Linux 5.6.13
[linux/fpc-iii.git] / kernel / events / ring_buffer.c
blob192b8abc63309da46e60424bc16ae899a9d6cf58
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance events ring-buffer code:
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 */
11 #include <linux/perf_event.h>
12 #include <linux/vmalloc.h>
13 #include <linux/slab.h>
14 #include <linux/circ_buf.h>
15 #include <linux/poll.h>
16 #include <linux/nospec.h>
18 #include "internal.h"
20 static void perf_output_wakeup(struct perf_output_handle *handle)
22 atomic_set(&handle->rb->poll, EPOLLIN);
24 handle->event->pending_wakeup = 1;
25 irq_work_queue(&handle->event->pending);
29 * We need to ensure a later event_id doesn't publish a head when a former
30 * event isn't done writing. However since we need to deal with NMIs we
31 * cannot fully serialize things.
33 * We only publish the head (and generate a wakeup) when the outer-most
34 * event completes.
36 static void perf_output_get_handle(struct perf_output_handle *handle)
38 struct perf_buffer *rb = handle->rb;
40 preempt_disable();
43 * Avoid an explicit LOAD/STORE such that architectures with memops
44 * can use them.
46 (*(volatile unsigned int *)&rb->nest)++;
47 handle->wakeup = local_read(&rb->wakeup);
50 static void perf_output_put_handle(struct perf_output_handle *handle)
52 struct perf_buffer *rb = handle->rb;
53 unsigned long head;
54 unsigned int nest;
57 * If this isn't the outermost nesting, we don't have to update
58 * @rb->user_page->data_head.
60 nest = READ_ONCE(rb->nest);
61 if (nest > 1) {
62 WRITE_ONCE(rb->nest, nest - 1);
63 goto out;
66 again:
68 * In order to avoid publishing a head value that goes backwards,
69 * we must ensure the load of @rb->head happens after we've
70 * incremented @rb->nest.
72 * Otherwise we can observe a @rb->head value before one published
73 * by an IRQ/NMI happening between the load and the increment.
75 barrier();
76 head = local_read(&rb->head);
79 * IRQ/NMI can happen here and advance @rb->head, causing our
80 * load above to be stale.
84 * Since the mmap() consumer (userspace) can run on a different CPU:
86 * kernel user
88 * if (LOAD ->data_tail) { LOAD ->data_head
89 * (A) smp_rmb() (C)
90 * STORE $data LOAD $data
91 * smp_wmb() (B) smp_mb() (D)
92 * STORE ->data_head STORE ->data_tail
93 * }
95 * Where A pairs with D, and B pairs with C.
97 * In our case (A) is a control dependency that separates the load of
98 * the ->data_tail and the stores of $data. In case ->data_tail
99 * indicates there is no room in the buffer to store $data we do not.
101 * D needs to be a full barrier since it separates the data READ
102 * from the tail WRITE.
104 * For B a WMB is sufficient since it separates two WRITEs, and for C
105 * an RMB is sufficient since it separates two READs.
107 * See perf_output_begin().
109 smp_wmb(); /* B, matches C */
110 WRITE_ONCE(rb->user_page->data_head, head);
113 * We must publish the head before decrementing the nest count,
114 * otherwise an IRQ/NMI can publish a more recent head value and our
115 * write will (temporarily) publish a stale value.
117 barrier();
118 WRITE_ONCE(rb->nest, 0);
121 * Ensure we decrement @rb->nest before we validate the @rb->head.
122 * Otherwise we cannot be sure we caught the 'last' nested update.
124 barrier();
125 if (unlikely(head != local_read(&rb->head))) {
126 WRITE_ONCE(rb->nest, 1);
127 goto again;
130 if (handle->wakeup != local_read(&rb->wakeup))
131 perf_output_wakeup(handle);
133 out:
134 preempt_enable();
137 static __always_inline bool
138 ring_buffer_has_space(unsigned long head, unsigned long tail,
139 unsigned long data_size, unsigned int size,
140 bool backward)
142 if (!backward)
143 return CIRC_SPACE(head, tail, data_size) >= size;
144 else
145 return CIRC_SPACE(tail, head, data_size) >= size;
148 static __always_inline int
149 __perf_output_begin(struct perf_output_handle *handle,
150 struct perf_event *event, unsigned int size,
151 bool backward)
153 struct perf_buffer *rb;
154 unsigned long tail, offset, head;
155 int have_lost, page_shift;
156 struct {
157 struct perf_event_header header;
158 u64 id;
159 u64 lost;
160 } lost_event;
162 rcu_read_lock();
164 * For inherited events we send all the output towards the parent.
