Linux 5.6.13
[linux/fpc-iii.git] / kernel / events / core.c
blob29ace472f9168557f978087db5fe936dc2b827ac
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events core code:
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
53 #include "internal.h"
55 #include <asm/irq_regs.h>
57 typedef int (*remote_function_f)(void *);
59 struct remote_function_call {
60 struct task_struct *p;
61 remote_function_f func;
62 void *info;
63 int ret;
66 static void remote_function(void *data)
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
71 if (p) {
72 /* -EAGAIN */
73 if (task_cpu(p) != smp_processor_id())
74 return;
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
81 tfc->ret = -ESRCH; /* No such (running) process */
82 if (p != current)
83 return;
86 tfc->ret = tfc->func(tfc->info);
89 /**
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 struct remote_function_call data = {
106 .p = p,
107 .func = func,
108 .info = info,
109 .ret = -EAGAIN,
111 int ret;
113 do {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 if (!ret)
116 ret = data.ret;
117 } while (ret == -EAGAIN);
119 return ret;
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
127 * Calls the function @func on the remote cpu.
129 * returns: @func return value or -ENXIO when the cpu is offline
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 struct remote_function_call data = {
134 .p = NULL,
135 .func = func,
136 .info = info,
137 .ret = -ENXIO, /* No such CPU */
140 smp_call_function_single(cpu, remote_function, &data, 1);
142 return data.ret;
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
154 raw_spin_lock(&cpuctx->ctx.lock);
155 if (ctx)
156 raw_spin_lock(&ctx->lock);
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
162 if (ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
167 #define TASK_TOMBSTONE ((void *)-1L)
169 static bool is_kernel_event(struct perf_event *event)
171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
175 * On task ctx scheduling...
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
181 * This however results in two special cases:
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
196 struct event_function_struct {
197 struct perf_event *event;
198 event_f func;
199 void *data;
202 static int event_function(void *info)
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
206 struct perf_event_context *ctx = event->ctx;
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
209 int ret = 0;
211 lockdep_assert_irqs_disabled();
213 perf_ctx_lock(cpuctx, task_ctx);
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
218 if (ctx->task) {
219 if (ctx->task != current) {
220 ret = -ESRCH;
221 goto unlock;
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
231 WARN_ON_ONCE(!ctx->is_active);
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
236 WARN_ON_ONCE(task_ctx != ctx);
237 } else {
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
241 efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243 perf_ctx_unlock(cpuctx, task_ctx);
245 return ret;
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 struct perf_event_context *ctx = event->ctx;
251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252 struct event_function_struct efs = {
253 .event = event,
254 .func = func,
255 .data = data,
258 if (!event->parent) {
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
264 lockdep_assert_held(&ctx->mutex);
267 if (!task) {
268 cpu_function_call(event->cpu, event_function, &efs);
269 return;
272 if (task == TASK_TOMBSTONE)
273 return;
275 again:
276 if (!task_function_call(task, event_function, &efs))
277 return;
279 raw_spin_lock_irq(&ctx->lock);
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
284 task = ctx->task;
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
287 return;
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
291 goto again;
293 func(event, NULL, ctx, data);
294 raw_spin_unlock_irq(&ctx->lock);
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
308 lockdep_assert_irqs_disabled();
310 if (task) {
311 if (task == TASK_TOMBSTONE)
312 return;
314 task_ctx = ctx;
317 perf_ctx_lock(cpuctx, task_ctx);
319 task = ctx->task;
320 if (task == TASK_TOMBSTONE)
321 goto unlock;
323 if (task) {
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
327 * else.
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
331 goto unlock;
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 goto unlock;
336 } else {
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
340 func(event, cpuctx, ctx, data);
341 unlock:
342 perf_ctx_unlock(cpuctx, task_ctx);
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
351 * branch priv levels that need permission checks
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
357 enum event_type_t {
358 EVENT_FLEXIBLE = 0x1,
359 EVENT_PINNED = 0x2,
360 EVENT_TIME = 0x4,
361 /* see ctx_resched() for details */
362 EVENT_CPU = 0x8,
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
396 * perf event paranoia level:
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
399 * 1 - disallow cpu events for unpriv
400 * 2 - disallow kernel profiling for unpriv
402 int sysctl_perf_event_paranoid __read_mostly = 2;
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
408 * max perf event sample rate
410 #define DEFAULT_MAX_SAMPLE_RATE 100000
411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
416 static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
419 static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
422 static void update_perf_cpu_limits(void)
424 u64 tmp = perf_sample_period_ns;
426 tmp *= sysctl_perf_cpu_time_max_percent;
427 tmp = div_u64(tmp, 100);
428 if (!tmp)
429 tmp = 1;
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
438 loff_t *ppos)
440 int ret;
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
443 * If throttling is disabled don't allow the write:
445 if (write && (perf_cpu == 100 || perf_cpu == 0))
446 return -EINVAL;
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 if (ret || !write)
450 return ret;
452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
456 return 0;
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
463 loff_t *ppos)
465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
467 if (ret || !write)
468 return ret;
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
472 printk(KERN_WARNING
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 } else {
476 update_perf_cpu_limits();
479 return 0;
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
491 static u64 __report_avg;
492 static u64 __report_allowed;
494 static void perf_duration_warn(struct irq_work *w)
496 printk_ratelimited(KERN_INFO
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
505 void perf_sample_event_took(u64 sample_len_ns)
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 u64 running_len;
509 u64 avg_len;
510 u32 max;
512 if (max_len == 0)
513 return;
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 * from having to maintain a count.
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
528 return;
530 __report_avg = avg_len;
531 __report_allowed = max_len;
534 * Compute a throttle threshold 25% below the current duration.
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 if (avg_len < max)
539 max /= (u32)avg_len;
540 else
541 max = 1;
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
549 if (!irq_work_queue(&perf_duration_work)) {
550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 "kernel.perf_event_max_sample_rate to %d\n",
552 __report_avg, __report_allowed,
553 sysctl_perf_event_sample_rate);
557 static atomic64_t perf_event_id;
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563 enum event_type_t event_type,
564 struct task_struct *task);
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
569 void __weak perf_event_print_debug(void) { }
571 extern __weak const char *perf_pmu_name(void)
573 return "pmu";
576 static inline u64 perf_clock(void)
578 return local_clock();
581 static inline u64 perf_event_clock(struct perf_event *event)
583 return event->clock();
587 * State based event timekeeping...
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
592 * (read).
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
611 struct perf_event *leader = event->group_leader;
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
616 return event->state;
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
627 *enabled += delta;
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
631 *running += delta;
634 static void perf_event_update_time(struct perf_event *event)
636 u64 now = perf_event_time(event);
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
640 event->tstamp = now;
643 static void perf_event_update_sibling_time(struct perf_event *leader)
645 struct perf_event *sibling;
647 for_each_sibling_event(sibling, leader)
648 perf_event_update_time(sibling);
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
654 if (event->state == state)
655 return;
657 perf_event_update_time(event);
659 * If a group leader gets enabled/disabled all its siblings
660 * are affected too.
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
665 WRITE_ONCE(event->state, state);
668 #ifdef CONFIG_CGROUP_PERF
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
676 /* @event doesn't care about cgroup */
677 if (!event->cgrp)
678 return true;
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
681 if (!cpuctx->cgrp)
682 return false;
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
694 static inline void perf_detach_cgroup(struct perf_event *event)
696 css_put(&event->cgrp->css);
697 event->cgrp = NULL;
700 static inline int is_cgroup_event(struct perf_event *event)
702 return event->cgrp != NULL;
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
707 struct perf_cgroup_info *t;
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 return t->time;
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
715 struct perf_cgroup_info *info;
716 u64 now;
718 now = perf_clock();
720 info = this_cpu_ptr(cgrp->info);
722 info->time += now - info->timestamp;
723 info->timestamp = now;
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
731 if (cgrp) {
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
741 struct perf_cgroup *cgrp;
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
747 if (!is_cgroup_event(event))
748 return;
750 cgrp = perf_cgroup_from_task(current, event->ctx);
752 * Do not update time when cgroup is not active
754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755 __update_cgrp_time(event->cgrp);
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
764 struct cgroup_subsys_state *css;
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
771 if (!task || !ctx->nr_cgroups)
772 return;
774 cgrp = perf_cgroup_from_task(task, ctx);
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
789 * reschedule events based on the cgroup constraint of task.
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
796 struct perf_cpu_context *cpuctx;
797 struct list_head *list;
798 unsigned long flags;
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
804 local_irq_save(flags);
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
819 cpuctx->cgrp = NULL;
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
827 * task around
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
831 cpuctx->cgrp = perf_cgroup_from_task(task,
832 &cpuctx->ctx);
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
839 local_irq_restore(flags);
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
848 rcu_read_lock();
850 * we come here when we know perf_cgroup_events > 0
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
854 cgrp1 = perf_cgroup_from_task(task, NULL);
855 cgrp2 = perf_cgroup_from_task(next, NULL);
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
862 if (cgrp1 != cgrp2)
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
865 rcu_read_unlock();
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
874 rcu_read_lock();
876 * we come here when we know perf_cgroup_events > 0
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
880 cgrp1 = perf_cgroup_from_task(task, NULL);
881 cgrp2 = perf_cgroup_from_task(prev, NULL);
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
888 if (cgrp1 != cgrp2)
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
891 rcu_read_unlock();
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
900 struct fd f = fdget(fd);
901 int ret = 0;
903 if (!f.file)
904 return -EBADF;
906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
907 &perf_event_cgrp_subsys);
908 if (IS_ERR(css)) {
909 ret = PTR_ERR(css);
910 goto out;
913 cgrp = container_of(css, struct perf_cgroup, css);
914 event->cgrp = cgrp;
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
923 ret = -EINVAL;
925 out:
926 fdput(f);
927 return ret;
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
938 static inline void
939 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
941 struct perf_cpu_context *cpuctx;
943 if (!is_cgroup_event(event))
944 return;
947 * Because cgroup events are always per-cpu events,
948 * @ctx == &cpuctx->ctx.
950 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
953 * Since setting cpuctx->cgrp is conditional on the current @cgrp
954 * matching the event's cgroup, we must do this for every new event,
955 * because if the first would mismatch, the second would not try again
956 * and we would leave cpuctx->cgrp unset.
958 if (ctx->is_active && !cpuctx->cgrp) {
959 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
961 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
962 cpuctx->cgrp = cgrp;
965 if (ctx->nr_cgroups++)
966 return;
968 list_add(&cpuctx->cgrp_cpuctx_entry,
969 per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
972 static inline void
973 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
975 struct perf_cpu_context *cpuctx;
977 if (!is_cgroup_event(event))
978 return;
981 * Because cgroup events are always per-cpu events,
982 * @ctx == &cpuctx->ctx.
984 cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
986 if (--ctx->nr_cgroups)
987 return;
989 if (ctx->is_active && cpuctx->cgrp)
990 cpuctx->cgrp = NULL;
992 list_del(&cpuctx->cgrp_cpuctx_entry);
995 #else /* !CONFIG_CGROUP_PERF */
997 static inline bool
998 perf_cgroup_match(struct perf_event *event)
1000 return true;
1003 static inline void perf_detach_cgroup(struct perf_event *event)
1006 static inline int is_cgroup_event(struct perf_event *event)
1008 return 0;
1011 static inline void update_cgrp_time_from_event(struct perf_event *event)
1015 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1019 static inline void perf_cgroup_sched_out(struct task_struct *task,
1020 struct task_struct *next)
1024 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1025 struct task_struct *task)
1029 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1030 struct perf_event_attr *attr,
1031 struct perf_event *group_leader)
1033 return -EINVAL;
1036 static inline void
1037 perf_cgroup_set_timestamp(struct task_struct *task,
1038 struct perf_event_context *ctx)
1042 static inline void
1043 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1047 static inline void
1048 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1052 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1054 return 0;
1057 static inline void
1058 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1062 static inline void
1063 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1066 #endif
1069 * set default to be dependent on timer tick just
1070 * like original code
1072 #define PERF_CPU_HRTIMER (1000 / HZ)
1074 * function must be called with interrupts disabled
1076 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1078 struct perf_cpu_context *cpuctx;
1079 bool rotations;
1081 lockdep_assert_irqs_disabled();
1083 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1084 rotations = perf_rotate_context(cpuctx);
1086 raw_spin_lock(&cpuctx->hrtimer_lock);
1087 if (rotations)
1088 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1089 else
1090 cpuctx->hrtimer_active = 0;
1091 raw_spin_unlock(&cpuctx->hrtimer_lock);
1093 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1096 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1098 struct hrtimer *timer = &cpuctx->hrtimer;
1099 struct pmu *pmu = cpuctx->ctx.pmu;
1100 u64 interval;
1102 /* no multiplexing needed for SW PMU */
1103 if (pmu->task_ctx_nr == perf_sw_context)
1104 return;
1107 * check default is sane, if not set then force to
1108 * default interval (1/tick)
1110 interval = pmu->hrtimer_interval_ms;
1111 if (interval < 1)
1112 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1117 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1118 timer->function = perf_mux_hrtimer_handler;
1121 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1123 struct hrtimer *timer = &cpuctx->hrtimer;
1124 struct pmu *pmu = cpuctx->ctx.pmu;
1125 unsigned long flags;
1127 /* not for SW PMU */
1128 if (pmu->task_ctx_nr == perf_sw_context)
1129 return 0;
1131 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1132 if (!cpuctx->hrtimer_active) {
1133 cpuctx->hrtimer_active = 1;
1134 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1135 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1137 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1139 return 0;
1142 void perf_pmu_disable(struct pmu *pmu)
1144 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1145 if (!(*count)++)
1146 pmu->pmu_disable(pmu);
1149 void perf_pmu_enable(struct pmu *pmu)
1151 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1152 if (!--(*count))
1153 pmu->pmu_enable(pmu);
1156 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1159 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1160 * perf_event_task_tick() are fully serialized because they're strictly cpu
1161 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1162 * disabled, while perf_event_task_tick is called from IRQ context.
1164 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1166 struct list_head *head = this_cpu_ptr(&active_ctx_list);
1168 lockdep_assert_irqs_disabled();
1170 WARN_ON(!list_empty(&ctx->active_ctx_list));
1172 list_add(&ctx->active_ctx_list, head);
1175 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1177 lockdep_assert_irqs_disabled();
1179 WARN_ON(list_empty(&ctx->active_ctx_list));
1181 list_del_init(&ctx->active_ctx_list);
1184 static void get_ctx(struct perf_event_context *ctx)
1186 refcount_inc(&ctx->refcount);
1189 static void free_ctx(struct rcu_head *head)
1191 struct perf_event_context *ctx;
1193 ctx = container_of(head, struct perf_event_context, rcu_head);
1194 kfree(ctx->task_ctx_data);
1195 kfree(ctx);
1198 static void put_ctx(struct perf_event_context *ctx)
1200 if (refcount_dec_and_test(&ctx->refcount)) {
1201 if (ctx->parent_ctx)
1202 put_ctx(ctx->parent_ctx);
1203 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1204 put_task_struct(ctx->task);
1205 call_rcu(&ctx->rcu_head, free_ctx);
1210 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1211 * perf_pmu_migrate_context() we need some magic.
1213 * Those places that change perf_event::ctx will hold both
1214 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1216 * Lock ordering is by mutex address. There are two other sites where
1217 * perf_event_context::mutex nests and those are:
1219 * - perf_event_exit_task_context() [ child , 0 ]
1220 * perf_event_exit_event()
1221 * put_event() [ parent, 1 ]
1223 * - perf_event_init_context() [ parent, 0 ]
1224 * inherit_task_group()
1225 * inherit_group()
1226 * inherit_event()
1227 * perf_event_alloc()
1228 * perf_init_event()
1229 * perf_try_init_event() [ child , 1 ]
1231 * While it appears there is an obvious deadlock here -- the parent and child
1232 * nesting levels are inverted between the two. This is in fact safe because
1233 * life-time rules separate them. That is an exiting task cannot fork, and a
1234 * spawning task cannot (yet) exit.
1236 * But remember that that these are parent<->child context relations, and
1237 * migration does not affect children, therefore these two orderings should not
1238 * interact.
1240 * The change in perf_event::ctx does not affect children (as claimed above)
1241 * because the sys_perf_event_open() case will install a new event and break
1242 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1243 * concerned with cpuctx and that doesn't have children.
1245 * The places that change perf_event::ctx will issue:
1247 * perf_remove_from_context();
1248 * synchronize_rcu();
1249 * perf_install_in_context();
1251 * to affect the change. The remove_from_context() + synchronize_rcu() should
1252 * quiesce the event, after which we can install it in the new location. This
1253 * means that only external vectors (perf_fops, prctl) can perturb the event
1254 * while in transit. Therefore all such accessors should also acquire
1255 * perf_event_context::mutex to serialize against this.
1257 * However; because event->ctx can change while we're waiting to acquire
1258 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1259 * function.
1261 * Lock order:
1262 * cred_guard_mutex
1263 * task_struct::perf_event_mutex
1264 * perf_event_context::mutex
1265 * perf_event::child_mutex;
1266 * perf_event_context::lock
1267 * perf_event::mmap_mutex
1268 * mmap_sem
1269 * perf_addr_filters_head::lock
1271 * cpu_hotplug_lock
1272 * pmus_lock
1273 * cpuctx->mutex / perf_event_context::mutex
1275 static struct perf_event_context *
1276 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1278 struct perf_event_context *ctx;
1280 again:
1281 rcu_read_lock();
1282 ctx = READ_ONCE(event->ctx);
1283 if (!refcount_inc_not_zero(&ctx->refcount)) {
1284 rcu_read_unlock();
1285 goto again;
1287 rcu_read_unlock();
1289 mutex_lock_nested(&ctx->mutex, nesting);
1290 if (event->ctx != ctx) {
1291 mutex_unlock(&ctx->mutex);
1292 put_ctx(ctx);
1293 goto again;
1296 return ctx;
1299 static inline struct perf_event_context *
1300 perf_event_ctx_lock(struct perf_event *event)
1302 return perf_event_ctx_lock_nested(event, 0);
1305 static void perf_event_ctx_unlock(struct perf_event *event,
1306 struct perf_event_context *ctx)
1308 mutex_unlock(&ctx->mutex);
1309 put_ctx(ctx);
1313 * This must be done under the ctx->lock, such as to serialize against
1314 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1315 * calling scheduler related locks and ctx->lock nests inside those.
1317 static __must_check struct perf_event_context *
1318 unclone_ctx(struct perf_event_context *ctx)
1320 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1322 lockdep_assert_held(&ctx->lock);
1324 if (parent_ctx)
1325 ctx->parent_ctx = NULL;
1326 ctx->generation++;
1328 return parent_ctx;
1331 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1332 enum pid_type type)
1334 u32 nr;
1336 * only top level events have the pid namespace they were created in
1338 if (event->parent)
1339 event = event->parent;
1341 nr = __task_pid_nr_ns(p, type, event->ns);
1342 /* avoid -1 if it is idle thread or runs in another ns */
1343 if (!nr && !pid_alive(p))
1344 nr = -1;
1345 return nr;
1348 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1350 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1353 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1355 return perf_event_pid_type(event, p, PIDTYPE_PID);
1359 * If we inherit events we want to return the parent event id
1360 * to userspace.
1362 static u64 primary_event_id(struct perf_event *event)
1364 u64 id = event->id;
1366 if (event->parent)
1367 id = event->parent->id;
1369 return id;
1373 * Get the perf_event_context for a task and lock it.
1375 * This has to cope with with the fact that until it is locked,
1376 * the context could get moved to another task.
1378 static struct perf_event_context *
1379 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1381 struct perf_event_context *ctx;
1383 retry:
1385 * One of the few rules of preemptible RCU is that one cannot do
1386 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1387 * part of the read side critical section was irqs-enabled -- see
1388 * rcu_read_unlock_special().
1390 * Since ctx->lock nests under rq->lock we must ensure the entire read
1391 * side critical section has interrupts disabled.
1393 local_irq_save(*flags);
1394 rcu_read_lock();
1395 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1396 if (ctx) {
1398 * If this context is a clone of another, it might
1399 * get swapped for another underneath us by
1400 * perf_event_task_sched_out, though the
1401 * rcu_read_lock() protects us from any context
1402 * getting freed. Lock the context and check if it
1403 * got swapped before we could get the lock, and retry
1404 * if so. If we locked the right context, then it
1405 * can't get swapped on us any more.
1407 raw_spin_lock(&ctx->lock);
1408 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1409 raw_spin_unlock(&ctx->lock);
1410 rcu_read_unlock();
1411 local_irq_restore(*flags);
1412 goto retry;
1415 if (ctx->task == TASK_TOMBSTONE ||
1416 !refcount_inc_not_zero(&ctx->refcount)) {
1417 raw_spin_unlock(&ctx->lock);
1418 ctx = NULL;
1419 } else {
1420 WARN_ON_ONCE(ctx->task != task);
1423 rcu_read_unlock();
1424 if (!ctx)
1425 local_irq_restore(*flags);
1426 return ctx;
1430 * Get the context for a task and increment its pin_count so it
1431 * can't get swapped to another task. This also increments its
1432 * reference count so that the context can't get freed.
1434 static struct perf_event_context *
1435 perf_pin_task_context(struct task_struct *task, int ctxn)
1437 struct perf_event_context *ctx;
1438 unsigned long flags;
1440 ctx = perf_lock_task_context(task, ctxn, &flags);
1441 if (ctx) {
1442 ++ctx->pin_count;
1443 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1445 return ctx;
1448 static void perf_unpin_context(struct perf_event_context *ctx)
1450 unsigned long flags;
1452 raw_spin_lock_irqsave(&ctx->lock, flags);
1453 --ctx->pin_count;
1454 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1458 * Update the record of the current time in a context.
1460 static void update_context_time(struct perf_event_context *ctx)
1462 u64 now = perf_clock();
1464 ctx->time += now - ctx->timestamp;
1465 ctx->timestamp = now;
1468 static u64 perf_event_time(struct perf_event *event)
1470 struct perf_event_context *ctx = event->ctx;
1472 if (is_cgroup_event(event))
1473 return perf_cgroup_event_time(event);
1475 return ctx ? ctx->time : 0;
1478 static enum event_type_t get_event_type(struct perf_event *event)
1480 struct perf_event_context *ctx = event->ctx;
1481 enum event_type_t event_type;
1483 lockdep_assert_held(&ctx->lock);
1486 * It's 'group type', really, because if our group leader is
1487 * pinned, so are we.
1489 if (event->group_leader != event)
1490 event = event->group_leader;
1492 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1493 if (!ctx->task)
1494 event_type |= EVENT_CPU;
1496 return event_type;
1500 * Helper function to initialize event group nodes.
1502 static void init_event_group(struct perf_event *event)
1504 RB_CLEAR_NODE(&event->group_node);
1505 event->group_index = 0;
1509 * Extract pinned or flexible groups from the context
1510 * based on event attrs bits.
1512 static struct perf_event_groups *
1513 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1515 if (event->attr.pinned)
1516 return &ctx->pinned_groups;
1517 else
1518 return &ctx->flexible_groups;
1522 * Helper function to initializes perf_event_group trees.
1524 static void perf_event_groups_init(struct perf_event_groups *groups)
1526 groups->tree = RB_ROOT;
1527 groups->index = 0;
1531 * Compare function for event groups;
1533 * Implements complex key that first sorts by CPU and then by virtual index
1534 * which provides ordering when rotating groups for the same CPU.
1536 static bool
1537 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1539 if (left->cpu < right->cpu)
1540 return true;
1541 if (left->cpu > right->cpu)
1542 return false;
1544 if (left->group_index < right->group_index)
1545 return true;
1546 if (left->group_index > right->group_index)
1547 return false;
1549 return false;
1553 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1554 * key (see perf_event_groups_less). This places it last inside the CPU
1555 * subtree.
1557 static void
1558 perf_event_groups_insert(struct perf_event_groups *groups,
1559 struct perf_event *event)
1561 struct perf_event *node_event;
1562 struct rb_node *parent;
1563 struct rb_node **node;
1565 event->group_index = ++groups->index;
1567 node = &groups->tree.rb_node;
1568 parent = *node;
1570 while (*node) {
1571 parent = *node;
1572 node_event = container_of(*node, struct perf_event, group_node);
1574 if (perf_event_groups_less(event, node_event))
1575 node = &parent->rb_left;
1576 else
1577 node = &parent->rb_right;
1580 rb_link_node(&event->group_node, parent, node);
1581 rb_insert_color(&event->group_node, &groups->tree);
1585 * Helper function to insert event into the pinned or flexible groups.
1587 static void
1588 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1590 struct perf_event_groups *groups;
1592 groups = get_event_groups(event, ctx);
1593 perf_event_groups_insert(groups, event);
1597 * Delete a group from a tree.
1599 static void
1600 perf_event_groups_delete(struct perf_event_groups *groups,
1601 struct perf_event *event)
1603 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1604 RB_EMPTY_ROOT(&groups->tree));
1606 rb_erase(&event->group_node, &groups->tree);
1607 init_event_group(event);
1611 * Helper function to delete event from its groups.
1613 static void
1614 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1616 struct perf_event_groups *groups;
1618 groups = get_event_groups(event, ctx);
1619 perf_event_groups_delete(groups, event);
1623 * Get the leftmost event in the @cpu subtree.
1625 static struct perf_event *
1626 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1628 struct perf_event *node_event = NULL, *match = NULL;
1629 struct rb_node *node = groups->tree.rb_node;
1631 while (node) {
1632 node_event = container_of(node, struct perf_event, group_node);
1634 if (cpu < node_event->cpu) {
1635 node = node->rb_left;
1636 } else if (cpu > node_event->cpu) {
1637 node = node->rb_right;
1638 } else {
1639 match = node_event;
1640 node = node->rb_left;
1644 return match;
1648 * Like rb_entry_next_safe() for the @cpu subtree.
1650 static struct perf_event *
1651 perf_event_groups_next(struct perf_event *event)
1653 struct perf_event *next;
1655 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1656 if (next && next->cpu == event->cpu)
1657 return next;
1659 return NULL;
1663 * Iterate through the whole groups tree.
1665 #define perf_event_groups_for_each(event, groups) \
1666 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1667 typeof(*event), group_node); event; \
1668 event = rb_entry_safe(rb_next(&event->group_node), \
1669 typeof(*event), group_node))
1672 * Add an event from the lists for its context.
1673 * Must be called with ctx->mutex and ctx->lock held.
1675 static void
1676 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1678 lockdep_assert_held(&ctx->lock);
1680 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1681 event->attach_state |= PERF_ATTACH_CONTEXT;
1683 event->tstamp = perf_event_time(event);
1686 * If we're a stand alone event or group leader, we go to the context
1687 * list, group events are kept attached to the group so that
1688 * perf_group_detach can, at all times, locate all siblings.
1690 if (event->group_leader == event) {
1691 event->group_caps = event->event_caps;
1692 add_event_to_groups(event, ctx);
1695 list_add_rcu(&event->event_entry, &ctx->event_list);
1696 ctx->nr_events++;
1697 if (event->attr.inherit_stat)
1698 ctx->nr_stat++;
1700 if (event->state > PERF_EVENT_STATE_OFF)
1701 perf_cgroup_event_enable(event, ctx);
1703 ctx->generation++;
1707 * Initialize event state based on the perf_event_attr::disabled.
1709 static inline void perf_event__state_init(struct perf_event *event)
1711 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1712 PERF_EVENT_STATE_INACTIVE;
1715 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1717 int entry = sizeof(u64); /* value */
1718 int size = 0;
1719 int nr = 1;
1721 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1722 size += sizeof(u64);
1724 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1725 size += sizeof(u64);
1727 if (event->attr.read_format & PERF_FORMAT_ID)
1728 entry += sizeof(u64);
1730 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1731 nr += nr_siblings;
1732 size += sizeof(u64);
1735 size += entry * nr;
1736 event->read_size = size;
1739 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1741 struct perf_sample_data *data;
1742 u16 size = 0;
1744 if (sample_type & PERF_SAMPLE_IP)
1745 size += sizeof(data->ip);
1747 if (sample_type & PERF_SAMPLE_ADDR)
1748 size += sizeof(data->addr);
1750 if (sample_type & PERF_SAMPLE_PERIOD)
1751 size += sizeof(data->period);
1753 if (sample_type & PERF_SAMPLE_WEIGHT)
1754 size += sizeof(data->weight);
1756 if (sample_type & PERF_SAMPLE_READ)
1757 size += event->read_size;
1759 if (sample_type & PERF_SAMPLE_DATA_SRC)
1760 size += sizeof(data->data_src.val);
1762 if (sample_type & PERF_SAMPLE_TRANSACTION)
1763 size += sizeof(data->txn);
1765 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1766 size += sizeof(data->phys_addr);
1768 event->header_size = size;
1772 * Called at perf_event creation and when events are attached/detached from a
1773 * group.
1775 static void perf_event__header_size(struct perf_event *event)
1777 __perf_event_read_size(event,
1778 event->group_leader->nr_siblings);
1779 __perf_event_header_size(event, event->attr.sample_type);
1782 static void perf_event__id_header_size(struct perf_event *event)
1784 struct perf_sample_data *data;
1785 u64 sample_type = event->attr.sample_type;
1786 u16 size = 0;
1788 if (sample_type & PERF_SAMPLE_TID)
1789 size += sizeof(data->tid_entry);
1791 if (sample_type & PERF_SAMPLE_TIME)
1792 size += sizeof(data->time);
1794 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1795 size += sizeof(data->id);
1797 if (sample_type & PERF_SAMPLE_ID)
1798 size += sizeof(data->id);
1800 if (sample_type & PERF_SAMPLE_STREAM_ID)
1801 size += sizeof(data->stream_id);
1803 if (sample_type & PERF_SAMPLE_CPU)
1804 size += sizeof(data->cpu_entry);
1806 event->id_header_size = size;
1809 static bool perf_event_validate_size(struct perf_event *event)
1812 * The values computed here will be over-written when we actually
1813 * attach the event.
1815 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1816 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1817 perf_event__id_header_size(event);
1820 * Sum the lot; should not exceed the 64k limit we have on records.
1821 * Conservative limit to allow for callchains and other variable fields.
1823 if (event->read_size + event->header_size +
1824 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1825 return false;
1827 return true;
1830 static void perf_group_attach(struct perf_event *event)
1832 struct perf_event *group_leader = event->group_leader, *pos;
1834 lockdep_assert_held(&event->ctx->lock);
1837 * We can have double attach due to group movement in perf_event_open.
1839 if (event->attach_state & PERF_ATTACH_GROUP)
1840 return;
1842 event->attach_state |= PERF_ATTACH_GROUP;
1844 if (group_leader == event)
1845 return;
1847 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1849 group_leader->group_caps &= event->event_caps;
1851 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1852 group_leader->nr_siblings++;
1854 perf_event__header_size(group_leader);
1856 for_each_sibling_event(pos, group_leader)
1857 perf_event__header_size(pos);
1861 * Remove an event from the lists for its context.
1862 * Must be called with ctx->mutex and ctx->lock held.
1864 static void
1865 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1867 WARN_ON_ONCE(event->ctx != ctx);
1868 lockdep_assert_held(&ctx->lock);
1871 * We can have double detach due to exit/hot-unplug + close.
1873 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1874 return;
1876 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1878 ctx->nr_events--;
1879 if (event->attr.inherit_stat)
1880 ctx->nr_stat--;
1882 list_del_rcu(&event->event_entry);
1884 if (event->group_leader == event)
1885 del_event_from_groups(event, ctx);
1888 * If event was in error state, then keep it
1889 * that way, otherwise bogus counts will be
1890 * returned on read(). The only way to get out
1891 * of error state is by explicit re-enabling
1892 * of the event
1894 if (event->state > PERF_EVENT_STATE_OFF) {
1895 perf_cgroup_event_disable(event, ctx);
1896 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1899 ctx->generation++;
1902 static int
1903 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1905 if (!has_aux(aux_event))
1906 return 0;
1908 if (!event->pmu->aux_output_match)
1909 return 0;
1911 return event->pmu->aux_output_match(aux_event);
1914 static void put_event(struct perf_event *event);
1915 static void event_sched_out(struct perf_event *event,
1916 struct perf_cpu_context *cpuctx,
1917 struct perf_event_context *ctx);
1919 static void perf_put_aux_event(struct perf_event *event)
1921 struct perf_event_context *ctx = event->ctx;
1922 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1923 struct perf_event *iter;
1926 * If event uses aux_event tear down the link
1928 if (event->aux_event) {
1929 iter = event->aux_event;
1930 event->aux_event = NULL;
1931 put_event(iter);
1932 return;
1936 * If the event is an aux_event, tear down all links to
1937 * it from other events.
1939 for_each_sibling_event(iter, event->group_leader) {
1940 if (iter->aux_event != event)
1941 continue;
1943 iter->aux_event = NULL;
1944 put_event(event);
1947 * If it's ACTIVE, schedule it out and put it into ERROR
1948 * state so that we don't try to schedule it again. Note
1949 * that perf_event_enable() will clear the ERROR status.
1951 event_sched_out(iter, cpuctx, ctx);
1952 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1956 static bool perf_need_aux_event(struct perf_event *event)
1958 return !!event->attr.aux_output || !!event->attr.aux_sample_size;
1961 static int perf_get_aux_event(struct perf_event *event,
1962 struct perf_event *group_leader)
1965 * Our group leader must be an aux event if we want to be
1966 * an aux_output. This way, the aux event will precede its
1967 * aux_output events in the group, and therefore will always
1968 * schedule first.
1970 if (!group_leader)
1971 return 0;
1974 * aux_output and aux_sample_size are mutually exclusive.
1976 if (event->attr.aux_output && event->attr.aux_sample_size)
1977 return 0;
1979 if (event->attr.aux_output &&
1980 !perf_aux_output_match(event, group_leader))
1981 return 0;
1983 if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
1984 return 0;
1986 if (!atomic_long_inc_not_zero(&group_leader->refcount))
1987 return 0;
1990 * Link aux_outputs to their aux event; this is undone in
1991 * perf_group_detach() by perf_put_aux_event(). When the
1992 * group in torn down, the aux_output events loose their
1993 * link to the aux_event and can't schedule any more.
1995 event->aux_event = group_leader;
1997 return 1;
2000 static inline struct list_head *get_event_list(struct perf_event *event)
2002 struct perf_event_context *ctx = event->ctx;
2003 return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2006 static void perf_group_detach(struct perf_event *event)
2008 struct perf_event *sibling, *tmp;
2009 struct perf_event_context *ctx = event->ctx;
2011 lockdep_assert_held(&ctx->lock);
2014 * We can have double detach due to exit/hot-unplug + close.
2016 if (!(event->attach_state & PERF_ATTACH_GROUP))
2017 return;
2019 event->attach_state &= ~PERF_ATTACH_GROUP;
2021 perf_put_aux_event(event);
2024 * If this is a sibling, remove it from its group.
2026 if (event->group_leader != event) {
2027 list_del_init(&event->sibling_list);
2028 event->group_leader->nr_siblings--;
2029 goto out;
2033 * If this was a group event with sibling events then
2034 * upgrade the siblings to singleton events by adding them
2035 * to whatever list we are on.
2037 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2039 sibling->group_leader = sibling;
2040 list_del_init(&sibling->sibling_list);
2042 /* Inherit group flags from the previous leader */
2043 sibling->group_caps = event->group_caps;
2045 if (!RB_EMPTY_NODE(&event->group_node)) {
2046 add_event_to_groups(sibling, event->ctx);
2048 if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2049 list_add_tail(&sibling->active_list, get_event_list(sibling));
2052 WARN_ON_ONCE(sibling->ctx != event->ctx);
2055 out:
2056 perf_event__header_size(event->group_leader);
2058 for_each_sibling_event(tmp, event->group_leader)
2059 perf_event__header_size(tmp);
2062 static bool is_orphaned_event(struct perf_event *event)
2064 return event->state == PERF_EVENT_STATE_DEAD;
2067 static inline int __pmu_filter_match(struct perf_event *event)
2069 struct pmu *pmu = event->pmu;
2070 return pmu->filter_match ? pmu->filter_match(event) : 1;
2074 * Check whether we should attempt to schedule an event group based on
2075 * PMU-specific filtering. An event group can consist of HW and SW events,
2076 * potentially with a SW leader, so we must check all the filters, to
2077 * determine whether a group is schedulable:
2079 static inline int pmu_filter_match(struct perf_event *event)
2081 struct perf_event *sibling;
2083 if (!__pmu_filter_match(event))
2084 return 0;
2086 for_each_sibling_event(sibling, event) {
2087 if (!__pmu_filter_match(sibling))
2088 return 0;
2091 return 1;
2094 static inline int
2095 event_filter_match(struct perf_event *event)
2097 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2098 perf_cgroup_match(event) && pmu_filter_match(event);
2101 static void
2102 event_sched_out(struct perf_event *event,
2103 struct perf_cpu_context *cpuctx,
2104 struct perf_event_context *ctx)
2106 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2108 WARN_ON_ONCE(event->ctx != ctx);
2109 lockdep_assert_held(&ctx->lock);
2111 if (event->state != PERF_EVENT_STATE_ACTIVE)
2112 return;
2115 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2116 * we can schedule events _OUT_ individually through things like
2117 * __perf_remove_from_context().
2119 list_del_init(&event->active_list);
2121 perf_pmu_disable(event->pmu);
2123 event->pmu->del(event, 0);
2124 event->oncpu = -1;
2126 if (READ_ONCE(event->pending_disable) >= 0) {
2127 WRITE_ONCE(event->pending_disable, -1);
2128 perf_cgroup_event_disable(event, ctx);
2129 state = PERF_EVENT_STATE_OFF;
2131 perf_event_set_state(event, state);
2133 if (!is_software_event(event))
2134 cpuctx->active_oncpu--;
2135 if (!--ctx->nr_active)
2136 perf_event_ctx_deactivate(ctx);
2137 if (event->attr.freq && event->attr.sample_freq)
2138 ctx->nr_freq--;
2139 if (event->attr.exclusive || !cpuctx->active_oncpu)
2140 cpuctx->exclusive = 0;
2142 perf_pmu_enable(event->pmu);
2145 static void
2146 group_sched_out(struct perf_event *group_event,
2147 struct perf_cpu_context *cpuctx,
2148 struct perf_event_context *ctx)
2150 struct perf_event *event;
2152 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2153 return;
2155 perf_pmu_disable(ctx->pmu);
2157 event_sched_out(group_event, cpuctx, ctx);
2160 * Schedule out siblings (if any):
2162 for_each_sibling_event(event, group_event)
2163 event_sched_out(event, cpuctx, ctx);
2165 perf_pmu_enable(ctx->pmu);
2167 if (group_event->attr.exclusive)
2168 cpuctx->exclusive = 0;
2171 #define DETACH_GROUP 0x01UL
2174 * Cross CPU call to remove a performance event
2176 * We disable the event on the hardware level first. After that we
2177 * remove it from the context list.
