1 // SPDX-License-Identifier: GPL-2.0
3 * Performance events core code:
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
55 #include <asm/irq_regs.h>
57 typedef int (*remote_function_f
)(void *);
59 struct remote_function_call
{
60 struct task_struct
*p
;
61 remote_function_f func
;
66 static void remote_function(void *data
)
68 struct remote_function_call
*tfc
= data
;
69 struct task_struct
*p
= tfc
->p
;
73 if (task_cpu(p
) != smp_processor_id())
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
81 tfc
->ret
= -ESRCH
; /* No such (running) process */
86 tfc
->ret
= tfc
->func(tfc
->info
);
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
103 task_function_call(struct task_struct
*p
, remote_function_f func
, void *info
)
105 struct remote_function_call data
= {
114 ret
= smp_call_function_single(task_cpu(p
), remote_function
, &data
, 1);
117 } while (ret
== -EAGAIN
);
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
127 * Calls the function @func on the remote cpu.
129 * returns: @func return value or -ENXIO when the cpu is offline
131 static int cpu_function_call(int cpu
, remote_function_f func
, void *info
)
133 struct remote_function_call data
= {
137 .ret
= -ENXIO
, /* No such CPU */
140 smp_call_function_single(cpu
, remote_function
, &data
, 1);
145 static inline struct perf_cpu_context
*
146 __get_cpu_context(struct perf_event_context
*ctx
)
148 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
151 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
152 struct perf_event_context
*ctx
)
154 raw_spin_lock(&cpuctx
->ctx
.lock
);
156 raw_spin_lock(&ctx
->lock
);
159 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
160 struct perf_event_context
*ctx
)
163 raw_spin_unlock(&ctx
->lock
);
164 raw_spin_unlock(&cpuctx
->ctx
.lock
);
167 #define TASK_TOMBSTONE ((void *)-1L)
169 static bool is_kernel_event(struct perf_event
*event
)
171 return READ_ONCE(event
->owner
) == TASK_TOMBSTONE
;
175 * On task ctx scheduling...
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
181 * This however results in two special cases:
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
193 typedef void (*event_f
)(struct perf_event
*, struct perf_cpu_context
*,
194 struct perf_event_context
*, void *);
196 struct event_function_struct
{
197 struct perf_event
*event
;
202 static int event_function(void *info
)
204 struct event_function_struct
*efs
= info
;
205 struct perf_event
*event
= efs
->event
;
206 struct perf_event_context
*ctx
= event
->ctx
;
207 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
208 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
211 lockdep_assert_irqs_disabled();
213 perf_ctx_lock(cpuctx
, task_ctx
);
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
219 if (ctx
->task
!= current
) {
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
231 WARN_ON_ONCE(!ctx
->is_active
);
233 * And since we have ctx->is_active, cpuctx->task_ctx must
236 WARN_ON_ONCE(task_ctx
!= ctx
);
238 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
241 efs
->func(event
, cpuctx
, ctx
, efs
->data
);
243 perf_ctx_unlock(cpuctx
, task_ctx
);
248 static void event_function_call(struct perf_event
*event
, event_f func
, void *data
)
250 struct perf_event_context
*ctx
= event
->ctx
;
251 struct task_struct
*task
= READ_ONCE(ctx
->task
); /* verified in event_function */
252 struct event_function_struct efs
= {
258 if (!event
->parent
) {
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
264 lockdep_assert_held(&ctx
->mutex
);
268 cpu_function_call(event
->cpu
, event_function
, &efs
);
272 if (task
== TASK_TOMBSTONE
)
276 if (!task_function_call(task
, event_function
, &efs
))
279 raw_spin_lock_irq(&ctx
->lock
);
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
285 if (task
== TASK_TOMBSTONE
) {
286 raw_spin_unlock_irq(&ctx
->lock
);
289 if (ctx
->is_active
) {
290 raw_spin_unlock_irq(&ctx
->lock
);
293 func(event
, NULL
, ctx
, data
);
294 raw_spin_unlock_irq(&ctx
->lock
);
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
301 static void event_function_local(struct perf_event
*event
, event_f func
, void *data
)
303 struct perf_event_context
*ctx
= event
->ctx
;
304 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
305 struct task_struct
*task
= READ_ONCE(ctx
->task
);
306 struct perf_event_context
*task_ctx
= NULL
;
308 lockdep_assert_irqs_disabled();
311 if (task
== TASK_TOMBSTONE
)
317 perf_ctx_lock(cpuctx
, task_ctx
);
320 if (task
== TASK_TOMBSTONE
)
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
329 if (ctx
->is_active
) {
330 if (WARN_ON_ONCE(task
!= current
))
333 if (WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
))
337 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
340 func(event
, cpuctx
, ctx
, data
);
342 perf_ctx_unlock(cpuctx
, task_ctx
);
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
351 * branch priv levels that need permission checks
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
358 EVENT_FLEXIBLE
= 0x1,
361 /* see ctx_resched() for details */
363 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
371 static void perf_sched_delayed(struct work_struct
*work
);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events
);
373 static DECLARE_DELAYED_WORK(perf_sched_work
, perf_sched_delayed
);
374 static DEFINE_MUTEX(perf_sched_mutex
);
375 static atomic_t perf_sched_count
;
377 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages
);
379 static DEFINE_PER_CPU(struct pmu_event_list
, pmu_sb_events
);
381 static atomic_t nr_mmap_events __read_mostly
;
382 static atomic_t nr_comm_events __read_mostly
;
383 static atomic_t nr_namespaces_events __read_mostly
;
384 static atomic_t nr_task_events __read_mostly
;
385 static atomic_t nr_freq_events __read_mostly
;
386 static atomic_t nr_switch_events __read_mostly
;
387 static atomic_t nr_ksymbol_events __read_mostly
;
388 static atomic_t nr_bpf_events __read_mostly
;
390 static LIST_HEAD(pmus
);
391 static DEFINE_MUTEX(pmus_lock
);
392 static struct srcu_struct pmus_srcu
;
393 static cpumask_var_t perf_online_mask
;
396 * perf event paranoia level:
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
399 * 1 - disallow cpu events for unpriv
400 * 2 - disallow kernel profiling for unpriv
402 int sysctl_perf_event_paranoid __read_mostly
= 2;
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
408 * max perf event sample rate
410 #define DEFAULT_MAX_SAMPLE_RATE 100000
411 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
414 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
416 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
417 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
419 static int perf_sample_allowed_ns __read_mostly
=
420 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
422 static void update_perf_cpu_limits(void)
424 u64 tmp
= perf_sample_period_ns
;
426 tmp
*= sysctl_perf_cpu_time_max_percent
;
427 tmp
= div_u64(tmp
, 100);
431 WRITE_ONCE(perf_sample_allowed_ns
, tmp
);
434 static bool perf_rotate_context(struct perf_cpu_context
*cpuctx
);
436 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
437 void __user
*buffer
, size_t *lenp
,
441 int perf_cpu
= sysctl_perf_cpu_time_max_percent
;
443 * If throttling is disabled don't allow the write:
445 if (write
&& (perf_cpu
== 100 || perf_cpu
== 0))
448 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
452 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
453 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
454 update_perf_cpu_limits();
459 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
461 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
462 void __user
*buffer
, size_t *lenp
,
465 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
470 if (sysctl_perf_cpu_time_max_percent
== 100 ||
471 sysctl_perf_cpu_time_max_percent
== 0) {
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns
, 0);
476 update_perf_cpu_limits();
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64
, running_sample_length
);
491 static u64 __report_avg
;
492 static u64 __report_allowed
;
494 static void perf_duration_warn(struct irq_work
*w
)
496 printk_ratelimited(KERN_INFO
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg
, __report_allowed
,
500 sysctl_perf_event_sample_rate
);
503 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
505 void perf_sample_event_took(u64 sample_len_ns
)
507 u64 max_len
= READ_ONCE(perf_sample_allowed_ns
);
515 /* Decay the counter by 1 average sample. */
516 running_len
= __this_cpu_read(running_sample_length
);
517 running_len
-= running_len
/NR_ACCUMULATED_SAMPLES
;
518 running_len
+= sample_len_ns
;
519 __this_cpu_write(running_sample_length
, running_len
);
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524 * from having to maintain a count.
526 avg_len
= running_len
/NR_ACCUMULATED_SAMPLES
;
527 if (avg_len
<= max_len
)
530 __report_avg
= avg_len
;
531 __report_allowed
= max_len
;
534 * Compute a throttle threshold 25% below the current duration.
536 avg_len
+= avg_len
/ 4;
537 max
= (TICK_NSEC
/ 100) * sysctl_perf_cpu_time_max_percent
;
543 WRITE_ONCE(perf_sample_allowed_ns
, avg_len
);
544 WRITE_ONCE(max_samples_per_tick
, max
);
546 sysctl_perf_event_sample_rate
= max
* HZ
;
547 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
549 if (!irq_work_queue(&perf_duration_work
)) {
550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551 "kernel.perf_event_max_sample_rate to %d\n",
552 __report_avg
, __report_allowed
,
553 sysctl_perf_event_sample_rate
);
557 static atomic64_t perf_event_id
;
559 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
560 enum event_type_t event_type
);
562 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
563 enum event_type_t event_type
,
564 struct task_struct
*task
);
566 static void update_context_time(struct perf_event_context
*ctx
);
567 static u64
perf_event_time(struct perf_event
*event
);
569 void __weak
perf_event_print_debug(void) { }
571 extern __weak
const char *perf_pmu_name(void)
576 static inline u64
perf_clock(void)
578 return local_clock();
581 static inline u64
perf_event_clock(struct perf_event
*event
)
583 return event
->clock();
587 * State based event timekeeping...
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
608 static __always_inline
enum perf_event_state
609 __perf_effective_state(struct perf_event
*event
)
611 struct perf_event
*leader
= event
->group_leader
;
613 if (leader
->state
<= PERF_EVENT_STATE_OFF
)
614 return leader
->state
;
619 static __always_inline
void
620 __perf_update_times(struct perf_event
*event
, u64 now
, u64
*enabled
, u64
*running
)
622 enum perf_event_state state
= __perf_effective_state(event
);
623 u64 delta
= now
- event
->tstamp
;
625 *enabled
= event
->total_time_enabled
;
626 if (state
>= PERF_EVENT_STATE_INACTIVE
)
629 *running
= event
->total_time_running
;
630 if (state
>= PERF_EVENT_STATE_ACTIVE
)
634 static void perf_event_update_time(struct perf_event
*event
)
636 u64 now
= perf_event_time(event
);
638 __perf_update_times(event
, now
, &event
->total_time_enabled
,
639 &event
->total_time_running
);
643 static void perf_event_update_sibling_time(struct perf_event
*leader
)
645 struct perf_event
*sibling
;
647 for_each_sibling_event(sibling
, leader
)
648 perf_event_update_time(sibling
);
652 perf_event_set_state(struct perf_event
*event
, enum perf_event_state state
)
654 if (event
->state
== state
)
657 perf_event_update_time(event
);
659 * If a group leader gets enabled/disabled all its siblings
662 if ((event
->state
< 0) ^ (state
< 0))
663 perf_event_update_sibling_time(event
);
665 WRITE_ONCE(event
->state
, state
);
668 #ifdef CONFIG_CGROUP_PERF
671 perf_cgroup_match(struct perf_event
*event
)
673 struct perf_event_context
*ctx
= event
->ctx
;
674 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
676 /* @event doesn't care about cgroup */
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
690 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
691 event
->cgrp
->css
.cgroup
);
694 static inline void perf_detach_cgroup(struct perf_event
*event
)
696 css_put(&event
->cgrp
->css
);
700 static inline int is_cgroup_event(struct perf_event
*event
)
702 return event
->cgrp
!= NULL
;
705 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
707 struct perf_cgroup_info
*t
;
709 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
713 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
715 struct perf_cgroup_info
*info
;
720 info
= this_cpu_ptr(cgrp
->info
);
722 info
->time
+= now
- info
->timestamp
;
723 info
->timestamp
= now
;
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
728 struct perf_cgroup
*cgrp
= cpuctx
->cgrp
;
729 struct cgroup_subsys_state
*css
;
732 for (css
= &cgrp
->css
; css
; css
= css
->parent
) {
733 cgrp
= container_of(css
, struct perf_cgroup
, css
);
734 __update_cgrp_time(cgrp
);
739 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
741 struct perf_cgroup
*cgrp
;
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
747 if (!is_cgroup_event(event
))
750 cgrp
= perf_cgroup_from_task(current
, event
->ctx
);
752 * Do not update time when cgroup is not active
754 if (cgroup_is_descendant(cgrp
->css
.cgroup
, event
->cgrp
->css
.cgroup
))
755 __update_cgrp_time(event
->cgrp
);
759 perf_cgroup_set_timestamp(struct task_struct
*task
,
760 struct perf_event_context
*ctx
)
762 struct perf_cgroup
*cgrp
;
763 struct perf_cgroup_info
*info
;
764 struct cgroup_subsys_state
*css
;
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
771 if (!task
|| !ctx
->nr_cgroups
)
774 cgrp
= perf_cgroup_from_task(task
, ctx
);
776 for (css
= &cgrp
->css
; css
; css
= css
->parent
) {
777 cgrp
= container_of(css
, struct perf_cgroup
, css
);
778 info
= this_cpu_ptr(cgrp
->info
);
779 info
->timestamp
= ctx
->timestamp
;
783 static DEFINE_PER_CPU(struct list_head
, cgrp_cpuctx_list
);
785 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
789 * reschedule events based on the cgroup constraint of task.
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
794 static void perf_cgroup_switch(struct task_struct
*task
, int mode
)
796 struct perf_cpu_context
*cpuctx
;
797 struct list_head
*list
;
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
804 local_irq_save(flags
);
806 list
= this_cpu_ptr(&cgrp_cpuctx_list
);
807 list_for_each_entry(cpuctx
, list
, cgrp_cpuctx_entry
) {
808 WARN_ON_ONCE(cpuctx
->ctx
.nr_cgroups
== 0);
810 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
811 perf_pmu_disable(cpuctx
->ctx
.pmu
);
813 if (mode
& PERF_CGROUP_SWOUT
) {
814 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
822 if (mode
& PERF_CGROUP_SWIN
) {
823 WARN_ON_ONCE(cpuctx
->cgrp
);
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
831 cpuctx
->cgrp
= perf_cgroup_from_task(task
,
833 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
835 perf_pmu_enable(cpuctx
->ctx
.pmu
);
836 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
839 local_irq_restore(flags
);
842 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
843 struct task_struct
*next
)
845 struct perf_cgroup
*cgrp1
;
846 struct perf_cgroup
*cgrp2
= NULL
;
850 * we come here when we know perf_cgroup_events > 0
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
854 cgrp1
= perf_cgroup_from_task(task
, NULL
);
855 cgrp2
= perf_cgroup_from_task(next
, NULL
);
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
863 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
868 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
869 struct task_struct
*task
)
871 struct perf_cgroup
*cgrp1
;
872 struct perf_cgroup
*cgrp2
= NULL
;
876 * we come here when we know perf_cgroup_events > 0
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
880 cgrp1
= perf_cgroup_from_task(task
, NULL
);
881 cgrp2
= perf_cgroup_from_task(prev
, NULL
);
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
889 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
894 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
895 struct perf_event_attr
*attr
,
896 struct perf_event
*group_leader
)
898 struct perf_cgroup
*cgrp
;
899 struct cgroup_subsys_state
*css
;
900 struct fd f
= fdget(fd
);
906 css
= css_tryget_online_from_dir(f
.file
->f_path
.dentry
,
907 &perf_event_cgrp_subsys
);
913 cgrp
= container_of(css
, struct perf_cgroup
, css
);
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
921 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
922 perf_detach_cgroup(event
);
931 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
933 struct perf_cgroup_info
*t
;
934 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
935 event
->shadow_ctx_time
= now
- t
->timestamp
;
939 perf_cgroup_event_enable(struct perf_event
*event
, struct perf_event_context
*ctx
)
941 struct perf_cpu_context
*cpuctx
;
943 if (!is_cgroup_event(event
))
947 * Because cgroup events are always per-cpu events,
948 * @ctx == &cpuctx->ctx.
950 cpuctx
= container_of(ctx
, struct perf_cpu_context
, ctx
);
953 * Since setting cpuctx->cgrp is conditional on the current @cgrp
954 * matching the event's cgroup, we must do this for every new event,
955 * because if the first would mismatch, the second would not try again
956 * and we would leave cpuctx->cgrp unset.
958 if (ctx
->is_active
&& !cpuctx
->cgrp
) {
959 struct perf_cgroup
*cgrp
= perf_cgroup_from_task(current
, ctx
);
961 if (cgroup_is_descendant(cgrp
->css
.cgroup
, event
->cgrp
->css
.cgroup
))
965 if (ctx
->nr_cgroups
++)
968 list_add(&cpuctx
->cgrp_cpuctx_entry
,
969 per_cpu_ptr(&cgrp_cpuctx_list
, event
->cpu
));
973 perf_cgroup_event_disable(struct perf_event
*event
, struct perf_event_context
*ctx
)
975 struct perf_cpu_context
*cpuctx
;
977 if (!is_cgroup_event(event
))
981 * Because cgroup events are always per-cpu events,
982 * @ctx == &cpuctx->ctx.
984 cpuctx
= container_of(ctx
, struct perf_cpu_context
, ctx
);
986 if (--ctx
->nr_cgroups
)
989 if (ctx
->is_active
&& cpuctx
->cgrp
)
992 list_del(&cpuctx
->cgrp_cpuctx_entry
);
995 #else /* !CONFIG_CGROUP_PERF */
998 perf_cgroup_match(struct perf_event
*event
)
1003 static inline void perf_detach_cgroup(struct perf_event
*event
)
1006 static inline int is_cgroup_event(struct perf_event
*event
)
1011 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
1015 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
1019 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
1020 struct task_struct
*next
)
1024 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
1025 struct task_struct
*task
)
1029 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
1030 struct perf_event_attr
*attr
,
1031 struct perf_event
*group_leader
)
1037 perf_cgroup_set_timestamp(struct task_struct
*task
,
1038 struct perf_event_context
*ctx
)
1043 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
1048 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
1052 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
1058 perf_cgroup_event_enable(struct perf_event
*event
, struct perf_event_context
*ctx
)
1063 perf_cgroup_event_disable(struct perf_event
*event
, struct perf_event_context
*ctx
)
1069 * set default to be dependent on timer tick just
1070 * like original code
1072 #define PERF_CPU_HRTIMER (1000 / HZ)
1074 * function must be called with interrupts disabled
1076 static enum hrtimer_restart
perf_mux_hrtimer_handler(struct hrtimer
*hr
)
1078 struct perf_cpu_context
*cpuctx
;
1081 lockdep_assert_irqs_disabled();
1083 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
1084 rotations
= perf_rotate_context(cpuctx
);
1086 raw_spin_lock(&cpuctx
->hrtimer_lock
);
1088 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
1090 cpuctx
->hrtimer_active
= 0;
1091 raw_spin_unlock(&cpuctx
->hrtimer_lock
);
1093 return rotations
? HRTIMER_RESTART
: HRTIMER_NORESTART
;
1096 static void __perf_mux_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
1098 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1099 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1102 /* no multiplexing needed for SW PMU */
1103 if (pmu
->task_ctx_nr
== perf_sw_context
)
1107 * check default is sane, if not set then force to
1108 * default interval (1/tick)
1110 interval
= pmu
->hrtimer_interval_ms
;
1112 interval
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
1114 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* interval
);
1116 raw_spin_lock_init(&cpuctx
->hrtimer_lock
);
1117 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED_HARD
);
1118 timer
->function
= perf_mux_hrtimer_handler
;
1121 static int perf_mux_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
1123 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1124 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1125 unsigned long flags
;
1127 /* not for SW PMU */
1128 if (pmu
->task_ctx_nr
== perf_sw_context
)
1131 raw_spin_lock_irqsave(&cpuctx
->hrtimer_lock
, flags
);
1132 if (!cpuctx
->hrtimer_active
) {
1133 cpuctx
->hrtimer_active
= 1;
1134 hrtimer_forward_now(timer
, cpuctx
->hrtimer_interval
);
1135 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED_HARD
);
1137 raw_spin_unlock_irqrestore(&cpuctx
->hrtimer_lock
, flags
);
1142 void perf_pmu_disable(struct pmu
*pmu
)
1144 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1146 pmu
->pmu_disable(pmu
);
1149 void perf_pmu_enable(struct pmu
*pmu
)
1151 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1153 pmu
->pmu_enable(pmu
);
1156 static DEFINE_PER_CPU(struct list_head
, active_ctx_list
);
1159 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1160 * perf_event_task_tick() are fully serialized because they're strictly cpu
1161 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1162 * disabled, while perf_event_task_tick is called from IRQ context.
1164 static void perf_event_ctx_activate(struct perf_event_context
*ctx
)
1166 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
1168 lockdep_assert_irqs_disabled();
1170 WARN_ON(!list_empty(&ctx
->active_ctx_list
));
1172 list_add(&ctx
->active_ctx_list
, head
);
1175 static void perf_event_ctx_deactivate(struct perf_event_context
*ctx
)
1177 lockdep_assert_irqs_disabled();
1179 WARN_ON(list_empty(&ctx
->active_ctx_list
));
1181 list_del_init(&ctx
->active_ctx_list
);
1184 static void get_ctx(struct perf_event_context
*ctx
)
1186 refcount_inc(&ctx
->refcount
);
1189 static void free_ctx(struct rcu_head
*head
)
1191 struct perf_event_context
*ctx
;
1193 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
1194 kfree(ctx
->task_ctx_data
);
1198 static void put_ctx(struct perf_event_context
*ctx
)
1200 if (refcount_dec_and_test(&ctx
->refcount
)) {
1201 if (ctx
->parent_ctx
)
1202 put_ctx(ctx
->parent_ctx
);
1203 if (ctx
->task
&& ctx
->task
!= TASK_TOMBSTONE
)
1204 put_task_struct(ctx
->task
);
1205 call_rcu(&ctx
->rcu_head
, free_ctx
);
1210 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1211 * perf_pmu_migrate_context() we need some magic.
1213 * Those places that change perf_event::ctx will hold both
1214 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1216 * Lock ordering is by mutex address. There are two other sites where
1217 * perf_event_context::mutex nests and those are:
1219 * - perf_event_exit_task_context() [ child , 0 ]
1220 * perf_event_exit_event()
1221 * put_event() [ parent, 1 ]
1223 * - perf_event_init_context() [ parent, 0 ]
1224 * inherit_task_group()
1227 * perf_event_alloc()
1229 * perf_try_init_event() [ child , 1 ]
1231 * While it appears there is an obvious deadlock here -- the parent and child
1232 * nesting levels are inverted between the two. This is in fact safe because
1233 * life-time rules separate them. That is an exiting task cannot fork, and a
1234 * spawning task cannot (yet) exit.
1236 * But remember that that these are parent<->child context relations, and
1237 * migration does not affect children, therefore these two orderings should not
1240 * The change in perf_event::ctx does not affect children (as claimed above)
1241 * because the sys_perf_event_open() case will install a new event and break
1242 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1243 * concerned with cpuctx and that doesn't have children.
1245 * The places that change perf_event::ctx will issue:
1247 * perf_remove_from_context();
1248 * synchronize_rcu();
1249 * perf_install_in_context();
1251 * to affect the change. The remove_from_context() + synchronize_rcu() should
1252 * quiesce the event, after which we can install it in the new location. This
1253 * means that only external vectors (perf_fops, prctl) can perturb the event
1254 * while in transit. Therefore all such accessors should also acquire
1255 * perf_event_context::mutex to serialize against this.
1257 * However; because event->ctx can change while we're waiting to acquire
1258 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1263 * task_struct::perf_event_mutex
1264 * perf_event_context::mutex
1265 * perf_event::child_mutex;
1266 * perf_event_context::lock
1267 * perf_event::mmap_mutex
1269 * perf_addr_filters_head::lock
1273 * cpuctx->mutex / perf_event_context::mutex
1275 static struct perf_event_context
*
1276 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
1278 struct perf_event_context
*ctx
;
1282 ctx
= READ_ONCE(event
->ctx
);
1283 if (!refcount_inc_not_zero(&ctx
->refcount
)) {
1289 mutex_lock_nested(&ctx
->mutex
, nesting
);
1290 if (event
->ctx
!= ctx
) {
1291 mutex_unlock(&ctx
->mutex
);
1299 static inline struct perf_event_context
*
1300 perf_event_ctx_lock(struct perf_event
*event
)
1302 return perf_event_ctx_lock_nested(event
, 0);
1305 static void perf_event_ctx_unlock(struct perf_event
*event
,
1306 struct perf_event_context
*ctx
)
1308 mutex_unlock(&ctx
->mutex
);
1313 * This must be done under the ctx->lock, such as to serialize against
1314 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1315 * calling scheduler related locks and ctx->lock nests inside those.
1317 static __must_check
struct perf_event_context
*
1318 unclone_ctx(struct perf_event_context
*ctx
)
1320 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
1322 lockdep_assert_held(&ctx
->lock
);
1325 ctx
->parent_ctx
= NULL
;
1331 static u32
perf_event_pid_type(struct perf_event
*event
, struct task_struct
*p
,
1336 * only top level events have the pid namespace they were created in
1339 event
= event
->parent
;
1341 nr
= __task_pid_nr_ns(p
, type
, event
->ns
);
1342 /* avoid -1 if it is idle thread or runs in another ns */
1343 if (!nr
&& !pid_alive(p
))
1348 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1350 return perf_event_pid_type(event
, p
, PIDTYPE_TGID
);
1353 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1355 return perf_event_pid_type(event
, p
, PIDTYPE_PID
);
1359 * If we inherit events we want to return the parent event id
1362 static u64
primary_event_id(struct perf_event
*event
)
1367 id
= event
->parent
->id
;
1373 * Get the perf_event_context for a task and lock it.
1375 * This has to cope with with the fact that until it is locked,
1376 * the context could get moved to another task.
1378 static struct perf_event_context
*
1379 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1381 struct perf_event_context
*ctx
;
1385 * One of the few rules of preemptible RCU is that one cannot do
1386 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1387 * part of the read side critical section was irqs-enabled -- see
1388 * rcu_read_unlock_special().
1390 * Since ctx->lock nests under rq->lock we must ensure the entire read
1391 * side critical section has interrupts disabled.
1393 local_irq_save(*flags
);
1395 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1398 * If this context is a clone of another, it might
1399 * get swapped for another underneath us by
1400 * perf_event_task_sched_out, though the
1401 * rcu_read_lock() protects us from any context
1402 * getting freed. Lock the context and check if it
1403 * got swapped before we could get the lock, and retry
1404 * if so. If we locked the right context, then it
1405 * can't get swapped on us any more.
1407 raw_spin_lock(&ctx
->lock
);
1408 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1409 raw_spin_unlock(&ctx
->lock
);
1411 local_irq_restore(*flags
);
1415 if (ctx
->task
== TASK_TOMBSTONE
||
1416 !refcount_inc_not_zero(&ctx
->refcount
)) {
1417 raw_spin_unlock(&ctx
->lock
);
1420 WARN_ON_ONCE(ctx
->task
!= task
);
1425 local_irq_restore(*flags
);
1430 * Get the context for a task and increment its pin_count so it
1431 * can't get swapped to another task. This also increments its
1432 * reference count so that the context can't get freed.
1434 static struct perf_event_context
*
1435 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1437 struct perf_event_context
*ctx
;
1438 unsigned long flags
;
1440 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1443 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1448 static void perf_unpin_context(struct perf_event_context
*ctx
)
1450 unsigned long flags
;
1452 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1454 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1458 * Update the record of the current time in a context.
1460 static void update_context_time(struct perf_event_context
*ctx
)
1462 u64 now
= perf_clock();
1464 ctx
->time
+= now
- ctx
->timestamp
;
1465 ctx
->timestamp
= now
;
1468 static u64
perf_event_time(struct perf_event
*event
)
1470 struct perf_event_context
*ctx
= event
->ctx
;
1472 if (is_cgroup_event(event
))
1473 return perf_cgroup_event_time(event
);
1475 return ctx
? ctx
->time
: 0;
1478 static enum event_type_t
get_event_type(struct perf_event
*event
)
1480 struct perf_event_context
*ctx
= event
->ctx
;
1481 enum event_type_t event_type
;
1483 lockdep_assert_held(&ctx
->lock
);
1486 * It's 'group type', really, because if our group leader is
1487 * pinned, so are we.
1489 if (event
->group_leader
!= event
)
1490 event
= event
->group_leader
;
1492 event_type
= event
->attr
.pinned
? EVENT_PINNED
: EVENT_FLEXIBLE
;
1494 event_type
|= EVENT_CPU
;
1500 * Helper function to initialize event group nodes.
1502 static void init_event_group(struct perf_event
*event
)
1504 RB_CLEAR_NODE(&event
->group_node
);
1505 event
->group_index
= 0;
1509 * Extract pinned or flexible groups from the context
1510 * based on event attrs bits.
1512 static struct perf_event_groups
*
1513 get_event_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1515 if (event
->attr
.pinned
)
1516 return &ctx
->pinned_groups
;
1518 return &ctx
->flexible_groups
;
1522 * Helper function to initializes perf_event_group trees.
1524 static void perf_event_groups_init(struct perf_event_groups
*groups
)
1526 groups
->tree
= RB_ROOT
;
1531 * Compare function for event groups;
1533 * Implements complex key that first sorts by CPU and then by virtual index
1534 * which provides ordering when rotating groups for the same CPU.
1537 perf_event_groups_less(struct perf_event
*left
, struct perf_event
*right
)
1539 if (left
->cpu
< right
->cpu
)
1541 if (left
->cpu
> right
->cpu
)
1544 if (left
->group_index
< right
->group_index
)
1546 if (left
->group_index
> right
->group_index
)
1553 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1554 * key (see perf_event_groups_less). This places it last inside the CPU
1558 perf_event_groups_insert(struct perf_event_groups
*groups
,
1559 struct perf_event
*event
)
1561 struct perf_event
*node_event
;
1562 struct rb_node
*parent
;
1563 struct rb_node
**node
;
1565 event
->group_index
= ++groups
->index
;
1567 node
= &groups
->tree
.rb_node
;
1572 node_event
= container_of(*node
, struct perf_event
, group_node
);
1574 if (perf_event_groups_less(event
, node_event
))
1575 node
= &parent
->rb_left
;
1577 node
= &parent
->rb_right
;
1580 rb_link_node(&event
->group_node
, parent
, node
);
1581 rb_insert_color(&event
->group_node
, &groups
->tree
);
1585 * Helper function to insert event into the pinned or flexible groups.
1588 add_event_to_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1590 struct perf_event_groups
*groups
;
1592 groups
= get_event_groups(event
, ctx
);
1593 perf_event_groups_insert(groups
, event
);
1597 * Delete a group from a tree.
1600 perf_event_groups_delete(struct perf_event_groups
*groups
,
1601 struct perf_event
*event
)
1603 WARN_ON_ONCE(RB_EMPTY_NODE(&event
->group_node
) ||
1604 RB_EMPTY_ROOT(&groups
->tree
));
1606 rb_erase(&event
->group_node
, &groups
->tree
);
1607 init_event_group(event
);
1611 * Helper function to delete event from its groups.
1614 del_event_from_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1616 struct perf_event_groups
*groups
;
1618 groups
= get_event_groups(event
, ctx
);
1619 perf_event_groups_delete(groups
, event
);
1623 * Get the leftmost event in the @cpu subtree.
1625 static struct perf_event
*
1626 perf_event_groups_first(struct perf_event_groups
*groups
, int cpu
)
1628 struct perf_event
*node_event
= NULL
, *match
= NULL
;
1629 struct rb_node
*node
= groups
->tree
.rb_node
;
1632 node_event
= container_of(node
, struct perf_event
, group_node
);
1634 if (cpu
< node_event
->cpu
) {
1635 node
= node
->rb_left
;
1636 } else if (cpu
> node_event
->cpu
) {
1637 node
= node
->rb_right
;
1640 node
= node
->rb_left
;
1648 * Like rb_entry_next_safe() for the @cpu subtree.
1650 static struct perf_event
*
1651 perf_event_groups_next(struct perf_event
*event
)
1653 struct perf_event
*next
;
1655 next
= rb_entry_safe(rb_next(&event
->group_node
), typeof(*event
), group_node
);
1656 if (next
&& next
->cpu
== event
->cpu
)
1663 * Iterate through the whole groups tree.
1665 #define perf_event_groups_for_each(event, groups) \
1666 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1667 typeof(*event), group_node); event; \
1668 event = rb_entry_safe(rb_next(&event->group_node), \
1669 typeof(*event), group_node))
1672 * Add an event from the lists for its context.
1673 * Must be called with ctx->mutex and ctx->lock held.
1676 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1678 lockdep_assert_held(&ctx
->lock
);
1680 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1681 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1683 event
->tstamp
= perf_event_time(event
);
1686 * If we're a stand alone event or group leader, we go to the context
1687 * list, group events are kept attached to the group so that
1688 * perf_group_detach can, at all times, locate all siblings.
1690 if (event
->group_leader
== event
) {
1691 event
->group_caps
= event
->event_caps
;
1692 add_event_to_groups(event
, ctx
);
1695 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1697 if (event
->attr
.inherit_stat
)
1700 if (event
->state
> PERF_EVENT_STATE_OFF
)
1701 perf_cgroup_event_enable(event
, ctx
);
1707 * Initialize event state based on the perf_event_attr::disabled.
1709 static inline void perf_event__state_init(struct perf_event
*event
)
1711 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1712 PERF_EVENT_STATE_INACTIVE
;
1715 static void __perf_event_read_size(struct perf_event
*event
, int nr_siblings
)
1717 int entry
= sizeof(u64
); /* value */
1721 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1722 size
+= sizeof(u64
);
1724 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1725 size
+= sizeof(u64
);
1727 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1728 entry
+= sizeof(u64
);
1730 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1732 size
+= sizeof(u64
);
1736 event
->read_size
= size
;
1739 static void __perf_event_header_size(struct perf_event
*event
, u64 sample_type
)
1741 struct perf_sample_data
*data
;
1744 if (sample_type
& PERF_SAMPLE_IP
)
1745 size
+= sizeof(data
->ip
);
1747 if (sample_type
& PERF_SAMPLE_ADDR
)
1748 size
+= sizeof(data
->addr
);
1750 if (sample_type
& PERF_SAMPLE_PERIOD
)
1751 size
+= sizeof(data
->period
);
1753 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1754 size
+= sizeof(data
->weight
);
1756 if (sample_type
& PERF_SAMPLE_READ
)
1757 size
+= event
->read_size
;
1759 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1760 size
+= sizeof(data
->data_src
.val
);
1762 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1763 size
+= sizeof(data
->txn
);
1765 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
1766 size
+= sizeof(data
->phys_addr
);
1768 event
->header_size
= size
;
1772 * Called at perf_event creation and when events are attached/detached from a
1775 static void perf_event__header_size(struct perf_event
*event
)
1777 __perf_event_read_size(event
,
1778 event
->group_leader
->nr_siblings
);
1779 __perf_event_header_size(event
, event
->attr
.sample_type
);
1782 static void perf_event__id_header_size(struct perf_event
*event
)
1784 struct perf_sample_data
*data
;
1785 u64 sample_type
= event
->attr
.sample_type
;
1788 if (sample_type
& PERF_SAMPLE_TID
)
1789 size
+= sizeof(data
->tid_entry
);
1791 if (sample_type
& PERF_SAMPLE_TIME
)
1792 size
+= sizeof(data
->time
);
1794 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1795 size
+= sizeof(data
->id
);
1797 if (sample_type
& PERF_SAMPLE_ID
)
1798 size
+= sizeof(data
->id
);
1800 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1801 size
+= sizeof(data
->stream_id
);
1803 if (sample_type
& PERF_SAMPLE_CPU
)
1804 size
+= sizeof(data
->cpu_entry
);
1806 event
->id_header_size
= size
;
1809 static bool perf_event_validate_size(struct perf_event
*event
)
1812 * The values computed here will be over-written when we actually
1815 __perf_event_read_size(event
, event
->group_leader
->nr_siblings
+ 1);
1816 __perf_event_header_size(event
, event
->attr
.sample_type
& ~PERF_SAMPLE_READ
);
1817 perf_event__id_header_size(event
);
1820 * Sum the lot; should not exceed the 64k limit we have on records.
1821 * Conservative limit to allow for callchains and other variable fields.
1823 if (event
->read_size
+ event
->header_size
+
1824 event
->id_header_size
+ sizeof(struct perf_event_header
) >= 16*1024)
1830 static void perf_group_attach(struct perf_event
*event
)
1832 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1834 lockdep_assert_held(&event
->ctx
->lock
);
1837 * We can have double attach due to group movement in perf_event_open.
1839 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1842 event
->attach_state
|= PERF_ATTACH_GROUP
;
1844 if (group_leader
== event
)
1847 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
1849 group_leader
->group_caps
&= event
->event_caps
;
1851 list_add_tail(&event
->sibling_list
, &group_leader
->sibling_list
);
1852 group_leader
->nr_siblings
++;
1854 perf_event__header_size(group_leader
);
1856 for_each_sibling_event(pos
, group_leader
)
1857 perf_event__header_size(pos
);
1861 * Remove an event from the lists for its context.
1862 * Must be called with ctx->mutex and ctx->lock held.