166 if (event->parent)
167 event = event->parent;
169 rb = rcu_dereference(event->rb);
170 if (unlikely(!rb))
171 goto out;
173 if (unlikely(rb->paused)) {
174 if (rb->nr_pages)
175 local_inc(&rb->lost);
176 goto out;
179 handle->rb = rb;
180 handle->event = event;
182 have_lost = local_read(&rb->lost);
183 if (unlikely(have_lost)) {
184 size += sizeof(lost_event);
185 if (event->attr.sample_id_all)
186 size += event->id_header_size;
189 perf_output_get_handle(handle);
191 do {
192 tail = READ_ONCE(rb->user_page->data_tail);
193 offset = head = local_read(&rb->head);
194 if (!rb->overwrite) {
195 if (unlikely(!ring_buffer_has_space(head, tail,
196 perf_data_size(rb),
197 size, backward)))
198 goto fail;
202 * The above forms a control dependency barrier separating the
203 * @tail load above from the data stores below. Since the @tail
204 * load is required to compute the branch to fail below.
206 * A, matches D; the full memory barrier userspace SHOULD issue
207 * after reading the data and before storing the new tail
208 * position.
210 * See perf_output_put_handle().
213 if (!backward)
214 head += size;
215 else
216 head -= size;
217 } while (local_cmpxchg(&rb->head, offset, head) != offset);
219 if (backward) {
220 offset = head;
221 head = (u64)(-head);
225 * We rely on the implied barrier() by local_cmpxchg() to ensure
226 * none of the data stores below can be lifted up by the compiler.
229 if (unlikely(head - local_read(&rb->wakeup) > rb->watermark))
230 local_add(rb->watermark, &rb->wakeup);
232 page_shift = PAGE_SHIFT + page_order(rb);
234 handle->page = (offset >> page_shift) & (rb->nr_pages - 1);
235 offset &= (1UL << page_shift) - 1;
236 handle->addr = rb->data_pages[handle->page] + offset;
237 handle->size = (1UL << page_shift) - offset;
239 if (unlikely(have_lost)) {
240 struct perf_sample_data sample_data;
242 lost_event.header.size = sizeof(lost_event);
243 lost_event.header.type = PERF_RECORD_LOST;
244 lost_event.header.misc = 0;
245 lost_event.id = event->id;
246 lost_event.lost = local_xchg(&rb->lost, 0);
248 perf_event_header__init_id(&lost_event.header,
249 &sample_data, event);
250 perf_output_put(handle, lost_event);
251 perf_event__output_id_sample(event, handle, &sample_data);
254 return 0;
256 fail:
257 local_inc(&rb->lost);
258 perf_output_put_handle(handle);
259 out:
260 rcu_read_unlock();
262 return -ENOSPC;
265 int perf_output_begin_forward(struct perf_output_handle *handle,
266 struct perf_event *event, unsigned int size)
268 return __perf_output_begin(handle, event, size, false);
271 int perf_output_begin_backward(struct perf_output_handle *handle,
272 struct perf_event *event, unsigned int size)
274 return __perf_output_begin(handle, event, size, true);
277 int perf_output_begin(struct perf_output_handle *handle,
278 struct perf_event *event, unsigned int size)
281 return __perf_output_begin(handle, event, size,
282 unlikely(is_write_backward(event)));
285 unsigned int perf_output_copy(struct perf_output_handle *handle,
286 const void *buf, unsigned int len)
288 return __output_copy(handle, buf, len);
291 unsigned int perf_output_skip(struct perf_output_handle *handle,
292 unsigned int len)
294 return __output_skip(handle, NULL, len);
297 void perf_output_end(struct perf_output_handle *handle)
299 perf_output_put_handle(handle);
300 rcu_read_unlock();
303 static void
304 ring_buffer_init(struct perf_buffer *rb, long watermark, int flags)
306 long max_size = perf_data_size(rb);
308 if (watermark)
309 rb->watermark = min(max_size, watermark);
311 if (!rb->watermark)
312 rb->watermark = max_size / 2;
314 if (flags & RING_BUFFER_WRITABLE)
315 rb->overwrite = 0;
316 else
317 rb->overwrite = 1;
319 refcount_set(&rb->refcount, 1);
321 INIT_LIST_HEAD(&rb->event_list);
322 spin_lock_init(&rb->event_lock);
325 * perf_output_begin() only checks rb->paused, therefore
326 * rb->paused must be true if we have no pages for output.