2179 static void
2180 __perf_remove_from_context(struct perf_event *event,
2181 struct perf_cpu_context *cpuctx,
2182 struct perf_event_context *ctx,
2183 void *info)
2185 unsigned long flags = (unsigned long)info;
2187 if (ctx->is_active & EVENT_TIME) {
2188 update_context_time(ctx);
2189 update_cgrp_time_from_cpuctx(cpuctx);
2192 event_sched_out(event, cpuctx, ctx);
2193 if (flags & DETACH_GROUP)
2194 perf_group_detach(event);
2195 list_del_event(event, ctx);
2197 if (!ctx->nr_events && ctx->is_active) {
2198 ctx->is_active = 0;
2199 if (ctx->task) {
2200 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2201 cpuctx->task_ctx = NULL;
2207 * Remove the event from a task's (or a CPU's) list of events.
2209 * If event->ctx is a cloned context, callers must make sure that
2210 * every task struct that event->ctx->task could possibly point to
2211 * remains valid. This is OK when called from perf_release since
2212 * that only calls us on the top-level context, which can't be a clone.
2213 * When called from perf_event_exit_task, it's OK because the
2214 * context has been detached from its task.
2216 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2218 struct perf_event_context *ctx = event->ctx;
2220 lockdep_assert_held(&ctx->mutex);
2222 event_function_call(event, __perf_remove_from_context, (void *)flags);
2225 * The above event_function_call() can NO-OP when it hits
2226 * TASK_TOMBSTONE. In that case we must already have been detached
2227 * from the context (by perf_event_exit_event()) but the grouping
2228 * might still be in-tact.
2230 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2231 if ((flags & DETACH_GROUP) &&
2232 (event->attach_state & PERF_ATTACH_GROUP)) {
2234 * Since in that case we cannot possibly be scheduled, simply
2235 * detach now.
2237 raw_spin_lock_irq(&ctx->lock);
2238 perf_group_detach(event);
2239 raw_spin_unlock_irq(&ctx->lock);
2244 * Cross CPU call to disable a performance event
2246 static void __perf_event_disable(struct perf_event *event,
2247 struct perf_cpu_context *cpuctx,
2248 struct perf_event_context *ctx,
2249 void *info)
2251 if (event->state < PERF_EVENT_STATE_INACTIVE)
2252 return;
2254 if (ctx->is_active & EVENT_TIME) {
2255 update_context_time(ctx);
2256 update_cgrp_time_from_event(event);
2259 if (event == event->group_leader)
2260 group_sched_out(event, cpuctx, ctx);
2261 else
2262 event_sched_out(event, cpuctx, ctx);
2264 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2265 perf_cgroup_event_disable(event, ctx);
2269 * Disable an event.
2271 * If event->ctx is a cloned context, callers must make sure that
2272 * every task struct that event->ctx->task could possibly point to
2273 * remains valid. This condition is satisfied when called through
2274 * perf_event_for_each_child or perf_event_for_each because they
2275 * hold the top-level event's child_mutex, so any descendant that
2276 * goes to exit will block in perf_event_exit_event().
2278 * When called from perf_pending_event it's OK because event->ctx
2279 * is the current context on this CPU and preemption is disabled,
2280 * hence we can't get into perf_event_task_sched_out for this context.
2282 static void _perf_event_disable(struct perf_event *event)
2284 struct perf_event_context *ctx = event->ctx;
2286 raw_spin_lock_irq(&ctx->lock);
2287 if (event->state <= PERF_EVENT_STATE_OFF) {
2288 raw_spin_unlock_irq(&ctx->lock);
2289 return;
2291 raw_spin_unlock_irq(&ctx->lock);
2293 event_function_call(event, __perf_event_disable, NULL);
2296 void perf_event_disable_local(struct perf_event *event)
2298 event_function_local(event, __perf_event_disable, NULL);
2302 * Strictly speaking kernel users cannot create groups and therefore this
2303 * interface does not need the perf_event_ctx_lock() magic.
2305 void perf_event_disable(struct perf_event *event)
2307 struct perf_event_context *ctx;
2309 ctx = perf_event_ctx_lock(event);
2310 _perf_event_disable(event);
2311 perf_event_ctx_unlock(event, ctx);
2313 EXPORT_SYMBOL_GPL(perf_event_disable);
2315 void perf_event_disable_inatomic(struct perf_event *event)
2317 WRITE_ONCE(event->pending_disable, smp_processor_id());
2318 /* can fail, see perf_pending_event_disable() */
2319 irq_work_queue(&event->pending);
2322 static void perf_set_shadow_time(struct perf_event *event,
2323 struct perf_event_context *ctx)
2326 * use the correct time source for the time snapshot
2328 * We could get by without this by leveraging the
2329 * fact that to get to this function, the caller
2330 * has most likely already called update_context_time()
2331 * and update_cgrp_time_xx() and thus both timestamp
2332 * are identical (or very close). Given that tstamp is,
2333 * already adjusted for cgroup, we could say that:
2334 * tstamp - ctx->timestamp
2335 * is equivalent to
2336 * tstamp - cgrp->timestamp.
2338 * Then, in perf_output_read(), the calculation would
2339 * work with no changes because:
2340 * - event is guaranteed scheduled in
2341 * - no scheduled out in between
2342 * - thus the timestamp would be the same
2344 * But this is a bit hairy.
2346 * So instead, we have an explicit cgroup call to remain
2347 * within the time time source all along. We believe it
2348 * is cleaner and simpler to understand.
2350 if (is_cgroup_event(event))
2351 perf_cgroup_set_shadow_time(event, event->tstamp);
2352 else
2353 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2356 #define MAX_INTERRUPTS (~0ULL)
2358 static void perf_log_throttle(struct perf_event *event, int enable);
2359 static void perf_log_itrace_start(struct perf_event *event);
2361 static int
2362 event_sched_in(struct perf_event *event,
2363 struct perf_cpu_context *cpuctx,
2364 struct perf_event_context *ctx)
2366 int ret = 0;
2368 WARN_ON_ONCE(event->ctx != ctx);
2370 lockdep_assert_held(&ctx->lock);
2372 if (event->state <= PERF_EVENT_STATE_OFF)
2373 return 0;
2375 WRITE_ONCE(event->oncpu, smp_processor_id());
2377 * Order event::oncpu write to happen before the ACTIVE state is
2378 * visible. This allows perf_event_{stop,read}() to observe the correct
2379 * ->oncpu if it sees ACTIVE.
2381 smp_wmb();
2382 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2385 * Unthrottle events, since we scheduled we might have missed several
2386 * ticks already, also for a heavily scheduling task there is little
2387 * guarantee it'll get a tick in a timely manner.
2389 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2390 perf_log_throttle(event, 1);
2391 event->hw.interrupts = 0;
2394 perf_pmu_disable(event->pmu);
2396 perf_set_shadow_time(event, ctx);
2398 perf_log_itrace_start(event);
2400 if (event->pmu->add(event, PERF_EF_START)) {
2401 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2402 event->oncpu = -1;
2403 ret = -EAGAIN;
2404 goto out;
2407 if (!is_software_event(event))
2408 cpuctx->active_oncpu++;
2409 if (!ctx->nr_active++)
2410 perf_event_ctx_activate(ctx);
2411 if (event->attr.freq && event->attr.sample_freq)
2412 ctx->nr_freq++;
2414 if (event->attr.exclusive)
2415 cpuctx->exclusive = 1;
2417 out:
2418 perf_pmu_enable(event->pmu);
2420 return ret;
2423 static int
2424 group_sched_in(struct perf_event *group_event,
2425 struct perf_cpu_context *cpuctx,
2426 struct perf_event_context *ctx)
2428 struct perf_event *event, *partial_group = NULL;
2429 struct pmu *pmu = ctx->pmu;
2431 if (group_event->state == PERF_EVENT_STATE_OFF)
2432 return 0;
2434 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2436 if (event_sched_in(group_event, cpuctx, ctx)) {
2437 pmu->cancel_txn(pmu);
2438 perf_mux_hrtimer_restart(cpuctx);
2439 return -EAGAIN;
2443 * Schedule in siblings as one group (if any):
2445 for_each_sibling_event(event, group_event) {
2446 if (event_sched_in(event, cpuctx, ctx)) {
2447 partial_group = event;
2448 goto group_error;
2452 if (!pmu->commit_txn(pmu))
2453 return 0;
2455 group_error:
2457 * Groups can be scheduled in as one unit only, so undo any
2458 * partial group before returning:
2459 * The events up to the failed event are scheduled out normally.
2461 for_each_sibling_event(event, group_event) {
2462 if (event == partial_group)
2463 break;
2465 event_sched_out(event, cpuctx, ctx);
2467 event_sched_out(group_event, cpuctx, ctx);
2469 pmu->cancel_txn(pmu);
2471 perf_mux_hrtimer_restart(cpuctx);
2473 return -EAGAIN;
2477 * Work out whether we can put this event group on the CPU now.
2479 static int group_can_go_on(struct perf_event *event,
2480 struct perf_cpu_context *cpuctx,
2481 int can_add_hw)
2484 * Groups consisting entirely of software events can always go on.
2486 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2487 return 1;
2489 * If an exclusive group is already on, no other hardware
2490 * events can go on.
2492 if (cpuctx->exclusive)
2493 return 0;
2495 * If this group is exclusive and there are already
2496 * events on the CPU, it can't go on.
2498 if (event->attr.exclusive && cpuctx->active_oncpu)
2499 return 0;
2501 * Otherwise, try to add it if all previous groups were able
2502 * to go on.
2504 return can_add_hw;
2507 static void add_event_to_ctx(struct perf_event *event,
2508 struct perf_event_context *ctx)
2510 list_add_event(event, ctx);
2511 perf_group_attach(event);
2514 static void ctx_sched_out(struct perf_event_context *ctx,
2515 struct perf_cpu_context *cpuctx,
2516 enum event_type_t event_type);
2517 static void
2518 ctx_sched_in(struct perf_event_context *ctx,
2519 struct perf_cpu_context *cpuctx,
2520 enum event_type_t event_type,
2521 struct task_struct *task);
2523 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2524 struct perf_event_context *ctx,
2525 enum event_type_t event_type)
2527 if (!cpuctx->task_ctx)
2528 return;
2530 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2531 return;
2533 ctx_sched_out(ctx, cpuctx, event_type);
2536 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2537 struct perf_event_context *ctx,
2538 struct task_struct *task)
2540 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2541 if (ctx)
2542 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2543 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2544 if (ctx)
2545 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2549 * We want to maintain the following priority of scheduling:
2550 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2551 * - task pinned (EVENT_PINNED)
2552 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2553 * - task flexible (EVENT_FLEXIBLE).
2555 * In order to avoid unscheduling and scheduling back in everything every
2556 * time an event is added, only do it for the groups of equal priority and
2557 * below.
2559 * This can be called after a batch operation on task events, in which case
2560 * event_type is a bit mask of the types of events involved. For CPU events,
2561 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2563 static void ctx_resched(struct perf_cpu_context *cpuctx,
2564 struct perf_event_context *task_ctx,
2565 enum event_type_t event_type)
2567 enum event_type_t ctx_event_type;
2568 bool cpu_event = !!(event_type & EVENT_CPU);
2571 * If pinned groups are involved, flexible groups also need to be
2572 * scheduled out.
2574 if (event_type & EVENT_PINNED)
2575 event_type |= EVENT_FLEXIBLE;
2577 ctx_event_type = event_type & EVENT_ALL;
2579 perf_pmu_disable(cpuctx->ctx.pmu);
2580 if (task_ctx)
2581 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2584 * Decide which cpu ctx groups to schedule out based on the types
2585 * of events that caused rescheduling:
2586 * - EVENT_CPU: schedule out corresponding groups;
2587 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2588 * - otherwise, do nothing more.
2590 if (cpu_event)
2591 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2592 else if (ctx_event_type & EVENT_PINNED)
2593 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2595 perf_event_sched_in(cpuctx, task_ctx, current);
2596 perf_pmu_enable(cpuctx->ctx.pmu);
2599 void perf_pmu_resched(struct pmu *pmu)
2601 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2602 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2604 perf_ctx_lock(cpuctx, task_ctx);
2605 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2606 perf_ctx_unlock(cpuctx, task_ctx);
2610 * Cross CPU call to install and enable a performance event
2612 * Very similar to remote_function() + event_function() but cannot assume that
2613 * things like ctx->is_active and cpuctx->task_ctx are set.
2615 static int __perf_install_in_context(void *info)
2617 struct perf_event *event = info;
2618 struct perf_event_context *ctx = event->ctx;
2619 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2620 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2621 bool reprogram = true;
2622 int ret = 0;
2624 raw_spin_lock(&cpuctx->ctx.lock);
2625 if (ctx->task) {
2626 raw_spin_lock(&ctx->lock);
2627 task_ctx = ctx;
2629 reprogram = (ctx->task == current);
2632 * If the task is running, it must be running on this CPU,
2633 * otherwise we cannot reprogram things.
2635 * If its not running, we don't care, ctx->lock will
2636 * serialize against it becoming runnable.
2638 if (task_curr(ctx->task) && !reprogram) {
2639 ret = -ESRCH;
2640 goto unlock;
2643 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2644 } else if (task_ctx) {
2645 raw_spin_lock(&task_ctx->lock);
2648 #ifdef CONFIG_CGROUP_PERF
2649 if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2651 * If the current cgroup doesn't match the event's
2652 * cgroup, we should not try to schedule it.
2654 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2655 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2656 event->cgrp->css.cgroup);
2658 #endif
2660 if (reprogram) {
2661 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2662 add_event_to_ctx(event, ctx);
2663 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2664 } else {
2665 add_event_to_ctx(event, ctx);
2668 unlock:
2669 perf_ctx_unlock(cpuctx, task_ctx);
2671 return ret;
2674 static bool exclusive_event_installable(struct perf_event *event,
2675 struct perf_event_context *ctx);
2678 * Attach a performance event to a context.
2680 * Very similar to event_function_call, see comment there.
2682 static void
2683 perf_install_in_context(struct perf_event_context *ctx,
2684 struct perf_event *event,
2685 int cpu)
2687 struct task_struct *task = READ_ONCE(ctx->task);
2689 lockdep_assert_held(&ctx->mutex);
2691 WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2693 if (event->cpu != -1)
2694 event->cpu = cpu;
2697 * Ensures that if we can observe event->ctx, both the event and ctx
2698 * will be 'complete'. See perf_iterate_sb_cpu().
2700 smp_store_release(&event->ctx, ctx);
2703 * perf_event_attr::disabled events will not run and can be initialized
2704 * without IPI. Except when this is the first event for the context, in
2705 * that case we need the magic of the IPI to set ctx->is_active.
2707 * The IOC_ENABLE that is sure to follow the creation of a disabled
2708 * event will issue the IPI and reprogram the hardware.
2710 if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2711 raw_spin_lock_irq(&ctx->lock);
2712 if (ctx->task == TASK_TOMBSTONE) {
2713 raw_spin_unlock_irq(&ctx->lock);
2714 return;
2716 add_event_to_ctx(event, ctx);
2717 raw_spin_unlock_irq(&ctx->lock);
2718 return;
2721 if (!task) {
2722 cpu_function_call(cpu, __perf_install_in_context, event);
2723 return;
2727 * Should not happen, we validate the ctx is still alive before calling.
2729 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2730 return;
2733 * Installing events is tricky because we cannot rely on ctx->is_active
2734 * to be set in case this is the nr_events 0 -> 1 transition.
2736 * Instead we use task_curr(), which tells us if the task is running.
2737 * However, since we use task_curr() outside of rq::lock, we can race
2738 * against the actual state. This means the result can be wrong.
2740 * If we get a false positive, we retry, this is harmless.
2742 * If we get a false negative, things are complicated. If we are after
2743 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2744 * value must be correct. If we're before, it doesn't matter since
2745 * perf_event_context_sched_in() will program the counter.
2747 * However, this hinges on the remote context switch having observed
2748 * our task->perf_event_ctxp[] store, such that it will in fact take
2749 * ctx::lock in perf_event_context_sched_in().
2751 * We do this by task_function_call(), if the IPI fails to hit the task
2752 * we know any future context switch of task must see the
2753 * perf_event_ctpx[] store.
2757 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2758 * task_cpu() load, such that if the IPI then does not find the task
2759 * running, a future context switch of that task must observe the
2760 * store.
2762 smp_mb();
2763 again:
2764 if (!task_function_call(task, __perf_install_in_context, event))
2765 return;
2767 raw_spin_lock_irq(&ctx->lock);
2768 task = ctx->task;
2769 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2771 * Cannot happen because we already checked above (which also
2772 * cannot happen), and we hold ctx->mutex, which serializes us
2773 * against perf_event_exit_task_context().
2775 raw_spin_unlock_irq(&ctx->lock);
2776 return;
2779 * If the task is not running, ctx->lock will avoid it becoming so,
2780 * thus we can safely install the event.
2782 if (task_curr(task)) {
2783 raw_spin_unlock_irq(&ctx->lock);
2784 goto again;
2786 add_event_to_ctx(event, ctx);
2787 raw_spin_unlock_irq(&ctx->lock);
2791 * Cross CPU call to enable a performance event
2793 static void __perf_event_enable(struct perf_event *event,
2794 struct perf_cpu_context *cpuctx,
2795 struct perf_event_context *ctx,
2796 void *info)
2798 struct perf_event *leader = event->group_leader;
2799 struct perf_event_context *task_ctx;
2801 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2802 event->state <= PERF_EVENT_STATE_ERROR)
2803 return;
2805 if (ctx->is_active)
2806 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2808 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2809 perf_cgroup_event_enable(event, ctx);
2811 if (!ctx->is_active)
2812 return;
2814 if (!event_filter_match(event)) {
2815 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2816 return;
2820 * If the event is in a group and isn't the group leader,
2821 * then don't put it on unless the group is on.
2823 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2824 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2825 return;
2828 task_ctx = cpuctx->task_ctx;
2829 if (ctx->task)
2830 WARN_ON_ONCE(task_ctx != ctx);
2832 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2836 * Enable an event.
2838 * If event->ctx is a cloned context, callers must make sure that
2839 * every task struct that event->ctx->task could possibly point to
2840 * remains valid. This condition is satisfied when called through
2841 * perf_event_for_each_child or perf_event_for_each as described
2842 * for perf_event_disable.
2844 static void _perf_event_enable(struct perf_event *event)
2846 struct perf_event_context *ctx = event->ctx;
2848 raw_spin_lock_irq(&ctx->lock);
2849 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2850 event->state < PERF_EVENT_STATE_ERROR) {
2851 raw_spin_unlock_irq(&ctx->lock);
2852 return;
2856 * If the event is in error state, clear that first.
2858 * That way, if we see the event in error state below, we know that it
2859 * has gone back into error state, as distinct from the task having
2860 * been scheduled away before the cross-call arrived.
2862 if (event->state == PERF_EVENT_STATE_ERROR)
2863 event->state = PERF_EVENT_STATE_OFF;
2864 raw_spin_unlock_irq(&ctx->lock);
2866 event_function_call(event, __perf_event_enable, NULL);
2870 * See perf_event_disable();
2872 void perf_event_enable(struct perf_event *event)
2874 struct perf_event_context *ctx;
2876 ctx = perf_event_ctx_lock(event);
2877 _perf_event_enable(event);
2878 perf_event_ctx_unlock(event, ctx);
2880 EXPORT_SYMBOL_GPL(perf_event_enable);
2882 struct stop_event_data {
2883 struct perf_event *event;
2884 unsigned int restart;
2887 static int __perf_event_stop(void *info)
2889 struct stop_event_data *sd = info;
2890 struct perf_event *event = sd->event;
2892 /* if it's already INACTIVE, do nothing */
2893 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2894 return 0;
2896 /* matches smp_wmb() in event_sched_in() */
2897 smp_rmb();
2900 * There is a window with interrupts enabled before we get here,
2901 * so we need to check again lest we try to stop another CPU's event.
2903 if (READ_ONCE(event->oncpu) != smp_processor_id())
2904 return -EAGAIN;
2906 event->pmu->stop(event, PERF_EF_UPDATE);
2909 * May race with the actual stop (through perf_pmu_output_stop()),
2910 * but it is only used for events with AUX ring buffer, and such
2911 * events will refuse to restart because of rb::aux_mmap_count==0,
2912 * see comments in perf_aux_output_begin().
2914 * Since this is happening on an event-local CPU, no trace is lost
2915 * while restarting.
2917 if (sd->restart)
2918 event->pmu->start(event, 0);
2920 return 0;
2923 static int perf_event_stop(struct perf_event *event, int restart)
2925 struct stop_event_data sd = {
2926 .event = event,
2927 .restart = restart,
2929 int ret = 0;
2931 do {
2932 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2933 return 0;
2935 /* matches smp_wmb() in event_sched_in() */
2936 smp_rmb();
2939 * We only want to restart ACTIVE events, so if the event goes
2940 * inactive here (event->oncpu==-1), there's nothing more to do;
2941 * fall through with ret==-ENXIO.
2943 ret = cpu_function_call(READ_ONCE(event->oncpu),
2944 __perf_event_stop, &sd);
2945 } while (ret == -EAGAIN);
2947 return ret;
2951 * In order to contain the amount of racy and tricky in the address filter
2952 * configuration management, it is a two part process:
2954 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2955 * we update the addresses of corresponding vmas in
2956 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
2957 * (p2) when an event is scheduled in (pmu::add), it calls
2958 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2959 * if the generation has changed since the previous call.
2961 * If (p1) happens while the event is active, we restart it to force (p2).
2963 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2964 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2965 * ioctl;
2966 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2967 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2968 * for reading;
2969 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2970 * of exec.
2972 void perf_event_addr_filters_sync(struct perf_event *event)
2974 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2976 if (!has_addr_filter(event))
2977 return;
2979 raw_spin_lock(&ifh->lock);
2980 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2981 event->pmu->addr_filters_sync(event);
2982 event->hw.addr_filters_gen = event->addr_filters_gen;
2984 raw_spin_unlock(&ifh->lock);
2986 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2988 static int _perf_event_refresh(struct perf_event *event, int refresh)
2991 * not supported on inherited events
2993 if (event->attr.inherit || !is_sampling_event(event))
2994 return -EINVAL;
2996 atomic_add(refresh, &event->event_limit);
2997 _perf_event_enable(event);
2999 return 0;
3003 * See perf_event_disable()
3005 int perf_event_refresh(struct perf_event *event, int refresh)
3007 struct perf_event_context *ctx;
3008 int ret;
3010 ctx = perf_event_ctx_lock(event);
3011 ret = _perf_event_refresh(event, refresh);
3012 perf_event_ctx_unlock(event, ctx);
3014 return ret;
3016 EXPORT_SYMBOL_GPL(perf_event_refresh);
3018 static int perf_event_modify_breakpoint(struct perf_event *bp,
3019 struct perf_event_attr *attr)
3021 int err;
3023 _perf_event_disable(bp);
3025 err = modify_user_hw_breakpoint_check(bp, attr, true);
3027 if (!bp->attr.disabled)
3028 _perf_event_enable(bp);
3030 return err;
3033 static int perf_event_modify_attr(struct perf_event *event,
3034 struct perf_event_attr *attr)
3036 if (event->attr.type != attr->type)
3037 return -EINVAL;
3039 switch (event->attr.type) {
3040 case PERF_TYPE_BREAKPOINT:
3041 return perf_event_modify_breakpoint(event, attr);
3042 default:
3043 /* Place holder for future additions. */
3044 return -EOPNOTSUPP;
3048 static void ctx_sched_out(struct perf_event_context *ctx,
3049 struct perf_cpu_context *cpuctx,
3050 enum event_type_t event_type)
3052 struct perf_event *event, *tmp;
3053 int is_active = ctx->is_active;
3055 lockdep_assert_held(&ctx->lock);
3057 if (likely(!ctx->nr_events)) {
3059 * See __perf_remove_from_context().
3061 WARN_ON_ONCE(ctx->is_active);
3062 if (ctx->task)
3063 WARN_ON_ONCE(cpuctx->task_ctx);
3064 return;
3067 ctx->is_active &= ~event_type;
3068 if (!(ctx->is_active & EVENT_ALL))
3069 ctx->is_active = 0;
3071 if (ctx->task) {
3072 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3073 if (!ctx->is_active)
3074 cpuctx->task_ctx = NULL;
3078 * Always update time if it was set; not only when it changes.
3079 * Otherwise we can 'forget' to update time for any but the last
3080 * context we sched out. For example:
3082 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3083 * ctx_sched_out(.event_type = EVENT_PINNED)
3085 * would only update time for the pinned events.
3087 if (is_active & EVENT_TIME) {
3088 /* update (and stop) ctx time */
3089 update_context_time(ctx);
3090 update_cgrp_time_from_cpuctx(cpuctx);
3093 is_active ^= ctx->is_active; /* changed bits */
3095 if (!ctx->nr_active || !(is_active & EVENT_ALL))
3096 return;
3099 * If we had been multiplexing, no rotations are necessary, now no events
3100 * are active.
3102 ctx->rotate_necessary = 0;
3104 perf_pmu_disable(ctx->pmu);
3105 if (is_active & EVENT_PINNED) {
3106 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3107 group_sched_out(event, cpuctx, ctx);
3110 if (is_active & EVENT_FLEXIBLE) {
3111 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3112 group_sched_out(event, cpuctx, ctx);
3114 perf_pmu_enable(ctx->pmu);
3118 * Test whether two contexts are equivalent, i.e. whether they have both been
3119 * cloned from the same version of the same context.
3121 * Equivalence is measured using a generation number in the context that is
3122 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3123 * and list_del_event().
3125 static int context_equiv(struct perf_event_context *ctx1,
3126 struct perf_event_context *ctx2)
3128 lockdep_assert_held(&ctx1->lock);
3129 lockdep_assert_held(&ctx2->lock);
3131 /* Pinning disables the swap optimization */
3132 if (ctx1->pin_count || ctx2->pin_count)
3133 return 0;
3135 /* If ctx1 is the parent of ctx2 */
3136 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3137 return 1;
3139 /* If ctx2 is the parent of ctx1 */
3140 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3141 return 1;
3144 * If ctx1 and ctx2 have the same parent; we flatten the parent
3145 * hierarchy, see perf_event_init_context().
3147 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3148 ctx1->parent_gen == ctx2->parent_gen)
3149 return 1;
3151 /* Unmatched */
3152 return 0;
3155 static void __perf_event_sync_stat(struct perf_event *event,
3156 struct perf_event *next_event)
3158 u64 value;
3160 if (!event->attr.inherit_stat)
3161 return;
3164 * Update the event value, we cannot use perf_event_read()
3165 * because we're in the middle of a context switch and have IRQs
3166 * disabled, which upsets smp_call_function_single(), however
3167 * we know the event must be on the current CPU, therefore we
3168 * don't need to use it.
3170 if (event->state == PERF_EVENT_STATE_ACTIVE)
3171 event->pmu->read(event);
3173 perf_event_update_time(event);
3176 * In order to keep per-task stats reliable we need to flip the event
3177 * values when we flip the contexts.
3179 value = local64_read(&next_event->count);
3180 value = local64_xchg(&event->count, value);
3181 local64_set(&next_event->count, value);
3183 swap(event->total_time_enabled, next_event->total_time_enabled);
3184 swap(event->total_time_running, next_event->total_time_running);
3187 * Since we swizzled the values, update the user visible data too.
3189 perf_event_update_userpage(event);
3190 perf_event_update_userpage(next_event);
3193 static void perf_event_sync_stat(struct perf_event_context *ctx,
3194 struct perf_event_context *next_ctx)
3196 struct perf_event *event, *next_event;
3198 if (!ctx->nr_stat)
3199 return;
3201 update_context_time(ctx);
3203 event = list_first_entry(&ctx->event_list,
3204 struct perf_event, event_entry);
3206 next_event = list_first_entry(&next_ctx->event_list,
3207 struct perf_event, event_entry);
3209 while (&event->event_entry != &ctx->event_list &&
3210 &next_event->event_entry != &next_ctx->event_list) {
3212 __perf_event_sync_stat(event, next_event);
3214 event = list_next_entry(event, event_entry);
3215 next_event = list_next_entry(next_event, event_entry);
3219 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3220 struct task_struct *next)
3222 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3223 struct perf_event_context *next_ctx;
3224 struct perf_event_context *parent, *next_parent;
3225 struct perf_cpu_context *cpuctx;
3226 int do_switch = 1;
3228 if (likely(!ctx))
3229 return;
3231 cpuctx = __get_cpu_context(ctx);
3232 if (!cpuctx->task_ctx)
3233 return;
3235 rcu_read_lock();
3236 next_ctx = next->perf_event_ctxp[ctxn];
3237 if (!next_ctx)
3238 goto unlock;
3240 parent = rcu_dereference(ctx->parent_ctx);
3241 next_parent = rcu_dereference(next_ctx->parent_ctx);
3243 /* If neither context have a parent context; they cannot be clones. */
3244 if (!parent && !next_parent)
3245 goto unlock;
3247 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3249 * Looks like the two contexts are clones, so we might be
3250 * able to optimize the context switch. We lock both
3251 * contexts and check that they are clones under the
3252 * lock (including re-checking that neither has been
3253 * uncloned in the meantime). It doesn't matter which
3254 * order we take the locks because no other cpu could
3255 * be trying to lock both of these tasks.
3257 raw_spin_lock(&ctx->lock);
3258 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3259 if (context_equiv(ctx, next_ctx)) {
3260 struct pmu *pmu = ctx->pmu;
3262 WRITE_ONCE(ctx->task, next);
3263 WRITE_ONCE(next_ctx->task, task);
3266 * PMU specific parts of task perf context can require
3267 * additional synchronization. As an example of such
3268 * synchronization see implementation details of Intel
3269 * LBR call stack data profiling;
3271 if (pmu->swap_task_ctx)
3272 pmu->swap_task_ctx(ctx, next_ctx);
3273 else
3274 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3277 * RCU_INIT_POINTER here is safe because we've not
3278 * modified the ctx and the above modification of
3279 * ctx->task and ctx->task_ctx_data are immaterial
3280 * since those values are always verified under
3281 * ctx->lock which we're now holding.
3283 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3284 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3286 do_switch = 0;
3288 perf_event_sync_stat(ctx, next_ctx);
3290 raw_spin_unlock(&next_ctx->lock);
3291 raw_spin_unlock(&ctx->lock);
3293 unlock:
3294 rcu_read_unlock();
3296 if (do_switch) {
3297 raw_spin_lock(&ctx->lock);
3298 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3299 raw_spin_unlock(&ctx->lock);
3303 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3305 void perf_sched_cb_dec(struct pmu *pmu)
3307 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3309 this_cpu_dec(perf_sched_cb_usages);
3311 if (!--cpuctx->sched_cb_usage)
3312 list_del(&cpuctx->sched_cb_entry);
3316 void perf_sched_cb_inc(struct pmu *pmu)
3318 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3320 if (!cpuctx->sched_cb_usage++)
3321 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3323 this_cpu_inc(perf_sched_cb_usages);
3327 * This function provides the context switch callback to the lower code
3328 * layer. It is invoked ONLY when the context switch callback is enabled.
3330 * This callback is relevant even to per-cpu events; for example multi event
3331 * PEBS requires this to provide PID/TID information. This requires we flush
3332 * all queued PEBS records before we context switch to a new task.
3334 static void perf_pmu_sched_task(struct task_struct *prev,
3335 struct task_struct *next,
3336 bool sched_in)
3338 struct perf_cpu_context *cpuctx;
3339 struct pmu *pmu;
3341 if (prev == next)
3342 return;
3344 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3345 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3347 if (WARN_ON_ONCE(!pmu->sched_task))
3348 continue;
3350 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3351 perf_pmu_disable(pmu);
3353 pmu->sched_task(cpuctx->task_ctx, sched_in);
3355 perf_pmu_enable(pmu);
3356 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3360 static void perf_event_switch(struct task_struct *task,
3361 struct task_struct *next_prev, bool sched_in);
3363 #define for_each_task_context_nr(ctxn) \
3364 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3367 * Called from scheduler to remove the events of the current task,
3368 * with interrupts disabled.
3370 * We stop each event and update the event value in event->count.
3372 * This does not protect us against NMI, but disable()
3373 * sets the disabled bit in the control field of event _before_
3374 * accessing the event control register. If a NMI hits, then it will
3375 * not restart the event.
3377 void __perf_event_task_sched_out(struct task_struct *task,
3378 struct task_struct *next)
3380 int ctxn;
3382 if (__this_cpu_read(perf_sched_cb_usages))
3383 perf_pmu_sched_task(task, next, false);
3385 if (atomic_read(&nr_switch_events))
3386 perf_event_switch(task, next, false);
3388 for_each_task_context_nr(ctxn)
3389 perf_event_context_sched_out(task, ctxn, next);
3392 * if cgroup events exist on this CPU, then we need
3393 * to check if we have to switch out PMU state.
3394 * cgroup event are system-wide mode only
3396 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3397 perf_cgroup_sched_out(task, next);
3401 * Called with IRQs disabled
3403 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3404 enum event_type_t event_type)
3406 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3409 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3410 int (*func)(struct perf_event *, void *), void *data)
3412 struct perf_event **evt, *evt1, *evt2;
3413 int ret;
3415 evt1 = perf_event_groups_first(groups, -1);
3416 evt2 = perf_event_groups_first(groups, cpu);
3418 while (evt1 || evt2) {
3419 if (evt1 && evt2) {
3420 if (evt1->group_index < evt2->group_index)
3421 evt = &evt1;
3422 else
3423 evt = &evt2;
3424 } else if (evt1) {
3425 evt = &evt1;
3426 } else {
3427 evt = &evt2;
3430 ret = func(*evt, data);
3431 if (ret)
3432 return ret;
3434 *evt = perf_event_groups_next(*evt);
3437 return 0;
3440 static int merge_sched_in(struct perf_event *event, void *data)
3442 struct perf_event_context *ctx = event->ctx;
3443 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3444 int *can_add_hw = data;
3446 if (event->state <= PERF_EVENT_STATE_OFF)
3447 return 0;
3449 if (!event_filter_match(event))
3450 return 0;
3452 if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3453 if (!group_sched_in(event, cpuctx, ctx))
3454 list_add_tail(&event->active_list, get_event_list(event));
3457 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3458 if (event->attr.pinned) {
3459 perf_cgroup_event_disable(event, ctx);
3460 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3463 *can_add_hw = 0;
3464 ctx->rotate_necessary = 1;
3467 return 0;
3470 static void
3471 ctx_pinned_sched_in(struct perf_event_context *ctx,
3472 struct perf_cpu_context *cpuctx)
3474 int can_add_hw = 1;
3476 visit_groups_merge(&ctx->pinned_groups,
3477 smp_processor_id(),
3478 merge_sched_in, &can_add_hw);
3481 static void
3482 ctx_flexible_sched_in(struct perf_event_context *ctx,
3483 struct perf_cpu_context *cpuctx)
3485 int can_add_hw = 1;
3487 visit_groups_merge(&ctx->flexible_groups,
3488 smp_processor_id(),
3489 merge_sched_in, &can_add_hw);
3492 static void
3493 ctx_sched_in(struct perf_event_context *ctx,
3494 struct perf_cpu_context *cpuctx,
3495 enum event_type_t event_type,
3496 struct task_struct *task)
3498 int is_active = ctx->is_active;
3499 u64 now;
3501 lockdep_assert_held(&ctx->lock);
3503 if (likely(!ctx->nr_events))
3504 return;
3506 ctx->is_active |= (event_type | EVENT_TIME);
3507 if (ctx->task) {
3508 if (!is_active)
3509 cpuctx->task_ctx = ctx;
3510 else
3511 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3514 is_active ^= ctx->is_active; /* changed bits */
3516 if (is_active & EVENT_TIME) {
3517 /* start ctx time */
3518 now = perf_clock();
3519 ctx->timestamp = now;
3520 perf_cgroup_set_timestamp(task, ctx);
3524 * First go through the list and put on any pinned groups
3525 * in order to give them the best chance of going on.
3527 if (is_active & EVENT_PINNED)
3528 ctx_pinned_sched_in(ctx, cpuctx);
3530 /* Then walk through the lower prio flexible groups */
3531 if (is_active & EVENT_FLEXIBLE)
3532 ctx_flexible_sched_in(ctx, cpuctx);
3535 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3536 enum event_type_t event_type,
3537 struct task_struct *task)
3539 struct perf_event_context *ctx = &cpuctx->ctx;
3541 ctx_sched_in(ctx, cpuctx, event_type, task);
3544 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3545 struct task_struct *task)
3547 struct perf_cpu_context *cpuctx;
3549 cpuctx = __get_cpu_context(ctx);
3550 if (cpuctx->task_ctx == ctx)
3551 return;
3553 perf_ctx_lock(cpuctx, ctx);
3555 * We must check ctx->nr_events while holding ctx->lock, such
3556 * that we serialize against perf_install_in_context().
3558 if (!ctx->nr_events)
3559 goto unlock;
3561 perf_pmu_disable(ctx->pmu);
3563 * We want to keep the following priority order:
3564 * cpu pinned (that don't need to move), task pinned,
3565 * cpu flexible, task flexible.
3567 * However, if task's ctx is not carrying any pinned
3568 * events, no need to flip the cpuctx's events around.
3570 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3571 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3572 perf_event_sched_in(cpuctx, ctx, task);
3573 perf_pmu_enable(ctx->pmu);
3575 unlock:
3576 perf_ctx_unlock(cpuctx, ctx);
3580 * Called from scheduler to add the events of the current task
3581 * with interrupts disabled.
3583 * We restore the event value and then enable it.
3585 * This does not protect us against NMI, but enable()
3586 * sets the enabled bit in the control field of event _before_
3587 * accessing the event control register. If a NMI hits, then it will
3588 * keep the event running.
3590 void __perf_event_task_sched_in(struct task_struct *prev,
3591 struct task_struct *task)
3593 struct perf_event_context *ctx;
3594 int ctxn;
3597 * If cgroup events exist on this CPU, then we need to check if we have
3598 * to switch in PMU state; cgroup event are system-wide mode only.
