Linux 5.6.13
[linux/fpc-iii.git] / fs / ubifs / orphan.c
blob7dd740e3692daf0a6db5c8014c67bd6d984781ac
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Author: Adrian Hunter
8 */
10 #include "ubifs.h"
13 * An orphan is an inode number whose inode node has been committed to the index
14 * with a link count of zero. That happens when an open file is deleted
15 * (unlinked) and then a commit is run. In the normal course of events the inode
16 * would be deleted when the file is closed. However in the case of an unclean
17 * unmount, orphans need to be accounted for. After an unclean unmount, the
18 * orphans' inodes must be deleted which means either scanning the entire index
19 * looking for them, or keeping a list on flash somewhere. This unit implements
20 * the latter approach.
22 * The orphan area is a fixed number of LEBs situated between the LPT area and
23 * the main area. The number of orphan area LEBs is specified when the file
24 * system is created. The minimum number is 1. The size of the orphan area
25 * should be so that it can hold the maximum number of orphans that are expected
26 * to ever exist at one time.
28 * The number of orphans that can fit in a LEB is:
30 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)
32 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough.
34 * Orphans are accumulated in a rb-tree. When an inode's link count drops to
35 * zero, the inode number is added to the rb-tree. It is removed from the tree
36 * when the inode is deleted. Any new orphans that are in the orphan tree when
37 * the commit is run, are written to the orphan area in 1 or more orphan nodes.
38 * If the orphan area is full, it is consolidated to make space. There is
39 * always enough space because validation prevents the user from creating more
40 * than the maximum number of orphans allowed.
43 static int dbg_check_orphans(struct ubifs_info *c);
45 static struct ubifs_orphan *orphan_add(struct ubifs_info *c, ino_t inum,
46 struct ubifs_orphan *parent_orphan)
48 struct ubifs_orphan *orphan, *o;
49 struct rb_node **p, *parent = NULL;
51 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS);
52 if (!orphan)
53 return ERR_PTR(-ENOMEM);
54 orphan->inum = inum;
55 orphan->new = 1;
56 INIT_LIST_HEAD(&orphan->child_list);
58 spin_lock(&c->orphan_lock);
59 if (c->tot_orphans >= c->max_orphans) {
60 spin_unlock(&c->orphan_lock);
61 kfree(orphan);
62 return ERR_PTR(-ENFILE);
64 p = &c->orph_tree.rb_node;
65 while (*p) {
66 parent = *p;
67 o = rb_entry(parent, struct ubifs_orphan, rb);
68 if (inum < o->inum)
69 p = &(*p)->rb_left;
70 else if (inum > o->inum)
71 p = &(*p)->rb_right;
72 else {
73 ubifs_err(c, "orphaned twice");
74 spin_unlock(&c->orphan_lock);
75 kfree(orphan);
76 return ERR_PTR(-EINVAL);
79 c->tot_orphans += 1;
80 c->new_orphans += 1;
81 rb_link_node(&orphan->rb, parent, p);
82 rb_insert_color(&orphan->rb, &c->orph_tree);
83 list_add_tail(&orphan->list, &c->orph_list);
84 list_add_tail(&orphan->new_list, &c->orph_new);
86 if (parent_orphan) {
87 list_add_tail(&orphan->child_list,
88 &parent_orphan->child_list);
91 spin_unlock(&c->orphan_lock);
92 dbg_gen("ino %lu", (unsigned long)inum);
93 return orphan;
96 static struct ubifs_orphan *lookup_orphan(struct ubifs_info *c, ino_t inum)
98 struct ubifs_orphan *o;
99 struct rb_node *p;
101 p = c->orph_tree.rb_node;
102 while (p) {
103 o = rb_entry(p, struct ubifs_orphan, rb);
104 if (inum < o->inum)
105 p = p->rb_left;
106 else if (inum > o->inum)
107 p = p->rb_right;
108 else {
109 return o;
112 return NULL;
115 static void __orphan_drop(struct ubifs_info *c, struct ubifs_orphan *o)
117 rb_erase(&o->rb, &c->orph_tree);
118 list_del(&o->list);
119 c->tot_orphans -= 1;
121 if (o->new) {
122 list_del(&o->new_list);
123 c->new_orphans -= 1;
126 kfree(o);
129 static void orphan_delete(struct ubifs_info *c, struct ubifs_orphan *orph)
131 if (orph->del) {
132 dbg_gen("deleted twice ino %lu", (unsigned long)orph->inum);
133 return;
136 if (orph->cmt) {
137 orph->del = 1;
138 orph->dnext = c->orph_dnext;
139 c->orph_dnext = orph;
140 dbg_gen("delete later ino %lu", (unsigned long)orph->inum);
141 return;
144 __orphan_drop(c, orph);
148 * ubifs_add_orphan - add an orphan.
