1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file is part of UBIFS.
5 * Copyright (C) 2006-2008 Nokia Corporation.
7 * Authors: Adrian Hunter
8 * Artem Bityutskiy (Битюцкий Артём)
12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
15 * At the moment the locking rules of the TNC tree are quite simple and
16 * straightforward. We just have a mutex and lock it when we traverse the
17 * tree. If a znode is not in memory, we read it from flash while still having
21 #include <linux/crc32.h>
22 #include <linux/slab.h>
25 static int try_read_node(const struct ubifs_info
*c
, void *buf
, int type
,
26 struct ubifs_zbranch
*zbr
);
27 static int fallible_read_node(struct ubifs_info
*c
, const union ubifs_key
*key
,
28 struct ubifs_zbranch
*zbr
, void *node
);
31 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
32 * @NAME_LESS: name corresponding to the first argument is less than second
33 * @NAME_MATCHES: names match
34 * @NAME_GREATER: name corresponding to the second argument is greater than
36 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
38 * These constants were introduce to improve readability.
48 * insert_old_idx - record an index node obsoleted since the last commit start.
49 * @c: UBIFS file-system description object
50 * @lnum: LEB number of obsoleted index node
51 * @offs: offset of obsoleted index node
53 * Returns %0 on success, and a negative error code on failure.
55 * For recovery, there must always be a complete intact version of the index on
56 * flash at all times. That is called the "old index". It is the index as at the
57 * time of the last successful commit. Many of the index nodes in the old index
58 * may be dirty, but they must not be erased until the next successful commit
59 * (at which point that index becomes the old index).
61 * That means that the garbage collection and the in-the-gaps method of
62 * committing must be able to determine if an index node is in the old index.
63 * Most of the old index nodes can be found by looking up the TNC using the
64 * 'lookup_znode()' function. However, some of the old index nodes may have
65 * been deleted from the current index or may have been changed so much that
66 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
67 * That is what this function does. The RB-tree is ordered by LEB number and
68 * offset because they uniquely identify the old index node.
70 static int insert_old_idx(struct ubifs_info
*c
, int lnum
, int offs
)
72 struct ubifs_old_idx
*old_idx
, *o
;
73 struct rb_node
**p
, *parent
= NULL
;
75 old_idx
= kmalloc(sizeof(struct ubifs_old_idx
), GFP_NOFS
);
76 if (unlikely(!old_idx
))
81 p
= &c
->old_idx
.rb_node
;
84 o
= rb_entry(parent
, struct ubifs_old_idx
, rb
);
87 else if (lnum
> o
->lnum
)
89 else if (offs
< o
->offs
)
91 else if (offs
> o
->offs
)
94 ubifs_err(c
, "old idx added twice!");
99 rb_link_node(&old_idx
->rb
, parent
, p
);
100 rb_insert_color(&old_idx
->rb
, &c
->old_idx
);
105 * insert_old_idx_znode - record a znode obsoleted since last commit start.
106 * @c: UBIFS file-system description object
107 * @znode: znode of obsoleted index node
109 * Returns %0 on success, and a negative error code on failure.
111 int insert_old_idx_znode(struct ubifs_info
*c
, struct ubifs_znode
*znode
)
114 struct ubifs_zbranch
*zbr
;
116 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
118 return insert_old_idx(c
, zbr
->lnum
, zbr
->offs
);
121 return insert_old_idx(c
, c
->zroot
.lnum
,
127 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
128 * @c: UBIFS file-system description object
129 * @znode: znode of obsoleted index node
131 * Returns %0 on success, and a negative error code on failure.
133 static int ins_clr_old_idx_znode(struct ubifs_info
*c
,
134 struct ubifs_znode
*znode
)
139 struct ubifs_zbranch
*zbr
;
141 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
143 err
= insert_old_idx(c
, zbr
->lnum
, zbr
->offs
);
152 err
= insert_old_idx(c
, c
->zroot
.lnum
, c
->zroot
.offs
);
163 * destroy_old_idx - destroy the old_idx RB-tree.
164 * @c: UBIFS file-system description object
166 * During start commit, the old_idx RB-tree is used to avoid overwriting index
167 * nodes that were in the index last commit but have since been deleted. This
168 * is necessary for recovery i.e. the old index must be kept intact until the
169 * new index is successfully written. The old-idx RB-tree is used for the
170 * in-the-gaps method of writing index nodes and is destroyed every commit.
172 void destroy_old_idx(struct ubifs_info
*c
)
174 struct ubifs_old_idx
*old_idx
, *n
;
176 rbtree_postorder_for_each_entry_safe(old_idx
, n
, &c
->old_idx
, rb
)
179 c
->old_idx
= RB_ROOT
;
183 * copy_znode - copy a dirty znode.
184 * @c: UBIFS file-system description object
185 * @znode: znode to copy
187 * A dirty znode being committed may not be changed, so it is copied.
189 static struct ubifs_znode
*copy_znode(struct ubifs_info
*c
,
190 struct ubifs_znode
*znode
)
192 struct ubifs_znode
*zn
;
194 zn
= kmemdup(znode
, c
->max_znode_sz
, GFP_NOFS
);
196 return ERR_PTR(-ENOMEM
);
199 __set_bit(DIRTY_ZNODE
, &zn
->flags
);
200 __clear_bit(COW_ZNODE
, &zn
->flags
);
202 ubifs_assert(c
, !ubifs_zn_obsolete(znode
));
203 __set_bit(OBSOLETE_ZNODE
, &znode
->flags
);
205 if (znode
->level
!= 0) {
207 const int n
= zn
->child_cnt
;
209 /* The children now have new parent */
210 for (i
= 0; i
< n
; i
++) {
211 struct ubifs_zbranch
*zbr
= &zn
->zbranch
[i
];
214 zbr
->znode
->parent
= zn
;
218 atomic_long_inc(&c
->dirty_zn_cnt
);
223 * add_idx_dirt - add dirt due to a dirty znode.
224 * @c: UBIFS file-system description object
225 * @lnum: LEB number of index node
226 * @dirt: size of index node
228 * This function updates lprops dirty space and the new size of the index.
230 static int add_idx_dirt(struct ubifs_info
*c
, int lnum
, int dirt
)
232 c
->calc_idx_sz
-= ALIGN(dirt
, 8);
233 return ubifs_add_dirt(c
, lnum
, dirt
);
237 * dirty_cow_znode - ensure a znode is not being committed.
238 * @c: UBIFS file-system description object
239 * @zbr: branch of znode to check
241 * Returns dirtied znode on success or negative error code on failure.
243 static struct ubifs_znode
*dirty_cow_znode(struct ubifs_info
*c
,
244 struct ubifs_zbranch
*zbr
)
246 struct ubifs_znode
*znode
= zbr
->znode
;
247 struct ubifs_znode
*zn
;
250 if (!ubifs_zn_cow(znode
)) {
251 /* znode is not being committed */
252 if (!test_and_set_bit(DIRTY_ZNODE
, &znode
->flags
)) {
253 atomic_long_inc(&c
->dirty_zn_cnt
);
254 atomic_long_dec(&c
->clean_zn_cnt
);
255 atomic_long_dec(&ubifs_clean_zn_cnt
);
256 err
= add_idx_dirt(c
, zbr
->lnum
, zbr
->len
);
263 zn
= copy_znode(c
, znode
);
268 err
= insert_old_idx(c
, zbr
->lnum
, zbr
->offs
);
271 err
= add_idx_dirt(c
, zbr
->lnum
, zbr
->len
);
286 * lnc_add - add a leaf node to the leaf node cache.
287 * @c: UBIFS file-system description object
288 * @zbr: zbranch of leaf node
291 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
292 * purpose of the leaf node cache is to save re-reading the same leaf node over
293 * and over again. Most things are cached by VFS, however the file system must
294 * cache directory entries for readdir and for resolving hash collisions. The
295 * present implementation of the leaf node cache is extremely simple, and
296 * allows for error returns that are not used but that may be needed if a more
297 * complex implementation is created.
299 * Note, this function does not add the @node object to LNC directly, but
300 * allocates a copy of the object and adds the copy to LNC. The reason for this
301 * is that @node has been allocated outside of the TNC subsystem and will be
302 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
303 * may be changed at any time, e.g. freed by the shrinker.
305 static int lnc_add(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
310 const struct ubifs_dent_node
*dent
= node
;
312 ubifs_assert(c
, !zbr
->leaf
);
313 ubifs_assert(c
, zbr
->len
!= 0);
314 ubifs_assert(c
, is_hash_key(c
, &zbr
->key
));
316 err
= ubifs_validate_entry(c
, dent
);
319 ubifs_dump_node(c
, dent
);
323 lnc_node
= kmemdup(node
, zbr
->len
, GFP_NOFS
);
325 /* We don't have to have the cache, so no error */
328 zbr
->leaf
= lnc_node
;
333 * lnc_add_directly - add a leaf node to the leaf-node-cache.
334 * @c: UBIFS file-system description object
335 * @zbr: zbranch of leaf node
338 * This function is similar to 'lnc_add()', but it does not create a copy of
339 * @node but inserts @node to TNC directly.
341 static int lnc_add_directly(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
346 ubifs_assert(c
, !zbr
->leaf
);
347 ubifs_assert(c
, zbr
->len
!= 0);
349 err
= ubifs_validate_entry(c
, node
);
352 ubifs_dump_node(c
, node
);
361 * lnc_free - remove a leaf node from the leaf node cache.
362 * @zbr: zbranch of leaf node
365 static void lnc_free(struct ubifs_zbranch
*zbr
)
374 * tnc_read_hashed_node - read a "hashed" leaf node.
375 * @c: UBIFS file-system description object
376 * @zbr: key and position of the node
377 * @node: node is returned here
379 * This function reads a "hashed" node defined by @zbr from the leaf node cache
380 * (in it is there) or from the hash media, in which case the node is also
381 * added to LNC. Returns zero in case of success or a negative negative error
382 * code in case of failure.
384 static int tnc_read_hashed_node(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
389 ubifs_assert(c
, is_hash_key(c
, &zbr
->key
));
392 /* Read from the leaf node cache */
393 ubifs_assert(c
, zbr
->len
!= 0);
394 memcpy(node
, zbr
->leaf
, zbr
->len
);
399 err
= fallible_read_node(c
, &zbr
->key
, zbr
, node
);
401 * When the node was not found, return -ENOENT, 0 otherwise.
402 * Negative return codes stay as-is.
409 err
= ubifs_tnc_read_node(c
, zbr
, node
);
414 /* Add the node to the leaf node cache */
415 err
= lnc_add(c
, zbr
, node
);
420 * try_read_node - read a node if it is a node.
421 * @c: UBIFS file-system description object
422 * @buf: buffer to read to
424 * @zbr: the zbranch describing the node to read
426 * This function tries to read a node of known type and length, checks it and
427 * stores it in @buf. This function returns %1 if a node is present and %0 if
428 * a node is not present. A negative error code is returned for I/O errors.
429 * This function performs that same function as ubifs_read_node except that
430 * it does not require that there is actually a node present and instead
431 * the return code indicates if a node was read.
433 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
434 * is true (it is controlled by corresponding mount option). However, if
435 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
436 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
437 * because during mounting or re-mounting from R/O mode to R/W mode we may read
438 * journal nodes (when replying the journal or doing the recovery) and the
439 * journal nodes may potentially be corrupted, so checking is required.