3600 * Since cgroup events are CPU events, we must schedule these in before
3601 * we schedule in the task events.
3603 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3604 perf_cgroup_sched_in(prev, task);
3606 for_each_task_context_nr(ctxn) {
3607 ctx = task->perf_event_ctxp[ctxn];
3608 if (likely(!ctx))
3609 continue;
3611 perf_event_context_sched_in(ctx, task);
3614 if (atomic_read(&nr_switch_events))
3615 perf_event_switch(task, prev, true);
3617 if (__this_cpu_read(perf_sched_cb_usages))
3618 perf_pmu_sched_task(prev, task, true);
3621 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3623 u64 frequency = event->attr.sample_freq;
3624 u64 sec = NSEC_PER_SEC;
3625 u64 divisor, dividend;
3627 int count_fls, nsec_fls, frequency_fls, sec_fls;
3629 count_fls = fls64(count);
3630 nsec_fls = fls64(nsec);
3631 frequency_fls = fls64(frequency);
3632 sec_fls = 30;
3635 * We got @count in @nsec, with a target of sample_freq HZ
3636 * the target period becomes:
3638 * @count * 10^9
3639 * period = -------------------
3640 * @nsec * sample_freq
3645 * Reduce accuracy by one bit such that @a and @b converge
3646 * to a similar magnitude.
3648 #define REDUCE_FLS(a, b) \
3649 do { \
3650 if (a##_fls > b##_fls) { \
3651 a >>= 1; \
3652 a##_fls--; \
3653 } else { \
3654 b >>= 1; \
3655 b##_fls--; \
3657 } while (0)
3660 * Reduce accuracy until either term fits in a u64, then proceed with
3661 * the other, so that finally we can do a u64/u64 division.
3663 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3664 REDUCE_FLS(nsec, frequency);
3665 REDUCE_FLS(sec, count);
3668 if (count_fls + sec_fls > 64) {
3669 divisor = nsec * frequency;
3671 while (count_fls + sec_fls > 64) {
3672 REDUCE_FLS(count, sec);
3673 divisor >>= 1;
3676 dividend = count * sec;
3677 } else {
3678 dividend = count * sec;
3680 while (nsec_fls + frequency_fls > 64) {
3681 REDUCE_FLS(nsec, frequency);
3682 dividend >>= 1;
3685 divisor = nsec * frequency;
3688 if (!divisor)
3689 return dividend;
3691 return div64_u64(dividend, divisor);
3694 static DEFINE_PER_CPU(int, perf_throttled_count);
3695 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3697 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3699 struct hw_perf_event *hwc = &event->hw;
3700 s64 period, sample_period;
3701 s64 delta;
3703 period = perf_calculate_period(event, nsec, count);
3705 delta = (s64)(period - hwc->sample_period);
3706 delta = (delta + 7) / 8; /* low pass filter */
3708 sample_period = hwc->sample_period + delta;
3710 if (!sample_period)
3711 sample_period = 1;
3713 hwc->sample_period = sample_period;
3715 if (local64_read(&hwc->period_left) > 8*sample_period) {
3716 if (disable)
3717 event->pmu->stop(event, PERF_EF_UPDATE);
3719 local64_set(&hwc->period_left, 0);
3721 if (disable)
3722 event->pmu->start(event, PERF_EF_RELOAD);
3727 * combine freq adjustment with unthrottling to avoid two passes over the
3728 * events. At the same time, make sure, having freq events does not change
3729 * the rate of unthrottling as that would introduce bias.
3731 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3732 int needs_unthr)
3734 struct perf_event *event;
3735 struct hw_perf_event *hwc;
3736 u64 now, period = TICK_NSEC;
3737 s64 delta;
3740 * only need to iterate over all events iff:
3741 * - context have events in frequency mode (needs freq adjust)
3742 * - there are events to unthrottle on this cpu
3744 if (!(ctx->nr_freq || needs_unthr))
3745 return;
3747 raw_spin_lock(&ctx->lock);
3748 perf_pmu_disable(ctx->pmu);
3750 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3751 if (event->state != PERF_EVENT_STATE_ACTIVE)
3752 continue;
3754 if (!event_filter_match(event))
3755 continue;
3757 perf_pmu_disable(event->pmu);
3759 hwc = &event->hw;
3761 if (hwc->interrupts == MAX_INTERRUPTS) {
3762 hwc->interrupts = 0;
3763 perf_log_throttle(event, 1);
3764 event->pmu->start(event, 0);
3767 if (!event->attr.freq || !event->attr.sample_freq)
3768 goto next;
3771 * stop the event and update event->count
3773 event->pmu->stop(event, PERF_EF_UPDATE);
3775 now = local64_read(&event->count);
3776 delta = now - hwc->freq_count_stamp;
3777 hwc->freq_count_stamp = now;
3780 * restart the event
3781 * reload only if value has changed
3782 * we have stopped the event so tell that
3783 * to perf_adjust_period() to avoid stopping it
3784 * twice.
3786 if (delta > 0)
3787 perf_adjust_period(event, period, delta, false);
3789 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3790 next:
3791 perf_pmu_enable(event->pmu);
3794 perf_pmu_enable(ctx->pmu);
3795 raw_spin_unlock(&ctx->lock);
3799 * Move @event to the tail of the @ctx's elegible events.
3801 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3804 * Rotate the first entry last of non-pinned groups. Rotation might be
3805 * disabled by the inheritance code.
3807 if (ctx->rotate_disable)
3808 return;
3810 perf_event_groups_delete(&ctx->flexible_groups, event);
3811 perf_event_groups_insert(&ctx->flexible_groups, event);
3814 /* pick an event from the flexible_groups to rotate */
3815 static inline struct perf_event *
3816 ctx_event_to_rotate(struct perf_event_context *ctx)
3818 struct perf_event *event;
3820 /* pick the first active flexible event */
3821 event = list_first_entry_or_null(&ctx->flexible_active,
3822 struct perf_event, active_list);
3824 /* if no active flexible event, pick the first event */
3825 if (!event) {
3826 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3827 typeof(*event), group_node);
3830 return event;
3833 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3835 struct perf_event *cpu_event = NULL, *task_event = NULL;
3836 struct perf_event_context *task_ctx = NULL;
3837 int cpu_rotate, task_rotate;
3840 * Since we run this from IRQ context, nobody can install new
3841 * events, thus the event count values are stable.
3844 cpu_rotate = cpuctx->ctx.rotate_necessary;
3845 task_ctx = cpuctx->task_ctx;
3846 task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3848 if (!(cpu_rotate || task_rotate))
3849 return false;
3851 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3852 perf_pmu_disable(cpuctx->ctx.pmu);
3854 if (task_rotate)
3855 task_event = ctx_event_to_rotate(task_ctx);
3856 if (cpu_rotate)
3857 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3860 * As per the order given at ctx_resched() first 'pop' task flexible
3861 * and then, if needed CPU flexible.
3863 if (task_event || (task_ctx && cpu_event))
3864 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3865 if (cpu_event)
3866 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3868 if (task_event)
3869 rotate_ctx(task_ctx, task_event);
3870 if (cpu_event)
3871 rotate_ctx(&cpuctx->ctx, cpu_event);
3873 perf_event_sched_in(cpuctx, task_ctx, current);
3875 perf_pmu_enable(cpuctx->ctx.pmu);
3876 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3878 return true;
3881 void perf_event_task_tick(void)
3883 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3884 struct perf_event_context *ctx, *tmp;
3885 int throttled;
3887 lockdep_assert_irqs_disabled();
3889 __this_cpu_inc(perf_throttled_seq);
3890 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3891 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3893 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3894 perf_adjust_freq_unthr_context(ctx, throttled);
3897 static int event_enable_on_exec(struct perf_event *event,
3898 struct perf_event_context *ctx)
3900 if (!event->attr.enable_on_exec)
3901 return 0;
3903 event->attr.enable_on_exec = 0;
3904 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3905 return 0;
3907 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3909 return 1;
3913 * Enable all of a task's events that have been marked enable-on-exec.
3914 * This expects task == current.
3916 static void perf_event_enable_on_exec(int ctxn)
3918 struct perf_event_context *ctx, *clone_ctx = NULL;
3919 enum event_type_t event_type = 0;
3920 struct perf_cpu_context *cpuctx;
3921 struct perf_event *event;
3922 unsigned long flags;
3923 int enabled = 0;
3925 local_irq_save(flags);
3926 ctx = current->perf_event_ctxp[ctxn];
3927 if (!ctx || !ctx->nr_events)
3928 goto out;
3930 cpuctx = __get_cpu_context(ctx);
3931 perf_ctx_lock(cpuctx, ctx);
3932 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3933 list_for_each_entry(event, &ctx->event_list, event_entry) {
3934 enabled |= event_enable_on_exec(event, ctx);
3935 event_type |= get_event_type(event);
3939 * Unclone and reschedule this context if we enabled any event.
3941 if (enabled) {
3942 clone_ctx = unclone_ctx(ctx);
3943 ctx_resched(cpuctx, ctx, event_type);
3944 } else {
3945 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3947 perf_ctx_unlock(cpuctx, ctx);
3949 out:
3950 local_irq_restore(flags);
3952 if (clone_ctx)
3953 put_ctx(clone_ctx);
3956 struct perf_read_data {
3957 struct perf_event *event;
3958 bool group;
3959 int ret;
3962 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3964 u16 local_pkg, event_pkg;
3966 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3967 int local_cpu = smp_processor_id();
3969 event_pkg = topology_physical_package_id(event_cpu);
3970 local_pkg = topology_physical_package_id(local_cpu);
3972 if (event_pkg == local_pkg)
3973 return local_cpu;
3976 return event_cpu;
3980 * Cross CPU call to read the hardware event
3982 static void __perf_event_read(void *info)
3984 struct perf_read_data *data = info;
3985 struct perf_event *sub, *event = data->event;
3986 struct perf_event_context *ctx = event->ctx;
3987 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3988 struct pmu *pmu = event->pmu;
3991 * If this is a task context, we need to check whether it is
3992 * the current task context of this cpu. If not it has been
3993 * scheduled out before the smp call arrived. In that case
3994 * event->count would have been updated to a recent sample
3995 * when the event was scheduled out.
3997 if (ctx->task && cpuctx->task_ctx != ctx)
3998 return;
4000 raw_spin_lock(&ctx->lock);
4001 if (ctx->is_active & EVENT_TIME) {
4002 update_context_time(ctx);
4003 update_cgrp_time_from_event(event);
4006 perf_event_update_time(event);
4007 if (data->group)
4008 perf_event_update_sibling_time(event);
4010 if (event->state != PERF_EVENT_STATE_ACTIVE)
4011 goto unlock;
4013 if (!data->group) {
4014 pmu->read(event);
4015 data->ret = 0;
4016 goto unlock;
4019 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4021 pmu->read(event);
4023 for_each_sibling_event(sub, event) {
4024 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4026 * Use sibling's PMU rather than @event's since
4027 * sibling could be on different (eg: software) PMU.
4029 sub->pmu->read(sub);
4033 data->ret = pmu->commit_txn(pmu);
4035 unlock:
4036 raw_spin_unlock(&ctx->lock);
4039 static inline u64 perf_event_count(struct perf_event *event)
4041 return local64_read(&event->count) + atomic64_read(&event->child_count);
4045 * NMI-safe method to read a local event, that is an event that
4046 * is:
4047 * - either for the current task, or for this CPU
4048 * - does not have inherit set, for inherited task events
4049 * will not be local and we cannot read them atomically
4050 * - must not have a pmu::count method
4052 int perf_event_read_local(struct perf_event *event, u64 *value,
4053 u64 *enabled, u64 *running)
4055 unsigned long flags;
4056 int ret = 0;
4059 * Disabling interrupts avoids all counter scheduling (context
4060 * switches, timer based rotation and IPIs).
4062 local_irq_save(flags);
4065 * It must not be an event with inherit set, we cannot read
4066 * all child counters from atomic context.
4068 if (event->attr.inherit) {
4069 ret = -EOPNOTSUPP;
4070 goto out;
4073 /* If this is a per-task event, it must be for current */
4074 if ((event->attach_state & PERF_ATTACH_TASK) &&
4075 event->hw.target != current) {
4076 ret = -EINVAL;
4077 goto out;
4080 /* If this is a per-CPU event, it must be for this CPU */
4081 if (!(event->attach_state & PERF_ATTACH_TASK) &&
4082 event->cpu != smp_processor_id()) {
4083 ret = -EINVAL;
4084 goto out;
4087 /* If this is a pinned event it must be running on this CPU */
4088 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4089 ret = -EBUSY;
4090 goto out;
4094 * If the event is currently on this CPU, its either a per-task event,
4095 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4096 * oncpu == -1).
4098 if (event->oncpu == smp_processor_id())
4099 event->pmu->read(event);
4101 *value = local64_read(&event->count);
4102 if (enabled || running) {
4103 u64 now = event->shadow_ctx_time + perf_clock();
4104 u64 __enabled, __running;
4106 __perf_update_times(event, now, &__enabled, &__running);
4107 if (enabled)
4108 *enabled = __enabled;
4109 if (running)
4110 *running = __running;
4112 out:
4113 local_irq_restore(flags);
4115 return ret;
4118 static int perf_event_read(struct perf_event *event, bool group)
4120 enum perf_event_state state = READ_ONCE(event->state);
4121 int event_cpu, ret = 0;
4124 * If event is enabled and currently active on a CPU, update the
4125 * value in the event structure:
4127 again:
4128 if (state == PERF_EVENT_STATE_ACTIVE) {
4129 struct perf_read_data data;
4132 * Orders the ->state and ->oncpu loads such that if we see
4133 * ACTIVE we must also see the right ->oncpu.
4135 * Matches the smp_wmb() from event_sched_in().
4137 smp_rmb();
4139 event_cpu = READ_ONCE(event->oncpu);
4140 if ((unsigned)event_cpu >= nr_cpu_ids)
4141 return 0;
4143 data = (struct perf_read_data){
4144 .event = event,
4145 .group = group,
4146 .ret = 0,
4149 preempt_disable();
4150 event_cpu = __perf_event_read_cpu(event, event_cpu);
4153 * Purposely ignore the smp_call_function_single() return
4154 * value.
4156 * If event_cpu isn't a valid CPU it means the event got
4157 * scheduled out and that will have updated the event count.
4159 * Therefore, either way, we'll have an up-to-date event count
4160 * after this.
4162 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4163 preempt_enable();
4164 ret = data.ret;
4166 } else if (state == PERF_EVENT_STATE_INACTIVE) {
4167 struct perf_event_context *ctx = event->ctx;
4168 unsigned long flags;
4170 raw_spin_lock_irqsave(&ctx->lock, flags);
4171 state = event->state;
4172 if (state != PERF_EVENT_STATE_INACTIVE) {
4173 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4174 goto again;
4178 * May read while context is not active (e.g., thread is
4179 * blocked), in that case we cannot update context time
4181 if (ctx->is_active & EVENT_TIME) {
4182 update_context_time(ctx);
4183 update_cgrp_time_from_event(event);
4186 perf_event_update_time(event);
4187 if (group)
4188 perf_event_update_sibling_time(event);
4189 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4192 return ret;
4196 * Initialize the perf_event context in a task_struct:
4198 static void __perf_event_init_context(struct perf_event_context *ctx)
4200 raw_spin_lock_init(&ctx->lock);
4201 mutex_init(&ctx->mutex);
4202 INIT_LIST_HEAD(&ctx->active_ctx_list);
4203 perf_event_groups_init(&ctx->pinned_groups);
4204 perf_event_groups_init(&ctx->flexible_groups);
4205 INIT_LIST_HEAD(&ctx->event_list);
4206 INIT_LIST_HEAD(&ctx->pinned_active);
4207 INIT_LIST_HEAD(&ctx->flexible_active);
4208 refcount_set(&ctx->refcount, 1);
4211 static struct perf_event_context *
4212 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4214 struct perf_event_context *ctx;
4216 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4217 if (!ctx)
4218 return NULL;
4220 __perf_event_init_context(ctx);
4221 if (task)
4222 ctx->task = get_task_struct(task);
4223 ctx->pmu = pmu;
4225 return ctx;
4228 static struct task_struct *
4229 find_lively_task_by_vpid(pid_t vpid)
4231 struct task_struct *task;
4233 rcu_read_lock();
4234 if (!vpid)
4235 task = current;
4236 else
4237 task = find_task_by_vpid(vpid);
4238 if (task)
4239 get_task_struct(task);
4240 rcu_read_unlock();
4242 if (!task)
4243 return ERR_PTR(-ESRCH);
4245 return task;
4249 * Returns a matching context with refcount and pincount.
4251 static struct perf_event_context *
4252 find_get_context(struct pmu *pmu, struct task_struct *task,
4253 struct perf_event *event)
4255 struct perf_event_context *ctx, *clone_ctx = NULL;
4256 struct perf_cpu_context *cpuctx;
4257 void *task_ctx_data = NULL;
4258 unsigned long flags;
4259 int ctxn, err;
4260 int cpu = event->cpu;
4262 if (!task) {
4263 /* Must be root to operate on a CPU event: */
4264 err = perf_allow_cpu(&event->attr);
4265 if (err)
4266 return ERR_PTR(err);
4268 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4269 ctx = &cpuctx->ctx;
4270 get_ctx(ctx);
4271 ++ctx->pin_count;
4273 return ctx;
4276 err = -EINVAL;
4277 ctxn = pmu->task_ctx_nr;
4278 if (ctxn < 0)
4279 goto errout;
4281 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4282 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4283 if (!task_ctx_data) {
4284 err = -ENOMEM;
4285 goto errout;
4289 retry:
4290 ctx = perf_lock_task_context(task, ctxn, &flags);
4291 if (ctx) {
4292 clone_ctx = unclone_ctx(ctx);
4293 ++ctx->pin_count;
4295 if (task_ctx_data && !ctx->task_ctx_data) {
4296 ctx->task_ctx_data = task_ctx_data;
4297 task_ctx_data = NULL;
4299 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4301 if (clone_ctx)
4302 put_ctx(clone_ctx);
4303 } else {
4304 ctx = alloc_perf_context(pmu, task);
4305 err = -ENOMEM;
4306 if (!ctx)
4307 goto errout;
4309 if (task_ctx_data) {
4310 ctx->task_ctx_data = task_ctx_data;
4311 task_ctx_data = NULL;
4314 err = 0;
4315 mutex_lock(&task->perf_event_mutex);
4317 * If it has already passed perf_event_exit_task().
4318 * we must see PF_EXITING, it takes this mutex too.
4320 if (task->flags & PF_EXITING)
4321 err = -ESRCH;
4322 else if (task->perf_event_ctxp[ctxn])
4323 err = -EAGAIN;
4324 else {
4325 get_ctx(ctx);
4326 ++ctx->pin_count;
4327 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4329 mutex_unlock(&task->perf_event_mutex);
4331 if (unlikely(err)) {
4332 put_ctx(ctx);
4334 if (err == -EAGAIN)
4335 goto retry;
4336 goto errout;
4340 kfree(task_ctx_data);
4341 return ctx;
4343 errout:
4344 kfree(task_ctx_data);
4345 return ERR_PTR(err);
4348 static void perf_event_free_filter(struct perf_event *event);
4349 static void perf_event_free_bpf_prog(struct perf_event *event);
4351 static void free_event_rcu(struct rcu_head *head)
4353 struct perf_event *event;
4355 event = container_of(head, struct perf_event, rcu_head);
4356 if (event->ns)
4357 put_pid_ns(event->ns);
4358 perf_event_free_filter(event);
4359 kfree(event);
4362 static void ring_buffer_attach(struct perf_event *event,
4363 struct perf_buffer *rb);
4365 static void detach_sb_event(struct perf_event *event)
4367 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4369 raw_spin_lock(&pel->lock);
4370 list_del_rcu(&event->sb_list);
4371 raw_spin_unlock(&pel->lock);
4374 static bool is_sb_event(struct perf_event *event)
4376 struct perf_event_attr *attr = &event->attr;
4378 if (event->parent)
4379 return false;
4381 if (event->attach_state & PERF_ATTACH_TASK)
4382 return false;
4384 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4385 attr->comm || attr->comm_exec ||
4386 attr->task || attr->ksymbol ||
4387 attr->context_switch ||
4388 attr->bpf_event)
4389 return true;
4390 return false;
4393 static void unaccount_pmu_sb_event(struct perf_event *event)
4395 if (is_sb_event(event))
4396 detach_sb_event(event);
4399 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4401 if (event->parent)
4402 return;
4404 if (is_cgroup_event(event))
4405 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4408 #ifdef CONFIG_NO_HZ_FULL
4409 static DEFINE_SPINLOCK(nr_freq_lock);
4410 #endif
4412 static void unaccount_freq_event_nohz(void)
4414 #ifdef CONFIG_NO_HZ_FULL
4415 spin_lock(&nr_freq_lock);
4416 if (atomic_dec_and_test(&nr_freq_events))
4417 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4418 spin_unlock(&nr_freq_lock);
4419 #endif
4422 static void unaccount_freq_event(void)
4424 if (tick_nohz_full_enabled())
4425 unaccount_freq_event_nohz();
4426 else
4427 atomic_dec(&nr_freq_events);
4430 static void unaccount_event(struct perf_event *event)
4432 bool dec = false;
4434 if (event->parent)
4435 return;
4437 if (event->attach_state & PERF_ATTACH_TASK)
4438 dec = true;
4439 if (event->attr.mmap || event->attr.mmap_data)
4440 atomic_dec(&nr_mmap_events);
4441 if (event->attr.comm)
4442 atomic_dec(&nr_comm_events);
4443 if (event->attr.namespaces)
4444 atomic_dec(&nr_namespaces_events);
4445 if (event->attr.task)
4446 atomic_dec(&nr_task_events);
4447 if (event->attr.freq)
4448 unaccount_freq_event();
4449 if (event->attr.context_switch) {
4450 dec = true;
4451 atomic_dec(&nr_switch_events);
4453 if (is_cgroup_event(event))
4454 dec = true;
4455 if (has_branch_stack(event))
4456 dec = true;
4457 if (event->attr.ksymbol)
4458 atomic_dec(&nr_ksymbol_events);
4459 if (event->attr.bpf_event)
4460 atomic_dec(&nr_bpf_events);
4462 if (dec) {
4463 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4464 schedule_delayed_work(&perf_sched_work, HZ);
4467 unaccount_event_cpu(event, event->cpu);
4469 unaccount_pmu_sb_event(event);
4472 static void perf_sched_delayed(struct work_struct *work)
4474 mutex_lock(&perf_sched_mutex);
4475 if (atomic_dec_and_test(&perf_sched_count))
4476 static_branch_disable(&perf_sched_events);
4477 mutex_unlock(&perf_sched_mutex);
4481 * The following implement mutual exclusion of events on "exclusive" pmus
4482 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4483 * at a time, so we disallow creating events that might conflict, namely:
4485 * 1) cpu-wide events in the presence of per-task events,
4486 * 2) per-task events in the presence of cpu-wide events,
4487 * 3) two matching events on the same context.
4489 * The former two cases are handled in the allocation path (perf_event_alloc(),
4490 * _free_event()), the latter -- before the first perf_install_in_context().
4492 static int exclusive_event_init(struct perf_event *event)
4494 struct pmu *pmu = event->pmu;
4496 if (!is_exclusive_pmu(pmu))
4497 return 0;
4500 * Prevent co-existence of per-task and cpu-wide events on the
4501 * same exclusive pmu.
4503 * Negative pmu::exclusive_cnt means there are cpu-wide
4504 * events on this "exclusive" pmu, positive means there are
4505 * per-task events.
4507 * Since this is called in perf_event_alloc() path, event::ctx
4508 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4509 * to mean "per-task event", because unlike other attach states it
4510 * never gets cleared.
4512 if (event->attach_state & PERF_ATTACH_TASK) {
4513 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4514 return -EBUSY;
4515 } else {
4516 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4517 return -EBUSY;
4520 return 0;
4523 static void exclusive_event_destroy(struct perf_event *event)
4525 struct pmu *pmu = event->pmu;
4527 if (!is_exclusive_pmu(pmu))
4528 return;
4530 /* see comment in exclusive_event_init() */
4531 if (event->attach_state & PERF_ATTACH_TASK)
4532 atomic_dec(&pmu->exclusive_cnt);
4533 else
4534 atomic_inc(&pmu->exclusive_cnt);
4537 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4539 if ((e1->pmu == e2->pmu) &&
4540 (e1->cpu == e2->cpu ||
4541 e1->cpu == -1 ||
4542 e2->cpu == -1))
4543 return true;
4544 return false;
4547 static bool exclusive_event_installable(struct perf_event *event,
4548 struct perf_event_context *ctx)
4550 struct perf_event *iter_event;
4551 struct pmu *pmu = event->pmu;
4553 lockdep_assert_held(&ctx->mutex);
4555 if (!is_exclusive_pmu(pmu))
4556 return true;
4558 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4559 if (exclusive_event_match(iter_event, event))
4560 return false;
4563 return true;
4566 static void perf_addr_filters_splice(struct perf_event *event,
4567 struct list_head *head);
4569 static void _free_event(struct perf_event *event)
4571 irq_work_sync(&event->pending);
4573 unaccount_event(event);
4575 security_perf_event_free(event);
4577 if (event->rb) {
4579 * Can happen when we close an event with re-directed output.
4581 * Since we have a 0 refcount, perf_mmap_close() will skip
4582 * over us; possibly making our ring_buffer_put() the last.
4584 mutex_lock(&event->mmap_mutex);
4585 ring_buffer_attach(event, NULL);
4586 mutex_unlock(&event->mmap_mutex);
4589 if (is_cgroup_event(event))
4590 perf_detach_cgroup(event);
4592 if (!event->parent) {
4593 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4594 put_callchain_buffers();
4597 perf_event_free_bpf_prog(event);
4598 perf_addr_filters_splice(event, NULL);
4599 kfree(event->addr_filter_ranges);
4601 if (event->destroy)
4602 event->destroy(event);
4605 * Must be after ->destroy(), due to uprobe_perf_close() using
4606 * hw.target.
4608 if (event->hw.target)
4609 put_task_struct(event->hw.target);
4612 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4613 * all task references must be cleaned up.
4615 if (event->ctx)
4616 put_ctx(event->ctx);
4618 exclusive_event_destroy(event);
4619 module_put(event->pmu->module);
4621 call_rcu(&event->rcu_head, free_event_rcu);
4625 * Used to free events which have a known refcount of 1, such as in error paths
4626 * where the event isn't exposed yet and inherited events.
4628 static void free_event(struct perf_event *event)
4630 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4631 "unexpected event refcount: %ld; ptr=%p\n",
4632 atomic_long_read(&event->refcount), event)) {
4633 /* leak to avoid use-after-free */
4634 return;
4637 _free_event(event);
4641 * Remove user event from the owner task.
4643 static void perf_remove_from_owner(struct perf_event *event)
4645 struct task_struct *owner;
4647 rcu_read_lock();
4649 * Matches the smp_store_release() in perf_event_exit_task(). If we
4650 * observe !owner it means the list deletion is complete and we can
4651 * indeed free this event, otherwise we need to serialize on
4652 * owner->perf_event_mutex.
4654 owner = READ_ONCE(event->owner);
4655 if (owner) {
4657 * Since delayed_put_task_struct() also drops the last
4658 * task reference we can safely take a new reference
4659 * while holding the rcu_read_lock().
4661 get_task_struct(owner);
4663 rcu_read_unlock();
4665 if (owner) {
4667 * If we're here through perf_event_exit_task() we're already
4668 * holding ctx->mutex which would be an inversion wrt. the
4669 * normal lock order.
4671 * However we can safely take this lock because its the child
4672 * ctx->mutex.
4674 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4677 * We have to re-check the event->owner field, if it is cleared
4678 * we raced with perf_event_exit_task(), acquiring the mutex
4679 * ensured they're done, and we can proceed with freeing the
4680 * event.
4682 if (event->owner) {
4683 list_del_init(&event->owner_entry);
4684 smp_store_release(&event->owner, NULL);
4686 mutex_unlock(&owner->perf_event_mutex);
4687 put_task_struct(owner);
4691 static void put_event(struct perf_event *event)
4693 if (!atomic_long_dec_and_test(&event->refcount))
4694 return;
4696 _free_event(event);
4700 * Kill an event dead; while event:refcount will preserve the event
4701 * object, it will not preserve its functionality. Once the last 'user'
4702 * gives up the object, we'll destroy the thing.
4704 int perf_event_release_kernel(struct perf_event *event)
4706 struct perf_event_context *ctx = event->ctx;
4707 struct perf_event *child, *tmp;
4708 LIST_HEAD(free_list);
4711 * If we got here through err_file: fput(event_file); we will not have
4712 * attached to a context yet.
4714 if (!ctx) {
4715 WARN_ON_ONCE(event->attach_state &
4716 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4717 goto no_ctx;
4720 if (!is_kernel_event(event))
4721 perf_remove_from_owner(event);
4723 ctx = perf_event_ctx_lock(event);
4724 WARN_ON_ONCE(ctx->parent_ctx);
4725 perf_remove_from_context(event, DETACH_GROUP);
4727 raw_spin_lock_irq(&ctx->lock);
4729 * Mark this event as STATE_DEAD, there is no external reference to it
4730 * anymore.
4732 * Anybody acquiring event->child_mutex after the below loop _must_
4733 * also see this, most importantly inherit_event() which will avoid
4734 * placing more children on the list.
4736 * Thus this guarantees that we will in fact observe and kill _ALL_
4737 * child events.
4739 event->state = PERF_EVENT_STATE_DEAD;
4740 raw_spin_unlock_irq(&ctx->lock);
4742 perf_event_ctx_unlock(event, ctx);
4744 again:
4745 mutex_lock(&event->child_mutex);
4746 list_for_each_entry(child, &event->child_list, child_list) {
4749 * Cannot change, child events are not migrated, see the
4750 * comment with perf_event_ctx_lock_nested().
4752 ctx = READ_ONCE(child->ctx);
4754 * Since child_mutex nests inside ctx::mutex, we must jump
4755 * through hoops. We start by grabbing a reference on the ctx.
4757 * Since the event cannot get freed while we hold the
4758 * child_mutex, the context must also exist and have a !0
4759 * reference count.
4761 get_ctx(ctx);
4764 * Now that we have a ctx ref, we can drop child_mutex, and
4765 * acquire ctx::mutex without fear of it going away. Then we
4766 * can re-acquire child_mutex.
4768 mutex_unlock(&event->child_mutex);
4769 mutex_lock(&ctx->mutex);
4770 mutex_lock(&event->child_mutex);
4773 * Now that we hold ctx::mutex and child_mutex, revalidate our
4774 * state, if child is still the first entry, it didn't get freed
4775 * and we can continue doing so.
4777 tmp = list_first_entry_or_null(&event->child_list,
4778 struct perf_event, child_list);
4779 if (tmp == child) {
4780 perf_remove_from_context(child, DETACH_GROUP);
4781 list_move(&child->child_list, &free_list);
4783 * This matches the refcount bump in inherit_event();
4784 * this can't be the last reference.
4786 put_event(event);
4789 mutex_unlock(&event->child_mutex);
4790 mutex_unlock(&ctx->mutex);
4791 put_ctx(ctx);
4792 goto again;
4794 mutex_unlock(&event->child_mutex);
4796 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4797 void *var = &child->ctx->refcount;
4799 list_del(&child->child_list);
4800 free_event(child);
4803 * Wake any perf_event_free_task() waiting for this event to be
4804 * freed.
4806 smp_mb(); /* pairs with wait_var_event() */
4807 wake_up_var(var);
4810 no_ctx:
4811 put_event(event); /* Must be the 'last' reference */
4812 return 0;
4814 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4817 * Called when the last reference to the file is gone.
4819 static int perf_release(struct inode *inode, struct file *file)
4821 perf_event_release_kernel(file->private_data);
4822 return 0;
4825 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4827 struct perf_event *child;
4828 u64 total = 0;
4830 *enabled = 0;
4831 *running = 0;
4833 mutex_lock(&event->child_mutex);
4835 (void)perf_event_read(event, false);
4836 total += perf_event_count(event);
4838 *enabled += event->total_time_enabled +
4839 atomic64_read(&event->child_total_time_enabled);
4840 *running += event->total_time_running +
4841 atomic64_read(&event->child_total_time_running);
4843 list_for_each_entry(child, &event->child_list, child_list) {
4844 (void)perf_event_read(child, false);
4845 total += perf_event_count(child);
4846 *enabled += child->total_time_enabled;
4847 *running += child->total_time_running;
4849 mutex_unlock(&event->child_mutex);
4851 return total;
4854 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4856 struct perf_event_context *ctx;
4857 u64 count;
4859 ctx = perf_event_ctx_lock(event);
4860 count = __perf_event_read_value(event, enabled, running);
4861 perf_event_ctx_unlock(event, ctx);
4863 return count;
4865 EXPORT_SYMBOL_GPL(perf_event_read_value);
4867 static int __perf_read_group_add(struct perf_event *leader,
4868 u64 read_format, u64 *values)
4870 struct perf_event_context *ctx = leader->ctx;
4871 struct perf_event *sub;
4872 unsigned long flags;
4873 int n = 1; /* skip @nr */
4874 int ret;
4876 ret = perf_event_read(leader, true);
4877 if (ret)
4878 return ret;
4880 raw_spin_lock_irqsave(&ctx->lock, flags);
4883 * Since we co-schedule groups, {enabled,running} times of siblings
4884 * will be identical to those of the leader, so we only publish one
4885 * set.
4887 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4888 values[n++] += leader->total_time_enabled +
4889 atomic64_read(&leader->child_total_time_enabled);
4892 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4893 values[n++] += leader->total_time_running +
4894 atomic64_read(&leader->child_total_time_running);
4898 * Write {count,id} tuples for every sibling.
4900 values[n++] += perf_event_count(leader);
4901 if (read_format & PERF_FORMAT_ID)
4902 values[n++] = primary_event_id(leader);
4904 for_each_sibling_event(sub, leader) {
4905 values[n++] += perf_event_count(sub);
4906 if (read_format & PERF_FORMAT_ID)
4907 values[n++] = primary_event_id(sub);
4910 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4911 return 0;
4914 static int perf_read_group(struct perf_event *event,
4915 u64 read_format, char __user *buf)
4917 struct perf_event *leader = event->group_leader, *child;
4918 struct perf_event_context *ctx = leader->ctx;
4919 int ret;
4920 u64 *values;
4922 lockdep_assert_held(&ctx->mutex);
4924 values = kzalloc(event->read_size, GFP_KERNEL);
4925 if (!values)
4926 return -ENOMEM;
4928 values[0] = 1 + leader->nr_siblings;
4931 * By locking the child_mutex of the leader we effectively
4932 * lock the child list of all siblings.. XXX explain how.
4934 mutex_lock(&leader->child_mutex);
4936 ret = __perf_read_group_add(leader, read_format, values);
4937 if (ret)
4938 goto unlock;
4940 list_for_each_entry(child, &leader->child_list, child_list) {
4941 ret = __perf_read_group_add(child, read_format, values);
4942 if (ret)
4943 goto unlock;
4946 mutex_unlock(&leader->child_mutex);
4948 ret = event->read_size;
4949 if (copy_to_user(buf, values, event->read_size))
4950 ret = -EFAULT;
4951 goto out;
4953 unlock:
4954 mutex_unlock(&leader->child_mutex);
4955 out:
4956 kfree(values);
4957 return ret;
4960 static int perf_read_one(struct perf_event *event,
4961 u64 read_format, char __user *buf)
4963 u64 enabled, running;
4964 u64 values[4];
4965 int n = 0;
4967 values[n++] = __perf_event_read_value(event, &enabled, &running);
4968 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4969 values[n++] = enabled;
4970 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4971 values[n++] = running;
4972 if (read_format & PERF_FORMAT_ID)
4973 values[n++] = primary_event_id(event);
4975 if (copy_to_user(buf, values, n * sizeof(u64)))
4976 return -EFAULT;
4978 return n * sizeof(u64);
4981 static bool is_event_hup(struct perf_event *event)
4983 bool no_children;
4985 if (event->state > PERF_EVENT_STATE_EXIT)
4986 return false;
4988 mutex_lock(&event->child_mutex);
4989 no_children = list_empty(&event->child_list);
4990 mutex_unlock(&event->child_mutex);
4991 return no_children;
4995 * Read the performance event - simple non blocking version for now
4997 static ssize_t
4998 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5000 u64 read_format = event->attr.read_format;
5001 int ret;
5004 * Return end-of-file for a read on an event that is in
5005 * error state (i.e. because it was pinned but it couldn't be
5006 * scheduled on to the CPU at some point).
5008 if (event->state == PERF_EVENT_STATE_ERROR)
5009 return 0;
5011 if (count < event->read_size)
5012 return -ENOSPC;
5014 WARN_ON_ONCE(event->ctx->parent_ctx);
5015 if (read_format & PERF_FORMAT_GROUP)
5016 ret = perf_read_group(event, read_format, buf);
5017 else
5018 ret = perf_read_one(event, read_format, buf);
5020 return ret;
5023 static ssize_t
5024 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5026 struct perf_event *event = file->private_data;
5027 struct perf_event_context *ctx;
5028 int ret;
5030 ret = security_perf_event_read(event);
5031 if (ret)
5032 return ret;
5034 ctx = perf_event_ctx_lock(event);
5035 ret = __perf_read(event, buf, count);
5036 perf_event_ctx_unlock(event, ctx);
5038 return ret;
5041 static __poll_t perf_poll(struct file *file, poll_table *wait)
5043 struct perf_event *event = file->private_data;
5044 struct perf_buffer *rb;
5045 __poll_t events = EPOLLHUP;
5047 poll_wait(file, &event->waitq, wait);
5049 if (is_event_hup(event))
5050 return events;
5053 * Pin the event->rb by taking event->mmap_mutex; otherwise
5054 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5056 mutex_lock(&event->mmap_mutex);
5057 rb = event->rb;
5058 if (rb)
5059 events = atomic_xchg(&rb->poll, 0);
5060 mutex_unlock(&event->mmap_mutex);
5061 return events;
5064 static void _perf_event_reset(struct perf_event *event)
5066 (void)perf_event_read(event, false);
5067 local64_set(&event->count, 0);
5068 perf_event_update_userpage(event);
5071 /* Assume it's not an event with inherit set. */
5072 u64 perf_event_pause(struct perf_event *event, bool reset)
5074 struct perf_event_context *ctx;
5075 u64 count;
5077 ctx = perf_event_ctx_lock(event);
5078 WARN_ON_ONCE(event->attr.inherit);
5079 _perf_event_disable(event);
5080 count = local64_read(&event->count);
5081 if (reset)
5082 local64_set(&event->count, 0);
5083 perf_event_ctx_unlock(event, ctx);
5085 return count;
5087 EXPORT_SYMBOL_GPL(perf_event_pause);
5090 * Holding the top-level event's child_mutex means that any
5091 * descendant process that has inherited this event will block
5092 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5093 * task existence requirements of perf_event_enable/disable.