1865 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1867 WARN_ON_ONCE(event
->ctx
!= ctx
);
1868 lockdep_assert_held(&ctx
->lock
);
1871 * We can have double detach due to exit/hot-unplug + close.
1873 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
1876 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
1879 if (event
->attr
.inherit_stat
)
1882 list_del_rcu(&event
->event_entry
);
1884 if (event
->group_leader
== event
)
1885 del_event_from_groups(event
, ctx
);
1888 * If event was in error state, then keep it
1889 * that way, otherwise bogus counts will be
1890 * returned on read(). The only way to get out
1891 * of error state is by explicit re-enabling
1894 if (event
->state
> PERF_EVENT_STATE_OFF
) {
1895 perf_cgroup_event_disable(event
, ctx
);
1896 perf_event_set_state(event
, PERF_EVENT_STATE_OFF
);
1903 perf_aux_output_match(struct perf_event
*event
, struct perf_event
*aux_event
)
1905 if (!has_aux(aux_event
))
1908 if (!event
->pmu
->aux_output_match
)
1911 return event
->pmu
->aux_output_match(aux_event
);
1914 static void put_event(struct perf_event
*event
);
1915 static void event_sched_out(struct perf_event
*event
,
1916 struct perf_cpu_context
*cpuctx
,
1917 struct perf_event_context
*ctx
);
1919 static void perf_put_aux_event(struct perf_event
*event
)
1921 struct perf_event_context
*ctx
= event
->ctx
;
1922 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1923 struct perf_event
*iter
;
1926 * If event uses aux_event tear down the link
1928 if (event
->aux_event
) {
1929 iter
= event
->aux_event
;
1930 event
->aux_event
= NULL
;
1936 * If the event is an aux_event, tear down all links to
1937 * it from other events.
1939 for_each_sibling_event(iter
, event
->group_leader
) {
1940 if (iter
->aux_event
!= event
)
1943 iter
->aux_event
= NULL
;
1947 * If it's ACTIVE, schedule it out and put it into ERROR
1948 * state so that we don't try to schedule it again. Note
1949 * that perf_event_enable() will clear the ERROR status.
1951 event_sched_out(iter
, cpuctx
, ctx
);
1952 perf_event_set_state(event
, PERF_EVENT_STATE_ERROR
);
1956 static bool perf_need_aux_event(struct perf_event
*event
)
1958 return !!event
->attr
.aux_output
|| !!event
->attr
.aux_sample_size
;
1961 static int perf_get_aux_event(struct perf_event
*event
,
1962 struct perf_event
*group_leader
)
1965 * Our group leader must be an aux event if we want to be
1966 * an aux_output. This way, the aux event will precede its
1967 * aux_output events in the group, and therefore will always
1974 * aux_output and aux_sample_size are mutually exclusive.
1976 if (event
->attr
.aux_output
&& event
->attr
.aux_sample_size
)
1979 if (event
->attr
.aux_output
&&
1980 !perf_aux_output_match(event
, group_leader
))
1983 if (event
->attr
.aux_sample_size
&& !group_leader
->pmu
->snapshot_aux
)
1986 if (!atomic_long_inc_not_zero(&group_leader
->refcount
))
1990 * Link aux_outputs to their aux event; this is undone in
1991 * perf_group_detach() by perf_put_aux_event(). When the
1992 * group in torn down, the aux_output events loose their
1993 * link to the aux_event and can't schedule any more.
1995 event
->aux_event
= group_leader
;
2000 static inline struct list_head
*get_event_list(struct perf_event
*event
)
2002 struct perf_event_context
*ctx
= event
->ctx
;
2003 return event
->attr
.pinned
? &ctx
->pinned_active
: &ctx
->flexible_active
;
2006 static void perf_group_detach(struct perf_event
*event
)
2008 struct perf_event
*sibling
, *tmp
;
2009 struct perf_event_context
*ctx
= event
->ctx
;
2011 lockdep_assert_held(&ctx
->lock
);
2014 * We can have double detach due to exit/hot-unplug + close.
2016 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
2019 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
2021 perf_put_aux_event(event
);
2024 * If this is a sibling, remove it from its group.
2026 if (event
->group_leader
!= event
) {
2027 list_del_init(&event
->sibling_list
);
2028 event
->group_leader
->nr_siblings
--;
2033 * If this was a group event with sibling events then
2034 * upgrade the siblings to singleton events by adding them
2035 * to whatever list we are on.
2037 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, sibling_list
) {
2039 sibling
->group_leader
= sibling
;
2040 list_del_init(&sibling
->sibling_list
);
2042 /* Inherit group flags from the previous leader */
2043 sibling
->group_caps
= event
->group_caps
;
2045 if (!RB_EMPTY_NODE(&event
->group_node
)) {
2046 add_event_to_groups(sibling
, event
->ctx
);
2048 if (sibling
->state
== PERF_EVENT_STATE_ACTIVE
)
2049 list_add_tail(&sibling
->active_list
, get_event_list(sibling
));
2052 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
2056 perf_event__header_size(event
->group_leader
);
2058 for_each_sibling_event(tmp
, event
->group_leader
)
2059 perf_event__header_size(tmp
);
2062 static bool is_orphaned_event(struct perf_event
*event
)
2064 return event
->state
== PERF_EVENT_STATE_DEAD
;
2067 static inline int __pmu_filter_match(struct perf_event
*event
)
2069 struct pmu
*pmu
= event
->pmu
;
2070 return pmu
->filter_match
? pmu
->filter_match(event
) : 1;
2074 * Check whether we should attempt to schedule an event group based on
2075 * PMU-specific filtering. An event group can consist of HW and SW events,
2076 * potentially with a SW leader, so we must check all the filters, to
2077 * determine whether a group is schedulable:
2079 static inline int pmu_filter_match(struct perf_event
*event
)
2081 struct perf_event
*sibling
;
2083 if (!__pmu_filter_match(event
))
2086 for_each_sibling_event(sibling
, event
) {
2087 if (!__pmu_filter_match(sibling
))
2095 event_filter_match(struct perf_event
*event
)
2097 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id()) &&
2098 perf_cgroup_match(event
) && pmu_filter_match(event
);
2102 event_sched_out(struct perf_event
*event
,
2103 struct perf_cpu_context
*cpuctx
,
2104 struct perf_event_context
*ctx
)
2106 enum perf_event_state state
= PERF_EVENT_STATE_INACTIVE
;
2108 WARN_ON_ONCE(event
->ctx
!= ctx
);
2109 lockdep_assert_held(&ctx
->lock
);
2111 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2115 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2116 * we can schedule events _OUT_ individually through things like
2117 * __perf_remove_from_context().
2119 list_del_init(&event
->active_list
);
2121 perf_pmu_disable(event
->pmu
);
2123 event
->pmu
->del(event
, 0);
2126 if (READ_ONCE(event
->pending_disable
) >= 0) {
2127 WRITE_ONCE(event
->pending_disable
, -1);
2128 perf_cgroup_event_disable(event
, ctx
);
2129 state
= PERF_EVENT_STATE_OFF
;
2131 perf_event_set_state(event
, state
);
2133 if (!is_software_event(event
))
2134 cpuctx
->active_oncpu
--;
2135 if (!--ctx
->nr_active
)
2136 perf_event_ctx_deactivate(ctx
);
2137 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2139 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
2140 cpuctx
->exclusive
= 0;
2142 perf_pmu_enable(event
->pmu
);
2146 group_sched_out(struct perf_event
*group_event
,
2147 struct perf_cpu_context
*cpuctx
,
2148 struct perf_event_context
*ctx
)
2150 struct perf_event
*event
;
2152 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2155 perf_pmu_disable(ctx
->pmu
);
2157 event_sched_out(group_event
, cpuctx
, ctx
);
2160 * Schedule out siblings (if any):
2162 for_each_sibling_event(event
, group_event
)
2163 event_sched_out(event
, cpuctx
, ctx
);
2165 perf_pmu_enable(ctx
->pmu
);
2167 if (group_event
->attr
.exclusive
)
2168 cpuctx
->exclusive
= 0;
2171 #define DETACH_GROUP 0x01UL
2174 * Cross CPU call to remove a performance event
2176 * We disable the event on the hardware level first. After that we
2177 * remove it from the context list.
2180 __perf_remove_from_context(struct perf_event
*event
,
2181 struct perf_cpu_context
*cpuctx
,
2182 struct perf_event_context
*ctx
,
2185 unsigned long flags
= (unsigned long)info
;
2187 if (ctx
->is_active
& EVENT_TIME
) {
2188 update_context_time(ctx
);
2189 update_cgrp_time_from_cpuctx(cpuctx
);
2192 event_sched_out(event
, cpuctx
, ctx
);
2193 if (flags
& DETACH_GROUP
)
2194 perf_group_detach(event
);
2195 list_del_event(event
, ctx
);
2197 if (!ctx
->nr_events
&& ctx
->is_active
) {
2200 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2201 cpuctx
->task_ctx
= NULL
;
2207 * Remove the event from a task's (or a CPU's) list of events.
2209 * If event->ctx is a cloned context, callers must make sure that
2210 * every task struct that event->ctx->task could possibly point to
2211 * remains valid. This is OK when called from perf_release since
2212 * that only calls us on the top-level context, which can't be a clone.
2213 * When called from perf_event_exit_task, it's OK because the
2214 * context has been detached from its task.
2216 static void perf_remove_from_context(struct perf_event
*event
, unsigned long flags
)
2218 struct perf_event_context
*ctx
= event
->ctx
;
2220 lockdep_assert_held(&ctx
->mutex
);
2222 event_function_call(event
, __perf_remove_from_context
, (void *)flags
);
2225 * The above event_function_call() can NO-OP when it hits
2226 * TASK_TOMBSTONE. In that case we must already have been detached
2227 * from the context (by perf_event_exit_event()) but the grouping
2228 * might still be in-tact.
2230 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
2231 if ((flags
& DETACH_GROUP
) &&
2232 (event
->attach_state
& PERF_ATTACH_GROUP
)) {
2234 * Since in that case we cannot possibly be scheduled, simply
2237 raw_spin_lock_irq(&ctx
->lock
);
2238 perf_group_detach(event
);
2239 raw_spin_unlock_irq(&ctx
->lock
);
2244 * Cross CPU call to disable a performance event
2246 static void __perf_event_disable(struct perf_event
*event
,
2247 struct perf_cpu_context
*cpuctx
,
2248 struct perf_event_context
*ctx
,
2251 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
2254 if (ctx
->is_active
& EVENT_TIME
) {
2255 update_context_time(ctx
);
2256 update_cgrp_time_from_event(event
);
2259 if (event
== event
->group_leader
)
2260 group_sched_out(event
, cpuctx
, ctx
);
2262 event_sched_out(event
, cpuctx
, ctx
);
2264 perf_event_set_state(event
, PERF_EVENT_STATE_OFF
);
2265 perf_cgroup_event_disable(event
, ctx
);
2271 * If event->ctx is a cloned context, callers must make sure that
2272 * every task struct that event->ctx->task could possibly point to
2273 * remains valid. This condition is satisfied when called through
2274 * perf_event_for_each_child or perf_event_for_each because they
2275 * hold the top-level event's child_mutex, so any descendant that
2276 * goes to exit will block in perf_event_exit_event().
2278 * When called from perf_pending_event it's OK because event->ctx
2279 * is the current context on this CPU and preemption is disabled,
2280 * hence we can't get into perf_event_task_sched_out for this context.
2282 static void _perf_event_disable(struct perf_event
*event
)
2284 struct perf_event_context
*ctx
= event
->ctx
;
2286 raw_spin_lock_irq(&ctx
->lock
);
2287 if (event
->state
<= PERF_EVENT_STATE_OFF
) {
2288 raw_spin_unlock_irq(&ctx
->lock
);
2291 raw_spin_unlock_irq(&ctx
->lock
);
2293 event_function_call(event
, __perf_event_disable
, NULL
);
2296 void perf_event_disable_local(struct perf_event
*event
)
2298 event_function_local(event
, __perf_event_disable
, NULL
);
2302 * Strictly speaking kernel users cannot create groups and therefore this
2303 * interface does not need the perf_event_ctx_lock() magic.
2305 void perf_event_disable(struct perf_event
*event
)
2307 struct perf_event_context
*ctx
;
2309 ctx
= perf_event_ctx_lock(event
);
2310 _perf_event_disable(event
);
2311 perf_event_ctx_unlock(event
, ctx
);
2313 EXPORT_SYMBOL_GPL(perf_event_disable
);
2315 void perf_event_disable_inatomic(struct perf_event
*event
)
2317 WRITE_ONCE(event
->pending_disable
, smp_processor_id());
2318 /* can fail, see perf_pending_event_disable() */
2319 irq_work_queue(&event
->pending
);
2322 static void perf_set_shadow_time(struct perf_event
*event
,
2323 struct perf_event_context
*ctx
)
2326 * use the correct time source for the time snapshot
2328 * We could get by without this by leveraging the
2329 * fact that to get to this function, the caller
2330 * has most likely already called update_context_time()
2331 * and update_cgrp_time_xx() and thus both timestamp
2332 * are identical (or very close). Given that tstamp is,
2333 * already adjusted for cgroup, we could say that:
2334 * tstamp - ctx->timestamp
2336 * tstamp - cgrp->timestamp.
2338 * Then, in perf_output_read(), the calculation would
2339 * work with no changes because:
2340 * - event is guaranteed scheduled in
2341 * - no scheduled out in between
2342 * - thus the timestamp would be the same
2344 * But this is a bit hairy.
2346 * So instead, we have an explicit cgroup call to remain
2347 * within the time time source all along. We believe it
2348 * is cleaner and simpler to understand.
2350 if (is_cgroup_event(event
))
2351 perf_cgroup_set_shadow_time(event
, event
->tstamp
);
2353 event
->shadow_ctx_time
= event
->tstamp
- ctx
->timestamp
;
2356 #define MAX_INTERRUPTS (~0ULL)
2358 static void perf_log_throttle(struct perf_event
*event
, int enable
);
2359 static void perf_log_itrace_start(struct perf_event
*event
);
2362 event_sched_in(struct perf_event
*event
,
2363 struct perf_cpu_context
*cpuctx
,
2364 struct perf_event_context
*ctx
)
2368 WARN_ON_ONCE(event
->ctx
!= ctx
);
2370 lockdep_assert_held(&ctx
->lock
);
2372 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2375 WRITE_ONCE(event
->oncpu
, smp_processor_id());
2377 * Order event::oncpu write to happen before the ACTIVE state is
2378 * visible. This allows perf_event_{stop,read}() to observe the correct
2379 * ->oncpu if it sees ACTIVE.
2382 perf_event_set_state(event
, PERF_EVENT_STATE_ACTIVE
);
2385 * Unthrottle events, since we scheduled we might have missed several
2386 * ticks already, also for a heavily scheduling task there is little
2387 * guarantee it'll get a tick in a timely manner.
2389 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
2390 perf_log_throttle(event
, 1);
2391 event
->hw
.interrupts
= 0;
2394 perf_pmu_disable(event
->pmu
);
2396 perf_set_shadow_time(event
, ctx
);
2398 perf_log_itrace_start(event
);
2400 if (event
->pmu
->add(event
, PERF_EF_START
)) {
2401 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
2407 if (!is_software_event(event
))
2408 cpuctx
->active_oncpu
++;
2409 if (!ctx
->nr_active
++)
2410 perf_event_ctx_activate(ctx
);
2411 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2414 if (event
->attr
.exclusive
)
2415 cpuctx
->exclusive
= 1;
2418 perf_pmu_enable(event
->pmu
);
2424 group_sched_in(struct perf_event
*group_event
,
2425 struct perf_cpu_context
*cpuctx
,
2426 struct perf_event_context
*ctx
)
2428 struct perf_event
*event
, *partial_group
= NULL
;
2429 struct pmu
*pmu
= ctx
->pmu
;
2431 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
2434 pmu
->start_txn(pmu
, PERF_PMU_TXN_ADD
);
2436 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
2437 pmu
->cancel_txn(pmu
);
2438 perf_mux_hrtimer_restart(cpuctx
);
2443 * Schedule in siblings as one group (if any):
2445 for_each_sibling_event(event
, group_event
) {
2446 if (event_sched_in(event
, cpuctx
, ctx
)) {
2447 partial_group
= event
;
2452 if (!pmu
->commit_txn(pmu
))
2457 * Groups can be scheduled in as one unit only, so undo any
2458 * partial group before returning:
2459 * The events up to the failed event are scheduled out normally.
2461 for_each_sibling_event(event
, group_event
) {
2462 if (event
== partial_group
)
2465 event_sched_out(event
, cpuctx
, ctx
);
2467 event_sched_out(group_event
, cpuctx
, ctx
);
2469 pmu
->cancel_txn(pmu
);
2471 perf_mux_hrtimer_restart(cpuctx
);
2477 * Work out whether we can put this event group on the CPU now.
2479 static int group_can_go_on(struct perf_event
*event
,
2480 struct perf_cpu_context
*cpuctx
,
2484 * Groups consisting entirely of software events can always go on.
2486 if (event
->group_caps
& PERF_EV_CAP_SOFTWARE
)
2489 * If an exclusive group is already on, no other hardware
2492 if (cpuctx
->exclusive
)
2495 * If this group is exclusive and there are already
2496 * events on the CPU, it can't go on.
2498 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
2501 * Otherwise, try to add it if all previous groups were able
2507 static void add_event_to_ctx(struct perf_event
*event
,
2508 struct perf_event_context
*ctx
)
2510 list_add_event(event
, ctx
);
2511 perf_group_attach(event
);
2514 static void ctx_sched_out(struct perf_event_context
*ctx
,
2515 struct perf_cpu_context
*cpuctx
,
2516 enum event_type_t event_type
);
2518 ctx_sched_in(struct perf_event_context
*ctx
,
2519 struct perf_cpu_context
*cpuctx
,
2520 enum event_type_t event_type
,
2521 struct task_struct
*task
);
2523 static void task_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2524 struct perf_event_context
*ctx
,
2525 enum event_type_t event_type
)
2527 if (!cpuctx
->task_ctx
)
2530 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2533 ctx_sched_out(ctx
, cpuctx
, event_type
);
2536 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2537 struct perf_event_context
*ctx
,
2538 struct task_struct
*task
)
2540 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2542 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2543 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2545 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2549 * We want to maintain the following priority of scheduling:
2550 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2551 * - task pinned (EVENT_PINNED)
2552 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2553 * - task flexible (EVENT_FLEXIBLE).
2555 * In order to avoid unscheduling and scheduling back in everything every
2556 * time an event is added, only do it for the groups of equal priority and
2559 * This can be called after a batch operation on task events, in which case
2560 * event_type is a bit mask of the types of events involved. For CPU events,
2561 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2563 static void ctx_resched(struct perf_cpu_context
*cpuctx
,
2564 struct perf_event_context
*task_ctx
,
2565 enum event_type_t event_type
)
2567 enum event_type_t ctx_event_type
;
2568 bool cpu_event
= !!(event_type
& EVENT_CPU
);
2571 * If pinned groups are involved, flexible groups also need to be
2574 if (event_type
& EVENT_PINNED
)
2575 event_type
|= EVENT_FLEXIBLE
;
2577 ctx_event_type
= event_type
& EVENT_ALL
;
2579 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2581 task_ctx_sched_out(cpuctx
, task_ctx
, event_type
);
2584 * Decide which cpu ctx groups to schedule out based on the types
2585 * of events that caused rescheduling:
2586 * - EVENT_CPU: schedule out corresponding groups;
2587 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2588 * - otherwise, do nothing more.
2591 cpu_ctx_sched_out(cpuctx
, ctx_event_type
);
2592 else if (ctx_event_type
& EVENT_PINNED
)
2593 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2595 perf_event_sched_in(cpuctx
, task_ctx
, current
);
2596 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2599 void perf_pmu_resched(struct pmu
*pmu
)
2601 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2602 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2604 perf_ctx_lock(cpuctx
, task_ctx
);
2605 ctx_resched(cpuctx
, task_ctx
, EVENT_ALL
|EVENT_CPU
);
2606 perf_ctx_unlock(cpuctx
, task_ctx
);
2610 * Cross CPU call to install and enable a performance event
2612 * Very similar to remote_function() + event_function() but cannot assume that
2613 * things like ctx->is_active and cpuctx->task_ctx are set.
2615 static int __perf_install_in_context(void *info
)
2617 struct perf_event
*event
= info
;
2618 struct perf_event_context
*ctx
= event
->ctx
;
2619 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2620 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2621 bool reprogram
= true;
2624 raw_spin_lock(&cpuctx
->ctx
.lock
);
2626 raw_spin_lock(&ctx
->lock
);
2629 reprogram
= (ctx
->task
== current
);
2632 * If the task is running, it must be running on this CPU,
2633 * otherwise we cannot reprogram things.
2635 * If its not running, we don't care, ctx->lock will
2636 * serialize against it becoming runnable.
2638 if (task_curr(ctx
->task
) && !reprogram
) {
2643 WARN_ON_ONCE(reprogram
&& cpuctx
->task_ctx
&& cpuctx
->task_ctx
!= ctx
);
2644 } else if (task_ctx
) {
2645 raw_spin_lock(&task_ctx
->lock
);
2648 #ifdef CONFIG_CGROUP_PERF
2649 if (event
->state
> PERF_EVENT_STATE_OFF
&& is_cgroup_event(event
)) {
2651 * If the current cgroup doesn't match the event's
2652 * cgroup, we should not try to schedule it.
2654 struct perf_cgroup
*cgrp
= perf_cgroup_from_task(current
, ctx
);
2655 reprogram
= cgroup_is_descendant(cgrp
->css
.cgroup
,
2656 event
->cgrp
->css
.cgroup
);
2661 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2662 add_event_to_ctx(event
, ctx
);
2663 ctx_resched(cpuctx
, task_ctx
, get_event_type(event
));
2665 add_event_to_ctx(event
, ctx
);
2669 perf_ctx_unlock(cpuctx
, task_ctx
);
2674 static bool exclusive_event_installable(struct perf_event
*event
,
2675 struct perf_event_context
*ctx
);
2678 * Attach a performance event to a context.
2680 * Very similar to event_function_call, see comment there.
2683 perf_install_in_context(struct perf_event_context
*ctx
,
2684 struct perf_event
*event
,
2687 struct task_struct
*task
= READ_ONCE(ctx
->task
);
2689 lockdep_assert_held(&ctx
->mutex
);
2691 WARN_ON_ONCE(!exclusive_event_installable(event
, ctx
));
2693 if (event
->cpu
!= -1)
2697 * Ensures that if we can observe event->ctx, both the event and ctx
2698 * will be 'complete'. See perf_iterate_sb_cpu().
2700 smp_store_release(&event
->ctx
, ctx
);
2703 * perf_event_attr::disabled events will not run and can be initialized
2704 * without IPI. Except when this is the first event for the context, in
2705 * that case we need the magic of the IPI to set ctx->is_active.
2707 * The IOC_ENABLE that is sure to follow the creation of a disabled
2708 * event will issue the IPI and reprogram the hardware.
2710 if (__perf_effective_state(event
) == PERF_EVENT_STATE_OFF
&& ctx
->nr_events
) {
2711 raw_spin_lock_irq(&ctx
->lock
);
2712 if (ctx
->task
== TASK_TOMBSTONE
) {
2713 raw_spin_unlock_irq(&ctx
->lock
);
2716 add_event_to_ctx(event
, ctx
);
2717 raw_spin_unlock_irq(&ctx
->lock
);
2722 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2727 * Should not happen, we validate the ctx is still alive before calling.
2729 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
))
2733 * Installing events is tricky because we cannot rely on ctx->is_active
2734 * to be set in case this is the nr_events 0 -> 1 transition.
2736 * Instead we use task_curr(), which tells us if the task is running.
2737 * However, since we use task_curr() outside of rq::lock, we can race
2738 * against the actual state. This means the result can be wrong.
2740 * If we get a false positive, we retry, this is harmless.
2742 * If we get a false negative, things are complicated. If we are after
2743 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2744 * value must be correct. If we're before, it doesn't matter since
2745 * perf_event_context_sched_in() will program the counter.
2747 * However, this hinges on the remote context switch having observed
2748 * our task->perf_event_ctxp[] store, such that it will in fact take
2749 * ctx::lock in perf_event_context_sched_in().
2751 * We do this by task_function_call(), if the IPI fails to hit the task
2752 * we know any future context switch of task must see the
2753 * perf_event_ctpx[] store.
2757 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2758 * task_cpu() load, such that if the IPI then does not find the task
2759 * running, a future context switch of that task must observe the
2764 if (!task_function_call(task
, __perf_install_in_context
, event
))
2767 raw_spin_lock_irq(&ctx
->lock
);
2769 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
)) {
2771 * Cannot happen because we already checked above (which also
2772 * cannot happen), and we hold ctx->mutex, which serializes us
2773 * against perf_event_exit_task_context().
2775 raw_spin_unlock_irq(&ctx
->lock
);
2779 * If the task is not running, ctx->lock will avoid it becoming so,
2780 * thus we can safely install the event.
2782 if (task_curr(task
)) {
2783 raw_spin_unlock_irq(&ctx
->lock
);
2786 add_event_to_ctx(event
, ctx
);
2787 raw_spin_unlock_irq(&ctx
->lock
);
2791 * Cross CPU call to enable a performance event
2793 static void __perf_event_enable(struct perf_event
*event
,
2794 struct perf_cpu_context
*cpuctx
,
2795 struct perf_event_context
*ctx
,
2798 struct perf_event
*leader
= event
->group_leader
;
2799 struct perf_event_context
*task_ctx
;
2801 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2802 event
->state
<= PERF_EVENT_STATE_ERROR
)
2806 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2808 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
2809 perf_cgroup_event_enable(event
, ctx
);
2811 if (!ctx
->is_active
)
2814 if (!event_filter_match(event
)) {
2815 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2820 * If the event is in a group and isn't the group leader,
2821 * then don't put it on unless the group is on.
2823 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
) {
2824 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2828 task_ctx
= cpuctx
->task_ctx
;
2830 WARN_ON_ONCE(task_ctx
!= ctx
);
2832 ctx_resched(cpuctx
, task_ctx
, get_event_type(event
));
2838 * If event->ctx is a cloned context, callers must make sure that
2839 * every task struct that event->ctx->task could possibly point to
2840 * remains valid. This condition is satisfied when called through
2841 * perf_event_for_each_child or perf_event_for_each as described
2842 * for perf_event_disable.
2844 static void _perf_event_enable(struct perf_event
*event
)
2846 struct perf_event_context
*ctx
= event
->ctx
;
2848 raw_spin_lock_irq(&ctx
->lock
);
2849 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2850 event
->state
< PERF_EVENT_STATE_ERROR
) {
2851 raw_spin_unlock_irq(&ctx
->lock
);
2856 * If the event is in error state, clear that first.
2858 * That way, if we see the event in error state below, we know that it
2859 * has gone back into error state, as distinct from the task having
2860 * been scheduled away before the cross-call arrived.
2862 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2863 event
->state
= PERF_EVENT_STATE_OFF
;
2864 raw_spin_unlock_irq(&ctx
->lock
);
2866 event_function_call(event
, __perf_event_enable
, NULL
);
2870 * See perf_event_disable();
2872 void perf_event_enable(struct perf_event
*event
)
2874 struct perf_event_context
*ctx
;
2876 ctx
= perf_event_ctx_lock(event
);
2877 _perf_event_enable(event
);
2878 perf_event_ctx_unlock(event
, ctx
);
2880 EXPORT_SYMBOL_GPL(perf_event_enable
);
2882 struct stop_event_data
{
2883 struct perf_event
*event
;
2884 unsigned int restart
;
2887 static int __perf_event_stop(void *info
)
2889 struct stop_event_data
*sd
= info
;
2890 struct perf_event
*event
= sd
->event
;
2892 /* if it's already INACTIVE, do nothing */
2893 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2896 /* matches smp_wmb() in event_sched_in() */
2900 * There is a window with interrupts enabled before we get here,
2901 * so we need to check again lest we try to stop another CPU's event.
2903 if (READ_ONCE(event
->oncpu
) != smp_processor_id())
2906 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
2909 * May race with the actual stop (through perf_pmu_output_stop()),
2910 * but it is only used for events with AUX ring buffer, and such
2911 * events will refuse to restart because of rb::aux_mmap_count==0,
2912 * see comments in perf_aux_output_begin().
2914 * Since this is happening on an event-local CPU, no trace is lost
2918 event
->pmu
->start(event
, 0);
2923 static int perf_event_stop(struct perf_event
*event
, int restart
)
2925 struct stop_event_data sd
= {
2932 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
2935 /* matches smp_wmb() in event_sched_in() */
2939 * We only want to restart ACTIVE events, so if the event goes
2940 * inactive here (event->oncpu==-1), there's nothing more to do;
2941 * fall through with ret==-ENXIO.
2943 ret
= cpu_function_call(READ_ONCE(event
->oncpu
),
2944 __perf_event_stop
, &sd
);
2945 } while (ret
== -EAGAIN
);
2951 * In order to contain the amount of racy and tricky in the address filter
2952 * configuration management, it is a two part process:
2954 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2955 * we update the addresses of corresponding vmas in
2956 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
2957 * (p2) when an event is scheduled in (pmu::add), it calls
2958 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2959 * if the generation has changed since the previous call.
2961 * If (p1) happens while the event is active, we restart it to force (p2).
2963 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2964 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2966 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2967 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2969 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2972 void perf_event_addr_filters_sync(struct perf_event
*event
)
2974 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
2976 if (!has_addr_filter(event
))
2979 raw_spin_lock(&ifh
->lock
);
2980 if (event
->addr_filters_gen
!= event
->hw
.addr_filters_gen
) {
2981 event
->pmu
->addr_filters_sync(event
);
2982 event
->hw
.addr_filters_gen
= event
->addr_filters_gen
;
2984 raw_spin_unlock(&ifh
->lock
);
2986 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync
);
2988 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
2991 * not supported on inherited events
2993 if (event
->attr
.inherit
|| !is_sampling_event(event
))
2996 atomic_add(refresh
, &event
->event_limit
);
2997 _perf_event_enable(event
);
3003 * See perf_event_disable()
3005 int perf_event_refresh(struct perf_event
*event
, int refresh
)
3007 struct perf_event_context
*ctx
;
3010 ctx
= perf_event_ctx_lock(event
);
3011 ret
= _perf_event_refresh(event
, refresh
);
3012 perf_event_ctx_unlock(event
, ctx
);
3016 EXPORT_SYMBOL_GPL(perf_event_refresh
);
3018 static int perf_event_modify_breakpoint(struct perf_event
*bp
,
3019 struct perf_event_attr
*attr
)
3023 _perf_event_disable(bp
);
3025 err
= modify_user_hw_breakpoint_check(bp
, attr
, true);
3027 if (!bp
->attr
.disabled
)
3028 _perf_event_enable(bp
);
3033 static int perf_event_modify_attr(struct perf_event
*event
,
3034 struct perf_event_attr
*attr
)
3036 if (event
->attr
.type
!= attr
->type
)
3039 switch (event
->attr
.type
) {
3040 case PERF_TYPE_BREAKPOINT
:
3041 return perf_event_modify_breakpoint(event
, attr
);
3043 /* Place holder for future additions. */
3048 static void ctx_sched_out(struct perf_event_context
*ctx
,
3049 struct perf_cpu_context
*cpuctx
,
3050 enum event_type_t event_type
)
3052 struct perf_event
*event
, *tmp
;
3053 int is_active
= ctx
->is_active
;
3055 lockdep_assert_held(&ctx
->lock
);
3057 if (likely(!ctx
->nr_events
)) {
3059 * See __perf_remove_from_context().
3061 WARN_ON_ONCE(ctx
->is_active
);
3063 WARN_ON_ONCE(cpuctx
->task_ctx
);
3067 ctx
->is_active
&= ~event_type
;
3068 if (!(ctx
->is_active
& EVENT_ALL
))
3072 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
3073 if (!ctx
->is_active
)
3074 cpuctx
->task_ctx
= NULL
;
3078 * Always update time if it was set; not only when it changes.
3079 * Otherwise we can 'forget' to update time for any but the last
3080 * context we sched out. For example:
3082 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3083 * ctx_sched_out(.event_type = EVENT_PINNED)
3085 * would only update time for the pinned events.
3087 if (is_active
& EVENT_TIME
) {
3088 /* update (and stop) ctx time */
3089 update_context_time(ctx
);
3090 update_cgrp_time_from_cpuctx(cpuctx
);
3093 is_active
^= ctx
->is_active
; /* changed bits */
3095 if (!ctx
->nr_active
|| !(is_active
& EVENT_ALL
))
3099 * If we had been multiplexing, no rotations are necessary, now no events
3102 ctx
->rotate_necessary
= 0;
3104 perf_pmu_disable(ctx
->pmu
);
3105 if (is_active
& EVENT_PINNED
) {
3106 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_active
, active_list
)
3107 group_sched_out(event
, cpuctx
, ctx
);
3110 if (is_active
& EVENT_FLEXIBLE
) {
3111 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_active
, active_list
)
3112 group_sched_out(event
, cpuctx
, ctx
);
3114 perf_pmu_enable(ctx
->pmu
);
3118 * Test whether two contexts are equivalent, i.e. whether they have both been
3119 * cloned from the same version of the same context.
3121 * Equivalence is measured using a generation number in the context that is
3122 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3123 * and list_del_event().
3125 static int context_equiv(struct perf_event_context
*ctx1
,
3126 struct perf_event_context
*ctx2
)
3128 lockdep_assert_held(&ctx1
->lock
);
3129 lockdep_assert_held(&ctx2
->lock
);
3131 /* Pinning disables the swap optimization */
3132 if (ctx1
->pin_count
|| ctx2
->pin_count
)
3135 /* If ctx1 is the parent of ctx2 */
3136 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
3139 /* If ctx2 is the parent of ctx1 */
3140 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
3144 * If ctx1 and ctx2 have the same parent; we flatten the parent
3145 * hierarchy, see perf_event_init_context().
3147 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
3148 ctx1
->parent_gen
== ctx2
->parent_gen
)
3155 static void __perf_event_sync_stat(struct perf_event
*event
,
3156 struct perf_event
*next_event
)
3160 if (!event
->attr
.inherit_stat
)
3164 * Update the event value, we cannot use perf_event_read()
3165 * because we're in the middle of a context switch and have IRQs
3166 * disabled, which upsets smp_call_function_single(), however
3167 * we know the event must be on the current CPU, therefore we
3168 * don't need to use it.
3170 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3171 event
->pmu
->read(event
);
3173 perf_event_update_time(event
);
3176 * In order to keep per-task stats reliable we need to flip the event
3177 * values when we flip the contexts.
3179 value
= local64_read(&next_event
->count
);
3180 value
= local64_xchg(&event
->count
, value
);
3181 local64_set(&next_event
->count
, value
);
3183 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
3184 swap(event
->total_time_running
, next_event
->total_time_running
);
3187 * Since we swizzled the values, update the user visible data too.
3189 perf_event_update_userpage(event
);
3190 perf_event_update_userpage(next_event
);
3193 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
3194 struct perf_event_context
*next_ctx
)
3196 struct perf_event
*event
, *next_event
;
3201 update_context_time(ctx
);
3203 event
= list_first_entry(&ctx
->event_list
,
3204 struct perf_event
, event_entry
);
3206 next_event
= list_first_entry(&next_ctx
->event_list
,
3207 struct perf_event
, event_entry
);
3209 while (&event
->event_entry
!= &ctx
->event_list
&&
3210 &next_event
->event_entry
!= &next_ctx
->event_list
) {
3212 __perf_event_sync_stat(event
, next_event
);
3214 event
= list_next_entry(event
, event_entry
);
3215 next_event
= list_next_entry(next_event
, event_entry
);
3219 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
3220 struct task_struct
*next
)
3222 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
3223 struct perf_event_context
*next_ctx
;
3224 struct perf_event_context
*parent
, *next_parent
;
3225 struct perf_cpu_context
*cpuctx
;
3231 cpuctx
= __get_cpu_context(ctx
);
3232 if (!cpuctx
->task_ctx
)
3236 next_ctx
= next
->perf_event_ctxp
[ctxn
];
3240 parent
= rcu_dereference(ctx
->parent_ctx
);
3241 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
3243 /* If neither context have a parent context; they cannot be clones. */
3244 if (!parent
&& !next_parent
)
3247 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
3249 * Looks like the two contexts are clones, so we might be
3250 * able to optimize the context switch. We lock both
3251 * contexts and check that they are clones under the
3252 * lock (including re-checking that neither has been
3253 * uncloned in the meantime). It doesn't matter which
3254 * order we take the locks because no other cpu could
3255 * be trying to lock both of these tasks.
3257 raw_spin_lock(&ctx
->lock
);
3258 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
3259 if (context_equiv(ctx
, next_ctx
)) {
3260 struct pmu
*pmu
= ctx
->pmu
;
3262 WRITE_ONCE(ctx
->task
, next
);
3263 WRITE_ONCE(next_ctx
->task
, task
);
3266 * PMU specific parts of task perf context can require
3267 * additional synchronization. As an example of such
3268 * synchronization see implementation details of Intel
3269 * LBR call stack data profiling;
3271 if (pmu
->swap_task_ctx
)
3272 pmu
->swap_task_ctx(ctx
, next_ctx
);
3274 swap(ctx
->task_ctx_data
, next_ctx
->task_ctx_data
);
3277 * RCU_INIT_POINTER here is safe because we've not
3278 * modified the ctx and the above modification of
3279 * ctx->task and ctx->task_ctx_data are immaterial
3280 * since those values are always verified under
3281 * ctx->lock which we're now holding.