149 * @c: UBIFS file-system description object
150 * @inum: orphan inode number
152 * Add an orphan. This function is called when an inodes link count drops to
153 * zero.
155 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum)
157 int err = 0;
158 ino_t xattr_inum;
159 union ubifs_key key;
160 struct ubifs_dent_node *xent;
161 struct fscrypt_name nm = {0};
162 struct ubifs_orphan *xattr_orphan;
163 struct ubifs_orphan *orphan;
165 orphan = orphan_add(c, inum, NULL);
166 if (IS_ERR(orphan))
167 return PTR_ERR(orphan);
169 lowest_xent_key(c, &key, inum);
170 while (1) {
171 xent = ubifs_tnc_next_ent(c, &key, &nm);
172 if (IS_ERR(xent)) {
173 err = PTR_ERR(xent);
174 if (err == -ENOENT)
175 break;
176 return err;
179 fname_name(&nm) = xent->name;
180 fname_len(&nm) = le16_to_cpu(xent->nlen);
181 xattr_inum = le64_to_cpu(xent->inum);
183 xattr_orphan = orphan_add(c, xattr_inum, orphan);
184 if (IS_ERR(xattr_orphan))
185 return PTR_ERR(xattr_orphan);
187 key_read(c, &xent->key, &key);
190 return 0;
194 * ubifs_delete_orphan - delete an orphan.
195 * @c: UBIFS file-system description object
196 * @inum: orphan inode number
198 * Delete an orphan. This function is called when an inode is deleted.
200 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum)
202 struct ubifs_orphan *orph, *child_orph, *tmp_o;
204 spin_lock(&c->orphan_lock);
206 orph = lookup_orphan(c, inum);
207 if (!orph) {
208 spin_unlock(&c->orphan_lock);
209 ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum);
210 dump_stack();
212 return;
215 list_for_each_entry_safe(child_orph, tmp_o, &orph->child_list, child_list) {
216 list_del(&child_orph->child_list);
217 orphan_delete(c, child_orph);
220 orphan_delete(c, orph);
222 spin_unlock(&c->orphan_lock);
226 * ubifs_orphan_start_commit - start commit of orphans.
227 * @c: UBIFS file-system description object
229 * Start commit of orphans.
231 int ubifs_orphan_start_commit(struct ubifs_info *c)
233 struct ubifs_orphan *orphan, **last;
235 spin_lock(&c->orphan_lock);
236 last = &c->orph_cnext;
237 list_for_each_entry(orphan, &c->orph_new, new_list) {
238 ubifs_assert(c, orphan->new);
239 ubifs_assert(c, !orphan->cmt);
240 orphan->new = 0;
241 orphan->cmt = 1;
242 *last = orphan;
243 last = &orphan->cnext;
245 *last = NULL;
246 c->cmt_orphans = c->new_orphans;
247 c->new_orphans = 0;
248 dbg_cmt("%d orphans to commit", c->cmt_orphans);
249 INIT_LIST_HEAD(&c->orph_new);
250 if (c->tot_orphans == 0)
251 c->no_orphs = 1;
252 else
253 c->no_orphs = 0;
254 spin_unlock(&c->orphan_lock);
255 return 0;
259 * avail_orphs - calculate available space.
260 * @c: UBIFS file-system description object
262 * This function returns the number of orphans that can be written in the
263 * available space.
265 static int avail_orphs(struct ubifs_info *c)
267 int avail_lebs, avail, gap;
269 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1;
270 avail = avail_lebs *
271 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
272 gap = c->leb_size - c->ohead_offs;
273 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64))
274 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
275 return avail;
279 * tot_avail_orphs - calculate total space.
280 * @c: UBIFS file-system description object
282 * This function returns the number of orphans that can be written in half
283 * the total space. That leaves half the space for adding new orphans.
