1 // SPDX-License-Identifier: GPL-2.0
5 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
7 #include <linux/trace_events.h>
8 #include <linux/ring_buffer.h>
9 #include <linux/trace_clock.h>
10 #include <linux/sched/clock.h>
11 #include <linux/trace_seq.h>
12 #include <linux/spinlock.h>
13 #include <linux/irq_work.h>
14 #include <linux/security.h>
15 #include <linux/uaccess.h>
16 #include <linux/hardirq.h>
17 #include <linux/kthread.h> /* for self test */
18 #include <linux/module.h>
19 #include <linux/percpu.h>
20 #include <linux/mutex.h>
21 #include <linux/delay.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/list.h>
26 #include <linux/cpu.h>
27 #include <linux/oom.h>
29 #include <asm/local.h>
31 static void update_pages_handler(struct work_struct
*work
);
34 * The ring buffer header is special. We must manually up keep it.
36 int ring_buffer_print_entry_header(struct trace_seq
*s
)
38 trace_seq_puts(s
, "# compressed entry header\n");
39 trace_seq_puts(s
, "\ttype_len : 5 bits\n");
40 trace_seq_puts(s
, "\ttime_delta : 27 bits\n");
41 trace_seq_puts(s
, "\tarray : 32 bits\n");
42 trace_seq_putc(s
, '\n');
43 trace_seq_printf(s
, "\tpadding : type == %d\n",
44 RINGBUF_TYPE_PADDING
);
45 trace_seq_printf(s
, "\ttime_extend : type == %d\n",
46 RINGBUF_TYPE_TIME_EXTEND
);
47 trace_seq_printf(s
, "\ttime_stamp : type == %d\n",
48 RINGBUF_TYPE_TIME_STAMP
);
49 trace_seq_printf(s
, "\tdata max type_len == %d\n",
50 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
52 return !trace_seq_has_overflowed(s
);
56 * The ring buffer is made up of a list of pages. A separate list of pages is
57 * allocated for each CPU. A writer may only write to a buffer that is
58 * associated with the CPU it is currently executing on. A reader may read
59 * from any per cpu buffer.
61 * The reader is special. For each per cpu buffer, the reader has its own
62 * reader page. When a reader has read the entire reader page, this reader
63 * page is swapped with another page in the ring buffer.
65 * Now, as long as the writer is off the reader page, the reader can do what
66 * ever it wants with that page. The writer will never write to that page
67 * again (as long as it is out of the ring buffer).
69 * Here's some silly ASCII art.
72 * |reader| RING BUFFER
74 * +------+ +---+ +---+ +---+
83 * |reader| RING BUFFER
84 * |page |------------------v
85 * +------+ +---+ +---+ +---+
94 * |reader| RING BUFFER
95 * |page |------------------v
96 * +------+ +---+ +---+ +---+
101 * +------------------------------+
105 * |buffer| RING BUFFER
106 * |page |------------------v
107 * +------+ +---+ +---+ +---+
109 * | New +---+ +---+ +---+
112 * +------------------------------+
115 * After we make this swap, the reader can hand this page off to the splice
116 * code and be done with it. It can even allocate a new page if it needs to
117 * and swap that into the ring buffer.
119 * We will be using cmpxchg soon to make all this lockless.
123 /* Used for individual buffers (after the counter) */
124 #define RB_BUFFER_OFF (1 << 20)
126 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
128 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
129 #define RB_ALIGNMENT 4U
130 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
131 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
132 #define RB_ALIGN_DATA __aligned(RB_ALIGNMENT)
134 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
135 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
138 RB_LEN_TIME_EXTEND
= 8,
139 RB_LEN_TIME_STAMP
= 8,
142 #define skip_time_extend(event) \
143 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
145 #define extended_time(event) \
146 (event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
148 static inline int rb_null_event(struct ring_buffer_event
*event
)
150 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
153 static void rb_event_set_padding(struct ring_buffer_event
*event
)
155 /* padding has a NULL time_delta */
156 event
->type_len
= RINGBUF_TYPE_PADDING
;
157 event
->time_delta
= 0;
161 rb_event_data_length(struct ring_buffer_event
*event
)
166 length
= event
->type_len
* RB_ALIGNMENT
;
168 length
= event
->array
[0];
169 return length
+ RB_EVNT_HDR_SIZE
;
173 * Return the length of the given event. Will return
174 * the length of the time extend if the event is a
177 static inline unsigned
178 rb_event_length(struct ring_buffer_event
*event
)
180 switch (event
->type_len
) {
181 case RINGBUF_TYPE_PADDING
:
182 if (rb_null_event(event
))
185 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
187 case RINGBUF_TYPE_TIME_EXTEND
:
188 return RB_LEN_TIME_EXTEND
;
190 case RINGBUF_TYPE_TIME_STAMP
:
191 return RB_LEN_TIME_STAMP
;
193 case RINGBUF_TYPE_DATA
:
194 return rb_event_data_length(event
);
203 * Return total length of time extend and data,
204 * or just the event length for all other events.
206 static inline unsigned
207 rb_event_ts_length(struct ring_buffer_event
*event
)
211 if (extended_time(event
)) {
212 /* time extends include the data event after it */
213 len
= RB_LEN_TIME_EXTEND
;
214 event
= skip_time_extend(event
);
216 return len
+ rb_event_length(event
);
220 * ring_buffer_event_length - return the length of the event
221 * @event: the event to get the length of
223 * Returns the size of the data load of a data event.
224 * If the event is something other than a data event, it
225 * returns the size of the event itself. With the exception
226 * of a TIME EXTEND, where it still returns the size of the
227 * data load of the data event after it.
229 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
233 if (extended_time(event
))
234 event
= skip_time_extend(event
);
236 length
= rb_event_length(event
);
237 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
239 length
-= RB_EVNT_HDR_SIZE
;
240 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
241 length
-= sizeof(event
->array
[0]);
244 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
246 /* inline for ring buffer fast paths */
247 static __always_inline
void *
248 rb_event_data(struct ring_buffer_event
*event
)
250 if (extended_time(event
))
251 event
= skip_time_extend(event
);
252 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
253 /* If length is in len field, then array[0] has the data */
255 return (void *)&event
->array
[0];
256 /* Otherwise length is in array[0] and array[1] has the data */
257 return (void *)&event
->array
[1];
261 * ring_buffer_event_data - return the data of the event
262 * @event: the event to get the data from
264 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
266 return rb_event_data(event
);
268 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
270 #define for_each_buffer_cpu(buffer, cpu) \
271 for_each_cpu(cpu, buffer->cpumask)
274 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
275 #define TS_DELTA_TEST (~TS_MASK)
278 * ring_buffer_event_time_stamp - return the event's extended timestamp
279 * @event: the event to get the timestamp of
281 * Returns the extended timestamp associated with a data event.