441 static int try_read_node(const struct ubifs_info
*c
, void *buf
, int type
,
442 struct ubifs_zbranch
*zbr
)
445 int lnum
= zbr
->lnum
;
446 int offs
= zbr
->offs
;
448 struct ubifs_ch
*ch
= buf
;
449 uint32_t crc
, node_crc
;
451 dbg_io("LEB %d:%d, %s, length %d", lnum
, offs
, dbg_ntype(type
), len
);
453 err
= ubifs_leb_read(c
, lnum
, buf
, offs
, len
, 1);
455 ubifs_err(c
, "cannot read node type %d from LEB %d:%d, error %d",
456 type
, lnum
, offs
, err
);
460 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
)
463 if (ch
->node_type
!= type
)
466 node_len
= le32_to_cpu(ch
->len
);
470 if (type
!= UBIFS_DATA_NODE
|| !c
->no_chk_data_crc
|| c
->mounting
||
472 crc
= crc32(UBIFS_CRC32_INIT
, buf
+ 8, node_len
- 8);
473 node_crc
= le32_to_cpu(ch
->crc
);
478 err
= ubifs_node_check_hash(c
, buf
, zbr
->hash
);
480 ubifs_bad_hash(c
, buf
, zbr
->hash
, lnum
, offs
);
488 * fallible_read_node - try to read a leaf node.
489 * @c: UBIFS file-system description object
490 * @key: key of node to read
491 * @zbr: position of node
492 * @node: node returned
494 * This function tries to read a node and returns %1 if the node is read, %0
495 * if the node is not present, and a negative error code in the case of error.
497 static int fallible_read_node(struct ubifs_info
*c
, const union ubifs_key
*key
,
498 struct ubifs_zbranch
*zbr
, void *node
)
502 dbg_tnck(key
, "LEB %d:%d, key ", zbr
->lnum
, zbr
->offs
);
504 ret
= try_read_node(c
, node
, key_type(c
, key
), zbr
);
506 union ubifs_key node_key
;
507 struct ubifs_dent_node
*dent
= node
;
509 /* All nodes have key in the same place */
510 key_read(c
, &dent
->key
, &node_key
);
511 if (keys_cmp(c
, key
, &node_key
) != 0)
514 if (ret
== 0 && c
->replaying
)
515 dbg_mntk(key
, "dangling branch LEB %d:%d len %d, key ",
516 zbr
->lnum
, zbr
->offs
, zbr
->len
);
521 * matches_name - determine if a direntry or xattr entry matches a given name.
522 * @c: UBIFS file-system description object
523 * @zbr: zbranch of dent
526 * This function checks if xentry/direntry referred by zbranch @zbr matches name
527 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
528 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
529 * of failure, a negative error code is returned.
531 static int matches_name(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
532 const struct fscrypt_name
*nm
)
534 struct ubifs_dent_node
*dent
;
537 /* If possible, match against the dent in the leaf node cache */
539 dent
= kmalloc(zbr
->len
, GFP_NOFS
);
543 err
= ubifs_tnc_read_node(c
, zbr
, dent
);
547 /* Add the node to the leaf node cache */
548 err
= lnc_add_directly(c
, zbr
, dent
);
554 nlen
= le16_to_cpu(dent
->nlen
);
555 err
= memcmp(dent
->name
, fname_name(nm
), min_t(int, nlen
, fname_len(nm
)));
557 if (nlen
== fname_len(nm
))
559 else if (nlen
< fname_len(nm
))
574 * get_znode - get a TNC znode that may not be loaded yet.
575 * @c: UBIFS file-system description object
576 * @znode: parent znode
577 * @n: znode branch slot number
579 * This function returns the znode or a negative error code.
581 static struct ubifs_znode
*get_znode(struct ubifs_info
*c
,
582 struct ubifs_znode
*znode
, int n
)
584 struct ubifs_zbranch
*zbr
;
586 zbr
= &znode
->zbranch
[n
];
590 znode
= ubifs_load_znode(c
, zbr
, znode
, n
);
595 * tnc_next - find next TNC entry.
596 * @c: UBIFS file-system description object
597 * @zn: znode is passed and returned here
598 * @n: znode branch slot number is passed and returned here
600 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
601 * no next entry, or a negative error code otherwise.
603 static int tnc_next(struct ubifs_info
*c
, struct ubifs_znode
**zn
, int *n
)
605 struct ubifs_znode
*znode
= *zn
;
609 if (nn
< znode
->child_cnt
) {
614 struct ubifs_znode
*zp
;
621 if (nn
< znode
->child_cnt
) {
622 znode
= get_znode(c
, znode
, nn
);
624 return PTR_ERR(znode
);
625 while (znode
->level
!= 0) {
626 znode
= get_znode(c
, znode
, 0);
628 return PTR_ERR(znode
);
640 * tnc_prev - find previous TNC entry.
641 * @c: UBIFS file-system description object
642 * @zn: znode is returned here
643 * @n: znode branch slot number is passed and returned here
645 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
646 * there is no next entry, or a negative error code otherwise.
648 static int tnc_prev(struct ubifs_info
*c
, struct ubifs_znode
**zn
, int *n
)
650 struct ubifs_znode
*znode
= *zn
;
658 struct ubifs_znode
*zp
;
666 znode
= get_znode(c
, znode
, nn
);
668 return PTR_ERR(znode
);
669 while (znode
->level
!= 0) {
670 nn
= znode
->child_cnt
- 1;
671 znode
= get_znode(c
, znode
, nn
);
673 return PTR_ERR(znode
);
675 nn
= znode
->child_cnt
- 1;
685 * resolve_collision - resolve a collision.
686 * @c: UBIFS file-system description object
687 * @key: key of a directory or extended attribute entry
688 * @zn: znode is returned here
689 * @n: zbranch number is passed and returned here
690 * @nm: name of the entry
692 * This function is called for "hashed" keys to make sure that the found key
693 * really corresponds to the looked up node (directory or extended attribute
694 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
695 * %0 is returned if @nm is not found and @zn and @n are set to the previous
696 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
697 * This means that @n may be set to %-1 if the leftmost key in @zn is the
698 * previous one. A negative error code is returned on failures.
700 static int resolve_collision(struct ubifs_info
*c
, const union ubifs_key
*key
,
701 struct ubifs_znode
**zn
, int *n
,
702 const struct fscrypt_name
*nm
)
706 err
= matches_name(c
, &(*zn
)->zbranch
[*n
], nm
);
707 if (unlikely(err
< 0))
709 if (err
== NAME_MATCHES
)
712 if (err
== NAME_GREATER
) {
715 err
= tnc_prev(c
, zn
, n
);
716 if (err
== -ENOENT
) {
717 ubifs_assert(c
, *n
== 0);
723 if (keys_cmp(c
, &(*zn
)->zbranch
[*n
].key
, key
)) {
725 * We have found the branch after which we would
726 * like to insert, but inserting in this znode
727 * may still be wrong. Consider the following 3
728 * znodes, in the case where we are resolving a
729 * collision with Key2.
732 * ----------------------
733 * level 1 | Key0 | Key1 |
734 * -----------------------
736 * znode za | | znode zb
737 * ------------ ------------
738 * level 0 | Key0 | | Key2 |
739 * ------------ ------------
741 * The lookup finds Key2 in znode zb. Lets say
742 * there is no match and the name is greater so
743 * we look left. When we find Key0, we end up
744 * here. If we return now, we will insert into
745 * znode za at slot n = 1. But that is invalid
746 * according to the parent's keys. Key2 must
747 * be inserted into znode zb.
749 * Note, this problem is not relevant for the
750 * case when we go right, because
751 * 'tnc_insert()' would correct the parent key.
753 if (*n
== (*zn
)->child_cnt
- 1) {
754 err
= tnc_next(c
, zn
, n
);
756 /* Should be impossible */
762 ubifs_assert(c
, *n
== 0);
767 err
= matches_name(c
, &(*zn
)->zbranch
[*n
], nm
);
770 if (err
== NAME_LESS
)
772 if (err
== NAME_MATCHES
)
774 ubifs_assert(c
, err
== NAME_GREATER
);
778 struct ubifs_znode
*znode
= *zn
;
782 err
= tnc_next(c
, &znode
, &nn
);
787 if (keys_cmp(c
, &znode
->zbranch
[nn
].key
, key
))
789 err
= matches_name(c
, &znode
->zbranch
[nn
], nm
);
792 if (err
== NAME_GREATER
)
796 if (err
== NAME_MATCHES
)
798 ubifs_assert(c
, err
== NAME_LESS
);
804 * fallible_matches_name - determine if a dent matches a given name.
805 * @c: UBIFS file-system description object
806 * @zbr: zbranch of dent
809 * This is a "fallible" version of 'matches_name()' function which does not
810 * panic if the direntry/xentry referred by @zbr does not exist on the media.
812 * This function checks if xentry/direntry referred by zbranch @zbr matches name
813 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
814 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
815 * if xentry/direntry referred by @zbr does not exist on the media. A negative
816 * error code is returned in case of failure.
818 static int fallible_matches_name(struct ubifs_info
*c
,
819 struct ubifs_zbranch
*zbr
,
820 const struct fscrypt_name
*nm
)
822 struct ubifs_dent_node
*dent
;
825 /* If possible, match against the dent in the leaf node cache */
827 dent
= kmalloc(zbr
->len
, GFP_NOFS
);
831 err
= fallible_read_node(c
, &zbr
->key
, zbr
, dent
);
835 /* The node was not present */
839 ubifs_assert(c
, err
== 1);
841 err
= lnc_add_directly(c
, zbr
, dent
);
847 nlen
= le16_to_cpu(dent
->nlen
);
848 err
= memcmp(dent
->name
, fname_name(nm
), min_t(int, nlen
, fname_len(nm
)));
850 if (nlen
== fname_len(nm
))
852 else if (nlen
< fname_len(nm
))
867 * fallible_resolve_collision - resolve a collision even if nodes are missing.
868 * @c: UBIFS file-system description object
870 * @zn: znode is returned here
871 * @n: branch number is passed and returned here
872 * @nm: name of directory entry
873 * @adding: indicates caller is adding a key to the TNC
875 * This is a "fallible" version of the 'resolve_collision()' function which
876 * does not panic if one of the nodes referred to by TNC does not exist on the
877 * media. This may happen when replaying the journal if a deleted node was
878 * Garbage-collected and the commit was not done. A branch that refers to a node
879 * that is not present is called a dangling branch. The following are the return
880 * codes for this function:
881 * o if @nm was found, %1 is returned and @zn and @n are set to the found
883 * o if we are @adding and @nm was not found, %0 is returned;
884 * o if we are not @adding and @nm was not found, but a dangling branch was
885 * found, then %1 is returned and @zn and @n are set to the dangling branch;
886 * o a negative error code is returned in case of failure.
888 static int fallible_resolve_collision(struct ubifs_info
*c
,
889 const union ubifs_key
*key
,
890 struct ubifs_znode
**zn
, int *n
,
891 const struct fscrypt_name
*nm
,
894 struct ubifs_znode
*o_znode
= NULL
, *znode
= *zn
;
895 int uninitialized_var(o_n
), err
, cmp
, unsure
= 0, nn
= *n
;
897 cmp
= fallible_matches_name(c
, &znode
->zbranch
[nn
], nm
);
898 if (unlikely(cmp
< 0))
900 if (cmp
== NAME_MATCHES
)
902 if (cmp
== NOT_ON_MEDIA
) {
906 * We are unlucky and hit a dangling branch straight away.
907 * Now we do not really know where to go to find the needed
908 * branch - to the left or to the right. Well, let's try left.
912 unsure
= 1; /* Remove a dangling branch wherever it is */
914 if (cmp
== NAME_GREATER
|| unsure
) {
917 err
= tnc_prev(c
, zn
, n
);
918 if (err
== -ENOENT
) {
919 ubifs_assert(c
, *n
== 0);
925 if (keys_cmp(c
, &(*zn
)->zbranch
[*n
].key
, key
)) {
926 /* See comments in 'resolve_collision()' */
927 if (*n
== (*zn
)->child_cnt
- 1) {
928 err
= tnc_next(c
, zn
, n
);
930 /* Should be impossible */
936 ubifs_assert(c
, *n
== 0);
941 err
= fallible_matches_name(c
, &(*zn
)->zbranch
[*n
], nm
);
944 if (err
== NAME_MATCHES
)
946 if (err
== NOT_ON_MEDIA
) {
953 if (err
== NAME_LESS
)
960 if (cmp
== NAME_LESS
|| unsure
) {
965 err
= tnc_next(c
, &znode
, &nn
);
970 if (keys_cmp(c
, &znode
->zbranch
[nn
].key
, key
))
972 err
= fallible_matches_name(c
, &znode
->zbranch
[nn
], nm
);
975 if (err
== NAME_GREATER
)
979 if (err
== NAME_MATCHES
)
981 if (err
== NOT_ON_MEDIA
) {
988 /* Never match a dangling branch when adding */
989 if (adding
|| !o_znode
)
992 dbg_mntk(key
, "dangling match LEB %d:%d len %d key ",
993 o_znode
->zbranch
[o_n
].lnum
, o_znode
->zbranch
[o_n
].offs
,
994 o_znode
->zbranch
[o_n
].len
);
1001 * matches_position - determine if a zbranch matches a given position.
