Linux 5.6.13
[linux/fpc-iii.git] / kernel / dma / mapping.c
blob98e3d873792ea4cf7bb5f84416dfd492f5da792d
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * arch-independent dma-mapping routines
5 * Copyright (c) 2006 SUSE Linux Products GmbH
6 * Copyright (c) 2006 Tejun Heo <teheo@suse.de>
7 */
8 #include <linux/memblock.h> /* for max_pfn */
9 #include <linux/acpi.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-noncoherent.h>
12 #include <linux/export.h>
13 #include <linux/gfp.h>
14 #include <linux/of_device.h>
15 #include <linux/slab.h>
16 #include <linux/vmalloc.h>
19 * Managed DMA API
21 struct dma_devres {
22 size_t size;
23 void *vaddr;
24 dma_addr_t dma_handle;
25 unsigned long attrs;
28 static void dmam_release(struct device *dev, void *res)
30 struct dma_devres *this = res;
32 dma_free_attrs(dev, this->size, this->vaddr, this->dma_handle,
33 this->attrs);
36 static int dmam_match(struct device *dev, void *res, void *match_data)
38 struct dma_devres *this = res, *match = match_data;
40 if (this->vaddr == match->vaddr) {
41 WARN_ON(this->size != match->size ||
42 this->dma_handle != match->dma_handle);
43 return 1;
45 return 0;
48 /**
49 * dmam_free_coherent - Managed dma_free_coherent()
50 * @dev: Device to free coherent memory for
51 * @size: Size of allocation
52 * @vaddr: Virtual address of the memory to free
53 * @dma_handle: DMA handle of the memory to free
55 * Managed dma_free_coherent().
57 void dmam_free_coherent(struct device *dev, size_t size, void *vaddr,
58 dma_addr_t dma_handle)
60 struct dma_devres match_data = { size, vaddr, dma_handle };
62 dma_free_coherent(dev, size, vaddr, dma_handle);
63 WARN_ON(devres_destroy(dev, dmam_release, dmam_match, &match_data));
65 EXPORT_SYMBOL(dmam_free_coherent);
67 /**
68 * dmam_alloc_attrs - Managed dma_alloc_attrs()
69 * @dev: Device to allocate non_coherent memory for
70 * @size: Size of allocation
71 * @dma_handle: Out argument for allocated DMA handle
72 * @gfp: Allocation flags
73 * @attrs: Flags in the DMA_ATTR_* namespace.
75 * Managed dma_alloc_attrs(). Memory allocated using this function will be
76 * automatically released on driver detach.
78 * RETURNS:
79 * Pointer to allocated memory on success, NULL on failure.
81 void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
82 gfp_t gfp, unsigned long attrs)
84 struct dma_devres *dr;
85 void *vaddr;
87 dr = devres_alloc(dmam_release, sizeof(*dr), gfp);
88 if (!dr)
89 return NULL;
91 vaddr = dma_alloc_attrs(dev, size, dma_handle, gfp, attrs);
92 if (!vaddr) {
93 devres_free(dr);
94 return NULL;
97 dr->vaddr = vaddr;
98 dr->dma_handle = *dma_handle;
99 dr->size = size;
100 dr->attrs = attrs;
102 devres_add(dev, dr);
104 return vaddr;
106 EXPORT_SYMBOL(dmam_alloc_attrs);
109 * Create scatter-list for the already allocated DMA buffer.
111 int dma_common_get_sgtable(struct device *dev, struct sg_table *sgt,
112 void *cpu_addr, dma_addr_t dma_addr, size_t size,
113 unsigned long attrs)
115 struct page *page = virt_to_page(cpu_addr);
116 int ret;
118 ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
119 if (!ret)
120 sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
121 return ret;
125 * The whole dma_get_sgtable() idea is fundamentally unsafe - it seems
126 * that the intention is to allow exporting memory allocated via the
127 * coherent DMA APIs through the dma_buf API, which only accepts a
128 * scattertable. This presents a couple of problems:
129 * 1. Not all memory allocated via the coherent DMA APIs is backed by
130 * a struct page
131 * 2. Passing coherent DMA memory into the streaming APIs is not allowed
132 * as we will try to flush the memory through a different alias to that
133 * actually being used (and the flushes are redundant.)
135 int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt,
136 void *cpu_addr, dma_addr_t dma_addr, size_t size,
137 unsigned long attrs)
139 const struct dma_map_ops *ops = get_dma_ops(dev);
141 if (dma_is_direct(ops))
142 return dma_direct_get_sgtable(dev, sgt, cpu_addr, dma_addr,
143 size, attrs);
144 if (!ops->get_sgtable)
145 return -ENXIO;
146 return ops->get_sgtable(dev, sgt, cpu_addr, dma_addr, size, attrs);
148 EXPORT_SYMBOL(dma_get_sgtable_attrs);
150 #ifdef CONFIG_MMU
152 * Return the page attributes used for mapping dma_alloc_* memory, either in
153 * kernel space if remapping is needed, or to userspace through dma_mmap_*.