328 if (!rb->nr_pages)
329 rb->paused = 1;
332 void perf_aux_output_flag(struct perf_output_handle *handle, u64 flags)
335 * OVERWRITE is determined by perf_aux_output_end() and can't
336 * be passed in directly.
338 if (WARN_ON_ONCE(flags & PERF_AUX_FLAG_OVERWRITE))
339 return;
341 handle->aux_flags |= flags;
343 EXPORT_SYMBOL_GPL(perf_aux_output_flag);
346 * This is called before hardware starts writing to the AUX area to
347 * obtain an output handle and make sure there's room in the buffer.
348 * When the capture completes, call perf_aux_output_end() to commit
349 * the recorded data to the buffer.
351 * The ordering is similar to that of perf_output_{begin,end}, with
352 * the exception of (B), which should be taken care of by the pmu
353 * driver, since ordering rules will differ depending on hardware.
355 * Call this from pmu::start(); see the comment in perf_aux_output_end()
356 * about its use in pmu callbacks. Both can also be called from the PMI
357 * handler if needed.
359 void *perf_aux_output_begin(struct perf_output_handle *handle,
360 struct perf_event *event)
362 struct perf_event *output_event = event;
363 unsigned long aux_head, aux_tail;
364 struct perf_buffer *rb;
365 unsigned int nest;
367 if (output_event->parent)
368 output_event = output_event->parent;
371 * Since this will typically be open across pmu::add/pmu::del, we
372 * grab ring_buffer's refcount instead of holding rcu read lock
373 * to make sure it doesn't disappear under us.
375 rb = ring_buffer_get(output_event);
376 if (!rb)
377 return NULL;
379 if (!rb_has_aux(rb))
380 goto err;
383 * If aux_mmap_count is zero, the aux buffer is in perf_mmap_close(),
384 * about to get freed, so we leave immediately.
386 * Checking rb::aux_mmap_count and rb::refcount has to be done in
387 * the same order, see perf_mmap_close. Otherwise we end up freeing
388 * aux pages in this path, which is a bug, because in_atomic().
390 if (!atomic_read(&rb->aux_mmap_count))
391 goto err;
393 if (!refcount_inc_not_zero(&rb->aux_refcount))
394 goto err;
396 nest = READ_ONCE(rb->aux_nest);
398 * Nesting is not supported for AUX area, make sure nested
399 * writers are caught early
401 if (WARN_ON_ONCE(nest))
402 goto err_put;
404 WRITE_ONCE(rb->aux_nest, nest + 1);
406 aux_head = rb->aux_head;
408 handle->rb = rb;
409 handle->event = event;
410 handle->head = aux_head;
411 handle->size = 0;
412 handle->aux_flags = 0;
415 * In overwrite mode, AUX data stores do not depend on aux_tail,
416 * therefore (A) control dependency barrier does not exist. The
417 * (B) <-> (C) ordering is still observed by the pmu driver.
419 if (!rb->aux_overwrite) {
420 aux_tail = READ_ONCE(rb->user_page->aux_tail);
421 handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
422 if (aux_head - aux_tail < perf_aux_size(rb))
423 handle->size = CIRC_SPACE(aux_head, aux_tail, perf_aux_size(rb));
426 * handle->size computation depends on aux_tail load; this forms a
427 * control dependency barrier separating aux_tail load from aux data
428 * store that will be enabled on successful return
430 if (!handle->size) { /* A, matches D */
431 event->pending_disable = smp_processor_id();
432 perf_output_wakeup(handle);
433 WRITE_ONCE(rb->aux_nest, 0);
434 goto err_put;
438 return handle->rb->aux_priv;
440 err_put:
441 /* can't be last */
442 rb_free_aux(rb);
444 err:
445 ring_buffer_put(rb);
446 handle->event = NULL;
448 return NULL;
450 EXPORT_SYMBOL_GPL(perf_aux_output_begin);
452 static __always_inline bool rb_need_aux_wakeup(struct perf_buffer *rb)
454 if (rb->aux_overwrite)
455 return false;
457 if (rb->aux_head - rb->aux_wakeup >= rb->aux_watermark) {
458 rb->aux_wakeup = rounddown(rb->aux_head, rb->aux_watermark);
459 return true;
462 return false;
466 * Commit the data written by hardware into the ring buffer by adjusting
467 * aux_head and posting a PERF_RECORD_AUX into the perf buffer. It is the
468 * pmu driver's responsibility to observe ordering rules of the hardware,
469 * so that all the data is externally visible before this is called.