282 * An extended time_stamp is a 64-bit timestamp represented
283 * internally in a special way that makes the best use of space
284 * contained within a ring buffer event. This function decodes
285 * it and maps it to a straight u64 value.
287 u64
ring_buffer_event_time_stamp(struct ring_buffer_event
*event
)
291 ts
= event
->array
[0];
293 ts
+= event
->time_delta
;
298 /* Flag when events were overwritten */
299 #define RB_MISSED_EVENTS (1 << 31)
300 /* Missed count stored at end */
301 #define RB_MISSED_STORED (1 << 30)
303 struct buffer_data_page
{
304 u64 time_stamp
; /* page time stamp */
305 local_t commit
; /* write committed index */
306 unsigned char data
[] RB_ALIGN_DATA
; /* data of buffer page */
310 * Note, the buffer_page list must be first. The buffer pages
311 * are allocated in cache lines, which means that each buffer
312 * page will be at the beginning of a cache line, and thus
313 * the least significant bits will be zero. We use this to
314 * add flags in the list struct pointers, to make the ring buffer
318 struct list_head list
; /* list of buffer pages */
319 local_t write
; /* index for next write */
320 unsigned read
; /* index for next read */
321 local_t entries
; /* entries on this page */
322 unsigned long real_end
; /* real end of data */
323 struct buffer_data_page
*page
; /* Actual data page */
327 * The buffer page counters, write and entries, must be reset
328 * atomically when crossing page boundaries. To synchronize this
329 * update, two counters are inserted into the number. One is
330 * the actual counter for the write position or count on the page.
332 * The other is a counter of updaters. Before an update happens
333 * the update partition of the counter is incremented. This will
334 * allow the updater to update the counter atomically.
336 * The counter is 20 bits, and the state data is 12.
338 #define RB_WRITE_MASK 0xfffff
339 #define RB_WRITE_INTCNT (1 << 20)
341 static void rb_init_page(struct buffer_data_page
*bpage
)
343 local_set(&bpage
->commit
, 0);
347 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
350 static void free_buffer_page(struct buffer_page
*bpage
)
352 free_page((unsigned long)bpage
->page
);
357 * We need to fit the time_stamp delta into 27 bits.
359 static inline int test_time_stamp(u64 delta
)
361 if (delta
& TS_DELTA_TEST
)
366 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
368 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
369 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
371 int ring_buffer_print_page_header(struct trace_seq
*s
)
373 struct buffer_data_page field
;
375 trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
376 "offset:0;\tsize:%u;\tsigned:%u;\n",
377 (unsigned int)sizeof(field
.time_stamp
),
378 (unsigned int)is_signed_type(u64
));
380 trace_seq_printf(s
, "\tfield: local_t commit;\t"
381 "offset:%u;\tsize:%u;\tsigned:%u;\n",
382 (unsigned int)offsetof(typeof(field
), commit
),
383 (unsigned int)sizeof(field
.commit
),
384 (unsigned int)is_signed_type(long));
386 trace_seq_printf(s
, "\tfield: int overwrite;\t"
387 "offset:%u;\tsize:%u;\tsigned:%u;\n",
388 (unsigned int)offsetof(typeof(field
), commit
),
390 (unsigned int)is_signed_type(long));
392 trace_seq_printf(s
, "\tfield: char data;\t"
393 "offset:%u;\tsize:%u;\tsigned:%u;\n",
394 (unsigned int)offsetof(typeof(field
), data
),
395 (unsigned int)BUF_PAGE_SIZE
,
396 (unsigned int)is_signed_type(char));
398 return !trace_seq_has_overflowed(s
);
402 struct irq_work work
;
403 wait_queue_head_t waiters
;
404 wait_queue_head_t full_waiters
;
405 bool waiters_pending
;
406 bool full_waiters_pending
;
411 * Structure to hold event state and handle nested events.
413 struct rb_event_info
{
416 unsigned long length
;
417 struct buffer_page
*tail_page
;
422 * Used for which event context the event is in.
428 * See trace_recursive_lock() comment below for more details.
439 * head_page == tail_page && head == tail then buffer is empty.
441 struct ring_buffer_per_cpu
{
443 atomic_t record_disabled
;
444 struct trace_buffer
*buffer
;
445 raw_spinlock_t reader_lock
; /* serialize readers */
446 arch_spinlock_t lock
;
447 struct lock_class_key lock_key
;
448 struct buffer_data_page
*free_page
;
449 unsigned long nr_pages
;
450 unsigned int current_context
;
451 struct list_head
*pages
;
452 struct buffer_page
*head_page
; /* read from head */
453 struct buffer_page
*tail_page
; /* write to tail */
454 struct buffer_page
*commit_page
; /* committed pages */
455 struct buffer_page
*reader_page
;
456 unsigned long lost_events
;
457 unsigned long last_overrun
;
459 local_t entries_bytes
;
462 local_t commit_overrun
;
463 local_t dropped_events
;
466 local_t pages_touched
;
468 long last_pages_touch
;
469 size_t shortest_full
;
471 unsigned long read_bytes
;
474 /* ring buffer pages to update, > 0 to add, < 0 to remove */
475 long nr_pages_to_update
;
476 struct list_head new_pages
; /* new pages to add */
477 struct work_struct update_pages_work
;
478 struct completion update_done
;
480 struct rb_irq_work irq_work
;
483 struct trace_buffer
{
486 atomic_t record_disabled
;
487 atomic_t resize_disabled
;
488 cpumask_var_t cpumask
;
490 struct lock_class_key
*reader_lock_key
;
494 struct ring_buffer_per_cpu
**buffers
;
496 struct hlist_node node
;
499 struct rb_irq_work irq_work
;
503 struct ring_buffer_iter
{
504 struct ring_buffer_per_cpu
*cpu_buffer
;
506 struct buffer_page
*head_page
;
507 struct buffer_page
*cache_reader_page
;
508 unsigned long cache_read
;
513 * ring_buffer_nr_pages - get the number of buffer pages in the ring buffer
514 * @buffer: The ring_buffer to get the number of pages from
515 * @cpu: The cpu of the ring_buffer to get the number of pages from
517 * Returns the number of pages used by a per_cpu buffer of the ring buffer.