3283 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], next_ctx
);
3284 RCU_INIT_POINTER(next
->perf_event_ctxp
[ctxn
], ctx
);
3288 perf_event_sync_stat(ctx
, next_ctx
);
3290 raw_spin_unlock(&next_ctx
->lock
);
3291 raw_spin_unlock(&ctx
->lock
);
3297 raw_spin_lock(&ctx
->lock
);
3298 task_ctx_sched_out(cpuctx
, ctx
, EVENT_ALL
);
3299 raw_spin_unlock(&ctx
->lock
);
3303 static DEFINE_PER_CPU(struct list_head
, sched_cb_list
);
3305 void perf_sched_cb_dec(struct pmu
*pmu
)
3307 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
3309 this_cpu_dec(perf_sched_cb_usages
);
3311 if (!--cpuctx
->sched_cb_usage
)
3312 list_del(&cpuctx
->sched_cb_entry
);
3316 void perf_sched_cb_inc(struct pmu
*pmu
)
3318 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
3320 if (!cpuctx
->sched_cb_usage
++)
3321 list_add(&cpuctx
->sched_cb_entry
, this_cpu_ptr(&sched_cb_list
));
3323 this_cpu_inc(perf_sched_cb_usages
);
3327 * This function provides the context switch callback to the lower code
3328 * layer. It is invoked ONLY when the context switch callback is enabled.
3330 * This callback is relevant even to per-cpu events; for example multi event
3331 * PEBS requires this to provide PID/TID information. This requires we flush
3332 * all queued PEBS records before we context switch to a new task.
3334 static void perf_pmu_sched_task(struct task_struct
*prev
,
3335 struct task_struct
*next
,
3338 struct perf_cpu_context
*cpuctx
;
3344 list_for_each_entry(cpuctx
, this_cpu_ptr(&sched_cb_list
), sched_cb_entry
) {
3345 pmu
= cpuctx
->ctx
.pmu
; /* software PMUs will not have sched_task */
3347 if (WARN_ON_ONCE(!pmu
->sched_task
))
3350 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3351 perf_pmu_disable(pmu
);
3353 pmu
->sched_task(cpuctx
->task_ctx
, sched_in
);
3355 perf_pmu_enable(pmu
);
3356 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3360 static void perf_event_switch(struct task_struct
*task
,
3361 struct task_struct
*next_prev
, bool sched_in
);
3363 #define for_each_task_context_nr(ctxn) \
3364 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3367 * Called from scheduler to remove the events of the current task,
3368 * with interrupts disabled.
3370 * We stop each event and update the event value in event->count.
3372 * This does not protect us against NMI, but disable()
3373 * sets the disabled bit in the control field of event _before_
3374 * accessing the event control register. If a NMI hits, then it will
3375 * not restart the event.
3377 void __perf_event_task_sched_out(struct task_struct
*task
,
3378 struct task_struct
*next
)
3382 if (__this_cpu_read(perf_sched_cb_usages
))
3383 perf_pmu_sched_task(task
, next
, false);
3385 if (atomic_read(&nr_switch_events
))
3386 perf_event_switch(task
, next
, false);
3388 for_each_task_context_nr(ctxn
)
3389 perf_event_context_sched_out(task
, ctxn
, next
);
3392 * if cgroup events exist on this CPU, then we need
3393 * to check if we have to switch out PMU state.
3394 * cgroup event are system-wide mode only
3396 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3397 perf_cgroup_sched_out(task
, next
);
3401 * Called with IRQs disabled
3403 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
3404 enum event_type_t event_type
)
3406 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
3409 static int visit_groups_merge(struct perf_event_groups
*groups
, int cpu
,
3410 int (*func
)(struct perf_event
*, void *), void *data
)
3412 struct perf_event
**evt
, *evt1
, *evt2
;
3415 evt1
= perf_event_groups_first(groups
, -1);
3416 evt2
= perf_event_groups_first(groups
, cpu
);
3418 while (evt1
|| evt2
) {
3420 if (evt1
->group_index
< evt2
->group_index
)
3430 ret
= func(*evt
, data
);
3434 *evt
= perf_event_groups_next(*evt
);
3440 static int merge_sched_in(struct perf_event
*event
, void *data
)
3442 struct perf_event_context
*ctx
= event
->ctx
;
3443 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3444 int *can_add_hw
= data
;
3446 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3449 if (!event_filter_match(event
))
3452 if (group_can_go_on(event
, cpuctx
, *can_add_hw
)) {
3453 if (!group_sched_in(event
, cpuctx
, ctx
))
3454 list_add_tail(&event
->active_list
, get_event_list(event
));
3457 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3458 if (event
->attr
.pinned
) {
3459 perf_cgroup_event_disable(event
, ctx
);
3460 perf_event_set_state(event
, PERF_EVENT_STATE_ERROR
);
3464 ctx
->rotate_necessary
= 1;
3471 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
3472 struct perf_cpu_context
*cpuctx
)
3476 visit_groups_merge(&ctx
->pinned_groups
,
3478 merge_sched_in
, &can_add_hw
);
3482 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
3483 struct perf_cpu_context
*cpuctx
)
3487 visit_groups_merge(&ctx
->flexible_groups
,
3489 merge_sched_in
, &can_add_hw
);
3493 ctx_sched_in(struct perf_event_context
*ctx
,
3494 struct perf_cpu_context
*cpuctx
,
3495 enum event_type_t event_type
,
3496 struct task_struct
*task
)
3498 int is_active
= ctx
->is_active
;
3501 lockdep_assert_held(&ctx
->lock
);
3503 if (likely(!ctx
->nr_events
))
3506 ctx
->is_active
|= (event_type
| EVENT_TIME
);
3509 cpuctx
->task_ctx
= ctx
;
3511 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
3514 is_active
^= ctx
->is_active
; /* changed bits */
3516 if (is_active
& EVENT_TIME
) {
3517 /* start ctx time */
3519 ctx
->timestamp
= now
;
3520 perf_cgroup_set_timestamp(task
, ctx
);
3524 * First go through the list and put on any pinned groups
3525 * in order to give them the best chance of going on.
3527 if (is_active
& EVENT_PINNED
)
3528 ctx_pinned_sched_in(ctx
, cpuctx
);
3530 /* Then walk through the lower prio flexible groups */
3531 if (is_active
& EVENT_FLEXIBLE
)
3532 ctx_flexible_sched_in(ctx
, cpuctx
);
3535 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
3536 enum event_type_t event_type
,
3537 struct task_struct
*task
)
3539 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
3541 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
3544 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
3545 struct task_struct
*task
)
3547 struct perf_cpu_context
*cpuctx
;
3549 cpuctx
= __get_cpu_context(ctx
);
3550 if (cpuctx
->task_ctx
== ctx
)
3553 perf_ctx_lock(cpuctx
, ctx
);
3555 * We must check ctx->nr_events while holding ctx->lock, such
3556 * that we serialize against perf_install_in_context().
3558 if (!ctx
->nr_events
)
3561 perf_pmu_disable(ctx
->pmu
);
3563 * We want to keep the following priority order:
3564 * cpu pinned (that don't need to move), task pinned,
3565 * cpu flexible, task flexible.
3567 * However, if task's ctx is not carrying any pinned
3568 * events, no need to flip the cpuctx's events around.
3570 if (!RB_EMPTY_ROOT(&ctx
->pinned_groups
.tree
))
3571 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3572 perf_event_sched_in(cpuctx
, ctx
, task
);
3573 perf_pmu_enable(ctx
->pmu
);
3576 perf_ctx_unlock(cpuctx
, ctx
);
3580 * Called from scheduler to add the events of the current task
3581 * with interrupts disabled.
3583 * We restore the event value and then enable it.
3585 * This does not protect us against NMI, but enable()
3586 * sets the enabled bit in the control field of event _before_
3587 * accessing the event control register. If a NMI hits, then it will
3588 * keep the event running.
3590 void __perf_event_task_sched_in(struct task_struct
*prev
,
3591 struct task_struct
*task
)
3593 struct perf_event_context
*ctx
;
3597 * If cgroup events exist on this CPU, then we need to check if we have
3598 * to switch in PMU state; cgroup event are system-wide mode only.
3600 * Since cgroup events are CPU events, we must schedule these in before
3601 * we schedule in the task events.
3603 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3604 perf_cgroup_sched_in(prev
, task
);
3606 for_each_task_context_nr(ctxn
) {
3607 ctx
= task
->perf_event_ctxp
[ctxn
];
3611 perf_event_context_sched_in(ctx
, task
);
3614 if (atomic_read(&nr_switch_events
))
3615 perf_event_switch(task
, prev
, true);
3617 if (__this_cpu_read(perf_sched_cb_usages
))
3618 perf_pmu_sched_task(prev
, task
, true);
3621 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
3623 u64 frequency
= event
->attr
.sample_freq
;
3624 u64 sec
= NSEC_PER_SEC
;
3625 u64 divisor
, dividend
;
3627 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
3629 count_fls
= fls64(count
);
3630 nsec_fls
= fls64(nsec
);
3631 frequency_fls
= fls64(frequency
);
3635 * We got @count in @nsec, with a target of sample_freq HZ
3636 * the target period becomes:
3639 * period = -------------------
3640 * @nsec * sample_freq
3645 * Reduce accuracy by one bit such that @a and @b converge
3646 * to a similar magnitude.
3648 #define REDUCE_FLS(a, b) \
3650 if (a##_fls > b##_fls) { \
3660 * Reduce accuracy until either term fits in a u64, then proceed with
3661 * the other, so that finally we can do a u64/u64 division.
3663 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
3664 REDUCE_FLS(nsec
, frequency
);
3665 REDUCE_FLS(sec
, count
);
3668 if (count_fls
+ sec_fls
> 64) {
3669 divisor
= nsec
* frequency
;
3671 while (count_fls
+ sec_fls
> 64) {
3672 REDUCE_FLS(count
, sec
);
3676 dividend
= count
* sec
;
3678 dividend
= count
* sec
;
3680 while (nsec_fls
+ frequency_fls
> 64) {
3681 REDUCE_FLS(nsec
, frequency
);
3685 divisor
= nsec
* frequency
;
3691 return div64_u64(dividend
, divisor
);
3694 static DEFINE_PER_CPU(int, perf_throttled_count
);
3695 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
3697 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
3699 struct hw_perf_event
*hwc
= &event
->hw
;
3700 s64 period
, sample_period
;
3703 period
= perf_calculate_period(event
, nsec
, count
);
3705 delta
= (s64
)(period
- hwc
->sample_period
);
3706 delta
= (delta
+ 7) / 8; /* low pass filter */
3708 sample_period
= hwc
->sample_period
+ delta
;
3713 hwc
->sample_period
= sample_period
;
3715 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
3717 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3719 local64_set(&hwc
->period_left
, 0);
3722 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3727 * combine freq adjustment with unthrottling to avoid two passes over the
3728 * events. At the same time, make sure, having freq events does not change
3729 * the rate of unthrottling as that would introduce bias.
3731 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
3734 struct perf_event
*event
;
3735 struct hw_perf_event
*hwc
;
3736 u64 now
, period
= TICK_NSEC
;
3740 * only need to iterate over all events iff:
3741 * - context have events in frequency mode (needs freq adjust)
3742 * - there are events to unthrottle on this cpu
3744 if (!(ctx
->nr_freq
|| needs_unthr
))
3747 raw_spin_lock(&ctx
->lock
);
3748 perf_pmu_disable(ctx
->pmu
);
3750 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3751 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3754 if (!event_filter_match(event
))
3757 perf_pmu_disable(event
->pmu
);
3761 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
3762 hwc
->interrupts
= 0;
3763 perf_log_throttle(event
, 1);
3764 event
->pmu
->start(event
, 0);
3767 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
3771 * stop the event and update event->count
3773 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3775 now
= local64_read(&event
->count
);
3776 delta
= now
- hwc
->freq_count_stamp
;
3777 hwc
->freq_count_stamp
= now
;
3781 * reload only if value has changed
3782 * we have stopped the event so tell that
3783 * to perf_adjust_period() to avoid stopping it
3787 perf_adjust_period(event
, period
, delta
, false);
3789 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
3791 perf_pmu_enable(event
->pmu
);
3794 perf_pmu_enable(ctx
->pmu
);
3795 raw_spin_unlock(&ctx
->lock
);
3799 * Move @event to the tail of the @ctx's elegible events.
3801 static void rotate_ctx(struct perf_event_context
*ctx
, struct perf_event
*event
)
3804 * Rotate the first entry last of non-pinned groups. Rotation might be
3805 * disabled by the inheritance code.
3807 if (ctx
->rotate_disable
)
3810 perf_event_groups_delete(&ctx
->flexible_groups
, event
);
3811 perf_event_groups_insert(&ctx
->flexible_groups
, event
);
3814 /* pick an event from the flexible_groups to rotate */
3815 static inline struct perf_event
*
3816 ctx_event_to_rotate(struct perf_event_context
*ctx
)
3818 struct perf_event
*event
;
3820 /* pick the first active flexible event */
3821 event
= list_first_entry_or_null(&ctx
->flexible_active
,
3822 struct perf_event
, active_list
);
3824 /* if no active flexible event, pick the first event */
3826 event
= rb_entry_safe(rb_first(&ctx
->flexible_groups
.tree
),
3827 typeof(*event
), group_node
);
3833 static bool perf_rotate_context(struct perf_cpu_context
*cpuctx
)
3835 struct perf_event
*cpu_event
= NULL
, *task_event
= NULL
;
3836 struct perf_event_context
*task_ctx
= NULL
;
3837 int cpu_rotate
, task_rotate
;
3840 * Since we run this from IRQ context, nobody can install new
3841 * events, thus the event count values are stable.
3844 cpu_rotate
= cpuctx
->ctx
.rotate_necessary
;
3845 task_ctx
= cpuctx
->task_ctx
;
3846 task_rotate
= task_ctx
? task_ctx
->rotate_necessary
: 0;
3848 if (!(cpu_rotate
|| task_rotate
))
3851 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3852 perf_pmu_disable(cpuctx
->ctx
.pmu
);
3855 task_event
= ctx_event_to_rotate(task_ctx
);
3857 cpu_event
= ctx_event_to_rotate(&cpuctx
->ctx
);
3860 * As per the order given at ctx_resched() first 'pop' task flexible
3861 * and then, if needed CPU flexible.
3863 if (task_event
|| (task_ctx
&& cpu_event
))
3864 ctx_sched_out(task_ctx
, cpuctx
, EVENT_FLEXIBLE
);
3866 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3869 rotate_ctx(task_ctx
, task_event
);
3871 rotate_ctx(&cpuctx
->ctx
, cpu_event
);
3873 perf_event_sched_in(cpuctx
, task_ctx
, current
);
3875 perf_pmu_enable(cpuctx
->ctx
.pmu
);
3876 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3881 void perf_event_task_tick(void)
3883 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
3884 struct perf_event_context
*ctx
, *tmp
;
3887 lockdep_assert_irqs_disabled();
3889 __this_cpu_inc(perf_throttled_seq
);
3890 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
3891 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
3893 list_for_each_entry_safe(ctx
, tmp
, head
, active_ctx_list
)
3894 perf_adjust_freq_unthr_context(ctx
, throttled
);
3897 static int event_enable_on_exec(struct perf_event
*event
,
3898 struct perf_event_context
*ctx
)
3900 if (!event
->attr
.enable_on_exec
)
3903 event
->attr
.enable_on_exec
= 0;
3904 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
3907 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
3913 * Enable all of a task's events that have been marked enable-on-exec.
3914 * This expects task == current.
3916 static void perf_event_enable_on_exec(int ctxn
)
3918 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
3919 enum event_type_t event_type
= 0;
3920 struct perf_cpu_context
*cpuctx
;
3921 struct perf_event
*event
;
3922 unsigned long flags
;
3925 local_irq_save(flags
);
3926 ctx
= current
->perf_event_ctxp
[ctxn
];
3927 if (!ctx
|| !ctx
->nr_events
)
3930 cpuctx
= __get_cpu_context(ctx
);
3931 perf_ctx_lock(cpuctx
, ctx
);
3932 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
3933 list_for_each_entry(event
, &ctx
->event_list
, event_entry
) {
3934 enabled
|= event_enable_on_exec(event
, ctx
);
3935 event_type
|= get_event_type(event
);
3939 * Unclone and reschedule this context if we enabled any event.
3942 clone_ctx
= unclone_ctx(ctx
);
3943 ctx_resched(cpuctx
, ctx
, event_type
);
3945 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
3947 perf_ctx_unlock(cpuctx
, ctx
);
3950 local_irq_restore(flags
);
3956 struct perf_read_data
{
3957 struct perf_event
*event
;
3962 static int __perf_event_read_cpu(struct perf_event
*event
, int event_cpu
)
3964 u16 local_pkg
, event_pkg
;
3966 if (event
->group_caps
& PERF_EV_CAP_READ_ACTIVE_PKG
) {
3967 int local_cpu
= smp_processor_id();
3969 event_pkg
= topology_physical_package_id(event_cpu
);
3970 local_pkg
= topology_physical_package_id(local_cpu
);
3972 if (event_pkg
== local_pkg
)
3980 * Cross CPU call to read the hardware event
3982 static void __perf_event_read(void *info
)
3984 struct perf_read_data
*data
= info
;
3985 struct perf_event
*sub
, *event
= data
->event
;
3986 struct perf_event_context
*ctx
= event
->ctx
;
3987 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3988 struct pmu
*pmu
= event
->pmu
;
3991 * If this is a task context, we need to check whether it is
3992 * the current task context of this cpu. If not it has been
3993 * scheduled out before the smp call arrived. In that case
3994 * event->count would have been updated to a recent sample
3995 * when the event was scheduled out.
3997 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
4000 raw_spin_lock(&ctx
->lock
);
4001 if (ctx
->is_active
& EVENT_TIME
) {
4002 update_context_time(ctx
);
4003 update_cgrp_time_from_event(event
);
4006 perf_event_update_time(event
);
4008 perf_event_update_sibling_time(event
);
4010 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4019 pmu
->start_txn(pmu
, PERF_PMU_TXN_READ
);
4023 for_each_sibling_event(sub
, event
) {
4024 if (sub
->state
== PERF_EVENT_STATE_ACTIVE
) {
4026 * Use sibling's PMU rather than @event's since
4027 * sibling could be on different (eg: software) PMU.
4029 sub
->pmu
->read(sub
);
4033 data
->ret
= pmu
->commit_txn(pmu
);
4036 raw_spin_unlock(&ctx
->lock
);
4039 static inline u64
perf_event_count(struct perf_event
*event
)
4041 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
4045 * NMI-safe method to read a local event, that is an event that
4047 * - either for the current task, or for this CPU
4048 * - does not have inherit set, for inherited task events
4049 * will not be local and we cannot read them atomically
4050 * - must not have a pmu::count method
4052 int perf_event_read_local(struct perf_event
*event
, u64
*value
,
4053 u64
*enabled
, u64
*running
)
4055 unsigned long flags
;
4059 * Disabling interrupts avoids all counter scheduling (context
4060 * switches, timer based rotation and IPIs).
4062 local_irq_save(flags
);
4065 * It must not be an event with inherit set, we cannot read
4066 * all child counters from atomic context.
4068 if (event
->attr
.inherit
) {
4073 /* If this is a per-task event, it must be for current */
4074 if ((event
->attach_state
& PERF_ATTACH_TASK
) &&
4075 event
->hw
.target
!= current
) {
4080 /* If this is a per-CPU event, it must be for this CPU */
4081 if (!(event
->attach_state
& PERF_ATTACH_TASK
) &&
4082 event
->cpu
!= smp_processor_id()) {
4087 /* If this is a pinned event it must be running on this CPU */
4088 if (event
->attr
.pinned
&& event
->oncpu
!= smp_processor_id()) {
4094 * If the event is currently on this CPU, its either a per-task event,
4095 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4098 if (event
->oncpu
== smp_processor_id())
4099 event
->pmu
->read(event
);
4101 *value
= local64_read(&event
->count
);
4102 if (enabled
|| running
) {
4103 u64 now
= event
->shadow_ctx_time
+ perf_clock();
4104 u64 __enabled
, __running
;
4106 __perf_update_times(event
, now
, &__enabled
, &__running
);
4108 *enabled
= __enabled
;
4110 *running
= __running
;
4113 local_irq_restore(flags
);
4118 static int perf_event_read(struct perf_event
*event
, bool group
)
4120 enum perf_event_state state
= READ_ONCE(event
->state
);
4121 int event_cpu
, ret
= 0;
4124 * If event is enabled and currently active on a CPU, update the
4125 * value in the event structure:
4128 if (state
== PERF_EVENT_STATE_ACTIVE
) {
4129 struct perf_read_data data
;
4132 * Orders the ->state and ->oncpu loads such that if we see
4133 * ACTIVE we must also see the right ->oncpu.
4135 * Matches the smp_wmb() from event_sched_in().
4139 event_cpu
= READ_ONCE(event
->oncpu
);
4140 if ((unsigned)event_cpu
>= nr_cpu_ids
)
4143 data
= (struct perf_read_data
){
4150 event_cpu
= __perf_event_read_cpu(event
, event_cpu
);
4153 * Purposely ignore the smp_call_function_single() return
4156 * If event_cpu isn't a valid CPU it means the event got
4157 * scheduled out and that will have updated the event count.
4159 * Therefore, either way, we'll have an up-to-date event count
4162 (void)smp_call_function_single(event_cpu
, __perf_event_read
, &data
, 1);
4166 } else if (state
== PERF_EVENT_STATE_INACTIVE
) {
4167 struct perf_event_context
*ctx
= event
->ctx
;
4168 unsigned long flags
;
4170 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
4171 state
= event
->state
;
4172 if (state
!= PERF_EVENT_STATE_INACTIVE
) {
4173 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4178 * May read while context is not active (e.g., thread is
4179 * blocked), in that case we cannot update context time
4181 if (ctx
->is_active
& EVENT_TIME
) {
4182 update_context_time(ctx
);
4183 update_cgrp_time_from_event(event
);
4186 perf_event_update_time(event
);
4188 perf_event_update_sibling_time(event
);
4189 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4196 * Initialize the perf_event context in a task_struct:
4198 static void __perf_event_init_context(struct perf_event_context
*ctx
)
4200 raw_spin_lock_init(&ctx
->lock
);
4201 mutex_init(&ctx
->mutex
);
4202 INIT_LIST_HEAD(&ctx
->active_ctx_list
);
4203 perf_event_groups_init(&ctx
->pinned_groups
);
4204 perf_event_groups_init(&ctx
->flexible_groups
);
4205 INIT_LIST_HEAD(&ctx
->event_list
);
4206 INIT_LIST_HEAD(&ctx
->pinned_active
);
4207 INIT_LIST_HEAD(&ctx
->flexible_active
);
4208 refcount_set(&ctx
->refcount
, 1);
4211 static struct perf_event_context
*
4212 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
4214 struct perf_event_context
*ctx
;
4216 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
4220 __perf_event_init_context(ctx
);
4222 ctx
->task
= get_task_struct(task
);
4228 static struct task_struct
*
4229 find_lively_task_by_vpid(pid_t vpid
)
4231 struct task_struct
*task
;
4237 task
= find_task_by_vpid(vpid
);
4239 get_task_struct(task
);
4243 return ERR_PTR(-ESRCH
);
4249 * Returns a matching context with refcount and pincount.
4251 static struct perf_event_context
*
4252 find_get_context(struct pmu
*pmu
, struct task_struct
*task
,
4253 struct perf_event
*event
)
4255 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
4256 struct perf_cpu_context
*cpuctx
;
4257 void *task_ctx_data
= NULL
;
4258 unsigned long flags
;
4260 int cpu
= event
->cpu
;
4263 /* Must be root to operate on a CPU event: */
4264 err
= perf_allow_cpu(&event
->attr
);
4266 return ERR_PTR(err
);
4268 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
4277 ctxn
= pmu
->task_ctx_nr
;
4281 if (event
->attach_state
& PERF_ATTACH_TASK_DATA
) {
4282 task_ctx_data
= kzalloc(pmu
->task_ctx_size
, GFP_KERNEL
);
4283 if (!task_ctx_data
) {
4290 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
4292 clone_ctx
= unclone_ctx(ctx
);
4295 if (task_ctx_data
&& !ctx
->task_ctx_data
) {
4296 ctx
->task_ctx_data
= task_ctx_data
;
4297 task_ctx_data
= NULL
;
4299 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4304 ctx
= alloc_perf_context(pmu
, task
);
4309 if (task_ctx_data
) {
4310 ctx
->task_ctx_data
= task_ctx_data
;
4311 task_ctx_data
= NULL
;
4315 mutex_lock(&task
->perf_event_mutex
);
4317 * If it has already passed perf_event_exit_task().
4318 * we must see PF_EXITING, it takes this mutex too.
4320 if (task
->flags
& PF_EXITING
)
4322 else if (task
->perf_event_ctxp
[ctxn
])
4327 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
4329 mutex_unlock(&task
->perf_event_mutex
);
4331 if (unlikely(err
)) {
4340 kfree(task_ctx_data
);
4344 kfree(task_ctx_data
);
4345 return ERR_PTR(err
);
4348 static void perf_event_free_filter(struct perf_event
*event
);
4349 static void perf_event_free_bpf_prog(struct perf_event
*event
);
4351 static void free_event_rcu(struct rcu_head
*head
)
4353 struct perf_event
*event
;
4355 event
= container_of(head
, struct perf_event
, rcu_head
);
4357 put_pid_ns(event
->ns
);
4358 perf_event_free_filter(event
);
4362 static void ring_buffer_attach(struct perf_event
*event
,
4363 struct perf_buffer
*rb
);
4365 static void detach_sb_event(struct perf_event
*event
)
4367 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
4369 raw_spin_lock(&pel
->lock
);
4370 list_del_rcu(&event
->sb_list
);
4371 raw_spin_unlock(&pel
->lock
);
4374 static bool is_sb_event(struct perf_event
*event
)
4376 struct perf_event_attr
*attr
= &event
->attr
;
4381 if (event
->attach_state
& PERF_ATTACH_TASK
)
4384 if (attr
->mmap
|| attr
->mmap_data
|| attr
->mmap2
||
4385 attr
->comm
|| attr
->comm_exec
||
4386 attr
->task
|| attr
->ksymbol
||
4387 attr
->context_switch
||
4393 static void unaccount_pmu_sb_event(struct perf_event
*event
)
4395 if (is_sb_event(event
))
4396 detach_sb_event(event
);
4399 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
4404 if (is_cgroup_event(event
))
4405 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
4408 #ifdef CONFIG_NO_HZ_FULL
4409 static DEFINE_SPINLOCK(nr_freq_lock
);
4412 static void unaccount_freq_event_nohz(void)
4414 #ifdef CONFIG_NO_HZ_FULL
4415 spin_lock(&nr_freq_lock
);
4416 if (atomic_dec_and_test(&nr_freq_events
))
4417 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS
);
4418 spin_unlock(&nr_freq_lock
);
4422 static void unaccount_freq_event(void)
4424 if (tick_nohz_full_enabled())
4425 unaccount_freq_event_nohz();
4427 atomic_dec(&nr_freq_events
);
4430 static void unaccount_event(struct perf_event
*event
)
4437 if (event
->attach_state
& PERF_ATTACH_TASK
)
4439 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
4440 atomic_dec(&nr_mmap_events
);
4441 if (event
->attr
.comm
)
4442 atomic_dec(&nr_comm_events
);
4443 if (event
->attr
.namespaces
)
4444 atomic_dec(&nr_namespaces_events
);
4445 if (event
->attr
.task
)
4446 atomic_dec(&nr_task_events
);
4447 if (event
->attr
.freq
)
4448 unaccount_freq_event();
4449 if (event
->attr
.context_switch
) {
4451 atomic_dec(&nr_switch_events
);
4453 if (is_cgroup_event(event
))
4455 if (has_branch_stack(event
))
4457 if (event
->attr
.ksymbol
)
4458 atomic_dec(&nr_ksymbol_events
);
4459 if (event
->attr
.bpf_event
)
4460 atomic_dec(&nr_bpf_events
);
4463 if (!atomic_add_unless(&perf_sched_count
, -1, 1))
4464 schedule_delayed_work(&perf_sched_work
, HZ
);
4467 unaccount_event_cpu(event
, event
->cpu
);
4469 unaccount_pmu_sb_event(event
);
4472 static void perf_sched_delayed(struct work_struct
*work
)
4474 mutex_lock(&perf_sched_mutex
);
4475 if (atomic_dec_and_test(&perf_sched_count
))
4476 static_branch_disable(&perf_sched_events
);
4477 mutex_unlock(&perf_sched_mutex
);
4481 * The following implement mutual exclusion of events on "exclusive" pmus
4482 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4483 * at a time, so we disallow creating events that might conflict, namely:
4485 * 1) cpu-wide events in the presence of per-task events,
4486 * 2) per-task events in the presence of cpu-wide events,
4487 * 3) two matching events on the same context.
4489 * The former two cases are handled in the allocation path (perf_event_alloc(),
4490 * _free_event()), the latter -- before the first perf_install_in_context().
4492 static int exclusive_event_init(struct perf_event
*event
)
4494 struct pmu
*pmu
= event
->pmu
;
4496 if (!is_exclusive_pmu(pmu
))
4500 * Prevent co-existence of per-task and cpu-wide events on the
4501 * same exclusive pmu.
4503 * Negative pmu::exclusive_cnt means there are cpu-wide
4504 * events on this "exclusive" pmu, positive means there are
4507 * Since this is called in perf_event_alloc() path, event::ctx
4508 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4509 * to mean "per-task event", because unlike other attach states it
4510 * never gets cleared.
4512 if (event
->attach_state
& PERF_ATTACH_TASK
) {
4513 if (!atomic_inc_unless_negative(&pmu
->exclusive_cnt
))
4516 if (!atomic_dec_unless_positive(&pmu
->exclusive_cnt
))
4523 static void exclusive_event_destroy(struct perf_event
*event
)
4525 struct pmu
*pmu
= event
->pmu
;
4527 if (!is_exclusive_pmu(pmu
))
4530 /* see comment in exclusive_event_init() */
4531 if (event
->attach_state
& PERF_ATTACH_TASK
)
4532 atomic_dec(&pmu
->exclusive_cnt
);
4534 atomic_inc(&pmu
->exclusive_cnt
);
4537 static bool exclusive_event_match(struct perf_event
*e1
, struct perf_event
*e2
)
4539 if ((e1
->pmu
== e2
->pmu
) &&
4540 (e1
->cpu
== e2
->cpu
||
4547 static bool exclusive_event_installable(struct perf_event
*event
,
4548 struct perf_event_context
*ctx
)
4550 struct perf_event
*iter_event
;
4551 struct pmu
*pmu
= event
->pmu
;
4553 lockdep_assert_held(&ctx
->mutex
);
4555 if (!is_exclusive_pmu(pmu
))
4558 list_for_each_entry(iter_event
, &ctx
->event_list
, event_entry
) {
4559 if (exclusive_event_match(iter_event
, event
))
4566 static void perf_addr_filters_splice(struct perf_event
*event
,
4567 struct list_head
*head
);
4569 static void _free_event(struct perf_event
*event
)
4571 irq_work_sync(&event
->pending
);
4573 unaccount_event(event
);
4575 security_perf_event_free(event
);
4579 * Can happen when we close an event with re-directed output.
4581 * Since we have a 0 refcount, perf_mmap_close() will skip
4582 * over us; possibly making our ring_buffer_put() the last.
4584 mutex_lock(&event
->mmap_mutex
);
4585 ring_buffer_attach(event
, NULL
);
4586 mutex_unlock(&event
->mmap_mutex
);
4589 if (is_cgroup_event(event
))
4590 perf_detach_cgroup(event
);
4592 if (!event
->parent
) {
4593 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
4594 put_callchain_buffers();
4597 perf_event_free_bpf_prog(event
);
4598 perf_addr_filters_splice(event
, NULL
);
4599 kfree(event
->addr_filter_ranges
);
4602 event
->destroy(event
);
4605 * Must be after ->destroy(), due to uprobe_perf_close() using
4608 if (event
->hw
.target
)
4609 put_task_struct(event
->hw
.target
);
4612 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4613 * all task references must be cleaned up.
4616 put_ctx(event
->ctx
);
4618 exclusive_event_destroy(event
);
4619 module_put(event
->pmu
->module
);
4621 call_rcu(&event
->rcu_head
, free_event_rcu
);
4625 * Used to free events which have a known refcount of 1, such as in error paths
4626 * where the event isn't exposed yet and inherited events.
4628 static void free_event(struct perf_event
*event
)
4630 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
4631 "unexpected event refcount: %ld; ptr=%p\n",
4632 atomic_long_read(&event
->refcount
), event
)) {
4633 /* leak to avoid use-after-free */
4641 * Remove user event from the owner task.
4643 static void perf_remove_from_owner(struct perf_event
*event
)
4645 struct task_struct
*owner
;
4649 * Matches the smp_store_release() in perf_event_exit_task(). If we
4650 * observe !owner it means the list deletion is complete and we can
4651 * indeed free this event, otherwise we need to serialize on
4652 * owner->perf_event_mutex.
4654 owner
= READ_ONCE(event
->owner
);
4657 * Since delayed_put_task_struct() also drops the last
4658 * task reference we can safely take a new reference
4659 * while holding the rcu_read_lock().
4661 get_task_struct(owner
);
4667 * If we're here through perf_event_exit_task() we're already
4668 * holding ctx->mutex which would be an inversion wrt. the
4669 * normal lock order.
4671 * However we can safely take this lock because its the child
4674 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
4677 * We have to re-check the event->owner field, if it is cleared
4678 * we raced with perf_event_exit_task(), acquiring the mutex
4679 * ensured they're done, and we can proceed with freeing the
4683 list_del_init(&event
->owner_entry
);
4684 smp_store_release(&event
->owner
, NULL
);
4686 mutex_unlock(&owner
->perf_event_mutex
);
4687 put_task_struct(owner
);
4691 static void put_event(struct perf_event
*event
)
4693 if (!atomic_long_dec_and_test(&event
->refcount
))
4700 * Kill an event dead; while event:refcount will preserve the event
4701 * object, it will not preserve its functionality. Once the last 'user'
4702 * gives up the object, we'll destroy the thing.
4704 int perf_event_release_kernel(struct perf_event
*event
)
4706 struct perf_event_context
*ctx
= event
->ctx
;
4707 struct perf_event
*child
, *tmp
;
4708 LIST_HEAD(free_list
);
4711 * If we got here through err_file: fput(event_file); we will not have
4712 * attached to a context yet.
4715 WARN_ON_ONCE(event
->attach_state
&
4716 (PERF_ATTACH_CONTEXT
|PERF_ATTACH_GROUP
));
4720 if (!is_kernel_event(event
))
4721 perf_remove_from_owner(event
);
4723 ctx
= perf_event_ctx_lock(event
);
4724 WARN_ON_ONCE(ctx
->parent_ctx
);
4725 perf_remove_from_context(event
, DETACH_GROUP
);
4727 raw_spin_lock_irq(&ctx
->lock
);
4729 * Mark this event as STATE_DEAD, there is no external reference to it
4732 * Anybody acquiring event->child_mutex after the below loop _must_
4733 * also see this, most importantly inherit_event() which will avoid
4734 * placing more children on the list.
4736 * Thus this guarantees that we will in fact observe and kill _ALL_
4739 event
->state
= PERF_EVENT_STATE_DEAD
;
4740 raw_spin_unlock_irq(&ctx
->lock
);
4742 perf_event_ctx_unlock(event
, ctx
);
4745 mutex_lock(&event
->child_mutex
);
4746 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4749 * Cannot change, child events are not migrated, see the
4750 * comment with perf_event_ctx_lock_nested().
4752 ctx
= READ_ONCE(child
->ctx
);
4754 * Since child_mutex nests inside ctx::mutex, we must jump
4755 * through hoops. We start by grabbing a reference on the ctx.
4757 * Since the event cannot get freed while we hold the
4758 * child_mutex, the context must also exist and have a !0
4764 * Now that we have a ctx ref, we can drop child_mutex, and
4765 * acquire ctx::mutex without fear of it going away. Then we
4766 * can re-acquire child_mutex.
4768 mutex_unlock(&event
->child_mutex
);
4769 mutex_lock(&ctx
->mutex
);
4770 mutex_lock(&event
->child_mutex
);
4773 * Now that we hold ctx::mutex and child_mutex, revalidate our
4774 * state, if child is still the first entry, it didn't get freed
4775 * and we can continue doing so.
4777 tmp
= list_first_entry_or_null(&event
->child_list
,
4778 struct perf_event
, child_list
);
4780 perf_remove_from_context(child
, DETACH_GROUP
);
4781 list_move(&child
->child_list
, &free_list
);
4783 * This matches the refcount bump in inherit_event();
4784 * this can't be the last reference.