285 static int tot_avail_orphs(struct ubifs_info *c)
287 int avail_lebs, avail;
289 avail_lebs = c->orph_lebs;
290 avail = avail_lebs *
291 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64));
292 return avail / 2;
296 * do_write_orph_node - write a node to the orphan head.
297 * @c: UBIFS file-system description object
298 * @len: length of node
299 * @atomic: write atomically
301 * This function writes a node to the orphan head from the orphan buffer. If
302 * %atomic is not zero, then the write is done atomically. On success, %0 is
303 * returned, otherwise a negative error code is returned.
305 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic)
307 int err = 0;
309 if (atomic) {
310 ubifs_assert(c, c->ohead_offs == 0);
311 ubifs_prepare_node(c, c->orph_buf, len, 1);
312 len = ALIGN(len, c->min_io_size);
313 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len);
314 } else {
315 if (c->ohead_offs == 0) {
316 /* Ensure LEB has been unmapped */
317 err = ubifs_leb_unmap(c, c->ohead_lnum);
318 if (err)
319 return err;
321 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum,
322 c->ohead_offs);
324 return err;
328 * write_orph_node - write an orphan node.
329 * @c: UBIFS file-system description object
330 * @atomic: write atomically
332 * This function builds an orphan node from the cnext list and writes it to the
333 * orphan head. On success, %0 is returned, otherwise a negative error code
334 * is returned.
336 static int write_orph_node(struct ubifs_info *c, int atomic)
338 struct ubifs_orphan *orphan, *cnext;
339 struct ubifs_orph_node *orph;
340 int gap, err, len, cnt, i;
342 ubifs_assert(c, c->cmt_orphans > 0);
343 gap = c->leb_size - c->ohead_offs;
344 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) {
345 c->ohead_lnum += 1;
346 c->ohead_offs = 0;
347 gap = c->leb_size;
348 if (c->ohead_lnum > c->orph_last) {
350 * We limit the number of orphans so that this should
351 * never happen.
353 ubifs_err(c, "out of space in orphan area");
354 return -EINVAL;
357 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64);
358 if (cnt > c->cmt_orphans)
359 cnt = c->cmt_orphans;
360 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64);
361 ubifs_assert(c, c->orph_buf);
362 orph = c->orph_buf;
363 orph->ch.node_type = UBIFS_ORPH_NODE;
364 spin_lock(&c->orphan_lock);
365 cnext = c->orph_cnext;
366 for (i = 0; i < cnt; i++) {
367 orphan = cnext;
368 ubifs_assert(c, orphan->cmt);
369 orph->inos[i] = cpu_to_le64(orphan->inum);
370 orphan->cmt = 0;
371 cnext = orphan->cnext;
372 orphan->cnext = NULL;
374 c->orph_cnext = cnext;
375 c->cmt_orphans -= cnt;
376 spin_unlock(&c->orphan_lock);
377 if (c->cmt_orphans)
378 orph->cmt_no = cpu_to_le64(c->cmt_no);
379 else
380 /* Mark the last node of the commit */
381 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63));
382 ubifs_assert(c, c->ohead_offs + len <= c->leb_size);
383 ubifs_assert(c, c->ohead_lnum >= c->orph_first);
384 ubifs_assert(c, c->ohead_lnum <= c->orph_last);
385 err = do_write_orph_node(c, len, atomic);
386 c->ohead_offs += ALIGN(len, c->min_io_size);
387 c->ohead_offs = ALIGN(c->ohead_offs, 8);
388 return err;
392 * write_orph_nodes - write orphan nodes until there are no more to commit.
393 * @c: UBIFS file-system description object
394 * @atomic: write atomically
396 * This function writes orphan nodes for all the orphans to commit. On success,
397 * %0 is returned, otherwise a negative error code is returned.
399 static int write_orph_nodes(struct ubifs_info *c, int atomic)
401 int err;
403 while (c->cmt_orphans > 0) {
404 err = write_orph_node(c, atomic);
405 if (err)
406 return err;
408 if (atomic) {
409 int lnum;
411 /* Unmap any unused LEBs after consolidation */
412 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) {
413 err = ubifs_leb_unmap(c, lnum);
414 if (err)
415 return err;
418 return 0;
422 * consolidate - consolidate the orphan area.
423 * @c: UBIFS file-system description object
425 * This function enables consolidation by putting all the orphans into the list
426 * to commit. The list is in the order that the orphans were added, and the
427 * LEBs are written atomically in order, so at no time can orphans be lost by
428 * an unclean unmount.