1002 * @zbr: zbranch of dent
1003 * @lnum: LEB number of dent to match
1004 * @offs: offset of dent to match
1006 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1008 static int matches_position(struct ubifs_zbranch
*zbr
, int lnum
, int offs
)
1010 if (zbr
->lnum
== lnum
&& zbr
->offs
== offs
)
1017 * resolve_collision_directly - resolve a collision directly.
1018 * @c: UBIFS file-system description object
1019 * @key: key of directory entry
1020 * @zn: znode is passed and returned here
1021 * @n: zbranch number is passed and returned here
1022 * @lnum: LEB number of dent node to match
1023 * @offs: offset of dent node to match
1025 * This function is used for "hashed" keys to make sure the found directory or
1026 * extended attribute entry node is what was looked for. It is used when the
1027 * flash address of the right node is known (@lnum:@offs) which makes it much
1028 * easier to resolve collisions (no need to read entries and match full
1029 * names). This function returns %1 and sets @zn and @n if the collision is
1030 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1031 * previous directory entry. Otherwise a negative error code is returned.
1033 static int resolve_collision_directly(struct ubifs_info
*c
,
1034 const union ubifs_key
*key
,
1035 struct ubifs_znode
**zn
, int *n
,
1038 struct ubifs_znode
*znode
;
1043 if (matches_position(&znode
->zbranch
[nn
], lnum
, offs
))
1048 err
= tnc_prev(c
, &znode
, &nn
);
1053 if (keys_cmp(c
, &znode
->zbranch
[nn
].key
, key
))
1055 if (matches_position(&znode
->zbranch
[nn
], lnum
, offs
)) {
1066 err
= tnc_next(c
, &znode
, &nn
);
1071 if (keys_cmp(c
, &znode
->zbranch
[nn
].key
, key
))
1075 if (matches_position(&znode
->zbranch
[nn
], lnum
, offs
))
1081 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1082 * @c: UBIFS file-system description object
1083 * @znode: znode to dirty
1085 * If we do not have a unique key that resides in a znode, then we cannot
1086 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1087 * This function records the path back to the last dirty ancestor, and then
1088 * dirties the znodes on that path.
1090 static struct ubifs_znode
*dirty_cow_bottom_up(struct ubifs_info
*c
,
1091 struct ubifs_znode
*znode
)
1093 struct ubifs_znode
*zp
;
1094 int *path
= c
->bottom_up_buf
, p
= 0;
1096 ubifs_assert(c
, c
->zroot
.znode
);
1097 ubifs_assert(c
, znode
);
1098 if (c
->zroot
.znode
->level
> BOTTOM_UP_HEIGHT
) {
1099 kfree(c
->bottom_up_buf
);
1100 c
->bottom_up_buf
= kmalloc_array(c
->zroot
.znode
->level
,
1103 if (!c
->bottom_up_buf
)
1104 return ERR_PTR(-ENOMEM
);
1105 path
= c
->bottom_up_buf
;
1107 if (c
->zroot
.znode
->level
) {
1108 /* Go up until parent is dirty */
1116 ubifs_assert(c
, p
< c
->zroot
.znode
->level
);
1118 if (!zp
->cnext
&& ubifs_zn_dirty(znode
))
1124 /* Come back down, dirtying as we go */
1126 struct ubifs_zbranch
*zbr
;
1130 ubifs_assert(c
, path
[p
- 1] >= 0);
1131 ubifs_assert(c
, path
[p
- 1] < zp
->child_cnt
);
1132 zbr
= &zp
->zbranch
[path
[--p
]];
1133 znode
= dirty_cow_znode(c
, zbr
);
1135 ubifs_assert(c
, znode
== c
->zroot
.znode
);
1136 znode
= dirty_cow_znode(c
, &c
->zroot
);
1138 if (IS_ERR(znode
) || !p
)
1140 ubifs_assert(c
, path
[p
- 1] >= 0);
1141 ubifs_assert(c
, path
[p
- 1] < znode
->child_cnt
);
1142 znode
= znode
->zbranch
[path
[p
- 1]].znode
;
1149 * ubifs_lookup_level0 - search for zero-level znode.
1150 * @c: UBIFS file-system description object
1151 * @key: key to lookup
1152 * @zn: znode is returned here
1153 * @n: znode branch slot number is returned here
1155 * This function looks up the TNC tree and search for zero-level znode which
1156 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1158 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1159 * is returned and slot number of the matched branch is stored in @n;
1160 * o not exact match, which means that zero-level znode does not contain
1161 * @key, then %0 is returned and slot number of the closest branch or %-1
1162 * is stored in @n; In this case calling tnc_next() is mandatory.
1163 * o @key is so small that it is even less than the lowest key of the
1164 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1166 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1167 * function reads corresponding indexing nodes and inserts them to TNC. In
1168 * case of failure, a negative error code is returned.
1170 int ubifs_lookup_level0(struct ubifs_info
*c
, const union ubifs_key
*key
,
1171 struct ubifs_znode
**zn
, int *n
)
1174 struct ubifs_znode
*znode
;
1175 time64_t time
= ktime_get_seconds();
1177 dbg_tnck(key
, "search key ");
1178 ubifs_assert(c
, key_type(c
, key
) < UBIFS_INVALID_KEY
);
1180 znode
= c
->zroot
.znode
;
1181 if (unlikely(!znode
)) {
1182 znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1184 return PTR_ERR(znode
);
1190 struct ubifs_zbranch
*zbr
;
1192 exact
= ubifs_search_zbranch(c
, znode
, key
, n
);
1194 if (znode
->level
== 0)
1199 zbr
= &znode
->zbranch
[*n
];
1207 /* znode is not in TNC cache, load it from the media */
1208 znode
= ubifs_load_znode(c
, zbr
, znode
, *n
);
1210 return PTR_ERR(znode
);
1214 if (exact
|| !is_hash_key(c
, key
) || *n
!= -1) {
1215 dbg_tnc("found %d, lvl %d, n %d", exact
, znode
->level
, *n
);
1220 * Here is a tricky place. We have not found the key and this is a
1221 * "hashed" key, which may collide. The rest of the code deals with
1222 * situations like this:
1226 * | 3 | 5 | | 6 | 7 | (x)
1228 * Or more a complex example:
1232 * | 1 | 3 | | 5 | 8 |
1234 * | 5 | 5 | | 6 | 7 | (x)
1236 * In the examples, if we are looking for key "5", we may reach nodes
1237 * marked with "(x)". In this case what we have do is to look at the
1238 * left and see if there is "5" key there. If there is, we have to
1241 * Note, this whole situation is possible because we allow to have
1242 * elements which are equivalent to the next key in the parent in the
1243 * children of current znode. For example, this happens if we split a
1244 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1248 * | 3 | 5 | | 5 | 6 | 7 |
1250 * And this becomes what is at the first "picture" after key "5" marked
1251 * with "^" is removed. What could be done is we could prohibit
1252 * splitting in the middle of the colliding sequence. Also, when
1253 * removing the leftmost key, we would have to correct the key of the
1254 * parent node, which would introduce additional complications. Namely,
1255 * if we changed the leftmost key of the parent znode, the garbage
1256 * collector would be unable to find it (GC is doing this when GC'ing
1257 * indexing LEBs). Although we already have an additional RB-tree where
1258 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1259 * after the commit. But anyway, this does not look easy to implement
1260 * so we did not try this.
1262 err
= tnc_prev(c
, &znode
, n
);
1263 if (err
== -ENOENT
) {
1264 dbg_tnc("found 0, lvl %d, n -1", znode
->level
);
1268 if (unlikely(err
< 0))
1270 if (keys_cmp(c
, key
, &znode
->zbranch
[*n
].key
)) {
1271 dbg_tnc("found 0, lvl %d, n -1", znode
->level
);
1276 dbg_tnc("found 1, lvl %d, n %d", znode
->level
, *n
);
1282 * lookup_level0_dirty - search for zero-level znode dirtying.
1283 * @c: UBIFS file-system description object
1284 * @key: key to lookup
1285 * @zn: znode is returned here
1286 * @n: znode branch slot number is returned here
1288 * This function looks up the TNC tree and search for zero-level znode which
1289 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1291 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1292 * is returned and slot number of the matched branch is stored in @n;
1293 * o not exact match, which means that zero-level znode does not contain @key
1294 * then %0 is returned and slot number of the closed branch is stored in
1296 * o @key is so small that it is even less than the lowest key of the
1297 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1299 * Additionally all znodes in the path from the root to the located zero-level
1300 * znode are marked as dirty.
1302 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1303 * function reads corresponding indexing nodes and inserts them to TNC. In
1304 * case of failure, a negative error code is returned.
1306 static int lookup_level0_dirty(struct ubifs_info
*c
, const union ubifs_key
*key
,
1307 struct ubifs_znode
**zn
, int *n
)
1310 struct ubifs_znode
*znode
;
1311 time64_t time
= ktime_get_seconds();
1313 dbg_tnck(key
, "search and dirty key ");
1315 znode
= c
->zroot
.znode
;
1316 if (unlikely(!znode
)) {
1317 znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1319 return PTR_ERR(znode
);
1322 znode
= dirty_cow_znode(c
, &c
->zroot
);
1324 return PTR_ERR(znode
);
1329 struct ubifs_zbranch
*zbr
;
1331 exact
= ubifs_search_zbranch(c
, znode
, key
, n
);
1333 if (znode
->level
== 0)
1338 zbr
= &znode
->zbranch
[*n
];
1342 znode
= dirty_cow_znode(c
, zbr
);
1344 return PTR_ERR(znode
);
1348 /* znode is not in TNC cache, load it from the media */
1349 znode
= ubifs_load_znode(c
, zbr
, znode
, *n
);
1351 return PTR_ERR(znode
);
1352 znode
= dirty_cow_znode(c
, zbr
);
1354 return PTR_ERR(znode
);
1358 if (exact
|| !is_hash_key(c
, key
) || *n
!= -1) {
1359 dbg_tnc("found %d, lvl %d, n %d", exact
, znode
->level
, *n
);
1364 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1367 err
= tnc_prev(c
, &znode
, n
);
1368 if (err
== -ENOENT
) {
1370 dbg_tnc("found 0, lvl %d, n -1", znode
->level
);
1373 if (unlikely(err
< 0))
1375 if (keys_cmp(c
, key
, &znode
->zbranch
[*n
].key
)) {
1377 dbg_tnc("found 0, lvl %d, n -1", znode
->level
);
1381 if (znode
->cnext
|| !ubifs_zn_dirty(znode
)) {
1382 znode
= dirty_cow_bottom_up(c
, znode
);
1384 return PTR_ERR(znode
);
1387 dbg_tnc("found 1, lvl %d, n %d", znode
->level
, *n
);
1393 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1394 * @c: UBIFS file-system description object
1396 * @gc_seq1: garbage collection sequence number
1398 * This function determines if @lnum may have been garbage collected since
1399 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1402 static int maybe_leb_gced(struct ubifs_info
*c
, int lnum
, int gc_seq1
)
1404 int gc_seq2
, gced_lnum
;
1406 gced_lnum
= c
->gced_lnum
;
1408 gc_seq2
= c
->gc_seq
;
1409 /* Same seq means no GC */
1410 if (gc_seq1
== gc_seq2
)
1412 /* Different by more than 1 means we don't know */
1413 if (gc_seq1
+ 1 != gc_seq2
)
1416 * We have seen the sequence number has increased by 1. Now we need to
1417 * be sure we read the right LEB number, so read it again.