5095 static void perf_event_for_each_child(struct perf_event *event,
5096 void (*func)(struct perf_event *))
5098 struct perf_event *child;
5100 WARN_ON_ONCE(event->ctx->parent_ctx);
5102 mutex_lock(&event->child_mutex);
5103 func(event);
5104 list_for_each_entry(child, &event->child_list, child_list)
5105 func(child);
5106 mutex_unlock(&event->child_mutex);
5109 static void perf_event_for_each(struct perf_event *event,
5110 void (*func)(struct perf_event *))
5112 struct perf_event_context *ctx = event->ctx;
5113 struct perf_event *sibling;
5115 lockdep_assert_held(&ctx->mutex);
5117 event = event->group_leader;
5119 perf_event_for_each_child(event, func);
5120 for_each_sibling_event(sibling, event)
5121 perf_event_for_each_child(sibling, func);
5124 static void __perf_event_period(struct perf_event *event,
5125 struct perf_cpu_context *cpuctx,
5126 struct perf_event_context *ctx,
5127 void *info)
5129 u64 value = *((u64 *)info);
5130 bool active;
5132 if (event->attr.freq) {
5133 event->attr.sample_freq = value;
5134 } else {
5135 event->attr.sample_period = value;
5136 event->hw.sample_period = value;
5139 active = (event->state == PERF_EVENT_STATE_ACTIVE);
5140 if (active) {
5141 perf_pmu_disable(ctx->pmu);
5143 * We could be throttled; unthrottle now to avoid the tick
5144 * trying to unthrottle while we already re-started the event.
5146 if (event->hw.interrupts == MAX_INTERRUPTS) {
5147 event->hw.interrupts = 0;
5148 perf_log_throttle(event, 1);
5150 event->pmu->stop(event, PERF_EF_UPDATE);
5153 local64_set(&event->hw.period_left, 0);
5155 if (active) {
5156 event->pmu->start(event, PERF_EF_RELOAD);
5157 perf_pmu_enable(ctx->pmu);
5161 static int perf_event_check_period(struct perf_event *event, u64 value)
5163 return event->pmu->check_period(event, value);
5166 static int _perf_event_period(struct perf_event *event, u64 value)
5168 if (!is_sampling_event(event))
5169 return -EINVAL;
5171 if (!value)
5172 return -EINVAL;
5174 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5175 return -EINVAL;
5177 if (perf_event_check_period(event, value))
5178 return -EINVAL;
5180 if (!event->attr.freq && (value & (1ULL << 63)))
5181 return -EINVAL;
5183 event_function_call(event, __perf_event_period, &value);
5185 return 0;
5188 int perf_event_period(struct perf_event *event, u64 value)
5190 struct perf_event_context *ctx;
5191 int ret;
5193 ctx = perf_event_ctx_lock(event);
5194 ret = _perf_event_period(event, value);
5195 perf_event_ctx_unlock(event, ctx);
5197 return ret;
5199 EXPORT_SYMBOL_GPL(perf_event_period);
5201 static const struct file_operations perf_fops;
5203 static inline int perf_fget_light(int fd, struct fd *p)
5205 struct fd f = fdget(fd);
5206 if (!f.file)
5207 return -EBADF;
5209 if (f.file->f_op != &perf_fops) {
5210 fdput(f);
5211 return -EBADF;
5213 *p = f;
5214 return 0;
5217 static int perf_event_set_output(struct perf_event *event,
5218 struct perf_event *output_event);
5219 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5220 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5221 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5222 struct perf_event_attr *attr);
5224 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5226 void (*func)(struct perf_event *);
5227 u32 flags = arg;
5229 switch (cmd) {
5230 case PERF_EVENT_IOC_ENABLE:
5231 func = _perf_event_enable;
5232 break;
5233 case PERF_EVENT_IOC_DISABLE:
5234 func = _perf_event_disable;
5235 break;
5236 case PERF_EVENT_IOC_RESET:
5237 func = _perf_event_reset;
5238 break;
5240 case PERF_EVENT_IOC_REFRESH:
5241 return _perf_event_refresh(event, arg);
5243 case PERF_EVENT_IOC_PERIOD:
5245 u64 value;
5247 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5248 return -EFAULT;
5250 return _perf_event_period(event, value);
5252 case PERF_EVENT_IOC_ID:
5254 u64 id = primary_event_id(event);
5256 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5257 return -EFAULT;
5258 return 0;
5261 case PERF_EVENT_IOC_SET_OUTPUT:
5263 int ret;
5264 if (arg != -1) {
5265 struct perf_event *output_event;
5266 struct fd output;
5267 ret = perf_fget_light(arg, &output);
5268 if (ret)
5269 return ret;
5270 output_event = output.file->private_data;
5271 ret = perf_event_set_output(event, output_event);
5272 fdput(output);
5273 } else {
5274 ret = perf_event_set_output(event, NULL);
5276 return ret;
5279 case PERF_EVENT_IOC_SET_FILTER:
5280 return perf_event_set_filter(event, (void __user *)arg);
5282 case PERF_EVENT_IOC_SET_BPF:
5283 return perf_event_set_bpf_prog(event, arg);
5285 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5286 struct perf_buffer *rb;
5288 rcu_read_lock();
5289 rb = rcu_dereference(event->rb);
5290 if (!rb || !rb->nr_pages) {
5291 rcu_read_unlock();
5292 return -EINVAL;
5294 rb_toggle_paused(rb, !!arg);
5295 rcu_read_unlock();
5296 return 0;
5299 case PERF_EVENT_IOC_QUERY_BPF:
5300 return perf_event_query_prog_array(event, (void __user *)arg);
5302 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5303 struct perf_event_attr new_attr;
5304 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5305 &new_attr);
5307 if (err)
5308 return err;
5310 return perf_event_modify_attr(event, &new_attr);
5312 default:
5313 return -ENOTTY;
5316 if (flags & PERF_IOC_FLAG_GROUP)
5317 perf_event_for_each(event, func);
5318 else
5319 perf_event_for_each_child(event, func);
5321 return 0;
5324 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5326 struct perf_event *event = file->private_data;
5327 struct perf_event_context *ctx;
5328 long ret;
5330 /* Treat ioctl like writes as it is likely a mutating operation. */
5331 ret = security_perf_event_write(event);
5332 if (ret)
5333 return ret;
5335 ctx = perf_event_ctx_lock(event);
5336 ret = _perf_ioctl(event, cmd, arg);
5337 perf_event_ctx_unlock(event, ctx);
5339 return ret;
5342 #ifdef CONFIG_COMPAT
5343 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5344 unsigned long arg)
5346 switch (_IOC_NR(cmd)) {
5347 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5348 case _IOC_NR(PERF_EVENT_IOC_ID):
5349 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5350 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5351 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5352 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5353 cmd &= ~IOCSIZE_MASK;
5354 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5356 break;
5358 return perf_ioctl(file, cmd, arg);
5360 #else
5361 # define perf_compat_ioctl NULL
5362 #endif
5364 int perf_event_task_enable(void)
5366 struct perf_event_context *ctx;
5367 struct perf_event *event;
5369 mutex_lock(&current->perf_event_mutex);
5370 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5371 ctx = perf_event_ctx_lock(event);
5372 perf_event_for_each_child(event, _perf_event_enable);
5373 perf_event_ctx_unlock(event, ctx);
5375 mutex_unlock(&current->perf_event_mutex);
5377 return 0;
5380 int perf_event_task_disable(void)
5382 struct perf_event_context *ctx;
5383 struct perf_event *event;
5385 mutex_lock(&current->perf_event_mutex);
5386 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5387 ctx = perf_event_ctx_lock(event);
5388 perf_event_for_each_child(event, _perf_event_disable);
5389 perf_event_ctx_unlock(event, ctx);
5391 mutex_unlock(&current->perf_event_mutex);
5393 return 0;
5396 static int perf_event_index(struct perf_event *event)
5398 if (event->hw.state & PERF_HES_STOPPED)
5399 return 0;
5401 if (event->state != PERF_EVENT_STATE_ACTIVE)
5402 return 0;
5404 return event->pmu->event_idx(event);
5407 static void calc_timer_values(struct perf_event *event,
5408 u64 *now,
5409 u64 *enabled,
5410 u64 *running)
5412 u64 ctx_time;
5414 *now = perf_clock();
5415 ctx_time = event->shadow_ctx_time + *now;
5416 __perf_update_times(event, ctx_time, enabled, running);
5419 static void perf_event_init_userpage(struct perf_event *event)
5421 struct perf_event_mmap_page *userpg;
5422 struct perf_buffer *rb;
5424 rcu_read_lock();
5425 rb = rcu_dereference(event->rb);
5426 if (!rb)
5427 goto unlock;
5429 userpg = rb->user_page;
5431 /* Allow new userspace to detect that bit 0 is deprecated */
5432 userpg->cap_bit0_is_deprecated = 1;
5433 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5434 userpg->data_offset = PAGE_SIZE;
5435 userpg->data_size = perf_data_size(rb);
5437 unlock:
5438 rcu_read_unlock();
5441 void __weak arch_perf_update_userpage(
5442 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5447 * Callers need to ensure there can be no nesting of this function, otherwise
5448 * the seqlock logic goes bad. We can not serialize this because the arch
5449 * code calls this from NMI context.
5451 void perf_event_update_userpage(struct perf_event *event)
5453 struct perf_event_mmap_page *userpg;
5454 struct perf_buffer *rb;
5455 u64 enabled, running, now;
5457 rcu_read_lock();
5458 rb = rcu_dereference(event->rb);
5459 if (!rb)
5460 goto unlock;
5463 * compute total_time_enabled, total_time_running
5464 * based on snapshot values taken when the event
5465 * was last scheduled in.
5467 * we cannot simply called update_context_time()
5468 * because of locking issue as we can be called in
5469 * NMI context
5471 calc_timer_values(event, &now, &enabled, &running);
5473 userpg = rb->user_page;
5475 * Disable preemption to guarantee consistent time stamps are stored to
5476 * the user page.
5478 preempt_disable();
5479 ++userpg->lock;
5480 barrier();
5481 userpg->index = perf_event_index(event);
5482 userpg->offset = perf_event_count(event);
5483 if (userpg->index)
5484 userpg->offset -= local64_read(&event->hw.prev_count);
5486 userpg->time_enabled = enabled +
5487 atomic64_read(&event->child_total_time_enabled);
5489 userpg->time_running = running +
5490 atomic64_read(&event->child_total_time_running);
5492 arch_perf_update_userpage(event, userpg, now);
5494 barrier();
5495 ++userpg->lock;
5496 preempt_enable();
5497 unlock:
5498 rcu_read_unlock();
5500 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5502 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5504 struct perf_event *event = vmf->vma->vm_file->private_data;
5505 struct perf_buffer *rb;
5506 vm_fault_t ret = VM_FAULT_SIGBUS;
5508 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5509 if (vmf->pgoff == 0)
5510 ret = 0;
5511 return ret;
5514 rcu_read_lock();
5515 rb = rcu_dereference(event->rb);
5516 if (!rb)
5517 goto unlock;
5519 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5520 goto unlock;
5522 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5523 if (!vmf->page)
5524 goto unlock;
5526 get_page(vmf->page);
5527 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5528 vmf->page->index = vmf->pgoff;
5530 ret = 0;
5531 unlock:
5532 rcu_read_unlock();
5534 return ret;
5537 static void ring_buffer_attach(struct perf_event *event,
5538 struct perf_buffer *rb)
5540 struct perf_buffer *old_rb = NULL;
5541 unsigned long flags;
5543 if (event->rb) {
5545 * Should be impossible, we set this when removing
5546 * event->rb_entry and wait/clear when adding event->rb_entry.
5548 WARN_ON_ONCE(event->rcu_pending);
5550 old_rb = event->rb;
5551 spin_lock_irqsave(&old_rb->event_lock, flags);
5552 list_del_rcu(&event->rb_entry);
5553 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5555 event->rcu_batches = get_state_synchronize_rcu();
5556 event->rcu_pending = 1;
5559 if (rb) {
5560 if (event->rcu_pending) {
5561 cond_synchronize_rcu(event->rcu_batches);
5562 event->rcu_pending = 0;
5565 spin_lock_irqsave(&rb->event_lock, flags);
5566 list_add_rcu(&event->rb_entry, &rb->event_list);
5567 spin_unlock_irqrestore(&rb->event_lock, flags);
5571 * Avoid racing with perf_mmap_close(AUX): stop the event
5572 * before swizzling the event::rb pointer; if it's getting
5573 * unmapped, its aux_mmap_count will be 0 and it won't
5574 * restart. See the comment in __perf_pmu_output_stop().
5576 * Data will inevitably be lost when set_output is done in
5577 * mid-air, but then again, whoever does it like this is
5578 * not in for the data anyway.
5580 if (has_aux(event))
5581 perf_event_stop(event, 0);
5583 rcu_assign_pointer(event->rb, rb);
5585 if (old_rb) {
5586 ring_buffer_put(old_rb);
5588 * Since we detached before setting the new rb, so that we
5589 * could attach the new rb, we could have missed a wakeup.
5590 * Provide it now.
5592 wake_up_all(&event->waitq);
5596 static void ring_buffer_wakeup(struct perf_event *event)
5598 struct perf_buffer *rb;
5600 rcu_read_lock();
5601 rb = rcu_dereference(event->rb);
5602 if (rb) {
5603 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5604 wake_up_all(&event->waitq);
5606 rcu_read_unlock();
5609 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5611 struct perf_buffer *rb;
5613 rcu_read_lock();
5614 rb = rcu_dereference(event->rb);
5615 if (rb) {
5616 if (!refcount_inc_not_zero(&rb->refcount))
5617 rb = NULL;
5619 rcu_read_unlock();
5621 return rb;
5624 void ring_buffer_put(struct perf_buffer *rb)
5626 if (!refcount_dec_and_test(&rb->refcount))
5627 return;
5629 WARN_ON_ONCE(!list_empty(&rb->event_list));
5631 call_rcu(&rb->rcu_head, rb_free_rcu);
5634 static void perf_mmap_open(struct vm_area_struct *vma)
5636 struct perf_event *event = vma->vm_file->private_data;
5638 atomic_inc(&event->mmap_count);
5639 atomic_inc(&event->rb->mmap_count);
5641 if (vma->vm_pgoff)
5642 atomic_inc(&event->rb->aux_mmap_count);
5644 if (event->pmu->event_mapped)
5645 event->pmu->event_mapped(event, vma->vm_mm);
5648 static void perf_pmu_output_stop(struct perf_event *event);
5651 * A buffer can be mmap()ed multiple times; either directly through the same
5652 * event, or through other events by use of perf_event_set_output().
5654 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5655 * the buffer here, where we still have a VM context. This means we need
5656 * to detach all events redirecting to us.
5658 static void perf_mmap_close(struct vm_area_struct *vma)
5660 struct perf_event *event = vma->vm_file->private_data;
5662 struct perf_buffer *rb = ring_buffer_get(event);
5663 struct user_struct *mmap_user = rb->mmap_user;
5664 int mmap_locked = rb->mmap_locked;
5665 unsigned long size = perf_data_size(rb);
5667 if (event->pmu->event_unmapped)
5668 event->pmu->event_unmapped(event, vma->vm_mm);
5671 * rb->aux_mmap_count will always drop before rb->mmap_count and
5672 * event->mmap_count, so it is ok to use event->mmap_mutex to
5673 * serialize with perf_mmap here.
5675 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5676 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5678 * Stop all AUX events that are writing to this buffer,
5679 * so that we can free its AUX pages and corresponding PMU
5680 * data. Note that after rb::aux_mmap_count dropped to zero,
5681 * they won't start any more (see perf_aux_output_begin()).
5683 perf_pmu_output_stop(event);
5685 /* now it's safe to free the pages */
5686 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5687 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5689 /* this has to be the last one */
5690 rb_free_aux(rb);
5691 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5693 mutex_unlock(&event->mmap_mutex);
5696 atomic_dec(&rb->mmap_count);
5698 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5699 goto out_put;
5701 ring_buffer_attach(event, NULL);
5702 mutex_unlock(&event->mmap_mutex);
5704 /* If there's still other mmap()s of this buffer, we're done. */
5705 if (atomic_read(&rb->mmap_count))
5706 goto out_put;
5709 * No other mmap()s, detach from all other events that might redirect
5710 * into the now unreachable buffer. Somewhat complicated by the
5711 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5713 again:
5714 rcu_read_lock();
5715 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5716 if (!atomic_long_inc_not_zero(&event->refcount)) {
5718 * This event is en-route to free_event() which will
5719 * detach it and remove it from the list.
5721 continue;
5723 rcu_read_unlock();
5725 mutex_lock(&event->mmap_mutex);
5727 * Check we didn't race with perf_event_set_output() which can
5728 * swizzle the rb from under us while we were waiting to
5729 * acquire mmap_mutex.
5731 * If we find a different rb; ignore this event, a next
5732 * iteration will no longer find it on the list. We have to
5733 * still restart the iteration to make sure we're not now
5734 * iterating the wrong list.
5736 if (event->rb == rb)
5737 ring_buffer_attach(event, NULL);
5739 mutex_unlock(&event->mmap_mutex);
5740 put_event(event);
5743 * Restart the iteration; either we're on the wrong list or
5744 * destroyed its integrity by doing a deletion.
5746 goto again;
5748 rcu_read_unlock();
5751 * It could be there's still a few 0-ref events on the list; they'll
5752 * get cleaned up by free_event() -- they'll also still have their
5753 * ref on the rb and will free it whenever they are done with it.
5755 * Aside from that, this buffer is 'fully' detached and unmapped,
5756 * undo the VM accounting.
5759 atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5760 &mmap_user->locked_vm);
5761 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5762 free_uid(mmap_user);
5764 out_put:
5765 ring_buffer_put(rb); /* could be last */
5768 static const struct vm_operations_struct perf_mmap_vmops = {
5769 .open = perf_mmap_open,
5770 .close = perf_mmap_close, /* non mergeable */
5771 .fault = perf_mmap_fault,
5772 .page_mkwrite = perf_mmap_fault,
5775 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5777 struct perf_event *event = file->private_data;
5778 unsigned long user_locked, user_lock_limit;
5779 struct user_struct *user = current_user();
5780 struct perf_buffer *rb = NULL;
5781 unsigned long locked, lock_limit;
5782 unsigned long vma_size;
5783 unsigned long nr_pages;
5784 long user_extra = 0, extra = 0;
5785 int ret = 0, flags = 0;
5788 * Don't allow mmap() of inherited per-task counters. This would
5789 * create a performance issue due to all children writing to the
5790 * same rb.
5792 if (event->cpu == -1 && event->attr.inherit)
5793 return -EINVAL;
5795 if (!(vma->vm_flags & VM_SHARED))
5796 return -EINVAL;
5798 ret = security_perf_event_read(event);
5799 if (ret)
5800 return ret;
5802 vma_size = vma->vm_end - vma->vm_start;
5804 if (vma->vm_pgoff == 0) {
5805 nr_pages = (vma_size / PAGE_SIZE) - 1;
5806 } else {
5808 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5809 * mapped, all subsequent mappings should have the same size
5810 * and offset. Must be above the normal perf buffer.
5812 u64 aux_offset, aux_size;
5814 if (!event->rb)
5815 return -EINVAL;
5817 nr_pages = vma_size / PAGE_SIZE;
5819 mutex_lock(&event->mmap_mutex);
5820 ret = -EINVAL;
5822 rb = event->rb;
5823 if (!rb)
5824 goto aux_unlock;
5826 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5827 aux_size = READ_ONCE(rb->user_page->aux_size);
5829 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5830 goto aux_unlock;
5832 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5833 goto aux_unlock;
5835 /* already mapped with a different offset */
5836 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5837 goto aux_unlock;
5839 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5840 goto aux_unlock;
5842 /* already mapped with a different size */
5843 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5844 goto aux_unlock;
5846 if (!is_power_of_2(nr_pages))
5847 goto aux_unlock;
5849 if (!atomic_inc_not_zero(&rb->mmap_count))
5850 goto aux_unlock;
5852 if (rb_has_aux(rb)) {
5853 atomic_inc(&rb->aux_mmap_count);
5854 ret = 0;
5855 goto unlock;
5858 atomic_set(&rb->aux_mmap_count, 1);
5859 user_extra = nr_pages;
5861 goto accounting;
5865 * If we have rb pages ensure they're a power-of-two number, so we
5866 * can do bitmasks instead of modulo.
5868 if (nr_pages != 0 && !is_power_of_2(nr_pages))
5869 return -EINVAL;
5871 if (vma_size != PAGE_SIZE * (1 + nr_pages))
5872 return -EINVAL;
5874 WARN_ON_ONCE(event->ctx->parent_ctx);
5875 again:
5876 mutex_lock(&event->mmap_mutex);
5877 if (event->rb) {
5878 if (event->rb->nr_pages != nr_pages) {
5879 ret = -EINVAL;
5880 goto unlock;
5883 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5885 * Raced against perf_mmap_close() through
5886 * perf_event_set_output(). Try again, hope for better
5887 * luck.
5889 mutex_unlock(&event->mmap_mutex);
5890 goto again;
5893 goto unlock;
5896 user_extra = nr_pages + 1;
5898 accounting:
5899 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5902 * Increase the limit linearly with more CPUs:
5904 user_lock_limit *= num_online_cpus();
5906 user_locked = atomic_long_read(&user->locked_vm);
5909 * sysctl_perf_event_mlock may have changed, so that
5910 * user->locked_vm > user_lock_limit
5912 if (user_locked > user_lock_limit)
5913 user_locked = user_lock_limit;
5914 user_locked += user_extra;
5916 if (user_locked > user_lock_limit) {
5918 * charge locked_vm until it hits user_lock_limit;
5919 * charge the rest from pinned_vm
5921 extra = user_locked - user_lock_limit;
5922 user_extra -= extra;
5925 lock_limit = rlimit(RLIMIT_MEMLOCK);
5926 lock_limit >>= PAGE_SHIFT;
5927 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5929 if ((locked > lock_limit) && perf_is_paranoid() &&
5930 !capable(CAP_IPC_LOCK)) {
5931 ret = -EPERM;
5932 goto unlock;
5935 WARN_ON(!rb && event->rb);
5937 if (vma->vm_flags & VM_WRITE)
5938 flags |= RING_BUFFER_WRITABLE;
5940 if (!rb) {
5941 rb = rb_alloc(nr_pages,
5942 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5943 event->cpu, flags);
5945 if (!rb) {
5946 ret = -ENOMEM;
5947 goto unlock;
5950 atomic_set(&rb->mmap_count, 1);
5951 rb->mmap_user = get_current_user();
5952 rb->mmap_locked = extra;
5954 ring_buffer_attach(event, rb);
5956 perf_event_init_userpage(event);
5957 perf_event_update_userpage(event);
5958 } else {
5959 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5960 event->attr.aux_watermark, flags);
5961 if (!ret)
5962 rb->aux_mmap_locked = extra;
5965 unlock:
5966 if (!ret) {
5967 atomic_long_add(user_extra, &user->locked_vm);
5968 atomic64_add(extra, &vma->vm_mm->pinned_vm);
5970 atomic_inc(&event->mmap_count);
5971 } else if (rb) {
5972 atomic_dec(&rb->mmap_count);
5974 aux_unlock:
5975 mutex_unlock(&event->mmap_mutex);
5978 * Since pinned accounting is per vm we cannot allow fork() to copy our
5979 * vma.
5981 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5982 vma->vm_ops = &perf_mmap_vmops;
5984 if (event->pmu->event_mapped)
5985 event->pmu->event_mapped(event, vma->vm_mm);
5987 return ret;
5990 static int perf_fasync(int fd, struct file *filp, int on)
5992 struct inode *inode = file_inode(filp);
5993 struct perf_event *event = filp->private_data;
5994 int retval;
5996 inode_lock(inode);
5997 retval = fasync_helper(fd, filp, on, &event->fasync);
5998 inode_unlock(inode);
6000 if (retval < 0)
6001 return retval;
6003 return 0;
6006 static const struct file_operations perf_fops = {
6007 .llseek = no_llseek,
6008 .release = perf_release,
6009 .read = perf_read,
6010 .poll = perf_poll,
6011 .unlocked_ioctl = perf_ioctl,
6012 .compat_ioctl = perf_compat_ioctl,
6013 .mmap = perf_mmap,
6014 .fasync = perf_fasync,
6018 * Perf event wakeup
6020 * If there's data, ensure we set the poll() state and publish everything
6021 * to user-space before waking everybody up.
6024 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6026 /* only the parent has fasync state */
6027 if (event->parent)
6028 event = event->parent;
6029 return &event->fasync;
6032 void perf_event_wakeup(struct perf_event *event)
6034 ring_buffer_wakeup(event);
6036 if (event->pending_kill) {
6037 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6038 event->pending_kill = 0;
6042 static void perf_pending_event_disable(struct perf_event *event)
6044 int cpu = READ_ONCE(event->pending_disable);
6046 if (cpu < 0)
6047 return;
6049 if (cpu == smp_processor_id()) {
6050 WRITE_ONCE(event->pending_disable, -1);
6051 perf_event_disable_local(event);
6052 return;
6056 * CPU-A CPU-B
6058 * perf_event_disable_inatomic()
6059 * @pending_disable = CPU-A;
6060 * irq_work_queue();
6062 * sched-out
6063 * @pending_disable = -1;
6065 * sched-in
6066 * perf_event_disable_inatomic()
6067 * @pending_disable = CPU-B;
6068 * irq_work_queue(); // FAILS
6070 * irq_work_run()
6071 * perf_pending_event()
6073 * But the event runs on CPU-B and wants disabling there.
6075 irq_work_queue_on(&event->pending, cpu);
6078 static void perf_pending_event(struct irq_work *entry)
6080 struct perf_event *event = container_of(entry, struct perf_event, pending);
6081 int rctx;
6083 rctx = perf_swevent_get_recursion_context();
6085 * If we 'fail' here, that's OK, it means recursion is already disabled
6086 * and we won't recurse 'further'.
6089 perf_pending_event_disable(event);
6091 if (event->pending_wakeup) {
6092 event->pending_wakeup = 0;
6093 perf_event_wakeup(event);
6096 if (rctx >= 0)
6097 perf_swevent_put_recursion_context(rctx);
6101 * We assume there is only KVM supporting the callbacks.
6102 * Later on, we might change it to a list if there is
6103 * another virtualization implementation supporting the callbacks.
6105 struct perf_guest_info_callbacks *perf_guest_cbs;
6107 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6109 perf_guest_cbs = cbs;
6110 return 0;
6112 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6114 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6116 perf_guest_cbs = NULL;
6117 return 0;
6119 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6121 static void
6122 perf_output_sample_regs(struct perf_output_handle *handle,
6123 struct pt_regs *regs, u64 mask)
6125 int bit;
6126 DECLARE_BITMAP(_mask, 64);
6128 bitmap_from_u64(_mask, mask);
6129 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6130 u64 val;
6132 val = perf_reg_value(regs, bit);
6133 perf_output_put(handle, val);
6137 static void perf_sample_regs_user(struct perf_regs *regs_user,
6138 struct pt_regs *regs,
6139 struct pt_regs *regs_user_copy)
6141 if (user_mode(regs)) {
6142 regs_user->abi = perf_reg_abi(current);
6143 regs_user->regs = regs;
6144 } else if (!(current->flags & PF_KTHREAD)) {
6145 perf_get_regs_user(regs_user, regs, regs_user_copy);
6146 } else {
6147 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6148 regs_user->regs = NULL;
6152 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6153 struct pt_regs *regs)
6155 regs_intr->regs = regs;
6156 regs_intr->abi = perf_reg_abi(current);
6161 * Get remaining task size from user stack pointer.
6163 * It'd be better to take stack vma map and limit this more
6164 * precisely, but there's no way to get it safely under interrupt,
6165 * so using TASK_SIZE as limit.
6167 static u64 perf_ustack_task_size(struct pt_regs *regs)
6169 unsigned long addr = perf_user_stack_pointer(regs);
6171 if (!addr || addr >= TASK_SIZE)
6172 return 0;
6174 return TASK_SIZE - addr;
6177 static u16
6178 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6179 struct pt_regs *regs)
6181 u64 task_size;
6183 /* No regs, no stack pointer, no dump. */
6184 if (!regs)
6185 return 0;
6188 * Check if we fit in with the requested stack size into the:
6189 * - TASK_SIZE
6190 * If we don't, we limit the size to the TASK_SIZE.
6192 * - remaining sample size
6193 * If we don't, we customize the stack size to
6194 * fit in to the remaining sample size.
6197 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6198 stack_size = min(stack_size, (u16) task_size);
6200 /* Current header size plus static size and dynamic size. */
6201 header_size += 2 * sizeof(u64);
6203 /* Do we fit in with the current stack dump size? */
6204 if ((u16) (header_size + stack_size) < header_size) {
6206 * If we overflow the maximum size for the sample,
6207 * we customize the stack dump size to fit in.
6209 stack_size = USHRT_MAX - header_size - sizeof(u64);
6210 stack_size = round_up(stack_size, sizeof(u64));
6213 return stack_size;
6216 static void
6217 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6218 struct pt_regs *regs)
6220 /* Case of a kernel thread, nothing to dump */
6221 if (!regs) {
6222 u64 size = 0;
6223 perf_output_put(handle, size);
6224 } else {
6225 unsigned long sp;
6226 unsigned int rem;
6227 u64 dyn_size;
6228 mm_segment_t fs;
6231 * We dump:
6232 * static size
6233 * - the size requested by user or the best one we can fit
6234 * in to the sample max size
6235 * data
6236 * - user stack dump data
6237 * dynamic size
6238 * - the actual dumped size
6241 /* Static size. */
6242 perf_output_put(handle, dump_size);
6244 /* Data. */
6245 sp = perf_user_stack_pointer(regs);
6246 fs = get_fs();
6247 set_fs(USER_DS);
6248 rem = __output_copy_user(handle, (void *) sp, dump_size);
6249 set_fs(fs);
6250 dyn_size = dump_size - rem;
6252 perf_output_skip(handle, rem);
6254 /* Dynamic size. */
6255 perf_output_put(handle, dyn_size);
6259 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6260 struct perf_sample_data *data,
6261 size_t size)
6263 struct perf_event *sampler = event->aux_event;
6264 struct perf_buffer *rb;
6266 data->aux_size = 0;
6268 if (!sampler)
6269 goto out;
6271 if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6272 goto out;
6274 if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6275 goto out;
6277 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6278 if (!rb)
6279 goto out;
6282 * If this is an NMI hit inside sampling code, don't take
6283 * the sample. See also perf_aux_sample_output().
6285 if (READ_ONCE(rb->aux_in_sampling)) {
6286 data->aux_size = 0;
6287 } else {
6288 size = min_t(size_t, size, perf_aux_size(rb));
6289 data->aux_size = ALIGN(size, sizeof(u64));
6291 ring_buffer_put(rb);
6293 out:
6294 return data->aux_size;
6297 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6298 struct perf_event *event,
6299 struct perf_output_handle *handle,
6300 unsigned long size)
6302 unsigned long flags;
6303 long ret;
6306 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6307 * paths. If we start calling them in NMI context, they may race with
6308 * the IRQ ones, that is, for example, re-starting an event that's just
6309 * been stopped, which is why we're using a separate callback that
6310 * doesn't change the event state.
6312 * IRQs need to be disabled to prevent IPIs from racing with us.
6314 local_irq_save(flags);
6316 * Guard against NMI hits inside the critical section;
6317 * see also perf_prepare_sample_aux().
6319 WRITE_ONCE(rb->aux_in_sampling, 1);
6320 barrier();
6322 ret = event->pmu->snapshot_aux(event, handle, size);
6324 barrier();
6325 WRITE_ONCE(rb->aux_in_sampling, 0);
6326 local_irq_restore(flags);
6328 return ret;
6331 static void perf_aux_sample_output(struct perf_event *event,
6332 struct perf_output_handle *handle,
6333 struct perf_sample_data *data)
6335 struct perf_event *sampler = event->aux_event;
6336 struct perf_buffer *rb;
6337 unsigned long pad;
6338 long size;
6340 if (WARN_ON_ONCE(!sampler || !data->aux_size))
6341 return;
6343 rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6344 if (!rb)
6345 return;
6347 size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6350 * An error here means that perf_output_copy() failed (returned a
6351 * non-zero surplus that it didn't copy), which in its current
6352 * enlightened implementation is not possible. If that changes, we'd
6353 * like to know.
6355 if (WARN_ON_ONCE(size < 0))
6356 goto out_put;
6359 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6360 * perf_prepare_sample_aux(), so should not be more than that.
6362 pad = data->aux_size - size;
6363 if (WARN_ON_ONCE(pad >= sizeof(u64)))
6364 pad = 8;
6366 if (pad) {
6367 u64 zero = 0;
6368 perf_output_copy(handle, &zero, pad);
6371 out_put:
6372 ring_buffer_put(rb);
6375 static void __perf_event_header__init_id(struct perf_event_header *header,
6376 struct perf_sample_data *data,
6377 struct perf_event *event)
6379 u64 sample_type = event->attr.sample_type;
6381 data->type = sample_type;
6382 header->size += event->id_header_size;
6384 if (sample_type & PERF_SAMPLE_TID) {
6385 /* namespace issues */
6386 data->tid_entry.pid = perf_event_pid(event, current);
6387 data->tid_entry.tid = perf_event_tid(event, current);
6390 if (sample_type & PERF_SAMPLE_TIME)
6391 data->time = perf_event_clock(event);
6393 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6394 data->id = primary_event_id(event);
6396 if (sample_type & PERF_SAMPLE_STREAM_ID)
6397 data->stream_id = event->id;
6399 if (sample_type & PERF_SAMPLE_CPU) {
6400 data->cpu_entry.cpu = raw_smp_processor_id();
6401 data->cpu_entry.reserved = 0;
6405 void perf_event_header__init_id(struct perf_event_header *header,
6406 struct perf_sample_data *data,
6407 struct perf_event *event)
6409 if (event->attr.sample_id_all)
6410 __perf_event_header__init_id(header, data, event);
6413 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6414 struct perf_sample_data *data)
6416 u64 sample_type = data->type;
6418 if (sample_type & PERF_SAMPLE_TID)
6419 perf_output_put(handle, data->tid_entry);
6421 if (sample_type & PERF_SAMPLE_TIME)
6422 perf_output_put(handle, data->time);
6424 if (sample_type & PERF_SAMPLE_ID)
6425 perf_output_put(handle, data->id);
6427 if (sample_type & PERF_SAMPLE_STREAM_ID)
6428 perf_output_put(handle, data->stream_id);
6430 if (sample_type & PERF_SAMPLE_CPU)
6431 perf_output_put(handle, data->cpu_entry);
6433 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6434 perf_output_put(handle, data->id);
6437 void perf_event__output_id_sample(struct perf_event *event,
6438 struct perf_output_handle *handle,
6439 struct perf_sample_data *sample)
6441 if (event->attr.sample_id_all)
6442 __perf_event__output_id_sample(handle, sample);
6445 static void perf_output_read_one(struct perf_output_handle *handle,
6446 struct perf_event *event,
6447 u64 enabled, u64 running)
6449 u64 read_format = event->attr.read_format;
6450 u64 values[4];
6451 int n = 0;
6453 values[n++] = perf_event_count(event);
6454 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6455 values[n++] = enabled +
6456 atomic64_read(&event->child_total_time_enabled);
6458 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6459 values[n++] = running +
6460 atomic64_read(&event->child_total_time_running);
6462 if (read_format & PERF_FORMAT_ID)
6463 values[n++] = primary_event_id(event);
6465 __output_copy(handle, values, n * sizeof(u64));
6468 static void perf_output_read_group(struct perf_output_handle *handle,
6469 struct perf_event *event,
6470 u64 enabled, u64 running)
6472 struct perf_event *leader = event->group_leader, *sub;
6473 u64 read_format = event->attr.read_format;
6474 u64 values[5];
6475 int n = 0;
6477 values[n++] = 1 + leader->nr_siblings;
6479 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6480 values[n++] = enabled;
6482 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6483 values[n++] = running;
6485 if ((leader != event) &&
6486 (leader->state == PERF_EVENT_STATE_ACTIVE))
6487 leader->pmu->read(leader);
6489 values[n++] = perf_event_count(leader);
6490 if (read_format & PERF_FORMAT_ID)
6491 values[n++] = primary_event_id(leader);
6493 __output_copy(handle, values, n * sizeof(u64));
6495 for_each_sibling_event(sub, leader) {
6496 n = 0;
6498 if ((sub != event) &&
6499 (sub->state == PERF_EVENT_STATE_ACTIVE))
6500 sub->pmu->read(sub);
6502 values[n++] = perf_event_count(sub);
6503 if (read_format & PERF_FORMAT_ID)
6504 values[n++] = primary_event_id(sub);
6506 __output_copy(handle, values, n * sizeof(u64));
6510 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6511 PERF_FORMAT_TOTAL_TIME_RUNNING)
6514 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6516 * The problem is that its both hard and excessively expensive to iterate the
6517 * child list, not to mention that its impossible to IPI the children running
6518 * on another CPU, from interrupt/NMI context.
6520 static void perf_output_read(struct perf_output_handle *handle,
6521 struct perf_event *event)
6523 u64 enabled = 0, running = 0, now;
6524 u64 read_format = event->attr.read_format;
6527 * compute total_time_enabled, total_time_running
6528 * based on snapshot values taken when the event
6529 * was last scheduled in.