471 * Note: this has to be called from pmu::stop() callback, as the assumption
472 * of the AUX buffer management code is that after pmu::stop(), the AUX
473 * transaction must be stopped and therefore drop the AUX reference count.
475 void perf_aux_output_end(struct perf_output_handle *handle, unsigned long size)
477 bool wakeup = !!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED);
478 struct perf_buffer *rb = handle->rb;
479 unsigned long aux_head;
481 /* in overwrite mode, driver provides aux_head via handle */
482 if (rb->aux_overwrite) {
483 handle->aux_flags |= PERF_AUX_FLAG_OVERWRITE;
485 aux_head = handle->head;
486 rb->aux_head = aux_head;
487 } else {
488 handle->aux_flags &= ~PERF_AUX_FLAG_OVERWRITE;
490 aux_head = rb->aux_head;
491 rb->aux_head += size;
495 * Only send RECORD_AUX if we have something useful to communicate
497 * Note: the OVERWRITE records by themselves are not considered
498 * useful, as they don't communicate any *new* information,
499 * aside from the short-lived offset, that becomes history at
500 * the next event sched-in and therefore isn't useful.
501 * The userspace that needs to copy out AUX data in overwrite
502 * mode should know to use user_page::aux_head for the actual
503 * offset. So, from now on we don't output AUX records that
504 * have *only* OVERWRITE flag set.
506 if (size || (handle->aux_flags & ~(u64)PERF_AUX_FLAG_OVERWRITE))
507 perf_event_aux_event(handle->event, aux_head, size,
508 handle->aux_flags);
510 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
511 if (rb_need_aux_wakeup(rb))
512 wakeup = true;
514 if (wakeup) {
515 if (handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)
516 handle->event->pending_disable = smp_processor_id();
517 perf_output_wakeup(handle);
520 handle->event = NULL;
522 WRITE_ONCE(rb->aux_nest, 0);
523 /* can't be last */
524 rb_free_aux(rb);
525 ring_buffer_put(rb);
527 EXPORT_SYMBOL_GPL(perf_aux_output_end);
530 * Skip over a given number of bytes in the AUX buffer, due to, for example,
531 * hardware's alignment constraints.
533 int perf_aux_output_skip(struct perf_output_handle *handle, unsigned long size)
535 struct perf_buffer *rb = handle->rb;
537 if (size > handle->size)
538 return -ENOSPC;
540 rb->aux_head += size;
542 WRITE_ONCE(rb->user_page->aux_head, rb->aux_head);
543 if (rb_need_aux_wakeup(rb)) {
544 perf_output_wakeup(handle);
545 handle->wakeup = rb->aux_wakeup + rb->aux_watermark;
548 handle->head = rb->aux_head;
549 handle->size -= size;
551 return 0;
553 EXPORT_SYMBOL_GPL(perf_aux_output_skip);
555 void *perf_get_aux(struct perf_output_handle *handle)
557 /* this is only valid between perf_aux_output_begin and *_end */
558 if (!handle->event)
559 return NULL;
561 return handle->rb->aux_priv;
563 EXPORT_SYMBOL_GPL(perf_get_aux);
566 * Copy out AUX data from an AUX handle.
568 long perf_output_copy_aux(struct perf_output_handle *aux_handle,
569 struct perf_output_handle *handle,
570 unsigned long from, unsigned long to)
572 struct perf_buffer *rb = aux_handle->rb;
573 unsigned long tocopy, remainder, len = 0;
574 void *addr;
576 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
577 to &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
579 do {
580 tocopy = PAGE_SIZE - offset_in_page(from);
581 if (to > from)
582 tocopy = min(tocopy, to - from);
583 if (!tocopy)
584 break;
586 addr = rb->aux_pages[from >> PAGE_SHIFT];
587 addr += offset_in_page(from);
589 remainder = perf_output_copy(handle, addr, tocopy);
590 if (remainder)
591 return -EFAULT;
593 len += tocopy;
594 from += tocopy;
595 from &= (rb->aux_nr_pages << PAGE_SHIFT) - 1;
596 } while (to != from);
598 return len;
601 #define PERF_AUX_GFP (GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_NORETRY)
603 static struct page *rb_alloc_aux_page(int node, int order)
605 struct page *page;
607 if (order > MAX_ORDER)
608 order = MAX_ORDER;
610 do {
611 page = alloc_pages_node(node, PERF_AUX_GFP, order);
612 } while (!page && order--);
614 if (page && order) {
616 * Communicate the allocation size to the driver:
617 * if we managed to secure a high-order allocation,
618 * set its first page's private to this order;
619 * !PagePrivate(page) means it's just a normal page.