1420 if (gced_lnum
!= c
->gced_lnum
)
1422 /* Finally we can check lnum */
1423 if (gced_lnum
== lnum
)
1429 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1430 * @c: UBIFS file-system description object
1431 * @key: node key to lookup
1432 * @node: the node is returned here
1433 * @lnum: LEB number is returned here
1434 * @offs: offset is returned here
1436 * This function looks up and reads node with key @key. The caller has to make
1437 * sure the @node buffer is large enough to fit the node. Returns zero in case
1438 * of success, %-ENOENT if the node was not found, and a negative error code in
1439 * case of failure. The node location can be returned in @lnum and @offs.
1441 int ubifs_tnc_locate(struct ubifs_info
*c
, const union ubifs_key
*key
,
1442 void *node
, int *lnum
, int *offs
)
1444 int found
, n
, err
, safely
= 0, gc_seq1
;
1445 struct ubifs_znode
*znode
;
1446 struct ubifs_zbranch zbr
, *zt
;
1449 mutex_lock(&c
->tnc_mutex
);
1450 found
= ubifs_lookup_level0(c
, key
, &znode
, &n
);
1454 } else if (found
< 0) {
1458 zt
= &znode
->zbranch
[n
];
1463 if (is_hash_key(c
, key
)) {
1465 * In this case the leaf node cache gets used, so we pass the
1466 * address of the zbranch and keep the mutex locked
1468 err
= tnc_read_hashed_node(c
, zt
, node
);
1472 err
= ubifs_tnc_read_node(c
, zt
, node
);
1475 /* Drop the TNC mutex prematurely and race with garbage collection */
1476 zbr
= znode
->zbranch
[n
];
1477 gc_seq1
= c
->gc_seq
;
1478 mutex_unlock(&c
->tnc_mutex
);
1480 if (ubifs_get_wbuf(c
, zbr
.lnum
)) {
1481 /* We do not GC journal heads */
1482 err
= ubifs_tnc_read_node(c
, &zbr
, node
);
1486 err
= fallible_read_node(c
, key
, &zbr
, node
);
1487 if (err
<= 0 || maybe_leb_gced(c
, zbr
.lnum
, gc_seq1
)) {
1489 * The node may have been GC'ed out from under us so try again
1490 * while keeping the TNC mutex locked.
1498 mutex_unlock(&c
->tnc_mutex
);
1503 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1504 * @c: UBIFS file-system description object
1505 * @bu: bulk-read parameters and results
1507 * Lookup consecutive data node keys for the same inode that reside
1508 * consecutively in the same LEB. This function returns zero in case of success
1509 * and a negative error code in case of failure.
1511 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1512 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1513 * maximum possible amount of nodes for bulk-read.
1515 int ubifs_tnc_get_bu_keys(struct ubifs_info
*c
, struct bu_info
*bu
)
1517 int n
, err
= 0, lnum
= -1, uninitialized_var(offs
);
1518 int uninitialized_var(len
);
1519 unsigned int block
= key_block(c
, &bu
->key
);
1520 struct ubifs_znode
*znode
;
1526 mutex_lock(&c
->tnc_mutex
);
1527 /* Find first key */
1528 err
= ubifs_lookup_level0(c
, &bu
->key
, &znode
, &n
);
1533 len
= znode
->zbranch
[n
].len
;
1534 /* The buffer must be big enough for at least 1 node */
1535 if (len
> bu
->buf_len
) {
1540 bu
->zbranch
[bu
->cnt
++] = znode
->zbranch
[n
];
1542 lnum
= znode
->zbranch
[n
].lnum
;
1543 offs
= ALIGN(znode
->zbranch
[n
].offs
+ len
, 8);
1546 struct ubifs_zbranch
*zbr
;
1547 union ubifs_key
*key
;
1548 unsigned int next_block
;
1551 err
= tnc_next(c
, &znode
, &n
);
1554 zbr
= &znode
->zbranch
[n
];
1556 /* See if there is another data key for this file */
1557 if (key_inum(c
, key
) != key_inum(c
, &bu
->key
) ||
1558 key_type(c
, key
) != UBIFS_DATA_KEY
) {
1563 /* First key found */
1565 offs
= ALIGN(zbr
->offs
+ zbr
->len
, 8);
1567 if (len
> bu
->buf_len
) {
1573 * The data nodes must be in consecutive positions in
1576 if (zbr
->lnum
!= lnum
|| zbr
->offs
!= offs
)
1578 offs
+= ALIGN(zbr
->len
, 8);
1579 len
= ALIGN(len
, 8) + zbr
->len
;
1580 /* Must not exceed buffer length */
1581 if (len
> bu
->buf_len
)
1584 /* Allow for holes */
1585 next_block
= key_block(c
, key
);
1586 bu
->blk_cnt
+= (next_block
- block
- 1);
1587 if (bu
->blk_cnt
>= UBIFS_MAX_BULK_READ
)
1591 bu
->zbranch
[bu
->cnt
++] = *zbr
;
1593 /* See if we have room for more */
1594 if (bu
->cnt
>= UBIFS_MAX_BULK_READ
)
1596 if (bu
->blk_cnt
>= UBIFS_MAX_BULK_READ
)
1600 if (err
== -ENOENT
) {
1604 bu
->gc_seq
= c
->gc_seq
;
1605 mutex_unlock(&c
->tnc_mutex
);
1609 * An enormous hole could cause bulk-read to encompass too many
1610 * page cache pages, so limit the number here.
1612 if (bu
->blk_cnt
> UBIFS_MAX_BULK_READ
)
1613 bu
->blk_cnt
= UBIFS_MAX_BULK_READ
;
1615 * Ensure that bulk-read covers a whole number of page cache
1618 if (UBIFS_BLOCKS_PER_PAGE
== 1 ||
1619 !(bu
->blk_cnt
& (UBIFS_BLOCKS_PER_PAGE
- 1)))
1622 /* At the end of file we can round up */
1623 bu
->blk_cnt
+= UBIFS_BLOCKS_PER_PAGE
- 1;
1626 /* Exclude data nodes that do not make up a whole page cache page */
1627 block
= key_block(c
, &bu
->key
) + bu
->blk_cnt
;
1628 block
&= ~(UBIFS_BLOCKS_PER_PAGE
- 1);
1630 if (key_block(c
, &bu
->zbranch
[bu
->cnt
- 1].key
) < block
)
1638 * read_wbuf - bulk-read from a LEB with a wbuf.
1639 * @wbuf: wbuf that may overlap the read
1640 * @buf: buffer into which to read
1642 * @lnum: LEB number from which to read
1643 * @offs: offset from which to read
1645 * This functions returns %0 on success or a negative error code on failure.
1647 static int read_wbuf(struct ubifs_wbuf
*wbuf
, void *buf
, int len
, int lnum
,
1650 const struct ubifs_info
*c
= wbuf
->c
;
1653 dbg_io("LEB %d:%d, length %d", lnum
, offs
, len
);
1654 ubifs_assert(c
, wbuf
&& lnum
>= 0 && lnum
< c
->leb_cnt
&& offs
>= 0);
1655 ubifs_assert(c
, !(offs
& 7) && offs
< c
->leb_size
);
1656 ubifs_assert(c
, offs
+ len
<= c
->leb_size
);
1658 spin_lock(&wbuf
->lock
);
1659 overlap
= (lnum
== wbuf
->lnum
&& offs
+ len
> wbuf
->offs
);
1661 /* We may safely unlock the write-buffer and read the data */
1662 spin_unlock(&wbuf
->lock
);
1663 return ubifs_leb_read(c
, lnum
, buf
, offs
, len
, 0);
1666 /* Don't read under wbuf */
1667 rlen
= wbuf
->offs
- offs
;
1671 /* Copy the rest from the write-buffer */
1672 memcpy(buf
+ rlen
, wbuf
->buf
+ offs
+ rlen
- wbuf
->offs
, len
- rlen
);
1673 spin_unlock(&wbuf
->lock
);
1676 /* Read everything that goes before write-buffer */
1677 return ubifs_leb_read(c
, lnum
, buf
, offs
, rlen
, 0);
1683 * validate_data_node - validate data nodes for bulk-read.
1684 * @c: UBIFS file-system description object
1685 * @buf: buffer containing data node to validate
1686 * @zbr: zbranch of data node to validate
1688 * This functions returns %0 on success or a negative error code on failure.
1690 static int validate_data_node(struct ubifs_info
*c
, void *buf
,
1691 struct ubifs_zbranch
*zbr
)
1693 union ubifs_key key1
;
1694 struct ubifs_ch
*ch
= buf
;
1697 if (ch
->node_type
!= UBIFS_DATA_NODE
) {
1698 ubifs_err(c
, "bad node type (%d but expected %d)",
1699 ch
->node_type
, UBIFS_DATA_NODE
);
1703 err
= ubifs_check_node(c
, buf
, zbr
->lnum
, zbr
->offs
, 0, 0);
1705 ubifs_err(c
, "expected node type %d", UBIFS_DATA_NODE
);
1709 err
= ubifs_node_check_hash(c
, buf
, zbr
->hash
);
1711 ubifs_bad_hash(c
, buf
, zbr
->hash
, zbr
->lnum
, zbr
->offs
);
1715 len
= le32_to_cpu(ch
->len
);
1716 if (len
!= zbr
->len
) {
1717 ubifs_err(c
, "bad node length %d, expected %d", len
, zbr
->len
);
1721 /* Make sure the key of the read node is correct */
1722 key_read(c
, buf
+ UBIFS_KEY_OFFSET
, &key1
);
1723 if (!keys_eq(c
, &zbr
->key
, &key1
)) {
1724 ubifs_err(c
, "bad key in node at LEB %d:%d",
1725 zbr
->lnum
, zbr
->offs
);
1726 dbg_tnck(&zbr
->key
, "looked for key ");
1727 dbg_tnck(&key1
, "found node's key ");
1736 ubifs_err(c
, "bad node at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1737 ubifs_dump_node(c
, buf
);
1743 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1744 * @c: UBIFS file-system description object
1745 * @bu: bulk-read parameters and results
1747 * This functions reads and validates the data nodes that were identified by the
1748 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1749 * -EAGAIN to indicate a race with GC, or another negative error code on
1752 int ubifs_tnc_bulk_read(struct ubifs_info
*c
, struct bu_info
*bu
)
1754 int lnum
= bu
->zbranch
[0].lnum
, offs
= bu
->zbranch
[0].offs
, len
, err
, i
;
1755 struct ubifs_wbuf
*wbuf
;
1758 len
= bu
->zbranch
[bu
->cnt
- 1].offs
;
1759 len
+= bu
->zbranch
[bu
->cnt
- 1].len
- offs
;
1760 if (len
> bu
->buf_len
) {
1761 ubifs_err(c
, "buffer too small %d vs %d", bu
->buf_len
, len
);
1766 wbuf
= ubifs_get_wbuf(c
, lnum
);
1768 err
= read_wbuf(wbuf
, bu
->buf
, len
, lnum
, offs
);
1770 err
= ubifs_leb_read(c
, lnum
, bu
->buf
, offs
, len
, 0);
1772 /* Check for a race with GC */
1773 if (maybe_leb_gced(c
, lnum
, bu
->gc_seq
))
1776 if (err
&& err
!= -EBADMSG
) {
1777 ubifs_err(c
, "failed to read from LEB %d:%d, error %d",
1780 dbg_tnck(&bu
->key
, "key ");
1784 /* Validate the nodes read */
1786 for (i
= 0; i
< bu
->cnt
; i
++) {
1787 err
= validate_data_node(c
, buf
, &bu
->zbranch
[i
]);
1790 buf
= buf
+ ALIGN(bu
->zbranch
[i
].len
, 8);
1797 * do_lookup_nm- look up a "hashed" node.