155 pgprot_t dma_pgprot(struct device *dev, pgprot_t prot, unsigned long attrs)
157 if (force_dma_unencrypted(dev))
158 prot = pgprot_decrypted(prot);
159 if (dev_is_dma_coherent(dev) ||
160 (IS_ENABLED(CONFIG_DMA_NONCOHERENT_CACHE_SYNC) &&
161 (attrs & DMA_ATTR_NON_CONSISTENT)))
162 return prot;
163 #ifdef CONFIG_ARCH_HAS_DMA_WRITE_COMBINE
164 if (attrs & DMA_ATTR_WRITE_COMBINE)
165 return pgprot_writecombine(prot);
166 #endif
167 return pgprot_dmacoherent(prot);
169 #endif /* CONFIG_MMU */
172 * Create userspace mapping for the DMA-coherent memory.
174 int dma_common_mmap(struct device *dev, struct vm_area_struct *vma,
175 void *cpu_addr, dma_addr_t dma_addr, size_t size,
176 unsigned long attrs)
178 #ifdef CONFIG_MMU
179 unsigned long user_count = vma_pages(vma);
180 unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
181 unsigned long off = vma->vm_pgoff;
182 int ret = -ENXIO;
184 vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
186 if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
187 return ret;
189 if (off >= count || user_count > count - off)
190 return -ENXIO;
192 return remap_pfn_range(vma, vma->vm_start,
193 page_to_pfn(virt_to_page(cpu_addr)) + vma->vm_pgoff,
194 user_count << PAGE_SHIFT, vma->vm_page_prot);
195 #else
196 return -ENXIO;
197 #endif /* CONFIG_MMU */
201 * dma_can_mmap - check if a given device supports dma_mmap_*
202 * @dev: device to check
204 * Returns %true if @dev supports dma_mmap_coherent() and dma_mmap_attrs() to
205 * map DMA allocations to userspace.
207 bool dma_can_mmap(struct device *dev)
209 const struct dma_map_ops *ops = get_dma_ops(dev);
211 if (dma_is_direct(ops))
212 return dma_direct_can_mmap(dev);
213 return ops->mmap != NULL;
215 EXPORT_SYMBOL_GPL(dma_can_mmap);
218 * dma_mmap_attrs - map a coherent DMA allocation into user space
219 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
220 * @vma: vm_area_struct describing requested user mapping
221 * @cpu_addr: kernel CPU-view address returned from dma_alloc_attrs
222 * @dma_addr: device-view address returned from dma_alloc_attrs
223 * @size: size of memory originally requested in dma_alloc_attrs
224 * @attrs: attributes of mapping properties requested in dma_alloc_attrs
226 * Map a coherent DMA buffer previously allocated by dma_alloc_attrs into user
227 * space. The coherent DMA buffer must not be freed by the driver until the
228 * user space mapping has been released.
230 int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
231 void *cpu_addr, dma_addr_t dma_addr, size_t size,
232 unsigned long attrs)
234 const struct dma_map_ops *ops = get_dma_ops(dev);
236 if (dma_is_direct(ops))
237 return dma_direct_mmap(dev, vma, cpu_addr, dma_addr, size,
238 attrs);
239 if (!ops->mmap)
240 return -ENXIO;
241 return ops->mmap(dev, vma, cpu_addr, dma_addr, size, attrs);
243 EXPORT_SYMBOL(dma_mmap_attrs);
245 u64 dma_get_required_mask(struct device *dev)
247 const struct dma_map_ops *ops = get_dma_ops(dev);
249 if (dma_is_direct(ops))
250 return dma_direct_get_required_mask(dev);
251 if (ops->get_required_mask)
252 return ops->get_required_mask(dev);
255 * We require every DMA ops implementation to at least support a 32-bit
256 * DMA mask (and use bounce buffering if that isn't supported in
257 * hardware). As the direct mapping code has its own routine to
258 * actually report an optimal mask we default to 32-bit here as that
259 * is the right thing for most IOMMUs, and at least not actively
260 * harmful in general.