4789 mutex_unlock(&event
->child_mutex
);
4790 mutex_unlock(&ctx
->mutex
);
4794 mutex_unlock(&event
->child_mutex
);
4796 list_for_each_entry_safe(child
, tmp
, &free_list
, child_list
) {
4797 void *var
= &child
->ctx
->refcount
;
4799 list_del(&child
->child_list
);
4803 * Wake any perf_event_free_task() waiting for this event to be
4806 smp_mb(); /* pairs with wait_var_event() */
4811 put_event(event
); /* Must be the 'last' reference */
4814 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
4817 * Called when the last reference to the file is gone.
4819 static int perf_release(struct inode
*inode
, struct file
*file
)
4821 perf_event_release_kernel(file
->private_data
);
4825 static u64
__perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
4827 struct perf_event
*child
;
4833 mutex_lock(&event
->child_mutex
);
4835 (void)perf_event_read(event
, false);
4836 total
+= perf_event_count(event
);
4838 *enabled
+= event
->total_time_enabled
+
4839 atomic64_read(&event
->child_total_time_enabled
);
4840 *running
+= event
->total_time_running
+
4841 atomic64_read(&event
->child_total_time_running
);
4843 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4844 (void)perf_event_read(child
, false);
4845 total
+= perf_event_count(child
);
4846 *enabled
+= child
->total_time_enabled
;
4847 *running
+= child
->total_time_running
;
4849 mutex_unlock(&event
->child_mutex
);
4854 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
4856 struct perf_event_context
*ctx
;
4859 ctx
= perf_event_ctx_lock(event
);
4860 count
= __perf_event_read_value(event
, enabled
, running
);
4861 perf_event_ctx_unlock(event
, ctx
);
4865 EXPORT_SYMBOL_GPL(perf_event_read_value
);
4867 static int __perf_read_group_add(struct perf_event
*leader
,
4868 u64 read_format
, u64
*values
)
4870 struct perf_event_context
*ctx
= leader
->ctx
;
4871 struct perf_event
*sub
;
4872 unsigned long flags
;
4873 int n
= 1; /* skip @nr */
4876 ret
= perf_event_read(leader
, true);
4880 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
4883 * Since we co-schedule groups, {enabled,running} times of siblings
4884 * will be identical to those of the leader, so we only publish one
4887 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
4888 values
[n
++] += leader
->total_time_enabled
+
4889 atomic64_read(&leader
->child_total_time_enabled
);
4892 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
4893 values
[n
++] += leader
->total_time_running
+
4894 atomic64_read(&leader
->child_total_time_running
);
4898 * Write {count,id} tuples for every sibling.
4900 values
[n
++] += perf_event_count(leader
);
4901 if (read_format
& PERF_FORMAT_ID
)
4902 values
[n
++] = primary_event_id(leader
);
4904 for_each_sibling_event(sub
, leader
) {
4905 values
[n
++] += perf_event_count(sub
);
4906 if (read_format
& PERF_FORMAT_ID
)
4907 values
[n
++] = primary_event_id(sub
);
4910 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4914 static int perf_read_group(struct perf_event
*event
,
4915 u64 read_format
, char __user
*buf
)
4917 struct perf_event
*leader
= event
->group_leader
, *child
;
4918 struct perf_event_context
*ctx
= leader
->ctx
;
4922 lockdep_assert_held(&ctx
->mutex
);
4924 values
= kzalloc(event
->read_size
, GFP_KERNEL
);
4928 values
[0] = 1 + leader
->nr_siblings
;
4931 * By locking the child_mutex of the leader we effectively
4932 * lock the child list of all siblings.. XXX explain how.
4934 mutex_lock(&leader
->child_mutex
);
4936 ret
= __perf_read_group_add(leader
, read_format
, values
);
4940 list_for_each_entry(child
, &leader
->child_list
, child_list
) {
4941 ret
= __perf_read_group_add(child
, read_format
, values
);
4946 mutex_unlock(&leader
->child_mutex
);
4948 ret
= event
->read_size
;
4949 if (copy_to_user(buf
, values
, event
->read_size
))
4954 mutex_unlock(&leader
->child_mutex
);
4960 static int perf_read_one(struct perf_event
*event
,
4961 u64 read_format
, char __user
*buf
)
4963 u64 enabled
, running
;
4967 values
[n
++] = __perf_event_read_value(event
, &enabled
, &running
);
4968 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
4969 values
[n
++] = enabled
;
4970 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
4971 values
[n
++] = running
;
4972 if (read_format
& PERF_FORMAT_ID
)
4973 values
[n
++] = primary_event_id(event
);
4975 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
4978 return n
* sizeof(u64
);
4981 static bool is_event_hup(struct perf_event
*event
)
4985 if (event
->state
> PERF_EVENT_STATE_EXIT
)
4988 mutex_lock(&event
->child_mutex
);
4989 no_children
= list_empty(&event
->child_list
);
4990 mutex_unlock(&event
->child_mutex
);
4995 * Read the performance event - simple non blocking version for now
4998 __perf_read(struct perf_event
*event
, char __user
*buf
, size_t count
)
5000 u64 read_format
= event
->attr
.read_format
;
5004 * Return end-of-file for a read on an event that is in
5005 * error state (i.e. because it was pinned but it couldn't be
5006 * scheduled on to the CPU at some point).
5008 if (event
->state
== PERF_EVENT_STATE_ERROR
)
5011 if (count
< event
->read_size
)
5014 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5015 if (read_format
& PERF_FORMAT_GROUP
)
5016 ret
= perf_read_group(event
, read_format
, buf
);
5018 ret
= perf_read_one(event
, read_format
, buf
);
5024 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
5026 struct perf_event
*event
= file
->private_data
;
5027 struct perf_event_context
*ctx
;
5030 ret
= security_perf_event_read(event
);
5034 ctx
= perf_event_ctx_lock(event
);
5035 ret
= __perf_read(event
, buf
, count
);
5036 perf_event_ctx_unlock(event
, ctx
);
5041 static __poll_t
perf_poll(struct file
*file
, poll_table
*wait
)
5043 struct perf_event
*event
= file
->private_data
;
5044 struct perf_buffer
*rb
;
5045 __poll_t events
= EPOLLHUP
;
5047 poll_wait(file
, &event
->waitq
, wait
);
5049 if (is_event_hup(event
))
5053 * Pin the event->rb by taking event->mmap_mutex; otherwise
5054 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5056 mutex_lock(&event
->mmap_mutex
);
5059 events
= atomic_xchg(&rb
->poll
, 0);
5060 mutex_unlock(&event
->mmap_mutex
);
5064 static void _perf_event_reset(struct perf_event
*event
)
5066 (void)perf_event_read(event
, false);
5067 local64_set(&event
->count
, 0);
5068 perf_event_update_userpage(event
);
5071 /* Assume it's not an event with inherit set. */
5072 u64
perf_event_pause(struct perf_event
*event
, bool reset
)
5074 struct perf_event_context
*ctx
;
5077 ctx
= perf_event_ctx_lock(event
);
5078 WARN_ON_ONCE(event
->attr
.inherit
);
5079 _perf_event_disable(event
);
5080 count
= local64_read(&event
->count
);
5082 local64_set(&event
->count
, 0);
5083 perf_event_ctx_unlock(event
, ctx
);
5087 EXPORT_SYMBOL_GPL(perf_event_pause
);
5090 * Holding the top-level event's child_mutex means that any
5091 * descendant process that has inherited this event will block
5092 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5093 * task existence requirements of perf_event_enable/disable.
5095 static void perf_event_for_each_child(struct perf_event
*event
,
5096 void (*func
)(struct perf_event
*))
5098 struct perf_event
*child
;
5100 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5102 mutex_lock(&event
->child_mutex
);
5104 list_for_each_entry(child
, &event
->child_list
, child_list
)
5106 mutex_unlock(&event
->child_mutex
);
5109 static void perf_event_for_each(struct perf_event
*event
,
5110 void (*func
)(struct perf_event
*))
5112 struct perf_event_context
*ctx
= event
->ctx
;
5113 struct perf_event
*sibling
;
5115 lockdep_assert_held(&ctx
->mutex
);
5117 event
= event
->group_leader
;
5119 perf_event_for_each_child(event
, func
);
5120 for_each_sibling_event(sibling
, event
)
5121 perf_event_for_each_child(sibling
, func
);
5124 static void __perf_event_period(struct perf_event
*event
,
5125 struct perf_cpu_context
*cpuctx
,
5126 struct perf_event_context
*ctx
,
5129 u64 value
= *((u64
*)info
);
5132 if (event
->attr
.freq
) {
5133 event
->attr
.sample_freq
= value
;
5135 event
->attr
.sample_period
= value
;
5136 event
->hw
.sample_period
= value
;
5139 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
5141 perf_pmu_disable(ctx
->pmu
);
5143 * We could be throttled; unthrottle now to avoid the tick
5144 * trying to unthrottle while we already re-started the event.
5146 if (event
->hw
.interrupts
== MAX_INTERRUPTS
) {
5147 event
->hw
.interrupts
= 0;
5148 perf_log_throttle(event
, 1);
5150 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
5153 local64_set(&event
->hw
.period_left
, 0);
5156 event
->pmu
->start(event
, PERF_EF_RELOAD
);
5157 perf_pmu_enable(ctx
->pmu
);
5161 static int perf_event_check_period(struct perf_event
*event
, u64 value
)
5163 return event
->pmu
->check_period(event
, value
);
5166 static int _perf_event_period(struct perf_event
*event
, u64 value
)
5168 if (!is_sampling_event(event
))
5174 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
5177 if (perf_event_check_period(event
, value
))
5180 if (!event
->attr
.freq
&& (value
& (1ULL << 63)))
5183 event_function_call(event
, __perf_event_period
, &value
);
5188 int perf_event_period(struct perf_event
*event
, u64 value
)
5190 struct perf_event_context
*ctx
;
5193 ctx
= perf_event_ctx_lock(event
);
5194 ret
= _perf_event_period(event
, value
);
5195 perf_event_ctx_unlock(event
, ctx
);
5199 EXPORT_SYMBOL_GPL(perf_event_period
);
5201 static const struct file_operations perf_fops
;
5203 static inline int perf_fget_light(int fd
, struct fd
*p
)
5205 struct fd f
= fdget(fd
);
5209 if (f
.file
->f_op
!= &perf_fops
) {
5217 static int perf_event_set_output(struct perf_event
*event
,
5218 struct perf_event
*output_event
);
5219 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
5220 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
);
5221 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
5222 struct perf_event_attr
*attr
);
5224 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
5226 void (*func
)(struct perf_event
*);
5230 case PERF_EVENT_IOC_ENABLE
:
5231 func
= _perf_event_enable
;
5233 case PERF_EVENT_IOC_DISABLE
:
5234 func
= _perf_event_disable
;
5236 case PERF_EVENT_IOC_RESET
:
5237 func
= _perf_event_reset
;
5240 case PERF_EVENT_IOC_REFRESH
:
5241 return _perf_event_refresh(event
, arg
);
5243 case PERF_EVENT_IOC_PERIOD
:
5247 if (copy_from_user(&value
, (u64 __user
*)arg
, sizeof(value
)))
5250 return _perf_event_period(event
, value
);
5252 case PERF_EVENT_IOC_ID
:
5254 u64 id
= primary_event_id(event
);
5256 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
5261 case PERF_EVENT_IOC_SET_OUTPUT
:
5265 struct perf_event
*output_event
;
5267 ret
= perf_fget_light(arg
, &output
);
5270 output_event
= output
.file
->private_data
;
5271 ret
= perf_event_set_output(event
, output_event
);
5274 ret
= perf_event_set_output(event
, NULL
);
5279 case PERF_EVENT_IOC_SET_FILTER
:
5280 return perf_event_set_filter(event
, (void __user
*)arg
);
5282 case PERF_EVENT_IOC_SET_BPF
:
5283 return perf_event_set_bpf_prog(event
, arg
);
5285 case PERF_EVENT_IOC_PAUSE_OUTPUT
: {
5286 struct perf_buffer
*rb
;
5289 rb
= rcu_dereference(event
->rb
);
5290 if (!rb
|| !rb
->nr_pages
) {
5294 rb_toggle_paused(rb
, !!arg
);
5299 case PERF_EVENT_IOC_QUERY_BPF
:
5300 return perf_event_query_prog_array(event
, (void __user
*)arg
);
5302 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES
: {
5303 struct perf_event_attr new_attr
;
5304 int err
= perf_copy_attr((struct perf_event_attr __user
*)arg
,
5310 return perf_event_modify_attr(event
, &new_attr
);
5316 if (flags
& PERF_IOC_FLAG_GROUP
)
5317 perf_event_for_each(event
, func
);
5319 perf_event_for_each_child(event
, func
);
5324 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
5326 struct perf_event
*event
= file
->private_data
;
5327 struct perf_event_context
*ctx
;
5330 /* Treat ioctl like writes as it is likely a mutating operation. */
5331 ret
= security_perf_event_write(event
);
5335 ctx
= perf_event_ctx_lock(event
);
5336 ret
= _perf_ioctl(event
, cmd
, arg
);
5337 perf_event_ctx_unlock(event
, ctx
);
5342 #ifdef CONFIG_COMPAT
5343 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
5346 switch (_IOC_NR(cmd
)) {
5347 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
5348 case _IOC_NR(PERF_EVENT_IOC_ID
):
5349 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF
):
5350 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES
):
5351 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5352 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
5353 cmd
&= ~IOCSIZE_MASK
;
5354 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
5358 return perf_ioctl(file
, cmd
, arg
);
5361 # define perf_compat_ioctl NULL
5364 int perf_event_task_enable(void)
5366 struct perf_event_context
*ctx
;
5367 struct perf_event
*event
;
5369 mutex_lock(¤t
->perf_event_mutex
);
5370 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
5371 ctx
= perf_event_ctx_lock(event
);
5372 perf_event_for_each_child(event
, _perf_event_enable
);
5373 perf_event_ctx_unlock(event
, ctx
);
5375 mutex_unlock(¤t
->perf_event_mutex
);
5380 int perf_event_task_disable(void)
5382 struct perf_event_context
*ctx
;
5383 struct perf_event
*event
;
5385 mutex_lock(¤t
->perf_event_mutex
);
5386 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
5387 ctx
= perf_event_ctx_lock(event
);
5388 perf_event_for_each_child(event
, _perf_event_disable
);
5389 perf_event_ctx_unlock(event
, ctx
);
5391 mutex_unlock(¤t
->perf_event_mutex
);
5396 static int perf_event_index(struct perf_event
*event
)
5398 if (event
->hw
.state
& PERF_HES_STOPPED
)
5401 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
5404 return event
->pmu
->event_idx(event
);
5407 static void calc_timer_values(struct perf_event
*event
,
5414 *now
= perf_clock();
5415 ctx_time
= event
->shadow_ctx_time
+ *now
;
5416 __perf_update_times(event
, ctx_time
, enabled
, running
);
5419 static void perf_event_init_userpage(struct perf_event
*event
)
5421 struct perf_event_mmap_page
*userpg
;
5422 struct perf_buffer
*rb
;
5425 rb
= rcu_dereference(event
->rb
);
5429 userpg
= rb
->user_page
;
5431 /* Allow new userspace to detect that bit 0 is deprecated */
5432 userpg
->cap_bit0_is_deprecated
= 1;
5433 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
5434 userpg
->data_offset
= PAGE_SIZE
;
5435 userpg
->data_size
= perf_data_size(rb
);
5441 void __weak
arch_perf_update_userpage(
5442 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
5447 * Callers need to ensure there can be no nesting of this function, otherwise
5448 * the seqlock logic goes bad. We can not serialize this because the arch
5449 * code calls this from NMI context.
5451 void perf_event_update_userpage(struct perf_event
*event
)
5453 struct perf_event_mmap_page
*userpg
;
5454 struct perf_buffer
*rb
;
5455 u64 enabled
, running
, now
;
5458 rb
= rcu_dereference(event
->rb
);
5463 * compute total_time_enabled, total_time_running
5464 * based on snapshot values taken when the event
5465 * was last scheduled in.
5467 * we cannot simply called update_context_time()
5468 * because of locking issue as we can be called in
5471 calc_timer_values(event
, &now
, &enabled
, &running
);
5473 userpg
= rb
->user_page
;
5475 * Disable preemption to guarantee consistent time stamps are stored to
5481 userpg
->index
= perf_event_index(event
);
5482 userpg
->offset
= perf_event_count(event
);
5484 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
5486 userpg
->time_enabled
= enabled
+
5487 atomic64_read(&event
->child_total_time_enabled
);
5489 userpg
->time_running
= running
+
5490 atomic64_read(&event
->child_total_time_running
);
5492 arch_perf_update_userpage(event
, userpg
, now
);
5500 EXPORT_SYMBOL_GPL(perf_event_update_userpage
);
5502 static vm_fault_t
perf_mmap_fault(struct vm_fault
*vmf
)
5504 struct perf_event
*event
= vmf
->vma
->vm_file
->private_data
;
5505 struct perf_buffer
*rb
;
5506 vm_fault_t ret
= VM_FAULT_SIGBUS
;
5508 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
5509 if (vmf
->pgoff
== 0)
5515 rb
= rcu_dereference(event
->rb
);
5519 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
5522 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
5526 get_page(vmf
->page
);
5527 vmf
->page
->mapping
= vmf
->vma
->vm_file
->f_mapping
;
5528 vmf
->page
->index
= vmf
->pgoff
;
5537 static void ring_buffer_attach(struct perf_event
*event
,
5538 struct perf_buffer
*rb
)
5540 struct perf_buffer
*old_rb
= NULL
;
5541 unsigned long flags
;
5545 * Should be impossible, we set this when removing
5546 * event->rb_entry and wait/clear when adding event->rb_entry.
5548 WARN_ON_ONCE(event
->rcu_pending
);
5551 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
5552 list_del_rcu(&event
->rb_entry
);
5553 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
5555 event
->rcu_batches
= get_state_synchronize_rcu();
5556 event
->rcu_pending
= 1;
5560 if (event
->rcu_pending
) {
5561 cond_synchronize_rcu(event
->rcu_batches
);
5562 event
->rcu_pending
= 0;
5565 spin_lock_irqsave(&rb
->event_lock
, flags
);
5566 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
5567 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
5571 * Avoid racing with perf_mmap_close(AUX): stop the event
5572 * before swizzling the event::rb pointer; if it's getting
5573 * unmapped, its aux_mmap_count will be 0 and it won't
5574 * restart. See the comment in __perf_pmu_output_stop().
5576 * Data will inevitably be lost when set_output is done in
5577 * mid-air, but then again, whoever does it like this is
5578 * not in for the data anyway.
5581 perf_event_stop(event
, 0);
5583 rcu_assign_pointer(event
->rb
, rb
);
5586 ring_buffer_put(old_rb
);
5588 * Since we detached before setting the new rb, so that we
5589 * could attach the new rb, we could have missed a wakeup.
5592 wake_up_all(&event
->waitq
);
5596 static void ring_buffer_wakeup(struct perf_event
*event
)
5598 struct perf_buffer
*rb
;
5601 rb
= rcu_dereference(event
->rb
);
5603 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
5604 wake_up_all(&event
->waitq
);
5609 struct perf_buffer
*ring_buffer_get(struct perf_event
*event
)
5611 struct perf_buffer
*rb
;
5614 rb
= rcu_dereference(event
->rb
);
5616 if (!refcount_inc_not_zero(&rb
->refcount
))
5624 void ring_buffer_put(struct perf_buffer
*rb
)
5626 if (!refcount_dec_and_test(&rb
->refcount
))
5629 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
5631 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
5634 static void perf_mmap_open(struct vm_area_struct
*vma
)
5636 struct perf_event
*event
= vma
->vm_file
->private_data
;
5638 atomic_inc(&event
->mmap_count
);
5639 atomic_inc(&event
->rb
->mmap_count
);
5642 atomic_inc(&event
->rb
->aux_mmap_count
);
5644 if (event
->pmu
->event_mapped
)
5645 event
->pmu
->event_mapped(event
, vma
->vm_mm
);
5648 static void perf_pmu_output_stop(struct perf_event
*event
);
5651 * A buffer can be mmap()ed multiple times; either directly through the same
5652 * event, or through other events by use of perf_event_set_output().
5654 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5655 * the buffer here, where we still have a VM context. This means we need
5656 * to detach all events redirecting to us.
5658 static void perf_mmap_close(struct vm_area_struct
*vma
)
5660 struct perf_event
*event
= vma
->vm_file
->private_data
;
5662 struct perf_buffer
*rb
= ring_buffer_get(event
);
5663 struct user_struct
*mmap_user
= rb
->mmap_user
;
5664 int mmap_locked
= rb
->mmap_locked
;
5665 unsigned long size
= perf_data_size(rb
);
5667 if (event
->pmu
->event_unmapped
)
5668 event
->pmu
->event_unmapped(event
, vma
->vm_mm
);
5671 * rb->aux_mmap_count will always drop before rb->mmap_count and
5672 * event->mmap_count, so it is ok to use event->mmap_mutex to
5673 * serialize with perf_mmap here.
5675 if (rb_has_aux(rb
) && vma
->vm_pgoff
== rb
->aux_pgoff
&&
5676 atomic_dec_and_mutex_lock(&rb
->aux_mmap_count
, &event
->mmap_mutex
)) {
5678 * Stop all AUX events that are writing to this buffer,
5679 * so that we can free its AUX pages and corresponding PMU
5680 * data. Note that after rb::aux_mmap_count dropped to zero,
5681 * they won't start any more (see perf_aux_output_begin()).
5683 perf_pmu_output_stop(event
);
5685 /* now it's safe to free the pages */
5686 atomic_long_sub(rb
->aux_nr_pages
- rb
->aux_mmap_locked
, &mmap_user
->locked_vm
);
5687 atomic64_sub(rb
->aux_mmap_locked
, &vma
->vm_mm
->pinned_vm
);
5689 /* this has to be the last one */
5691 WARN_ON_ONCE(refcount_read(&rb
->aux_refcount
));
5693 mutex_unlock(&event
->mmap_mutex
);
5696 atomic_dec(&rb
->mmap_count
);
5698 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
5701 ring_buffer_attach(event
, NULL
);
5702 mutex_unlock(&event
->mmap_mutex
);
5704 /* If there's still other mmap()s of this buffer, we're done. */
5705 if (atomic_read(&rb
->mmap_count
))
5709 * No other mmap()s, detach from all other events that might redirect
5710 * into the now unreachable buffer. Somewhat complicated by the
5711 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5715 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
5716 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
5718 * This event is en-route to free_event() which will
5719 * detach it and remove it from the list.
5725 mutex_lock(&event
->mmap_mutex
);
5727 * Check we didn't race with perf_event_set_output() which can
5728 * swizzle the rb from under us while we were waiting to
5729 * acquire mmap_mutex.
5731 * If we find a different rb; ignore this event, a next
5732 * iteration will no longer find it on the list. We have to
5733 * still restart the iteration to make sure we're not now
5734 * iterating the wrong list.
5736 if (event
->rb
== rb
)
5737 ring_buffer_attach(event
, NULL
);
5739 mutex_unlock(&event
->mmap_mutex
);
5743 * Restart the iteration; either we're on the wrong list or
5744 * destroyed its integrity by doing a deletion.
5751 * It could be there's still a few 0-ref events on the list; they'll
5752 * get cleaned up by free_event() -- they'll also still have their
5753 * ref on the rb and will free it whenever they are done with it.
5755 * Aside from that, this buffer is 'fully' detached and unmapped,
5756 * undo the VM accounting.
5759 atomic_long_sub((size
>> PAGE_SHIFT
) + 1 - mmap_locked
,
5760 &mmap_user
->locked_vm
);
5761 atomic64_sub(mmap_locked
, &vma
->vm_mm
->pinned_vm
);
5762 free_uid(mmap_user
);
5765 ring_buffer_put(rb
); /* could be last */
5768 static const struct vm_operations_struct perf_mmap_vmops
= {
5769 .open
= perf_mmap_open
,
5770 .close
= perf_mmap_close
, /* non mergeable */
5771 .fault
= perf_mmap_fault
,
5772 .page_mkwrite
= perf_mmap_fault
,
5775 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
5777 struct perf_event
*event
= file
->private_data
;
5778 unsigned long user_locked
, user_lock_limit
;
5779 struct user_struct
*user
= current_user();
5780 struct perf_buffer
*rb
= NULL
;
5781 unsigned long locked
, lock_limit
;
5782 unsigned long vma_size
;
5783 unsigned long nr_pages
;
5784 long user_extra
= 0, extra
= 0;
5785 int ret
= 0, flags
= 0;
5788 * Don't allow mmap() of inherited per-task counters. This would
5789 * create a performance issue due to all children writing to the
5792 if (event
->cpu
== -1 && event
->attr
.inherit
)
5795 if (!(vma
->vm_flags
& VM_SHARED
))
5798 ret
= security_perf_event_read(event
);
5802 vma_size
= vma
->vm_end
- vma
->vm_start
;
5804 if (vma
->vm_pgoff
== 0) {
5805 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
5808 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5809 * mapped, all subsequent mappings should have the same size
5810 * and offset. Must be above the normal perf buffer.
5812 u64 aux_offset
, aux_size
;
5817 nr_pages
= vma_size
/ PAGE_SIZE
;
5819 mutex_lock(&event
->mmap_mutex
);
5826 aux_offset
= READ_ONCE(rb
->user_page
->aux_offset
);
5827 aux_size
= READ_ONCE(rb
->user_page
->aux_size
);
5829 if (aux_offset
< perf_data_size(rb
) + PAGE_SIZE
)
5832 if (aux_offset
!= vma
->vm_pgoff
<< PAGE_SHIFT
)
5835 /* already mapped with a different offset */
5836 if (rb_has_aux(rb
) && rb
->aux_pgoff
!= vma
->vm_pgoff
)
5839 if (aux_size
!= vma_size
|| aux_size
!= nr_pages
* PAGE_SIZE
)
5842 /* already mapped with a different size */
5843 if (rb_has_aux(rb
) && rb
->aux_nr_pages
!= nr_pages
)
5846 if (!is_power_of_2(nr_pages
))
5849 if (!atomic_inc_not_zero(&rb
->mmap_count
))
5852 if (rb_has_aux(rb
)) {
5853 atomic_inc(&rb
->aux_mmap_count
);
5858 atomic_set(&rb
->aux_mmap_count
, 1);
5859 user_extra
= nr_pages
;
5865 * If we have rb pages ensure they're a power-of-two number, so we
5866 * can do bitmasks instead of modulo.
5868 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
5871 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
5874 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5876 mutex_lock(&event
->mmap_mutex
);
5878 if (event
->rb
->nr_pages
!= nr_pages
) {
5883 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
5885 * Raced against perf_mmap_close() through
5886 * perf_event_set_output(). Try again, hope for better
5889 mutex_unlock(&event
->mmap_mutex
);
5896 user_extra
= nr_pages
+ 1;
5899 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
5902 * Increase the limit linearly with more CPUs:
5904 user_lock_limit
*= num_online_cpus();
5906 user_locked
= atomic_long_read(&user
->locked_vm
);
5909 * sysctl_perf_event_mlock may have changed, so that
5910 * user->locked_vm > user_lock_limit
5912 if (user_locked
> user_lock_limit
)
5913 user_locked
= user_lock_limit
;
5914 user_locked
+= user_extra
;
5916 if (user_locked
> user_lock_limit
) {
5918 * charge locked_vm until it hits user_lock_limit;
5919 * charge the rest from pinned_vm
5921 extra
= user_locked
- user_lock_limit
;
5922 user_extra
-= extra
;
5925 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
5926 lock_limit
>>= PAGE_SHIFT
;
5927 locked
= atomic64_read(&vma
->vm_mm
->pinned_vm
) + extra
;
5929 if ((locked
> lock_limit
) && perf_is_paranoid() &&
5930 !capable(CAP_IPC_LOCK
)) {
5935 WARN_ON(!rb
&& event
->rb
);
5937 if (vma
->vm_flags
& VM_WRITE
)
5938 flags
|= RING_BUFFER_WRITABLE
;
5941 rb
= rb_alloc(nr_pages
,
5942 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
5950 atomic_set(&rb
->mmap_count
, 1);
5951 rb
->mmap_user
= get_current_user();
5952 rb
->mmap_locked
= extra
;
5954 ring_buffer_attach(event
, rb
);
5956 perf_event_init_userpage(event
);
5957 perf_event_update_userpage(event
);
5959 ret
= rb_alloc_aux(rb
, event
, vma
->vm_pgoff
, nr_pages
,
5960 event
->attr
.aux_watermark
, flags
);
5962 rb
->aux_mmap_locked
= extra
;
5967 atomic_long_add(user_extra
, &user
->locked_vm
);
5968 atomic64_add(extra
, &vma
->vm_mm
->pinned_vm
);
5970 atomic_inc(&event
->mmap_count
);
5972 atomic_dec(&rb
->mmap_count
);
5975 mutex_unlock(&event
->mmap_mutex
);
5978 * Since pinned accounting is per vm we cannot allow fork() to copy our
5981 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
5982 vma
->vm_ops
= &perf_mmap_vmops
;
5984 if (event
->pmu
->event_mapped
)
5985 event
->pmu
->event_mapped(event
, vma
->vm_mm
);
5990 static int perf_fasync(int fd
, struct file
*filp
, int on
)
5992 struct inode
*inode
= file_inode(filp
);
5993 struct perf_event
*event
= filp
->private_data
;
5997 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
5998 inode_unlock(inode
);
6006 static const struct file_operations perf_fops
= {
6007 .llseek
= no_llseek
,
6008 .release
= perf_release
,
6011 .unlocked_ioctl
= perf_ioctl
,
6012 .compat_ioctl
= perf_compat_ioctl
,
6014 .fasync
= perf_fasync
,
6020 * If there's data, ensure we set the poll() state and publish everything
6021 * to user-space before waking everybody up.
6024 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
6026 /* only the parent has fasync state */
6028 event
= event
->parent
;
6029 return &event
->fasync
;
6032 void perf_event_wakeup(struct perf_event
*event
)
6034 ring_buffer_wakeup(event
);
6036 if (event
->pending_kill
) {
6037 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
6038 event
->pending_kill
= 0;
6042 static void perf_pending_event_disable(struct perf_event
*event
)
6044 int cpu
= READ_ONCE(event
->pending_disable
);
6049 if (cpu
== smp_processor_id()) {
6050 WRITE_ONCE(event
->pending_disable
, -1);
6051 perf_event_disable_local(event
);
6058 * perf_event_disable_inatomic()
6059 * @pending_disable = CPU-A;
6063 * @pending_disable = -1;
6066 * perf_event_disable_inatomic()
6067 * @pending_disable = CPU-B;
6068 * irq_work_queue(); // FAILS
6071 * perf_pending_event()
6073 * But the event runs on CPU-B and wants disabling there.
6075 irq_work_queue_on(&event
->pending
, cpu
);
6078 static void perf_pending_event(struct irq_work
*entry
)
6080 struct perf_event
*event
= container_of(entry
, struct perf_event
, pending
);
6083 rctx
= perf_swevent_get_recursion_context();
6085 * If we 'fail' here, that's OK, it means recursion is already disabled
6086 * and we won't recurse 'further'.
6089 perf_pending_event_disable(event
);
6091 if (event
->pending_wakeup
) {
6092 event
->pending_wakeup
= 0;
6093 perf_event_wakeup(event
);
6097 perf_swevent_put_recursion_context(rctx
);
6101 * We assume there is only KVM supporting the callbacks.
6102 * Later on, we might change it to a list if there is
6103 * another virtualization implementation supporting the callbacks.
6105 struct perf_guest_info_callbacks
*perf_guest_cbs
;
6107 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
6109 perf_guest_cbs
= cbs
;
6112 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
6114 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
6116 perf_guest_cbs
= NULL
;
6119 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
6122 perf_output_sample_regs(struct perf_output_handle
*handle
,
6123 struct pt_regs
*regs
, u64 mask
)
6126 DECLARE_BITMAP(_mask
, 64);
6128 bitmap_from_u64(_mask
, mask
);
6129 for_each_set_bit(bit
, _mask
, sizeof(mask
) * BITS_PER_BYTE
) {
6132 val
= perf_reg_value(regs
, bit
);
6133 perf_output_put(handle
, val
);
6137 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
6138 struct pt_regs
*regs
,
6139 struct pt_regs
*regs_user_copy
)
6141 if (user_mode(regs
)) {
6142 regs_user
->abi
= perf_reg_abi(current
);
6143 regs_user
->regs
= regs
;
6144 } else if (!(current
->flags
& PF_KTHREAD
)) {
6145 perf_get_regs_user(regs_user
, regs
, regs_user_copy
);
6147 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
6148 regs_user
->regs
= NULL
;
6152 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
6153 struct pt_regs
*regs
)
6155 regs_intr
->regs
= regs
;
6156 regs_intr
->abi
= perf_reg_abi(current
);
6161 * Get remaining task size from user stack pointer.
6163 * It'd be better to take stack vma map and limit this more
6164 * precisely, but there's no way to get it safely under interrupt,
6165 * so using TASK_SIZE as limit.
6167 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
6169 unsigned long addr
= perf_user_stack_pointer(regs
);
6171 if (!addr
|| addr
>= TASK_SIZE
)
6174 return TASK_SIZE
- addr
;
6178 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
6179 struct pt_regs
*regs
)
6183 /* No regs, no stack pointer, no dump. */
6188 * Check if we fit in with the requested stack size into the:
6190 * If we don't, we limit the size to the TASK_SIZE.
6192 * - remaining sample size
6193 * If we don't, we customize the stack size to
6194 * fit in to the remaining sample size.
6197 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
6198 stack_size
= min(stack_size
, (u16
) task_size
);
6200 /* Current header size plus static size and dynamic size. */
6201 header_size
+= 2 * sizeof(u64
);
6203 /* Do we fit in with the current stack dump size? */
6204 if ((u16
) (header_size
+ stack_size
) < header_size
) {
6206 * If we overflow the maximum size for the sample,
6207 * we customize the stack dump size to fit in.
6209 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
6210 stack_size
= round_up(stack_size
, sizeof(u64
));
6217 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
6218 struct pt_regs
*regs
)
6220 /* Case of a kernel thread, nothing to dump */
6223 perf_output_put(handle
, size
);
6233 * - the size requested by user or the best one we can fit
6234 * in to the sample max size
6236 * - user stack dump data
6238 * - the actual dumped size
6242 perf_output_put(handle
, dump_size
);
6245 sp
= perf_user_stack_pointer(regs
);
6248 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
6250 dyn_size
= dump_size
- rem
;
6252 perf_output_skip(handle
, rem
);
6255 perf_output_put(handle
, dyn_size
);
6259 static unsigned long perf_prepare_sample_aux(struct perf_event
*event
,
6260 struct perf_sample_data
*data
,
6263 struct perf_event
*sampler
= event
->aux_event
;
6264 struct perf_buffer
*rb
;
6271 if (WARN_ON_ONCE(READ_ONCE(sampler
->state
) != PERF_EVENT_STATE_ACTIVE
))
6274 if (WARN_ON_ONCE(READ_ONCE(sampler
->oncpu
) != smp_processor_id()))
6277 rb
= ring_buffer_get(sampler
->parent
? sampler
->parent
: sampler
);
6282 * If this is an NMI hit inside sampling code, don't take
6283 * the sample. See also perf_aux_sample_output().
6285 if (READ_ONCE(rb
->aux_in_sampling
)) {
6288 size
= min_t(size_t, size
, perf_aux_size(rb
));
6289 data
->aux_size
= ALIGN(size
, sizeof(u64
));
6291 ring_buffer_put(rb
);
6294 return data
->aux_size
;
6297 long perf_pmu_snapshot_aux(struct perf_buffer
*rb
,
6298 struct perf_event
*event
,
6299 struct perf_output_handle
*handle
,
6302 unsigned long flags
;
6306 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6307 * paths. If we start calling them in NMI context, they may race with
6308 * the IRQ ones, that is, for example, re-starting an event that's just
6309 * been stopped, which is why we're using a separate callback that
6310 * doesn't change the event state.
6312 * IRQs need to be disabled to prevent IPIs from racing with us.
6314 local_irq_save(flags
);
6316 * Guard against NMI hits inside the critical section;
6317 * see also perf_prepare_sample_aux().
6319 WRITE_ONCE(rb
->aux_in_sampling
, 1);
6322 ret
= event
->pmu
->snapshot_aux(event
, handle
, size
);
6325 WRITE_ONCE(rb
->aux_in_sampling
, 0);
6326 local_irq_restore(flags
);
6331 static void perf_aux_sample_output(struct perf_event
*event
,
6332 struct perf_output_handle
*handle
,
6333 struct perf_sample_data
*data
)
6335 struct perf_event
*sampler
= event
->aux_event
;
6336 struct perf_buffer
*rb
;
6340 if (WARN_ON_ONCE(!sampler
|| !data
->aux_size
))
6343 rb
= ring_buffer_get(sampler
->parent
? sampler
->parent
: sampler
);
6347 size
= perf_pmu_snapshot_aux(rb
, sampler
, handle
, data
->aux_size
);
6350 * An error here means that perf_output_copy() failed (returned a
6351 * non-zero surplus that it didn't copy), which in its current
6352 * enlightened implementation is not possible. If that changes, we'd
6355 if (WARN_ON_ONCE(size
< 0))
6359 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6360 * perf_prepare_sample_aux(), so should not be more than that.