1798 * @c: UBIFS file-system description object
1799 * @key: node key to lookup
1800 * @node: the node is returned here
1803 * This function looks up and reads a node which contains name hash in the key.
1804 * Since the hash may have collisions, there may be many nodes with the same
1805 * key, so we have to sequentially look to all of them until the needed one is
1806 * found. This function returns zero in case of success, %-ENOENT if the node
1807 * was not found, and a negative error code in case of failure.
1809 static int do_lookup_nm(struct ubifs_info
*c
, const union ubifs_key
*key
,
1810 void *node
, const struct fscrypt_name
*nm
)
1813 struct ubifs_znode
*znode
;
1815 dbg_tnck(key
, "key ");
1816 mutex_lock(&c
->tnc_mutex
);
1817 found
= ubifs_lookup_level0(c
, key
, &znode
, &n
);
1821 } else if (found
< 0) {
1826 ubifs_assert(c
, n
>= 0);
1828 err
= resolve_collision(c
, key
, &znode
, &n
, nm
);
1829 dbg_tnc("rc returned %d, znode %p, n %d", err
, znode
, n
);
1830 if (unlikely(err
< 0))
1837 err
= tnc_read_hashed_node(c
, &znode
->zbranch
[n
], node
);
1840 mutex_unlock(&c
->tnc_mutex
);
1845 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1846 * @c: UBIFS file-system description object
1847 * @key: node key to lookup
1848 * @node: the node is returned here
1851 * This function looks up and reads a node which contains name hash in the key.
1852 * Since the hash may have collisions, there may be many nodes with the same
1853 * key, so we have to sequentially look to all of them until the needed one is
1854 * found. This function returns zero in case of success, %-ENOENT if the node
1855 * was not found, and a negative error code in case of failure.
1857 int ubifs_tnc_lookup_nm(struct ubifs_info
*c
, const union ubifs_key
*key
,
1858 void *node
, const struct fscrypt_name
*nm
)
1861 const struct ubifs_dent_node
*dent
= node
;
1864 * We assume that in most of the cases there are no name collisions and
1865 * 'ubifs_tnc_lookup()' returns us the right direntry.
1867 err
= ubifs_tnc_lookup(c
, key
, node
);
1871 len
= le16_to_cpu(dent
->nlen
);
1872 if (fname_len(nm
) == len
&& !memcmp(dent
->name
, fname_name(nm
), len
))
1876 * Unluckily, there are hash collisions and we have to iterate over
1877 * them look at each direntry with colliding name hash sequentially.
1880 return do_lookup_nm(c
, key
, node
, nm
);
1883 static int search_dh_cookie(struct ubifs_info
*c
, const union ubifs_key
*key
,
1884 struct ubifs_dent_node
*dent
, uint32_t cookie
,
1885 struct ubifs_znode
**zn
, int *n
, int exact
)
1888 struct ubifs_znode
*znode
= *zn
;
1889 struct ubifs_zbranch
*zbr
;
1890 union ubifs_key
*dkey
;
1893 err
= tnc_next(c
, &znode
, n
);
1899 zbr
= &znode
->zbranch
[*n
];
1902 if (key_inum(c
, dkey
) != key_inum(c
, key
) ||
1903 key_type(c
, dkey
) != key_type(c
, key
)) {
1907 err
= tnc_read_hashed_node(c
, zbr
, dent
);
1911 if (key_hash(c
, key
) == key_hash(c
, dkey
) &&
1912 le32_to_cpu(dent
->cookie
) == cookie
) {
1917 err
= tnc_next(c
, &znode
, n
);
1923 static int do_lookup_dh(struct ubifs_info
*c
, const union ubifs_key
*key
,
1924 struct ubifs_dent_node
*dent
, uint32_t cookie
)
1927 struct ubifs_znode
*znode
;
1928 union ubifs_key start_key
;
1930 ubifs_assert(c
, is_hash_key(c
, key
));
1932 lowest_dent_key(c
, &start_key
, key_inum(c
, key
));
1934 mutex_lock(&c
->tnc_mutex
);
1935 err
= ubifs_lookup_level0(c
, &start_key
, &znode
, &n
);
1936 if (unlikely(err
< 0))
1939 err
= search_dh_cookie(c
, key
, dent
, cookie
, &znode
, &n
, err
);
1942 mutex_unlock(&c
->tnc_mutex
);
1947 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1948 * @c: UBIFS file-system description object
1949 * @key: node key to lookup
1950 * @node: the node is returned here
1951 * @cookie: node cookie for collision resolution
1953 * This function looks up and reads a node which contains name hash in the key.
1954 * Since the hash may have collisions, there may be many nodes with the same
1955 * key, so we have to sequentially look to all of them until the needed one
1956 * with the same cookie value is found.
1957 * This function returns zero in case of success, %-ENOENT if the node
1958 * was not found, and a negative error code in case of failure.
1960 int ubifs_tnc_lookup_dh(struct ubifs_info
*c
, const union ubifs_key
*key
,
1961 void *node
, uint32_t cookie
)
1964 const struct ubifs_dent_node
*dent
= node
;
1966 if (!c
->double_hash
)
1970 * We assume that in most of the cases there are no name collisions and
1971 * 'ubifs_tnc_lookup()' returns us the right direntry.
1973 err
= ubifs_tnc_lookup(c
, key
, node
);
1977 if (le32_to_cpu(dent
->cookie
) == cookie
)
1981 * Unluckily, there are hash collisions and we have to iterate over
1982 * them look at each direntry with colliding name hash sequentially.
1984 return do_lookup_dh(c
, key
, node
, cookie
);
1988 * correct_parent_keys - correct parent znodes' keys.
1989 * @c: UBIFS file-system description object
1990 * @znode: znode to correct parent znodes for
1992 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1993 * zbranch changes, keys of parent znodes have to be corrected. This helper
1994 * function is called in such situations and corrects the keys if needed.
1996 static void correct_parent_keys(const struct ubifs_info
*c
,
1997 struct ubifs_znode
*znode
)
1999 union ubifs_key
*key
, *key1
;
2001 ubifs_assert(c
, znode
->parent
);
2002 ubifs_assert(c
, znode
->iip
== 0);
2004 key
= &znode
->zbranch
[0].key
;
2005 key1
= &znode
->parent
->zbranch
[0].key
;
2007 while (keys_cmp(c
, key
, key1
) < 0) {
2008 key_copy(c
, key
, key1
);
2009 znode
= znode
->parent
;
2011 if (!znode
->parent
|| znode
->iip
)
2013 key1
= &znode
->parent
->zbranch
[0].key
;
2018 * insert_zbranch - insert a zbranch into a znode.
2019 * @c: UBIFS file-system description object
2020 * @znode: znode into which to insert
2021 * @zbr: zbranch to insert
2022 * @n: slot number to insert to
2024 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2025 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2026 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2027 * slot, zbranches starting from @n have to be moved right.
2029 static void insert_zbranch(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
2030 const struct ubifs_zbranch
*zbr
, int n
)
2034 ubifs_assert(c
, ubifs_zn_dirty(znode
));
2037 for (i
= znode
->child_cnt
; i
> n
; i
--) {
2038 znode
->zbranch
[i
] = znode
->zbranch
[i
- 1];
2039 if (znode
->zbranch
[i
].znode
)
2040 znode
->zbranch
[i
].znode
->iip
= i
;
2043 zbr
->znode
->iip
= n
;
2045 for (i
= znode
->child_cnt
; i
> n
; i
--)
2046 znode
->zbranch
[i
] = znode
->zbranch
[i
- 1];
2048 znode
->zbranch
[n
] = *zbr
;
2049 znode
->child_cnt
+= 1;
2052 * After inserting at slot zero, the lower bound of the key range of
2053 * this znode may have changed. If this znode is subsequently split
2054 * then the upper bound of the key range may change, and furthermore
2055 * it could change to be lower than the original lower bound. If that
2056 * happens, then it will no longer be possible to find this znode in the
2057 * TNC using the key from the index node on flash. That is bad because
2058 * if it is not found, we will assume it is obsolete and may overwrite
2059 * it. Then if there is an unclean unmount, we will start using the
2060 * old index which will be broken.
2062 * So we first mark znodes that have insertions at slot zero, and then
2063 * if they are split we add their lnum/offs to the old_idx tree.
2070 * tnc_insert - insert a node into TNC.
2071 * @c: UBIFS file-system description object
2072 * @znode: znode to insert into
2073 * @zbr: branch to insert
2074 * @n: slot number to insert new zbranch to
2076 * This function inserts a new node described by @zbr into znode @znode. If
2077 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2078 * are splat as well if needed. Returns zero in case of success or a negative
2079 * error code in case of failure.
2081 static int tnc_insert(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
2082 struct ubifs_zbranch
*zbr
, int n
)
2084 struct ubifs_znode
*zn
, *zi
, *zp
;
2085 int i
, keep
, move
, appending
= 0;
2086 union ubifs_key
*key
= &zbr
->key
, *key1
;
2088 ubifs_assert(c
, n
>= 0 && n
<= c
->fanout
);
2090 /* Implement naive insert for now */
2093 if (znode
->child_cnt
< c
->fanout
) {
2094 ubifs_assert(c
, n
!= c
->fanout
);
2095 dbg_tnck(key
, "inserted at %d level %d, key ", n
, znode
->level
);
2097 insert_zbranch(c
, znode
, zbr
, n
);
2099 /* Ensure parent's key is correct */
2100 if (n
== 0 && zp
&& znode
->iip
== 0)
2101 correct_parent_keys(c
, znode
);
2107 * Unfortunately, @znode does not have more empty slots and we have to
2110 dbg_tnck(key
, "splitting level %d, key ", znode
->level
);
2114 * We can no longer be sure of finding this znode by key, so we
2115 * record it in the old_idx tree.
2117 ins_clr_old_idx_znode(c
, znode
);
2119 zn
= kzalloc(c
->max_znode_sz
, GFP_NOFS
);
2123 zn
->level
= znode
->level
;
2125 /* Decide where to split */
2126 if (znode
->level
== 0 && key_type(c
, key
) == UBIFS_DATA_KEY
) {
2127 /* Try not to split consecutive data keys */
2128 if (n
== c
->fanout
) {
2129 key1
= &znode
->zbranch
[n
- 1].key
;
2130 if (key_inum(c
, key1
) == key_inum(c
, key
) &&
2131 key_type(c
, key1
) == UBIFS_DATA_KEY
)
2135 } else if (appending
&& n
!= c
->fanout
) {
2136 /* Try not to split consecutive data keys */
2139 if (n
>= (c
->fanout
+ 1) / 2) {
2140 key1
= &znode
->zbranch
[0].key
;
2141 if (key_inum(c
, key1
) == key_inum(c
, key
) &&
2142 key_type(c
, key1
) == UBIFS_DATA_KEY
) {
2143 key1
= &znode
->zbranch
[n
].key
;
2144 if (key_inum(c
, key1
) != key_inum(c
, key
) ||
2145 key_type(c
, key1
) != UBIFS_DATA_KEY
) {
2147 move
= c
->fanout
- keep
;
2159 keep
= (c
->fanout
+ 1) / 2;
2160 move
= c
->fanout
- keep
;
2164 * Although we don't at present, we could look at the neighbors and see
2165 * if we can move some zbranches there.