621 split_page(page, order);
622 SetPagePrivate(page);
623 set_page_private(page, order);
626 return page;
629 static void rb_free_aux_page(struct perf_buffer *rb, int idx)
631 struct page *page = virt_to_page(rb->aux_pages[idx]);
633 ClearPagePrivate(page);
634 page->mapping = NULL;
635 __free_page(page);
638 static void __rb_free_aux(struct perf_buffer *rb)
640 int pg;
643 * Should never happen, the last reference should be dropped from
644 * perf_mmap_close() path, which first stops aux transactions (which
645 * in turn are the atomic holders of aux_refcount) and then does the
646 * last rb_free_aux().
648 WARN_ON_ONCE(in_atomic());
650 if (rb->aux_priv) {
651 rb->free_aux(rb->aux_priv);
652 rb->free_aux = NULL;
653 rb->aux_priv = NULL;
656 if (rb->aux_nr_pages) {
657 for (pg = 0; pg < rb->aux_nr_pages; pg++)
658 rb_free_aux_page(rb, pg);
660 kfree(rb->aux_pages);
661 rb->aux_nr_pages = 0;
665 int rb_alloc_aux(struct perf_buffer *rb, struct perf_event *event,
666 pgoff_t pgoff, int nr_pages, long watermark, int flags)
668 bool overwrite = !(flags & RING_BUFFER_WRITABLE);
669 int node = (event->cpu == -1) ? -1 : cpu_to_node(event->cpu);
670 int ret = -ENOMEM, max_order;
672 if (!has_aux(event))
673 return -EOPNOTSUPP;
676 * We need to start with the max_order that fits in nr_pages,
677 * not the other way around, hence ilog2() and not get_order.
679 max_order = ilog2(nr_pages);
682 * PMU requests more than one contiguous chunks of memory
683 * for SW double buffering
685 if (!overwrite) {
686 if (!max_order)
687 return -EINVAL;
689 max_order--;
692 rb->aux_pages = kcalloc_node(nr_pages, sizeof(void *), GFP_KERNEL,
693 node);
694 if (!rb->aux_pages)
695 return -ENOMEM;
697 rb->free_aux = event->pmu->free_aux;
698 for (rb->aux_nr_pages = 0; rb->aux_nr_pages < nr_pages;) {
699 struct page *page;
700 int last, order;
702 order = min(max_order, ilog2(nr_pages - rb->aux_nr_pages));
703 page = rb_alloc_aux_page(node, order);
704 if (!page)
705 goto out;
707 for (last = rb->aux_nr_pages + (1 << page_private(page));
708 last > rb->aux_nr_pages; rb->aux_nr_pages++)
709 rb->aux_pages[rb->aux_nr_pages] = page_address(page++);
713 * In overwrite mode, PMUs that don't support SG may not handle more
714 * than one contiguous allocation, since they rely on PMI to do double
715 * buffering. In this case, the entire buffer has to be one contiguous
716 * chunk.
718 if ((event->pmu->capabilities & PERF_PMU_CAP_AUX_NO_SG) &&
719 overwrite) {
720 struct page *page = virt_to_page(rb->aux_pages[0]);
722 if (page_private(page) != max_order)
723 goto out;
726 rb->aux_priv = event->pmu->setup_aux(event, rb->aux_pages, nr_pages,
727 overwrite);
728 if (!rb->aux_priv)
729 goto out;
731 ret = 0;
734 * aux_pages (and pmu driver's private data, aux_priv) will be
735 * referenced in both producer's and consumer's contexts, thus
736 * we keep a refcount here to make sure either of the two can
737 * reference them safely.