262 return DMA_BIT_MASK(32);
264 EXPORT_SYMBOL_GPL(dma_get_required_mask);
266 void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle,
267 gfp_t flag, unsigned long attrs)
269 const struct dma_map_ops *ops = get_dma_ops(dev);
270 void *cpu_addr;
272 WARN_ON_ONCE(!dev->coherent_dma_mask);
274 if (dma_alloc_from_dev_coherent(dev, size, dma_handle, &cpu_addr))
275 return cpu_addr;
277 /* let the implementation decide on the zone to allocate from: */
278 flag &= ~(__GFP_DMA | __GFP_DMA32 | __GFP_HIGHMEM);
280 if (dma_is_direct(ops))
281 cpu_addr = dma_direct_alloc(dev, size, dma_handle, flag, attrs);
282 else if (ops->alloc)
283 cpu_addr = ops->alloc(dev, size, dma_handle, flag, attrs);
284 else
285 return NULL;
287 debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
288 return cpu_addr;
290 EXPORT_SYMBOL(dma_alloc_attrs);
292 void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr,
293 dma_addr_t dma_handle, unsigned long attrs)
295 const struct dma_map_ops *ops = get_dma_ops(dev);
297 if (dma_release_from_dev_coherent(dev, get_order(size), cpu_addr))
298 return;
300 * On non-coherent platforms which implement DMA-coherent buffers via
301 * non-cacheable remaps, ops->free() may call vunmap(). Thus getting
302 * this far in IRQ context is a) at risk of a BUG_ON() or trying to
303 * sleep on some machines, and b) an indication that the driver is
304 * probably misusing the coherent API anyway.
306 WARN_ON(irqs_disabled());
308 if (!cpu_addr)
309 return;
311 debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
312 if (dma_is_direct(ops))
313 dma_direct_free(dev, size, cpu_addr, dma_handle, attrs);
314 else if (ops->free)
315 ops->free(dev, size, cpu_addr, dma_handle, attrs);
317 EXPORT_SYMBOL(dma_free_attrs);
319 int dma_supported(struct device *dev, u64 mask)
321 const struct dma_map_ops *ops = get_dma_ops(dev);
323 if (dma_is_direct(ops))
324 return dma_direct_supported(dev, mask);
325 if (!ops->dma_supported)
326 return 1;
327 return ops->dma_supported(dev, mask);
329 EXPORT_SYMBOL(dma_supported);
331 #ifdef CONFIG_ARCH_HAS_DMA_SET_MASK
332 void arch_dma_set_mask(struct device *dev, u64 mask);
333 #else
334 #define arch_dma_set_mask(dev, mask) do { } while (0)
335 #endif
337 int dma_set_mask(struct device *dev, u64 mask)
340 * Truncate the mask to the actually supported dma_addr_t width to
341 * avoid generating unsupportable addresses.
343 mask = (dma_addr_t)mask;
345 if (!dev->dma_mask || !dma_supported(dev, mask))
346 return -EIO;
348 arch_dma_set_mask(dev, mask);
349 *dev->dma_mask = mask;
350 return 0;
352 EXPORT_SYMBOL(dma_set_mask);
354 #ifndef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
355 int dma_set_coherent_mask(struct device *dev, u64 mask)
358 * Truncate the mask to the actually supported dma_addr_t width to
359 * avoid generating unsupportable addresses.
361 mask = (dma_addr_t)mask;
363 if (!dma_supported(dev, mask))
364 return -EIO;
366 dev->coherent_dma_mask = mask;
367 return 0;
369 EXPORT_SYMBOL(dma_set_coherent_mask);
370 #endif
372 void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
373 enum dma_data_direction dir)
375 const struct dma_map_ops *ops = get_dma_ops(dev);
377 BUG_ON(!valid_dma_direction(dir));
379 if (dma_is_direct(ops))
380 arch_dma_cache_sync(dev, vaddr, size, dir);
381 else if (ops->cache_sync)
382 ops->cache_sync(dev, vaddr, size, dir);
384 EXPORT_SYMBOL(dma_cache_sync);
386 size_t dma_max_mapping_size(struct device *dev)
388 const struct dma_map_ops *ops = get_dma_ops(dev);
389 size_t size = SIZE_MAX;
391 if (dma_is_direct(ops))
392 size = dma_direct_max_mapping_size(dev);
393 else if (ops && ops->max_mapping_size)
394 size = ops->max_mapping_size(dev);
396 return size;
398 EXPORT_SYMBOL_GPL(dma_max_mapping_size);
400 unsigned long dma_get_merge_boundary(struct device *dev)
402 const struct dma_map_ops *ops = get_dma_ops(dev);
404 if (!ops || !ops->get_merge_boundary)
405 return 0; /* can't merge */
407 return ops->get_merge_boundary(dev);
409 EXPORT_SYMBOL_GPL(dma_get_merge_boundary);