2169 /* Insert into existing znode */
2174 /* Insert into new znode */
2179 zbr
->znode
->parent
= zn
;
2184 __set_bit(DIRTY_ZNODE
, &zn
->flags
);
2185 atomic_long_inc(&c
->dirty_zn_cnt
);
2187 zn
->child_cnt
= move
;
2188 znode
->child_cnt
= keep
;
2190 dbg_tnc("moving %d, keeping %d", move
, keep
);
2193 for (i
= 0; i
< move
; i
++) {
2194 zn
->zbranch
[i
] = znode
->zbranch
[keep
+ i
];
2197 if (zn
->zbranch
[i
].znode
) {
2198 zn
->zbranch
[i
].znode
->parent
= zn
;
2199 zn
->zbranch
[i
].znode
->iip
= i
;
2203 /* Insert new key and branch */
2204 dbg_tnck(key
, "inserting at %d level %d, key ", n
, zn
->level
);
2206 insert_zbranch(c
, zi
, zbr
, n
);
2208 /* Insert new znode (produced by spitting) into the parent */
2210 if (n
== 0 && zi
== znode
&& znode
->iip
== 0)
2211 correct_parent_keys(c
, znode
);
2213 /* Locate insertion point */
2216 /* Tail recursion */
2217 zbr
->key
= zn
->zbranch
[0].key
;
2227 /* We have to split root znode */
2228 dbg_tnc("creating new zroot at level %d", znode
->level
+ 1);
2230 zi
= kzalloc(c
->max_znode_sz
, GFP_NOFS
);
2235 zi
->level
= znode
->level
+ 1;
2237 __set_bit(DIRTY_ZNODE
, &zi
->flags
);
2238 atomic_long_inc(&c
->dirty_zn_cnt
);
2240 zi
->zbranch
[0].key
= znode
->zbranch
[0].key
;
2241 zi
->zbranch
[0].znode
= znode
;
2242 zi
->zbranch
[0].lnum
= c
->zroot
.lnum
;
2243 zi
->zbranch
[0].offs
= c
->zroot
.offs
;
2244 zi
->zbranch
[0].len
= c
->zroot
.len
;
2245 zi
->zbranch
[1].key
= zn
->zbranch
[0].key
;
2246 zi
->zbranch
[1].znode
= zn
;
2251 c
->zroot
.znode
= zi
;
2262 * ubifs_tnc_add - add a node to TNC.
2263 * @c: UBIFS file-system description object
2265 * @lnum: LEB number of node
2266 * @offs: node offset
2268 * @hash: The hash over the node
2270 * This function adds a node with key @key to TNC. The node may be new or it may
2271 * obsolete some existing one. Returns %0 on success or negative error code on
2274 int ubifs_tnc_add(struct ubifs_info
*c
, const union ubifs_key
*key
, int lnum
,
2275 int offs
, int len
, const u8
*hash
)
2277 int found
, n
, err
= 0;
2278 struct ubifs_znode
*znode
;
2280 mutex_lock(&c
->tnc_mutex
);
2281 dbg_tnck(key
, "%d:%d, len %d, key ", lnum
, offs
, len
);
2282 found
= lookup_level0_dirty(c
, key
, &znode
, &n
);
2284 struct ubifs_zbranch zbr
;
2290 ubifs_copy_hash(c
, hash
, zbr
.hash
);
2291 key_copy(c
, key
, &zbr
.key
);
2292 err
= tnc_insert(c
, znode
, &zbr
, n
+ 1);
2293 } else if (found
== 1) {
2294 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[n
];
2297 err
= ubifs_add_dirt(c
, zbr
->lnum
, zbr
->len
);
2301 ubifs_copy_hash(c
, hash
, zbr
->hash
);
2305 err
= dbg_check_tnc(c
, 0);
2306 mutex_unlock(&c
->tnc_mutex
);
2312 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2313 * @c: UBIFS file-system description object
2315 * @old_lnum: LEB number of old node
2316 * @old_offs: old node offset
2317 * @lnum: LEB number of node
2318 * @offs: node offset
2321 * This function replaces a node with key @key in the TNC only if the old node
2322 * is found. This function is called by garbage collection when node are moved.
2323 * Returns %0 on success or negative error code on failure.
2325 int ubifs_tnc_replace(struct ubifs_info
*c
, const union ubifs_key
*key
,
2326 int old_lnum
, int old_offs
, int lnum
, int offs
, int len
)
2328 int found
, n
, err
= 0;
2329 struct ubifs_znode
*znode
;
2331 mutex_lock(&c
->tnc_mutex
);
2332 dbg_tnck(key
, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum
,
2333 old_offs
, lnum
, offs
, len
);
2334 found
= lookup_level0_dirty(c
, key
, &znode
, &n
);
2341 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[n
];
2344 if (zbr
->lnum
== old_lnum
&& zbr
->offs
== old_offs
) {
2346 err
= ubifs_add_dirt(c
, zbr
->lnum
, zbr
->len
);
2353 } else if (is_hash_key(c
, key
)) {
2354 found
= resolve_collision_directly(c
, key
, &znode
, &n
,
2355 old_lnum
, old_offs
);
2356 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2357 found
, znode
, n
, old_lnum
, old_offs
);
2364 /* Ensure the znode is dirtied */
2365 if (znode
->cnext
|| !ubifs_zn_dirty(znode
)) {
2366 znode
= dirty_cow_bottom_up(c
, znode
);
2367 if (IS_ERR(znode
)) {
2368 err
= PTR_ERR(znode
);
2372 zbr
= &znode
->zbranch
[n
];
2374 err
= ubifs_add_dirt(c
, zbr
->lnum
,
2386 err
= ubifs_add_dirt(c
, lnum
, len
);
2389 err
= dbg_check_tnc(c
, 0);
2392 mutex_unlock(&c
->tnc_mutex
);
2397 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2398 * @c: UBIFS file-system description object
2400 * @lnum: LEB number of node
2401 * @offs: node offset
2403 * @hash: The hash over the node
2406 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2407 * may have collisions, like directory entry keys.
2409 int ubifs_tnc_add_nm(struct ubifs_info
*c
, const union ubifs_key
*key
,
2410 int lnum
, int offs
, int len
, const u8
*hash
,
2411 const struct fscrypt_name
*nm
)
2413 int found
, n
, err
= 0;
2414 struct ubifs_znode
*znode
;
2416 mutex_lock(&c
->tnc_mutex
);
2417 dbg_tnck(key
, "LEB %d:%d, key ", lnum
, offs
);
2418 found
= lookup_level0_dirty(c
, key
, &znode
, &n
);
2426 found
= fallible_resolve_collision(c
, key
, &znode
, &n
,
2429 found
= resolve_collision(c
, key
, &znode
, &n
, nm
);
2430 dbg_tnc("rc returned %d, znode %p, n %d", found
, znode
, n
);
2436 /* Ensure the znode is dirtied */
2437 if (znode
->cnext
|| !ubifs_zn_dirty(znode
)) {
2438 znode
= dirty_cow_bottom_up(c
, znode
);
2439 if (IS_ERR(znode
)) {
2440 err
= PTR_ERR(znode
);
2446 struct ubifs_zbranch
*zbr
= &znode
->zbranch
[n
];
2449 err
= ubifs_add_dirt(c
, zbr
->lnum
, zbr
->len
);
2453 ubifs_copy_hash(c
, hash
, zbr
->hash
);
2459 struct ubifs_zbranch zbr
;
2465 ubifs_copy_hash(c
, hash
, zbr
.hash
);
2466 key_copy(c
, key
, &zbr
.key
);
2467 err
= tnc_insert(c
, znode
, &zbr
, n
+ 1);
2472 * We did not find it in the index so there may be a
2473 * dangling branch still in the index. So we remove it
2474 * by passing 'ubifs_tnc_remove_nm()' the same key but
2475 * an unmatchable name.
2477 struct fscrypt_name noname
= { .disk_name
= { .name
= "", .len
= 1 } };
2479 err
= dbg_check_tnc(c
, 0);
2480 mutex_unlock(&c
->tnc_mutex
);
2483 return ubifs_tnc_remove_nm(c
, key
, &noname
);
2489 err
= dbg_check_tnc(c
, 0);
2490 mutex_unlock(&c
->tnc_mutex
);
2495 * tnc_delete - delete a znode form TNC.
2496 * @c: UBIFS file-system description object
2497 * @znode: znode to delete from
2498 * @n: zbranch slot number to delete
2500 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2501 * case of success and a negative error code in case of failure.
2503 static int tnc_delete(struct ubifs_info
*c
, struct ubifs_znode
*znode
, int n
)
2505 struct ubifs_zbranch
*zbr
;
2506 struct ubifs_znode
*zp
;
2509 /* Delete without merge for now */
2510 ubifs_assert(c
, znode
->level
== 0);
2511 ubifs_assert(c
, n
>= 0 && n
< c
->fanout
);
2512 dbg_tnck(&znode
->zbranch
[n
].key
, "deleting key ");
2514 zbr
= &znode
->zbranch
[n
];
2517 err
= ubifs_add_dirt(c
, zbr
->lnum
, zbr
->len
);
2519 ubifs_dump_znode(c
, znode
);
2523 /* We do not "gap" zbranch slots */
2524 for (i
= n
; i
< znode
->child_cnt
- 1; i
++)
2525 znode
->zbranch
[i
] = znode
->zbranch
[i
+ 1];
2526 znode
->child_cnt
-= 1;
2528 if (znode
->child_cnt
> 0)
2532 * This was the last zbranch, we have to delete this znode from the
2537 ubifs_assert(c
, !ubifs_zn_obsolete(znode
));
2538 ubifs_assert(c
, ubifs_zn_dirty(znode
));
2543 atomic_long_dec(&c
->dirty_zn_cnt
);
2545 err
= insert_old_idx_znode(c
, znode
);
2550 __set_bit(OBSOLETE_ZNODE
, &znode
->flags
);
2551 atomic_long_inc(&c
->clean_zn_cnt
);
2552 atomic_long_inc(&ubifs_clean_zn_cnt
);
2556 } while (znode
->child_cnt
== 1); /* while removing last child */
2558 /* Remove from znode, entry n - 1 */
2559 znode
->child_cnt
-= 1;
2560 ubifs_assert(c
, znode
->level
!= 0);
2561 for (i
= n
; i
< znode
->child_cnt
; i
++) {
2562 znode
->zbranch
[i
] = znode
->zbranch
[i
+ 1];
2563 if (znode
->zbranch
[i
].znode
)
2564 znode
->zbranch
[i
].znode
->iip
= i
;
2568 * If this is the root and it has only 1 child then
2569 * collapse the tree.
2571 if (!znode
->parent
) {
2572 while (znode
->child_cnt
== 1 && znode
->level
!= 0) {
2574 zbr
= &znode
->zbranch
[0];
2575 znode
= get_znode(c
, znode
, 0);
2577 return PTR_ERR(znode
);
2578 znode
= dirty_cow_znode(c
, zbr
);
2580 return PTR_ERR(znode
);
2581 znode
->parent
= NULL
;
2584 err
= insert_old_idx(c
, c
->zroot
.lnum
,
2589 c
->zroot
.lnum
= zbr
->lnum
;
2590 c
->zroot
.offs
= zbr
->offs
;
2591 c
->zroot
.len
= zbr
->len
;
2592 c
->zroot
.znode
= znode
;
2593 ubifs_assert(c
, !ubifs_zn_obsolete(zp
));
2594 ubifs_assert(c
, ubifs_zn_dirty(zp
));
2595 atomic_long_dec(&c
->dirty_zn_cnt
);
2598 __set_bit(OBSOLETE_ZNODE
, &zp
->flags
);
2599 atomic_long_inc(&c
->clean_zn_cnt
);
2600 atomic_long_inc(&ubifs_clean_zn_cnt
);
2610 * ubifs_tnc_remove - remove an index entry of a node.
2611 * @c: UBIFS file-system description object
2614 * Returns %0 on success or negative error code on failure.
2616 int ubifs_tnc_remove(struct ubifs_info
*c
, const union ubifs_key
*key
)
2618 int found
, n
, err
= 0;
2619 struct ubifs_znode
*znode
;
2621 mutex_lock(&c
->tnc_mutex
);
2622 dbg_tnck(key
, "key ");
2623 found
= lookup_level0_dirty(c
, key
, &znode
, &n
);
2629 err
= tnc_delete(c
, znode
, n
);
2631 err
= dbg_check_tnc(c
, 0);
2634 mutex_unlock(&c
->tnc_mutex
);
2639 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2640 * @c: UBIFS file-system description object
2642 * @nm: directory entry name
2644 * Returns %0 on success or negative error code on failure.