6531 * we cannot simply called update_context_time()
6532 * because of locking issue as we are called in
6533 * NMI context
6535 if (read_format & PERF_FORMAT_TOTAL_TIMES)
6536 calc_timer_values(event, &now, &enabled, &running);
6538 if (event->attr.read_format & PERF_FORMAT_GROUP)
6539 perf_output_read_group(handle, event, enabled, running);
6540 else
6541 perf_output_read_one(handle, event, enabled, running);
6544 void perf_output_sample(struct perf_output_handle *handle,
6545 struct perf_event_header *header,
6546 struct perf_sample_data *data,
6547 struct perf_event *event)
6549 u64 sample_type = data->type;
6551 perf_output_put(handle, *header);
6553 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6554 perf_output_put(handle, data->id);
6556 if (sample_type & PERF_SAMPLE_IP)
6557 perf_output_put(handle, data->ip);
6559 if (sample_type & PERF_SAMPLE_TID)
6560 perf_output_put(handle, data->tid_entry);
6562 if (sample_type & PERF_SAMPLE_TIME)
6563 perf_output_put(handle, data->time);
6565 if (sample_type & PERF_SAMPLE_ADDR)
6566 perf_output_put(handle, data->addr);
6568 if (sample_type & PERF_SAMPLE_ID)
6569 perf_output_put(handle, data->id);
6571 if (sample_type & PERF_SAMPLE_STREAM_ID)
6572 perf_output_put(handle, data->stream_id);
6574 if (sample_type & PERF_SAMPLE_CPU)
6575 perf_output_put(handle, data->cpu_entry);
6577 if (sample_type & PERF_SAMPLE_PERIOD)
6578 perf_output_put(handle, data->period);
6580 if (sample_type & PERF_SAMPLE_READ)
6581 perf_output_read(handle, event);
6583 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6584 int size = 1;
6586 size += data->callchain->nr;
6587 size *= sizeof(u64);
6588 __output_copy(handle, data->callchain, size);
6591 if (sample_type & PERF_SAMPLE_RAW) {
6592 struct perf_raw_record *raw = data->raw;
6594 if (raw) {
6595 struct perf_raw_frag *frag = &raw->frag;
6597 perf_output_put(handle, raw->size);
6598 do {
6599 if (frag->copy) {
6600 __output_custom(handle, frag->copy,
6601 frag->data, frag->size);
6602 } else {
6603 __output_copy(handle, frag->data,
6604 frag->size);
6606 if (perf_raw_frag_last(frag))
6607 break;
6608 frag = frag->next;
6609 } while (1);
6610 if (frag->pad)
6611 __output_skip(handle, NULL, frag->pad);
6612 } else {
6613 struct {
6614 u32 size;
6615 u32 data;
6616 } raw = {
6617 .size = sizeof(u32),
6618 .data = 0,
6620 perf_output_put(handle, raw);
6624 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6625 if (data->br_stack) {
6626 size_t size;
6628 size = data->br_stack->nr
6629 * sizeof(struct perf_branch_entry);
6631 perf_output_put(handle, data->br_stack->nr);
6632 perf_output_copy(handle, data->br_stack->entries, size);
6633 } else {
6635 * we always store at least the value of nr
6637 u64 nr = 0;
6638 perf_output_put(handle, nr);
6642 if (sample_type & PERF_SAMPLE_REGS_USER) {
6643 u64 abi = data->regs_user.abi;
6646 * If there are no regs to dump, notice it through
6647 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6649 perf_output_put(handle, abi);
6651 if (abi) {
6652 u64 mask = event->attr.sample_regs_user;
6653 perf_output_sample_regs(handle,
6654 data->regs_user.regs,
6655 mask);
6659 if (sample_type & PERF_SAMPLE_STACK_USER) {
6660 perf_output_sample_ustack(handle,
6661 data->stack_user_size,
6662 data->regs_user.regs);
6665 if (sample_type & PERF_SAMPLE_WEIGHT)
6666 perf_output_put(handle, data->weight);
6668 if (sample_type & PERF_SAMPLE_DATA_SRC)
6669 perf_output_put(handle, data->data_src.val);
6671 if (sample_type & PERF_SAMPLE_TRANSACTION)
6672 perf_output_put(handle, data->txn);
6674 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6675 u64 abi = data->regs_intr.abi;
6677 * If there are no regs to dump, notice it through
6678 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6680 perf_output_put(handle, abi);
6682 if (abi) {
6683 u64 mask = event->attr.sample_regs_intr;
6685 perf_output_sample_regs(handle,
6686 data->regs_intr.regs,
6687 mask);
6691 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6692 perf_output_put(handle, data->phys_addr);
6694 if (sample_type & PERF_SAMPLE_AUX) {
6695 perf_output_put(handle, data->aux_size);
6697 if (data->aux_size)
6698 perf_aux_sample_output(event, handle, data);
6701 if (!event->attr.watermark) {
6702 int wakeup_events = event->attr.wakeup_events;
6704 if (wakeup_events) {
6705 struct perf_buffer *rb = handle->rb;
6706 int events = local_inc_return(&rb->events);
6708 if (events >= wakeup_events) {
6709 local_sub(wakeup_events, &rb->events);
6710 local_inc(&rb->wakeup);
6716 static u64 perf_virt_to_phys(u64 virt)
6718 u64 phys_addr = 0;
6719 struct page *p = NULL;
6721 if (!virt)
6722 return 0;
6724 if (virt >= TASK_SIZE) {
6725 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6726 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6727 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6728 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6729 } else {
6731 * Walking the pages tables for user address.
6732 * Interrupts are disabled, so it prevents any tear down
6733 * of the page tables.
6734 * Try IRQ-safe __get_user_pages_fast first.
6735 * If failed, leave phys_addr as 0.
6737 if (current->mm != NULL) {
6738 pagefault_disable();
6739 if (__get_user_pages_fast(virt, 1, 0, &p) == 1)
6740 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6741 pagefault_enable();
6744 if (p)
6745 put_page(p);
6748 return phys_addr;
6751 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6753 struct perf_callchain_entry *
6754 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6756 bool kernel = !event->attr.exclude_callchain_kernel;
6757 bool user = !event->attr.exclude_callchain_user;
6758 /* Disallow cross-task user callchains. */
6759 bool crosstask = event->ctx->task && event->ctx->task != current;
6760 const u32 max_stack = event->attr.sample_max_stack;
6761 struct perf_callchain_entry *callchain;
6763 if (!kernel && !user)
6764 return &__empty_callchain;
6766 callchain = get_perf_callchain(regs, 0, kernel, user,
6767 max_stack, crosstask, true);
6768 return callchain ?: &__empty_callchain;
6771 void perf_prepare_sample(struct perf_event_header *header,
6772 struct perf_sample_data *data,
6773 struct perf_event *event,
6774 struct pt_regs *regs)
6776 u64 sample_type = event->attr.sample_type;
6778 header->type = PERF_RECORD_SAMPLE;
6779 header->size = sizeof(*header) + event->header_size;
6781 header->misc = 0;
6782 header->misc |= perf_misc_flags(regs);
6784 __perf_event_header__init_id(header, data, event);
6786 if (sample_type & PERF_SAMPLE_IP)
6787 data->ip = perf_instruction_pointer(regs);
6789 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6790 int size = 1;
6792 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6793 data->callchain = perf_callchain(event, regs);
6795 size += data->callchain->nr;
6797 header->size += size * sizeof(u64);
6800 if (sample_type & PERF_SAMPLE_RAW) {
6801 struct perf_raw_record *raw = data->raw;
6802 int size;
6804 if (raw) {
6805 struct perf_raw_frag *frag = &raw->frag;
6806 u32 sum = 0;
6808 do {
6809 sum += frag->size;
6810 if (perf_raw_frag_last(frag))
6811 break;
6812 frag = frag->next;
6813 } while (1);
6815 size = round_up(sum + sizeof(u32), sizeof(u64));
6816 raw->size = size - sizeof(u32);
6817 frag->pad = raw->size - sum;
6818 } else {
6819 size = sizeof(u64);
6822 header->size += size;
6825 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6826 int size = sizeof(u64); /* nr */
6827 if (data->br_stack) {
6828 size += data->br_stack->nr
6829 * sizeof(struct perf_branch_entry);
6831 header->size += size;
6834 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6835 perf_sample_regs_user(&data->regs_user, regs,
6836 &data->regs_user_copy);
6838 if (sample_type & PERF_SAMPLE_REGS_USER) {
6839 /* regs dump ABI info */
6840 int size = sizeof(u64);
6842 if (data->regs_user.regs) {
6843 u64 mask = event->attr.sample_regs_user;
6844 size += hweight64(mask) * sizeof(u64);
6847 header->size += size;
6850 if (sample_type & PERF_SAMPLE_STACK_USER) {
6852 * Either we need PERF_SAMPLE_STACK_USER bit to be always
6853 * processed as the last one or have additional check added
6854 * in case new sample type is added, because we could eat
6855 * up the rest of the sample size.
6857 u16 stack_size = event->attr.sample_stack_user;
6858 u16 size = sizeof(u64);
6860 stack_size = perf_sample_ustack_size(stack_size, header->size,
6861 data->regs_user.regs);
6864 * If there is something to dump, add space for the dump
6865 * itself and for the field that tells the dynamic size,
6866 * which is how many have been actually dumped.
6868 if (stack_size)
6869 size += sizeof(u64) + stack_size;
6871 data->stack_user_size = stack_size;
6872 header->size += size;
6875 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6876 /* regs dump ABI info */
6877 int size = sizeof(u64);
6879 perf_sample_regs_intr(&data->regs_intr, regs);
6881 if (data->regs_intr.regs) {
6882 u64 mask = event->attr.sample_regs_intr;
6884 size += hweight64(mask) * sizeof(u64);
6887 header->size += size;
6890 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6891 data->phys_addr = perf_virt_to_phys(data->addr);
6893 if (sample_type & PERF_SAMPLE_AUX) {
6894 u64 size;
6896 header->size += sizeof(u64); /* size */
6899 * Given the 16bit nature of header::size, an AUX sample can
6900 * easily overflow it, what with all the preceding sample bits.
6901 * Make sure this doesn't happen by using up to U16_MAX bytes
6902 * per sample in total (rounded down to 8 byte boundary).
6904 size = min_t(size_t, U16_MAX - header->size,
6905 event->attr.aux_sample_size);
6906 size = rounddown(size, 8);
6907 size = perf_prepare_sample_aux(event, data, size);
6909 WARN_ON_ONCE(size + header->size > U16_MAX);
6910 header->size += size;
6913 * If you're adding more sample types here, you likely need to do
6914 * something about the overflowing header::size, like repurpose the
6915 * lowest 3 bits of size, which should be always zero at the moment.
6916 * This raises a more important question, do we really need 512k sized
6917 * samples and why, so good argumentation is in order for whatever you
6918 * do here next.
6920 WARN_ON_ONCE(header->size & 7);
6923 static __always_inline int
6924 __perf_event_output(struct perf_event *event,
6925 struct perf_sample_data *data,
6926 struct pt_regs *regs,
6927 int (*output_begin)(struct perf_output_handle *,
6928 struct perf_event *,
6929 unsigned int))
6931 struct perf_output_handle handle;
6932 struct perf_event_header header;
6933 int err;
6935 /* protect the callchain buffers */
6936 rcu_read_lock();
6938 perf_prepare_sample(&header, data, event, regs);
6940 err = output_begin(&handle, event, header.size);
6941 if (err)
6942 goto exit;
6944 perf_output_sample(&handle, &header, data, event);
6946 perf_output_end(&handle);
6948 exit:
6949 rcu_read_unlock();
6950 return err;
6953 void
6954 perf_event_output_forward(struct perf_event *event,
6955 struct perf_sample_data *data,
6956 struct pt_regs *regs)
6958 __perf_event_output(event, data, regs, perf_output_begin_forward);
6961 void
6962 perf_event_output_backward(struct perf_event *event,
6963 struct perf_sample_data *data,
6964 struct pt_regs *regs)
6966 __perf_event_output(event, data, regs, perf_output_begin_backward);
6970 perf_event_output(struct perf_event *event,
6971 struct perf_sample_data *data,
6972 struct pt_regs *regs)
6974 return __perf_event_output(event, data, regs, perf_output_begin);
6978 * read event_id
6981 struct perf_read_event {
6982 struct perf_event_header header;
6984 u32 pid;
6985 u32 tid;
6988 static void
6989 perf_event_read_event(struct perf_event *event,
6990 struct task_struct *task)
6992 struct perf_output_handle handle;
6993 struct perf_sample_data sample;
6994 struct perf_read_event read_event = {
6995 .header = {
6996 .type = PERF_RECORD_READ,
6997 .misc = 0,
6998 .size = sizeof(read_event) + event->read_size,
7000 .pid = perf_event_pid(event, task),
7001 .tid = perf_event_tid(event, task),
7003 int ret;
7005 perf_event_header__init_id(&read_event.header, &sample, event);
7006 ret = perf_output_begin(&handle, event, read_event.header.size);
7007 if (ret)
7008 return;
7010 perf_output_put(&handle, read_event);
7011 perf_output_read(&handle, event);
7012 perf_event__output_id_sample(event, &handle, &sample);
7014 perf_output_end(&handle);
7017 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7019 static void
7020 perf_iterate_ctx(struct perf_event_context *ctx,
7021 perf_iterate_f output,
7022 void *data, bool all)
7024 struct perf_event *event;
7026 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7027 if (!all) {
7028 if (event->state < PERF_EVENT_STATE_INACTIVE)
7029 continue;
7030 if (!event_filter_match(event))
7031 continue;
7034 output(event, data);
7038 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7040 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7041 struct perf_event *event;
7043 list_for_each_entry_rcu(event, &pel->list, sb_list) {
7045 * Skip events that are not fully formed yet; ensure that
7046 * if we observe event->ctx, both event and ctx will be
7047 * complete enough. See perf_install_in_context().
7049 if (!smp_load_acquire(&event->ctx))
7050 continue;
7052 if (event->state < PERF_EVENT_STATE_INACTIVE)
7053 continue;
7054 if (!event_filter_match(event))
7055 continue;
7056 output(event, data);
7061 * Iterate all events that need to receive side-band events.
7063 * For new callers; ensure that account_pmu_sb_event() includes
7064 * your event, otherwise it might not get delivered.
7066 static void
7067 perf_iterate_sb(perf_iterate_f output, void *data,
7068 struct perf_event_context *task_ctx)
7070 struct perf_event_context *ctx;
7071 int ctxn;
7073 rcu_read_lock();
7074 preempt_disable();
7077 * If we have task_ctx != NULL we only notify the task context itself.
7078 * The task_ctx is set only for EXIT events before releasing task
7079 * context.
7081 if (task_ctx) {
7082 perf_iterate_ctx(task_ctx, output, data, false);
7083 goto done;
7086 perf_iterate_sb_cpu(output, data);
7088 for_each_task_context_nr(ctxn) {
7089 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7090 if (ctx)
7091 perf_iterate_ctx(ctx, output, data, false);
7093 done:
7094 preempt_enable();
7095 rcu_read_unlock();
7099 * Clear all file-based filters at exec, they'll have to be
7100 * re-instated when/if these objects are mmapped again.
7102 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7104 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7105 struct perf_addr_filter *filter;
7106 unsigned int restart = 0, count = 0;
7107 unsigned long flags;
7109 if (!has_addr_filter(event))
7110 return;
7112 raw_spin_lock_irqsave(&ifh->lock, flags);
7113 list_for_each_entry(filter, &ifh->list, entry) {
7114 if (filter->path.dentry) {
7115 event->addr_filter_ranges[count].start = 0;
7116 event->addr_filter_ranges[count].size = 0;
7117 restart++;
7120 count++;
7123 if (restart)
7124 event->addr_filters_gen++;
7125 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7127 if (restart)
7128 perf_event_stop(event, 1);
7131 void perf_event_exec(void)
7133 struct perf_event_context *ctx;
7134 int ctxn;
7136 rcu_read_lock();
7137 for_each_task_context_nr(ctxn) {
7138 ctx = current->perf_event_ctxp[ctxn];
7139 if (!ctx)
7140 continue;
7142 perf_event_enable_on_exec(ctxn);
7144 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7145 true);
7147 rcu_read_unlock();
7150 struct remote_output {
7151 struct perf_buffer *rb;
7152 int err;
7155 static void __perf_event_output_stop(struct perf_event *event, void *data)
7157 struct perf_event *parent = event->parent;
7158 struct remote_output *ro = data;
7159 struct perf_buffer *rb = ro->rb;
7160 struct stop_event_data sd = {
7161 .event = event,
7164 if (!has_aux(event))
7165 return;
7167 if (!parent)
7168 parent = event;
7171 * In case of inheritance, it will be the parent that links to the
7172 * ring-buffer, but it will be the child that's actually using it.
7174 * We are using event::rb to determine if the event should be stopped,
7175 * however this may race with ring_buffer_attach() (through set_output),
7176 * which will make us skip the event that actually needs to be stopped.
7177 * So ring_buffer_attach() has to stop an aux event before re-assigning
7178 * its rb pointer.
7180 if (rcu_dereference(parent->rb) == rb)
7181 ro->err = __perf_event_stop(&sd);
7184 static int __perf_pmu_output_stop(void *info)
7186 struct perf_event *event = info;
7187 struct pmu *pmu = event->ctx->pmu;
7188 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7189 struct remote_output ro = {
7190 .rb = event->rb,
7193 rcu_read_lock();
7194 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7195 if (cpuctx->task_ctx)
7196 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7197 &ro, false);
7198 rcu_read_unlock();
7200 return ro.err;
7203 static void perf_pmu_output_stop(struct perf_event *event)
7205 struct perf_event *iter;
7206 int err, cpu;
7208 restart:
7209 rcu_read_lock();
7210 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7212 * For per-CPU events, we need to make sure that neither they
7213 * nor their children are running; for cpu==-1 events it's
7214 * sufficient to stop the event itself if it's active, since
7215 * it can't have children.
7217 cpu = iter->cpu;
7218 if (cpu == -1)
7219 cpu = READ_ONCE(iter->oncpu);
7221 if (cpu == -1)
7222 continue;
7224 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7225 if (err == -EAGAIN) {
7226 rcu_read_unlock();
7227 goto restart;
7230 rcu_read_unlock();
7234 * task tracking -- fork/exit
7236 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7239 struct perf_task_event {
7240 struct task_struct *task;
7241 struct perf_event_context *task_ctx;
7243 struct {
7244 struct perf_event_header header;
7246 u32 pid;
7247 u32 ppid;
7248 u32 tid;
7249 u32 ptid;
7250 u64 time;
7251 } event_id;
7254 static int perf_event_task_match(struct perf_event *event)
7256 return event->attr.comm || event->attr.mmap ||
7257 event->attr.mmap2 || event->attr.mmap_data ||
7258 event->attr.task;
7261 static void perf_event_task_output(struct perf_event *event,
7262 void *data)
7264 struct perf_task_event *task_event = data;
7265 struct perf_output_handle handle;
7266 struct perf_sample_data sample;
7267 struct task_struct *task = task_event->task;
7268 int ret, size = task_event->event_id.header.size;
7270 if (!perf_event_task_match(event))
7271 return;
7273 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7275 ret = perf_output_begin(&handle, event,
7276 task_event->event_id.header.size);
7277 if (ret)
7278 goto out;
7280 task_event->event_id.pid = perf_event_pid(event, task);
7281 task_event->event_id.tid = perf_event_tid(event, task);
7283 if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7284 task_event->event_id.ppid = perf_event_pid(event,
7285 task->real_parent);
7286 task_event->event_id.ptid = perf_event_pid(event,
7287 task->real_parent);
7288 } else { /* PERF_RECORD_FORK */
7289 task_event->event_id.ppid = perf_event_pid(event, current);
7290 task_event->event_id.ptid = perf_event_tid(event, current);
7293 task_event->event_id.time = perf_event_clock(event);
7295 perf_output_put(&handle, task_event->event_id);
7297 perf_event__output_id_sample(event, &handle, &sample);
7299 perf_output_end(&handle);
7300 out:
7301 task_event->event_id.header.size = size;
7304 static void perf_event_task(struct task_struct *task,
7305 struct perf_event_context *task_ctx,
7306 int new)
7308 struct perf_task_event task_event;
7310 if (!atomic_read(&nr_comm_events) &&
7311 !atomic_read(&nr_mmap_events) &&
7312 !atomic_read(&nr_task_events))
7313 return;
7315 task_event = (struct perf_task_event){
7316 .task = task,
7317 .task_ctx = task_ctx,
7318 .event_id = {
7319 .header = {
7320 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7321 .misc = 0,
7322 .size = sizeof(task_event.event_id),
7324 /* .pid */
7325 /* .ppid */
7326 /* .tid */
7327 /* .ptid */
7328 /* .time */
7332 perf_iterate_sb(perf_event_task_output,
7333 &task_event,
7334 task_ctx);
7337 void perf_event_fork(struct task_struct *task)
7339 perf_event_task(task, NULL, 1);
7340 perf_event_namespaces(task);
7344 * comm tracking
7347 struct perf_comm_event {
7348 struct task_struct *task;
7349 char *comm;
7350 int comm_size;
7352 struct {
7353 struct perf_event_header header;
7355 u32 pid;
7356 u32 tid;
7357 } event_id;
7360 static int perf_event_comm_match(struct perf_event *event)
7362 return event->attr.comm;
7365 static void perf_event_comm_output(struct perf_event *event,
7366 void *data)
7368 struct perf_comm_event *comm_event = data;
7369 struct perf_output_handle handle;
7370 struct perf_sample_data sample;
7371 int size = comm_event->event_id.header.size;
7372 int ret;
7374 if (!perf_event_comm_match(event))
7375 return;
7377 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7378 ret = perf_output_begin(&handle, event,
7379 comm_event->event_id.header.size);
7381 if (ret)
7382 goto out;
7384 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7385 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7387 perf_output_put(&handle, comm_event->event_id);
7388 __output_copy(&handle, comm_event->comm,
7389 comm_event->comm_size);
7391 perf_event__output_id_sample(event, &handle, &sample);
7393 perf_output_end(&handle);
7394 out:
7395 comm_event->event_id.header.size = size;
7398 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7400 char comm[TASK_COMM_LEN];
7401 unsigned int size;
7403 memset(comm, 0, sizeof(comm));
7404 strlcpy(comm, comm_event->task->comm, sizeof(comm));
7405 size = ALIGN(strlen(comm)+1, sizeof(u64));
7407 comm_event->comm = comm;
7408 comm_event->comm_size = size;
7410 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7412 perf_iterate_sb(perf_event_comm_output,
7413 comm_event,
7414 NULL);
7417 void perf_event_comm(struct task_struct *task, bool exec)
7419 struct perf_comm_event comm_event;
7421 if (!atomic_read(&nr_comm_events))
7422 return;
7424 comm_event = (struct perf_comm_event){
7425 .task = task,
7426 /* .comm */
7427 /* .comm_size */
7428 .event_id = {
7429 .header = {
7430 .type = PERF_RECORD_COMM,
7431 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7432 /* .size */
7434 /* .pid */
7435 /* .tid */
7439 perf_event_comm_event(&comm_event);
7443 * namespaces tracking
7446 struct perf_namespaces_event {
7447 struct task_struct *task;
7449 struct {
7450 struct perf_event_header header;
7452 u32 pid;
7453 u32 tid;
7454 u64 nr_namespaces;
7455 struct perf_ns_link_info link_info[NR_NAMESPACES];
7456 } event_id;
7459 static int perf_event_namespaces_match(struct perf_event *event)
7461 return event->attr.namespaces;
7464 static void perf_event_namespaces_output(struct perf_event *event,
7465 void *data)
7467 struct perf_namespaces_event *namespaces_event = data;
7468 struct perf_output_handle handle;
7469 struct perf_sample_data sample;
7470 u16 header_size = namespaces_event->event_id.header.size;
7471 int ret;
7473 if (!perf_event_namespaces_match(event))
7474 return;
7476 perf_event_header__init_id(&namespaces_event->event_id.header,
7477 &sample, event);
7478 ret = perf_output_begin(&handle, event,
7479 namespaces_event->event_id.header.size);
7480 if (ret)
7481 goto out;
7483 namespaces_event->event_id.pid = perf_event_pid(event,
7484 namespaces_event->task);
7485 namespaces_event->event_id.tid = perf_event_tid(event,
7486 namespaces_event->task);
7488 perf_output_put(&handle, namespaces_event->event_id);
7490 perf_event__output_id_sample(event, &handle, &sample);
7492 perf_output_end(&handle);
7493 out:
7494 namespaces_event->event_id.header.size = header_size;
7497 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7498 struct task_struct *task,
7499 const struct proc_ns_operations *ns_ops)
7501 struct path ns_path;
7502 struct inode *ns_inode;
7503 int error;
7505 error = ns_get_path(&ns_path, task, ns_ops);
7506 if (!error) {
7507 ns_inode = ns_path.dentry->d_inode;
7508 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7509 ns_link_info->ino = ns_inode->i_ino;
7510 path_put(&ns_path);
7514 void perf_event_namespaces(struct task_struct *task)
7516 struct perf_namespaces_event namespaces_event;
7517 struct perf_ns_link_info *ns_link_info;
7519 if (!atomic_read(&nr_namespaces_events))
7520 return;
7522 namespaces_event = (struct perf_namespaces_event){
7523 .task = task,
7524 .event_id = {
7525 .header = {
7526 .type = PERF_RECORD_NAMESPACES,
7527 .misc = 0,
7528 .size = sizeof(namespaces_event.event_id),
7530 /* .pid */
7531 /* .tid */
7532 .nr_namespaces = NR_NAMESPACES,
7533 /* .link_info[NR_NAMESPACES] */
7537 ns_link_info = namespaces_event.event_id.link_info;
7539 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7540 task, &mntns_operations);
7542 #ifdef CONFIG_USER_NS
7543 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7544 task, &userns_operations);
7545 #endif
7546 #ifdef CONFIG_NET_NS
7547 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7548 task, &netns_operations);
7549 #endif
7550 #ifdef CONFIG_UTS_NS
7551 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7552 task, &utsns_operations);
7553 #endif
7554 #ifdef CONFIG_IPC_NS
7555 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7556 task, &ipcns_operations);
7557 #endif
7558 #ifdef CONFIG_PID_NS
7559 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7560 task, &pidns_operations);
7561 #endif
7562 #ifdef CONFIG_CGROUPS
7563 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7564 task, &cgroupns_operations);
7565 #endif
7567 perf_iterate_sb(perf_event_namespaces_output,
7568 &namespaces_event,
7569 NULL);
7573 * mmap tracking
7576 struct perf_mmap_event {
7577 struct vm_area_struct *vma;
7579 const char *file_name;
7580 int file_size;
7581 int maj, min;
7582 u64 ino;
7583 u64 ino_generation;
7584 u32 prot, flags;
7586 struct {
7587 struct perf_event_header header;
7589 u32 pid;
7590 u32 tid;
7591 u64 start;
7592 u64 len;
7593 u64 pgoff;
7594 } event_id;
7597 static int perf_event_mmap_match(struct perf_event *event,
7598 void *data)
7600 struct perf_mmap_event *mmap_event = data;
7601 struct vm_area_struct *vma = mmap_event->vma;
7602 int executable = vma->vm_flags & VM_EXEC;
7604 return (!executable && event->attr.mmap_data) ||
7605 (executable && (event->attr.mmap || event->attr.mmap2));
7608 static void perf_event_mmap_output(struct perf_event *event,
7609 void *data)
7611 struct perf_mmap_event *mmap_event = data;
7612 struct perf_output_handle handle;
7613 struct perf_sample_data sample;
7614 int size = mmap_event->event_id.header.size;
7615 u32 type = mmap_event->event_id.header.type;
7616 int ret;
7618 if (!perf_event_mmap_match(event, data))
7619 return;
7621 if (event->attr.mmap2) {
7622 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7623 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7624 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7625 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7626 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7627 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7628 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7631 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7632 ret = perf_output_begin(&handle, event,
7633 mmap_event->event_id.header.size);
7634 if (ret)
7635 goto out;
7637 mmap_event->event_id.pid = perf_event_pid(event, current);
7638 mmap_event->event_id.tid = perf_event_tid(event, current);
7640 perf_output_put(&handle, mmap_event->event_id);
7642 if (event->attr.mmap2) {
7643 perf_output_put(&handle, mmap_event->maj);
7644 perf_output_put(&handle, mmap_event->min);
7645 perf_output_put(&handle, mmap_event->ino);
7646 perf_output_put(&handle, mmap_event->ino_generation);
7647 perf_output_put(&handle, mmap_event->prot);
7648 perf_output_put(&handle, mmap_event->flags);
7651 __output_copy(&handle, mmap_event->file_name,
7652 mmap_event->file_size);
7654 perf_event__output_id_sample(event, &handle, &sample);
7656 perf_output_end(&handle);
7657 out:
7658 mmap_event->event_id.header.size = size;
7659 mmap_event->event_id.header.type = type;
7662 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7664 struct vm_area_struct *vma = mmap_event->vma;
7665 struct file *file = vma->vm_file;
7666 int maj = 0, min = 0;
7667 u64 ino = 0, gen = 0;
7668 u32 prot = 0, flags = 0;
7669 unsigned int size;
7670 char tmp[16];
7671 char *buf = NULL;
7672 char *name;
7674 if (vma->vm_flags & VM_READ)
7675 prot |= PROT_READ;
7676 if (vma->vm_flags & VM_WRITE)
7677 prot |= PROT_WRITE;
7678 if (vma->vm_flags & VM_EXEC)
7679 prot |= PROT_EXEC;
7681 if (vma->vm_flags & VM_MAYSHARE)
7682 flags = MAP_SHARED;
7683 else
7684 flags = MAP_PRIVATE;
7686 if (vma->vm_flags & VM_DENYWRITE)
7687 flags |= MAP_DENYWRITE;
7688 if (vma->vm_flags & VM_MAYEXEC)
7689 flags |= MAP_EXECUTABLE;
7690 if (vma->vm_flags & VM_LOCKED)
7691 flags |= MAP_LOCKED;
7692 if (vma->vm_flags & VM_HUGETLB)
7693 flags |= MAP_HUGETLB;
7695 if (file) {
7696 struct inode *inode;
7697 dev_t dev;
7699 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7700 if (!buf) {
7701 name = "//enomem";
7702 goto cpy_name;
7705 * d_path() works from the end of the rb backwards, so we
7706 * need to add enough zero bytes after the string to handle
7707 * the 64bit alignment we do later.
7709 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7710 if (IS_ERR(name)) {
7711 name = "//toolong";
7712 goto cpy_name;
7714 inode = file_inode(vma->vm_file);
7715 dev = inode->i_sb->s_dev;
7716 ino = inode->i_ino;
7717 gen = inode->i_generation;
7718 maj = MAJOR(dev);
7719 min = MINOR(dev);
7721 goto got_name;
7722 } else {
7723 if (vma->vm_ops && vma->vm_ops->name) {
7724 name = (char *) vma->vm_ops->name(vma);
7725 if (name)
7726 goto cpy_name;
7729 name = (char *)arch_vma_name(vma);
7730 if (name)
7731 goto cpy_name;
7733 if (vma->vm_start <= vma->vm_mm->start_brk &&
7734 vma->vm_end >= vma->vm_mm->brk) {
7735 name = "[heap]";
7736 goto cpy_name;
7738 if (vma->vm_start <= vma->vm_mm->start_stack &&
7739 vma->vm_end >= vma->vm_mm->start_stack) {
7740 name = "[stack]";
7741 goto cpy_name;
7744 name = "//anon";
7745 goto cpy_name;
7748 cpy_name:
7749 strlcpy(tmp, name, sizeof(tmp));
7750 name = tmp;
7751 got_name:
7753 * Since our buffer works in 8 byte units we need to align our string
7754 * size to a multiple of 8. However, we must guarantee the tail end is
7755 * zero'd out to avoid leaking random bits to userspace.
7757 size = strlen(name)+1;
7758 while (!IS_ALIGNED(size, sizeof(u64)))
7759 name[size++] = '\0';
7761 mmap_event->file_name = name;
7762 mmap_event->file_size = size;
7763 mmap_event->maj = maj;
7764 mmap_event->min = min;
7765 mmap_event->ino = ino;
7766 mmap_event->ino_generation = gen;
7767 mmap_event->prot = prot;
7768 mmap_event->flags = flags;
7770 if (!(vma->vm_flags & VM_EXEC))
7771 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7773 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7775 perf_iterate_sb(perf_event_mmap_output,
7776 mmap_event,
7777 NULL);
7779 kfree(buf);
7783 * Check whether inode and address range match filter criteria.