430 * This function returns %0 on success and a negative error code on failure.
432 static int consolidate(struct ubifs_info *c)
434 int tot_avail = tot_avail_orphs(c), err = 0;
436 spin_lock(&c->orphan_lock);
437 dbg_cmt("there is space for %d orphans and there are %d",
438 tot_avail, c->tot_orphans);
439 if (c->tot_orphans - c->new_orphans <= tot_avail) {
440 struct ubifs_orphan *orphan, **last;
441 int cnt = 0;
443 /* Change the cnext list to include all non-new orphans */
444 last = &c->orph_cnext;
445 list_for_each_entry(orphan, &c->orph_list, list) {
446 if (orphan->new)
447 continue;
448 orphan->cmt = 1;
449 *last = orphan;
450 last = &orphan->cnext;
451 cnt += 1;
453 *last = NULL;
454 ubifs_assert(c, cnt == c->tot_orphans - c->new_orphans);
455 c->cmt_orphans = cnt;
456 c->ohead_lnum = c->orph_first;
457 c->ohead_offs = 0;
458 } else {
460 * We limit the number of orphans so that this should
461 * never happen.
463 ubifs_err(c, "out of space in orphan area");
464 err = -EINVAL;
466 spin_unlock(&c->orphan_lock);
467 return err;
471 * commit_orphans - commit orphans.
472 * @c: UBIFS file-system description object
474 * This function commits orphans to flash. On success, %0 is returned,
475 * otherwise a negative error code is returned.
477 static int commit_orphans(struct ubifs_info *c)
479 int avail, atomic = 0, err;
481 ubifs_assert(c, c->cmt_orphans > 0);
482 avail = avail_orphs(c);
483 if (avail < c->cmt_orphans) {
484 /* Not enough space to write new orphans, so consolidate */
485 err = consolidate(c);
486 if (err)
487 return err;
488 atomic = 1;
490 err = write_orph_nodes(c, atomic);
491 return err;
495 * erase_deleted - erase the orphans marked for deletion.
496 * @c: UBIFS file-system description object
498 * During commit, the orphans being committed cannot be deleted, so they are
499 * marked for deletion and deleted by this function. Also, the recovery
500 * adds killed orphans to the deletion list, and therefore they are deleted
501 * here too.
503 static void erase_deleted(struct ubifs_info *c)
505 struct ubifs_orphan *orphan, *dnext;
507 spin_lock(&c->orphan_lock);
508 dnext = c->orph_dnext;
509 while (dnext) {
510 orphan = dnext;
511 dnext = orphan->dnext;
512 ubifs_assert(c, !orphan->new);
513 ubifs_assert(c, orphan->del);
514 rb_erase(&orphan->rb, &c->orph_tree);
515 list_del(&orphan->list);
516 c->tot_orphans -= 1;
517 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum);
518 kfree(orphan);
520 c->orph_dnext = NULL;
521 spin_unlock(&c->orphan_lock);
525 * ubifs_orphan_end_commit - end commit of orphans.
526 * @c: UBIFS file-system description object
528 * End commit of orphans.
530 int ubifs_orphan_end_commit(struct ubifs_info *c)
532 int err;
534 if (c->cmt_orphans != 0) {
535 err = commit_orphans(c);
536 if (err)
537 return err;
539 erase_deleted(c);
540 err = dbg_check_orphans(c);
541 return err;
545 * ubifs_clear_orphans - erase all LEBs used for orphans.
546 * @c: UBIFS file-system description object
548 * If recovery is not required, then the orphans from the previous session
549 * are not needed. This function locates the LEBs used to record
550 * orphans, and un-maps them.
552 int ubifs_clear_orphans(struct ubifs_info *c)
554 int lnum, err;
556 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
557 err = ubifs_leb_unmap(c, lnum);
558 if (err)
559 return err;
561 c->ohead_lnum = c->orph_first;
562 c->ohead_offs = 0;
563 return 0;
567 * insert_dead_orphan - insert an orphan.
568 * @c: UBIFS file-system description object
569 * @inum: orphan inode number
571 * This function is a helper to the 'do_kill_orphans()' function. The orphan
572 * must be kept until the next commit, so it is added to the rb-tree and the
573 * deletion list.