2646 int ubifs_tnc_remove_nm(struct ubifs_info
*c
, const union ubifs_key
*key
,
2647 const struct fscrypt_name
*nm
)
2650 struct ubifs_znode
*znode
;
2652 mutex_lock(&c
->tnc_mutex
);
2653 dbg_tnck(key
, "key ");
2654 err
= lookup_level0_dirty(c
, key
, &znode
, &n
);
2660 err
= fallible_resolve_collision(c
, key
, &znode
, &n
,
2663 err
= resolve_collision(c
, key
, &znode
, &n
, nm
);
2664 dbg_tnc("rc returned %d, znode %p, n %d", err
, znode
, n
);
2668 /* Ensure the znode is dirtied */
2669 if (znode
->cnext
|| !ubifs_zn_dirty(znode
)) {
2670 znode
= dirty_cow_bottom_up(c
, znode
);
2671 if (IS_ERR(znode
)) {
2672 err
= PTR_ERR(znode
);
2676 err
= tnc_delete(c
, znode
, n
);
2682 err
= dbg_check_tnc(c
, 0);
2683 mutex_unlock(&c
->tnc_mutex
);
2688 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2689 * @c: UBIFS file-system description object
2691 * @cookie: node cookie for collision resolution
2693 * Returns %0 on success or negative error code on failure.
2695 int ubifs_tnc_remove_dh(struct ubifs_info
*c
, const union ubifs_key
*key
,
2699 struct ubifs_znode
*znode
;
2700 struct ubifs_dent_node
*dent
;
2701 struct ubifs_zbranch
*zbr
;
2703 if (!c
->double_hash
)
2706 mutex_lock(&c
->tnc_mutex
);
2707 err
= lookup_level0_dirty(c
, key
, &znode
, &n
);
2711 zbr
= &znode
->zbranch
[n
];
2712 dent
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
2718 err
= tnc_read_hashed_node(c
, zbr
, dent
);
2722 /* If the cookie does not match, we're facing a hash collision. */
2723 if (le32_to_cpu(dent
->cookie
) != cookie
) {
2724 union ubifs_key start_key
;
2726 lowest_dent_key(c
, &start_key
, key_inum(c
, key
));
2728 err
= ubifs_lookup_level0(c
, &start_key
, &znode
, &n
);
2729 if (unlikely(err
< 0))
2732 err
= search_dh_cookie(c
, key
, dent
, cookie
, &znode
, &n
, err
);
2737 if (znode
->cnext
|| !ubifs_zn_dirty(znode
)) {
2738 znode
= dirty_cow_bottom_up(c
, znode
);
2739 if (IS_ERR(znode
)) {
2740 err
= PTR_ERR(znode
);
2744 err
= tnc_delete(c
, znode
, n
);
2750 err
= dbg_check_tnc(c
, 0);
2751 mutex_unlock(&c
->tnc_mutex
);
2756 * key_in_range - determine if a key falls within a range of keys.
2757 * @c: UBIFS file-system description object
2758 * @key: key to check
2759 * @from_key: lowest key in range
2760 * @to_key: highest key in range
2762 * This function returns %1 if the key is in range and %0 otherwise.
2764 static int key_in_range(struct ubifs_info
*c
, union ubifs_key
*key
,
2765 union ubifs_key
*from_key
, union ubifs_key
*to_key
)
2767 if (keys_cmp(c
, key
, from_key
) < 0)
2769 if (keys_cmp(c
, key
, to_key
) > 0)
2775 * ubifs_tnc_remove_range - remove index entries in range.
2776 * @c: UBIFS file-system description object
2777 * @from_key: lowest key to remove
2778 * @to_key: highest key to remove
2780 * This function removes index entries starting at @from_key and ending at
2781 * @to_key. This function returns zero in case of success and a negative error
2782 * code in case of failure.
2784 int ubifs_tnc_remove_range(struct ubifs_info
*c
, union ubifs_key
*from_key
,
2785 union ubifs_key
*to_key
)
2787 int i
, n
, k
, err
= 0;
2788 struct ubifs_znode
*znode
;
2789 union ubifs_key
*key
;
2791 mutex_lock(&c
->tnc_mutex
);
2793 /* Find first level 0 znode that contains keys to remove */
2794 err
= ubifs_lookup_level0(c
, from_key
, &znode
, &n
);
2801 err
= tnc_next(c
, &znode
, &n
);
2802 if (err
== -ENOENT
) {
2808 key
= &znode
->zbranch
[n
].key
;
2809 if (!key_in_range(c
, key
, from_key
, to_key
)) {
2815 /* Ensure the znode is dirtied */
2816 if (znode
->cnext
|| !ubifs_zn_dirty(znode
)) {
2817 znode
= dirty_cow_bottom_up(c
, znode
);
2818 if (IS_ERR(znode
)) {
2819 err
= PTR_ERR(znode
);
2824 /* Remove all keys in range except the first */
2825 for (i
= n
+ 1, k
= 0; i
< znode
->child_cnt
; i
++, k
++) {
2826 key
= &znode
->zbranch
[i
].key
;
2827 if (!key_in_range(c
, key
, from_key
, to_key
))
2829 lnc_free(&znode
->zbranch
[i
]);
2830 err
= ubifs_add_dirt(c
, znode
->zbranch
[i
].lnum
,
2831 znode
->zbranch
[i
].len
);
2833 ubifs_dump_znode(c
, znode
);
2836 dbg_tnck(key
, "removing key ");
2839 for (i
= n
+ 1 + k
; i
< znode
->child_cnt
; i
++)
2840 znode
->zbranch
[i
- k
] = znode
->zbranch
[i
];
2841 znode
->child_cnt
-= k
;
2844 /* Now delete the first */
2845 err
= tnc_delete(c
, znode
, n
);
2852 err
= dbg_check_tnc(c
, 0);
2853 mutex_unlock(&c
->tnc_mutex
);
2858 * ubifs_tnc_remove_ino - remove an inode from TNC.
2859 * @c: UBIFS file-system description object
2860 * @inum: inode number to remove
2862 * This function remove inode @inum and all the extended attributes associated
2863 * with the anode from TNC and returns zero in case of success or a negative
2864 * error code in case of failure.
2866 int ubifs_tnc_remove_ino(struct ubifs_info
*c
, ino_t inum
)
2868 union ubifs_key key1
, key2
;
2869 struct ubifs_dent_node
*xent
, *pxent
= NULL
;
2870 struct fscrypt_name nm
= {0};
2872 dbg_tnc("ino %lu", (unsigned long)inum
);
2875 * Walk all extended attribute entries and remove them together with
2876 * corresponding extended attribute inodes.
2878 lowest_xent_key(c
, &key1
, inum
);
2883 xent
= ubifs_tnc_next_ent(c
, &key1
, &nm
);
2885 err
= PTR_ERR(xent
);
2891 xattr_inum
= le64_to_cpu(xent
->inum
);
2892 dbg_tnc("xent '%s', ino %lu", xent
->name
,
2893 (unsigned long)xattr_inum
);
2895 ubifs_evict_xattr_inode(c
, xattr_inum
);
2897 fname_name(&nm
) = xent
->name
;
2898 fname_len(&nm
) = le16_to_cpu(xent
->nlen
);
2899 err
= ubifs_tnc_remove_nm(c
, &key1
, &nm
);
2905 lowest_ino_key(c
, &key1
, xattr_inum
);
2906 highest_ino_key(c
, &key2
, xattr_inum
);
2907 err
= ubifs_tnc_remove_range(c
, &key1
, &key2
);
2915 key_read(c
, &xent
->key
, &key1
);
2919 lowest_ino_key(c
, &key1
, inum
);
2920 highest_ino_key(c
, &key2
, inum
);
2922 return ubifs_tnc_remove_range(c
, &key1
, &key2
);
2926 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2927 * @c: UBIFS file-system description object
2928 * @key: key of last entry
2929 * @nm: name of last entry found or %NULL
2931 * This function finds and reads the next directory or extended attribute entry
2932 * after the given key (@key) if there is one. @nm is used to resolve
2935 * If the name of the current entry is not known and only the key is known,
2936 * @nm->name has to be %NULL. In this case the semantics of this function is a
2937 * little bit different and it returns the entry corresponding to this key, not
2938 * the next one. If the key was not found, the closest "right" entry is
2941 * If the fist entry has to be found, @key has to contain the lowest possible
2942 * key value for this inode and @name has to be %NULL.
2944 * This function returns the found directory or extended attribute entry node
2945 * in case of success, %-ENOENT is returned if no entry was found, and a
2946 * negative error code is returned in case of failure.
2948 struct ubifs_dent_node
*ubifs_tnc_next_ent(struct ubifs_info
*c
,
2949 union ubifs_key
*key
,
2950 const struct fscrypt_name
*nm
)
2952 int n
, err
, type
= key_type(c
, key
);
2953 struct ubifs_znode
*znode
;
2954 struct ubifs_dent_node
*dent
;
2955 struct ubifs_zbranch
*zbr
;
2956 union ubifs_key
*dkey
;
2958 dbg_tnck(key
, "key ");
2959 ubifs_assert(c
, is_hash_key(c
, key
));
2961 mutex_lock(&c
->tnc_mutex
);
2962 err
= ubifs_lookup_level0(c
, key
, &znode
, &n
);
2963 if (unlikely(err
< 0))
2966 if (fname_len(nm
) > 0) {
2968 /* Handle collisions */
2970 err
= fallible_resolve_collision(c
, key
, &znode
, &n
,
2973 err
= resolve_collision(c
, key
, &znode
, &n
, nm
);
2974 dbg_tnc("rc returned %d, znode %p, n %d",
2976 if (unlikely(err
< 0))
2980 /* Now find next entry */
2981 err
= tnc_next(c
, &znode
, &n
);
2986 * The full name of the entry was not given, in which case the
2987 * behavior of this function is a little different and it
2988 * returns current entry, not the next one.
2992 * However, the given key does not exist in the TNC
2993 * tree and @znode/@n variables contain the closest
2994 * "preceding" element. Switch to the next one.
2996 err
= tnc_next(c
, &znode
, &n
);
3002 zbr
= &znode
->zbranch
[n
];
3003 dent
= kmalloc(zbr
->len
, GFP_NOFS
);
3004 if (unlikely(!dent
)) {
3010 * The above 'tnc_next()' call could lead us to the next inode, check
3014 if (key_inum(c
, dkey
) != key_inum(c
, key
) ||
3015 key_type(c
, dkey
) != type
) {
3020 err
= tnc_read_hashed_node(c
, zbr
, dent
);
3024 mutex_unlock(&c
->tnc_mutex
);
3030 mutex_unlock(&c
->tnc_mutex
);
3031 return ERR_PTR(err
);
3035 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3036 * @c: UBIFS file-system description object
3038 * Destroy left-over obsolete znodes from a failed commit.
3040 static void tnc_destroy_cnext(struct ubifs_info
*c
)
3042 struct ubifs_znode
*cnext
;
3046 ubifs_assert(c
, c
->cmt_state
== COMMIT_BROKEN
);
3049 struct ubifs_znode
*znode
= cnext
;
3051 cnext
= cnext
->cnext
;
3052 if (ubifs_zn_obsolete(znode
))
3054 } while (cnext
&& cnext
!= c
->cnext
);
3058 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3059 * @c: UBIFS file-system description object
3061 void ubifs_tnc_close(struct ubifs_info
*c
)
3063 tnc_destroy_cnext(c
);
3064 if (c
->zroot
.znode
) {
3067 n
= atomic_long_read(&c
->clean_zn_cnt
);
3068 freed
= ubifs_destroy_tnc_subtree(c
, c
->zroot
.znode
);
3069 ubifs_assert(c
, freed
== n
);
3070 atomic_long_sub(n
, &ubifs_clean_zn_cnt
);
3078 * left_znode - get the znode to the left.