519 size_t ring_buffer_nr_pages(struct trace_buffer
*buffer
, int cpu
)
521 return buffer
->buffers
[cpu
]->nr_pages
;
525 * ring_buffer_nr_pages_dirty - get the number of used pages in the ring buffer
526 * @buffer: The ring_buffer to get the number of pages from
527 * @cpu: The cpu of the ring_buffer to get the number of pages from
529 * Returns the number of pages that have content in the ring buffer.
531 size_t ring_buffer_nr_dirty_pages(struct trace_buffer
*buffer
, int cpu
)
536 read
= local_read(&buffer
->buffers
[cpu
]->pages_read
);
537 cnt
= local_read(&buffer
->buffers
[cpu
]->pages_touched
);
538 /* The reader can read an empty page, but not more than that */
540 WARN_ON_ONCE(read
> cnt
+ 1);
548 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
550 * Schedules a delayed work to wake up any task that is blocked on the
551 * ring buffer waiters queue.
553 static void rb_wake_up_waiters(struct irq_work
*work
)
555 struct rb_irq_work
*rbwork
= container_of(work
, struct rb_irq_work
, work
);
557 wake_up_all(&rbwork
->waiters
);
558 if (rbwork
->wakeup_full
) {
559 rbwork
->wakeup_full
= false;
560 wake_up_all(&rbwork
->full_waiters
);
565 * ring_buffer_wait - wait for input to the ring buffer
566 * @buffer: buffer to wait on
567 * @cpu: the cpu buffer to wait on
568 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
570 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
571 * as data is added to any of the @buffer's cpu buffers. Otherwise
572 * it will wait for data to be added to a specific cpu buffer.
574 int ring_buffer_wait(struct trace_buffer
*buffer
, int cpu
, int full
)
576 struct ring_buffer_per_cpu
*uninitialized_var(cpu_buffer
);
578 struct rb_irq_work
*work
;
582 * Depending on what the caller is waiting for, either any
583 * data in any cpu buffer, or a specific buffer, put the
584 * caller on the appropriate wait queue.
586 if (cpu
== RING_BUFFER_ALL_CPUS
) {
587 work
= &buffer
->irq_work
;
588 /* Full only makes sense on per cpu reads */
591 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
593 cpu_buffer
= buffer
->buffers
[cpu
];
594 work
= &cpu_buffer
->irq_work
;
600 prepare_to_wait(&work
->full_waiters
, &wait
, TASK_INTERRUPTIBLE
);
602 prepare_to_wait(&work
->waiters
, &wait
, TASK_INTERRUPTIBLE
);
605 * The events can happen in critical sections where
606 * checking a work queue can cause deadlocks.
607 * After adding a task to the queue, this flag is set
608 * only to notify events to try to wake up the queue
611 * We don't clear it even if the buffer is no longer
612 * empty. The flag only causes the next event to run
613 * irq_work to do the work queue wake up. The worse
614 * that can happen if we race with !trace_empty() is that
615 * an event will cause an irq_work to try to wake up
618 * There's no reason to protect this flag either, as
619 * the work queue and irq_work logic will do the necessary
620 * synchronization for the wake ups. The only thing
621 * that is necessary is that the wake up happens after
622 * a task has been queued. It's OK for spurious wake ups.
625 work
->full_waiters_pending
= true;
627 work
->waiters_pending
= true;
629 if (signal_pending(current
)) {
634 if (cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
))
637 if (cpu
!= RING_BUFFER_ALL_CPUS
&&
638 !ring_buffer_empty_cpu(buffer
, cpu
)) {
647 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
648 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
649 nr_pages
= cpu_buffer
->nr_pages
;
650 dirty
= ring_buffer_nr_dirty_pages(buffer
, cpu
);
651 if (!cpu_buffer
->shortest_full
||
652 cpu_buffer
->shortest_full
< full
)
653 cpu_buffer
->shortest_full
= full
;
654 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
656 (!nr_pages
|| (dirty
* 100) > full
* nr_pages
))
664 finish_wait(&work
->full_waiters
, &wait
);
666 finish_wait(&work
->waiters
, &wait
);
672 * ring_buffer_poll_wait - poll on buffer input
673 * @buffer: buffer to wait on
674 * @cpu: the cpu buffer to wait on
675 * @filp: the file descriptor
676 * @poll_table: The poll descriptor
678 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
679 * as data is added to any of the @buffer's cpu buffers. Otherwise
680 * it will wait for data to be added to a specific cpu buffer.
682 * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
685 __poll_t
ring_buffer_poll_wait(struct trace_buffer
*buffer
, int cpu
,
686 struct file
*filp
, poll_table
*poll_table
)
688 struct ring_buffer_per_cpu
*cpu_buffer
;
689 struct rb_irq_work
*work
;
691 if (cpu
== RING_BUFFER_ALL_CPUS
)
692 work
= &buffer
->irq_work
;
694 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
697 cpu_buffer
= buffer
->buffers
[cpu
];
698 work
= &cpu_buffer
->irq_work
;
701 poll_wait(filp
, &work
->waiters
, poll_table
);
702 work
->waiters_pending
= true;
704 * There's a tight race between setting the waiters_pending and
705 * checking if the ring buffer is empty. Once the waiters_pending bit
706 * is set, the next event will wake the task up, but we can get stuck
707 * if there's only a single event in.
709 * FIXME: Ideally, we need a memory barrier on the writer side as well,
710 * but adding a memory barrier to all events will cause too much of a
711 * performance hit in the fast path. We only need a memory barrier when
712 * the buffer goes from empty to having content. But as this race is
713 * extremely small, and it's not a problem if another event comes in, we
718 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
719 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
720 return EPOLLIN
| EPOLLRDNORM
;
724 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
725 #define RB_WARN_ON(b, cond) \
727 int _____ret = unlikely(cond); \
729 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
730 struct ring_buffer_per_cpu *__b = \
732 atomic_inc(&__b->buffer->record_disabled); \
734 atomic_inc(&b->record_disabled); \
740 /* Up this if you want to test the TIME_EXTENTS and normalization */
741 #define DEBUG_SHIFT 0
743 static inline u64
rb_time_stamp(struct trace_buffer
*buffer
)
745 /* shift to debug/test normalization and TIME_EXTENTS */
746 return buffer
->clock() << DEBUG_SHIFT
;
749 u64
ring_buffer_time_stamp(struct trace_buffer
*buffer
, int cpu
)
753 preempt_disable_notrace();
754 time
= rb_time_stamp(buffer
);
755 preempt_enable_notrace();
759 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
761 void ring_buffer_normalize_time_stamp(struct trace_buffer
*buffer
,
764 /* Just stupid testing the normalize function and deltas */
767 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
770 * Making the ring buffer lockless makes things tricky.