575 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum)
577 struct ubifs_orphan *orphan, *o;
578 struct rb_node **p, *parent = NULL;
580 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL);
581 if (!orphan)
582 return -ENOMEM;
583 orphan->inum = inum;
585 p = &c->orph_tree.rb_node;
586 while (*p) {
587 parent = *p;
588 o = rb_entry(parent, struct ubifs_orphan, rb);
589 if (inum < o->inum)
590 p = &(*p)->rb_left;
591 else if (inum > o->inum)
592 p = &(*p)->rb_right;
593 else {
594 /* Already added - no problem */
595 kfree(orphan);
596 return 0;
599 c->tot_orphans += 1;
600 rb_link_node(&orphan->rb, parent, p);
601 rb_insert_color(&orphan->rb, &c->orph_tree);
602 list_add_tail(&orphan->list, &c->orph_list);
603 orphan->del = 1;
604 orphan->dnext = c->orph_dnext;
605 c->orph_dnext = orphan;
606 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum,
607 c->new_orphans, c->tot_orphans);
608 return 0;
612 * do_kill_orphans - remove orphan inodes from the index.
613 * @c: UBIFS file-system description object
614 * @sleb: scanned LEB
615 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here
616 * @outofdate: whether the LEB is out of date is returned here
617 * @last_flagged: whether the end orphan node is encountered
619 * This function is a helper to the 'kill_orphans()' function. It goes through
620 * every orphan node in a LEB and for every inode number recorded, removes
621 * all keys for that inode from the TNC.
623 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
624 unsigned long long *last_cmt_no, int *outofdate,
625 int *last_flagged)
627 struct ubifs_scan_node *snod;
628 struct ubifs_orph_node *orph;
629 struct ubifs_ino_node *ino = NULL;
630 unsigned long long cmt_no;
631 ino_t inum;
632 int i, n, err, first = 1;
634 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
635 if (!ino)
636 return -ENOMEM;
638 list_for_each_entry(snod, &sleb->nodes, list) {
639 if (snod->type != UBIFS_ORPH_NODE) {
640 ubifs_err(c, "invalid node type %d in orphan area at %d:%d",
641 snod->type, sleb->lnum, snod->offs);
642 ubifs_dump_node(c, snod->node);
643 err = -EINVAL;
644 goto out_free;
647 orph = snod->node;
649 /* Check commit number */
650 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX;
652 * The commit number on the master node may be less, because
653 * of a failed commit. If there are several failed commits in a
654 * row, the commit number written on orphan nodes will continue
655 * to increase (because the commit number is adjusted here) even
656 * though the commit number on the master node stays the same
657 * because the master node has not been re-written.
659 if (cmt_no > c->cmt_no)
660 c->cmt_no = cmt_no;
661 if (cmt_no < *last_cmt_no && *last_flagged) {
663 * The last orphan node had a higher commit number and
664 * was flagged as the last written for that commit
665 * number. That makes this orphan node, out of date.
667 if (!first) {
668 ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d",
669 cmt_no, sleb->lnum, snod->offs);
670 ubifs_dump_node(c, snod->node);
671 err = -EINVAL;
672 goto out_free;
674 dbg_rcvry("out of date LEB %d", sleb->lnum);
675 *outofdate = 1;
676 err = 0;
677 goto out_free;
680 if (first)
681 first = 0;
683 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
684 for (i = 0; i < n; i++) {
685 union ubifs_key key1, key2;
687 inum = le64_to_cpu(orph->inos[i]);
689 ino_key_init(c, &key1, inum);
690 err = ubifs_tnc_lookup(c, &key1, ino);
691 if (err && err != -ENOENT)
692 goto out_free;
695 * Check whether an inode can really get deleted.
696 * linkat() with O_TMPFILE allows rebirth of an inode.
698 if (err == 0 && ino->nlink == 0) {
699 dbg_rcvry("deleting orphaned inode %lu",
700 (unsigned long)inum);
702 lowest_ino_key(c, &key1, inum);
703 highest_ino_key(c, &key2, inum);
705 err = ubifs_tnc_remove_range(c, &key1, &key2);
706 if (err)
707 goto out_ro;
710 err = insert_dead_orphan(c, inum);
711 if (err)
712 goto out_free;
715 *last_cmt_no = cmt_no;
716 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) {
717 dbg_rcvry("last orph node for commit %llu at %d:%d",
718 cmt_no, sleb->lnum, snod->offs);
719 *last_flagged = 1;
720 } else
721 *last_flagged = 0;
724 err = 0;
725 out_free:
726 kfree(ino);
727 return err;
729 out_ro:
730 ubifs_ro_mode(c, err);
731 kfree(ino);
732 return err;
736 * kill_orphans - remove all orphan inodes from the index.