7785 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7786 struct file *file, unsigned long offset,
7787 unsigned long size)
7789 /* d_inode(NULL) won't be equal to any mapped user-space file */
7790 if (!filter->path.dentry)
7791 return false;
7793 if (d_inode(filter->path.dentry) != file_inode(file))
7794 return false;
7796 if (filter->offset > offset + size)
7797 return false;
7799 if (filter->offset + filter->size < offset)
7800 return false;
7802 return true;
7805 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7806 struct vm_area_struct *vma,
7807 struct perf_addr_filter_range *fr)
7809 unsigned long vma_size = vma->vm_end - vma->vm_start;
7810 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7811 struct file *file = vma->vm_file;
7813 if (!perf_addr_filter_match(filter, file, off, vma_size))
7814 return false;
7816 if (filter->offset < off) {
7817 fr->start = vma->vm_start;
7818 fr->size = min(vma_size, filter->size - (off - filter->offset));
7819 } else {
7820 fr->start = vma->vm_start + filter->offset - off;
7821 fr->size = min(vma->vm_end - fr->start, filter->size);
7824 return true;
7827 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7829 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7830 struct vm_area_struct *vma = data;
7831 struct perf_addr_filter *filter;
7832 unsigned int restart = 0, count = 0;
7833 unsigned long flags;
7835 if (!has_addr_filter(event))
7836 return;
7838 if (!vma->vm_file)
7839 return;
7841 raw_spin_lock_irqsave(&ifh->lock, flags);
7842 list_for_each_entry(filter, &ifh->list, entry) {
7843 if (perf_addr_filter_vma_adjust(filter, vma,
7844 &event->addr_filter_ranges[count]))
7845 restart++;
7847 count++;
7850 if (restart)
7851 event->addr_filters_gen++;
7852 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7854 if (restart)
7855 perf_event_stop(event, 1);
7859 * Adjust all task's events' filters to the new vma
7861 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7863 struct perf_event_context *ctx;
7864 int ctxn;
7867 * Data tracing isn't supported yet and as such there is no need
7868 * to keep track of anything that isn't related to executable code:
7870 if (!(vma->vm_flags & VM_EXEC))
7871 return;
7873 rcu_read_lock();
7874 for_each_task_context_nr(ctxn) {
7875 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7876 if (!ctx)
7877 continue;
7879 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7881 rcu_read_unlock();
7884 void perf_event_mmap(struct vm_area_struct *vma)
7886 struct perf_mmap_event mmap_event;
7888 if (!atomic_read(&nr_mmap_events))
7889 return;
7891 mmap_event = (struct perf_mmap_event){
7892 .vma = vma,
7893 /* .file_name */
7894 /* .file_size */
7895 .event_id = {
7896 .header = {
7897 .type = PERF_RECORD_MMAP,
7898 .misc = PERF_RECORD_MISC_USER,
7899 /* .size */
7901 /* .pid */
7902 /* .tid */
7903 .start = vma->vm_start,
7904 .len = vma->vm_end - vma->vm_start,
7905 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
7907 /* .maj (attr_mmap2 only) */
7908 /* .min (attr_mmap2 only) */
7909 /* .ino (attr_mmap2 only) */
7910 /* .ino_generation (attr_mmap2 only) */
7911 /* .prot (attr_mmap2 only) */
7912 /* .flags (attr_mmap2 only) */
7915 perf_addr_filters_adjust(vma);
7916 perf_event_mmap_event(&mmap_event);
7919 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7920 unsigned long size, u64 flags)
7922 struct perf_output_handle handle;
7923 struct perf_sample_data sample;
7924 struct perf_aux_event {
7925 struct perf_event_header header;
7926 u64 offset;
7927 u64 size;
7928 u64 flags;
7929 } rec = {
7930 .header = {
7931 .type = PERF_RECORD_AUX,
7932 .misc = 0,
7933 .size = sizeof(rec),
7935 .offset = head,
7936 .size = size,
7937 .flags = flags,
7939 int ret;
7941 perf_event_header__init_id(&rec.header, &sample, event);
7942 ret = perf_output_begin(&handle, event, rec.header.size);
7944 if (ret)
7945 return;
7947 perf_output_put(&handle, rec);
7948 perf_event__output_id_sample(event, &handle, &sample);
7950 perf_output_end(&handle);
7954 * Lost/dropped samples logging
7956 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7958 struct perf_output_handle handle;
7959 struct perf_sample_data sample;
7960 int ret;
7962 struct {
7963 struct perf_event_header header;
7964 u64 lost;
7965 } lost_samples_event = {
7966 .header = {
7967 .type = PERF_RECORD_LOST_SAMPLES,
7968 .misc = 0,
7969 .size = sizeof(lost_samples_event),
7971 .lost = lost,
7974 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7976 ret = perf_output_begin(&handle, event,
7977 lost_samples_event.header.size);
7978 if (ret)
7979 return;
7981 perf_output_put(&handle, lost_samples_event);
7982 perf_event__output_id_sample(event, &handle, &sample);
7983 perf_output_end(&handle);
7987 * context_switch tracking
7990 struct perf_switch_event {
7991 struct task_struct *task;
7992 struct task_struct *next_prev;
7994 struct {
7995 struct perf_event_header header;
7996 u32 next_prev_pid;
7997 u32 next_prev_tid;
7998 } event_id;
8001 static int perf_event_switch_match(struct perf_event *event)
8003 return event->attr.context_switch;
8006 static void perf_event_switch_output(struct perf_event *event, void *data)
8008 struct perf_switch_event *se = data;
8009 struct perf_output_handle handle;
8010 struct perf_sample_data sample;
8011 int ret;
8013 if (!perf_event_switch_match(event))
8014 return;
8016 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8017 if (event->ctx->task) {
8018 se->event_id.header.type = PERF_RECORD_SWITCH;
8019 se->event_id.header.size = sizeof(se->event_id.header);
8020 } else {
8021 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8022 se->event_id.header.size = sizeof(se->event_id);
8023 se->event_id.next_prev_pid =
8024 perf_event_pid(event, se->next_prev);
8025 se->event_id.next_prev_tid =
8026 perf_event_tid(event, se->next_prev);
8029 perf_event_header__init_id(&se->event_id.header, &sample, event);
8031 ret = perf_output_begin(&handle, event, se->event_id.header.size);
8032 if (ret)
8033 return;
8035 if (event->ctx->task)
8036 perf_output_put(&handle, se->event_id.header);
8037 else
8038 perf_output_put(&handle, se->event_id);
8040 perf_event__output_id_sample(event, &handle, &sample);
8042 perf_output_end(&handle);
8045 static void perf_event_switch(struct task_struct *task,
8046 struct task_struct *next_prev, bool sched_in)
8048 struct perf_switch_event switch_event;
8050 /* N.B. caller checks nr_switch_events != 0 */
8052 switch_event = (struct perf_switch_event){
8053 .task = task,
8054 .next_prev = next_prev,
8055 .event_id = {
8056 .header = {
8057 /* .type */
8058 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8059 /* .size */
8061 /* .next_prev_pid */
8062 /* .next_prev_tid */
8066 if (!sched_in && task->state == TASK_RUNNING)
8067 switch_event.event_id.header.misc |=
8068 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8070 perf_iterate_sb(perf_event_switch_output,
8071 &switch_event,
8072 NULL);
8076 * IRQ throttle logging
8079 static void perf_log_throttle(struct perf_event *event, int enable)
8081 struct perf_output_handle handle;
8082 struct perf_sample_data sample;
8083 int ret;
8085 struct {
8086 struct perf_event_header header;
8087 u64 time;
8088 u64 id;
8089 u64 stream_id;
8090 } throttle_event = {
8091 .header = {
8092 .type = PERF_RECORD_THROTTLE,
8093 .misc = 0,
8094 .size = sizeof(throttle_event),
8096 .time = perf_event_clock(event),
8097 .id = primary_event_id(event),
8098 .stream_id = event->id,
8101 if (enable)
8102 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8104 perf_event_header__init_id(&throttle_event.header, &sample, event);
8106 ret = perf_output_begin(&handle, event,
8107 throttle_event.header.size);
8108 if (ret)
8109 return;
8111 perf_output_put(&handle, throttle_event);
8112 perf_event__output_id_sample(event, &handle, &sample);
8113 perf_output_end(&handle);
8117 * ksymbol register/unregister tracking
8120 struct perf_ksymbol_event {
8121 const char *name;
8122 int name_len;
8123 struct {
8124 struct perf_event_header header;
8125 u64 addr;
8126 u32 len;
8127 u16 ksym_type;
8128 u16 flags;
8129 } event_id;
8132 static int perf_event_ksymbol_match(struct perf_event *event)
8134 return event->attr.ksymbol;
8137 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8139 struct perf_ksymbol_event *ksymbol_event = data;
8140 struct perf_output_handle handle;
8141 struct perf_sample_data sample;
8142 int ret;
8144 if (!perf_event_ksymbol_match(event))
8145 return;
8147 perf_event_header__init_id(&ksymbol_event->event_id.header,
8148 &sample, event);
8149 ret = perf_output_begin(&handle, event,
8150 ksymbol_event->event_id.header.size);
8151 if (ret)
8152 return;
8154 perf_output_put(&handle, ksymbol_event->event_id);
8155 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8156 perf_event__output_id_sample(event, &handle, &sample);
8158 perf_output_end(&handle);
8161 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8162 const char *sym)
8164 struct perf_ksymbol_event ksymbol_event;
8165 char name[KSYM_NAME_LEN];
8166 u16 flags = 0;
8167 int name_len;
8169 if (!atomic_read(&nr_ksymbol_events))
8170 return;
8172 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8173 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8174 goto err;
8176 strlcpy(name, sym, KSYM_NAME_LEN);
8177 name_len = strlen(name) + 1;
8178 while (!IS_ALIGNED(name_len, sizeof(u64)))
8179 name[name_len++] = '\0';
8180 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8182 if (unregister)
8183 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8185 ksymbol_event = (struct perf_ksymbol_event){
8186 .name = name,
8187 .name_len = name_len,
8188 .event_id = {
8189 .header = {
8190 .type = PERF_RECORD_KSYMBOL,
8191 .size = sizeof(ksymbol_event.event_id) +
8192 name_len,
8194 .addr = addr,
8195 .len = len,
8196 .ksym_type = ksym_type,
8197 .flags = flags,
8201 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8202 return;
8203 err:
8204 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8208 * bpf program load/unload tracking
8211 struct perf_bpf_event {
8212 struct bpf_prog *prog;
8213 struct {
8214 struct perf_event_header header;
8215 u16 type;
8216 u16 flags;
8217 u32 id;
8218 u8 tag[BPF_TAG_SIZE];
8219 } event_id;
8222 static int perf_event_bpf_match(struct perf_event *event)
8224 return event->attr.bpf_event;
8227 static void perf_event_bpf_output(struct perf_event *event, void *data)
8229 struct perf_bpf_event *bpf_event = data;
8230 struct perf_output_handle handle;
8231 struct perf_sample_data sample;
8232 int ret;
8234 if (!perf_event_bpf_match(event))
8235 return;
8237 perf_event_header__init_id(&bpf_event->event_id.header,
8238 &sample, event);
8239 ret = perf_output_begin(&handle, event,
8240 bpf_event->event_id.header.size);
8241 if (ret)
8242 return;
8244 perf_output_put(&handle, bpf_event->event_id);
8245 perf_event__output_id_sample(event, &handle, &sample);
8247 perf_output_end(&handle);
8250 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8251 enum perf_bpf_event_type type)
8253 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8254 char sym[KSYM_NAME_LEN];
8255 int i;
8257 if (prog->aux->func_cnt == 0) {
8258 bpf_get_prog_name(prog, sym);
8259 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8260 (u64)(unsigned long)prog->bpf_func,
8261 prog->jited_len, unregister, sym);
8262 } else {
8263 for (i = 0; i < prog->aux->func_cnt; i++) {
8264 struct bpf_prog *subprog = prog->aux->func[i];
8266 bpf_get_prog_name(subprog, sym);
8267 perf_event_ksymbol(
8268 PERF_RECORD_KSYMBOL_TYPE_BPF,
8269 (u64)(unsigned long)subprog->bpf_func,
8270 subprog->jited_len, unregister, sym);
8275 void perf_event_bpf_event(struct bpf_prog *prog,
8276 enum perf_bpf_event_type type,
8277 u16 flags)
8279 struct perf_bpf_event bpf_event;
8281 if (type <= PERF_BPF_EVENT_UNKNOWN ||
8282 type >= PERF_BPF_EVENT_MAX)
8283 return;
8285 switch (type) {
8286 case PERF_BPF_EVENT_PROG_LOAD:
8287 case PERF_BPF_EVENT_PROG_UNLOAD:
8288 if (atomic_read(&nr_ksymbol_events))
8289 perf_event_bpf_emit_ksymbols(prog, type);
8290 break;
8291 default:
8292 break;
8295 if (!atomic_read(&nr_bpf_events))
8296 return;
8298 bpf_event = (struct perf_bpf_event){
8299 .prog = prog,
8300 .event_id = {
8301 .header = {
8302 .type = PERF_RECORD_BPF_EVENT,
8303 .size = sizeof(bpf_event.event_id),
8305 .type = type,
8306 .flags = flags,
8307 .id = prog->aux->id,
8311 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8313 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8314 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8317 void perf_event_itrace_started(struct perf_event *event)
8319 event->attach_state |= PERF_ATTACH_ITRACE;
8322 static void perf_log_itrace_start(struct perf_event *event)
8324 struct perf_output_handle handle;
8325 struct perf_sample_data sample;
8326 struct perf_aux_event {
8327 struct perf_event_header header;
8328 u32 pid;
8329 u32 tid;
8330 } rec;
8331 int ret;
8333 if (event->parent)
8334 event = event->parent;
8336 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8337 event->attach_state & PERF_ATTACH_ITRACE)
8338 return;
8340 rec.header.type = PERF_RECORD_ITRACE_START;
8341 rec.header.misc = 0;
8342 rec.header.size = sizeof(rec);
8343 rec.pid = perf_event_pid(event, current);
8344 rec.tid = perf_event_tid(event, current);
8346 perf_event_header__init_id(&rec.header, &sample, event);
8347 ret = perf_output_begin(&handle, event, rec.header.size);
8349 if (ret)
8350 return;
8352 perf_output_put(&handle, rec);
8353 perf_event__output_id_sample(event, &handle, &sample);
8355 perf_output_end(&handle);
8358 static int
8359 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8361 struct hw_perf_event *hwc = &event->hw;
8362 int ret = 0;
8363 u64 seq;
8365 seq = __this_cpu_read(perf_throttled_seq);
8366 if (seq != hwc->interrupts_seq) {
8367 hwc->interrupts_seq = seq;
8368 hwc->interrupts = 1;
8369 } else {
8370 hwc->interrupts++;
8371 if (unlikely(throttle
8372 && hwc->interrupts >= max_samples_per_tick)) {
8373 __this_cpu_inc(perf_throttled_count);
8374 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8375 hwc->interrupts = MAX_INTERRUPTS;
8376 perf_log_throttle(event, 0);
8377 ret = 1;
8381 if (event->attr.freq) {
8382 u64 now = perf_clock();
8383 s64 delta = now - hwc->freq_time_stamp;
8385 hwc->freq_time_stamp = now;
8387 if (delta > 0 && delta < 2*TICK_NSEC)
8388 perf_adjust_period(event, delta, hwc->last_period, true);
8391 return ret;
8394 int perf_event_account_interrupt(struct perf_event *event)
8396 return __perf_event_account_interrupt(event, 1);
8400 * Generic event overflow handling, sampling.
8403 static int __perf_event_overflow(struct perf_event *event,
8404 int throttle, struct perf_sample_data *data,
8405 struct pt_regs *regs)
8407 int events = atomic_read(&event->event_limit);
8408 int ret = 0;
8411 * Non-sampling counters might still use the PMI to fold short
8412 * hardware counters, ignore those.
8414 if (unlikely(!is_sampling_event(event)))
8415 return 0;
8417 ret = __perf_event_account_interrupt(event, throttle);
8420 * XXX event_limit might not quite work as expected on inherited
8421 * events
8424 event->pending_kill = POLL_IN;
8425 if (events && atomic_dec_and_test(&event->event_limit)) {
8426 ret = 1;
8427 event->pending_kill = POLL_HUP;
8429 perf_event_disable_inatomic(event);
8432 READ_ONCE(event->overflow_handler)(event, data, regs);
8434 if (*perf_event_fasync(event) && event->pending_kill) {
8435 event->pending_wakeup = 1;
8436 irq_work_queue(&event->pending);
8439 return ret;
8442 int perf_event_overflow(struct perf_event *event,
8443 struct perf_sample_data *data,
8444 struct pt_regs *regs)
8446 return __perf_event_overflow(event, 1, data, regs);
8450 * Generic software event infrastructure
8453 struct swevent_htable {
8454 struct swevent_hlist *swevent_hlist;
8455 struct mutex hlist_mutex;
8456 int hlist_refcount;
8458 /* Recursion avoidance in each contexts */
8459 int recursion[PERF_NR_CONTEXTS];
8462 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8465 * We directly increment event->count and keep a second value in
8466 * event->hw.period_left to count intervals. This period event
8467 * is kept in the range [-sample_period, 0] so that we can use the
8468 * sign as trigger.
8471 u64 perf_swevent_set_period(struct perf_event *event)
8473 struct hw_perf_event *hwc = &event->hw;
8474 u64 period = hwc->last_period;
8475 u64 nr, offset;
8476 s64 old, val;
8478 hwc->last_period = hwc->sample_period;
8480 again:
8481 old = val = local64_read(&hwc->period_left);
8482 if (val < 0)
8483 return 0;
8485 nr = div64_u64(period + val, period);
8486 offset = nr * period;
8487 val -= offset;
8488 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8489 goto again;
8491 return nr;
8494 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8495 struct perf_sample_data *data,
8496 struct pt_regs *regs)
8498 struct hw_perf_event *hwc = &event->hw;
8499 int throttle = 0;
8501 if (!overflow)
8502 overflow = perf_swevent_set_period(event);
8504 if (hwc->interrupts == MAX_INTERRUPTS)
8505 return;
8507 for (; overflow; overflow--) {
8508 if (__perf_event_overflow(event, throttle,
8509 data, regs)) {
8511 * We inhibit the overflow from happening when
8512 * hwc->interrupts == MAX_INTERRUPTS.
8514 break;
8516 throttle = 1;
8520 static void perf_swevent_event(struct perf_event *event, u64 nr,
8521 struct perf_sample_data *data,
8522 struct pt_regs *regs)
8524 struct hw_perf_event *hwc = &event->hw;
8526 local64_add(nr, &event->count);
8528 if (!regs)
8529 return;
8531 if (!is_sampling_event(event))
8532 return;
8534 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8535 data->period = nr;
8536 return perf_swevent_overflow(event, 1, data, regs);
8537 } else
8538 data->period = event->hw.last_period;
8540 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8541 return perf_swevent_overflow(event, 1, data, regs);
8543 if (local64_add_negative(nr, &hwc->period_left))
8544 return;
8546 perf_swevent_overflow(event, 0, data, regs);
8549 static int perf_exclude_event(struct perf_event *event,
8550 struct pt_regs *regs)
8552 if (event->hw.state & PERF_HES_STOPPED)
8553 return 1;
8555 if (regs) {
8556 if (event->attr.exclude_user && user_mode(regs))
8557 return 1;
8559 if (event->attr.exclude_kernel && !user_mode(regs))
8560 return 1;
8563 return 0;
8566 static int perf_swevent_match(struct perf_event *event,
8567 enum perf_type_id type,
8568 u32 event_id,
8569 struct perf_sample_data *data,
8570 struct pt_regs *regs)
8572 if (event->attr.type != type)
8573 return 0;
8575 if (event->attr.config != event_id)
8576 return 0;
8578 if (perf_exclude_event(event, regs))
8579 return 0;
8581 return 1;
8584 static inline u64 swevent_hash(u64 type, u32 event_id)
8586 u64 val = event_id | (type << 32);
8588 return hash_64(val, SWEVENT_HLIST_BITS);
8591 static inline struct hlist_head *
8592 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8594 u64 hash = swevent_hash(type, event_id);
8596 return &hlist->heads[hash];
8599 /* For the read side: events when they trigger */
8600 static inline struct hlist_head *
8601 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8603 struct swevent_hlist *hlist;
8605 hlist = rcu_dereference(swhash->swevent_hlist);
8606 if (!hlist)
8607 return NULL;
8609 return __find_swevent_head(hlist, type, event_id);
8612 /* For the event head insertion and removal in the hlist */
8613 static inline struct hlist_head *
8614 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8616 struct swevent_hlist *hlist;
8617 u32 event_id = event->attr.config;
8618 u64 type = event->attr.type;
8621 * Event scheduling is always serialized against hlist allocation
8622 * and release. Which makes the protected version suitable here.
8623 * The context lock guarantees that.
8625 hlist = rcu_dereference_protected(swhash->swevent_hlist,
8626 lockdep_is_held(&event->ctx->lock));
8627 if (!hlist)
8628 return NULL;
8630 return __find_swevent_head(hlist, type, event_id);
8633 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8634 u64 nr,
8635 struct perf_sample_data *data,
8636 struct pt_regs *regs)
8638 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8639 struct perf_event *event;
8640 struct hlist_head *head;
8642 rcu_read_lock();
8643 head = find_swevent_head_rcu(swhash, type, event_id);
8644 if (!head)
8645 goto end;
8647 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8648 if (perf_swevent_match(event, type, event_id, data, regs))
8649 perf_swevent_event(event, nr, data, regs);
8651 end:
8652 rcu_read_unlock();
8655 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8657 int perf_swevent_get_recursion_context(void)
8659 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8661 return get_recursion_context(swhash->recursion);
8663 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8665 void perf_swevent_put_recursion_context(int rctx)
8667 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8669 put_recursion_context(swhash->recursion, rctx);
8672 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8674 struct perf_sample_data data;
8676 if (WARN_ON_ONCE(!regs))
8677 return;
8679 perf_sample_data_init(&data, addr, 0);
8680 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8683 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8685 int rctx;
8687 preempt_disable_notrace();
8688 rctx = perf_swevent_get_recursion_context();
8689 if (unlikely(rctx < 0))
8690 goto fail;
8692 ___perf_sw_event(event_id, nr, regs, addr);
8694 perf_swevent_put_recursion_context(rctx);
8695 fail:
8696 preempt_enable_notrace();
8699 static void perf_swevent_read(struct perf_event *event)
8703 static int perf_swevent_add(struct perf_event *event, int flags)
8705 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8706 struct hw_perf_event *hwc = &event->hw;
8707 struct hlist_head *head;
8709 if (is_sampling_event(event)) {
8710 hwc->last_period = hwc->sample_period;
8711 perf_swevent_set_period(event);
8714 hwc->state = !(flags & PERF_EF_START);
8716 head = find_swevent_head(swhash, event);
8717 if (WARN_ON_ONCE(!head))
8718 return -EINVAL;
8720 hlist_add_head_rcu(&event->hlist_entry, head);
8721 perf_event_update_userpage(event);
8723 return 0;
8726 static void perf_swevent_del(struct perf_event *event, int flags)
8728 hlist_del_rcu(&event->hlist_entry);
8731 static void perf_swevent_start(struct perf_event *event, int flags)
8733 event->hw.state = 0;
8736 static void perf_swevent_stop(struct perf_event *event, int flags)
8738 event->hw.state = PERF_HES_STOPPED;
8741 /* Deref the hlist from the update side */
8742 static inline struct swevent_hlist *
8743 swevent_hlist_deref(struct swevent_htable *swhash)
8745 return rcu_dereference_protected(swhash->swevent_hlist,
8746 lockdep_is_held(&swhash->hlist_mutex));
8749 static void swevent_hlist_release(struct swevent_htable *swhash)
8751 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8753 if (!hlist)
8754 return;
8756 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8757 kfree_rcu(hlist, rcu_head);
8760 static void swevent_hlist_put_cpu(int cpu)
8762 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8764 mutex_lock(&swhash->hlist_mutex);
8766 if (!--swhash->hlist_refcount)
8767 swevent_hlist_release(swhash);
8769 mutex_unlock(&swhash->hlist_mutex);
8772 static void swevent_hlist_put(void)
8774 int cpu;
8776 for_each_possible_cpu(cpu)
8777 swevent_hlist_put_cpu(cpu);
8780 static int swevent_hlist_get_cpu(int cpu)
8782 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8783 int err = 0;
8785 mutex_lock(&swhash->hlist_mutex);
8786 if (!swevent_hlist_deref(swhash) &&
8787 cpumask_test_cpu(cpu, perf_online_mask)) {
8788 struct swevent_hlist *hlist;
8790 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8791 if (!hlist) {
8792 err = -ENOMEM;
8793 goto exit;
8795 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8797 swhash->hlist_refcount++;
8798 exit:
8799 mutex_unlock(&swhash->hlist_mutex);
8801 return err;
8804 static int swevent_hlist_get(void)
8806 int err, cpu, failed_cpu;
8808 mutex_lock(&pmus_lock);
8809 for_each_possible_cpu(cpu) {
8810 err = swevent_hlist_get_cpu(cpu);
8811 if (err) {
8812 failed_cpu = cpu;
8813 goto fail;
8816 mutex_unlock(&pmus_lock);
8817 return 0;
8818 fail:
8819 for_each_possible_cpu(cpu) {
8820 if (cpu == failed_cpu)
8821 break;
8822 swevent_hlist_put_cpu(cpu);
8824 mutex_unlock(&pmus_lock);
8825 return err;
8828 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8830 static void sw_perf_event_destroy(struct perf_event *event)
8832 u64 event_id = event->attr.config;
8834 WARN_ON(event->parent);
8836 static_key_slow_dec(&perf_swevent_enabled[event_id]);
8837 swevent_hlist_put();
8840 static int perf_swevent_init(struct perf_event *event)
8842 u64 event_id = event->attr.config;
8844 if (event->attr.type != PERF_TYPE_SOFTWARE)
8845 return -ENOENT;
8848 * no branch sampling for software events
8850 if (has_branch_stack(event))
8851 return -EOPNOTSUPP;
8853 switch (event_id) {
8854 case PERF_COUNT_SW_CPU_CLOCK:
8855 case PERF_COUNT_SW_TASK_CLOCK:
8856 return -ENOENT;
8858 default:
8859 break;
8862 if (event_id >= PERF_COUNT_SW_MAX)
8863 return -ENOENT;
8865 if (!event->parent) {
8866 int err;
8868 err = swevent_hlist_get();
8869 if (err)
8870 return err;
8872 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8873 event->destroy = sw_perf_event_destroy;
8876 return 0;
8879 static struct pmu perf_swevent = {
8880 .task_ctx_nr = perf_sw_context,
8882 .capabilities = PERF_PMU_CAP_NO_NMI,
8884 .event_init = perf_swevent_init,
8885 .add = perf_swevent_add,
8886 .del = perf_swevent_del,
8887 .start = perf_swevent_start,
8888 .stop = perf_swevent_stop,
8889 .read = perf_swevent_read,
8892 #ifdef CONFIG_EVENT_TRACING
8894 static int perf_tp_filter_match(struct perf_event *event,
8895 struct perf_sample_data *data)
8897 void *record = data->raw->frag.data;
8899 /* only top level events have filters set */
8900 if (event->parent)
8901 event = event->parent;
8903 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8904 return 1;
8905 return 0;
8908 static int perf_tp_event_match(struct perf_event *event,
8909 struct perf_sample_data *data,
8910 struct pt_regs *regs)
8912 if (event->hw.state & PERF_HES_STOPPED)
8913 return 0;
8915 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8917 if (event->attr.exclude_kernel && !user_mode(regs))
8918 return 0;
8920 if (!perf_tp_filter_match(event, data))
8921 return 0;
8923 return 1;
8926 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8927 struct trace_event_call *call, u64 count,
8928 struct pt_regs *regs, struct hlist_head *head,
8929 struct task_struct *task)
8931 if (bpf_prog_array_valid(call)) {
8932 *(struct pt_regs **)raw_data = regs;
8933 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8934 perf_swevent_put_recursion_context(rctx);
8935 return;
8938 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8939 rctx, task);
8941 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8943 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8944 struct pt_regs *regs, struct hlist_head *head, int rctx,
8945 struct task_struct *task)
8947 struct perf_sample_data data;
8948 struct perf_event *event;
8950 struct perf_raw_record raw = {
8951 .frag = {
8952 .size = entry_size,
8953 .data = record,
8957 perf_sample_data_init(&data, 0, 0);
8958 data.raw = &raw;
8960 perf_trace_buf_update(record, event_type);
8962 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8963 if (perf_tp_event_match(event, &data, regs))
8964 perf_swevent_event(event, count, &data, regs);
8968 * If we got specified a target task, also iterate its context and
8969 * deliver this event there too.
8971 if (task && task != current) {
8972 struct perf_event_context *ctx;
8973 struct trace_entry *entry = record;
8975 rcu_read_lock();
8976 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8977 if (!ctx)
8978 goto unlock;
8980 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8981 if (event->cpu != smp_processor_id())
8982 continue;
8983 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8984 continue;
8985 if (event->attr.config != entry->type)
8986 continue;
8987 if (perf_tp_event_match(event, &data, regs))
8988 perf_swevent_event(event, count, &data, regs);
8990 unlock:
8991 rcu_read_unlock();
8994 perf_swevent_put_recursion_context(rctx);
8996 EXPORT_SYMBOL_GPL(perf_tp_event);
8998 static void tp_perf_event_destroy(struct perf_event *event)
9000 perf_trace_destroy(event);
9003 static int perf_tp_event_init(struct perf_event *event)
9005 int err;
9007 if (event->attr.type != PERF_TYPE_TRACEPOINT)
9008 return -ENOENT;
9011 * no branch sampling for tracepoint events
9013 if (has_branch_stack(event))
9014 return -EOPNOTSUPP;
9016 err = perf_trace_init(event);
9017 if (err)
9018 return err;
9020 event->destroy = tp_perf_event_destroy;
9022 return 0;
9025 static struct pmu perf_tracepoint = {
9026 .task_ctx_nr = perf_sw_context,
9028 .event_init = perf_tp_event_init,
9029 .add = perf_trace_add,
9030 .del = perf_trace_del,
9031 .start = perf_swevent_start,
9032 .stop = perf_swevent_stop,
9033 .read = perf_swevent_read,
9036 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9038 * Flags in config, used by dynamic PMU kprobe and uprobe
9039 * The flags should match following PMU_FORMAT_ATTR().
9041 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9042 * if not set, create kprobe/uprobe
9044 * The following values specify a reference counter (or semaphore in the
9045 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9046 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9048 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9049 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
9051 enum perf_probe_config {
9052 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
9053 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9054 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9057 PMU_FORMAT_ATTR(retprobe, "config:0");
9058 #endif
9060 #ifdef CONFIG_KPROBE_EVENTS
9061 static struct attribute *kprobe_attrs[] = {
9062 &format_attr_retprobe.attr,
9063 NULL,
9066 static struct attribute_group kprobe_format_group = {
9067 .name = "format",
9068 .attrs = kprobe_attrs,
9071 static const struct attribute_group *kprobe_attr_groups[] = {
9072 &kprobe_format_group,
9073 NULL,
9076 static int perf_kprobe_event_init(struct perf_event *event);
9077 static struct pmu perf_kprobe = {
9078 .task_ctx_nr = perf_sw_context,
9079 .event_init = perf_kprobe_event_init,
9080 .add = perf_trace_add,
9081 .del = perf_trace_del,
9082 .start = perf_swevent_start,
9083 .stop = perf_swevent_stop,
9084 .read = perf_swevent_read,
9085 .attr_groups = kprobe_attr_groups,
9088 static int perf_kprobe_event_init(struct perf_event *event)
9090 int err;
9091 bool is_retprobe;
9093 if (event->attr.type != perf_kprobe.type)
9094 return -ENOENT;
9096 if (!capable(CAP_SYS_ADMIN))
9097 return -EACCES;
9100 * no branch sampling for probe events
9102 if (has_branch_stack(event))
9103 return -EOPNOTSUPP;
9105 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9106 err = perf_kprobe_init(event, is_retprobe);
9107 if (err)
9108 return err;
9110 event->destroy = perf_kprobe_destroy;
9112 return 0;
9114 #endif /* CONFIG_KPROBE_EVENTS */
9116 #ifdef CONFIG_UPROBE_EVENTS
9117 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9119 static struct attribute *uprobe_attrs[] = {
9120 &format_attr_retprobe.attr,
9121 &format_attr_ref_ctr_offset.attr,
9122 NULL,
9125 static struct attribute_group uprobe_format_group = {
9126 .name = "format",
9127 .attrs = uprobe_attrs,
9130 static const struct attribute_group *uprobe_attr_groups[] = {
9131 &uprobe_format_group,
9132 NULL,
9135 static int perf_uprobe_event_init(struct perf_event *event);
9136 static struct pmu perf_uprobe = {
9137 .task_ctx_nr = perf_sw_context,
9138 .event_init = perf_uprobe_event_init,
9139 .add = perf_trace_add,
9140 .del = perf_trace_del,
9141 .start = perf_swevent_start,
9142 .stop = perf_swevent_stop,
9143 .read = perf_swevent_read,
9144 .attr_groups = uprobe_attr_groups,
9147 static int perf_uprobe_event_init(struct perf_event *event)
9149 int err;
9150 unsigned long ref_ctr_offset;
9151 bool is_retprobe;
9153 if (event->attr.type != perf_uprobe.type)
9154 return -ENOENT;
9156 if (!capable(CAP_SYS_ADMIN))
9157 return -EACCES;
9160 * no branch sampling for probe events
9162 if (has_branch_stack(event))
9163 return -EOPNOTSUPP;
9165 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9166 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9167 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9168 if (err)
9169 return err;
9171 event->destroy = perf_uprobe_destroy;
9173 return 0;
9175 #endif /* CONFIG_UPROBE_EVENTS */
9177 static inline void perf_tp_register(void)
9179 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9180 #ifdef CONFIG_KPROBE_EVENTS
9181 perf_pmu_register(&perf_kprobe, "kprobe", -1);
9182 #endif
9183 #ifdef CONFIG_UPROBE_EVENTS
9184 perf_pmu_register(&perf_uprobe, "uprobe", -1);
9185 #endif
9188 static void perf_event_free_filter(struct perf_event *event)
9190 ftrace_profile_free_filter(event);
9193 #ifdef CONFIG_BPF_SYSCALL
9194 static void bpf_overflow_handler(struct perf_event *event,
9195 struct perf_sample_data *data,
9196 struct pt_regs *regs)
9198 struct bpf_perf_event_data_kern ctx = {
9199 .data = data,
9200 .event = event,
9202 int ret = 0;
9204 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9205 preempt_disable();
9206 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9207 goto out;
9208 rcu_read_lock();
9209 ret = BPF_PROG_RUN(event->prog, &ctx);
9210 rcu_read_unlock();
9211 out:
9212 __this_cpu_dec(bpf_prog_active);
9213 preempt_enable();
9214 if (!ret)
9215 return;
9217 event->orig_overflow_handler(event, data, regs);
9220 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9222 struct bpf_prog *prog;
9224 if (event->overflow_handler_context)
9225 /* hw breakpoint or kernel counter */
9226 return -EINVAL;
9228 if (event->prog)
9229 return -EEXIST;
9231 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9232 if (IS_ERR(prog))
9233 return PTR_ERR(prog);
9235 event->prog = prog;
9236 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9237 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9238 return 0;
9241 static void perf_event_free_bpf_handler(struct perf_event *event)
9243 struct bpf_prog *prog = event->prog;
9245 if (!prog)
9246 return;
9248 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9249 event->prog = NULL;
9250 bpf_prog_put(prog);
9252 #else
9253 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9255 return -EOPNOTSUPP;
9257 static void perf_event_free_bpf_handler(struct perf_event *event)
9260 #endif
9263 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9264 * with perf_event_open()
9266 static inline bool perf_event_is_tracing(struct perf_event *event)
9268 if (event->pmu == &perf_tracepoint)
9269 return true;
9270 #ifdef CONFIG_KPROBE_EVENTS
9271 if (event->pmu == &perf_kprobe)
9272 return true;
9273 #endif
9274 #ifdef CONFIG_UPROBE_EVENTS
9275 if (event->pmu == &perf_uprobe)
9276 return true;
9277 #endif
9278 return false;
9281 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9283 bool is_kprobe, is_tracepoint, is_syscall_tp;
9284 struct bpf_prog *prog;
9285 int ret;
9287 if (!perf_event_is_tracing(event))
9288 return perf_event_set_bpf_handler(event, prog_fd);
9290 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9291 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9292 is_syscall_tp = is_syscall_trace_event(event->tp_event);
9293 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9294 /* bpf programs can only be attached to u/kprobe or tracepoint */
9295 return -EINVAL;
9297 prog = bpf_prog_get(prog_fd);
9298 if (IS_ERR(prog))
9299 return PTR_ERR(prog);
9301 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9302 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9303 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9304 /* valid fd, but invalid bpf program type */
9305 bpf_prog_put(prog);
9306 return -EINVAL;
9309 /* Kprobe override only works for kprobes, not uprobes. */
9310 if (prog->kprobe_override &&
9311 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9312 bpf_prog_put(prog);
9313 return -EINVAL;
9316 if (is_tracepoint || is_syscall_tp) {
9317 int off = trace_event_get_offsets(event->tp_event);
9319 if (prog->aux->max_ctx_offset > off) {
9320 bpf_prog_put(prog);
9321 return -EACCES;
9325 ret = perf_event_attach_bpf_prog(event, prog);
9326 if (ret)
9327 bpf_prog_put(prog);
9328 return ret;
9331 static void perf_event_free_bpf_prog(struct perf_event *event)
9333 if (!perf_event_is_tracing(event)) {
9334 perf_event_free_bpf_handler(event);
9335 return;
9337 perf_event_detach_bpf_prog(event);
9340 #else
9342 static inline void perf_tp_register(void)
9346 static void perf_event_free_filter(struct perf_event *event)
9350 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9352 return -ENOENT;
9355 static void perf_event_free_bpf_prog(struct perf_event *event)
9358 #endif /* CONFIG_EVENT_TRACING */
9360 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9361 void perf_bp_event(struct perf_event *bp, void *data)
9363 struct perf_sample_data sample;
9364 struct pt_regs *regs = data;
9366 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9368 if (!bp->hw.state && !perf_exclude_event(bp, regs))
9369 perf_swevent_event(bp, 1, &sample, regs);
9371 #endif
9374 * Allocate a new address filter
9376 static struct perf_addr_filter *
9377 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9379 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9380 struct perf_addr_filter *filter;
9382 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9383 if (!filter)
9384 return NULL;
9386 INIT_LIST_HEAD(&filter->entry);
9387 list_add_tail(&filter->entry, filters);
9389 return filter;
9392 static void free_filters_list(struct list_head *filters)
9394 struct perf_addr_filter *filter, *iter;
9396 list_for_each_entry_safe(filter, iter, filters, entry) {
9397 path_put(&filter->path);
9398 list_del(&filter->entry);
9399 kfree(filter);
9404 * Free existing address filters and optionally install new ones
9406 static void perf_addr_filters_splice(struct perf_event *event,
9407 struct list_head *head)
9409 unsigned long flags;
9410 LIST_HEAD(list);
9412 if (!has_addr_filter(event))
9413 return;
9415 /* don't bother with children, they don't have their own filters */
9416 if (event->parent)
9417 return;
9419 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9421 list_splice_init(&event->addr_filters.list, &list);
9422 if (head)
9423 list_splice(head, &event->addr_filters.list);
9425 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9427 free_filters_list(&list);
9431 * Scan through mm's vmas and see if one of them matches the
9432 * @filter; if so, adjust filter's address range.
9433 * Called with mm::mmap_sem down for reading.
9435 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9436 struct mm_struct *mm,
9437 struct perf_addr_filter_range *fr)
9439 struct vm_area_struct *vma;
9441 for (vma = mm->mmap; vma; vma = vma->vm_next) {
9442 if (!vma->vm_file)
9443 continue;
9445 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9446 return;
9451 * Update event's address range filters based on the
9452 * task's existing mappings, if any.
9454 static void perf_event_addr_filters_apply(struct perf_event *event)
9456 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9457 struct task_struct *task = READ_ONCE(event->ctx->task);
9458 struct perf_addr_filter *filter;
9459 struct mm_struct *mm = NULL;
9460 unsigned int count = 0;
9461 unsigned long flags;
9464 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9465 * will stop on the parent's child_mutex that our caller is also holding
9467 if (task == TASK_TOMBSTONE)
9468 return;
9470 if (ifh->nr_file_filters) {
9471 mm = get_task_mm(event->ctx->task);
9472 if (!mm)
9473 goto restart;
9475 down_read(&mm->mmap_sem);
9478 raw_spin_lock_irqsave(&ifh->lock, flags);
9479 list_for_each_entry(filter, &ifh->list, entry) {
9480 if (filter->path.dentry) {
9482 * Adjust base offset if the filter is associated to a
9483 * binary that needs to be mapped:
9485 event->addr_filter_ranges[count].start = 0;
9486 event->addr_filter_ranges[count].size = 0;
9488 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9489 } else {
9490 event->addr_filter_ranges[count].start = filter->offset;
9491 event->addr_filter_ranges[count].size = filter->size;
9494 count++;
9497 event->addr_filters_gen++;
9498 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9500 if (ifh->nr_file_filters) {
9501 up_read(&mm->mmap_sem);
9503 mmput(mm);
9506 restart:
9507 perf_event_stop(event, 1);
9511 * Address range filtering: limiting the data to certain
9512 * instruction address ranges. Filters are ioctl()ed to us from
9513 * userspace as ascii strings.
9515 * Filter string format:
9517 * ACTION RANGE_SPEC
9518 * where ACTION is one of the
9519 * * "filter": limit the trace to this region
9520 * * "start": start tracing from this address
9521 * * "stop": stop tracing at this address/region;
9522 * RANGE_SPEC is
9523 * * for kernel addresses: <start address>[/<size>]
9524 * * for object files: <start address>[/<size>]@</path/to/object/file>
9526 * if <size> is not specified or is zero, the range is treated as a single
9527 * address; not valid for ACTION=="filter".
9529 enum {
9530 IF_ACT_NONE = -1,
9531 IF_ACT_FILTER,
9532 IF_ACT_START,
9533 IF_ACT_STOP,
9534 IF_SRC_FILE,
9535 IF_SRC_KERNEL,
9536 IF_SRC_FILEADDR,
9537 IF_SRC_KERNELADDR,
9540 enum {
9541 IF_STATE_ACTION = 0,
9542 IF_STATE_SOURCE,
9543 IF_STATE_END,
9546 static const match_table_t if_tokens = {
9547 { IF_ACT_FILTER, "filter" },
9548 { IF_ACT_START, "start" },
9549 { IF_ACT_STOP, "stop" },
9550 { IF_SRC_FILE, "%u/%u@%s" },
9551 { IF_SRC_KERNEL, "%u/%u" },
9552 { IF_SRC_FILEADDR, "%u@%s" },
9553 { IF_SRC_KERNELADDR, "%u" },
9554 { IF_ACT_NONE, NULL },
9558 * Address filter string parser
9560 static int
9561 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9562 struct list_head *filters)
9564 struct perf_addr_filter *filter = NULL;
9565 char *start, *orig, *filename = NULL;
9566 substring_t args[MAX_OPT_ARGS];
9567 int state = IF_STATE_ACTION, token;
9568 unsigned int kernel = 0;
9569 int ret = -EINVAL;
9571 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9572 if (!fstr)
9573 return -ENOMEM;
9575 while ((start = strsep(&fstr, " ,\n")) != NULL) {
9576 static const enum perf_addr_filter_action_t actions[] = {
9577 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9578 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9579 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9581 ret = -EINVAL;
9583 if (!*start)
9584 continue;
9586 /* filter definition begins */
9587 if (state == IF_STATE_ACTION) {
9588 filter = perf_addr_filter_new(event, filters);
9589 if (!filter)
9590 goto fail;
9593 token = match_token(start, if_tokens, args);
9594 switch (token) {
9595 case IF_ACT_FILTER:
9596 case IF_ACT_START:
9597 case IF_ACT_STOP:
9598 if (state != IF_STATE_ACTION)
9599 goto fail;
9601 filter->action = actions[token];
9602 state = IF_STATE_SOURCE;
9603 break;
9605 case IF_SRC_KERNELADDR:
9606 case IF_SRC_KERNEL:
9607 kernel = 1;
9608 /* fall through */
9610 case IF_SRC_FILEADDR:
9611 case IF_SRC_FILE:
9612 if (state != IF_STATE_SOURCE)
9613 goto fail;
9615 *args[0].to = 0;
9616 ret = kstrtoul(args[0].from, 0, &filter->offset);
9617 if (ret)
9618 goto fail;
9620 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9621 *args[1].to = 0;
9622 ret = kstrtoul(args[1].from, 0, &filter->size);
9623 if (ret)
9624 goto fail;
9627 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9628 int fpos = token == IF_SRC_FILE ? 2 : 1;
9630 filename = match_strdup(&args[fpos]);
9631 if (!filename) {
9632 ret = -ENOMEM;
9633 goto fail;
9637 state = IF_STATE_END;
9638 break;
9640 default:
9641 goto fail;
9645 * Filter definition is fully parsed, validate and install it.