771 * Although writes only happen on the CPU that they are on,
772 * and they only need to worry about interrupts. Reads can
775 * The reader page is always off the ring buffer, but when the
776 * reader finishes with a page, it needs to swap its page with
777 * a new one from the buffer. The reader needs to take from
778 * the head (writes go to the tail). But if a writer is in overwrite
779 * mode and wraps, it must push the head page forward.
781 * Here lies the problem.
783 * The reader must be careful to replace only the head page, and
784 * not another one. As described at the top of the file in the
785 * ASCII art, the reader sets its old page to point to the next
786 * page after head. It then sets the page after head to point to
787 * the old reader page. But if the writer moves the head page
788 * during this operation, the reader could end up with the tail.
790 * We use cmpxchg to help prevent this race. We also do something
791 * special with the page before head. We set the LSB to 1.
793 * When the writer must push the page forward, it will clear the
794 * bit that points to the head page, move the head, and then set
795 * the bit that points to the new head page.
797 * We also don't want an interrupt coming in and moving the head
798 * page on another writer. Thus we use the second LSB to catch
801 * head->list->prev->next bit 1 bit 0
804 * Points to head page 0 1
807 * Note we can not trust the prev pointer of the head page, because:
809 * +----+ +-----+ +-----+
810 * | |------>| T |---X--->| N |
812 * +----+ +-----+ +-----+
815 * +----------| R |----------+ |
819 * Key: ---X--> HEAD flag set in pointer
824 * (see __rb_reserve_next() to see where this happens)
826 * What the above shows is that the reader just swapped out
827 * the reader page with a page in the buffer, but before it
828 * could make the new header point back to the new page added
829 * it was preempted by a writer. The writer moved forward onto
830 * the new page added by the reader and is about to move forward
833 * You can see, it is legitimate for the previous pointer of
834 * the head (or any page) not to point back to itself. But only
838 #define RB_PAGE_NORMAL 0UL
839 #define RB_PAGE_HEAD 1UL
840 #define RB_PAGE_UPDATE 2UL
843 #define RB_FLAG_MASK 3UL
845 /* PAGE_MOVED is not part of the mask */
846 #define RB_PAGE_MOVED 4UL
849 * rb_list_head - remove any bit
851 static struct list_head
*rb_list_head(struct list_head
*list
)
853 unsigned long val
= (unsigned long)list
;
855 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
859 * rb_is_head_page - test if the given page is the head page
861 * Because the reader may move the head_page pointer, we can
862 * not trust what the head page is (it may be pointing to
863 * the reader page). But if the next page is a header page,
864 * its flags will be non zero.
867 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
868 struct buffer_page
*page
, struct list_head
*list
)
872 val
= (unsigned long)list
->next
;
874 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
875 return RB_PAGE_MOVED
;
877 return val
& RB_FLAG_MASK
;
883 * The unique thing about the reader page, is that, if the
884 * writer is ever on it, the previous pointer never points
885 * back to the reader page.
887 static bool rb_is_reader_page(struct buffer_page
*page
)
889 struct list_head
*list
= page
->list
.prev
;
891 return rb_list_head(list
->next
) != &page
->list
;
895 * rb_set_list_to_head - set a list_head to be pointing to head.
897 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
898 struct list_head
*list
)
902 ptr
= (unsigned long *)&list
->next
;
903 *ptr
|= RB_PAGE_HEAD
;
904 *ptr
&= ~RB_PAGE_UPDATE
;
908 * rb_head_page_activate - sets up head page
910 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
912 struct buffer_page
*head
;
914 head
= cpu_buffer
->head_page
;
919 * Set the previous list pointer to have the HEAD flag.
921 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
924 static void rb_list_head_clear(struct list_head
*list
)
926 unsigned long *ptr
= (unsigned long *)&list
->next
;
928 *ptr
&= ~RB_FLAG_MASK
;
932 * rb_head_page_deactivate - clears head page ptr (for free list)
935 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
937 struct list_head
*hd
;
939 /* Go through the whole list and clear any pointers found. */
940 rb_list_head_clear(cpu_buffer
->pages
);
942 list_for_each(hd
, cpu_buffer
->pages
)
943 rb_list_head_clear(hd
);
946 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
947 struct buffer_page
*head
,
948 struct buffer_page
*prev
,
949 int old_flag
, int new_flag
)
951 struct list_head
*list
;
952 unsigned long val
= (unsigned long)&head
->list
;
957 val
&= ~RB_FLAG_MASK
;
959 ret
= cmpxchg((unsigned long *)&list
->next
,
960 val
| old_flag
, val
| new_flag
);
962 /* check if the reader took the page */
963 if ((ret
& ~RB_FLAG_MASK
) != val
)
964 return RB_PAGE_MOVED
;
966 return ret
& RB_FLAG_MASK
;
969 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
970 struct buffer_page
*head
,
971 struct buffer_page
*prev
,
974 return rb_head_page_set(cpu_buffer
, head
, prev
,
975 old_flag
, RB_PAGE_UPDATE
);
978 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
979 struct buffer_page
*head
,
980 struct buffer_page
*prev
,
983 return rb_head_page_set(cpu_buffer
, head
, prev
,
984 old_flag
, RB_PAGE_HEAD
);
987 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
988 struct buffer_page
*head
,
989 struct buffer_page
*prev
,
992 return rb_head_page_set(cpu_buffer
, head
, prev
,
993 old_flag
, RB_PAGE_NORMAL
);
996 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
997 struct buffer_page
**bpage
)
999 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
1001 *bpage
= list_entry(p
, struct buffer_page
, list
);
1004 static struct buffer_page
*
1005 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1007 struct buffer_page
*head
;
1008 struct buffer_page
*page
;
1009 struct list_head
*list
;
1012 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
1016 list
= cpu_buffer
->pages
;
1017 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
1020 page
= head
= cpu_buffer
->head_page
;
1022 * It is possible that the writer moves the header behind
1023 * where we started, and we miss in one loop.
1024 * A second loop should grab the header, but we'll do
1025 * three loops just because I'm paranoid.