737 * @c: UBIFS file-system description object
739 * If recovery is required, then orphan inodes recorded during the previous
740 * session (which ended with an unclean unmount) must be deleted from the index.
741 * This is done by updating the TNC, but since the index is not updated until
742 * the next commit, the LEBs where the orphan information is recorded are not
743 * erased until the next commit.
745 static int kill_orphans(struct ubifs_info *c)
747 unsigned long long last_cmt_no = 0;
748 int lnum, err = 0, outofdate = 0, last_flagged = 0;
750 c->ohead_lnum = c->orph_first;
751 c->ohead_offs = 0;
752 /* Check no-orphans flag and skip this if no orphans */
753 if (c->no_orphs) {
754 dbg_rcvry("no orphans");
755 return 0;
758 * Orph nodes always start at c->orph_first and are written to each
759 * successive LEB in turn. Generally unused LEBs will have been unmapped
760 * but may contain out of date orphan nodes if the unmap didn't go
761 * through. In addition, the last orphan node written for each commit is
762 * marked (top bit of orph->cmt_no is set to 1). It is possible that
763 * there are orphan nodes from the next commit (i.e. the commit did not
764 * complete successfully). In that case, no orphans will have been lost
765 * due to the way that orphans are written, and any orphans added will
766 * be valid orphans anyway and so can be deleted.
768 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
769 struct ubifs_scan_leb *sleb;
771 dbg_rcvry("LEB %d", lnum);
772 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1);
773 if (IS_ERR(sleb)) {
774 if (PTR_ERR(sleb) == -EUCLEAN)
775 sleb = ubifs_recover_leb(c, lnum, 0,
776 c->sbuf, -1);
777 if (IS_ERR(sleb)) {
778 err = PTR_ERR(sleb);
779 break;
782 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate,
783 &last_flagged);
784 if (err || outofdate) {
785 ubifs_scan_destroy(sleb);
786 break;
788 if (sleb->endpt) {
789 c->ohead_lnum = lnum;
790 c->ohead_offs = sleb->endpt;
792 ubifs_scan_destroy(sleb);
794 return err;
798 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them.
799 * @c: UBIFS file-system description object
800 * @unclean: indicates recovery from unclean unmount
801 * @read_only: indicates read only mount
803 * This function is called when mounting to erase orphans from the previous
804 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as
805 * orphans are deleted.
807 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only)
809 int err = 0;
811 c->max_orphans = tot_avail_orphs(c);
813 if (!read_only) {
814 c->orph_buf = vmalloc(c->leb_size);
815 if (!c->orph_buf)
816 return -ENOMEM;
819 if (unclean)
820 err = kill_orphans(c);
821 else if (!read_only)
822 err = ubifs_clear_orphans(c);
824 return err;
828 * Everything below is related to debugging.