3079 * @c: UBIFS file-system description object
3082 * This function returns a pointer to the znode to the left of @znode or NULL if
3083 * there is not one. A negative error code is returned on failure.
3085 static struct ubifs_znode
*left_znode(struct ubifs_info
*c
,
3086 struct ubifs_znode
*znode
)
3088 int level
= znode
->level
;
3091 int n
= znode
->iip
- 1;
3093 /* Go up until we can go left */
3094 znode
= znode
->parent
;
3098 /* Now go down the rightmost branch to 'level' */
3099 znode
= get_znode(c
, znode
, n
);
3102 while (znode
->level
!= level
) {
3103 n
= znode
->child_cnt
- 1;
3104 znode
= get_znode(c
, znode
, n
);
3115 * right_znode - get the znode to the right.
3116 * @c: UBIFS file-system description object
3119 * This function returns a pointer to the znode to the right of @znode or NULL
3120 * if there is not one. A negative error code is returned on failure.
3122 static struct ubifs_znode
*right_znode(struct ubifs_info
*c
,
3123 struct ubifs_znode
*znode
)
3125 int level
= znode
->level
;
3128 int n
= znode
->iip
+ 1;
3130 /* Go up until we can go right */
3131 znode
= znode
->parent
;
3134 if (n
< znode
->child_cnt
) {
3135 /* Now go down the leftmost branch to 'level' */
3136 znode
= get_znode(c
, znode
, n
);
3139 while (znode
->level
!= level
) {
3140 znode
= get_znode(c
, znode
, 0);
3151 * lookup_znode - find a particular indexing node from TNC.
3152 * @c: UBIFS file-system description object
3153 * @key: index node key to lookup
3154 * @level: index node level
3155 * @lnum: index node LEB number
3156 * @offs: index node offset
3158 * This function searches an indexing node by its first key @key and its
3159 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3160 * nodes it traverses to TNC. This function is called for indexing nodes which
3161 * were found on the media by scanning, for example when garbage-collecting or
3162 * when doing in-the-gaps commit. This means that the indexing node which is
3163 * looked for does not have to have exactly the same leftmost key @key, because
3164 * the leftmost key may have been changed, in which case TNC will contain a
3165 * dirty znode which still refers the same @lnum:@offs. This function is clever
3166 * enough to recognize such indexing nodes.
3168 * Note, if a znode was deleted or changed too much, then this function will
3169 * not find it. For situations like this UBIFS has the old index RB-tree
3170 * (indexed by @lnum:@offs).
3172 * This function returns a pointer to the znode found or %NULL if it is not
3173 * found. A negative error code is returned on failure.
3175 static struct ubifs_znode
*lookup_znode(struct ubifs_info
*c
,
3176 union ubifs_key
*key
, int level
,
3179 struct ubifs_znode
*znode
, *zn
;
3182 ubifs_assert(c
, key_type(c
, key
) < UBIFS_INVALID_KEY
);
3185 * The arguments have probably been read off flash, so don't assume
3189 return ERR_PTR(-EINVAL
);
3191 /* Get the root znode */
3192 znode
= c
->zroot
.znode
;
3194 znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
3198 /* Check if it is the one we are looking for */
3199 if (c
->zroot
.lnum
== lnum
&& c
->zroot
.offs
== offs
)
3201 /* Descend to the parent level i.e. (level + 1) */
3202 if (level
>= znode
->level
)
3205 ubifs_search_zbranch(c
, znode
, key
, &n
);
3208 * We reached a znode where the leftmost key is greater
3209 * than the key we are searching for. This is the same
3210 * situation as the one described in a huge comment at
3211 * the end of the 'ubifs_lookup_level0()' function. And
3212 * for exactly the same reasons we have to try to look
3213 * left before giving up.
3215 znode
= left_znode(c
, znode
);
3220 ubifs_search_zbranch(c
, znode
, key
, &n
);
3221 ubifs_assert(c
, n
>= 0);
3223 if (znode
->level
== level
+ 1)
3225 znode
= get_znode(c
, znode
, n
);
3229 /* Check if the child is the one we are looking for */
3230 if (znode
->zbranch
[n
].lnum
== lnum
&& znode
->zbranch
[n
].offs
== offs
)
3231 return get_znode(c
, znode
, n
);
3232 /* If the key is unique, there is nowhere else to look */
3233 if (!is_hash_key(c
, key
))
3236 * The key is not unique and so may be also in the znodes to either
3243 /* Move one branch to the left */
3247 znode
= left_znode(c
, znode
);
3252 n
= znode
->child_cnt
- 1;
3255 if (znode
->zbranch
[n
].lnum
== lnum
&&
3256 znode
->zbranch
[n
].offs
== offs
)
3257 return get_znode(c
, znode
, n
);
3258 /* Stop if the key is less than the one we are looking for */
3259 if (keys_cmp(c
, &znode
->zbranch
[n
].key
, key
) < 0)
3262 /* Back to the middle */
3267 /* Move one branch to the right */
3268 if (++n
>= znode
->child_cnt
) {
3269 znode
= right_znode(c
, znode
);
3277 if (znode
->zbranch
[n
].lnum
== lnum
&&
3278 znode
->zbranch
[n
].offs
== offs
)
3279 return get_znode(c
, znode
, n
);
3280 /* Stop if the key is greater than the one we are looking for */
3281 if (keys_cmp(c
, &znode
->zbranch
[n
].key
, key
) > 0)
3288 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3289 * @c: UBIFS file-system description object
3290 * @key: key of index node
3291 * @level: index node level
3292 * @lnum: LEB number of index node
3293 * @offs: offset of index node
3295 * This function returns %0 if the index node is not referred to in the TNC, %1
3296 * if the index node is referred to in the TNC and the corresponding znode is
3297 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3298 * znode is clean, and a negative error code in case of failure.
3300 * Note, the @key argument has to be the key of the first child. Also note,
3301 * this function relies on the fact that 0:0 is never a valid LEB number and
3302 * offset for a main-area node.
3304 int is_idx_node_in_tnc(struct ubifs_info
*c
, union ubifs_key
*key
, int level
,
3307 struct ubifs_znode
*znode
;
3309 znode
= lookup_znode(c
, key
, level
, lnum
, offs
);
3313 return PTR_ERR(znode
);
3315 return ubifs_zn_dirty(znode
) ? 1 : 2;
3319 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3320 * @c: UBIFS file-system description object
3322 * @lnum: node LEB number
3323 * @offs: node offset
3325 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3326 * not, and a negative error code in case of failure.
3328 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3329 * and offset for a main-area node.
3331 static int is_leaf_node_in_tnc(struct ubifs_info
*c
, union ubifs_key
*key
,
3334 struct ubifs_zbranch
*zbr
;
3335 struct ubifs_znode
*znode
, *zn
;
3336 int n
, found
, err
, nn
;
3337 const int unique
= !is_hash_key(c
, key
);
3339 found
= ubifs_lookup_level0(c
, key
, &znode
, &n
);
3341 return found
; /* Error code */
3344 zbr
= &znode
->zbranch
[n
];
3345 if (lnum
== zbr
->lnum
&& offs
== zbr
->offs
)
3346 return 1; /* Found it */
3350 * Because the key is not unique, we have to look left
3357 err
= tnc_prev(c
, &znode
, &n
);
3362 if (keys_cmp(c
, key
, &znode
->zbranch
[n
].key
))
3364 zbr
= &znode
->zbranch
[n
];
3365 if (lnum
== zbr
->lnum
&& offs
== zbr
->offs
)
3366 return 1; /* Found it */
3372 err
= tnc_next(c
, &znode
, &n
);
3378 if (keys_cmp(c
, key
, &znode
->zbranch
[n
].key
))
3380 zbr
= &znode
->zbranch
[n
];
3381 if (lnum
== zbr
->lnum
&& offs
== zbr
->offs
)
3382 return 1; /* Found it */
3388 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3389 * @c: UBIFS file-system description object
3391 * @level: index node level (if it is an index node)
3392 * @lnum: node LEB number
3393 * @offs: node offset
3394 * @is_idx: non-zero if the node is an index node
3396 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3397 * negative error code in case of failure. For index nodes, @key has to be the
3398 * key of the first child. An index node is considered to be in the TNC only if
3399 * the corresponding znode is clean or has not been loaded.
3401 int ubifs_tnc_has_node(struct ubifs_info
*c
, union ubifs_key
*key
, int level
,
3402 int lnum
, int offs
, int is_idx
)
3406 mutex_lock(&c
->tnc_mutex
);
3408 err
= is_idx_node_in_tnc(c
, key
, level
, lnum
, offs
);
3412 /* The index node was found but it was dirty */
3415 /* The index node was found and it was clean */
3420 err
= is_leaf_node_in_tnc(c
, key
, lnum
, offs
);
3423 mutex_unlock(&c
->tnc_mutex
);
3428 * ubifs_dirty_idx_node - dirty an index node.
3429 * @c: UBIFS file-system description object
3430 * @key: index node key
3431 * @level: index node level
3432 * @lnum: index node LEB number
3433 * @offs: index node offset
3435 * This function loads and dirties an index node so that it can be garbage
3436 * collected. The @key argument has to be the key of the first child. This
3437 * function relies on the fact that 0:0 is never a valid LEB number and offset
3438 * for a main-area node. Returns %0 on success and a negative error code on
3441 int ubifs_dirty_idx_node(struct ubifs_info
*c
, union ubifs_key
*key
, int level
,
3444 struct ubifs_znode
*znode
;
3447 mutex_lock(&c
->tnc_mutex
);
3448 znode
= lookup_znode(c
, key
, level
, lnum
, offs
);
3451 if (IS_ERR(znode
)) {
3452 err
= PTR_ERR(znode
);
3455 znode
= dirty_cow_bottom_up(c
, znode
);
3456 if (IS_ERR(znode
)) {
3457 err
= PTR_ERR(znode
);
3462 mutex_unlock(&c
->tnc_mutex
);
3467 * dbg_check_inode_size - check if inode size is correct.
3468 * @c: UBIFS file-system description object
3469 * @inum: inode number
3472 * This function makes sure that the inode size (@size) is correct and it does
3473 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3474 * if it has a data page beyond @size, and other negative error code in case of
3477 int dbg_check_inode_size(struct ubifs_info
*c
, const struct inode
*inode
,
3481 union ubifs_key from_key
, to_key
, *key
;
3482 struct ubifs_znode
*znode
;
3485 if (!S_ISREG(inode
->i_mode
))
3487 if (!dbg_is_chk_gen(c
))
3490 block
= (size
+ UBIFS_BLOCK_SIZE
- 1) >> UBIFS_BLOCK_SHIFT
;
3491 data_key_init(c
, &from_key
, inode
->i_ino
, block
);
3492 highest_data_key(c
, &to_key
, inode
->i_ino
);
3494 mutex_lock(&c
->tnc_mutex
);
3495 err
= ubifs_lookup_level0(c
, &from_key
, &znode
, &n
);
3504 err
= tnc_next(c
, &znode
, &n
);
3505 if (err
== -ENOENT
) {
3512 ubifs_assert(c
, err
== 0);
3513 key
= &znode
->zbranch
[n
].key
;
3514 if (!key_in_range(c
, key
, &from_key
, &to_key
))
3518 block
= key_block(c
, key
);
3519 ubifs_err(c
, "inode %lu has size %lld, but there are data at offset %lld",
3520 (unsigned long)inode
->i_ino
, size
,
3521 ((loff_t
)block
) << UBIFS_BLOCK_SHIFT
);
3522 mutex_unlock(&c
->tnc_mutex
);
3523 ubifs_dump_inode(c
, inode
);
3528 mutex_unlock(&c
->tnc_mutex
);