1027 for (i
= 0; i
< 3; i
++) {
1029 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
1030 cpu_buffer
->head_page
= page
;
1033 rb_inc_page(cpu_buffer
, &page
);
1034 } while (page
!= head
);
1037 RB_WARN_ON(cpu_buffer
, 1);
1042 static int rb_head_page_replace(struct buffer_page
*old
,
1043 struct buffer_page
*new)
1045 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
1049 val
= *ptr
& ~RB_FLAG_MASK
;
1050 val
|= RB_PAGE_HEAD
;
1052 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
1058 * rb_tail_page_update - move the tail page forward
1060 static void rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
1061 struct buffer_page
*tail_page
,
1062 struct buffer_page
*next_page
)
1064 unsigned long old_entries
;
1065 unsigned long old_write
;
1068 * The tail page now needs to be moved forward.
1070 * We need to reset the tail page, but without messing
1071 * with possible erasing of data brought in by interrupts
1072 * that have moved the tail page and are currently on it.
1074 * We add a counter to the write field to denote this.
1076 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
1077 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
1079 local_inc(&cpu_buffer
->pages_touched
);
1081 * Just make sure we have seen our old_write and synchronize
1082 * with any interrupts that come in.
1087 * If the tail page is still the same as what we think
1088 * it is, then it is up to us to update the tail
1091 if (tail_page
== READ_ONCE(cpu_buffer
->tail_page
)) {
1092 /* Zero the write counter */
1093 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
1094 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
1097 * This will only succeed if an interrupt did
1098 * not come in and change it. In which case, we
1099 * do not want to modify it.
1101 * We add (void) to let the compiler know that we do not care
1102 * about the return value of these functions. We use the
1103 * cmpxchg to only update if an interrupt did not already
1104 * do it for us. If the cmpxchg fails, we don't care.
1106 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
1107 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
1110 * No need to worry about races with clearing out the commit.
1111 * it only can increment when a commit takes place. But that
1112 * only happens in the outer most nested commit.
1114 local_set(&next_page
->page
->commit
, 0);
1116 /* Again, either we update tail_page or an interrupt does */
1117 (void)cmpxchg(&cpu_buffer
->tail_page
, tail_page
, next_page
);
1121 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
1122 struct buffer_page
*bpage
)
1124 unsigned long val
= (unsigned long)bpage
;
1126 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
1133 * rb_check_list - make sure a pointer to a list has the last bits zero
1135 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
1136 struct list_head
*list
)
1138 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
1140 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
1146 * rb_check_pages - integrity check of buffer pages
1147 * @cpu_buffer: CPU buffer with pages to test
1149 * As a safety measure we check to make sure the data pages have not
1152 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1154 struct list_head
*head
= cpu_buffer
->pages
;
1155 struct buffer_page
*bpage
, *tmp
;
1157 /* Reset the head page if it exists */
1158 if (cpu_buffer
->head_page
)
1159 rb_set_head_page(cpu_buffer
);
1161 rb_head_page_deactivate(cpu_buffer
);
1163 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
1165 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
1168 if (rb_check_list(cpu_buffer
, head
))
1171 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1172 if (RB_WARN_ON(cpu_buffer
,
1173 bpage
->list
.next
->prev
!= &bpage
->list
))
1175 if (RB_WARN_ON(cpu_buffer
,
1176 bpage
->list
.prev
->next
!= &bpage
->list
))
1178 if (rb_check_list(cpu_buffer
, &bpage
->list
))
1182 rb_head_page_activate(cpu_buffer
);
1187 static int __rb_allocate_pages(long nr_pages
, struct list_head
*pages
, int cpu
)
1189 struct buffer_page
*bpage
, *tmp
;
1190 bool user_thread
= current
->mm
!= NULL
;
1195 * Check if the available memory is there first.
1196 * Note, si_mem_available() only gives us a rough estimate of available
1197 * memory. It may not be accurate. But we don't care, we just want
1198 * to prevent doing any allocation when it is obvious that it is
1199 * not going to succeed.
1201 i
= si_mem_available();
1206 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
1207 * gracefully without invoking oom-killer and the system is not
1210 mflags
= GFP_KERNEL
| __GFP_RETRY_MAYFAIL
;
1213 * If a user thread allocates too much, and si_mem_available()
1214 * reports there's enough memory, even though there is not.
1215 * Make sure the OOM killer kills this thread. This can happen
1216 * even with RETRY_MAYFAIL because another task may be doing
1217 * an allocation after this task has taken all memory.
1218 * This is the task the OOM killer needs to take out during this
1219 * loop, even if it was triggered by an allocation somewhere else.
1222 set_current_oom_origin();
1223 for (i
= 0; i
< nr_pages
; i
++) {
1226 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1227 mflags
, cpu_to_node(cpu
));
1231 list_add(&bpage
->list
, pages
);
1233 page
= alloc_pages_node(cpu_to_node(cpu
), mflags
, 0);
1236 bpage
->page
= page_address(page
);
1237 rb_init_page(bpage
->page
);
1239 if (user_thread
&& fatal_signal_pending(current
))
1243 clear_current_oom_origin();
1248 list_for_each_entry_safe(bpage
, tmp
, pages
, list
) {
1249 list_del_init(&bpage
->list
);
1250 free_buffer_page(bpage
);
1253 clear_current_oom_origin();
1258 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1259 unsigned long nr_pages
)
1265 if (__rb_allocate_pages(nr_pages
, &pages
, cpu_buffer
->cpu
))
1269 * The ring buffer page list is a circular list that does not
1270 * start and end with a list head. All page list items point to
1273 cpu_buffer
->pages
= pages
.next
;
1276 cpu_buffer
->nr_pages
= nr_pages
;
1278 rb_check_pages(cpu_buffer
);
1283 static struct ring_buffer_per_cpu
*
1284 rb_allocate_cpu_buffer(struct trace_buffer
*buffer
, long nr_pages
, int cpu
)
1286 struct ring_buffer_per_cpu
*cpu_buffer
;
1287 struct buffer_page
*bpage
;
1291 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1292 GFP_KERNEL
, cpu_to_node(cpu
));
1296 cpu_buffer
->cpu
= cpu
;
1297 cpu_buffer
->buffer
= buffer
;
1298 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
1299 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1300 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1301 INIT_WORK(&cpu_buffer
->update_pages_work
, update_pages_handler
);
1302 init_completion(&cpu_buffer
->update_done
);
1303 init_irq_work(&cpu_buffer
->irq_work
.work
, rb_wake_up_waiters
);
1304 init_waitqueue_head(&cpu_buffer
->irq_work
.waiters
);
1305 init_waitqueue_head(&cpu_buffer
->irq_work
.full_waiters
);
1307 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1308 GFP_KERNEL
, cpu_to_node(cpu
));
1310 goto fail_free_buffer
;
1312 rb_check_bpage(cpu_buffer
, bpage
);
1314 cpu_buffer
->reader_page
= bpage
;
1315 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1317 goto fail_free_reader
;
1318 bpage
->page
= page_address(page
);
1319 rb_init_page(bpage
->page
);
1321 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1322 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1324 ret
= rb_allocate_pages(cpu_buffer
, nr_pages
);
1326 goto fail_free_reader
;
1328 cpu_buffer
->head_page
1329 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1330 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1332 rb_head_page_activate(cpu_buffer
);
1337 free_buffer_page(cpu_buffer
->reader_page
);
1344 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1346 struct list_head
*head
= cpu_buffer
->pages
;
1347 struct buffer_page
*bpage
, *tmp
;
1349 free_buffer_page(cpu_buffer
->reader_page
);
1351 rb_head_page_deactivate(cpu_buffer
);
1354 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1355 list_del_init(&bpage
->list
);
1356 free_buffer_page(bpage
);
1358 bpage
= list_entry(head
, struct buffer_page
, list
);
1359 free_buffer_page(bpage
);
1366 * __ring_buffer_alloc - allocate a new ring_buffer
1367 * @size: the size in bytes per cpu that is needed.