6362 pad
= data
->aux_size
- size
;
6363 if (WARN_ON_ONCE(pad
>= sizeof(u64
)))
6368 perf_output_copy(handle
, &zero
, pad
);
6372 ring_buffer_put(rb
);
6375 static void __perf_event_header__init_id(struct perf_event_header
*header
,
6376 struct perf_sample_data
*data
,
6377 struct perf_event
*event
)
6379 u64 sample_type
= event
->attr
.sample_type
;
6381 data
->type
= sample_type
;
6382 header
->size
+= event
->id_header_size
;
6384 if (sample_type
& PERF_SAMPLE_TID
) {
6385 /* namespace issues */
6386 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
6387 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
6390 if (sample_type
& PERF_SAMPLE_TIME
)
6391 data
->time
= perf_event_clock(event
);
6393 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
6394 data
->id
= primary_event_id(event
);
6396 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
6397 data
->stream_id
= event
->id
;
6399 if (sample_type
& PERF_SAMPLE_CPU
) {
6400 data
->cpu_entry
.cpu
= raw_smp_processor_id();
6401 data
->cpu_entry
.reserved
= 0;
6405 void perf_event_header__init_id(struct perf_event_header
*header
,
6406 struct perf_sample_data
*data
,
6407 struct perf_event
*event
)
6409 if (event
->attr
.sample_id_all
)
6410 __perf_event_header__init_id(header
, data
, event
);
6413 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
6414 struct perf_sample_data
*data
)
6416 u64 sample_type
= data
->type
;
6418 if (sample_type
& PERF_SAMPLE_TID
)
6419 perf_output_put(handle
, data
->tid_entry
);
6421 if (sample_type
& PERF_SAMPLE_TIME
)
6422 perf_output_put(handle
, data
->time
);
6424 if (sample_type
& PERF_SAMPLE_ID
)
6425 perf_output_put(handle
, data
->id
);
6427 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
6428 perf_output_put(handle
, data
->stream_id
);
6430 if (sample_type
& PERF_SAMPLE_CPU
)
6431 perf_output_put(handle
, data
->cpu_entry
);
6433 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
6434 perf_output_put(handle
, data
->id
);
6437 void perf_event__output_id_sample(struct perf_event
*event
,
6438 struct perf_output_handle
*handle
,
6439 struct perf_sample_data
*sample
)
6441 if (event
->attr
.sample_id_all
)
6442 __perf_event__output_id_sample(handle
, sample
);
6445 static void perf_output_read_one(struct perf_output_handle
*handle
,
6446 struct perf_event
*event
,
6447 u64 enabled
, u64 running
)
6449 u64 read_format
= event
->attr
.read_format
;
6453 values
[n
++] = perf_event_count(event
);
6454 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
6455 values
[n
++] = enabled
+
6456 atomic64_read(&event
->child_total_time_enabled
);
6458 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
6459 values
[n
++] = running
+
6460 atomic64_read(&event
->child_total_time_running
);
6462 if (read_format
& PERF_FORMAT_ID
)
6463 values
[n
++] = primary_event_id(event
);
6465 __output_copy(handle
, values
, n
* sizeof(u64
));
6468 static void perf_output_read_group(struct perf_output_handle
*handle
,
6469 struct perf_event
*event
,
6470 u64 enabled
, u64 running
)
6472 struct perf_event
*leader
= event
->group_leader
, *sub
;
6473 u64 read_format
= event
->attr
.read_format
;
6477 values
[n
++] = 1 + leader
->nr_siblings
;
6479 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
6480 values
[n
++] = enabled
;
6482 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
6483 values
[n
++] = running
;
6485 if ((leader
!= event
) &&
6486 (leader
->state
== PERF_EVENT_STATE_ACTIVE
))
6487 leader
->pmu
->read(leader
);
6489 values
[n
++] = perf_event_count(leader
);
6490 if (read_format
& PERF_FORMAT_ID
)
6491 values
[n
++] = primary_event_id(leader
);
6493 __output_copy(handle
, values
, n
* sizeof(u64
));
6495 for_each_sibling_event(sub
, leader
) {
6498 if ((sub
!= event
) &&
6499 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
6500 sub
->pmu
->read(sub
);
6502 values
[n
++] = perf_event_count(sub
);
6503 if (read_format
& PERF_FORMAT_ID
)
6504 values
[n
++] = primary_event_id(sub
);
6506 __output_copy(handle
, values
, n
* sizeof(u64
));
6510 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6511 PERF_FORMAT_TOTAL_TIME_RUNNING)
6514 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6516 * The problem is that its both hard and excessively expensive to iterate the
6517 * child list, not to mention that its impossible to IPI the children running
6518 * on another CPU, from interrupt/NMI context.
6520 static void perf_output_read(struct perf_output_handle
*handle
,
6521 struct perf_event
*event
)
6523 u64 enabled
= 0, running
= 0, now
;
6524 u64 read_format
= event
->attr
.read_format
;
6527 * compute total_time_enabled, total_time_running
6528 * based on snapshot values taken when the event
6529 * was last scheduled in.
6531 * we cannot simply called update_context_time()
6532 * because of locking issue as we are called in
6535 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
6536 calc_timer_values(event
, &now
, &enabled
, &running
);
6538 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
6539 perf_output_read_group(handle
, event
, enabled
, running
);
6541 perf_output_read_one(handle
, event
, enabled
, running
);
6544 void perf_output_sample(struct perf_output_handle
*handle
,
6545 struct perf_event_header
*header
,
6546 struct perf_sample_data
*data
,
6547 struct perf_event
*event
)
6549 u64 sample_type
= data
->type
;
6551 perf_output_put(handle
, *header
);
6553 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
6554 perf_output_put(handle
, data
->id
);
6556 if (sample_type
& PERF_SAMPLE_IP
)
6557 perf_output_put(handle
, data
->ip
);
6559 if (sample_type
& PERF_SAMPLE_TID
)
6560 perf_output_put(handle
, data
->tid_entry
);
6562 if (sample_type
& PERF_SAMPLE_TIME
)
6563 perf_output_put(handle
, data
->time
);
6565 if (sample_type
& PERF_SAMPLE_ADDR
)
6566 perf_output_put(handle
, data
->addr
);
6568 if (sample_type
& PERF_SAMPLE_ID
)
6569 perf_output_put(handle
, data
->id
);
6571 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
6572 perf_output_put(handle
, data
->stream_id
);
6574 if (sample_type
& PERF_SAMPLE_CPU
)
6575 perf_output_put(handle
, data
->cpu_entry
);
6577 if (sample_type
& PERF_SAMPLE_PERIOD
)
6578 perf_output_put(handle
, data
->period
);
6580 if (sample_type
& PERF_SAMPLE_READ
)
6581 perf_output_read(handle
, event
);
6583 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
6586 size
+= data
->callchain
->nr
;
6587 size
*= sizeof(u64
);
6588 __output_copy(handle
, data
->callchain
, size
);
6591 if (sample_type
& PERF_SAMPLE_RAW
) {
6592 struct perf_raw_record
*raw
= data
->raw
;
6595 struct perf_raw_frag
*frag
= &raw
->frag
;
6597 perf_output_put(handle
, raw
->size
);
6600 __output_custom(handle
, frag
->copy
,
6601 frag
->data
, frag
->size
);
6603 __output_copy(handle
, frag
->data
,
6606 if (perf_raw_frag_last(frag
))
6611 __output_skip(handle
, NULL
, frag
->pad
);
6617 .size
= sizeof(u32
),
6620 perf_output_put(handle
, raw
);
6624 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
6625 if (data
->br_stack
) {
6628 size
= data
->br_stack
->nr
6629 * sizeof(struct perf_branch_entry
);
6631 perf_output_put(handle
, data
->br_stack
->nr
);
6632 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
6635 * we always store at least the value of nr
6638 perf_output_put(handle
, nr
);
6642 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
6643 u64 abi
= data
->regs_user
.abi
;
6646 * If there are no regs to dump, notice it through
6647 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6649 perf_output_put(handle
, abi
);
6652 u64 mask
= event
->attr
.sample_regs_user
;
6653 perf_output_sample_regs(handle
,
6654 data
->regs_user
.regs
,
6659 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
6660 perf_output_sample_ustack(handle
,
6661 data
->stack_user_size
,
6662 data
->regs_user
.regs
);
6665 if (sample_type
& PERF_SAMPLE_WEIGHT
)
6666 perf_output_put(handle
, data
->weight
);
6668 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
6669 perf_output_put(handle
, data
->data_src
.val
);
6671 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
6672 perf_output_put(handle
, data
->txn
);
6674 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
6675 u64 abi
= data
->regs_intr
.abi
;
6677 * If there are no regs to dump, notice it through
6678 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6680 perf_output_put(handle
, abi
);
6683 u64 mask
= event
->attr
.sample_regs_intr
;
6685 perf_output_sample_regs(handle
,
6686 data
->regs_intr
.regs
,
6691 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
6692 perf_output_put(handle
, data
->phys_addr
);
6694 if (sample_type
& PERF_SAMPLE_AUX
) {
6695 perf_output_put(handle
, data
->aux_size
);
6698 perf_aux_sample_output(event
, handle
, data
);
6701 if (!event
->attr
.watermark
) {
6702 int wakeup_events
= event
->attr
.wakeup_events
;
6704 if (wakeup_events
) {
6705 struct perf_buffer
*rb
= handle
->rb
;
6706 int events
= local_inc_return(&rb
->events
);
6708 if (events
>= wakeup_events
) {
6709 local_sub(wakeup_events
, &rb
->events
);
6710 local_inc(&rb
->wakeup
);
6716 static u64
perf_virt_to_phys(u64 virt
)
6719 struct page
*p
= NULL
;
6724 if (virt
>= TASK_SIZE
) {
6725 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6726 if (virt_addr_valid((void *)(uintptr_t)virt
) &&
6727 !(virt
>= VMALLOC_START
&& virt
< VMALLOC_END
))
6728 phys_addr
= (u64
)virt_to_phys((void *)(uintptr_t)virt
);
6731 * Walking the pages tables for user address.
6732 * Interrupts are disabled, so it prevents any tear down
6733 * of the page tables.
6734 * Try IRQ-safe __get_user_pages_fast first.
6735 * If failed, leave phys_addr as 0.
6737 if (current
->mm
!= NULL
) {
6738 pagefault_disable();
6739 if (__get_user_pages_fast(virt
, 1, 0, &p
) == 1)
6740 phys_addr
= page_to_phys(p
) + virt
% PAGE_SIZE
;
6751 static struct perf_callchain_entry __empty_callchain
= { .nr
= 0, };
6753 struct perf_callchain_entry
*
6754 perf_callchain(struct perf_event
*event
, struct pt_regs
*regs
)
6756 bool kernel
= !event
->attr
.exclude_callchain_kernel
;
6757 bool user
= !event
->attr
.exclude_callchain_user
;
6758 /* Disallow cross-task user callchains. */
6759 bool crosstask
= event
->ctx
->task
&& event
->ctx
->task
!= current
;
6760 const u32 max_stack
= event
->attr
.sample_max_stack
;
6761 struct perf_callchain_entry
*callchain
;
6763 if (!kernel
&& !user
)
6764 return &__empty_callchain
;
6766 callchain
= get_perf_callchain(regs
, 0, kernel
, user
,
6767 max_stack
, crosstask
, true);
6768 return callchain
?: &__empty_callchain
;
6771 void perf_prepare_sample(struct perf_event_header
*header
,
6772 struct perf_sample_data
*data
,
6773 struct perf_event
*event
,
6774 struct pt_regs
*regs
)
6776 u64 sample_type
= event
->attr
.sample_type
;
6778 header
->type
= PERF_RECORD_SAMPLE
;
6779 header
->size
= sizeof(*header
) + event
->header_size
;
6782 header
->misc
|= perf_misc_flags(regs
);
6784 __perf_event_header__init_id(header
, data
, event
);
6786 if (sample_type
& PERF_SAMPLE_IP
)
6787 data
->ip
= perf_instruction_pointer(regs
);
6789 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
6792 if (!(sample_type
& __PERF_SAMPLE_CALLCHAIN_EARLY
))
6793 data
->callchain
= perf_callchain(event
, regs
);
6795 size
+= data
->callchain
->nr
;
6797 header
->size
+= size
* sizeof(u64
);
6800 if (sample_type
& PERF_SAMPLE_RAW
) {
6801 struct perf_raw_record
*raw
= data
->raw
;
6805 struct perf_raw_frag
*frag
= &raw
->frag
;
6810 if (perf_raw_frag_last(frag
))
6815 size
= round_up(sum
+ sizeof(u32
), sizeof(u64
));
6816 raw
->size
= size
- sizeof(u32
);
6817 frag
->pad
= raw
->size
- sum
;
6822 header
->size
+= size
;
6825 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
6826 int size
= sizeof(u64
); /* nr */
6827 if (data
->br_stack
) {
6828 size
+= data
->br_stack
->nr
6829 * sizeof(struct perf_branch_entry
);
6831 header
->size
+= size
;
6834 if (sample_type
& (PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_STACK_USER
))
6835 perf_sample_regs_user(&data
->regs_user
, regs
,
6836 &data
->regs_user_copy
);
6838 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
6839 /* regs dump ABI info */
6840 int size
= sizeof(u64
);
6842 if (data
->regs_user
.regs
) {
6843 u64 mask
= event
->attr
.sample_regs_user
;
6844 size
+= hweight64(mask
) * sizeof(u64
);
6847 header
->size
+= size
;
6850 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
6852 * Either we need PERF_SAMPLE_STACK_USER bit to be always
6853 * processed as the last one or have additional check added
6854 * in case new sample type is added, because we could eat
6855 * up the rest of the sample size.
6857 u16 stack_size
= event
->attr
.sample_stack_user
;
6858 u16 size
= sizeof(u64
);
6860 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
6861 data
->regs_user
.regs
);
6864 * If there is something to dump, add space for the dump
6865 * itself and for the field that tells the dynamic size,
6866 * which is how many have been actually dumped.
6869 size
+= sizeof(u64
) + stack_size
;
6871 data
->stack_user_size
= stack_size
;
6872 header
->size
+= size
;
6875 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
6876 /* regs dump ABI info */
6877 int size
= sizeof(u64
);
6879 perf_sample_regs_intr(&data
->regs_intr
, regs
);
6881 if (data
->regs_intr
.regs
) {
6882 u64 mask
= event
->attr
.sample_regs_intr
;
6884 size
+= hweight64(mask
) * sizeof(u64
);
6887 header
->size
+= size
;
6890 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
6891 data
->phys_addr
= perf_virt_to_phys(data
->addr
);
6893 if (sample_type
& PERF_SAMPLE_AUX
) {
6896 header
->size
+= sizeof(u64
); /* size */
6899 * Given the 16bit nature of header::size, an AUX sample can
6900 * easily overflow it, what with all the preceding sample bits.
6901 * Make sure this doesn't happen by using up to U16_MAX bytes
6902 * per sample in total (rounded down to 8 byte boundary).
6904 size
= min_t(size_t, U16_MAX
- header
->size
,
6905 event
->attr
.aux_sample_size
);
6906 size
= rounddown(size
, 8);
6907 size
= perf_prepare_sample_aux(event
, data
, size
);
6909 WARN_ON_ONCE(size
+ header
->size
> U16_MAX
);
6910 header
->size
+= size
;
6913 * If you're adding more sample types here, you likely need to do
6914 * something about the overflowing header::size, like repurpose the
6915 * lowest 3 bits of size, which should be always zero at the moment.
6916 * This raises a more important question, do we really need 512k sized
6917 * samples and why, so good argumentation is in order for whatever you
6920 WARN_ON_ONCE(header
->size
& 7);
6923 static __always_inline
int
6924 __perf_event_output(struct perf_event
*event
,
6925 struct perf_sample_data
*data
,
6926 struct pt_regs
*regs
,
6927 int (*output_begin
)(struct perf_output_handle
*,
6928 struct perf_event
*,
6931 struct perf_output_handle handle
;
6932 struct perf_event_header header
;
6935 /* protect the callchain buffers */
6938 perf_prepare_sample(&header
, data
, event
, regs
);
6940 err
= output_begin(&handle
, event
, header
.size
);
6944 perf_output_sample(&handle
, &header
, data
, event
);
6946 perf_output_end(&handle
);
6954 perf_event_output_forward(struct perf_event
*event
,
6955 struct perf_sample_data
*data
,
6956 struct pt_regs
*regs
)
6958 __perf_event_output(event
, data
, regs
, perf_output_begin_forward
);
6962 perf_event_output_backward(struct perf_event
*event
,
6963 struct perf_sample_data
*data
,
6964 struct pt_regs
*regs
)
6966 __perf_event_output(event
, data
, regs
, perf_output_begin_backward
);
6970 perf_event_output(struct perf_event
*event
,
6971 struct perf_sample_data
*data
,
6972 struct pt_regs
*regs
)
6974 return __perf_event_output(event
, data
, regs
, perf_output_begin
);
6981 struct perf_read_event
{
6982 struct perf_event_header header
;
6989 perf_event_read_event(struct perf_event
*event
,
6990 struct task_struct
*task
)
6992 struct perf_output_handle handle
;
6993 struct perf_sample_data sample
;
6994 struct perf_read_event read_event
= {
6996 .type
= PERF_RECORD_READ
,
6998 .size
= sizeof(read_event
) + event
->read_size
,
7000 .pid
= perf_event_pid(event
, task
),
7001 .tid
= perf_event_tid(event
, task
),
7005 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
7006 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
7010 perf_output_put(&handle
, read_event
);
7011 perf_output_read(&handle
, event
);
7012 perf_event__output_id_sample(event
, &handle
, &sample
);
7014 perf_output_end(&handle
);
7017 typedef void (perf_iterate_f
)(struct perf_event
*event
, void *data
);
7020 perf_iterate_ctx(struct perf_event_context
*ctx
,
7021 perf_iterate_f output
,
7022 void *data
, bool all
)
7024 struct perf_event
*event
;
7026 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
7028 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
7030 if (!event_filter_match(event
))
7034 output(event
, data
);
7038 static void perf_iterate_sb_cpu(perf_iterate_f output
, void *data
)
7040 struct pmu_event_list
*pel
= this_cpu_ptr(&pmu_sb_events
);
7041 struct perf_event
*event
;
7043 list_for_each_entry_rcu(event
, &pel
->list
, sb_list
) {
7045 * Skip events that are not fully formed yet; ensure that
7046 * if we observe event->ctx, both event and ctx will be
7047 * complete enough. See perf_install_in_context().
7049 if (!smp_load_acquire(&event
->ctx
))
7052 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
7054 if (!event_filter_match(event
))
7056 output(event
, data
);
7061 * Iterate all events that need to receive side-band events.
7063 * For new callers; ensure that account_pmu_sb_event() includes
7064 * your event, otherwise it might not get delivered.
7067 perf_iterate_sb(perf_iterate_f output
, void *data
,
7068 struct perf_event_context
*task_ctx
)
7070 struct perf_event_context
*ctx
;
7077 * If we have task_ctx != NULL we only notify the task context itself.
7078 * The task_ctx is set only for EXIT events before releasing task
7082 perf_iterate_ctx(task_ctx
, output
, data
, false);
7086 perf_iterate_sb_cpu(output
, data
);
7088 for_each_task_context_nr(ctxn
) {
7089 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
7091 perf_iterate_ctx(ctx
, output
, data
, false);
7099 * Clear all file-based filters at exec, they'll have to be
7100 * re-instated when/if these objects are mmapped again.
7102 static void perf_event_addr_filters_exec(struct perf_event
*event
, void *data
)
7104 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
7105 struct perf_addr_filter
*filter
;
7106 unsigned int restart
= 0, count
= 0;
7107 unsigned long flags
;
7109 if (!has_addr_filter(event
))
7112 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
7113 list_for_each_entry(filter
, &ifh
->list
, entry
) {
7114 if (filter
->path
.dentry
) {
7115 event
->addr_filter_ranges
[count
].start
= 0;
7116 event
->addr_filter_ranges
[count
].size
= 0;
7124 event
->addr_filters_gen
++;
7125 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
7128 perf_event_stop(event
, 1);
7131 void perf_event_exec(void)
7133 struct perf_event_context
*ctx
;
7137 for_each_task_context_nr(ctxn
) {
7138 ctx
= current
->perf_event_ctxp
[ctxn
];
7142 perf_event_enable_on_exec(ctxn
);
7144 perf_iterate_ctx(ctx
, perf_event_addr_filters_exec
, NULL
,
7150 struct remote_output
{
7151 struct perf_buffer
*rb
;
7155 static void __perf_event_output_stop(struct perf_event
*event
, void *data
)
7157 struct perf_event
*parent
= event
->parent
;
7158 struct remote_output
*ro
= data
;
7159 struct perf_buffer
*rb
= ro
->rb
;
7160 struct stop_event_data sd
= {
7164 if (!has_aux(event
))
7171 * In case of inheritance, it will be the parent that links to the
7172 * ring-buffer, but it will be the child that's actually using it.
7174 * We are using event::rb to determine if the event should be stopped,
7175 * however this may race with ring_buffer_attach() (through set_output),
7176 * which will make us skip the event that actually needs to be stopped.
7177 * So ring_buffer_attach() has to stop an aux event before re-assigning
7180 if (rcu_dereference(parent
->rb
) == rb
)
7181 ro
->err
= __perf_event_stop(&sd
);
7184 static int __perf_pmu_output_stop(void *info
)
7186 struct perf_event
*event
= info
;
7187 struct pmu
*pmu
= event
->ctx
->pmu
;
7188 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
7189 struct remote_output ro
= {
7194 perf_iterate_ctx(&cpuctx
->ctx
, __perf_event_output_stop
, &ro
, false);
7195 if (cpuctx
->task_ctx
)
7196 perf_iterate_ctx(cpuctx
->task_ctx
, __perf_event_output_stop
,
7203 static void perf_pmu_output_stop(struct perf_event
*event
)
7205 struct perf_event
*iter
;
7210 list_for_each_entry_rcu(iter
, &event
->rb
->event_list
, rb_entry
) {
7212 * For per-CPU events, we need to make sure that neither they
7213 * nor their children are running; for cpu==-1 events it's
7214 * sufficient to stop the event itself if it's active, since
7215 * it can't have children.
7219 cpu
= READ_ONCE(iter
->oncpu
);
7224 err
= cpu_function_call(cpu
, __perf_pmu_output_stop
, event
);
7225 if (err
== -EAGAIN
) {
7234 * task tracking -- fork/exit
7236 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7239 struct perf_task_event
{
7240 struct task_struct
*task
;
7241 struct perf_event_context
*task_ctx
;
7244 struct perf_event_header header
;
7254 static int perf_event_task_match(struct perf_event
*event
)
7256 return event
->attr
.comm
|| event
->attr
.mmap
||
7257 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
7261 static void perf_event_task_output(struct perf_event
*event
,
7264 struct perf_task_event
*task_event
= data
;
7265 struct perf_output_handle handle
;
7266 struct perf_sample_data sample
;
7267 struct task_struct
*task
= task_event
->task
;
7268 int ret
, size
= task_event
->event_id
.header
.size
;
7270 if (!perf_event_task_match(event
))
7273 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
7275 ret
= perf_output_begin(&handle
, event
,
7276 task_event
->event_id
.header
.size
);
7280 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
7281 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
7283 if (task_event
->event_id
.header
.type
== PERF_RECORD_EXIT
) {
7284 task_event
->event_id
.ppid
= perf_event_pid(event
,
7286 task_event
->event_id
.ptid
= perf_event_pid(event
,
7288 } else { /* PERF_RECORD_FORK */
7289 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
7290 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
7293 task_event
->event_id
.time
= perf_event_clock(event
);
7295 perf_output_put(&handle
, task_event
->event_id
);
7297 perf_event__output_id_sample(event
, &handle
, &sample
);
7299 perf_output_end(&handle
);
7301 task_event
->event_id
.header
.size
= size
;
7304 static void perf_event_task(struct task_struct
*task
,
7305 struct perf_event_context
*task_ctx
,
7308 struct perf_task_event task_event
;
7310 if (!atomic_read(&nr_comm_events
) &&
7311 !atomic_read(&nr_mmap_events
) &&
7312 !atomic_read(&nr_task_events
))
7315 task_event
= (struct perf_task_event
){
7317 .task_ctx
= task_ctx
,
7320 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
7322 .size
= sizeof(task_event
.event_id
),
7332 perf_iterate_sb(perf_event_task_output
,
7337 void perf_event_fork(struct task_struct
*task
)
7339 perf_event_task(task
, NULL
, 1);
7340 perf_event_namespaces(task
);
7347 struct perf_comm_event
{
7348 struct task_struct
*task
;
7353 struct perf_event_header header
;
7360 static int perf_event_comm_match(struct perf_event
*event
)
7362 return event
->attr
.comm
;
7365 static void perf_event_comm_output(struct perf_event
*event
,
7368 struct perf_comm_event
*comm_event
= data
;
7369 struct perf_output_handle handle
;
7370 struct perf_sample_data sample
;
7371 int size
= comm_event
->event_id
.header
.size
;
7374 if (!perf_event_comm_match(event
))
7377 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
7378 ret
= perf_output_begin(&handle
, event
,
7379 comm_event
->event_id
.header
.size
);
7384 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
7385 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
7387 perf_output_put(&handle
, comm_event
->event_id
);
7388 __output_copy(&handle
, comm_event
->comm
,
7389 comm_event
->comm_size
);
7391 perf_event__output_id_sample(event
, &handle
, &sample
);
7393 perf_output_end(&handle
);
7395 comm_event
->event_id
.header
.size
= size
;
7398 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
7400 char comm
[TASK_COMM_LEN
];
7403 memset(comm
, 0, sizeof(comm
));
7404 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
7405 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
7407 comm_event
->comm
= comm
;
7408 comm_event
->comm_size
= size
;
7410 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
7412 perf_iterate_sb(perf_event_comm_output
,
7417 void perf_event_comm(struct task_struct
*task
, bool exec
)
7419 struct perf_comm_event comm_event
;
7421 if (!atomic_read(&nr_comm_events
))
7424 comm_event
= (struct perf_comm_event
){
7430 .type
= PERF_RECORD_COMM
,
7431 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
7439 perf_event_comm_event(&comm_event
);
7443 * namespaces tracking
7446 struct perf_namespaces_event
{
7447 struct task_struct
*task
;
7450 struct perf_event_header header
;
7455 struct perf_ns_link_info link_info
[NR_NAMESPACES
];
7459 static int perf_event_namespaces_match(struct perf_event
*event
)
7461 return event
->attr
.namespaces
;
7464 static void perf_event_namespaces_output(struct perf_event
*event
,
7467 struct perf_namespaces_event
*namespaces_event
= data
;
7468 struct perf_output_handle handle
;
7469 struct perf_sample_data sample
;
7470 u16 header_size
= namespaces_event
->event_id
.header
.size
;
7473 if (!perf_event_namespaces_match(event
))
7476 perf_event_header__init_id(&namespaces_event
->event_id
.header
,
7478 ret
= perf_output_begin(&handle
, event
,
7479 namespaces_event
->event_id
.header
.size
);
7483 namespaces_event
->event_id
.pid
= perf_event_pid(event
,
7484 namespaces_event
->task
);
7485 namespaces_event
->event_id
.tid
= perf_event_tid(event
,
7486 namespaces_event
->task
);
7488 perf_output_put(&handle
, namespaces_event
->event_id
);
7490 perf_event__output_id_sample(event
, &handle
, &sample
);
7492 perf_output_end(&handle
);
7494 namespaces_event
->event_id
.header
.size
= header_size
;
7497 static void perf_fill_ns_link_info(struct perf_ns_link_info
*ns_link_info
,
7498 struct task_struct
*task
,
7499 const struct proc_ns_operations
*ns_ops
)
7501 struct path ns_path
;
7502 struct inode
*ns_inode
;
7505 error
= ns_get_path(&ns_path
, task
, ns_ops
);
7507 ns_inode
= ns_path
.dentry
->d_inode
;
7508 ns_link_info
->dev
= new_encode_dev(ns_inode
->i_sb
->s_dev
);
7509 ns_link_info
->ino
= ns_inode
->i_ino
;
7514 void perf_event_namespaces(struct task_struct
*task
)
7516 struct perf_namespaces_event namespaces_event
;
7517 struct perf_ns_link_info
*ns_link_info
;
7519 if (!atomic_read(&nr_namespaces_events
))
7522 namespaces_event
= (struct perf_namespaces_event
){
7526 .type
= PERF_RECORD_NAMESPACES
,
7528 .size
= sizeof(namespaces_event
.event_id
),
7532 .nr_namespaces
= NR_NAMESPACES
,
7533 /* .link_info[NR_NAMESPACES] */
7537 ns_link_info
= namespaces_event
.event_id
.link_info
;
7539 perf_fill_ns_link_info(&ns_link_info
[MNT_NS_INDEX
],
7540 task
, &mntns_operations
);
7542 #ifdef CONFIG_USER_NS
7543 perf_fill_ns_link_info(&ns_link_info
[USER_NS_INDEX
],
7544 task
, &userns_operations
);
7546 #ifdef CONFIG_NET_NS
7547 perf_fill_ns_link_info(&ns_link_info
[NET_NS_INDEX
],
7548 task
, &netns_operations
);
7550 #ifdef CONFIG_UTS_NS
7551 perf_fill_ns_link_info(&ns_link_info
[UTS_NS_INDEX
],
7552 task
, &utsns_operations
);
7554 #ifdef CONFIG_IPC_NS
7555 perf_fill_ns_link_info(&ns_link_info
[IPC_NS_INDEX
],
7556 task
, &ipcns_operations
);
7558 #ifdef CONFIG_PID_NS
7559 perf_fill_ns_link_info(&ns_link_info
[PID_NS_INDEX
],
7560 task
, &pidns_operations
);
7562 #ifdef CONFIG_CGROUPS
7563 perf_fill_ns_link_info(&ns_link_info
[CGROUP_NS_INDEX
],
7564 task
, &cgroupns_operations
);
7567 perf_iterate_sb(perf_event_namespaces_output
,
7576 struct perf_mmap_event
{
7577 struct vm_area_struct
*vma
;
7579 const char *file_name
;
7587 struct perf_event_header header
;
7597 static int perf_event_mmap_match(struct perf_event
*event
,
7600 struct perf_mmap_event
*mmap_event
= data
;
7601 struct vm_area_struct
*vma
= mmap_event
->vma
;
7602 int executable
= vma
->vm_flags
& VM_EXEC
;
7604 return (!executable
&& event
->attr
.mmap_data
) ||
7605 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
7608 static void perf_event_mmap_output(struct perf_event
*event
,
7611 struct perf_mmap_event
*mmap_event
= data
;
7612 struct perf_output_handle handle
;
7613 struct perf_sample_data sample
;
7614 int size
= mmap_event
->event_id
.header
.size
;
7615 u32 type
= mmap_event
->event_id
.header
.type
;
7618 if (!perf_event_mmap_match(event
, data
))
7621 if (event
->attr
.mmap2
) {
7622 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
7623 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
7624 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
7625 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
7626 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
7627 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
7628 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
7631 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
7632 ret
= perf_output_begin(&handle
, event
,
7633 mmap_event
->event_id
.header
.size
);
7637 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
7638 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
7640 perf_output_put(&handle
, mmap_event
->event_id
);
7642 if (event
->attr
.mmap2
) {
7643 perf_output_put(&handle
, mmap_event
->maj
);
7644 perf_output_put(&handle
, mmap_event
->min
);
7645 perf_output_put(&handle
, mmap_event
->ino
);
7646 perf_output_put(&handle
, mmap_event
->ino_generation
);
7647 perf_output_put(&handle
, mmap_event
->prot
);
7648 perf_output_put(&handle
, mmap_event
->flags
);
7651 __output_copy(&handle
, mmap_event
->file_name
,
7652 mmap_event
->file_size
);
7654 perf_event__output_id_sample(event
, &handle
, &sample
);
7656 perf_output_end(&handle
);
7658 mmap_event
->event_id
.header
.size
= size
;
7659 mmap_event
->event_id
.header
.type
= type
;
7662 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
7664 struct vm_area_struct
*vma
= mmap_event
->vma
;
7665 struct file
*file
= vma
->vm_file
;
7666 int maj
= 0, min
= 0;
7667 u64 ino
= 0, gen
= 0;
7668 u32 prot
= 0, flags
= 0;
7674 if (vma
->vm_flags
& VM_READ
)
7676 if (vma
->vm_flags
& VM_WRITE
)
7678 if (vma
->vm_flags
& VM_EXEC
)
7681 if (vma
->vm_flags
& VM_MAYSHARE
)
7684 flags
= MAP_PRIVATE
;
7686 if (vma
->vm_flags
& VM_DENYWRITE
)
7687 flags
|= MAP_DENYWRITE
;
7688 if (vma
->vm_flags
& VM_MAYEXEC
)
7689 flags
|= MAP_EXECUTABLE
;
7690 if (vma
->vm_flags
& VM_LOCKED
)
7691 flags
|= MAP_LOCKED
;
7692 if (vma
->vm_flags
& VM_HUGETLB
)
7693 flags
|= MAP_HUGETLB
;
7696 struct inode
*inode
;
7699 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
7705 * d_path() works from the end of the rb backwards, so we
7706 * need to add enough zero bytes after the string to handle
7707 * the 64bit alignment we do later.
7709 name
= file_path(file
, buf
, PATH_MAX
- sizeof(u64
));
7714 inode
= file_inode(vma
->vm_file
);
7715 dev
= inode
->i_sb
->s_dev
;
7717 gen
= inode
->i_generation
;
7723 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
7724 name
= (char *) vma
->vm_ops
->name(vma
);
7729 name
= (char *)arch_vma_name(vma
);
7733 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
7734 vma
->vm_end
>= vma
->vm_mm
->brk
) {
7738 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
7739 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
7749 strlcpy(tmp
, name
, sizeof(tmp
));
7753 * Since our buffer works in 8 byte units we need to align our string
7754 * size to a multiple of 8. However, we must guarantee the tail end is
7755 * zero'd out to avoid leaking random bits to userspace.
7757 size
= strlen(name
)+1;
7758 while (!IS_ALIGNED(size
, sizeof(u64
)))
7759 name
[size
++] = '\0';
7761 mmap_event
->file_name
= name
;
7762 mmap_event
->file_size
= size
;
7763 mmap_event
->maj
= maj
;
7764 mmap_event
->min
= min
;
7765 mmap_event
->ino
= ino
;
7766 mmap_event
->ino_generation
= gen
;
7767 mmap_event
->prot
= prot
;
7768 mmap_event
->flags
= flags
;
7770 if (!(vma
->vm_flags
& VM_EXEC
))
7771 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
7773 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
7775 perf_iterate_sb(perf_event_mmap_output
,
7783 * Check whether inode and address range match filter criteria.