831 struct check_orphan {
832 struct rb_node rb;
833 ino_t inum;
836 struct check_info {
837 unsigned long last_ino;
838 unsigned long tot_inos;
839 unsigned long missing;
840 unsigned long long leaf_cnt;
841 struct ubifs_ino_node *node;
842 struct rb_root root;
845 static bool dbg_find_orphan(struct ubifs_info *c, ino_t inum)
847 bool found = false;
849 spin_lock(&c->orphan_lock);
850 found = !!lookup_orphan(c, inum);
851 spin_unlock(&c->orphan_lock);
853 return found;
856 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum)
858 struct check_orphan *orphan, *o;
859 struct rb_node **p, *parent = NULL;
861 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS);
862 if (!orphan)
863 return -ENOMEM;
864 orphan->inum = inum;
866 p = &root->rb_node;
867 while (*p) {
868 parent = *p;
869 o = rb_entry(parent, struct check_orphan, rb);
870 if (inum < o->inum)
871 p = &(*p)->rb_left;
872 else if (inum > o->inum)
873 p = &(*p)->rb_right;
874 else {
875 kfree(orphan);
876 return 0;
879 rb_link_node(&orphan->rb, parent, p);
880 rb_insert_color(&orphan->rb, root);
881 return 0;
884 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum)
886 struct check_orphan *o;
887 struct rb_node *p;
889 p = root->rb_node;
890 while (p) {
891 o = rb_entry(p, struct check_orphan, rb);
892 if (inum < o->inum)
893 p = p->rb_left;
894 else if (inum > o->inum)
895 p = p->rb_right;
896 else
897 return 1;
899 return 0;
902 static void dbg_free_check_tree(struct rb_root *root)
904 struct check_orphan *o, *n;
906 rbtree_postorder_for_each_entry_safe(o, n, root, rb)
907 kfree(o);
910 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr,
911 void *priv)
913 struct check_info *ci = priv;
914 ino_t inum;
915 int err;
917 inum = key_inum(c, &zbr->key);
918 if (inum != ci->last_ino) {
919 /* Lowest node type is the inode node, so it comes first */
920 if (key_type(c, &zbr->key) != UBIFS_INO_KEY)
921 ubifs_err(c, "found orphan node ino %lu, type %d",
922 (unsigned long)inum, key_type(c, &zbr->key));
923 ci->last_ino = inum;
924 ci->tot_inos += 1;
925 err = ubifs_tnc_read_node(c, zbr, ci->node);
926 if (err) {
927 ubifs_err(c, "node read failed, error %d", err);
928 return err;
930 if (ci->node->nlink == 0)
931 /* Must be recorded as an orphan */
932 if (!dbg_find_check_orphan(&ci->root, inum) &&
933 !dbg_find_orphan(c, inum)) {
934 ubifs_err(c, "missing orphan, ino %lu",
935 (unsigned long)inum);
936 ci->missing += 1;
939 ci->leaf_cnt += 1;
940 return 0;
943 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb)
945 struct ubifs_scan_node *snod;
946 struct ubifs_orph_node *orph;
947 ino_t inum;
948 int i, n, err;
950 list_for_each_entry(snod, &sleb->nodes, list) {
951 cond_resched();
952 if (snod->type != UBIFS_ORPH_NODE)
953 continue;
954 orph = snod->node;
955 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3;
956 for (i = 0; i < n; i++) {
957 inum = le64_to_cpu(orph->inos[i]);
958 err = dbg_ins_check_orphan(&ci->root, inum);
959 if (err)
960 return err;
963 return 0;
966 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci)
968 int lnum, err = 0;
969 void *buf;
971 /* Check no-orphans flag and skip this if no orphans */
972 if (c->no_orphs)
973 return 0;
975 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
976 if (!buf) {
977 ubifs_err(c, "cannot allocate memory to check orphans");
978 return 0;
981 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
982 struct ubifs_scan_leb *sleb;
984 sleb = ubifs_scan(c, lnum, 0, buf, 0);
985 if (IS_ERR(sleb)) {
986 err = PTR_ERR(sleb);
987 break;
990 err = dbg_read_orphans(ci, sleb);
991 ubifs_scan_destroy(sleb);
992 if (err)
993 break;
996 vfree(buf);
997 return err;
1000 static int dbg_check_orphans(struct ubifs_info *c)
1002 struct check_info ci;
1003 int err;
1005 if (!dbg_is_chk_orph(c))
1006 return 0;
1008 ci.last_ino = 0;
1009 ci.tot_inos = 0;
1010 ci.missing = 0;
1011 ci.leaf_cnt = 0;
1012 ci.root = RB_ROOT;
1013 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
1014 if (!ci.node) {
1015 ubifs_err(c, "out of memory");
1016 return -ENOMEM;
1019 err = dbg_scan_orphans(c, &ci);
1020 if (err)
1021 goto out;
1023 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci);
1024 if (err) {
1025 ubifs_err(c, "cannot scan TNC, error %d", err);
1026 goto out;
1029 if (ci.missing) {
1030 ubifs_err(c, "%lu missing orphan(s)", ci.missing);
1031 err = -EINVAL;
1032 goto out;
1035 dbg_cmt("last inode number is %lu", ci.last_ino);
1036 dbg_cmt("total number of inodes is %lu", ci.tot_inos);
1037 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt);
1039 out:
1040 dbg_free_check_tree(&ci.root);
1041 kfree(ci.node);
1042 return err;