1368 * @flags: attributes to set for the ring buffer.
1369 * @key: ring buffer reader_lock_key.
1371 * Currently the only flag that is available is the RB_FL_OVERWRITE
1372 * flag. This flag means that the buffer will overwrite old data
1373 * when the buffer wraps. If this flag is not set, the buffer will
1374 * drop data when the tail hits the head.
1376 struct trace_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1377 struct lock_class_key
*key
)
1379 struct trace_buffer
*buffer
;
1385 /* keep it in its own cache line */
1386 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1391 if (!zalloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1392 goto fail_free_buffer
;
1394 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1395 buffer
->flags
= flags
;
1396 buffer
->clock
= trace_clock_local
;
1397 buffer
->reader_lock_key
= key
;
1399 init_irq_work(&buffer
->irq_work
.work
, rb_wake_up_waiters
);
1400 init_waitqueue_head(&buffer
->irq_work
.waiters
);
1402 /* need at least two pages */
1406 buffer
->cpus
= nr_cpu_ids
;
1408 bsize
= sizeof(void *) * nr_cpu_ids
;
1409 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1411 if (!buffer
->buffers
)
1412 goto fail_free_cpumask
;
1414 cpu
= raw_smp_processor_id();
1415 cpumask_set_cpu(cpu
, buffer
->cpumask
);
1416 buffer
->buffers
[cpu
] = rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
1417 if (!buffer
->buffers
[cpu
])
1418 goto fail_free_buffers
;
1420 ret
= cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE
, &buffer
->node
);
1422 goto fail_free_buffers
;
1424 mutex_init(&buffer
->mutex
);
1429 for_each_buffer_cpu(buffer
, cpu
) {
1430 if (buffer
->buffers
[cpu
])
1431 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1433 kfree(buffer
->buffers
);
1436 free_cpumask_var(buffer
->cpumask
);
1442 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1445 * ring_buffer_free - free a ring buffer.
1446 * @buffer: the buffer to free.
1449 ring_buffer_free(struct trace_buffer
*buffer
)
1453 cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE
, &buffer
->node
);
1455 for_each_buffer_cpu(buffer
, cpu
)
1456 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1458 kfree(buffer
->buffers
);
1459 free_cpumask_var(buffer
->cpumask
);
1463 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1465 void ring_buffer_set_clock(struct trace_buffer
*buffer
,
1468 buffer
->clock
= clock
;
1471 void ring_buffer_set_time_stamp_abs(struct trace_buffer
*buffer
, bool abs
)
1473 buffer
->time_stamp_abs
= abs
;
1476 bool ring_buffer_time_stamp_abs(struct trace_buffer
*buffer
)
1478 return buffer
->time_stamp_abs
;
1481 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1483 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1485 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1488 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1490 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1494 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned long nr_pages
)
1496 struct list_head
*tail_page
, *to_remove
, *next_page
;
1497 struct buffer_page
*to_remove_page
, *tmp_iter_page
;
1498 struct buffer_page
*last_page
, *first_page
;
1499 unsigned long nr_removed
;
1500 unsigned long head_bit
;
1505 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1506 atomic_inc(&cpu_buffer
->record_disabled
);
1508 * We don't race with the readers since we have acquired the reader
1509 * lock. We also don't race with writers after disabling recording.
1510 * This makes it easy to figure out the first and the last page to be
1511 * removed from the list. We unlink all the pages in between including
1512 * the first and last pages. This is done in a busy loop so that we
1513 * lose the least number of traces.
1514 * The pages are freed after we restart recording and unlock readers.
1516 tail_page
= &cpu_buffer
->tail_page
->list
;
1519 * tail page might be on reader page, we remove the next page
1520 * from the ring buffer
1522 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
1523 tail_page
= rb_list_head(tail_page
->next
);
1524 to_remove
= tail_page
;
1526 /* start of pages to remove */
1527 first_page
= list_entry(rb_list_head(to_remove
->next
),
1528 struct buffer_page
, list
);
1530 for (nr_removed
= 0; nr_removed
< nr_pages
; nr_removed
++) {
1531 to_remove
= rb_list_head(to_remove
)->next
;
1532 head_bit
|= (unsigned long)to_remove
& RB_PAGE_HEAD
;
1535 next_page
= rb_list_head(to_remove
)->next
;
1538 * Now we remove all pages between tail_page and next_page.
1539 * Make sure that we have head_bit value preserved for the
1542 tail_page
->next
= (struct list_head
*)((unsigned long)next_page
|
1544 next_page
= rb_list_head(next_page
);
1545 next_page
->prev
= tail_page
;
1547 /* make sure pages points to a valid page in the ring buffer */
1548 cpu_buffer
->pages
= next_page
;
1550 /* update head page */
1552 cpu_buffer
->head_page
= list_entry(next_page
,
1553 struct buffer_page
, list
);
1556 * change read pointer to make sure any read iterators reset
1559 cpu_buffer
->read
= 0;
1561 /* pages are removed, resume tracing and then free the pages */
1562 atomic_dec(&cpu_buffer
->record_disabled
);
1563 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1565 RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
));
1567 /* last buffer page to remove */
1568 last_page
= list_entry(rb_list_head(to_remove
), struct buffer_page
,
1570 tmp_iter_page
= first_page
;
1575 to_remove_page
= tmp_iter_page
;
1576 rb_inc_page(cpu_buffer
, &tmp_iter_page
);
1578 /* update the counters */
1579 page_entries
= rb_page_entries(to_remove_page
);
1582 * If something was added to this page, it was full
1583 * since it is not the tail page. So we deduct the
1584 * bytes consumed in ring buffer from here.
