ubifs_info
*c
, void *buf
, int len
, int lnum
,
903 int offs
, int hmac_offs
)
905 int err
, buf_len
= ALIGN(len
, c
->min_io_size
);
907 dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
908 lnum
, offs
, dbg_ntype(((struct ubifs_ch
*)buf
)->node_type
), len
,
910 ubifs_assert(c
, lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
911 ubifs_assert(c
, offs
% c
->min_io_size
== 0 && offs
< c
->leb_size
);
912 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
913 ubifs_assert(c
, !c
->space_fixup
);
918 err
= ubifs_prepare_node_hmac(c
, buf
, len
, hmac_offs
, 1);
922 err
= ubifs_leb_write(c
, lnum
, buf
, offs
, buf_len
);
924 ubifs_dump_node(c
, buf
);
930 * ubifs_write_node - write node to the media.
931 * @c: UBIFS file-system description object
932 * @buf: the node to write
934 * @lnum: logical eraseblock number
935 * @offs: offset within the logical eraseblock
937 * This function automatically fills node magic number, assigns sequence
938 * number, and calculates node CRC checksum. The length of the @buf buffer has
939 * to be aligned to the minimal I/O unit size. This function automatically
940 * appends padding node and padding bytes if needed. Returns zero in case of
941 * success and a negative error code in case of failure.
943 int ubifs_write_node(struct ubifs_info
*c
, void *buf
, int len
, int lnum
,
946 return ubifs_write_node_hmac(c
, buf
, len
, lnum
, offs
, -1);
950 * ubifs_read_node_wbuf - read node from the media or write-buffer.
951 * @wbuf: wbuf to check for un-written data
952 * @buf: buffer to read to
955 * @lnum: logical eraseblock number
956 * @offs: offset within the logical eraseblock
958 * This function reads a node of known type and length, checks it and stores
959 * in @buf. If the node partially or fully sits in the write-buffer, this
960 * function takes data from the buffer, otherwise it reads the flash media.
961 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
962 * error code in case of failure.
964 int ubifs_read_node_wbuf(struct ubifs_wbuf
*wbuf
, void *buf
, int type
, int len
,
967 const struct ubifs_info
*c
= wbuf
->c
;
968 int err
, rlen
, overlap
;
969 struct ubifs_ch
*ch
= buf
;
971 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum
, offs
,
972 dbg_ntype(type
), len
, dbg_jhead(wbuf
->jhead
));
973 ubifs_assert(c
, wbuf
&& lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
974 ubifs_assert(c
, !(offs
& 7) && offs
< c
->leb_size
);
975 ubifs_assert(c
, type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
977 spin_lock(&wbuf
->lock
);
978 overlap
= (lnum
== wbuf
->lnum
&& offs
+ len
> wbuf
->offs
);
980 /* We may safely unlock the write-buffer and read the data */
981 spin_unlock(&wbuf
->lock
);
982 return ubifs_read_node(c
, buf
, type
, len
, lnum
, offs
);
985 /* Don't read under wbuf */
986 rlen
= wbuf
->offs
- offs
;
990 /* Copy the rest from the write-buffer */
991 memcpy(buf
+ rlen
, wbuf
->buf
+ offs
+ rlen
- wbuf
->offs
, len
- rlen
);
992 spin_unlock(&wbuf
->lock
);
995 /* Read everything that goes before write-buffer */
996 err
= ubifs_leb_read(c
, lnum
, buf
, offs
, rlen
, 0);
997 if (err
&& err
!= -EBADMSG
)
1001 if (type
!= ch
->node_type
) {
1002 ubifs_err(c
, "bad node type (%d but expected %d)",
1003 ch
->node_type
, type
);
1007 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0, 0);
1009 ubifs_err(c
, "expected node type %d", type
);
1013 rlen
= le32_to_cpu(ch
->len
);
1015 ubifs_err(c
, "bad node length %d, expected %d", rlen
, len
);
1022 ubifs_err(c
, "bad node at LEB %d:%d", lnum
, offs
);
1023 ubifs_dump_node(c
, buf
);
1029 * ubifs_read_node - read node.
1030 * @c: UBIFS file-system description object
1031 * @buf: buffer to read to
1033 * @len: node length (not aligned)
1034 * @lnum: logical eraseblock number
1035 * @offs: offset within the logical eraseblock
1037 * This function reads a node of known type and and length, checks it and
1038 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
1039 * and a negative error code in case of failure.