9646 * Make sure that it doesn't contradict itself or the event's
9647 * attribute.
9649 if (state == IF_STATE_END) {
9650 ret = -EINVAL;
9651 if (kernel && event->attr.exclude_kernel)
9652 goto fail;
9655 * ACTION "filter" must have a non-zero length region
9656 * specified.
9658 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9659 !filter->size)
9660 goto fail;
9662 if (!kernel) {
9663 if (!filename)
9664 goto fail;
9667 * For now, we only support file-based filters
9668 * in per-task events; doing so for CPU-wide
9669 * events requires additional context switching
9670 * trickery, since same object code will be
9671 * mapped at different virtual addresses in
9672 * different processes.
9674 ret = -EOPNOTSUPP;
9675 if (!event->ctx->task)
9676 goto fail_free_name;
9678 /* look up the path and grab its inode */
9679 ret = kern_path(filename, LOOKUP_FOLLOW,
9680 &filter->path);
9681 if (ret)
9682 goto fail_free_name;
9684 kfree(filename);
9685 filename = NULL;
9687 ret = -EINVAL;
9688 if (!filter->path.dentry ||
9689 !S_ISREG(d_inode(filter->path.dentry)
9690 ->i_mode))
9691 goto fail;
9693 event->addr_filters.nr_file_filters++;
9696 /* ready to consume more filters */
9697 state = IF_STATE_ACTION;
9698 filter = NULL;
9702 if (state != IF_STATE_ACTION)
9703 goto fail;
9705 kfree(orig);
9707 return 0;
9709 fail_free_name:
9710 kfree(filename);
9711 fail:
9712 free_filters_list(filters);
9713 kfree(orig);
9715 return ret;
9718 static int
9719 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9721 LIST_HEAD(filters);
9722 int ret;
9725 * Since this is called in perf_ioctl() path, we're already holding
9726 * ctx::mutex.
9728 lockdep_assert_held(&event->ctx->mutex);
9730 if (WARN_ON_ONCE(event->parent))
9731 return -EINVAL;
9733 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9734 if (ret)
9735 goto fail_clear_files;
9737 ret = event->pmu->addr_filters_validate(&filters);
9738 if (ret)
9739 goto fail_free_filters;
9741 /* remove existing filters, if any */
9742 perf_addr_filters_splice(event, &filters);
9744 /* install new filters */
9745 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9747 return ret;
9749 fail_free_filters:
9750 free_filters_list(&filters);
9752 fail_clear_files:
9753 event->addr_filters.nr_file_filters = 0;
9755 return ret;
9758 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9760 int ret = -EINVAL;
9761 char *filter_str;
9763 filter_str = strndup_user(arg, PAGE_SIZE);
9764 if (IS_ERR(filter_str))
9765 return PTR_ERR(filter_str);
9767 #ifdef CONFIG_EVENT_TRACING
9768 if (perf_event_is_tracing(event)) {
9769 struct perf_event_context *ctx = event->ctx;
9772 * Beware, here be dragons!!
9774 * the tracepoint muck will deadlock against ctx->mutex, but
9775 * the tracepoint stuff does not actually need it. So
9776 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9777 * already have a reference on ctx.
9779 * This can result in event getting moved to a different ctx,
9780 * but that does not affect the tracepoint state.
9782 mutex_unlock(&ctx->mutex);
9783 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9784 mutex_lock(&ctx->mutex);
9785 } else
9786 #endif
9787 if (has_addr_filter(event))
9788 ret = perf_event_set_addr_filter(event, filter_str);
9790 kfree(filter_str);
9791 return ret;
9795 * hrtimer based swevent callback
9798 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9800 enum hrtimer_restart ret = HRTIMER_RESTART;
9801 struct perf_sample_data data;
9802 struct pt_regs *regs;
9803 struct perf_event *event;
9804 u64 period;
9806 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9808 if (event->state != PERF_EVENT_STATE_ACTIVE)
9809 return HRTIMER_NORESTART;
9811 event->pmu->read(event);
9813 perf_sample_data_init(&data, 0, event->hw.last_period);
9814 regs = get_irq_regs();
9816 if (regs && !perf_exclude_event(event, regs)) {
9817 if (!(event->attr.exclude_idle && is_idle_task(current)))
9818 if (__perf_event_overflow(event, 1, &data, regs))
9819 ret = HRTIMER_NORESTART;
9822 period = max_t(u64, 10000, event->hw.sample_period);
9823 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9825 return ret;
9828 static void perf_swevent_start_hrtimer(struct perf_event *event)
9830 struct hw_perf_event *hwc = &event->hw;
9831 s64 period;
9833 if (!is_sampling_event(event))
9834 return;
9836 period = local64_read(&hwc->period_left);
9837 if (period) {
9838 if (period < 0)
9839 period = 10000;
9841 local64_set(&hwc->period_left, 0);
9842 } else {
9843 period = max_t(u64, 10000, hwc->sample_period);
9845 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9846 HRTIMER_MODE_REL_PINNED_HARD);
9849 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9851 struct hw_perf_event *hwc = &event->hw;
9853 if (is_sampling_event(event)) {
9854 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9855 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9857 hrtimer_cancel(&hwc->hrtimer);
9861 static void perf_swevent_init_hrtimer(struct perf_event *event)
9863 struct hw_perf_event *hwc = &event->hw;
9865 if (!is_sampling_event(event))
9866 return;
9868 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9869 hwc->hrtimer.function = perf_swevent_hrtimer;
9872 * Since hrtimers have a fixed rate, we can do a static freq->period
9873 * mapping and avoid the whole period adjust feedback stuff.
9875 if (event->attr.freq) {
9876 long freq = event->attr.sample_freq;
9878 event->attr.sample_period = NSEC_PER_SEC / freq;
9879 hwc->sample_period = event->attr.sample_period;
9880 local64_set(&hwc->period_left, hwc->sample_period);
9881 hwc->last_period = hwc->sample_period;
9882 event->attr.freq = 0;
9887 * Software event: cpu wall time clock
9890 static void cpu_clock_event_update(struct perf_event *event)
9892 s64 prev;
9893 u64 now;
9895 now = local_clock();
9896 prev = local64_xchg(&event->hw.prev_count, now);
9897 local64_add(now - prev, &event->count);
9900 static void cpu_clock_event_start(struct perf_event *event, int flags)
9902 local64_set(&event->hw.prev_count, local_clock());
9903 perf_swevent_start_hrtimer(event);
9906 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9908 perf_swevent_cancel_hrtimer(event);
9909 cpu_clock_event_update(event);
9912 static int cpu_clock_event_add(struct perf_event *event, int flags)
9914 if (flags & PERF_EF_START)
9915 cpu_clock_event_start(event, flags);
9916 perf_event_update_userpage(event);
9918 return 0;
9921 static void cpu_clock_event_del(struct perf_event *event, int flags)
9923 cpu_clock_event_stop(event, flags);
9926 static void cpu_clock_event_read(struct perf_event *event)
9928 cpu_clock_event_update(event);
9931 static int cpu_clock_event_init(struct perf_event *event)
9933 if (event->attr.type != PERF_TYPE_SOFTWARE)
9934 return -ENOENT;
9936 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9937 return -ENOENT;
9940 * no branch sampling for software events
9942 if (has_branch_stack(event))
9943 return -EOPNOTSUPP;
9945 perf_swevent_init_hrtimer(event);
9947 return 0;
9950 static struct pmu perf_cpu_clock = {
9951 .task_ctx_nr = perf_sw_context,
9953 .capabilities = PERF_PMU_CAP_NO_NMI,
9955 .event_init = cpu_clock_event_init,
9956 .add = cpu_clock_event_add,
9957 .del = cpu_clock_event_del,
9958 .start = cpu_clock_event_start,
9959 .stop = cpu_clock_event_stop,
9960 .read = cpu_clock_event_read,
9964 * Software event: task time clock
9967 static void task_clock_event_update(struct perf_event *event, u64 now)
9969 u64 prev;
9970 s64 delta;
9972 prev = local64_xchg(&event->hw.prev_count, now);
9973 delta = now - prev;
9974 local64_add(delta, &event->count);
9977 static void task_clock_event_start(struct perf_event *event, int flags)
9979 local64_set(&event->hw.prev_count, event->ctx->time);
9980 perf_swevent_start_hrtimer(event);
9983 static void task_clock_event_stop(struct perf_event *event, int flags)
9985 perf_swevent_cancel_hrtimer(event);
9986 task_clock_event_update(event, event->ctx->time);
9989 static int task_clock_event_add(struct perf_event *event, int flags)
9991 if (flags & PERF_EF_START)
9992 task_clock_event_start(event, flags);
9993 perf_event_update_userpage(event);
9995 return 0;
9998 static void task_clock_event_del(struct perf_event *event, int flags)
10000 task_clock_event_stop(event, PERF_EF_UPDATE);
10003 static void task_clock_event_read(struct perf_event *event)
10005 u64 now = perf_clock();
10006 u64 delta = now - event->ctx->timestamp;
10007 u64 time = event->ctx->time + delta;
10009 task_clock_event_update(event, time);
10012 static int task_clock_event_init(struct perf_event *event)
10014 if (event->attr.type != PERF_TYPE_SOFTWARE)
10015 return -ENOENT;
10017 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10018 return -ENOENT;
10021 * no branch sampling for software events
10023 if (has_branch_stack(event))
10024 return -EOPNOTSUPP;
10026 perf_swevent_init_hrtimer(event);
10028 return 0;
10031 static struct pmu perf_task_clock = {
10032 .task_ctx_nr = perf_sw_context,
10034 .capabilities = PERF_PMU_CAP_NO_NMI,
10036 .event_init = task_clock_event_init,
10037 .add = task_clock_event_add,
10038 .del = task_clock_event_del,
10039 .start = task_clock_event_start,
10040 .stop = task_clock_event_stop,
10041 .read = task_clock_event_read,
10044 static void perf_pmu_nop_void(struct pmu *pmu)
10048 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10052 static int perf_pmu_nop_int(struct pmu *pmu)
10054 return 0;
10057 static int perf_event_nop_int(struct perf_event *event, u64 value)
10059 return 0;
10062 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10064 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10066 __this_cpu_write(nop_txn_flags, flags);
10068 if (flags & ~PERF_PMU_TXN_ADD)
10069 return;
10071 perf_pmu_disable(pmu);
10074 static int perf_pmu_commit_txn(struct pmu *pmu)
10076 unsigned int flags = __this_cpu_read(nop_txn_flags);
10078 __this_cpu_write(nop_txn_flags, 0);
10080 if (flags & ~PERF_PMU_TXN_ADD)
10081 return 0;
10083 perf_pmu_enable(pmu);
10084 return 0;
10087 static void perf_pmu_cancel_txn(struct pmu *pmu)
10089 unsigned int flags = __this_cpu_read(nop_txn_flags);
10091 __this_cpu_write(nop_txn_flags, 0);
10093 if (flags & ~PERF_PMU_TXN_ADD)
10094 return;
10096 perf_pmu_enable(pmu);
10099 static int perf_event_idx_default(struct perf_event *event)
10101 return 0;
10105 * Ensures all contexts with the same task_ctx_nr have the same
10106 * pmu_cpu_context too.
10108 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10110 struct pmu *pmu;
10112 if (ctxn < 0)
10113 return NULL;
10115 list_for_each_entry(pmu, &pmus, entry) {
10116 if (pmu->task_ctx_nr == ctxn)
10117 return pmu->pmu_cpu_context;
10120 return NULL;
10123 static void free_pmu_context(struct pmu *pmu)
10126 * Static contexts such as perf_sw_context have a global lifetime
10127 * and may be shared between different PMUs. Avoid freeing them
10128 * when a single PMU is going away.
10130 if (pmu->task_ctx_nr > perf_invalid_context)
10131 return;
10133 free_percpu(pmu->pmu_cpu_context);
10137 * Let userspace know that this PMU supports address range filtering:
10139 static ssize_t nr_addr_filters_show(struct device *dev,
10140 struct device_attribute *attr,
10141 char *page)
10143 struct pmu *pmu = dev_get_drvdata(dev);
10145 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10147 DEVICE_ATTR_RO(nr_addr_filters);
10149 static struct idr pmu_idr;
10151 static ssize_t
10152 type_show(struct device *dev, struct device_attribute *attr, char *page)
10154 struct pmu *pmu = dev_get_drvdata(dev);
10156 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10158 static DEVICE_ATTR_RO(type);
10160 static ssize_t
10161 perf_event_mux_interval_ms_show(struct device *dev,
10162 struct device_attribute *attr,
10163 char *page)
10165 struct pmu *pmu = dev_get_drvdata(dev);
10167 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10170 static DEFINE_MUTEX(mux_interval_mutex);
10172 static ssize_t
10173 perf_event_mux_interval_ms_store(struct device *dev,
10174 struct device_attribute *attr,
10175 const char *buf, size_t count)
10177 struct pmu *pmu = dev_get_drvdata(dev);
10178 int timer, cpu, ret;
10180 ret = kstrtoint(buf, 0, &timer);
10181 if (ret)
10182 return ret;
10184 if (timer < 1)
10185 return -EINVAL;
10187 /* same value, noting to do */
10188 if (timer == pmu->hrtimer_interval_ms)
10189 return count;
10191 mutex_lock(&mux_interval_mutex);
10192 pmu->hrtimer_interval_ms = timer;
10194 /* update all cpuctx for this PMU */
10195 cpus_read_lock();
10196 for_each_online_cpu(cpu) {
10197 struct perf_cpu_context *cpuctx;
10198 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10199 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10201 cpu_function_call(cpu,
10202 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10204 cpus_read_unlock();
10205 mutex_unlock(&mux_interval_mutex);
10207 return count;
10209 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10211 static struct attribute *pmu_dev_attrs[] = {
10212 &dev_attr_type.attr,
10213 &dev_attr_perf_event_mux_interval_ms.attr,
10214 NULL,
10216 ATTRIBUTE_GROUPS(pmu_dev);
10218 static int pmu_bus_running;
10219 static struct bus_type pmu_bus = {
10220 .name = "event_source",
10221 .dev_groups = pmu_dev_groups,
10224 static void pmu_dev_release(struct device *dev)
10226 kfree(dev);
10229 static int pmu_dev_alloc(struct pmu *pmu)
10231 int ret = -ENOMEM;
10233 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10234 if (!pmu->dev)
10235 goto out;
10237 pmu->dev->groups = pmu->attr_groups;
10238 device_initialize(pmu->dev);
10239 ret = dev_set_name(pmu->dev, "%s", pmu->name);
10240 if (ret)
10241 goto free_dev;
10243 dev_set_drvdata(pmu->dev, pmu);
10244 pmu->dev->bus = &pmu_bus;
10245 pmu->dev->release = pmu_dev_release;
10246 ret = device_add(pmu->dev);
10247 if (ret)
10248 goto free_dev;
10250 /* For PMUs with address filters, throw in an extra attribute: */
10251 if (pmu->nr_addr_filters)
10252 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10254 if (ret)
10255 goto del_dev;
10257 if (pmu->attr_update)
10258 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10260 if (ret)
10261 goto del_dev;
10263 out:
10264 return ret;
10266 del_dev:
10267 device_del(pmu->dev);
10269 free_dev:
10270 put_device(pmu->dev);
10271 goto out;
10274 static struct lock_class_key cpuctx_mutex;
10275 static struct lock_class_key cpuctx_lock;
10277 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10279 int cpu, ret, max = PERF_TYPE_MAX;
10281 mutex_lock(&pmus_lock);
10282 ret = -ENOMEM;
10283 pmu->pmu_disable_count = alloc_percpu(int);
10284 if (!pmu->pmu_disable_count)
10285 goto unlock;
10287 pmu->type = -1;
10288 if (!name)
10289 goto skip_type;
10290 pmu->name = name;
10292 if (type != PERF_TYPE_SOFTWARE) {
10293 if (type >= 0)
10294 max = type;
10296 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10297 if (ret < 0)
10298 goto free_pdc;
10300 WARN_ON(type >= 0 && ret != type);
10302 type = ret;
10304 pmu->type = type;
10306 if (pmu_bus_running) {
10307 ret = pmu_dev_alloc(pmu);
10308 if (ret)
10309 goto free_idr;
10312 skip_type:
10313 if (pmu->task_ctx_nr == perf_hw_context) {
10314 static int hw_context_taken = 0;
10317 * Other than systems with heterogeneous CPUs, it never makes
10318 * sense for two PMUs to share perf_hw_context. PMUs which are
10319 * uncore must use perf_invalid_context.
10321 if (WARN_ON_ONCE(hw_context_taken &&
10322 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10323 pmu->task_ctx_nr = perf_invalid_context;
10325 hw_context_taken = 1;
10328 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10329 if (pmu->pmu_cpu_context)
10330 goto got_cpu_context;
10332 ret = -ENOMEM;
10333 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10334 if (!pmu->pmu_cpu_context)
10335 goto free_dev;
10337 for_each_possible_cpu(cpu) {
10338 struct perf_cpu_context *cpuctx;
10340 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10341 __perf_event_init_context(&cpuctx->ctx);
10342 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10343 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10344 cpuctx->ctx.pmu = pmu;
10345 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10347 __perf_mux_hrtimer_init(cpuctx, cpu);
10350 got_cpu_context:
10351 if (!pmu->start_txn) {
10352 if (pmu->pmu_enable) {
10354 * If we have pmu_enable/pmu_disable calls, install
10355 * transaction stubs that use that to try and batch
10356 * hardware accesses.
10358 pmu->start_txn = perf_pmu_start_txn;
10359 pmu->commit_txn = perf_pmu_commit_txn;
10360 pmu->cancel_txn = perf_pmu_cancel_txn;
10361 } else {
10362 pmu->start_txn = perf_pmu_nop_txn;
10363 pmu->commit_txn = perf_pmu_nop_int;
10364 pmu->cancel_txn = perf_pmu_nop_void;
10368 if (!pmu->pmu_enable) {
10369 pmu->pmu_enable = perf_pmu_nop_void;
10370 pmu->pmu_disable = perf_pmu_nop_void;
10373 if (!pmu->check_period)
10374 pmu->check_period = perf_event_nop_int;
10376 if (!pmu->event_idx)
10377 pmu->event_idx = perf_event_idx_default;
10380 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10381 * since these cannot be in the IDR. This way the linear search
10382 * is fast, provided a valid software event is provided.
10384 if (type == PERF_TYPE_SOFTWARE || !name)
10385 list_add_rcu(&pmu->entry, &pmus);
10386 else
10387 list_add_tail_rcu(&pmu->entry, &pmus);
10389 atomic_set(&pmu->exclusive_cnt, 0);
10390 ret = 0;
10391 unlock:
10392 mutex_unlock(&pmus_lock);
10394 return ret;
10396 free_dev:
10397 device_del(pmu->dev);
10398 put_device(pmu->dev);
10400 free_idr:
10401 if (pmu->type != PERF_TYPE_SOFTWARE)
10402 idr_remove(&pmu_idr, pmu->type);
10404 free_pdc:
10405 free_percpu(pmu->pmu_disable_count);
10406 goto unlock;
10408 EXPORT_SYMBOL_GPL(perf_pmu_register);
10410 void perf_pmu_unregister(struct pmu *pmu)
10412 mutex_lock(&pmus_lock);
10413 list_del_rcu(&pmu->entry);
10416 * We dereference the pmu list under both SRCU and regular RCU, so
10417 * synchronize against both of those.
10419 synchronize_srcu(&pmus_srcu);
10420 synchronize_rcu();
10422 free_percpu(pmu->pmu_disable_count);
10423 if (pmu->type != PERF_TYPE_SOFTWARE)
10424 idr_remove(&pmu_idr, pmu->type);
10425 if (pmu_bus_running) {
10426 if (pmu->nr_addr_filters)
10427 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10428 device_del(pmu->dev);
10429 put_device(pmu->dev);
10431 free_pmu_context(pmu);
10432 mutex_unlock(&pmus_lock);
10434 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10436 static inline bool has_extended_regs(struct perf_event *event)
10438 return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10439 (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10442 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10444 struct perf_event_context *ctx = NULL;
10445 int ret;
10447 if (!try_module_get(pmu->module))
10448 return -ENODEV;
10451 * A number of pmu->event_init() methods iterate the sibling_list to,
10452 * for example, validate if the group fits on the PMU. Therefore,
10453 * if this is a sibling event, acquire the ctx->mutex to protect
10454 * the sibling_list.
10456 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10458 * This ctx->mutex can nest when we're called through
10459 * inheritance. See the perf_event_ctx_lock_nested() comment.
10461 ctx = perf_event_ctx_lock_nested(event->group_leader,
10462 SINGLE_DEPTH_NESTING);
10463 BUG_ON(!ctx);
10466 event->pmu = pmu;
10467 ret = pmu->event_init(event);
10469 if (ctx)
10470 perf_event_ctx_unlock(event->group_leader, ctx);
10472 if (!ret) {
10473 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10474 has_extended_regs(event))
10475 ret = -EOPNOTSUPP;
10477 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10478 event_has_any_exclude_flag(event))
10479 ret = -EINVAL;
10481 if (ret && event->destroy)
10482 event->destroy(event);
10485 if (ret)
10486 module_put(pmu->module);
10488 return ret;
10491 static struct pmu *perf_init_event(struct perf_event *event)
10493 int idx, type, ret;
10494 struct pmu *pmu;
10496 idx = srcu_read_lock(&pmus_srcu);
10498 /* Try parent's PMU first: */
10499 if (event->parent && event->parent->pmu) {
10500 pmu = event->parent->pmu;
10501 ret = perf_try_init_event(pmu, event);
10502 if (!ret)
10503 goto unlock;
10507 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10508 * are often aliases for PERF_TYPE_RAW.
10510 type = event->attr.type;
10511 if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10512 type = PERF_TYPE_RAW;
10514 again:
10515 rcu_read_lock();
10516 pmu = idr_find(&pmu_idr, type);
10517 rcu_read_unlock();
10518 if (pmu) {
10519 ret = perf_try_init_event(pmu, event);
10520 if (ret == -ENOENT && event->attr.type != type) {
10521 type = event->attr.type;
10522 goto again;
10525 if (ret)
10526 pmu = ERR_PTR(ret);
10528 goto unlock;
10531 list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10532 ret = perf_try_init_event(pmu, event);
10533 if (!ret)
10534 goto unlock;
10536 if (ret != -ENOENT) {
10537 pmu = ERR_PTR(ret);
10538 goto unlock;
10541 pmu = ERR_PTR(-ENOENT);
10542 unlock:
10543 srcu_read_unlock(&pmus_srcu, idx);
10545 return pmu;
10548 static void attach_sb_event(struct perf_event *event)
10550 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10552 raw_spin_lock(&pel->lock);
10553 list_add_rcu(&event->sb_list, &pel->list);
10554 raw_spin_unlock(&pel->lock);
10558 * We keep a list of all !task (and therefore per-cpu) events
10559 * that need to receive side-band records.
10561 * This avoids having to scan all the various PMU per-cpu contexts
10562 * looking for them.
10564 static void account_pmu_sb_event(struct perf_event *event)
10566 if (is_sb_event(event))
10567 attach_sb_event(event);
10570 static void account_event_cpu(struct perf_event *event, int cpu)
10572 if (event->parent)
10573 return;
10575 if (is_cgroup_event(event))
10576 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10579 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10580 static void account_freq_event_nohz(void)
10582 #ifdef CONFIG_NO_HZ_FULL
10583 /* Lock so we don't race with concurrent unaccount */
10584 spin_lock(&nr_freq_lock);
10585 if (atomic_inc_return(&nr_freq_events) == 1)
10586 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10587 spin_unlock(&nr_freq_lock);
10588 #endif
10591 static void account_freq_event(void)
10593 if (tick_nohz_full_enabled())
10594 account_freq_event_nohz();
10595 else
10596 atomic_inc(&nr_freq_events);
10600 static void account_event(struct perf_event *event)
10602 bool inc = false;
10604 if (event->parent)
10605 return;
10607 if (event->attach_state & PERF_ATTACH_TASK)
10608 inc = true;
10609 if (event->attr.mmap || event->attr.mmap_data)
10610 atomic_inc(&nr_mmap_events);
10611 if (event->attr.comm)
10612 atomic_inc(&nr_comm_events);
10613 if (event->attr.namespaces)
10614 atomic_inc(&nr_namespaces_events);
10615 if (event->attr.task)
10616 atomic_inc(&nr_task_events);
10617 if (event->attr.freq)
10618 account_freq_event();
10619 if (event->attr.context_switch) {
10620 atomic_inc(&nr_switch_events);
10621 inc = true;
10623 if (has_branch_stack(event))
10624 inc = true;
10625 if (is_cgroup_event(event))
10626 inc = true;
10627 if (event->attr.ksymbol)
10628 atomic_inc(&nr_ksymbol_events);
10629 if (event->attr.bpf_event)
10630 atomic_inc(&nr_bpf_events);
10632 if (inc) {
10634 * We need the mutex here because static_branch_enable()
10635 * must complete *before* the perf_sched_count increment
10636 * becomes visible.
10638 if (atomic_inc_not_zero(&perf_sched_count))
10639 goto enabled;
10641 mutex_lock(&perf_sched_mutex);
10642 if (!atomic_read(&perf_sched_count)) {
10643 static_branch_enable(&perf_sched_events);
10645 * Guarantee that all CPUs observe they key change and
10646 * call the perf scheduling hooks before proceeding to
10647 * install events that need them.
10649 synchronize_rcu();
10652 * Now that we have waited for the sync_sched(), allow further
10653 * increments to by-pass the mutex.
10655 atomic_inc(&perf_sched_count);
10656 mutex_unlock(&perf_sched_mutex);
10658 enabled:
10660 account_event_cpu(event, event->cpu);
10662 account_pmu_sb_event(event);
10666 * Allocate and initialize an event structure
10668 static struct perf_event *
10669 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10670 struct task_struct *task,
10671 struct perf_event *group_leader,
10672 struct perf_event *parent_event,
10673 perf_overflow_handler_t overflow_handler,
10674 void *context, int cgroup_fd)
10676 struct pmu *pmu;
10677 struct perf_event *event;
10678 struct hw_perf_event *hwc;
10679 long err = -EINVAL;
10681 if ((unsigned)cpu >= nr_cpu_ids) {
10682 if (!task || cpu != -1)
10683 return ERR_PTR(-EINVAL);
10686 event = kzalloc(sizeof(*event), GFP_KERNEL);
10687 if (!event)
10688 return ERR_PTR(-ENOMEM);
10691 * Single events are their own group leaders, with an
10692 * empty sibling list:
10694 if (!group_leader)
10695 group_leader = event;
10697 mutex_init(&event->child_mutex);
10698 INIT_LIST_HEAD(&event->child_list);
10700 INIT_LIST_HEAD(&event->event_entry);
10701 INIT_LIST_HEAD(&event->sibling_list);
10702 INIT_LIST_HEAD(&event->active_list);
10703 init_event_group(event);
10704 INIT_LIST_HEAD(&event->rb_entry);
10705 INIT_LIST_HEAD(&event->active_entry);
10706 INIT_LIST_HEAD(&event->addr_filters.list);
10707 INIT_HLIST_NODE(&event->hlist_entry);
10710 init_waitqueue_head(&event->waitq);
10711 event->pending_disable = -1;
10712 init_irq_work(&event->pending, perf_pending_event);
10714 mutex_init(&event->mmap_mutex);
10715 raw_spin_lock_init(&event->addr_filters.lock);
10717 atomic_long_set(&event->refcount, 1);
10718 event->cpu = cpu;
10719 event->attr = *attr;
10720 event->group_leader = group_leader;
10721 event->pmu = NULL;
10722 event->oncpu = -1;
10724 event->parent = parent_event;
10726 event->ns = get_pid_ns(task_active_pid_ns(current));
10727 event->id = atomic64_inc_return(&perf_event_id);
10729 event->state = PERF_EVENT_STATE_INACTIVE;
10731 if (task) {
10732 event->attach_state = PERF_ATTACH_TASK;
10734 * XXX pmu::event_init needs to know what task to account to
10735 * and we cannot use the ctx information because we need the
10736 * pmu before we get a ctx.
10738 event->hw.target = get_task_struct(task);
10741 event->clock = &local_clock;
10742 if (parent_event)
10743 event->clock = parent_event->clock;
10745 if (!overflow_handler && parent_event) {
10746 overflow_handler = parent_event->overflow_handler;
10747 context = parent_event->overflow_handler_context;
10748 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10749 if (overflow_handler == bpf_overflow_handler) {
10750 struct bpf_prog *prog = parent_event->prog;
10752 bpf_prog_inc(prog);
10753 event->prog = prog;
10754 event->orig_overflow_handler =
10755 parent_event->orig_overflow_handler;
10757 #endif
10760 if (overflow_handler) {
10761 event->overflow_handler = overflow_handler;
10762 event->overflow_handler_context = context;
10763 } else if (is_write_backward(event)){
10764 event->overflow_handler = perf_event_output_backward;
10765 event->overflow_handler_context = NULL;
10766 } else {
10767 event->overflow_handler = perf_event_output_forward;
10768 event->overflow_handler_context = NULL;
10771 perf_event__state_init(event);
10773 pmu = NULL;
10775 hwc = &event->hw;
10776 hwc->sample_period = attr->sample_period;
10777 if (attr->freq && attr->sample_freq)
10778 hwc->sample_period = 1;
10779 hwc->last_period = hwc->sample_period;
10781 local64_set(&hwc->period_left, hwc->sample_period);
10784 * We currently do not support PERF_SAMPLE_READ on inherited events.
10785 * See perf_output_read().
10787 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10788 goto err_ns;
10790 if (!has_branch_stack(event))
10791 event->attr.branch_sample_type = 0;
10793 if (cgroup_fd != -1) {
10794 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10795 if (err)
10796 goto err_ns;
10799 pmu = perf_init_event(event);
10800 if (IS_ERR(pmu)) {
10801 err = PTR_ERR(pmu);
10802 goto err_ns;
10806 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10807 * be different on other CPUs in the uncore mask.
10809 if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10810 err = -EINVAL;
10811 goto err_pmu;
10814 if (event->attr.aux_output &&
10815 !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10816 err = -EOPNOTSUPP;
10817 goto err_pmu;
10820 err = exclusive_event_init(event);
10821 if (err)
10822 goto err_pmu;
10824 if (has_addr_filter(event)) {
10825 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10826 sizeof(struct perf_addr_filter_range),
10827 GFP_KERNEL);
10828 if (!event->addr_filter_ranges) {
10829 err = -ENOMEM;
10830 goto err_per_task;
10834 * Clone the parent's vma offsets: they are valid until exec()
10835 * even if the mm is not shared with the parent.
10837 if (event->parent) {
10838 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10840 raw_spin_lock_irq(&ifh->lock);
10841 memcpy(event->addr_filter_ranges,
10842 event->parent->addr_filter_ranges,
10843 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10844 raw_spin_unlock_irq(&ifh->lock);
10847 /* force hw sync on the address filters */
10848 event->addr_filters_gen = 1;
10851 if (!event->parent) {
10852 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10853 err = get_callchain_buffers(attr->sample_max_stack);
10854 if (err)
10855 goto err_addr_filters;
10859 err = security_perf_event_alloc(event);
10860 if (err)
10861 goto err_callchain_buffer;
10863 /* symmetric to unaccount_event() in _free_event() */
10864 account_event(event);
10866 return event;
10868 err_callchain_buffer:
10869 if (!event->parent) {
10870 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
10871 put_callchain_buffers();
10873 err_addr_filters:
10874 kfree(event->addr_filter_ranges);
10876 err_per_task:
10877 exclusive_event_destroy(event);
10879 err_pmu:
10880 if (event->destroy)
10881 event->destroy(event);
10882 module_put(pmu->module);
10883 err_ns:
10884 if (is_cgroup_event(event))
10885 perf_detach_cgroup(event);
10886 if (event->ns)
10887 put_pid_ns(event->ns);
10888 if (event->hw.target)
10889 put_task_struct(event->hw.target);
10890 kfree(event);
10892 return ERR_PTR(err);
10895 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10896 struct perf_event_attr *attr)
10898 u32 size;
10899 int ret;
10901 /* Zero the full structure, so that a short copy will be nice. */
10902 memset(attr, 0, sizeof(*attr));
10904 ret = get_user(size, &uattr->size);
10905 if (ret)
10906 return ret;
10908 /* ABI compatibility quirk: */
10909 if (!size)
10910 size = PERF_ATTR_SIZE_VER0;
10911 if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
10912 goto err_size;
10914 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10915 if (ret) {
10916 if (ret == -E2BIG)
10917 goto err_size;
10918 return ret;
10921 attr->size = size;
10923 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
10924 return -EINVAL;
10926 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10927 return -EINVAL;
10929 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10930 return -EINVAL;
10932 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10933 u64 mask = attr->branch_sample_type;
10935 /* only using defined bits */
10936 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10937 return -EINVAL;
10939 /* at least one branch bit must be set */
10940 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10941 return -EINVAL;
10943 /* propagate priv level, when not set for branch */
10944 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10946 /* exclude_kernel checked on syscall entry */
10947 if (!attr->exclude_kernel)
10948 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10950 if (!attr->exclude_user)
10951 mask |= PERF_SAMPLE_BRANCH_USER;
10953 if (!attr->exclude_hv)
10954 mask |= PERF_SAMPLE_BRANCH_HV;
10956 * adjust user setting (for HW filter setup)
10958 attr->branch_sample_type = mask;
10960 /* privileged levels capture (kernel, hv): check permissions */
10961 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
10962 ret = perf_allow_kernel(attr);
10963 if (ret)
10964 return ret;
10968 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10969 ret = perf_reg_validate(attr->sample_regs_user);
10970 if (ret)
10971 return ret;
10974 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10975 if (!arch_perf_have_user_stack_dump())
10976 return -ENOSYS;
10979 * We have __u32 type for the size, but so far
10980 * we can only use __u16 as maximum due to the
10981 * __u16 sample size limit.
10983 if (attr->sample_stack_user >= USHRT_MAX)
10984 return -EINVAL;
10985 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10986 return -EINVAL;
10989 if (!attr->sample_max_stack)
10990 attr->sample_max_stack = sysctl_perf_event_max_stack;
10992 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10993 ret = perf_reg_validate(attr->sample_regs_intr);
10994 out:
10995 return ret;
10997 err_size:
10998 put_user(sizeof(*attr), &uattr->size);
10999 ret = -E2BIG;
11000 goto out;
11003 static int
11004 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11006 struct perf_buffer *rb = NULL;
11007 int ret = -EINVAL;
11009 if (!output_event)
11010 goto set;
11012 /* don't allow circular references */
11013 if (event == output_event)
11014 goto out;
11017 * Don't allow cross-cpu buffers
11019 if (output_event->cpu != event->cpu)
11020 goto out;
11023 * If its not a per-cpu rb, it must be the same task.
11025 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11026 goto out;
11029 * Mixing clocks in the same buffer is trouble you don't need.
11031 if (output_event->clock != event->clock)
11032 goto out;
11035 * Either writing ring buffer from beginning or from end.
11036 * Mixing is not allowed.
11038 if (is_write_backward(output_event) != is_write_backward(event))
11039 goto out;
11042 * If both events generate aux data, they must be on the same PMU
11044 if (has_aux(event) && has_aux(output_event) &&
11045 event->pmu != output_event->pmu)
11046 goto out;
11048 set:
11049 mutex_lock(&event->mmap_mutex);
11050 /* Can't redirect output if we've got an active mmap() */
11051 if (atomic_read(&event->mmap_count))
11052 goto unlock;
11054 if (output_event) {
11055 /* get the rb we want to redirect to */
11056 rb = ring_buffer_get(output_event);
11057 if (!rb)
11058 goto unlock;
11061 ring_buffer_attach(event, rb);
11063 ret = 0;
11064 unlock:
11065 mutex_unlock(&event->mmap_mutex);
11067 out:
11068 return ret;
11071 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11073 if (b < a)
11074 swap(a, b);
11076 mutex_lock(a);
11077 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11080 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11082 bool nmi_safe = false;
11084 switch (clk_id) {
11085 case CLOCK_MONOTONIC:
11086 event->clock = &ktime_get_mono_fast_ns;
11087 nmi_safe = true;
11088 break;
11090 case CLOCK_MONOTONIC_RAW:
11091 event->clock = &ktime_get_raw_fast_ns;
11092 nmi_safe = true;
11093 break;
11095 case CLOCK_REALTIME:
11096 event->clock = &ktime_get_real_ns;
11097 break;
11099 case CLOCK_BOOTTIME:
11100 event->clock = &ktime_get_boottime_ns;
11101 break;
11103 case CLOCK_TAI:
11104 event->clock = &ktime_get_clocktai_ns;
11105 break;
11107 default:
11108 return -EINVAL;
11111 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11112 return -EINVAL;
11114 return 0;
11118 * Variation on perf_event_ctx_lock_nested(), except we take two context
11119 * mutexes.