7785 static bool perf_addr_filter_match(struct perf_addr_filter
*filter
,
7786 struct file
*file
, unsigned long offset
,
7789 /* d_inode(NULL) won't be equal to any mapped user-space file */
7790 if (!filter
->path
.dentry
)
7793 if (d_inode(filter
->path
.dentry
) != file_inode(file
))
7796 if (filter
->offset
> offset
+ size
)
7799 if (filter
->offset
+ filter
->size
< offset
)
7805 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter
*filter
,
7806 struct vm_area_struct
*vma
,
7807 struct perf_addr_filter_range
*fr
)
7809 unsigned long vma_size
= vma
->vm_end
- vma
->vm_start
;
7810 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
7811 struct file
*file
= vma
->vm_file
;
7813 if (!perf_addr_filter_match(filter
, file
, off
, vma_size
))
7816 if (filter
->offset
< off
) {
7817 fr
->start
= vma
->vm_start
;
7818 fr
->size
= min(vma_size
, filter
->size
- (off
- filter
->offset
));
7820 fr
->start
= vma
->vm_start
+ filter
->offset
- off
;
7821 fr
->size
= min(vma
->vm_end
- fr
->start
, filter
->size
);
7827 static void __perf_addr_filters_adjust(struct perf_event
*event
, void *data
)
7829 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
7830 struct vm_area_struct
*vma
= data
;
7831 struct perf_addr_filter
*filter
;
7832 unsigned int restart
= 0, count
= 0;
7833 unsigned long flags
;
7835 if (!has_addr_filter(event
))
7841 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
7842 list_for_each_entry(filter
, &ifh
->list
, entry
) {
7843 if (perf_addr_filter_vma_adjust(filter
, vma
,
7844 &event
->addr_filter_ranges
[count
]))
7851 event
->addr_filters_gen
++;
7852 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
7855 perf_event_stop(event
, 1);
7859 * Adjust all task's events' filters to the new vma
7861 static void perf_addr_filters_adjust(struct vm_area_struct
*vma
)
7863 struct perf_event_context
*ctx
;
7867 * Data tracing isn't supported yet and as such there is no need
7868 * to keep track of anything that isn't related to executable code:
7870 if (!(vma
->vm_flags
& VM_EXEC
))
7874 for_each_task_context_nr(ctxn
) {
7875 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
7879 perf_iterate_ctx(ctx
, __perf_addr_filters_adjust
, vma
, true);
7884 void perf_event_mmap(struct vm_area_struct
*vma
)
7886 struct perf_mmap_event mmap_event
;
7888 if (!atomic_read(&nr_mmap_events
))
7891 mmap_event
= (struct perf_mmap_event
){
7897 .type
= PERF_RECORD_MMAP
,
7898 .misc
= PERF_RECORD_MISC_USER
,
7903 .start
= vma
->vm_start
,
7904 .len
= vma
->vm_end
- vma
->vm_start
,
7905 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
7907 /* .maj (attr_mmap2 only) */
7908 /* .min (attr_mmap2 only) */
7909 /* .ino (attr_mmap2 only) */
7910 /* .ino_generation (attr_mmap2 only) */
7911 /* .prot (attr_mmap2 only) */
7912 /* .flags (attr_mmap2 only) */
7915 perf_addr_filters_adjust(vma
);
7916 perf_event_mmap_event(&mmap_event
);
7919 void perf_event_aux_event(struct perf_event
*event
, unsigned long head
,
7920 unsigned long size
, u64 flags
)
7922 struct perf_output_handle handle
;
7923 struct perf_sample_data sample
;
7924 struct perf_aux_event
{
7925 struct perf_event_header header
;
7931 .type
= PERF_RECORD_AUX
,
7933 .size
= sizeof(rec
),
7941 perf_event_header__init_id(&rec
.header
, &sample
, event
);
7942 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
7947 perf_output_put(&handle
, rec
);
7948 perf_event__output_id_sample(event
, &handle
, &sample
);
7950 perf_output_end(&handle
);
7954 * Lost/dropped samples logging
7956 void perf_log_lost_samples(struct perf_event
*event
, u64 lost
)
7958 struct perf_output_handle handle
;
7959 struct perf_sample_data sample
;
7963 struct perf_event_header header
;
7965 } lost_samples_event
= {
7967 .type
= PERF_RECORD_LOST_SAMPLES
,
7969 .size
= sizeof(lost_samples_event
),
7974 perf_event_header__init_id(&lost_samples_event
.header
, &sample
, event
);
7976 ret
= perf_output_begin(&handle
, event
,
7977 lost_samples_event
.header
.size
);
7981 perf_output_put(&handle
, lost_samples_event
);
7982 perf_event__output_id_sample(event
, &handle
, &sample
);
7983 perf_output_end(&handle
);
7987 * context_switch tracking
7990 struct perf_switch_event
{
7991 struct task_struct
*task
;
7992 struct task_struct
*next_prev
;
7995 struct perf_event_header header
;
8001 static int perf_event_switch_match(struct perf_event
*event
)
8003 return event
->attr
.context_switch
;
8006 static void perf_event_switch_output(struct perf_event
*event
, void *data
)
8008 struct perf_switch_event
*se
= data
;
8009 struct perf_output_handle handle
;
8010 struct perf_sample_data sample
;
8013 if (!perf_event_switch_match(event
))
8016 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8017 if (event
->ctx
->task
) {
8018 se
->event_id
.header
.type
= PERF_RECORD_SWITCH
;
8019 se
->event_id
.header
.size
= sizeof(se
->event_id
.header
);
8021 se
->event_id
.header
.type
= PERF_RECORD_SWITCH_CPU_WIDE
;
8022 se
->event_id
.header
.size
= sizeof(se
->event_id
);
8023 se
->event_id
.next_prev_pid
=
8024 perf_event_pid(event
, se
->next_prev
);
8025 se
->event_id
.next_prev_tid
=
8026 perf_event_tid(event
, se
->next_prev
);
8029 perf_event_header__init_id(&se
->event_id
.header
, &sample
, event
);
8031 ret
= perf_output_begin(&handle
, event
, se
->event_id
.header
.size
);
8035 if (event
->ctx
->task
)
8036 perf_output_put(&handle
, se
->event_id
.header
);
8038 perf_output_put(&handle
, se
->event_id
);
8040 perf_event__output_id_sample(event
, &handle
, &sample
);
8042 perf_output_end(&handle
);
8045 static void perf_event_switch(struct task_struct
*task
,
8046 struct task_struct
*next_prev
, bool sched_in
)
8048 struct perf_switch_event switch_event
;
8050 /* N.B. caller checks nr_switch_events != 0 */
8052 switch_event
= (struct perf_switch_event
){
8054 .next_prev
= next_prev
,
8058 .misc
= sched_in
? 0 : PERF_RECORD_MISC_SWITCH_OUT
,
8061 /* .next_prev_pid */
8062 /* .next_prev_tid */
8066 if (!sched_in
&& task
->state
== TASK_RUNNING
)
8067 switch_event
.event_id
.header
.misc
|=
8068 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT
;
8070 perf_iterate_sb(perf_event_switch_output
,
8076 * IRQ throttle logging
8079 static void perf_log_throttle(struct perf_event
*event
, int enable
)
8081 struct perf_output_handle handle
;
8082 struct perf_sample_data sample
;
8086 struct perf_event_header header
;
8090 } throttle_event
= {
8092 .type
= PERF_RECORD_THROTTLE
,
8094 .size
= sizeof(throttle_event
),
8096 .time
= perf_event_clock(event
),
8097 .id
= primary_event_id(event
),
8098 .stream_id
= event
->id
,
8102 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
8104 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
8106 ret
= perf_output_begin(&handle
, event
,
8107 throttle_event
.header
.size
);
8111 perf_output_put(&handle
, throttle_event
);
8112 perf_event__output_id_sample(event
, &handle
, &sample
);
8113 perf_output_end(&handle
);
8117 * ksymbol register/unregister tracking
8120 struct perf_ksymbol_event
{
8124 struct perf_event_header header
;
8132 static int perf_event_ksymbol_match(struct perf_event
*event
)
8134 return event
->attr
.ksymbol
;
8137 static void perf_event_ksymbol_output(struct perf_event
*event
, void *data
)
8139 struct perf_ksymbol_event
*ksymbol_event
= data
;
8140 struct perf_output_handle handle
;
8141 struct perf_sample_data sample
;
8144 if (!perf_event_ksymbol_match(event
))
8147 perf_event_header__init_id(&ksymbol_event
->event_id
.header
,
8149 ret
= perf_output_begin(&handle
, event
,
8150 ksymbol_event
->event_id
.header
.size
);
8154 perf_output_put(&handle
, ksymbol_event
->event_id
);
8155 __output_copy(&handle
, ksymbol_event
->name
, ksymbol_event
->name_len
);
8156 perf_event__output_id_sample(event
, &handle
, &sample
);
8158 perf_output_end(&handle
);
8161 void perf_event_ksymbol(u16 ksym_type
, u64 addr
, u32 len
, bool unregister
,
8164 struct perf_ksymbol_event ksymbol_event
;
8165 char name
[KSYM_NAME_LEN
];
8169 if (!atomic_read(&nr_ksymbol_events
))
8172 if (ksym_type
>= PERF_RECORD_KSYMBOL_TYPE_MAX
||
8173 ksym_type
== PERF_RECORD_KSYMBOL_TYPE_UNKNOWN
)
8176 strlcpy(name
, sym
, KSYM_NAME_LEN
);
8177 name_len
= strlen(name
) + 1;
8178 while (!IS_ALIGNED(name_len
, sizeof(u64
)))
8179 name
[name_len
++] = '\0';
8180 BUILD_BUG_ON(KSYM_NAME_LEN
% sizeof(u64
));
8183 flags
|= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER
;
8185 ksymbol_event
= (struct perf_ksymbol_event
){
8187 .name_len
= name_len
,
8190 .type
= PERF_RECORD_KSYMBOL
,
8191 .size
= sizeof(ksymbol_event
.event_id
) +
8196 .ksym_type
= ksym_type
,
8201 perf_iterate_sb(perf_event_ksymbol_output
, &ksymbol_event
, NULL
);
8204 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__
, ksym_type
);
8208 * bpf program load/unload tracking
8211 struct perf_bpf_event
{
8212 struct bpf_prog
*prog
;
8214 struct perf_event_header header
;
8218 u8 tag
[BPF_TAG_SIZE
];
8222 static int perf_event_bpf_match(struct perf_event
*event
)
8224 return event
->attr
.bpf_event
;
8227 static void perf_event_bpf_output(struct perf_event
*event
, void *data
)
8229 struct perf_bpf_event
*bpf_event
= data
;
8230 struct perf_output_handle handle
;
8231 struct perf_sample_data sample
;
8234 if (!perf_event_bpf_match(event
))
8237 perf_event_header__init_id(&bpf_event
->event_id
.header
,
8239 ret
= perf_output_begin(&handle
, event
,
8240 bpf_event
->event_id
.header
.size
);
8244 perf_output_put(&handle
, bpf_event
->event_id
);
8245 perf_event__output_id_sample(event
, &handle
, &sample
);
8247 perf_output_end(&handle
);
8250 static void perf_event_bpf_emit_ksymbols(struct bpf_prog
*prog
,
8251 enum perf_bpf_event_type type
)
8253 bool unregister
= type
== PERF_BPF_EVENT_PROG_UNLOAD
;
8254 char sym
[KSYM_NAME_LEN
];
8257 if (prog
->aux
->func_cnt
== 0) {
8258 bpf_get_prog_name(prog
, sym
);
8259 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF
,
8260 (u64
)(unsigned long)prog
->bpf_func
,
8261 prog
->jited_len
, unregister
, sym
);
8263 for (i
= 0; i
< prog
->aux
->func_cnt
; i
++) {
8264 struct bpf_prog
*subprog
= prog
->aux
->func
[i
];
8266 bpf_get_prog_name(subprog
, sym
);
8268 PERF_RECORD_KSYMBOL_TYPE_BPF
,
8269 (u64
)(unsigned long)subprog
->bpf_func
,
8270 subprog
->jited_len
, unregister
, sym
);
8275 void perf_event_bpf_event(struct bpf_prog
*prog
,
8276 enum perf_bpf_event_type type
,
8279 struct perf_bpf_event bpf_event
;
8281 if (type
<= PERF_BPF_EVENT_UNKNOWN
||
8282 type
>= PERF_BPF_EVENT_MAX
)
8286 case PERF_BPF_EVENT_PROG_LOAD
:
8287 case PERF_BPF_EVENT_PROG_UNLOAD
:
8288 if (atomic_read(&nr_ksymbol_events
))
8289 perf_event_bpf_emit_ksymbols(prog
, type
);
8295 if (!atomic_read(&nr_bpf_events
))
8298 bpf_event
= (struct perf_bpf_event
){
8302 .type
= PERF_RECORD_BPF_EVENT
,
8303 .size
= sizeof(bpf_event
.event_id
),
8307 .id
= prog
->aux
->id
,
8311 BUILD_BUG_ON(BPF_TAG_SIZE
% sizeof(u64
));
8313 memcpy(bpf_event
.event_id
.tag
, prog
->tag
, BPF_TAG_SIZE
);
8314 perf_iterate_sb(perf_event_bpf_output
, &bpf_event
, NULL
);
8317 void perf_event_itrace_started(struct perf_event
*event
)
8319 event
->attach_state
|= PERF_ATTACH_ITRACE
;
8322 static void perf_log_itrace_start(struct perf_event
*event
)
8324 struct perf_output_handle handle
;
8325 struct perf_sample_data sample
;
8326 struct perf_aux_event
{
8327 struct perf_event_header header
;
8334 event
= event
->parent
;
8336 if (!(event
->pmu
->capabilities
& PERF_PMU_CAP_ITRACE
) ||
8337 event
->attach_state
& PERF_ATTACH_ITRACE
)
8340 rec
.header
.type
= PERF_RECORD_ITRACE_START
;
8341 rec
.header
.misc
= 0;
8342 rec
.header
.size
= sizeof(rec
);
8343 rec
.pid
= perf_event_pid(event
, current
);
8344 rec
.tid
= perf_event_tid(event
, current
);
8346 perf_event_header__init_id(&rec
.header
, &sample
, event
);
8347 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
8352 perf_output_put(&handle
, rec
);
8353 perf_event__output_id_sample(event
, &handle
, &sample
);
8355 perf_output_end(&handle
);
8359 __perf_event_account_interrupt(struct perf_event
*event
, int throttle
)
8361 struct hw_perf_event
*hwc
= &event
->hw
;
8365 seq
= __this_cpu_read(perf_throttled_seq
);
8366 if (seq
!= hwc
->interrupts_seq
) {
8367 hwc
->interrupts_seq
= seq
;
8368 hwc
->interrupts
= 1;
8371 if (unlikely(throttle
8372 && hwc
->interrupts
>= max_samples_per_tick
)) {
8373 __this_cpu_inc(perf_throttled_count
);
8374 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
8375 hwc
->interrupts
= MAX_INTERRUPTS
;
8376 perf_log_throttle(event
, 0);
8381 if (event
->attr
.freq
) {
8382 u64 now
= perf_clock();
8383 s64 delta
= now
- hwc
->freq_time_stamp
;
8385 hwc
->freq_time_stamp
= now
;
8387 if (delta
> 0 && delta
< 2*TICK_NSEC
)
8388 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
8394 int perf_event_account_interrupt(struct perf_event
*event
)
8396 return __perf_event_account_interrupt(event
, 1);
8400 * Generic event overflow handling, sampling.
8403 static int __perf_event_overflow(struct perf_event
*event
,
8404 int throttle
, struct perf_sample_data
*data
,
8405 struct pt_regs
*regs
)
8407 int events
= atomic_read(&event
->event_limit
);
8411 * Non-sampling counters might still use the PMI to fold short
8412 * hardware counters, ignore those.
8414 if (unlikely(!is_sampling_event(event
)))
8417 ret
= __perf_event_account_interrupt(event
, throttle
);
8420 * XXX event_limit might not quite work as expected on inherited
8424 event
->pending_kill
= POLL_IN
;
8425 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
8427 event
->pending_kill
= POLL_HUP
;
8429 perf_event_disable_inatomic(event
);
8432 READ_ONCE(event
->overflow_handler
)(event
, data
, regs
);
8434 if (*perf_event_fasync(event
) && event
->pending_kill
) {
8435 event
->pending_wakeup
= 1;
8436 irq_work_queue(&event
->pending
);
8442 int perf_event_overflow(struct perf_event
*event
,
8443 struct perf_sample_data
*data
,
8444 struct pt_regs
*regs
)
8446 return __perf_event_overflow(event
, 1, data
, regs
);
8450 * Generic software event infrastructure
8453 struct swevent_htable
{
8454 struct swevent_hlist
*swevent_hlist
;
8455 struct mutex hlist_mutex
;
8458 /* Recursion avoidance in each contexts */
8459 int recursion
[PERF_NR_CONTEXTS
];
8462 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
8465 * We directly increment event->count and keep a second value in
8466 * event->hw.period_left to count intervals. This period event
8467 * is kept in the range [-sample_period, 0] so that we can use the
8471 u64
perf_swevent_set_period(struct perf_event
*event
)
8473 struct hw_perf_event
*hwc
= &event
->hw
;
8474 u64 period
= hwc
->last_period
;
8478 hwc
->last_period
= hwc
->sample_period
;
8481 old
= val
= local64_read(&hwc
->period_left
);
8485 nr
= div64_u64(period
+ val
, period
);
8486 offset
= nr
* period
;
8488 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
8494 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
8495 struct perf_sample_data
*data
,
8496 struct pt_regs
*regs
)
8498 struct hw_perf_event
*hwc
= &event
->hw
;
8502 overflow
= perf_swevent_set_period(event
);
8504 if (hwc
->interrupts
== MAX_INTERRUPTS
)
8507 for (; overflow
; overflow
--) {
8508 if (__perf_event_overflow(event
, throttle
,
8511 * We inhibit the overflow from happening when
8512 * hwc->interrupts == MAX_INTERRUPTS.
8520 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
8521 struct perf_sample_data
*data
,
8522 struct pt_regs
*regs
)
8524 struct hw_perf_event
*hwc
= &event
->hw
;
8526 local64_add(nr
, &event
->count
);
8531 if (!is_sampling_event(event
))
8534 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
8536 return perf_swevent_overflow(event
, 1, data
, regs
);
8538 data
->period
= event
->hw
.last_period
;
8540 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
8541 return perf_swevent_overflow(event
, 1, data
, regs
);
8543 if (local64_add_negative(nr
, &hwc
->period_left
))
8546 perf_swevent_overflow(event
, 0, data
, regs
);
8549 static int perf_exclude_event(struct perf_event
*event
,
8550 struct pt_regs
*regs
)
8552 if (event
->hw
.state
& PERF_HES_STOPPED
)
8556 if (event
->attr
.exclude_user
&& user_mode(regs
))
8559 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
8566 static int perf_swevent_match(struct perf_event
*event
,
8567 enum perf_type_id type
,
8569 struct perf_sample_data
*data
,
8570 struct pt_regs
*regs
)
8572 if (event
->attr
.type
!= type
)
8575 if (event
->attr
.config
!= event_id
)
8578 if (perf_exclude_event(event
, regs
))
8584 static inline u64
swevent_hash(u64 type
, u32 event_id
)
8586 u64 val
= event_id
| (type
<< 32);
8588 return hash_64(val
, SWEVENT_HLIST_BITS
);
8591 static inline struct hlist_head
*
8592 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
8594 u64 hash
= swevent_hash(type
, event_id
);
8596 return &hlist
->heads
[hash
];
8599 /* For the read side: events when they trigger */
8600 static inline struct hlist_head
*
8601 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
8603 struct swevent_hlist
*hlist
;
8605 hlist
= rcu_dereference(swhash
->swevent_hlist
);
8609 return __find_swevent_head(hlist
, type
, event_id
);
8612 /* For the event head insertion and removal in the hlist */
8613 static inline struct hlist_head
*
8614 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
8616 struct swevent_hlist
*hlist
;
8617 u32 event_id
= event
->attr
.config
;
8618 u64 type
= event
->attr
.type
;
8621 * Event scheduling is always serialized against hlist allocation
8622 * and release. Which makes the protected version suitable here.
8623 * The context lock guarantees that.
8625 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
8626 lockdep_is_held(&event
->ctx
->lock
));
8630 return __find_swevent_head(hlist
, type
, event_id
);
8633 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
8635 struct perf_sample_data
*data
,
8636 struct pt_regs
*regs
)
8638 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
8639 struct perf_event
*event
;
8640 struct hlist_head
*head
;
8643 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
8647 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
8648 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
8649 perf_swevent_event(event
, nr
, data
, regs
);
8655 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
8657 int perf_swevent_get_recursion_context(void)
8659 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
8661 return get_recursion_context(swhash
->recursion
);
8663 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
8665 void perf_swevent_put_recursion_context(int rctx
)
8667 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
8669 put_recursion_context(swhash
->recursion
, rctx
);
8672 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
8674 struct perf_sample_data data
;
8676 if (WARN_ON_ONCE(!regs
))
8679 perf_sample_data_init(&data
, addr
, 0);
8680 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
8683 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
8687 preempt_disable_notrace();
8688 rctx
= perf_swevent_get_recursion_context();
8689 if (unlikely(rctx
< 0))
8692 ___perf_sw_event(event_id
, nr
, regs
, addr
);
8694 perf_swevent_put_recursion_context(rctx
);
8696 preempt_enable_notrace();
8699 static void perf_swevent_read(struct perf_event
*event
)
8703 static int perf_swevent_add(struct perf_event
*event
, int flags
)
8705 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
8706 struct hw_perf_event
*hwc
= &event
->hw
;
8707 struct hlist_head
*head
;
8709 if (is_sampling_event(event
)) {
8710 hwc
->last_period
= hwc
->sample_period
;
8711 perf_swevent_set_period(event
);
8714 hwc
->state
= !(flags
& PERF_EF_START
);
8716 head
= find_swevent_head(swhash
, event
);
8717 if (WARN_ON_ONCE(!head
))
8720 hlist_add_head_rcu(&event
->hlist_entry
, head
);
8721 perf_event_update_userpage(event
);
8726 static void perf_swevent_del(struct perf_event
*event
, int flags
)
8728 hlist_del_rcu(&event
->hlist_entry
);
8731 static void perf_swevent_start(struct perf_event
*event
, int flags
)
8733 event
->hw
.state
= 0;
8736 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
8738 event
->hw
.state
= PERF_HES_STOPPED
;
8741 /* Deref the hlist from the update side */
8742 static inline struct swevent_hlist
*
8743 swevent_hlist_deref(struct swevent_htable
*swhash
)
8745 return rcu_dereference_protected(swhash
->swevent_hlist
,
8746 lockdep_is_held(&swhash
->hlist_mutex
));
8749 static void swevent_hlist_release(struct swevent_htable
*swhash
)
8751 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
8756 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
8757 kfree_rcu(hlist
, rcu_head
);
8760 static void swevent_hlist_put_cpu(int cpu
)
8762 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
8764 mutex_lock(&swhash
->hlist_mutex
);
8766 if (!--swhash
->hlist_refcount
)
8767 swevent_hlist_release(swhash
);
8769 mutex_unlock(&swhash
->hlist_mutex
);
8772 static void swevent_hlist_put(void)
8776 for_each_possible_cpu(cpu
)
8777 swevent_hlist_put_cpu(cpu
);
8780 static int swevent_hlist_get_cpu(int cpu
)
8782 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
8785 mutex_lock(&swhash
->hlist_mutex
);
8786 if (!swevent_hlist_deref(swhash
) &&
8787 cpumask_test_cpu(cpu
, perf_online_mask
)) {
8788 struct swevent_hlist
*hlist
;
8790 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
8795 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
8797 swhash
->hlist_refcount
++;
8799 mutex_unlock(&swhash
->hlist_mutex
);
8804 static int swevent_hlist_get(void)
8806 int err
, cpu
, failed_cpu
;
8808 mutex_lock(&pmus_lock
);
8809 for_each_possible_cpu(cpu
) {
8810 err
= swevent_hlist_get_cpu(cpu
);
8816 mutex_unlock(&pmus_lock
);
8819 for_each_possible_cpu(cpu
) {
8820 if (cpu
== failed_cpu
)
8822 swevent_hlist_put_cpu(cpu
);
8824 mutex_unlock(&pmus_lock
);
8828 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
8830 static void sw_perf_event_destroy(struct perf_event
*event
)
8832 u64 event_id
= event
->attr
.config
;
8834 WARN_ON(event
->parent
);
8836 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
8837 swevent_hlist_put();
8840 static int perf_swevent_init(struct perf_event
*event
)
8842 u64 event_id
= event
->attr
.config
;
8844 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
8848 * no branch sampling for software events
8850 if (has_branch_stack(event
))
8854 case PERF_COUNT_SW_CPU_CLOCK
:
8855 case PERF_COUNT_SW_TASK_CLOCK
:
8862 if (event_id
>= PERF_COUNT_SW_MAX
)
8865 if (!event
->parent
) {
8868 err
= swevent_hlist_get();
8872 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
8873 event
->destroy
= sw_perf_event_destroy
;
8879 static struct pmu perf_swevent
= {
8880 .task_ctx_nr
= perf_sw_context
,
8882 .capabilities
= PERF_PMU_CAP_NO_NMI
,
8884 .event_init
= perf_swevent_init
,
8885 .add
= perf_swevent_add
,
8886 .del
= perf_swevent_del
,
8887 .start
= perf_swevent_start
,
8888 .stop
= perf_swevent_stop
,
8889 .read
= perf_swevent_read
,
8892 #ifdef CONFIG_EVENT_TRACING
8894 static int perf_tp_filter_match(struct perf_event
*event
,
8895 struct perf_sample_data
*data
)
8897 void *record
= data
->raw
->frag
.data
;
8899 /* only top level events have filters set */
8901 event
= event
->parent
;
8903 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
8908 static int perf_tp_event_match(struct perf_event
*event
,
8909 struct perf_sample_data
*data
,
8910 struct pt_regs
*regs
)
8912 if (event
->hw
.state
& PERF_HES_STOPPED
)
8915 * If exclude_kernel, only trace user-space tracepoints (uprobes)
8917 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
8920 if (!perf_tp_filter_match(event
, data
))
8926 void perf_trace_run_bpf_submit(void *raw_data
, int size
, int rctx
,
8927 struct trace_event_call
*call
, u64 count
,
8928 struct pt_regs
*regs
, struct hlist_head
*head
,
8929 struct task_struct
*task
)
8931 if (bpf_prog_array_valid(call
)) {
8932 *(struct pt_regs
**)raw_data
= regs
;
8933 if (!trace_call_bpf(call
, raw_data
) || hlist_empty(head
)) {
8934 perf_swevent_put_recursion_context(rctx
);
8938 perf_tp_event(call
->event
.type
, count
, raw_data
, size
, regs
, head
,
8941 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit
);
8943 void perf_tp_event(u16 event_type
, u64 count
, void *record
, int entry_size
,
8944 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
8945 struct task_struct
*task
)
8947 struct perf_sample_data data
;
8948 struct perf_event
*event
;
8950 struct perf_raw_record raw
= {
8957 perf_sample_data_init(&data
, 0, 0);
8960 perf_trace_buf_update(record
, event_type
);
8962 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
8963 if (perf_tp_event_match(event
, &data
, regs
))
8964 perf_swevent_event(event
, count
, &data
, regs
);
8968 * If we got specified a target task, also iterate its context and
8969 * deliver this event there too.
8971 if (task
&& task
!= current
) {
8972 struct perf_event_context
*ctx
;
8973 struct trace_entry
*entry
= record
;
8976 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
8980 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
8981 if (event
->cpu
!= smp_processor_id())
8983 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
8985 if (event
->attr
.config
!= entry
->type
)
8987 if (perf_tp_event_match(event
, &data
, regs
))
8988 perf_swevent_event(event
, count
, &data
, regs
);
8994 perf_swevent_put_recursion_context(rctx
);
8996 EXPORT_SYMBOL_GPL(perf_tp_event
);
8998 static void tp_perf_event_destroy(struct perf_event
*event
)
9000 perf_trace_destroy(event
);
9003 static int perf_tp_event_init(struct perf_event
*event
)
9007 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
9011 * no branch sampling for tracepoint events
9013 if (has_branch_stack(event
))
9016 err
= perf_trace_init(event
);
9020 event
->destroy
= tp_perf_event_destroy
;
9025 static struct pmu perf_tracepoint
= {
9026 .task_ctx_nr
= perf_sw_context
,
9028 .event_init
= perf_tp_event_init
,
9029 .add
= perf_trace_add
,
9030 .del
= perf_trace_del
,
9031 .start
= perf_swevent_start
,
9032 .stop
= perf_swevent_stop
,
9033 .read
= perf_swevent_read
,
9036 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9038 * Flags in config, used by dynamic PMU kprobe and uprobe
9039 * The flags should match following PMU_FORMAT_ATTR().
9041 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9042 * if not set, create kprobe/uprobe
9044 * The following values specify a reference counter (or semaphore in the
9045 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9046 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9048 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9049 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
9051 enum perf_probe_config
{
9052 PERF_PROBE_CONFIG_IS_RETPROBE
= 1U << 0, /* [k,u]retprobe */
9053 PERF_UPROBE_REF_CTR_OFFSET_BITS
= 32,
9054 PERF_UPROBE_REF_CTR_OFFSET_SHIFT
= 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS
,
9057 PMU_FORMAT_ATTR(retprobe
, "config:0");
9060 #ifdef CONFIG_KPROBE_EVENTS
9061 static struct attribute
*kprobe_attrs
[] = {
9062 &format_attr_retprobe
.attr
,
9066 static struct attribute_group kprobe_format_group
= {
9068 .attrs
= kprobe_attrs
,
9071 static const struct attribute_group
*kprobe_attr_groups
[] = {
9072 &kprobe_format_group
,
9076 static int perf_kprobe_event_init(struct perf_event
*event
);
9077 static struct pmu perf_kprobe
= {
9078 .task_ctx_nr
= perf_sw_context
,
9079 .event_init
= perf_kprobe_event_init
,
9080 .add
= perf_trace_add
,
9081 .del
= perf_trace_del
,
9082 .start
= perf_swevent_start
,
9083 .stop
= perf_swevent_stop
,
9084 .read
= perf_swevent_read
,
9085 .attr_groups
= kprobe_attr_groups
,
9088 static int perf_kprobe_event_init(struct perf_event
*event
)
9093 if (event
->attr
.type
!= perf_kprobe
.type
)
9096 if (!capable(CAP_SYS_ADMIN
))
9100 * no branch sampling for probe events
9102 if (has_branch_stack(event
))
9105 is_retprobe
= event
->attr
.config
& PERF_PROBE_CONFIG_IS_RETPROBE
;
9106 err
= perf_kprobe_init(event
, is_retprobe
);
9110 event
->destroy
= perf_kprobe_destroy
;
9114 #endif /* CONFIG_KPROBE_EVENTS */
9116 #ifdef CONFIG_UPROBE_EVENTS
9117 PMU_FORMAT_ATTR(ref_ctr_offset
, "config:32-63");
9119 static struct attribute
*uprobe_attrs
[] = {
9120 &format_attr_retprobe
.attr
,
9121 &format_attr_ref_ctr_offset
.attr
,
9125 static struct attribute_group uprobe_format_group
= {
9127 .attrs
= uprobe_attrs
,
9130 static const struct attribute_group
*uprobe_attr_groups
[] = {
9131 &uprobe_format_group
,
9135 static int perf_uprobe_event_init(struct perf_event
*event
);
9136 static struct pmu perf_uprobe
= {
9137 .task_ctx_nr
= perf_sw_context
,
9138 .event_init
= perf_uprobe_event_init
,
9139 .add
= perf_trace_add
,
9140 .del
= perf_trace_del
,
9141 .start
= perf_swevent_start
,
9142 .stop
= perf_swevent_stop
,
9143 .read
= perf_swevent_read
,
9144 .attr_groups
= uprobe_attr_groups
,
9147 static int perf_uprobe_event_init(struct perf_event
*event
)
9150 unsigned long ref_ctr_offset
;
9153 if (event
->attr
.type
!= perf_uprobe
.type
)
9156 if (!capable(CAP_SYS_ADMIN
))
9160 * no branch sampling for probe events
9162 if (has_branch_stack(event
))
9165 is_retprobe
= event
->attr
.config
& PERF_PROBE_CONFIG_IS_RETPROBE
;
9166 ref_ctr_offset
= event
->attr
.config
>> PERF_UPROBE_REF_CTR_OFFSET_SHIFT
;
9167 err
= perf_uprobe_init(event
, ref_ctr_offset
, is_retprobe
);
9171 event
->destroy
= perf_uprobe_destroy
;
9175 #endif /* CONFIG_UPROBE_EVENTS */
9177 static inline void perf_tp_register(void)
9179 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
9180 #ifdef CONFIG_KPROBE_EVENTS
9181 perf_pmu_register(&perf_kprobe
, "kprobe", -1);
9183 #ifdef CONFIG_UPROBE_EVENTS
9184 perf_pmu_register(&perf_uprobe
, "uprobe", -1);
9188 static void perf_event_free_filter(struct perf_event
*event
)
9190 ftrace_profile_free_filter(event
);
9193 #ifdef CONFIG_BPF_SYSCALL
9194 static void bpf_overflow_handler(struct perf_event
*event
,
9195 struct perf_sample_data
*data
,
9196 struct pt_regs
*regs
)
9198 struct bpf_perf_event_data_kern ctx
= {
9204 ctx
.regs
= perf_arch_bpf_user_pt_regs(regs
);
9206 if (unlikely(__this_cpu_inc_return(bpf_prog_active
) != 1))
9209 ret
= BPF_PROG_RUN(event
->prog
, &ctx
);
9212 __this_cpu_dec(bpf_prog_active
);
9217 event
->orig_overflow_handler(event
, data
, regs
);
9220 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
9222 struct bpf_prog
*prog
;
9224 if (event
->overflow_handler_context
)
9225 /* hw breakpoint or kernel counter */
9231 prog
= bpf_prog_get_type(prog_fd
, BPF_PROG_TYPE_PERF_EVENT
);
9233 return PTR_ERR(prog
);
9236 event
->orig_overflow_handler
= READ_ONCE(event
->overflow_handler
);
9237 WRITE_ONCE(event
->overflow_handler
, bpf_overflow_handler
);
9241 static void perf_event_free_bpf_handler(struct perf_event
*event
)
9243 struct bpf_prog
*prog
= event
->prog
;
9248 WRITE_ONCE(event
->overflow_handler
, event
->orig_overflow_handler
);
9253 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
9257 static void perf_event_free_bpf_handler(struct perf_event
*event
)
9263 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9264 * with perf_event_open()
9266 static inline bool perf_event_is_tracing(struct perf_event
*event
)
9268 if (event
->pmu
== &perf_tracepoint
)
9270 #ifdef CONFIG_KPROBE_EVENTS
9271 if (event
->pmu
== &perf_kprobe
)
9274 #ifdef CONFIG_UPROBE_EVENTS
9275 if (event
->pmu
== &perf_uprobe
)
9281 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
9283 bool is_kprobe
, is_tracepoint
, is_syscall_tp
;
9284 struct bpf_prog
*prog
;
9287 if (!perf_event_is_tracing(event
))
9288 return perf_event_set_bpf_handler(event
, prog_fd
);
9290 is_kprobe
= event
->tp_event
->flags
& TRACE_EVENT_FL_UKPROBE
;
9291 is_tracepoint
= event
->tp_event
->flags
& TRACE_EVENT_FL_TRACEPOINT
;
9292 is_syscall_tp
= is_syscall_trace_event(event
->tp_event
);
9293 if (!is_kprobe
&& !is_tracepoint
&& !is_syscall_tp
)
9294 /* bpf programs can only be attached to u/kprobe or tracepoint */
9297 prog
= bpf_prog_get(prog_fd
);
9299 return PTR_ERR(prog
);
9301 if ((is_kprobe
&& prog
->type
!= BPF_PROG_TYPE_KPROBE
) ||
9302 (is_tracepoint
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
) ||
9303 (is_syscall_tp
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
)) {
9304 /* valid fd, but invalid bpf program type */
9309 /* Kprobe override only works for kprobes, not uprobes. */
9310 if (prog
->kprobe_override
&&
9311 !(event
->tp_event
->flags
& TRACE_EVENT_FL_KPROBE
)) {
9316 if (is_tracepoint
|| is_syscall_tp
) {
9317 int off
= trace_event_get_offsets(event
->tp_event
);
9319 if (prog
->aux
->max_ctx_offset
> off
) {
9325 ret
= perf_event_attach_bpf_prog(event
, prog
);
9331 static void perf_event_free_bpf_prog(struct perf_event
*event
)
9333 if (!perf_event_is_tracing(event
)) {
9334 perf_event_free_bpf_handler(event
);
9337 perf_event_detach_bpf_prog(event
);
9342 static inline void perf_tp_register(void)
9346 static void perf_event_free_filter(struct perf_event
*event
)
9350 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
9355 static void perf_event_free_bpf_prog(struct perf_event
*event
)
9358 #endif /* CONFIG_EVENT_TRACING */
9360 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9361 void perf_bp_event(struct perf_event
*bp
, void *data
)
9363 struct perf_sample_data sample
;
9364 struct pt_regs
*regs
= data
;
9366 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
9368 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
9369 perf_swevent_event(bp
, 1, &sample
, regs
);
9374 * Allocate a new address filter
9376 static struct perf_addr_filter
*
9377 perf_addr_filter_new(struct perf_event
*event
, struct list_head
*filters
)
9379 int node
= cpu_to_node(event
->cpu
== -1 ? 0 : event
->cpu
);
9380 struct perf_addr_filter
*filter
;
9382 filter
= kzalloc_node(sizeof(*filter
), GFP_KERNEL
, node
);
9386 INIT_LIST_HEAD(&filter
->entry
);
9387 list_add_tail(&filter
->entry
, filters
);
9392 static void free_filters_list(struct list_head
*filters
)
9394 struct perf_addr_filter
*filter
, *iter
;
9396 list_for_each_entry_safe(filter
, iter
, filters
, entry
) {
9397 path_put(&filter
->path
);
9398 list_del(&filter
->entry
);
9404 * Free existing address filters and optionally install new ones
9406 static void perf_addr_filters_splice(struct perf_event
*event
,
9407 struct list_head
*head
)
9409 unsigned long flags
;
9412 if (!has_addr_filter(event
))
9415 /* don't bother with children, they don't have their own filters */
9419 raw_spin_lock_irqsave(&event
->addr_filters
.lock
, flags
);
9421 list_splice_init(&event
->addr_filters
.list
, &list
);
9423 list_splice(head
, &event
->addr_filters
.list
);
9425 raw_spin_unlock_irqrestore(&event
->addr_filters
.lock
, flags
);
9427 free_filters_list(&list
);
9431 * Scan through mm's vmas and see if one of them matches the
9432 * @filter; if so, adjust filter's address range.
9433 * Called with mm::mmap_sem down for reading.
9435 static void perf_addr_filter_apply(struct perf_addr_filter
*filter
,
9436 struct mm_struct
*mm
,
9437 struct perf_addr_filter_range
*fr
)
9439 struct vm_area_struct
*vma
;
9441 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
9445 if (perf_addr_filter_vma_adjust(filter
, vma
, fr
))
9451 * Update event's address range filters based on the
9452 * task's existing mappings, if any.