1585 * Increment overrun to account for the lost events.
1587 local_add(page_entries
, &cpu_buffer
->overrun
);
1588 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1592 * We have already removed references to this list item, just
1593 * free up the buffer_page and its page
1595 free_buffer_page(to_remove_page
);
1598 } while (to_remove_page
!= last_page
);
1600 RB_WARN_ON(cpu_buffer
, nr_removed
);
1602 return nr_removed
== 0;
1606 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1608 struct list_head
*pages
= &cpu_buffer
->new_pages
;
1609 int retries
, success
;
1611 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1613 * We are holding the reader lock, so the reader page won't be swapped
1614 * in the ring buffer. Now we are racing with the writer trying to
1615 * move head page and the tail page.
1616 * We are going to adapt the reader page update process where:
1617 * 1. We first splice the start and end of list of new pages between
1618 * the head page and its previous page.
1619 * 2. We cmpxchg the prev_page->next to point from head page to the
1620 * start of new pages list.
1621 * 3. Finally, we update the head->prev to the end of new list.
1623 * We will try this process 10 times, to make sure that we don't keep
1629 struct list_head
*head_page
, *prev_page
, *r
;
1630 struct list_head
*last_page
, *first_page
;
1631 struct list_head
*head_page_with_bit
;
1633 head_page
= &rb_set_head_page(cpu_buffer
)->list
;
1636 prev_page
= head_page
->prev
;
1638 first_page
= pages
->next
;
1639 last_page
= pages
->prev
;
1641 head_page_with_bit
= (struct list_head
*)
1642 ((unsigned long)head_page
| RB_PAGE_HEAD
);
1644 last_page
->next
= head_page_with_bit
;
1645 first_page
->prev
= prev_page
;
1647 r
= cmpxchg(&prev_page
->next
, head_page_with_bit
, first_page
);
1649 if (r
== head_page_with_bit
) {
1651 * yay, we replaced the page pointer to our new list,
1652 * now, we just have to update to head page's prev
1653 * pointer to point to end of list
1655 head_page
->prev
= last_page
;
1662 INIT_LIST_HEAD(pages
);
1664 * If we weren't successful in adding in new pages, warn and stop
1667 RB_WARN_ON(cpu_buffer
, !success
);
1668 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1670 /* free pages if they weren't inserted */
1672 struct buffer_page
*bpage
, *tmp
;
1673 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1675 list_del_init(&bpage
->list
);
1676 free_buffer_page(bpage
);
1682 static void rb_update_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1686 if (cpu_buffer
->nr_pages_to_update
> 0)
1687 success
= rb_insert_pages(cpu_buffer
);
1689 success
= rb_remove_pages(cpu_buffer
,
1690 -cpu_buffer
->nr_pages_to_update
);
1693 cpu_buffer
->nr_pages
+= cpu_buffer
->nr_pages_to_update
;
1696 static void update_pages_handler(struct work_struct
*work
)
1698 struct ring_buffer_per_cpu
*cpu_buffer
= container_of(work
,
1699 struct ring_buffer_per_cpu
, update_pages_work
);
1700 rb_update_pages(cpu_buffer
);
1701 complete(&cpu_buffer
->update_done
);
1705 * ring_buffer_resize - resize the ring buffer
1706 * @buffer: the buffer to resize.
1707 * @size: the new size.
1708 * @cpu_id: the cpu buffer to resize
1710 * Minimum size is 2 * BUF_PAGE_SIZE.
1712 * Returns 0 on success and < 0 on failure.
1714 int ring_buffer_resize(struct trace_buffer
*buffer
, unsigned long size
,
1717 struct ring_buffer_per_cpu
*cpu_buffer
;
1718 unsigned long nr_pages
;
1722 * Always succeed at resizing a non-existent buffer:
1727 /* Make sure the requested buffer exists */
1728 if (cpu_id
!= RING_BUFFER_ALL_CPUS
&&
1729 !cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1732 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1734 /* we need a minimum of two pages */
1738 size
= nr_pages
* BUF_PAGE_SIZE
;
1741 * Don't succeed if resizing is disabled, as a reader might be
1742 * manipulating the ring buffer and is expecting a sane state while
1745 if (atomic_read(&buffer
->resize_disabled
))
1748 /* prevent another thread from changing buffer sizes */
1749 mutex_lock(&buffer
->mutex
);
1751 if (cpu_id
== RING_BUFFER_ALL_CPUS
) {
1752 /* calculate the pages to update */
1753 for_each_buffer_cpu(buffer
, cpu
) {
1754 cpu_buffer
= buffer
->buffers
[cpu
];
1756 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1757 cpu_buffer
->nr_pages
;
1759 * nothing more to do for removing pages or no update
1761 if (cpu_buffer
->nr_pages_to_update
<= 0)
1764 * to add pages, make sure all new pages can be
1765 * allocated without receiving ENOMEM
1767 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1768 if (__rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1769 &cpu_buffer
->new_pages
, cpu
)) {
1770 /* not enough memory for new pages */
1778 * Fire off all the required work handlers
1779 * We can't schedule on offline CPUs, but it's not necessary
1780 * since we can change their buffer sizes without any race.