11121 static struct perf_event_context *
11122 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11123 struct perf_event_context *ctx)
11125 struct perf_event_context *gctx;
11127 again:
11128 rcu_read_lock();
11129 gctx = READ_ONCE(group_leader->ctx);
11130 if (!refcount_inc_not_zero(&gctx->refcount)) {
11131 rcu_read_unlock();
11132 goto again;
11134 rcu_read_unlock();
11136 mutex_lock_double(&gctx->mutex, &ctx->mutex);
11138 if (group_leader->ctx != gctx) {
11139 mutex_unlock(&ctx->mutex);
11140 mutex_unlock(&gctx->mutex);
11141 put_ctx(gctx);
11142 goto again;
11145 return gctx;
11149 * sys_perf_event_open - open a performance event, associate it to a task/cpu
11151 * @attr_uptr: event_id type attributes for monitoring/sampling
11152 * @pid: target pid
11153 * @cpu: target cpu
11154 * @group_fd: group leader event fd
11156 SYSCALL_DEFINE5(perf_event_open,
11157 struct perf_event_attr __user *, attr_uptr,
11158 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11160 struct perf_event *group_leader = NULL, *output_event = NULL;
11161 struct perf_event *event, *sibling;
11162 struct perf_event_attr attr;
11163 struct perf_event_context *ctx, *uninitialized_var(gctx);
11164 struct file *event_file = NULL;
11165 struct fd group = {NULL, 0};
11166 struct task_struct *task = NULL;
11167 struct pmu *pmu;
11168 int event_fd;
11169 int move_group = 0;
11170 int err;
11171 int f_flags = O_RDWR;
11172 int cgroup_fd = -1;
11174 /* for future expandability... */
11175 if (flags & ~PERF_FLAG_ALL)
11176 return -EINVAL;
11178 /* Do we allow access to perf_event_open(2) ? */
11179 err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11180 if (err)
11181 return err;
11183 err = perf_copy_attr(attr_uptr, &attr);
11184 if (err)
11185 return err;
11187 if (!attr.exclude_kernel) {
11188 err = perf_allow_kernel(&attr);
11189 if (err)
11190 return err;
11193 if (attr.namespaces) {
11194 if (!capable(CAP_SYS_ADMIN))
11195 return -EACCES;
11198 if (attr.freq) {
11199 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11200 return -EINVAL;
11201 } else {
11202 if (attr.sample_period & (1ULL << 63))
11203 return -EINVAL;
11206 /* Only privileged users can get physical addresses */
11207 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11208 err = perf_allow_kernel(&attr);
11209 if (err)
11210 return err;
11213 err = security_locked_down(LOCKDOWN_PERF);
11214 if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11215 /* REGS_INTR can leak data, lockdown must prevent this */
11216 return err;
11218 err = 0;
11221 * In cgroup mode, the pid argument is used to pass the fd
11222 * opened to the cgroup directory in cgroupfs. The cpu argument
11223 * designates the cpu on which to monitor threads from that
11224 * cgroup.
11226 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11227 return -EINVAL;
11229 if (flags & PERF_FLAG_FD_CLOEXEC)
11230 f_flags |= O_CLOEXEC;
11232 event_fd = get_unused_fd_flags(f_flags);
11233 if (event_fd < 0)
11234 return event_fd;
11236 if (group_fd != -1) {
11237 err = perf_fget_light(group_fd, &group);
11238 if (err)
11239 goto err_fd;
11240 group_leader = group.file->private_data;
11241 if (flags & PERF_FLAG_FD_OUTPUT)
11242 output_event = group_leader;
11243 if (flags & PERF_FLAG_FD_NO_GROUP)
11244 group_leader = NULL;
11247 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11248 task = find_lively_task_by_vpid(pid);
11249 if (IS_ERR(task)) {
11250 err = PTR_ERR(task);
11251 goto err_group_fd;
11255 if (task && group_leader &&
11256 group_leader->attr.inherit != attr.inherit) {
11257 err = -EINVAL;
11258 goto err_task;
11261 if (task) {
11262 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11263 if (err)
11264 goto err_task;
11267 * Reuse ptrace permission checks for now.
11269 * We must hold cred_guard_mutex across this and any potential
11270 * perf_install_in_context() call for this new event to
11271 * serialize against exec() altering our credentials (and the
11272 * perf_event_exit_task() that could imply).
11274 err = -EACCES;
11275 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11276 goto err_cred;
11279 if (flags & PERF_FLAG_PID_CGROUP)
11280 cgroup_fd = pid;
11282 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11283 NULL, NULL, cgroup_fd);
11284 if (IS_ERR(event)) {
11285 err = PTR_ERR(event);
11286 goto err_cred;
11289 if (is_sampling_event(event)) {
11290 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11291 err = -EOPNOTSUPP;
11292 goto err_alloc;
11297 * Special case software events and allow them to be part of
11298 * any hardware group.
11300 pmu = event->pmu;
11302 if (attr.use_clockid) {
11303 err = perf_event_set_clock(event, attr.clockid);
11304 if (err)
11305 goto err_alloc;
11308 if (pmu->task_ctx_nr == perf_sw_context)
11309 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11311 if (group_leader) {
11312 if (is_software_event(event) &&
11313 !in_software_context(group_leader)) {
11315 * If the event is a sw event, but the group_leader
11316 * is on hw context.
11318 * Allow the addition of software events to hw
11319 * groups, this is safe because software events
11320 * never fail to schedule.
11322 pmu = group_leader->ctx->pmu;
11323 } else if (!is_software_event(event) &&
11324 is_software_event(group_leader) &&
11325 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11327 * In case the group is a pure software group, and we
11328 * try to add a hardware event, move the whole group to
11329 * the hardware context.
11331 move_group = 1;
11336 * Get the target context (task or percpu):
11338 ctx = find_get_context(pmu, task, event);
11339 if (IS_ERR(ctx)) {
11340 err = PTR_ERR(ctx);
11341 goto err_alloc;
11345 * Look up the group leader (we will attach this event to it):
11347 if (group_leader) {
11348 err = -EINVAL;
11351 * Do not allow a recursive hierarchy (this new sibling
11352 * becoming part of another group-sibling):
11354 if (group_leader->group_leader != group_leader)
11355 goto err_context;
11357 /* All events in a group should have the same clock */
11358 if (group_leader->clock != event->clock)
11359 goto err_context;
11362 * Make sure we're both events for the same CPU;
11363 * grouping events for different CPUs is broken; since
11364 * you can never concurrently schedule them anyhow.
11366 if (group_leader->cpu != event->cpu)
11367 goto err_context;
11370 * Make sure we're both on the same task, or both
11371 * per-CPU events.
11373 if (group_leader->ctx->task != ctx->task)
11374 goto err_context;
11377 * Do not allow to attach to a group in a different task
11378 * or CPU context. If we're moving SW events, we'll fix
11379 * this up later, so allow that.
11381 if (!move_group && group_leader->ctx != ctx)
11382 goto err_context;
11385 * Only a group leader can be exclusive or pinned
11387 if (attr.exclusive || attr.pinned)
11388 goto err_context;
11391 if (output_event) {
11392 err = perf_event_set_output(event, output_event);
11393 if (err)
11394 goto err_context;
11397 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11398 f_flags);
11399 if (IS_ERR(event_file)) {
11400 err = PTR_ERR(event_file);
11401 event_file = NULL;
11402 goto err_context;
11405 if (move_group) {
11406 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11408 if (gctx->task == TASK_TOMBSTONE) {
11409 err = -ESRCH;
11410 goto err_locked;
11414 * Check if we raced against another sys_perf_event_open() call
11415 * moving the software group underneath us.
11417 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11419 * If someone moved the group out from under us, check
11420 * if this new event wound up on the same ctx, if so
11421 * its the regular !move_group case, otherwise fail.
11423 if (gctx != ctx) {
11424 err = -EINVAL;
11425 goto err_locked;
11426 } else {
11427 perf_event_ctx_unlock(group_leader, gctx);
11428 move_group = 0;
11433 * Failure to create exclusive events returns -EBUSY.
11435 err = -EBUSY;
11436 if (!exclusive_event_installable(group_leader, ctx))
11437 goto err_locked;
11439 for_each_sibling_event(sibling, group_leader) {
11440 if (!exclusive_event_installable(sibling, ctx))
11441 goto err_locked;
11443 } else {
11444 mutex_lock(&ctx->mutex);
11447 if (ctx->task == TASK_TOMBSTONE) {
11448 err = -ESRCH;
11449 goto err_locked;
11452 if (!perf_event_validate_size(event)) {
11453 err = -E2BIG;
11454 goto err_locked;
11457 if (!task) {
11459 * Check if the @cpu we're creating an event for is online.
11461 * We use the perf_cpu_context::ctx::mutex to serialize against
11462 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11464 struct perf_cpu_context *cpuctx =
11465 container_of(ctx, struct perf_cpu_context, ctx);
11467 if (!cpuctx->online) {
11468 err = -ENODEV;
11469 goto err_locked;
11473 if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11474 err = -EINVAL;
11475 goto err_locked;
11479 * Must be under the same ctx::mutex as perf_install_in_context(),
11480 * because we need to serialize with concurrent event creation.
11482 if (!exclusive_event_installable(event, ctx)) {
11483 err = -EBUSY;
11484 goto err_locked;
11487 WARN_ON_ONCE(ctx->parent_ctx);
11490 * This is the point on no return; we cannot fail hereafter. This is
11491 * where we start modifying current state.
11494 if (move_group) {
11496 * See perf_event_ctx_lock() for comments on the details
11497 * of swizzling perf_event::ctx.
11499 perf_remove_from_context(group_leader, 0);
11500 put_ctx(gctx);
11502 for_each_sibling_event(sibling, group_leader) {
11503 perf_remove_from_context(sibling, 0);
11504 put_ctx(gctx);
11508 * Wait for everybody to stop referencing the events through
11509 * the old lists, before installing it on new lists.
11511 synchronize_rcu();
11514 * Install the group siblings before the group leader.
11516 * Because a group leader will try and install the entire group
11517 * (through the sibling list, which is still in-tact), we can
11518 * end up with siblings installed in the wrong context.
11520 * By installing siblings first we NO-OP because they're not
11521 * reachable through the group lists.
11523 for_each_sibling_event(sibling, group_leader) {
11524 perf_event__state_init(sibling);
11525 perf_install_in_context(ctx, sibling, sibling->cpu);
11526 get_ctx(ctx);
11530 * Removing from the context ends up with disabled
11531 * event. What we want here is event in the initial
11532 * startup state, ready to be add into new context.
11534 perf_event__state_init(group_leader);
11535 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11536 get_ctx(ctx);
11540 * Precalculate sample_data sizes; do while holding ctx::mutex such
11541 * that we're serialized against further additions and before
11542 * perf_install_in_context() which is the point the event is active and
11543 * can use these values.
11545 perf_event__header_size(event);
11546 perf_event__id_header_size(event);
11548 event->owner = current;
11550 perf_install_in_context(ctx, event, event->cpu);
11551 perf_unpin_context(ctx);
11553 if (move_group)
11554 perf_event_ctx_unlock(group_leader, gctx);
11555 mutex_unlock(&ctx->mutex);
11557 if (task) {
11558 mutex_unlock(&task->signal->cred_guard_mutex);
11559 put_task_struct(task);
11562 mutex_lock(&current->perf_event_mutex);
11563 list_add_tail(&event->owner_entry, &current->perf_event_list);
11564 mutex_unlock(&current->perf_event_mutex);
11567 * Drop the reference on the group_event after placing the
11568 * new event on the sibling_list. This ensures destruction
11569 * of the group leader will find the pointer to itself in
11570 * perf_group_detach().
11572 fdput(group);
11573 fd_install(event_fd, event_file);
11574 return event_fd;
11576 err_locked:
11577 if (move_group)
11578 perf_event_ctx_unlock(group_leader, gctx);
11579 mutex_unlock(&ctx->mutex);
11580 /* err_file: */
11581 fput(event_file);
11582 err_context:
11583 perf_unpin_context(ctx);
11584 put_ctx(ctx);
11585 err_alloc:
11587 * If event_file is set, the fput() above will have called ->release()
11588 * and that will take care of freeing the event.
11590 if (!event_file)
11591 free_event(event);
11592 err_cred:
11593 if (task)
11594 mutex_unlock(&task->signal->cred_guard_mutex);
11595 err_task:
11596 if (task)
11597 put_task_struct(task);
11598 err_group_fd:
11599 fdput(group);
11600 err_fd:
11601 put_unused_fd(event_fd);
11602 return err;
11606 * perf_event_create_kernel_counter
11608 * @attr: attributes of the counter to create
11609 * @cpu: cpu in which the counter is bound
11610 * @task: task to profile (NULL for percpu)
11612 struct perf_event *
11613 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11614 struct task_struct *task,
11615 perf_overflow_handler_t overflow_handler,
11616 void *context)
11618 struct perf_event_context *ctx;
11619 struct perf_event *event;
11620 int err;
11623 * Grouping is not supported for kernel events, neither is 'AUX',
11624 * make sure the caller's intentions are adjusted.
11626 if (attr->aux_output)
11627 return ERR_PTR(-EINVAL);
11629 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11630 overflow_handler, context, -1);
11631 if (IS_ERR(event)) {
11632 err = PTR_ERR(event);
11633 goto err;
11636 /* Mark owner so we could distinguish it from user events. */
11637 event->owner = TASK_TOMBSTONE;
11640 * Get the target context (task or percpu):
11642 ctx = find_get_context(event->pmu, task, event);
11643 if (IS_ERR(ctx)) {
11644 err = PTR_ERR(ctx);
11645 goto err_free;
11648 WARN_ON_ONCE(ctx->parent_ctx);
11649 mutex_lock(&ctx->mutex);
11650 if (ctx->task == TASK_TOMBSTONE) {
11651 err = -ESRCH;
11652 goto err_unlock;
11655 if (!task) {
11657 * Check if the @cpu we're creating an event for is online.
11659 * We use the perf_cpu_context::ctx::mutex to serialize against
11660 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11662 struct perf_cpu_context *cpuctx =
11663 container_of(ctx, struct perf_cpu_context, ctx);
11664 if (!cpuctx->online) {
11665 err = -ENODEV;
11666 goto err_unlock;
11670 if (!exclusive_event_installable(event, ctx)) {
11671 err = -EBUSY;
11672 goto err_unlock;
11675 perf_install_in_context(ctx, event, event->cpu);
11676 perf_unpin_context(ctx);
11677 mutex_unlock(&ctx->mutex);
11679 return event;
11681 err_unlock:
11682 mutex_unlock(&ctx->mutex);
11683 perf_unpin_context(ctx);
11684 put_ctx(ctx);
11685 err_free:
11686 free_event(event);
11687 err:
11688 return ERR_PTR(err);
11690 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11692 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11694 struct perf_event_context *src_ctx;
11695 struct perf_event_context *dst_ctx;
11696 struct perf_event *event, *tmp;
11697 LIST_HEAD(events);
11699 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11700 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11703 * See perf_event_ctx_lock() for comments on the details
11704 * of swizzling perf_event::ctx.
11706 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11707 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11708 event_entry) {
11709 perf_remove_from_context(event, 0);
11710 unaccount_event_cpu(event, src_cpu);
11711 put_ctx(src_ctx);
11712 list_add(&event->migrate_entry, &events);
11716 * Wait for the events to quiesce before re-instating them.
11718 synchronize_rcu();
11721 * Re-instate events in 2 passes.
11723 * Skip over group leaders and only install siblings on this first
11724 * pass, siblings will not get enabled without a leader, however a
11725 * leader will enable its siblings, even if those are still on the old
11726 * context.
11728 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11729 if (event->group_leader == event)
11730 continue;
11732 list_del(&event->migrate_entry);
11733 if (event->state >= PERF_EVENT_STATE_OFF)
11734 event->state = PERF_EVENT_STATE_INACTIVE;
11735 account_event_cpu(event, dst_cpu);
11736 perf_install_in_context(dst_ctx, event, dst_cpu);
11737 get_ctx(dst_ctx);
11741 * Once all the siblings are setup properly, install the group leaders
11742 * to make it go.
11744 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11745 list_del(&event->migrate_entry);
11746 if (event->state >= PERF_EVENT_STATE_OFF)
11747 event->state = PERF_EVENT_STATE_INACTIVE;
11748 account_event_cpu(event, dst_cpu);
11749 perf_install_in_context(dst_ctx, event, dst_cpu);
11750 get_ctx(dst_ctx);
11752 mutex_unlock(&dst_ctx->mutex);
11753 mutex_unlock(&src_ctx->mutex);
11755 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11757 static void sync_child_event(struct perf_event *child_event,
11758 struct task_struct *child)
11760 struct perf_event *parent_event = child_event->parent;
11761 u64 child_val;
11763 if (child_event->attr.inherit_stat)
11764 perf_event_read_event(child_event, child);
11766 child_val = perf_event_count(child_event);
11769 * Add back the child's count to the parent's count:
11771 atomic64_add(child_val, &parent_event->child_count);
11772 atomic64_add(child_event->total_time_enabled,
11773 &parent_event->child_total_time_enabled);
11774 atomic64_add(child_event->total_time_running,
11775 &parent_event->child_total_time_running);
11778 static void
11779 perf_event_exit_event(struct perf_event *child_event,
11780 struct perf_event_context *child_ctx,
11781 struct task_struct *child)
11783 struct perf_event *parent_event = child_event->parent;
11786 * Do not destroy the 'original' grouping; because of the context
11787 * switch optimization the original events could've ended up in a
11788 * random child task.
11790 * If we were to destroy the original group, all group related
11791 * operations would cease to function properly after this random
11792 * child dies.
11794 * Do destroy all inherited groups, we don't care about those
11795 * and being thorough is better.
11797 raw_spin_lock_irq(&child_ctx->lock);
11798 WARN_ON_ONCE(child_ctx->is_active);
11800 if (parent_event)
11801 perf_group_detach(child_event);
11802 list_del_event(child_event, child_ctx);
11803 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11804 raw_spin_unlock_irq(&child_ctx->lock);
11807 * Parent events are governed by their filedesc, retain them.
11809 if (!parent_event) {
11810 perf_event_wakeup(child_event);
11811 return;
11814 * Child events can be cleaned up.
11817 sync_child_event(child_event, child);
11820 * Remove this event from the parent's list
11822 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11823 mutex_lock(&parent_event->child_mutex);
11824 list_del_init(&child_event->child_list);
11825 mutex_unlock(&parent_event->child_mutex);
11828 * Kick perf_poll() for is_event_hup().
11830 perf_event_wakeup(parent_event);
11831 free_event(child_event);
11832 put_event(parent_event);
11835 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11837 struct perf_event_context *child_ctx, *clone_ctx = NULL;
11838 struct perf_event *child_event, *next;
11840 WARN_ON_ONCE(child != current);
11842 child_ctx = perf_pin_task_context(child, ctxn);
11843 if (!child_ctx)
11844 return;
11847 * In order to reduce the amount of tricky in ctx tear-down, we hold
11848 * ctx::mutex over the entire thing. This serializes against almost
11849 * everything that wants to access the ctx.
11851 * The exception is sys_perf_event_open() /
11852 * perf_event_create_kernel_count() which does find_get_context()
11853 * without ctx::mutex (it cannot because of the move_group double mutex
11854 * lock thing). See the comments in perf_install_in_context().
11856 mutex_lock(&child_ctx->mutex);
11859 * In a single ctx::lock section, de-schedule the events and detach the
11860 * context from the task such that we cannot ever get it scheduled back
11861 * in.
11863 raw_spin_lock_irq(&child_ctx->lock);
11864 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11867 * Now that the context is inactive, destroy the task <-> ctx relation
11868 * and mark the context dead.
11870 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11871 put_ctx(child_ctx); /* cannot be last */
11872 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11873 put_task_struct(current); /* cannot be last */
11875 clone_ctx = unclone_ctx(child_ctx);
11876 raw_spin_unlock_irq(&child_ctx->lock);
11878 if (clone_ctx)
11879 put_ctx(clone_ctx);
11882 * Report the task dead after unscheduling the events so that we
11883 * won't get any samples after PERF_RECORD_EXIT. We can however still
11884 * get a few PERF_RECORD_READ events.
11886 perf_event_task(child, child_ctx, 0);
11888 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11889 perf_event_exit_event(child_event, child_ctx, child);
11891 mutex_unlock(&child_ctx->mutex);
11893 put_ctx(child_ctx);
11897 * When a child task exits, feed back event values to parent events.
11899 * Can be called with cred_guard_mutex held when called from
11900 * install_exec_creds().
11902 void perf_event_exit_task(struct task_struct *child)
11904 struct perf_event *event, *tmp;
11905 int ctxn;
11907 mutex_lock(&child->perf_event_mutex);
11908 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11909 owner_entry) {
11910 list_del_init(&event->owner_entry);
11913 * Ensure the list deletion is visible before we clear
11914 * the owner, closes a race against perf_release() where
11915 * we need to serialize on the owner->perf_event_mutex.
11917 smp_store_release(&event->owner, NULL);
11919 mutex_unlock(&child->perf_event_mutex);
11921 for_each_task_context_nr(ctxn)
11922 perf_event_exit_task_context(child, ctxn);
11925 * The perf_event_exit_task_context calls perf_event_task
11926 * with child's task_ctx, which generates EXIT events for
11927 * child contexts and sets child->perf_event_ctxp[] to NULL.
11928 * At this point we need to send EXIT events to cpu contexts.
11930 perf_event_task(child, NULL, 0);
11933 static void perf_free_event(struct perf_event *event,
11934 struct perf_event_context *ctx)
11936 struct perf_event *parent = event->parent;
11938 if (WARN_ON_ONCE(!parent))
11939 return;
11941 mutex_lock(&parent->child_mutex);
11942 list_del_init(&event->child_list);
11943 mutex_unlock(&parent->child_mutex);
11945 put_event(parent);
11947 raw_spin_lock_irq(&ctx->lock);
11948 perf_group_detach(event);
11949 list_del_event(event, ctx);
11950 raw_spin_unlock_irq(&ctx->lock);
11951 free_event(event);
11955 * Free a context as created by inheritance by perf_event_init_task() below,
11956 * used by fork() in case of fail.
11958 * Even though the task has never lived, the context and events have been
11959 * exposed through the child_list, so we must take care tearing it all down.
11961 void perf_event_free_task(struct task_struct *task)
11963 struct perf_event_context *ctx;
11964 struct perf_event *event, *tmp;
11965 int ctxn;
11967 for_each_task_context_nr(ctxn) {
11968 ctx = task->perf_event_ctxp[ctxn];
11969 if (!ctx)
11970 continue;
11972 mutex_lock(&ctx->mutex);
11973 raw_spin_lock_irq(&ctx->lock);
11975 * Destroy the task <-> ctx relation and mark the context dead.
11977 * This is important because even though the task hasn't been
11978 * exposed yet the context has been (through child_list).
11980 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11981 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11982 put_task_struct(task); /* cannot be last */
11983 raw_spin_unlock_irq(&ctx->lock);
11985 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11986 perf_free_event(event, ctx);
11988 mutex_unlock(&ctx->mutex);
11991 * perf_event_release_kernel() could've stolen some of our
11992 * child events and still have them on its free_list. In that
11993 * case we must wait for these events to have been freed (in
11994 * particular all their references to this task must've been
11995 * dropped).
11997 * Without this copy_process() will unconditionally free this
11998 * task (irrespective of its reference count) and
11999 * _free_event()'s put_task_struct(event->hw.target) will be a
12000 * use-after-free.
12002 * Wait for all events to drop their context reference.
12004 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12005 put_ctx(ctx); /* must be last */
12009 void perf_event_delayed_put(struct task_struct *task)
12011 int ctxn;
12013 for_each_task_context_nr(ctxn)
12014 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12017 struct file *perf_event_get(unsigned int fd)
12019 struct file *file = fget(fd);
12020 if (!file)
12021 return ERR_PTR(-EBADF);
12023 if (file->f_op != &perf_fops) {
12024 fput(file);
12025 return ERR_PTR(-EBADF);
12028 return file;
12031 const struct perf_event *perf_get_event(struct file *file)
12033 if (file->f_op != &perf_fops)
12034 return ERR_PTR(-EINVAL);
12036 return file->private_data;
12039 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12041 if (!event)
12042 return ERR_PTR(-EINVAL);
12044 return &event->attr;
12048 * Inherit an event from parent task to child task.
12050 * Returns:
12051 * - valid pointer on success
12052 * - NULL for orphaned events
12053 * - IS_ERR() on error
12055 static struct perf_event *
12056 inherit_event(struct perf_event *parent_event,
12057 struct task_struct *parent,
12058 struct perf_event_context *parent_ctx,
12059 struct task_struct *child,
12060 struct perf_event *group_leader,
12061 struct perf_event_context *child_ctx)
12063 enum perf_event_state parent_state = parent_event->state;
12064 struct perf_event *child_event;
12065 unsigned long flags;
12068 * Instead of creating recursive hierarchies of events,
12069 * we link inherited events back to the original parent,
12070 * which has a filp for sure, which we use as the reference
12071 * count:
12073 if (parent_event->parent)
12074 parent_event = parent_event->parent;
12076 child_event = perf_event_alloc(&parent_event->attr,
12077 parent_event->cpu,
12078 child,
12079 group_leader, parent_event,
12080 NULL, NULL, -1);
12081 if (IS_ERR(child_event))
12082 return child_event;
12085 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12086 !child_ctx->task_ctx_data) {
12087 struct pmu *pmu = child_event->pmu;
12089 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12090 GFP_KERNEL);
12091 if (!child_ctx->task_ctx_data) {
12092 free_event(child_event);
12093 return ERR_PTR(-ENOMEM);
12098 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12099 * must be under the same lock in order to serialize against
12100 * perf_event_release_kernel(), such that either we must observe
12101 * is_orphaned_event() or they will observe us on the child_list.
12103 mutex_lock(&parent_event->child_mutex);
12104 if (is_orphaned_event(parent_event) ||
12105 !atomic_long_inc_not_zero(&parent_event->refcount)) {
12106 mutex_unlock(&parent_event->child_mutex);
12107 /* task_ctx_data is freed with child_ctx */
12108 free_event(child_event);
12109 return NULL;
12112 get_ctx(child_ctx);
12115 * Make the child state follow the state of the parent event,
12116 * not its attr.disabled bit. We hold the parent's mutex,
12117 * so we won't race with perf_event_{en, dis}able_family.
12119 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12120 child_event->state = PERF_EVENT_STATE_INACTIVE;
12121 else
12122 child_event->state = PERF_EVENT_STATE_OFF;
12124 if (parent_event->attr.freq) {
12125 u64 sample_period = parent_event->hw.sample_period;
12126 struct hw_perf_event *hwc = &child_event->hw;
12128 hwc->sample_period = sample_period;
12129 hwc->last_period = sample_period;
12131 local64_set(&hwc->period_left, sample_period);
12134 child_event->ctx = child_ctx;
12135 child_event->overflow_handler = parent_event->overflow_handler;
12136 child_event->overflow_handler_context
12137 = parent_event->overflow_handler_context;
12140 * Precalculate sample_data sizes
12142 perf_event__header_size(child_event);
12143 perf_event__id_header_size(child_event);
12146 * Link it up in the child's context:
12148 raw_spin_lock_irqsave(&child_ctx->lock, flags);
12149 add_event_to_ctx(child_event, child_ctx);
12150 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12153 * Link this into the parent event's child list
12155 list_add_tail(&child_event->child_list, &parent_event->child_list);
12156 mutex_unlock(&parent_event->child_mutex);
12158 return child_event;
12162 * Inherits an event group.
12164 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12165 * This matches with perf_event_release_kernel() removing all child events.
12167 * Returns:
12168 * - 0 on success
12169 * - <0 on error
12171 static int inherit_group(struct perf_event *parent_event,
12172 struct task_struct *parent,
12173 struct perf_event_context *parent_ctx,
12174 struct task_struct *child,
12175 struct perf_event_context *child_ctx)
12177 struct perf_event *leader;
12178 struct perf_event *sub;
12179 struct perf_event *child_ctr;
12181 leader = inherit_event(parent_event, parent, parent_ctx,
12182 child, NULL, child_ctx);
12183 if (IS_ERR(leader))
12184 return PTR_ERR(leader);
12186 * @leader can be NULL here because of is_orphaned_event(). In this
12187 * case inherit_event() will create individual events, similar to what
12188 * perf_group_detach() would do anyway.
12190 for_each_sibling_event(sub, parent_event) {
12191 child_ctr = inherit_event(sub, parent, parent_ctx,
12192 child, leader, child_ctx);
12193 if (IS_ERR(child_ctr))
12194 return PTR_ERR(child_ctr);
12196 if (sub->aux_event == parent_event && child_ctr &&
12197 !perf_get_aux_event(child_ctr, leader))
12198 return -EINVAL;
12200 return 0;
12204 * Creates the child task context and tries to inherit the event-group.
12206 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12207 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12208 * consistent with perf_event_release_kernel() removing all child events.
12210 * Returns:
12211 * - 0 on success
12212 * - <0 on error
12214 static int
12215 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12216 struct perf_event_context *parent_ctx,
12217 struct task_struct *child, int ctxn,
12218 int *inherited_all)
12220 int ret;
12221 struct perf_event_context *child_ctx;
12223 if (!event->attr.inherit) {
12224 *inherited_all = 0;
12225 return 0;
12228 child_ctx = child->perf_event_ctxp[ctxn];
12229 if (!child_ctx) {
12231 * This is executed from the parent task context, so
12232 * inherit events that have been marked for cloning.
12233 * First allocate and initialize a context for the
12234 * child.
12236 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12237 if (!child_ctx)
12238 return -ENOMEM;
12240 child->perf_event_ctxp[ctxn] = child_ctx;
12243 ret = inherit_group(event, parent, parent_ctx,
12244 child, child_ctx);
12246 if (ret)
12247 *inherited_all = 0;
12249 return ret;
12253 * Initialize the perf_event context in task_struct
12255 static int perf_event_init_context(struct task_struct *child, int ctxn)
12257 struct perf_event_context *child_ctx, *parent_ctx;
12258 struct perf_event_context *cloned_ctx;
12259 struct perf_event *event;
12260 struct task_struct *parent = current;
12261 int inherited_all = 1;
12262 unsigned long flags;
12263 int ret = 0;
12265 if (likely(!parent->perf_event_ctxp[ctxn]))
12266 return 0;
12269 * If the parent's context is a clone, pin it so it won't get
12270 * swapped under us.
12272 parent_ctx = perf_pin_task_context(parent, ctxn);
12273 if (!parent_ctx)
12274 return 0;
12277 * No need to check if parent_ctx != NULL here; since we saw
12278 * it non-NULL earlier, the only reason for it to become NULL
12279 * is if we exit, and since we're currently in the middle of
12280 * a fork we can't be exiting at the same time.
12284 * Lock the parent list. No need to lock the child - not PID
12285 * hashed yet and not running, so nobody can access it.
12287 mutex_lock(&parent_ctx->mutex);
12290 * We dont have to disable NMIs - we are only looking at
12291 * the list, not manipulating it:
12293 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12294 ret = inherit_task_group(event, parent, parent_ctx,
12295 child, ctxn, &inherited_all);
12296 if (ret)
12297 goto out_unlock;
12301 * We can't hold ctx->lock when iterating the ->flexible_group list due
12302 * to allocations, but we need to prevent rotation because
12303 * rotate_ctx() will change the list from interrupt context.
12305 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12306 parent_ctx->rotate_disable = 1;
12307 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12309 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12310 ret = inherit_task_group(event, parent, parent_ctx,
12311 child, ctxn, &inherited_all);
12312 if (ret)
12313 goto out_unlock;
12316 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12317 parent_ctx->rotate_disable = 0;
12319 child_ctx = child->perf_event_ctxp[ctxn];
12321 if (child_ctx && inherited_all) {
12323 * Mark the child context as a clone of the parent
12324 * context, or of whatever the parent is a clone of.
12326 * Note that if the parent is a clone, the holding of
12327 * parent_ctx->lock avoids it from being uncloned.
12329 cloned_ctx = parent_ctx->parent_ctx;
12330 if (cloned_ctx) {
12331 child_ctx->parent_ctx = cloned_ctx;
12332 child_ctx->parent_gen = parent_ctx->parent_gen;
12333 } else {
12334 child_ctx->parent_ctx = parent_ctx;
12335 child_ctx->parent_gen = parent_ctx->generation;
12337 get_ctx(child_ctx->parent_ctx);
12340 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12341 out_unlock:
12342 mutex_unlock(&parent_ctx->mutex);
12344 perf_unpin_context(parent_ctx);
12345 put_ctx(parent_ctx);
12347 return ret;
12351 * Initialize the perf_event context in task_struct
12353 int perf_event_init_task(struct task_struct *child)
12355 int ctxn, ret;
12357 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12358 mutex_init(&child->perf_event_mutex);
12359 INIT_LIST_HEAD(&child->perf_event_list);
12361 for_each_task_context_nr(ctxn) {
12362 ret = perf_event_init_context(child, ctxn);
12363 if (ret) {
12364 perf_event_free_task(child);
12365 return ret;
12369 return 0;
12372 static void __init perf_event_init_all_cpus(void)
12374 struct swevent_htable *swhash;
12375 int cpu;
12377 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12379 for_each_possible_cpu(cpu) {
12380 swhash = &per_cpu(swevent_htable, cpu);
12381 mutex_init(&swhash->hlist_mutex);
12382 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12384 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12385 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12387 #ifdef CONFIG_CGROUP_PERF
12388 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12389 #endif
12390 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12394 static void perf_swevent_init_cpu(unsigned int cpu)
12396 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12398 mutex_lock(&swhash->hlist_mutex);
12399 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12400 struct swevent_hlist *hlist;
12402 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12403 WARN_ON(!hlist);
12404 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12406 mutex_unlock(&swhash->hlist_mutex);
12409 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12410 static void __perf_event_exit_context(void *__info)
12412 struct perf_event_context *ctx = __info;
12413 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12414 struct perf_event *event;
12416 raw_spin_lock(&ctx->lock);
12417 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12418 list_for_each_entry(event, &ctx->event_list, event_entry)
12419 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12420 raw_spin_unlock(&ctx->lock);
12423 static void perf_event_exit_cpu_context(int cpu)
12425 struct perf_cpu_context *cpuctx;
12426 struct perf_event_context *ctx;
12427 struct pmu *pmu;
12429 mutex_lock(&pmus_lock);
12430 list_for_each_entry(pmu, &pmus, entry) {
12431 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12432 ctx = &cpuctx->ctx;
12434 mutex_lock(&ctx->mutex);
12435 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12436 cpuctx->online = 0;
12437 mutex_unlock(&ctx->mutex);
12439 cpumask_clear_cpu(cpu, perf_online_mask);
12440 mutex_unlock(&pmus_lock);
12442 #else
12444 static void perf_event_exit_cpu_context(int cpu) { }
12446 #endif
12448 int perf_event_init_cpu(unsigned int cpu)
12450 struct perf_cpu_context *cpuctx;
12451 struct perf_event_context *ctx;
12452 struct pmu *pmu;
12454 perf_swevent_init_cpu(cpu);
12456 mutex_lock(&pmus_lock);
12457 cpumask_set_cpu(cpu, perf_online_mask);
12458 list_for_each_entry(pmu, &pmus, entry) {
12459 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12460 ctx = &cpuctx->ctx;
12462 mutex_lock(&ctx->mutex);
12463 cpuctx->online = 1;
12464 mutex_unlock(&ctx->mutex);
12466 mutex_unlock(&pmus_lock);
12468 return 0;
12471 int perf_event_exit_cpu(unsigned int cpu)
12473 perf_event_exit_cpu_context(cpu);
12474 return 0;
12477 static int
12478 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12480 int cpu;
12482 for_each_online_cpu(cpu)
12483 perf_event_exit_cpu(cpu);
12485 return NOTIFY_OK;
12489 * Run the perf reboot notifier at the very last possible moment so that
12490 * the generic watchdog code runs as long as possible.
12492 static struct notifier_block perf_reboot_notifier = {
12493 .notifier_call = perf_reboot,
12494 .priority = INT_MIN,
12497 void __init perf_event_init(void)
12499 int ret;
12501 idr_init(&pmu_idr);
12503 perf_event_init_all_cpus();
12504 init_srcu_struct(&pmus_srcu);
12505 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12506 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12507 perf_pmu_register(&perf_task_clock, NULL, -1);
12508 perf_tp_register();
12509 perf_event_init_cpu(smp_processor_id());
12510 register_reboot_notifier(&perf_reboot_notifier);
12512 ret = init_hw_breakpoint();
12513 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12516 * Build time assertion that we keep the data_head at the intended
12517 * location. IOW, validation we got the __reserved[] size right.
12519 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12520 != 1024);
12523 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12524 char *page)
12526 struct perf_pmu_events_attr *pmu_attr =
12527 container_of(attr, struct perf_pmu_events_attr, attr);
12529 if (pmu_attr->event_str)
12530 return sprintf(page, "%s\n", pmu_attr->event_str);
12532 return 0;
12534 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12536 static int __init perf_event_sysfs_init(void)
12538 struct pmu *pmu;
12539 int ret;
12541 mutex_lock(&pmus_lock);
12543 ret = bus_register(&pmu_bus);
12544 if (ret)
12545 goto unlock;
12547 list_for_each_entry(pmu, &pmus, entry) {
12548 if (!pmu->name || pmu->type < 0)
12549 continue;
12551 ret = pmu_dev_alloc(pmu);
12552 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12554 pmu_bus_running = 1;
12555 ret = 0;
12557 unlock:
12558 mutex_unlock(&pmus_lock);
12560 return ret;
12562 device_initcall(perf_event_sysfs_init);
12564 #ifdef CONFIG_CGROUP_PERF
12565 static struct cgroup_subsys_state *
12566 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12568 struct perf_cgroup *jc;
12570 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12571 if (!jc)
12572 return ERR_PTR(-ENOMEM);
12574 jc->info = alloc_percpu(struct perf_cgroup_info);
12575 if (!jc->info) {
12576 kfree(jc);
12577 return ERR_PTR(-ENOMEM);
12580 return &jc->css;
12583 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12585 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12587 free_percpu(jc->info);
12588 kfree(jc);
12591 static int __perf_cgroup_move(void *info)
12593 struct task_struct *task = info;
12594 rcu_read_lock();
12595 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12596 rcu_read_unlock();
12597 return 0;
12600 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12602 struct task_struct *task;
12603 struct cgroup_subsys_state *css;
12605 cgroup_taskset_for_each(task, css, tset)
12606 task_function_call(task, __perf_cgroup_move, task);
12609 struct cgroup_subsys perf_event_cgrp_subsys = {
12610 .css_alloc = perf_cgroup_css_alloc,
12611 .css_free = perf_cgroup_css_free,
12612 .attach = perf_cgroup_attach,
12614 * Implicitly enable on dfl hierarchy so that perf events can
12615 * always be filtered by cgroup2 path as long as perf_event
12616 * controller is not mounted on a legacy hierarchy.
12618 .implicit_on_dfl = true,
12619 .threaded = true,
12621 #endif /* CONFIG_CGROUP_PERF */