9454 static void perf_event_addr_filters_apply(struct perf_event
*event
)
9456 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
9457 struct task_struct
*task
= READ_ONCE(event
->ctx
->task
);
9458 struct perf_addr_filter
*filter
;
9459 struct mm_struct
*mm
= NULL
;
9460 unsigned int count
= 0;
9461 unsigned long flags
;
9464 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9465 * will stop on the parent's child_mutex that our caller is also holding
9467 if (task
== TASK_TOMBSTONE
)
9470 if (ifh
->nr_file_filters
) {
9471 mm
= get_task_mm(event
->ctx
->task
);
9475 down_read(&mm
->mmap_sem
);
9478 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
9479 list_for_each_entry(filter
, &ifh
->list
, entry
) {
9480 if (filter
->path
.dentry
) {
9482 * Adjust base offset if the filter is associated to a
9483 * binary that needs to be mapped:
9485 event
->addr_filter_ranges
[count
].start
= 0;
9486 event
->addr_filter_ranges
[count
].size
= 0;
9488 perf_addr_filter_apply(filter
, mm
, &event
->addr_filter_ranges
[count
]);
9490 event
->addr_filter_ranges
[count
].start
= filter
->offset
;
9491 event
->addr_filter_ranges
[count
].size
= filter
->size
;
9497 event
->addr_filters_gen
++;
9498 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
9500 if (ifh
->nr_file_filters
) {
9501 up_read(&mm
->mmap_sem
);
9507 perf_event_stop(event
, 1);
9511 * Address range filtering: limiting the data to certain
9512 * instruction address ranges. Filters are ioctl()ed to us from
9513 * userspace as ascii strings.
9515 * Filter string format:
9518 * where ACTION is one of the
9519 * * "filter": limit the trace to this region
9520 * * "start": start tracing from this address
9521 * * "stop": stop tracing at this address/region;
9523 * * for kernel addresses: <start address>[/<size>]
9524 * * for object files: <start address>[/<size>]@</path/to/object/file>
9526 * if <size> is not specified or is zero, the range is treated as a single
9527 * address; not valid for ACTION=="filter".
9541 IF_STATE_ACTION
= 0,
9546 static const match_table_t if_tokens
= {
9547 { IF_ACT_FILTER
, "filter" },
9548 { IF_ACT_START
, "start" },
9549 { IF_ACT_STOP
, "stop" },
9550 { IF_SRC_FILE
, "%u/%u@%s" },
9551 { IF_SRC_KERNEL
, "%u/%u" },
9552 { IF_SRC_FILEADDR
, "%u@%s" },
9553 { IF_SRC_KERNELADDR
, "%u" },
9554 { IF_ACT_NONE
, NULL
},
9558 * Address filter string parser
9561 perf_event_parse_addr_filter(struct perf_event
*event
, char *fstr
,
9562 struct list_head
*filters
)
9564 struct perf_addr_filter
*filter
= NULL
;
9565 char *start
, *orig
, *filename
= NULL
;
9566 substring_t args
[MAX_OPT_ARGS
];
9567 int state
= IF_STATE_ACTION
, token
;
9568 unsigned int kernel
= 0;
9571 orig
= fstr
= kstrdup(fstr
, GFP_KERNEL
);
9575 while ((start
= strsep(&fstr
, " ,\n")) != NULL
) {
9576 static const enum perf_addr_filter_action_t actions
[] = {
9577 [IF_ACT_FILTER
] = PERF_ADDR_FILTER_ACTION_FILTER
,
9578 [IF_ACT_START
] = PERF_ADDR_FILTER_ACTION_START
,
9579 [IF_ACT_STOP
] = PERF_ADDR_FILTER_ACTION_STOP
,
9586 /* filter definition begins */
9587 if (state
== IF_STATE_ACTION
) {
9588 filter
= perf_addr_filter_new(event
, filters
);
9593 token
= match_token(start
, if_tokens
, args
);
9598 if (state
!= IF_STATE_ACTION
)
9601 filter
->action
= actions
[token
];
9602 state
= IF_STATE_SOURCE
;
9605 case IF_SRC_KERNELADDR
:
9610 case IF_SRC_FILEADDR
:
9612 if (state
!= IF_STATE_SOURCE
)
9616 ret
= kstrtoul(args
[0].from
, 0, &filter
->offset
);
9620 if (token
== IF_SRC_KERNEL
|| token
== IF_SRC_FILE
) {
9622 ret
= kstrtoul(args
[1].from
, 0, &filter
->size
);
9627 if (token
== IF_SRC_FILE
|| token
== IF_SRC_FILEADDR
) {
9628 int fpos
= token
== IF_SRC_FILE
? 2 : 1;
9630 filename
= match_strdup(&args
[fpos
]);
9637 state
= IF_STATE_END
;
9645 * Filter definition is fully parsed, validate and install it.
9646 * Make sure that it doesn't contradict itself or the event's
9649 if (state
== IF_STATE_END
) {
9651 if (kernel
&& event
->attr
.exclude_kernel
)
9655 * ACTION "filter" must have a non-zero length region
9658 if (filter
->action
== PERF_ADDR_FILTER_ACTION_FILTER
&&
9667 * For now, we only support file-based filters
9668 * in per-task events; doing so for CPU-wide
9669 * events requires additional context switching
9670 * trickery, since same object code will be
9671 * mapped at different virtual addresses in
9672 * different processes.
9675 if (!event
->ctx
->task
)
9676 goto fail_free_name
;
9678 /* look up the path and grab its inode */
9679 ret
= kern_path(filename
, LOOKUP_FOLLOW
,
9682 goto fail_free_name
;
9688 if (!filter
->path
.dentry
||
9689 !S_ISREG(d_inode(filter
->path
.dentry
)
9693 event
->addr_filters
.nr_file_filters
++;
9696 /* ready to consume more filters */
9697 state
= IF_STATE_ACTION
;
9702 if (state
!= IF_STATE_ACTION
)
9712 free_filters_list(filters
);
9719 perf_event_set_addr_filter(struct perf_event
*event
, char *filter_str
)
9725 * Since this is called in perf_ioctl() path, we're already holding
9728 lockdep_assert_held(&event
->ctx
->mutex
);
9730 if (WARN_ON_ONCE(event
->parent
))
9733 ret
= perf_event_parse_addr_filter(event
, filter_str
, &filters
);
9735 goto fail_clear_files
;
9737 ret
= event
->pmu
->addr_filters_validate(&filters
);
9739 goto fail_free_filters
;
9741 /* remove existing filters, if any */
9742 perf_addr_filters_splice(event
, &filters
);
9744 /* install new filters */
9745 perf_event_for_each_child(event
, perf_event_addr_filters_apply
);
9750 free_filters_list(&filters
);
9753 event
->addr_filters
.nr_file_filters
= 0;
9758 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
9763 filter_str
= strndup_user(arg
, PAGE_SIZE
);
9764 if (IS_ERR(filter_str
))
9765 return PTR_ERR(filter_str
);
9767 #ifdef CONFIG_EVENT_TRACING
9768 if (perf_event_is_tracing(event
)) {
9769 struct perf_event_context
*ctx
= event
->ctx
;
9772 * Beware, here be dragons!!
9774 * the tracepoint muck will deadlock against ctx->mutex, but
9775 * the tracepoint stuff does not actually need it. So
9776 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9777 * already have a reference on ctx.
9779 * This can result in event getting moved to a different ctx,
9780 * but that does not affect the tracepoint state.
9782 mutex_unlock(&ctx
->mutex
);
9783 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
9784 mutex_lock(&ctx
->mutex
);
9787 if (has_addr_filter(event
))
9788 ret
= perf_event_set_addr_filter(event
, filter_str
);
9795 * hrtimer based swevent callback
9798 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
9800 enum hrtimer_restart ret
= HRTIMER_RESTART
;
9801 struct perf_sample_data data
;
9802 struct pt_regs
*regs
;
9803 struct perf_event
*event
;
9806 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
9808 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
9809 return HRTIMER_NORESTART
;
9811 event
->pmu
->read(event
);
9813 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
9814 regs
= get_irq_regs();
9816 if (regs
&& !perf_exclude_event(event
, regs
)) {
9817 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
9818 if (__perf_event_overflow(event
, 1, &data
, regs
))
9819 ret
= HRTIMER_NORESTART
;
9822 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
9823 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
9828 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
9830 struct hw_perf_event
*hwc
= &event
->hw
;
9833 if (!is_sampling_event(event
))
9836 period
= local64_read(&hwc
->period_left
);
9841 local64_set(&hwc
->period_left
, 0);
9843 period
= max_t(u64
, 10000, hwc
->sample_period
);
9845 hrtimer_start(&hwc
->hrtimer
, ns_to_ktime(period
),
9846 HRTIMER_MODE_REL_PINNED_HARD
);
9849 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
9851 struct hw_perf_event
*hwc
= &event
->hw
;
9853 if (is_sampling_event(event
)) {
9854 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
9855 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
9857 hrtimer_cancel(&hwc
->hrtimer
);
9861 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
9863 struct hw_perf_event
*hwc
= &event
->hw
;
9865 if (!is_sampling_event(event
))
9868 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_HARD
);
9869 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
9872 * Since hrtimers have a fixed rate, we can do a static freq->period
9873 * mapping and avoid the whole period adjust feedback stuff.
9875 if (event
->attr
.freq
) {
9876 long freq
= event
->attr
.sample_freq
;
9878 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
9879 hwc
->sample_period
= event
->attr
.sample_period
;
9880 local64_set(&hwc
->period_left
, hwc
->sample_period
);
9881 hwc
->last_period
= hwc
->sample_period
;
9882 event
->attr
.freq
= 0;
9887 * Software event: cpu wall time clock
9890 static void cpu_clock_event_update(struct perf_event
*event
)
9895 now
= local_clock();
9896 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
9897 local64_add(now
- prev
, &event
->count
);
9900 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
9902 local64_set(&event
->hw
.prev_count
, local_clock());
9903 perf_swevent_start_hrtimer(event
);
9906 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
9908 perf_swevent_cancel_hrtimer(event
);
9909 cpu_clock_event_update(event
);
9912 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
9914 if (flags
& PERF_EF_START
)
9915 cpu_clock_event_start(event
, flags
);
9916 perf_event_update_userpage(event
);
9921 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
9923 cpu_clock_event_stop(event
, flags
);
9926 static void cpu_clock_event_read(struct perf_event
*event
)
9928 cpu_clock_event_update(event
);
9931 static int cpu_clock_event_init(struct perf_event
*event
)
9933 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
9936 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
9940 * no branch sampling for software events
9942 if (has_branch_stack(event
))
9945 perf_swevent_init_hrtimer(event
);
9950 static struct pmu perf_cpu_clock
= {
9951 .task_ctx_nr
= perf_sw_context
,
9953 .capabilities
= PERF_PMU_CAP_NO_NMI
,
9955 .event_init
= cpu_clock_event_init
,
9956 .add
= cpu_clock_event_add
,
9957 .del
= cpu_clock_event_del
,
9958 .start
= cpu_clock_event_start
,
9959 .stop
= cpu_clock_event_stop
,
9960 .read
= cpu_clock_event_read
,
9964 * Software event: task time clock
9967 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
9972 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
9974 local64_add(delta
, &event
->count
);
9977 static void task_clock_event_start(struct perf_event
*event
, int flags
)
9979 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
9980 perf_swevent_start_hrtimer(event
);
9983 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
9985 perf_swevent_cancel_hrtimer(event
);
9986 task_clock_event_update(event
, event
->ctx
->time
);
9989 static int task_clock_event_add(struct perf_event
*event
, int flags
)
9991 if (flags
& PERF_EF_START
)
9992 task_clock_event_start(event
, flags
);
9993 perf_event_update_userpage(event
);
9998 static void task_clock_event_del(struct perf_event
*event
, int flags
)
10000 task_clock_event_stop(event
, PERF_EF_UPDATE
);
10003 static void task_clock_event_read(struct perf_event
*event
)
10005 u64 now
= perf_clock();
10006 u64 delta
= now
- event
->ctx
->timestamp
;
10007 u64 time
= event
->ctx
->time
+ delta
;
10009 task_clock_event_update(event
, time
);
10012 static int task_clock_event_init(struct perf_event
*event
)
10014 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
10017 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
10021 * no branch sampling for software events
10023 if (has_branch_stack(event
))
10024 return -EOPNOTSUPP
;
10026 perf_swevent_init_hrtimer(event
);
10031 static struct pmu perf_task_clock
= {
10032 .task_ctx_nr
= perf_sw_context
,
10034 .capabilities
= PERF_PMU_CAP_NO_NMI
,
10036 .event_init
= task_clock_event_init
,
10037 .add
= task_clock_event_add
,
10038 .del
= task_clock_event_del
,
10039 .start
= task_clock_event_start
,
10040 .stop
= task_clock_event_stop
,
10041 .read
= task_clock_event_read
,
10044 static void perf_pmu_nop_void(struct pmu
*pmu
)
10048 static void perf_pmu_nop_txn(struct pmu
*pmu
, unsigned int flags
)
10052 static int perf_pmu_nop_int(struct pmu
*pmu
)
10057 static int perf_event_nop_int(struct perf_event
*event
, u64 value
)
10062 static DEFINE_PER_CPU(unsigned int, nop_txn_flags
);
10064 static void perf_pmu_start_txn(struct pmu
*pmu
, unsigned int flags
)
10066 __this_cpu_write(nop_txn_flags
, flags
);
10068 if (flags
& ~PERF_PMU_TXN_ADD
)
10071 perf_pmu_disable(pmu
);
10074 static int perf_pmu_commit_txn(struct pmu
*pmu
)
10076 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
10078 __this_cpu_write(nop_txn_flags
, 0);
10080 if (flags
& ~PERF_PMU_TXN_ADD
)
10083 perf_pmu_enable(pmu
);
10087 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
10089 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
10091 __this_cpu_write(nop_txn_flags
, 0);
10093 if (flags
& ~PERF_PMU_TXN_ADD
)
10096 perf_pmu_enable(pmu
);
10099 static int perf_event_idx_default(struct perf_event
*event
)
10105 * Ensures all contexts with the same task_ctx_nr have the same
10106 * pmu_cpu_context too.
10108 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
10115 list_for_each_entry(pmu
, &pmus
, entry
) {
10116 if (pmu
->task_ctx_nr
== ctxn
)
10117 return pmu
->pmu_cpu_context
;
10123 static void free_pmu_context(struct pmu
*pmu
)
10126 * Static contexts such as perf_sw_context have a global lifetime
10127 * and may be shared between different PMUs. Avoid freeing them
10128 * when a single PMU is going away.
10130 if (pmu
->task_ctx_nr
> perf_invalid_context
)
10133 free_percpu(pmu
->pmu_cpu_context
);
10137 * Let userspace know that this PMU supports address range filtering:
10139 static ssize_t
nr_addr_filters_show(struct device
*dev
,
10140 struct device_attribute
*attr
,
10143 struct pmu
*pmu
= dev_get_drvdata(dev
);
10145 return snprintf(page
, PAGE_SIZE
- 1, "%d\n", pmu
->nr_addr_filters
);
10147 DEVICE_ATTR_RO(nr_addr_filters
);
10149 static struct idr pmu_idr
;
10152 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
10154 struct pmu
*pmu
= dev_get_drvdata(dev
);
10156 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
10158 static DEVICE_ATTR_RO(type
);
10161 perf_event_mux_interval_ms_show(struct device
*dev
,
10162 struct device_attribute
*attr
,
10165 struct pmu
*pmu
= dev_get_drvdata(dev
);
10167 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
10170 static DEFINE_MUTEX(mux_interval_mutex
);
10173 perf_event_mux_interval_ms_store(struct device
*dev
,
10174 struct device_attribute
*attr
,
10175 const char *buf
, size_t count
)
10177 struct pmu
*pmu
= dev_get_drvdata(dev
);
10178 int timer
, cpu
, ret
;
10180 ret
= kstrtoint(buf
, 0, &timer
);
10187 /* same value, noting to do */
10188 if (timer
== pmu
->hrtimer_interval_ms
)
10191 mutex_lock(&mux_interval_mutex
);
10192 pmu
->hrtimer_interval_ms
= timer
;
10194 /* update all cpuctx for this PMU */
10196 for_each_online_cpu(cpu
) {
10197 struct perf_cpu_context
*cpuctx
;
10198 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
10199 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
10201 cpu_function_call(cpu
,
10202 (remote_function_f
)perf_mux_hrtimer_restart
, cpuctx
);
10204 cpus_read_unlock();
10205 mutex_unlock(&mux_interval_mutex
);
10209 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
10211 static struct attribute
*pmu_dev_attrs
[] = {
10212 &dev_attr_type
.attr
,
10213 &dev_attr_perf_event_mux_interval_ms
.attr
,
10216 ATTRIBUTE_GROUPS(pmu_dev
);
10218 static int pmu_bus_running
;
10219 static struct bus_type pmu_bus
= {
10220 .name
= "event_source",
10221 .dev_groups
= pmu_dev_groups
,
10224 static void pmu_dev_release(struct device
*dev
)
10229 static int pmu_dev_alloc(struct pmu
*pmu
)
10233 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
10237 pmu
->dev
->groups
= pmu
->attr_groups
;
10238 device_initialize(pmu
->dev
);
10239 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
10243 dev_set_drvdata(pmu
->dev
, pmu
);
10244 pmu
->dev
->bus
= &pmu_bus
;
10245 pmu
->dev
->release
= pmu_dev_release
;
10246 ret
= device_add(pmu
->dev
);
10250 /* For PMUs with address filters, throw in an extra attribute: */
10251 if (pmu
->nr_addr_filters
)
10252 ret
= device_create_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
10257 if (pmu
->attr_update
)
10258 ret
= sysfs_update_groups(&pmu
->dev
->kobj
, pmu
->attr_update
);
10267 device_del(pmu
->dev
);
10270 put_device(pmu
->dev
);
10274 static struct lock_class_key cpuctx_mutex
;
10275 static struct lock_class_key cpuctx_lock
;
10277 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
10279 int cpu
, ret
, max
= PERF_TYPE_MAX
;
10281 mutex_lock(&pmus_lock
);
10283 pmu
->pmu_disable_count
= alloc_percpu(int);
10284 if (!pmu
->pmu_disable_count
)
10292 if (type
!= PERF_TYPE_SOFTWARE
) {
10296 ret
= idr_alloc(&pmu_idr
, pmu
, max
, 0, GFP_KERNEL
);
10300 WARN_ON(type
>= 0 && ret
!= type
);
10306 if (pmu_bus_running
) {
10307 ret
= pmu_dev_alloc(pmu
);
10313 if (pmu
->task_ctx_nr
== perf_hw_context
) {
10314 static int hw_context_taken
= 0;
10317 * Other than systems with heterogeneous CPUs, it never makes
10318 * sense for two PMUs to share perf_hw_context. PMUs which are
10319 * uncore must use perf_invalid_context.
10321 if (WARN_ON_ONCE(hw_context_taken
&&
10322 !(pmu
->capabilities
& PERF_PMU_CAP_HETEROGENEOUS_CPUS
)))
10323 pmu
->task_ctx_nr
= perf_invalid_context
;
10325 hw_context_taken
= 1;
10328 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
10329 if (pmu
->pmu_cpu_context
)
10330 goto got_cpu_context
;
10333 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
10334 if (!pmu
->pmu_cpu_context
)
10337 for_each_possible_cpu(cpu
) {
10338 struct perf_cpu_context
*cpuctx
;
10340 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
10341 __perf_event_init_context(&cpuctx
->ctx
);
10342 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
10343 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
10344 cpuctx
->ctx
.pmu
= pmu
;
10345 cpuctx
->online
= cpumask_test_cpu(cpu
, perf_online_mask
);
10347 __perf_mux_hrtimer_init(cpuctx
, cpu
);
10351 if (!pmu
->start_txn
) {
10352 if (pmu
->pmu_enable
) {
10354 * If we have pmu_enable/pmu_disable calls, install
10355 * transaction stubs that use that to try and batch
10356 * hardware accesses.
10358 pmu
->start_txn
= perf_pmu_start_txn
;
10359 pmu
->commit_txn
= perf_pmu_commit_txn
;
10360 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
10362 pmu
->start_txn
= perf_pmu_nop_txn
;
10363 pmu
->commit_txn
= perf_pmu_nop_int
;
10364 pmu
->cancel_txn
= perf_pmu_nop_void
;
10368 if (!pmu
->pmu_enable
) {
10369 pmu
->pmu_enable
= perf_pmu_nop_void
;
10370 pmu
->pmu_disable
= perf_pmu_nop_void
;
10373 if (!pmu
->check_period
)
10374 pmu
->check_period
= perf_event_nop_int
;
10376 if (!pmu
->event_idx
)
10377 pmu
->event_idx
= perf_event_idx_default
;
10380 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10381 * since these cannot be in the IDR. This way the linear search
10382 * is fast, provided a valid software event is provided.
10384 if (type
== PERF_TYPE_SOFTWARE
|| !name
)
10385 list_add_rcu(&pmu
->entry
, &pmus
);
10387 list_add_tail_rcu(&pmu
->entry
, &pmus
);
10389 atomic_set(&pmu
->exclusive_cnt
, 0);
10392 mutex_unlock(&pmus_lock
);
10397 device_del(pmu
->dev
);
10398 put_device(pmu
->dev
);
10401 if (pmu
->type
!= PERF_TYPE_SOFTWARE
)
10402 idr_remove(&pmu_idr
, pmu
->type
);
10405 free_percpu(pmu
->pmu_disable_count
);
10408 EXPORT_SYMBOL_GPL(perf_pmu_register
);
10410 void perf_pmu_unregister(struct pmu
*pmu
)
10412 mutex_lock(&pmus_lock
);
10413 list_del_rcu(&pmu
->entry
);
10416 * We dereference the pmu list under both SRCU and regular RCU, so
10417 * synchronize against both of those.
10419 synchronize_srcu(&pmus_srcu
);
10422 free_percpu(pmu
->pmu_disable_count
);
10423 if (pmu
->type
!= PERF_TYPE_SOFTWARE
)
10424 idr_remove(&pmu_idr
, pmu
->type
);
10425 if (pmu_bus_running
) {
10426 if (pmu
->nr_addr_filters
)
10427 device_remove_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
10428 device_del(pmu
->dev
);
10429 put_device(pmu
->dev
);
10431 free_pmu_context(pmu
);
10432 mutex_unlock(&pmus_lock
);
10434 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
10436 static inline bool has_extended_regs(struct perf_event
*event
)
10438 return (event
->attr
.sample_regs_user
& PERF_REG_EXTENDED_MASK
) ||
10439 (event
->attr
.sample_regs_intr
& PERF_REG_EXTENDED_MASK
);
10442 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
10444 struct perf_event_context
*ctx
= NULL
;
10447 if (!try_module_get(pmu
->module
))
10451 * A number of pmu->event_init() methods iterate the sibling_list to,
10452 * for example, validate if the group fits on the PMU. Therefore,
10453 * if this is a sibling event, acquire the ctx->mutex to protect
10454 * the sibling_list.
10456 if (event
->group_leader
!= event
&& pmu
->task_ctx_nr
!= perf_sw_context
) {
10458 * This ctx->mutex can nest when we're called through
10459 * inheritance. See the perf_event_ctx_lock_nested() comment.
10461 ctx
= perf_event_ctx_lock_nested(event
->group_leader
,
10462 SINGLE_DEPTH_NESTING
);
10467 ret
= pmu
->event_init(event
);
10470 perf_event_ctx_unlock(event
->group_leader
, ctx
);
10473 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXTENDED_REGS
) &&
10474 has_extended_regs(event
))
10477 if (pmu
->capabilities
& PERF_PMU_CAP_NO_EXCLUDE
&&
10478 event_has_any_exclude_flag(event
))
10481 if (ret
&& event
->destroy
)
10482 event
->destroy(event
);
10486 module_put(pmu
->module
);
10491 static struct pmu
*perf_init_event(struct perf_event
*event
)
10493 int idx
, type
, ret
;
10496 idx
= srcu_read_lock(&pmus_srcu
);
10498 /* Try parent's PMU first: */
10499 if (event
->parent
&& event
->parent
->pmu
) {
10500 pmu
= event
->parent
->pmu
;
10501 ret
= perf_try_init_event(pmu
, event
);
10507 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10508 * are often aliases for PERF_TYPE_RAW.
10510 type
= event
->attr
.type
;
10511 if (type
== PERF_TYPE_HARDWARE
|| type
== PERF_TYPE_HW_CACHE
)
10512 type
= PERF_TYPE_RAW
;
10516 pmu
= idr_find(&pmu_idr
, type
);
10519 ret
= perf_try_init_event(pmu
, event
);
10520 if (ret
== -ENOENT
&& event
->attr
.type
!= type
) {
10521 type
= event
->attr
.type
;
10526 pmu
= ERR_PTR(ret
);
10531 list_for_each_entry_rcu(pmu
, &pmus
, entry
, lockdep_is_held(&pmus_srcu
)) {
10532 ret
= perf_try_init_event(pmu
, event
);
10536 if (ret
!= -ENOENT
) {
10537 pmu
= ERR_PTR(ret
);
10541 pmu
= ERR_PTR(-ENOENT
);
10543 srcu_read_unlock(&pmus_srcu
, idx
);
10548 static void attach_sb_event(struct perf_event
*event
)
10550 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
10552 raw_spin_lock(&pel
->lock
);
10553 list_add_rcu(&event
->sb_list
, &pel
->list
);
10554 raw_spin_unlock(&pel
->lock
);
10558 * We keep a list of all !task (and therefore per-cpu) events
10559 * that need to receive side-band records.
10561 * This avoids having to scan all the various PMU per-cpu contexts
10562 * looking for them.
10564 static void account_pmu_sb_event(struct perf_event
*event
)
10566 if (is_sb_event(event
))
10567 attach_sb_event(event
);
10570 static void account_event_cpu(struct perf_event
*event
, int cpu
)
10575 if (is_cgroup_event(event
))
10576 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
10579 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10580 static void account_freq_event_nohz(void)
10582 #ifdef CONFIG_NO_HZ_FULL
10583 /* Lock so we don't race with concurrent unaccount */
10584 spin_lock(&nr_freq_lock
);
10585 if (atomic_inc_return(&nr_freq_events
) == 1)
10586 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS
);
10587 spin_unlock(&nr_freq_lock
);
10591 static void account_freq_event(void)
10593 if (tick_nohz_full_enabled())
10594 account_freq_event_nohz();
10596 atomic_inc(&nr_freq_events
);
10600 static void account_event(struct perf_event
*event
)
10607 if (event
->attach_state
& PERF_ATTACH_TASK
)
10609 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
10610 atomic_inc(&nr_mmap_events
);
10611 if (event
->attr
.comm
)
10612 atomic_inc(&nr_comm_events
);
10613 if (event
->attr
.namespaces
)
10614 atomic_inc(&nr_namespaces_events
);
10615 if (event
->attr
.task
)
10616 atomic_inc(&nr_task_events
);
10617 if (event
->attr
.freq
)
10618 account_freq_event();
10619 if (event
->attr
.context_switch
) {
10620 atomic_inc(&nr_switch_events
);
10623 if (has_branch_stack(event
))
10625 if (is_cgroup_event(event
))
10627 if (event
->attr
.ksymbol
)
10628 atomic_inc(&nr_ksymbol_events
);
10629 if (event
->attr
.bpf_event
)
10630 atomic_inc(&nr_bpf_events
);
10634 * We need the mutex here because static_branch_enable()
10635 * must complete *before* the perf_sched_count increment
10638 if (atomic_inc_not_zero(&perf_sched_count
))
10641 mutex_lock(&perf_sched_mutex
);
10642 if (!atomic_read(&perf_sched_count
)) {
10643 static_branch_enable(&perf_sched_events
);
10645 * Guarantee that all CPUs observe they key change and
10646 * call the perf scheduling hooks before proceeding to
10647 * install events that need them.
10652 * Now that we have waited for the sync_sched(), allow further
10653 * increments to by-pass the mutex.
10655 atomic_inc(&perf_sched_count
);
10656 mutex_unlock(&perf_sched_mutex
);
10660 account_event_cpu(event
, event
->cpu
);
10662 account_pmu_sb_event(event
);
10666 * Allocate and initialize an event structure
10668 static struct perf_event
*
10669 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
10670 struct task_struct
*task
,
10671 struct perf_event
*group_leader
,
10672 struct perf_event
*parent_event
,
10673 perf_overflow_handler_t overflow_handler
,
10674 void *context
, int cgroup_fd
)
10677 struct perf_event
*event
;
10678 struct hw_perf_event
*hwc
;
10679 long err
= -EINVAL
;
10681 if ((unsigned)cpu
>= nr_cpu_ids
) {
10682 if (!task
|| cpu
!= -1)
10683 return ERR_PTR(-EINVAL
);
10686 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
10688 return ERR_PTR(-ENOMEM
);
10691 * Single events are their own group leaders, with an
10692 * empty sibling list:
10695 group_leader
= event
;
10697 mutex_init(&event
->child_mutex
);
10698 INIT_LIST_HEAD(&event
->child_list
);
10700 INIT_LIST_HEAD(&event
->event_entry
);
10701 INIT_LIST_HEAD(&event
->sibling_list
);
10702 INIT_LIST_HEAD(&event
->active_list
);
10703 init_event_group(event
);
10704 INIT_LIST_HEAD(&event
->rb_entry
);
10705 INIT_LIST_HEAD(&event
->active_entry
);
10706 INIT_LIST_HEAD(&event
->addr_filters
.list
);
10707 INIT_HLIST_NODE(&event
->hlist_entry
);
10710 init_waitqueue_head(&event
->waitq
);
10711 event
->pending_disable
= -1;
10712 init_irq_work(&event
->pending
, perf_pending_event
);
10714 mutex_init(&event
->mmap_mutex
);
10715 raw_spin_lock_init(&event
->addr_filters
.lock
);
10717 atomic_long_set(&event
->refcount
, 1);
10719 event
->attr
= *attr
;
10720 event
->group_leader
= group_leader
;
10724 event
->parent
= parent_event
;
10726 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
10727 event
->id
= atomic64_inc_return(&perf_event_id
);
10729 event
->state
= PERF_EVENT_STATE_INACTIVE
;
10732 event
->attach_state
= PERF_ATTACH_TASK
;
10734 * XXX pmu::event_init needs to know what task to account to
10735 * and we cannot use the ctx information because we need the
10736 * pmu before we get a ctx.
10738 event
->hw
.target
= get_task_struct(task
);
10741 event
->clock
= &local_clock
;
10743 event
->clock
= parent_event
->clock
;
10745 if (!overflow_handler
&& parent_event
) {
10746 overflow_handler
= parent_event
->overflow_handler
;
10747 context
= parent_event
->overflow_handler_context
;
10748 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10749 if (overflow_handler
== bpf_overflow_handler
) {
10750 struct bpf_prog
*prog
= parent_event
->prog
;
10752 bpf_prog_inc(prog
);
10753 event
->prog
= prog
;
10754 event
->orig_overflow_handler
=
10755 parent_event
->orig_overflow_handler
;
10760 if (overflow_handler
) {
10761 event
->overflow_handler
= overflow_handler
;
10762 event
->overflow_handler_context
= context
;
10763 } else if (is_write_backward(event
)){
10764 event
->overflow_handler
= perf_event_output_backward
;
10765 event
->overflow_handler_context
= NULL
;
10767 event
->overflow_handler
= perf_event_output_forward
;
10768 event
->overflow_handler_context
= NULL
;
10771 perf_event__state_init(event
);
10776 hwc
->sample_period
= attr
->sample_period
;
10777 if (attr
->freq
&& attr
->sample_freq
)
10778 hwc
->sample_period
= 1;
10779 hwc
->last_period
= hwc
->sample_period
;
10781 local64_set(&hwc
->period_left
, hwc
->sample_period
);
10784 * We currently do not support PERF_SAMPLE_READ on inherited events.
10785 * See perf_output_read().
10787 if (attr
->inherit
&& (attr
->sample_type
& PERF_SAMPLE_READ
))
10790 if (!has_branch_stack(event
))
10791 event
->attr
.branch_sample_type
= 0;
10793 if (cgroup_fd
!= -1) {
10794 err
= perf_cgroup_connect(cgroup_fd
, event
, attr
, group_leader
);
10799 pmu
= perf_init_event(event
);
10801 err
= PTR_ERR(pmu
);
10806 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10807 * be different on other CPUs in the uncore mask.
10809 if (pmu
->task_ctx_nr
== perf_invalid_context
&& cgroup_fd
!= -1) {
10814 if (event
->attr
.aux_output
&&
10815 !(pmu
->capabilities
& PERF_PMU_CAP_AUX_OUTPUT
)) {
10820 err
= exclusive_event_init(event
);
10824 if (has_addr_filter(event
)) {
10825 event
->addr_filter_ranges
= kcalloc(pmu
->nr_addr_filters
,
10826 sizeof(struct perf_addr_filter_range
),
10828 if (!event
->addr_filter_ranges
) {
10834 * Clone the parent's vma offsets: they are valid until exec()
10835 * even if the mm is not shared with the parent.
10837 if (event
->parent
) {
10838 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
10840 raw_spin_lock_irq(&ifh
->lock
);
10841 memcpy(event
->addr_filter_ranges
,
10842 event
->parent
->addr_filter_ranges
,
10843 pmu
->nr_addr_filters
* sizeof(struct perf_addr_filter_range
));
10844 raw_spin_unlock_irq(&ifh
->lock
);
10847 /* force hw sync on the address filters */
10848 event
->addr_filters_gen
= 1;
10851 if (!event
->parent
) {
10852 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
10853 err
= get_callchain_buffers(attr
->sample_max_stack
);
10855 goto err_addr_filters
;
10859 err
= security_perf_event_alloc(event
);
10861 goto err_callchain_buffer
;
10863 /* symmetric to unaccount_event() in _free_event() */
10864 account_event(event
);
10868 err_callchain_buffer
:
10869 if (!event
->parent
) {
10870 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
10871 put_callchain_buffers();
10874 kfree(event
->addr_filter_ranges
);
10877 exclusive_event_destroy(event
);
10880 if (event
->destroy
)
10881 event
->destroy(event
);
10882 module_put(pmu
->module
);
10884 if (is_cgroup_event(event
))
10885 perf_detach_cgroup(event
);
10887 put_pid_ns(event
->ns
);
10888 if (event
->hw
.target
)
10889 put_task_struct(event
->hw
.target
);
10892 return ERR_PTR(err
);
10895 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
10896 struct perf_event_attr
*attr
)
10901 /* Zero the full structure, so that a short copy will be nice. */
10902 memset(attr
, 0, sizeof(*attr
));
10904 ret
= get_user(size
, &uattr
->size
);
10908 /* ABI compatibility quirk: */
10910 size
= PERF_ATTR_SIZE_VER0
;
10911 if (size
< PERF_ATTR_SIZE_VER0
|| size
> PAGE_SIZE
)
10914 ret
= copy_struct_from_user(attr
, sizeof(*attr
), uattr
, size
);
10923 if (attr
->__reserved_1
|| attr
->__reserved_2
|| attr
->__reserved_3
)
10926 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
10929 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
10932 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
10933 u64 mask
= attr
->branch_sample_type
;
10935 /* only using defined bits */
10936 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
10939 /* at least one branch bit must be set */
10940 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
10943 /* propagate priv level, when not set for branch */
10944 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
10946 /* exclude_kernel checked on syscall entry */
10947 if (!attr
->exclude_kernel
)
10948 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
10950 if (!attr
->exclude_user
)
10951 mask
|= PERF_SAMPLE_BRANCH_USER
;
10953 if (!attr
->exclude_hv
)
10954 mask
|= PERF_SAMPLE_BRANCH_HV
;
10956 * adjust user setting (for HW filter setup)
10958 attr
->branch_sample_type
= mask
;
10960 /* privileged levels capture (kernel, hv): check permissions */
10961 if (mask
& PERF_SAMPLE_BRANCH_PERM_PLM
) {
10962 ret
= perf_allow_kernel(attr
);
10968 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
10969 ret
= perf_reg_validate(attr
->sample_regs_user
);
10974 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
10975 if (!arch_perf_have_user_stack_dump())
10979 * We have __u32 type for the size, but so far
10980 * we can only use __u16 as maximum due to the
10981 * __u16 sample size limit.
10983 if (attr
->sample_stack_user
>= USHRT_MAX
)
10985 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
10989 if (!attr
->sample_max_stack
)
10990 attr
->sample_max_stack
= sysctl_perf_event_max_stack
;
10992 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
10993 ret
= perf_reg_validate(attr
->sample_regs_intr
);
10998 put_user(sizeof(*attr
), &uattr
->size
);
11004 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
11006 struct perf_buffer
*rb
= NULL
;
11012 /* don't allow circular references */
11013 if (event
== output_event
)
11017 * Don't allow cross-cpu buffers
11019 if (output_event
->cpu
!= event
->cpu
)
11023 * If its not a per-cpu rb, it must be the same task.
11025 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
11029 * Mixing clocks in the same buffer is trouble you don't need.
11031 if (output_event
->clock
!= event
->clock
)
11035 * Either writing ring buffer from beginning or from end.
11036 * Mixing is not allowed.