739 refcount_set(&rb->aux_refcount, 1);
741 rb->aux_overwrite = overwrite;
742 rb->aux_watermark = watermark;
744 if (!rb->aux_watermark && !rb->aux_overwrite)
745 rb->aux_watermark = nr_pages << (PAGE_SHIFT - 1);
747 out:
748 if (!ret)
749 rb->aux_pgoff = pgoff;
750 else
751 __rb_free_aux(rb);
753 return ret;
756 void rb_free_aux(struct perf_buffer *rb)
758 if (refcount_dec_and_test(&rb->aux_refcount))
759 __rb_free_aux(rb);
762 #ifndef CONFIG_PERF_USE_VMALLOC
765 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
768 static struct page *
769 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
771 if (pgoff > rb->nr_pages)
772 return NULL;
774 if (pgoff == 0)
775 return virt_to_page(rb->user_page);
777 return virt_to_page(rb->data_pages[pgoff - 1]);
780 static void *perf_mmap_alloc_page(int cpu)
782 struct page *page;
783 int node;
785 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
786 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
787 if (!page)
788 return NULL;
790 return page_address(page);
793 static void perf_mmap_free_page(void *addr)
795 struct page *page = virt_to_page(addr);
797 page->mapping = NULL;
798 __free_page(page);
801 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
803 struct perf_buffer *rb;
804 unsigned long size;
805 int i;
807 size = sizeof(struct perf_buffer);
808 size += nr_pages * sizeof(void *);
810 if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER)
811 goto fail;
813 rb = kzalloc(size, GFP_KERNEL);
814 if (!rb)
815 goto fail;
817 rb->user_page = perf_mmap_alloc_page(cpu);
818 if (!rb->user_page)
819 goto fail_user_page;
821 for (i = 0; i < nr_pages; i++) {
822 rb->data_pages[i] = perf_mmap_alloc_page(cpu);
823 if (!rb->data_pages[i])
824 goto fail_data_pages;
827 rb->nr_pages = nr_pages;
829 ring_buffer_init(rb, watermark, flags);
831 return rb;
833 fail_data_pages:
834 for (i--; i >= 0; i--)
835 perf_mmap_free_page(rb->data_pages[i]);
837 perf_mmap_free_page(rb->user_page);
839 fail_user_page:
840 kfree(rb);
842 fail:
843 return NULL;
846 void rb_free(struct perf_buffer *rb)
848 int i;
850 perf_mmap_free_page(rb->user_page);
851 for (i = 0; i < rb->nr_pages; i++)
852 perf_mmap_free_page(rb->data_pages[i]);
853 kfree(rb);
856 #else
857 static int data_page_nr(struct perf_buffer *rb)
859 return rb->nr_pages << page_order(rb);
862 static struct page *
863 __perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
865 /* The '>' counts in the user page. */
866 if (pgoff > data_page_nr(rb))
867 return NULL;
869 return vmalloc_to_page((void *)rb->user_page + pgoff * PAGE_SIZE);
872 static void perf_mmap_unmark_page(void *addr)
874 struct page *page = vmalloc_to_page(addr);
876 page->mapping = NULL;
879 static void rb_free_work(struct work_struct *work)
881 struct perf_buffer *rb;
882 void *base;
883 int i, nr;
885 rb = container_of(work, struct perf_buffer, work);
886 nr = data_page_nr(rb);
888 base = rb->user_page;
889 /* The '<=' counts in the user page. */
890 for (i = 0; i <= nr; i++)
891 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
893 vfree(base);
894 kfree(rb);
897 void rb_free(struct perf_buffer *rb)
899 schedule_work(&rb->work);
902 struct perf_buffer *rb_alloc(int nr_pages, long watermark, int cpu, int flags)
904 struct perf_buffer *rb;
905 unsigned long size;
906 void *all_buf;
908 size = sizeof(struct perf_buffer);
909 size += sizeof(void *);
911 rb = kzalloc(size, GFP_KERNEL);
912 if (!rb)
913 goto fail;
915 INIT_WORK(&rb->work, rb_free_work);
917 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
918 if (!all_buf)
919 goto fail_all_buf;
921 rb->user_page = all_buf;
922 rb->data_pages[0] = all_buf + PAGE_SIZE;
923 if (nr_pages) {
924 rb->nr_pages = 1;
925 rb->page_order = ilog2(nr_pages);
928 ring_buffer_init(rb, watermark, flags);
930 return rb;
932 fail_all_buf:
933 kfree(rb);
935 fail:
936 return NULL;
939 #endif
941 struct page *
942 perf_mmap_to_page(struct perf_buffer *rb, unsigned long pgoff)
944 if (rb->aux_nr_pages) {
945 /* above AUX space */
946 if (pgoff > rb->aux_pgoff + rb->aux_nr_pages)
947 return NULL;
949 /* AUX space */
950 if (pgoff >= rb->aux_pgoff) {
951 int aux_pgoff = array_index_nospec(pgoff - rb->aux_pgoff, rb->aux_nr_pages);
952 return virt_to_page(rb->aux_pages[aux_pgoff]);
956 return __perf_mmap_to_page(rb, pgoff);