1041 int ubifs_read_node(const struct ubifs_info
*c
, void *buf
, int type
, int len
,
1045 struct ubifs_ch
*ch
= buf
;
1047 dbg_io("LEB %d:%d, %s, length %d", lnum
, offs
, dbg_ntype(type
), len
);
1048 ubifs_assert(c
, lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
1049 ubifs_assert(c
, len
>= UBIFS_CH_SZ
&& offs
+ len
<= c
->leb_size
);
1050 ubifs_assert(c
, !(offs
& 7) && offs
< c
->leb_size
);
1051 ubifs_assert(c
, type
>= 0 && type
< UBIFS_NODE_TYPES_CNT
);
1053 err
= ubifs_leb_read(c
, lnum
, buf
, offs
, len
, 0);
1054 if (err
&& err
!= -EBADMSG
)
1057 if (type
!= ch
->node_type
) {
1058 ubifs_errc(c
, "bad node type (%d but expected %d)",
1059 ch
->node_type
, type
);
1063 err
= ubifs_check_node(c
, buf
, lnum
, offs
, 0, 0);
1065 ubifs_errc(c
, "expected node type %d", type
);
1069 l
= le32_to_cpu(ch
->len
);
1071 ubifs_errc(c
, "bad node length %d, expected %d", l
, len
);
1078 ubifs_errc(c
, "bad node at LEB %d:%d, LEB mapping status %d", lnum
,
1079 offs
, ubi_is_mapped(c
->ubi
, lnum
));
1081 ubifs_dump_node(c
, buf
);
1088 * ubifs_wbuf_init - initialize write-buffer.
1089 * @c: UBIFS file-system description object
1090 * @wbuf: write-buffer to initialize
1092 * This function initializes write-buffer. Returns zero in case of success
1093 * %-ENOMEM in case of failure.
1095 int ubifs_wbuf_init(struct ubifs_info
*c
, struct ubifs_wbuf
*wbuf
)
1099 wbuf
->buf
= kmalloc(c
->max_write_size
, GFP_KERNEL
);
1103 size
= (c
->max_write_size
/ UBIFS_CH_SZ
+ 1) * sizeof(ino_t
);
1104 wbuf
->inodes
= kmalloc(size
, GFP_KERNEL
);
1105 if (!wbuf
->inodes
) {
1112 wbuf
->lnum
= wbuf
->offs
= -1;
1114 * If the LEB starts at the max. write size aligned address, then
1115 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1116 * set it to something smaller so that it ends at the closest max.
1117 * write size boundary.
1119 size
= c
->max_write_size
- (c
->leb_start
% c
->max_write_size
);
1120 wbuf
->avail
= wbuf
->size
= size
;
1121 wbuf
->sync_callback
= NULL
;
1122 mutex_init(&wbuf
->io_mutex
);
1123 spin_lock_init(&wbuf
->lock
);
1127 hrtimer_init(&wbuf
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1128 wbuf
->timer
.function
= wbuf_timer_callback_nolock
;
1133 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1134 * @wbuf: the write-buffer where to add
1135 * @inum: the inode number
1137 * This function adds an inode number to the inode array of the write-buffer.
1139 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf
*wbuf
, ino_t inum
)
1142 /* NOR flash or something similar */
1145 spin_lock(&wbuf
->lock
);
1147 wbuf
->inodes
[wbuf
->next_ino
++] = inum
;
1148 spin_unlock(&wbuf
->lock
);
1152 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1153 * @wbuf: the write-buffer
1154 * @inum: the inode number
1156 * This function returns with %1 if the write-buffer contains some data from the
1157 * given inode otherwise it returns with %0.
1159 static int wbuf_has_ino(struct ubifs_wbuf
*wbuf
, ino_t inum
)
1163 spin_lock(&wbuf
->lock
);
1164 for (i
= 0; i
< wbuf
->next_ino
; i
++)
1165 if (inum
== wbuf
->inodes
[i
]) {
1169 spin_unlock(&wbuf
->lock
);
1175 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1176 * @c: UBIFS file-system description object
1177 * @inode: inode to synchronize
1179 * This function synchronizes write-buffers which contain nodes belonging to
1180 * @inode. Returns zero in case of success and a negative error code in case of
1183 int ubifs_sync_wbufs_by_inode(struct ubifs_info
*c
, struct inode
*inode
)
1187 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
1188 struct ubifs_wbuf
*wbuf
= &c
->jheads
[i
].wbuf
;
1192 * GC head is special, do not look at it. Even if the
1193 * head contains something related to this inode, it is
1194 * a _copy_ of corresponding on-flash node which sits
1199 if (!wbuf_has_ino(wbuf
, inode
->i_ino
))
1202 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
1203 if (wbuf_has_ino(wbuf
, inode
->i_ino
))
1204 err
= ubifs_wbuf_sync_nolock(wbuf
);
1205 mutex_unlock(&wbuf
->io_mutex
);
1208 ubifs_ro_mode(c
, err
);