11038 if (is_write_backward(output_event
) != is_write_backward(event
))
11042 * If both events generate aux data, they must be on the same PMU
11044 if (has_aux(event
) && has_aux(output_event
) &&
11045 event
->pmu
!= output_event
->pmu
)
11049 mutex_lock(&event
->mmap_mutex
);
11050 /* Can't redirect output if we've got an active mmap() */
11051 if (atomic_read(&event
->mmap_count
))
11054 if (output_event
) {
11055 /* get the rb we want to redirect to */
11056 rb
= ring_buffer_get(output_event
);
11061 ring_buffer_attach(event
, rb
);
11065 mutex_unlock(&event
->mmap_mutex
);
11071 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
11077 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
11080 static int perf_event_set_clock(struct perf_event
*event
, clockid_t clk_id
)
11082 bool nmi_safe
= false;
11085 case CLOCK_MONOTONIC
:
11086 event
->clock
= &ktime_get_mono_fast_ns
;
11090 case CLOCK_MONOTONIC_RAW
:
11091 event
->clock
= &ktime_get_raw_fast_ns
;
11095 case CLOCK_REALTIME
:
11096 event
->clock
= &ktime_get_real_ns
;
11099 case CLOCK_BOOTTIME
:
11100 event
->clock
= &ktime_get_boottime_ns
;
11104 event
->clock
= &ktime_get_clocktai_ns
;
11111 if (!nmi_safe
&& !(event
->pmu
->capabilities
& PERF_PMU_CAP_NO_NMI
))
11118 * Variation on perf_event_ctx_lock_nested(), except we take two context
11121 static struct perf_event_context
*
11122 __perf_event_ctx_lock_double(struct perf_event
*group_leader
,
11123 struct perf_event_context
*ctx
)
11125 struct perf_event_context
*gctx
;
11129 gctx
= READ_ONCE(group_leader
->ctx
);
11130 if (!refcount_inc_not_zero(&gctx
->refcount
)) {
11136 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
11138 if (group_leader
->ctx
!= gctx
) {
11139 mutex_unlock(&ctx
->mutex
);
11140 mutex_unlock(&gctx
->mutex
);
11149 * sys_perf_event_open - open a performance event, associate it to a task/cpu
11151 * @attr_uptr: event_id type attributes for monitoring/sampling
11154 * @group_fd: group leader event fd
11156 SYSCALL_DEFINE5(perf_event_open
,
11157 struct perf_event_attr __user
*, attr_uptr
,
11158 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
11160 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
11161 struct perf_event
*event
, *sibling
;
11162 struct perf_event_attr attr
;
11163 struct perf_event_context
*ctx
, *uninitialized_var(gctx
);
11164 struct file
*event_file
= NULL
;
11165 struct fd group
= {NULL
, 0};
11166 struct task_struct
*task
= NULL
;
11169 int move_group
= 0;
11171 int f_flags
= O_RDWR
;
11172 int cgroup_fd
= -1;
11174 /* for future expandability... */
11175 if (flags
& ~PERF_FLAG_ALL
)
11178 /* Do we allow access to perf_event_open(2) ? */
11179 err
= security_perf_event_open(&attr
, PERF_SECURITY_OPEN
);
11183 err
= perf_copy_attr(attr_uptr
, &attr
);
11187 if (!attr
.exclude_kernel
) {
11188 err
= perf_allow_kernel(&attr
);
11193 if (attr
.namespaces
) {
11194 if (!capable(CAP_SYS_ADMIN
))
11199 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
11202 if (attr
.sample_period
& (1ULL << 63))
11206 /* Only privileged users can get physical addresses */
11207 if ((attr
.sample_type
& PERF_SAMPLE_PHYS_ADDR
)) {
11208 err
= perf_allow_kernel(&attr
);
11213 err
= security_locked_down(LOCKDOWN_PERF
);
11214 if (err
&& (attr
.sample_type
& PERF_SAMPLE_REGS_INTR
))
11215 /* REGS_INTR can leak data, lockdown must prevent this */
11221 * In cgroup mode, the pid argument is used to pass the fd
11222 * opened to the cgroup directory in cgroupfs. The cpu argument
11223 * designates the cpu on which to monitor threads from that
11226 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
11229 if (flags
& PERF_FLAG_FD_CLOEXEC
)
11230 f_flags
|= O_CLOEXEC
;
11232 event_fd
= get_unused_fd_flags(f_flags
);
11236 if (group_fd
!= -1) {
11237 err
= perf_fget_light(group_fd
, &group
);
11240 group_leader
= group
.file
->private_data
;
11241 if (flags
& PERF_FLAG_FD_OUTPUT
)
11242 output_event
= group_leader
;
11243 if (flags
& PERF_FLAG_FD_NO_GROUP
)
11244 group_leader
= NULL
;
11247 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
11248 task
= find_lively_task_by_vpid(pid
);
11249 if (IS_ERR(task
)) {
11250 err
= PTR_ERR(task
);
11255 if (task
&& group_leader
&&
11256 group_leader
->attr
.inherit
!= attr
.inherit
) {
11262 err
= mutex_lock_interruptible(&task
->signal
->cred_guard_mutex
);
11267 * Reuse ptrace permission checks for now.
11269 * We must hold cred_guard_mutex across this and any potential
11270 * perf_install_in_context() call for this new event to
11271 * serialize against exec() altering our credentials (and the
11272 * perf_event_exit_task() that could imply).
11275 if (!ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
))
11279 if (flags
& PERF_FLAG_PID_CGROUP
)
11282 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
11283 NULL
, NULL
, cgroup_fd
);
11284 if (IS_ERR(event
)) {
11285 err
= PTR_ERR(event
);
11289 if (is_sampling_event(event
)) {
11290 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
11297 * Special case software events and allow them to be part of
11298 * any hardware group.
11302 if (attr
.use_clockid
) {
11303 err
= perf_event_set_clock(event
, attr
.clockid
);
11308 if (pmu
->task_ctx_nr
== perf_sw_context
)
11309 event
->event_caps
|= PERF_EV_CAP_SOFTWARE
;
11311 if (group_leader
) {
11312 if (is_software_event(event
) &&
11313 !in_software_context(group_leader
)) {
11315 * If the event is a sw event, but the group_leader
11316 * is on hw context.
11318 * Allow the addition of software events to hw
11319 * groups, this is safe because software events
11320 * never fail to schedule.
11322 pmu
= group_leader
->ctx
->pmu
;
11323 } else if (!is_software_event(event
) &&
11324 is_software_event(group_leader
) &&
11325 (group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
11327 * In case the group is a pure software group, and we
11328 * try to add a hardware event, move the whole group to
11329 * the hardware context.
11336 * Get the target context (task or percpu):
11338 ctx
= find_get_context(pmu
, task
, event
);
11340 err
= PTR_ERR(ctx
);
11345 * Look up the group leader (we will attach this event to it):
11347 if (group_leader
) {
11351 * Do not allow a recursive hierarchy (this new sibling
11352 * becoming part of another group-sibling):
11354 if (group_leader
->group_leader
!= group_leader
)
11357 /* All events in a group should have the same clock */
11358 if (group_leader
->clock
!= event
->clock
)
11362 * Make sure we're both events for the same CPU;
11363 * grouping events for different CPUs is broken; since
11364 * you can never concurrently schedule them anyhow.
11366 if (group_leader
->cpu
!= event
->cpu
)
11370 * Make sure we're both on the same task, or both
11373 if (group_leader
->ctx
->task
!= ctx
->task
)
11377 * Do not allow to attach to a group in a different task
11378 * or CPU context. If we're moving SW events, we'll fix
11379 * this up later, so allow that.
11381 if (!move_group
&& group_leader
->ctx
!= ctx
)
11385 * Only a group leader can be exclusive or pinned
11387 if (attr
.exclusive
|| attr
.pinned
)
11391 if (output_event
) {
11392 err
= perf_event_set_output(event
, output_event
);
11397 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
11399 if (IS_ERR(event_file
)) {
11400 err
= PTR_ERR(event_file
);
11406 gctx
= __perf_event_ctx_lock_double(group_leader
, ctx
);
11408 if (gctx
->task
== TASK_TOMBSTONE
) {
11414 * Check if we raced against another sys_perf_event_open() call
11415 * moving the software group underneath us.
11417 if (!(group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
11419 * If someone moved the group out from under us, check
11420 * if this new event wound up on the same ctx, if so
11421 * its the regular !move_group case, otherwise fail.
11427 perf_event_ctx_unlock(group_leader
, gctx
);
11433 * Failure to create exclusive events returns -EBUSY.
11436 if (!exclusive_event_installable(group_leader
, ctx
))
11439 for_each_sibling_event(sibling
, group_leader
) {
11440 if (!exclusive_event_installable(sibling
, ctx
))
11444 mutex_lock(&ctx
->mutex
);
11447 if (ctx
->task
== TASK_TOMBSTONE
) {
11452 if (!perf_event_validate_size(event
)) {
11459 * Check if the @cpu we're creating an event for is online.
11461 * We use the perf_cpu_context::ctx::mutex to serialize against
11462 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11464 struct perf_cpu_context
*cpuctx
=
11465 container_of(ctx
, struct perf_cpu_context
, ctx
);
11467 if (!cpuctx
->online
) {
11473 if (perf_need_aux_event(event
) && !perf_get_aux_event(event
, group_leader
)) {
11479 * Must be under the same ctx::mutex as perf_install_in_context(),
11480 * because we need to serialize with concurrent event creation.
11482 if (!exclusive_event_installable(event
, ctx
)) {
11487 WARN_ON_ONCE(ctx
->parent_ctx
);
11490 * This is the point on no return; we cannot fail hereafter. This is
11491 * where we start modifying current state.
11496 * See perf_event_ctx_lock() for comments on the details
11497 * of swizzling perf_event::ctx.
11499 perf_remove_from_context(group_leader
, 0);
11502 for_each_sibling_event(sibling
, group_leader
) {
11503 perf_remove_from_context(sibling
, 0);
11508 * Wait for everybody to stop referencing the events through
11509 * the old lists, before installing it on new lists.
11514 * Install the group siblings before the group leader.
11516 * Because a group leader will try and install the entire group
11517 * (through the sibling list, which is still in-tact), we can
11518 * end up with siblings installed in the wrong context.
11520 * By installing siblings first we NO-OP because they're not
11521 * reachable through the group lists.
11523 for_each_sibling_event(sibling
, group_leader
) {
11524 perf_event__state_init(sibling
);
11525 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
11530 * Removing from the context ends up with disabled
11531 * event. What we want here is event in the initial
11532 * startup state, ready to be add into new context.
11534 perf_event__state_init(group_leader
);
11535 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
11540 * Precalculate sample_data sizes; do while holding ctx::mutex such
11541 * that we're serialized against further additions and before
11542 * perf_install_in_context() which is the point the event is active and
11543 * can use these values.
11545 perf_event__header_size(event
);
11546 perf_event__id_header_size(event
);
11548 event
->owner
= current
;
11550 perf_install_in_context(ctx
, event
, event
->cpu
);
11551 perf_unpin_context(ctx
);
11554 perf_event_ctx_unlock(group_leader
, gctx
);
11555 mutex_unlock(&ctx
->mutex
);
11558 mutex_unlock(&task
->signal
->cred_guard_mutex
);
11559 put_task_struct(task
);
11562 mutex_lock(¤t
->perf_event_mutex
);
11563 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
11564 mutex_unlock(¤t
->perf_event_mutex
);
11567 * Drop the reference on the group_event after placing the
11568 * new event on the sibling_list. This ensures destruction
11569 * of the group leader will find the pointer to itself in
11570 * perf_group_detach().
11573 fd_install(event_fd
, event_file
);
11578 perf_event_ctx_unlock(group_leader
, gctx
);
11579 mutex_unlock(&ctx
->mutex
);
11583 perf_unpin_context(ctx
);
11587 * If event_file is set, the fput() above will have called ->release()
11588 * and that will take care of freeing the event.
11594 mutex_unlock(&task
->signal
->cred_guard_mutex
);
11597 put_task_struct(task
);
11601 put_unused_fd(event_fd
);
11606 * perf_event_create_kernel_counter
11608 * @attr: attributes of the counter to create
11609 * @cpu: cpu in which the counter is bound
11610 * @task: task to profile (NULL for percpu)
11612 struct perf_event
*
11613 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
11614 struct task_struct
*task
,
11615 perf_overflow_handler_t overflow_handler
,
11618 struct perf_event_context
*ctx
;
11619 struct perf_event
*event
;
11623 * Grouping is not supported for kernel events, neither is 'AUX',
11624 * make sure the caller's intentions are adjusted.
11626 if (attr
->aux_output
)
11627 return ERR_PTR(-EINVAL
);
11629 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
11630 overflow_handler
, context
, -1);
11631 if (IS_ERR(event
)) {
11632 err
= PTR_ERR(event
);
11636 /* Mark owner so we could distinguish it from user events. */
11637 event
->owner
= TASK_TOMBSTONE
;
11640 * Get the target context (task or percpu):
11642 ctx
= find_get_context(event
->pmu
, task
, event
);
11644 err
= PTR_ERR(ctx
);
11648 WARN_ON_ONCE(ctx
->parent_ctx
);
11649 mutex_lock(&ctx
->mutex
);
11650 if (ctx
->task
== TASK_TOMBSTONE
) {
11657 * Check if the @cpu we're creating an event for is online.
11659 * We use the perf_cpu_context::ctx::mutex to serialize against
11660 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11662 struct perf_cpu_context
*cpuctx
=
11663 container_of(ctx
, struct perf_cpu_context
, ctx
);
11664 if (!cpuctx
->online
) {
11670 if (!exclusive_event_installable(event
, ctx
)) {
11675 perf_install_in_context(ctx
, event
, event
->cpu
);
11676 perf_unpin_context(ctx
);
11677 mutex_unlock(&ctx
->mutex
);
11682 mutex_unlock(&ctx
->mutex
);
11683 perf_unpin_context(ctx
);
11688 return ERR_PTR(err
);
11690 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
11692 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
11694 struct perf_event_context
*src_ctx
;
11695 struct perf_event_context
*dst_ctx
;
11696 struct perf_event
*event
, *tmp
;
11699 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
11700 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
11703 * See perf_event_ctx_lock() for comments on the details
11704 * of swizzling perf_event::ctx.
11706 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
11707 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
11709 perf_remove_from_context(event
, 0);
11710 unaccount_event_cpu(event
, src_cpu
);
11712 list_add(&event
->migrate_entry
, &events
);
11716 * Wait for the events to quiesce before re-instating them.
11721 * Re-instate events in 2 passes.
11723 * Skip over group leaders and only install siblings on this first
11724 * pass, siblings will not get enabled without a leader, however a
11725 * leader will enable its siblings, even if those are still on the old
11728 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
11729 if (event
->group_leader
== event
)
11732 list_del(&event
->migrate_entry
);
11733 if (event
->state
>= PERF_EVENT_STATE_OFF
)
11734 event
->state
= PERF_EVENT_STATE_INACTIVE
;
11735 account_event_cpu(event
, dst_cpu
);
11736 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
11741 * Once all the siblings are setup properly, install the group leaders
11744 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
11745 list_del(&event
->migrate_entry
);
11746 if (event
->state
>= PERF_EVENT_STATE_OFF
)
11747 event
->state
= PERF_EVENT_STATE_INACTIVE
;
11748 account_event_cpu(event
, dst_cpu
);
11749 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
11752 mutex_unlock(&dst_ctx
->mutex
);
11753 mutex_unlock(&src_ctx
->mutex
);
11755 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
11757 static void sync_child_event(struct perf_event
*child_event
,
11758 struct task_struct
*child
)
11760 struct perf_event
*parent_event
= child_event
->parent
;
11763 if (child_event
->attr
.inherit_stat
)
11764 perf_event_read_event(child_event
, child
);
11766 child_val
= perf_event_count(child_event
);
11769 * Add back the child's count to the parent's count:
11771 atomic64_add(child_val
, &parent_event
->child_count
);
11772 atomic64_add(child_event
->total_time_enabled
,
11773 &parent_event
->child_total_time_enabled
);
11774 atomic64_add(child_event
->total_time_running
,
11775 &parent_event
->child_total_time_running
);
11779 perf_event_exit_event(struct perf_event
*child_event
,
11780 struct perf_event_context
*child_ctx
,
11781 struct task_struct
*child
)
11783 struct perf_event
*parent_event
= child_event
->parent
;
11786 * Do not destroy the 'original' grouping; because of the context
11787 * switch optimization the original events could've ended up in a
11788 * random child task.
11790 * If we were to destroy the original group, all group related
11791 * operations would cease to function properly after this random
11794 * Do destroy all inherited groups, we don't care about those
11795 * and being thorough is better.
11797 raw_spin_lock_irq(&child_ctx
->lock
);
11798 WARN_ON_ONCE(child_ctx
->is_active
);
11801 perf_group_detach(child_event
);
11802 list_del_event(child_event
, child_ctx
);
11803 perf_event_set_state(child_event
, PERF_EVENT_STATE_EXIT
); /* is_event_hup() */
11804 raw_spin_unlock_irq(&child_ctx
->lock
);
11807 * Parent events are governed by their filedesc, retain them.
11809 if (!parent_event
) {
11810 perf_event_wakeup(child_event
);
11814 * Child events can be cleaned up.
11817 sync_child_event(child_event
, child
);
11820 * Remove this event from the parent's list
11822 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
11823 mutex_lock(&parent_event
->child_mutex
);
11824 list_del_init(&child_event
->child_list
);
11825 mutex_unlock(&parent_event
->child_mutex
);
11828 * Kick perf_poll() for is_event_hup().
11830 perf_event_wakeup(parent_event
);
11831 free_event(child_event
);
11832 put_event(parent_event
);
11835 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
11837 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
11838 struct perf_event
*child_event
, *next
;
11840 WARN_ON_ONCE(child
!= current
);
11842 child_ctx
= perf_pin_task_context(child
, ctxn
);
11847 * In order to reduce the amount of tricky in ctx tear-down, we hold
11848 * ctx::mutex over the entire thing. This serializes against almost
11849 * everything that wants to access the ctx.
11851 * The exception is sys_perf_event_open() /
11852 * perf_event_create_kernel_count() which does find_get_context()
11853 * without ctx::mutex (it cannot because of the move_group double mutex
11854 * lock thing). See the comments in perf_install_in_context().
11856 mutex_lock(&child_ctx
->mutex
);
11859 * In a single ctx::lock section, de-schedule the events and detach the
11860 * context from the task such that we cannot ever get it scheduled back
11863 raw_spin_lock_irq(&child_ctx
->lock
);
11864 task_ctx_sched_out(__get_cpu_context(child_ctx
), child_ctx
, EVENT_ALL
);
11867 * Now that the context is inactive, destroy the task <-> ctx relation
11868 * and mark the context dead.
11870 RCU_INIT_POINTER(child
->perf_event_ctxp
[ctxn
], NULL
);
11871 put_ctx(child_ctx
); /* cannot be last */
11872 WRITE_ONCE(child_ctx
->task
, TASK_TOMBSTONE
);
11873 put_task_struct(current
); /* cannot be last */
11875 clone_ctx
= unclone_ctx(child_ctx
);
11876 raw_spin_unlock_irq(&child_ctx
->lock
);
11879 put_ctx(clone_ctx
);
11882 * Report the task dead after unscheduling the events so that we
11883 * won't get any samples after PERF_RECORD_EXIT. We can however still
11884 * get a few PERF_RECORD_READ events.
11886 perf_event_task(child
, child_ctx
, 0);
11888 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
11889 perf_event_exit_event(child_event
, child_ctx
, child
);
11891 mutex_unlock(&child_ctx
->mutex
);
11893 put_ctx(child_ctx
);
11897 * When a child task exits, feed back event values to parent events.
11899 * Can be called with cred_guard_mutex held when called from
11900 * install_exec_creds().
11902 void perf_event_exit_task(struct task_struct
*child
)
11904 struct perf_event
*event
, *tmp
;
11907 mutex_lock(&child
->perf_event_mutex
);
11908 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
11910 list_del_init(&event
->owner_entry
);
11913 * Ensure the list deletion is visible before we clear
11914 * the owner, closes a race against perf_release() where
11915 * we need to serialize on the owner->perf_event_mutex.
11917 smp_store_release(&event
->owner
, NULL
);
11919 mutex_unlock(&child
->perf_event_mutex
);
11921 for_each_task_context_nr(ctxn
)
11922 perf_event_exit_task_context(child
, ctxn
);
11925 * The perf_event_exit_task_context calls perf_event_task
11926 * with child's task_ctx, which generates EXIT events for
11927 * child contexts and sets child->perf_event_ctxp[] to NULL.
11928 * At this point we need to send EXIT events to cpu contexts.
11930 perf_event_task(child
, NULL
, 0);
11933 static void perf_free_event(struct perf_event
*event
,
11934 struct perf_event_context
*ctx
)
11936 struct perf_event
*parent
= event
->parent
;
11938 if (WARN_ON_ONCE(!parent
))
11941 mutex_lock(&parent
->child_mutex
);
11942 list_del_init(&event
->child_list
);
11943 mutex_unlock(&parent
->child_mutex
);
11947 raw_spin_lock_irq(&ctx
->lock
);
11948 perf_group_detach(event
);
11949 list_del_event(event
, ctx
);
11950 raw_spin_unlock_irq(&ctx
->lock
);
11955 * Free a context as created by inheritance by perf_event_init_task() below,
11956 * used by fork() in case of fail.
11958 * Even though the task has never lived, the context and events have been
11959 * exposed through the child_list, so we must take care tearing it all down.
11961 void perf_event_free_task(struct task_struct
*task
)
11963 struct perf_event_context
*ctx
;
11964 struct perf_event
*event
, *tmp
;
11967 for_each_task_context_nr(ctxn
) {
11968 ctx
= task
->perf_event_ctxp
[ctxn
];
11972 mutex_lock(&ctx
->mutex
);
11973 raw_spin_lock_irq(&ctx
->lock
);
11975 * Destroy the task <-> ctx relation and mark the context dead.
11977 * This is important because even though the task hasn't been
11978 * exposed yet the context has been (through child_list).
11980 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], NULL
);
11981 WRITE_ONCE(ctx
->task
, TASK_TOMBSTONE
);
11982 put_task_struct(task
); /* cannot be last */
11983 raw_spin_unlock_irq(&ctx
->lock
);
11985 list_for_each_entry_safe(event
, tmp
, &ctx
->event_list
, event_entry
)
11986 perf_free_event(event
, ctx
);
11988 mutex_unlock(&ctx
->mutex
);
11991 * perf_event_release_kernel() could've stolen some of our
11992 * child events and still have them on its free_list. In that
11993 * case we must wait for these events to have been freed (in
11994 * particular all their references to this task must've been
11997 * Without this copy_process() will unconditionally free this
11998 * task (irrespective of its reference count) and
11999 * _free_event()'s put_task_struct(event->hw.target) will be a
12002 * Wait for all events to drop their context reference.
12004 wait_var_event(&ctx
->refcount
, refcount_read(&ctx
->refcount
) == 1);
12005 put_ctx(ctx
); /* must be last */
12009 void perf_event_delayed_put(struct task_struct
*task
)
12013 for_each_task_context_nr(ctxn
)
12014 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
12017 struct file
*perf_event_get(unsigned int fd
)
12019 struct file
*file
= fget(fd
);
12021 return ERR_PTR(-EBADF
);
12023 if (file
->f_op
!= &perf_fops
) {
12025 return ERR_PTR(-EBADF
);
12031 const struct perf_event
*perf_get_event(struct file
*file
)
12033 if (file
->f_op
!= &perf_fops
)
12034 return ERR_PTR(-EINVAL
);
12036 return file
->private_data
;
12039 const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
)
12042 return ERR_PTR(-EINVAL
);
12044 return &event
->attr
;
12048 * Inherit an event from parent task to child task.
12051 * - valid pointer on success
12052 * - NULL for orphaned events
12053 * - IS_ERR() on error
12055 static struct perf_event
*
12056 inherit_event(struct perf_event
*parent_event
,
12057 struct task_struct
*parent
,
12058 struct perf_event_context
*parent_ctx
,
12059 struct task_struct
*child
,
12060 struct perf_event
*group_leader
,
12061 struct perf_event_context
*child_ctx
)
12063 enum perf_event_state parent_state
= parent_event
->state
;
12064 struct perf_event
*child_event
;
12065 unsigned long flags
;
12068 * Instead of creating recursive hierarchies of events,
12069 * we link inherited events back to the original parent,
12070 * which has a filp for sure, which we use as the reference
12073 if (parent_event
->parent
)
12074 parent_event
= parent_event
->parent
;
12076 child_event
= perf_event_alloc(&parent_event
->attr
,
12079 group_leader
, parent_event
,
12081 if (IS_ERR(child_event
))
12082 return child_event
;
12085 if ((child_event
->attach_state
& PERF_ATTACH_TASK_DATA
) &&
12086 !child_ctx
->task_ctx_data
) {
12087 struct pmu
*pmu
= child_event
->pmu
;
12089 child_ctx
->task_ctx_data
= kzalloc(pmu
->task_ctx_size
,
12091 if (!child_ctx
->task_ctx_data
) {
12092 free_event(child_event
);
12093 return ERR_PTR(-ENOMEM
);
12098 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12099 * must be under the same lock in order to serialize against
12100 * perf_event_release_kernel(), such that either we must observe
12101 * is_orphaned_event() or they will observe us on the child_list.
12103 mutex_lock(&parent_event
->child_mutex
);
12104 if (is_orphaned_event(parent_event
) ||
12105 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
12106 mutex_unlock(&parent_event
->child_mutex
);
12107 /* task_ctx_data is freed with child_ctx */
12108 free_event(child_event
);
12112 get_ctx(child_ctx
);
12115 * Make the child state follow the state of the parent event,
12116 * not its attr.disabled bit. We hold the parent's mutex,
12117 * so we won't race with perf_event_{en, dis}able_family.
12119 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
12120 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
12122 child_event
->state
= PERF_EVENT_STATE_OFF
;
12124 if (parent_event
->attr
.freq
) {
12125 u64 sample_period
= parent_event
->hw
.sample_period
;
12126 struct hw_perf_event
*hwc
= &child_event
->hw
;
12128 hwc
->sample_period
= sample_period
;
12129 hwc
->last_period
= sample_period
;
12131 local64_set(&hwc
->period_left
, sample_period
);
12134 child_event
->ctx
= child_ctx
;
12135 child_event
->overflow_handler
= parent_event
->overflow_handler
;
12136 child_event
->overflow_handler_context
12137 = parent_event
->overflow_handler_context
;
12140 * Precalculate sample_data sizes
12142 perf_event__header_size(child_event
);
12143 perf_event__id_header_size(child_event
);
12146 * Link it up in the child's context:
12148 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
12149 add_event_to_ctx(child_event
, child_ctx
);
12150 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
12153 * Link this into the parent event's child list
12155 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
12156 mutex_unlock(&parent_event
->child_mutex
);
12158 return child_event
;
12162 * Inherits an event group.
12164 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12165 * This matches with perf_event_release_kernel() removing all child events.
12171 static int inherit_group(struct perf_event
*parent_event
,
12172 struct task_struct
*parent
,
12173 struct perf_event_context
*parent_ctx
,
12174 struct task_struct
*child
,
12175 struct perf_event_context
*child_ctx
)
12177 struct perf_event
*leader
;
12178 struct perf_event
*sub
;
12179 struct perf_event
*child_ctr
;
12181 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
12182 child
, NULL
, child_ctx
);
12183 if (IS_ERR(leader
))
12184 return PTR_ERR(leader
);
12186 * @leader can be NULL here because of is_orphaned_event(). In this
12187 * case inherit_event() will create individual events, similar to what
12188 * perf_group_detach() would do anyway.
12190 for_each_sibling_event(sub
, parent_event
) {
12191 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
12192 child
, leader
, child_ctx
);
12193 if (IS_ERR(child_ctr
))
12194 return PTR_ERR(child_ctr
);
12196 if (sub
->aux_event
== parent_event
&& child_ctr
&&
12197 !perf_get_aux_event(child_ctr
, leader
))
12204 * Creates the child task context and tries to inherit the event-group.
12206 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12207 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12208 * consistent with perf_event_release_kernel() removing all child events.
12215 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
12216 struct perf_event_context
*parent_ctx
,
12217 struct task_struct
*child
, int ctxn
,
12218 int *inherited_all
)
12221 struct perf_event_context
*child_ctx
;
12223 if (!event
->attr
.inherit
) {
12224 *inherited_all
= 0;
12228 child_ctx
= child
->perf_event_ctxp
[ctxn
];
12231 * This is executed from the parent task context, so
12232 * inherit events that have been marked for cloning.
12233 * First allocate and initialize a context for the
12236 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
12240 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
12243 ret
= inherit_group(event
, parent
, parent_ctx
,
12247 *inherited_all
= 0;
12253 * Initialize the perf_event context in task_struct
12255 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
12257 struct perf_event_context
*child_ctx
, *parent_ctx
;
12258 struct perf_event_context
*cloned_ctx
;
12259 struct perf_event
*event
;
12260 struct task_struct
*parent
= current
;
12261 int inherited_all
= 1;
12262 unsigned long flags
;
12265 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
12269 * If the parent's context is a clone, pin it so it won't get
12270 * swapped under us.
12272 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
12277 * No need to check if parent_ctx != NULL here; since we saw
12278 * it non-NULL earlier, the only reason for it to become NULL
12279 * is if we exit, and since we're currently in the middle of
12280 * a fork we can't be exiting at the same time.
12284 * Lock the parent list. No need to lock the child - not PID
12285 * hashed yet and not running, so nobody can access it.
12287 mutex_lock(&parent_ctx
->mutex
);
12290 * We dont have to disable NMIs - we are only looking at
12291 * the list, not manipulating it:
12293 perf_event_groups_for_each(event
, &parent_ctx
->pinned_groups
) {
12294 ret
= inherit_task_group(event
, parent
, parent_ctx
,
12295 child
, ctxn
, &inherited_all
);
12301 * We can't hold ctx->lock when iterating the ->flexible_group list due
12302 * to allocations, but we need to prevent rotation because
12303 * rotate_ctx() will change the list from interrupt context.
12305 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
12306 parent_ctx
->rotate_disable
= 1;
12307 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
12309 perf_event_groups_for_each(event
, &parent_ctx
->flexible_groups
) {
12310 ret
= inherit_task_group(event
, parent
, parent_ctx
,
12311 child
, ctxn
, &inherited_all
);
12316 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
12317 parent_ctx
->rotate_disable
= 0;
12319 child_ctx
= child
->perf_event_ctxp
[ctxn
];
12321 if (child_ctx
&& inherited_all
) {
12323 * Mark the child context as a clone of the parent
12324 * context, or of whatever the parent is a clone of.
12326 * Note that if the parent is a clone, the holding of
12327 * parent_ctx->lock avoids it from being uncloned.
12329 cloned_ctx
= parent_ctx
->parent_ctx
;
12331 child_ctx
->parent_ctx
= cloned_ctx
;
12332 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
12334 child_ctx
->parent_ctx
= parent_ctx
;
12335 child_ctx
->parent_gen
= parent_ctx
->generation
;
12337 get_ctx(child_ctx
->parent_ctx
);
12340 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
12342 mutex_unlock(&parent_ctx
->mutex
);
12344 perf_unpin_context(parent_ctx
);
12345 put_ctx(parent_ctx
);
12351 * Initialize the perf_event context in task_struct
12353 int perf_event_init_task(struct task_struct
*child
)
12357 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
12358 mutex_init(&child
->perf_event_mutex
);
12359 INIT_LIST_HEAD(&child
->perf_event_list
);
12361 for_each_task_context_nr(ctxn
) {
12362 ret
= perf_event_init_context(child
, ctxn
);
12364 perf_event_free_task(child
);
12372 static void __init
perf_event_init_all_cpus(void)
12374 struct swevent_htable
*swhash
;
12377 zalloc_cpumask_var(&perf_online_mask
, GFP_KERNEL
);
12379 for_each_possible_cpu(cpu
) {
12380 swhash
= &per_cpu(swevent_htable
, cpu
);
12381 mutex_init(&swhash
->hlist_mutex
);
12382 INIT_LIST_HEAD(&per_cpu(active_ctx_list
, cpu
));
12384 INIT_LIST_HEAD(&per_cpu(pmu_sb_events
.list
, cpu
));
12385 raw_spin_lock_init(&per_cpu(pmu_sb_events
.lock
, cpu
));
12387 #ifdef CONFIG_CGROUP_PERF
12388 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list
, cpu
));
12390 INIT_LIST_HEAD(&per_cpu(sched_cb_list
, cpu
));
12394 static void perf_swevent_init_cpu(unsigned int cpu
)
12396 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
12398 mutex_lock(&swhash
->hlist_mutex
);
12399 if (swhash
->hlist_refcount
> 0 && !swevent_hlist_deref(swhash
)) {
12400 struct swevent_hlist
*hlist
;
12402 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
12404 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
12406 mutex_unlock(&swhash
->hlist_mutex
);
12409 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12410 static void __perf_event_exit_context(void *__info
)
12412 struct perf_event_context
*ctx
= __info
;
12413 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
12414 struct perf_event
*event
;
12416 raw_spin_lock(&ctx
->lock
);
12417 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
12418 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
12419 __perf_remove_from_context(event
, cpuctx
, ctx
, (void *)DETACH_GROUP
);
12420 raw_spin_unlock(&ctx
->lock
);
12423 static void perf_event_exit_cpu_context(int cpu
)
12425 struct perf_cpu_context
*cpuctx
;
12426 struct perf_event_context
*ctx
;
12429 mutex_lock(&pmus_lock
);
12430 list_for_each_entry(pmu
, &pmus
, entry
) {
12431 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
12432 ctx
= &cpuctx
->ctx
;
12434 mutex_lock(&ctx
->mutex
);
12435 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
12436 cpuctx
->online
= 0;
12437 mutex_unlock(&ctx
->mutex
);
12439 cpumask_clear_cpu(cpu
, perf_online_mask
);
12440 mutex_unlock(&pmus_lock
);
12444 static void perf_event_exit_cpu_context(int cpu
) { }
12448 int perf_event_init_cpu(unsigned int cpu
)
12450 struct perf_cpu_context
*cpuctx
;
12451 struct perf_event_context
*ctx
;
12454 perf_swevent_init_cpu(cpu
);
12456 mutex_lock(&pmus_lock
);
12457 cpumask_set_cpu(cpu
, perf_online_mask
);
12458 list_for_each_entry(pmu
, &pmus
, entry
) {
12459 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
12460 ctx
= &cpuctx
->ctx
;
12462 mutex_lock(&ctx
->mutex
);
12463 cpuctx
->online
= 1;
12464 mutex_unlock(&ctx
->mutex
);
12466 mutex_unlock(&pmus_lock
);
12471 int perf_event_exit_cpu(unsigned int cpu
)
12473 perf_event_exit_cpu_context(cpu
);
12478 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
12482 for_each_online_cpu(cpu
)
12483 perf_event_exit_cpu(cpu
);
12489 * Run the perf reboot notifier at the very last possible moment so that
12490 * the generic watchdog code runs as long as possible.
12492 static struct notifier_block perf_reboot_notifier
= {
12493 .notifier_call
= perf_reboot
,
12494 .priority
= INT_MIN
,
12497 void __init
perf_event_init(void)
12501 idr_init(&pmu_idr
);
12503 perf_event_init_all_cpus();
12504 init_srcu_struct(&pmus_srcu
);
12505 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
12506 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
12507 perf_pmu_register(&perf_task_clock
, NULL
, -1);
12508 perf_tp_register();
12509 perf_event_init_cpu(smp_processor_id());
12510 register_reboot_notifier(&perf_reboot_notifier
);
12512 ret
= init_hw_breakpoint();
12513 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
12516 * Build time assertion that we keep the data_head at the intended
12517 * location. IOW, validation we got the __reserved[] size right.
12519 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
12523 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
12526 struct perf_pmu_events_attr
*pmu_attr
=
12527 container_of(attr
, struct perf_pmu_events_attr
, attr
);
12529 if (pmu_attr
->event_str
)
12530 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
12534 EXPORT_SYMBOL_GPL(perf_event_sysfs_show
);
12536 static int __init
perf_event_sysfs_init(void)
12541 mutex_lock(&pmus_lock
);
12543 ret
= bus_register(&pmu_bus
);
12547 list_for_each_entry(pmu
, &pmus
, entry
) {
12548 if (!pmu
->name
|| pmu
->type
< 0)
12551 ret
= pmu_dev_alloc(pmu
);
12552 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
12554 pmu_bus_running
= 1;
12558 mutex_unlock(&pmus_lock
);
12562 device_initcall(perf_event_sysfs_init
);
12564 #ifdef CONFIG_CGROUP_PERF
12565 static struct cgroup_subsys_state
*
12566 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
12568 struct perf_cgroup
*jc
;
12570 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
12572 return ERR_PTR(-ENOMEM
);
12574 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
12577 return ERR_PTR(-ENOMEM
);
12583 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
12585 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
12587 free_percpu(jc
->info
);
12591 static int __perf_cgroup_move(void *info
)
12593 struct task_struct
*task
= info
;
12595 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
12600 static void perf_cgroup_attach(struct cgroup_taskset
*tset
)
12602 struct task_struct
*task
;
12603 struct cgroup_subsys_state
*css
;
12605 cgroup_taskset_for_each(task
, css
, tset
)
12606 task_function_call(task
, __perf_cgroup_move
, task
);
12609 struct cgroup_subsys perf_event_cgrp_subsys
= {
12610 .css_alloc
= perf_cgroup_css_alloc
,
12611 .css_free
= perf_cgroup_css_free
,
12612 .attach
= perf_cgroup_attach
,
12614 * Implicitly enable on dfl hierarchy so that perf events can
12615 * always be filtered by cgroup2 path as long as perf_event
12616 * controller is not mounted on a legacy hierarchy.
12618 .implicit_on_dfl
= true,
12621 #endif /* CONFIG_CGROUP_PERF */