1782 for_each_buffer_cpu(buffer
, cpu
) {
1783 cpu_buffer
= buffer
->buffers
[cpu
];
1784 if (!cpu_buffer
->nr_pages_to_update
)
1787 /* Can't run something on an offline CPU. */
1788 if (!cpu_online(cpu
)) {
1789 rb_update_pages(cpu_buffer
);
1790 cpu_buffer
->nr_pages_to_update
= 0;
1792 schedule_work_on(cpu
,
1793 &cpu_buffer
->update_pages_work
);
1797 /* wait for all the updates to complete */
1798 for_each_buffer_cpu(buffer
, cpu
) {
1799 cpu_buffer
= buffer
->buffers
[cpu
];
1800 if (!cpu_buffer
->nr_pages_to_update
)
1803 if (cpu_online(cpu
))
1804 wait_for_completion(&cpu_buffer
->update_done
);
1805 cpu_buffer
->nr_pages_to_update
= 0;
1810 /* Make sure this CPU has been initialized */
1811 if (!cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1814 cpu_buffer
= buffer
->buffers
[cpu_id
];
1816 if (nr_pages
== cpu_buffer
->nr_pages
)
1819 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1820 cpu_buffer
->nr_pages
;
1822 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1823 if (cpu_buffer
->nr_pages_to_update
> 0 &&
1824 __rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1825 &cpu_buffer
->new_pages
, cpu_id
)) {
1832 /* Can't run something on an offline CPU. */
1833 if (!cpu_online(cpu_id
))
1834 rb_update_pages(cpu_buffer
);
1836 schedule_work_on(cpu_id
,
1837 &cpu_buffer
->update_pages_work
);
1838 wait_for_completion(&cpu_buffer
->update_done
);
1841 cpu_buffer
->nr_pages_to_update
= 0;
1847 * The ring buffer resize can happen with the ring buffer
1848 * enabled, so that the update disturbs the tracing as little
1849 * as possible. But if the buffer is disabled, we do not need
1850 * to worry about that, and we can take the time to verify
1851 * that the buffer is not corrupt.
1853 if (atomic_read(&buffer
->record_disabled
)) {
1854 atomic_inc(&buffer
->record_disabled
);
1856 * Even though the buffer was disabled, we must make sure
1857 * that it is truly disabled before calling rb_check_pages.
1858 * There could have been a race between checking
1859 * record_disable and incrementing it.
1862 for_each_buffer_cpu(buffer
, cpu
) {
1863 cpu_buffer
= buffer
->buffers
[cpu
];
1864 rb_check_pages(cpu_buffer
);
1866 atomic_dec(&buffer
->record_disabled
);
1869 mutex_unlock(&buffer
->mutex
);
1873 for_each_buffer_cpu(buffer
, cpu
) {
1874 struct buffer_page
*bpage
, *tmp
;
1876 cpu_buffer
= buffer
->buffers
[cpu
];
1877 cpu_buffer
->nr_pages_to_update
= 0;
1879 if (list_empty(&cpu_buffer
->new_pages
))
1882 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1884 list_del_init(&bpage
->list
);
1885 free_buffer_page(bpage
);
1888 mutex_unlock(&buffer
->mutex
);
1891 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1893 void ring_buffer_change_overwrite(struct trace_buffer
*buffer
, int val
)
1895 mutex_lock(&buffer
->mutex
);
1897 buffer
->flags
|= RB_FL_OVERWRITE
;
1899 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1900 mutex_unlock(&buffer
->mutex
);
1902 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1904 static __always_inline
void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1906 return bpage
->page
->data
+ index
;
1909 static __always_inline
struct ring_buffer_event
*
1910 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1912 return __rb_page_index(cpu_buffer
->reader_page
,
1913 cpu_buffer
->reader_page
->read
);
1916 static __always_inline
struct ring_buffer_event
*
1917 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1919 return __rb_page_index(iter
->head_page
, iter
->head
);
1922 static __always_inline
unsigned rb_page_commit(struct buffer_page
*bpage
)
1924 return local_read(&bpage
->page
->commit
);
1927 /* Size is determined by what has been committed */
1928 static __always_inline
unsigned rb_page_size(struct buffer_page
*bpage
)
1930 return rb_page_commit(bpage
);
1933 static __always_inline
unsigned
1934 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1936 return rb_page_commit(cpu_buffer
->commit_page
);
1939 static __always_inline
unsigned
1940 rb_event_index(struct ring_buffer_event
*event
)
1942 unsigned long addr
= (unsigned long)event
;
1944 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1947 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1949 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1952 * The iterator could be on the reader page (it starts there).
1953 * But the head could have moved, since the reader was
1954 * found. Check for this case and assign the iterator
1955 * to the head page instead of next.
1957 if (iter
->head_page
== cpu_buffer
->reader_page
)
1958 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1960 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1962 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1967 * rb_handle_head_page - writer hit the head page
1969 * Returns: +1 to retry page
1974 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
1975 struct buffer_page
*tail_page
,
1976 struct buffer_page
*next_page
)
1978 struct buffer_page
*new_head
;
1983 entries
= rb_page_entries(next_page
);
1986 * The hard part is here. We need to move the head
1987 * forward, and protect against both readers on
1988 * other CPUs and writers coming in via interrupts.
1990 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
1994 * type can be one of four:
1995 * NORMAL - an interrupt already moved it for us
1996 * HEAD - we are the first to get here.
1997 * UPDATE - we are the interrupt interrupting
1999 * MOVED - a reader on another CPU moved the next
2000 * pointer to its reader page. Give up
2007 * We changed the head to UPDATE, thus
2008 * it is our responsibility to update
2011 local_add(entries
, &cpu_buffer
->overrun
);
2012 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
2015 * The entries will be zeroed out when we move the
2019 /* still more to do */
2022 case RB_PAGE_UPDATE
:
2024 * This is an interrupt that interrupt the
2025 * previous update. Still more to do.
2028 case RB_PAGE_NORMAL
:
2030 * An interrupt came in before the update
2031 * and processed this for us.
2032 * Nothing left to do.
2037 * The reader is on another CPU and just did
2038 * a swap with our next_page.
2043 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
2048 * Now that we are here, the old head pointer is
2049 * set to UPDATE. This will keep the reader from
2050 * swapping the head page with the reader page.
2051 * The reader (on another CPU) will spin till
2054 * We just need to protect against interrupts
2055 * doing the job. We will set the next pointer
2056 * to HEAD. After that, we set the old pointer
2057 * to NORMAL, but only if it was HEAD before.
2058 * otherwise we are an interrupt, and only
2059 * want the outer most commit to reset it.
2061 new_head
= next_page
;
2062 rb_inc_page(cpu_buffer
, &new_head
);
2064 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
2068 * Valid returns are:
2069 * HEAD - an interrupt came in and already set it.
2070 * NORMAL - One of two things:
2071 * 1) We really set it.
2072 * 2) A bunch of interrupts came in and moved
2073 * the page forward again.
2077 case RB_PAGE_NORMAL
:
2081 RB_WARN_ON(cpu_buffer
, 1);
2086 * It is possible that an interrupt came in,
2087 * set the head up, then more interrupts came in
2088 * and moved it again. When we get back here,
2089 * the page would have been set to NORMAL but we
2090 * just set it back to HEAD.
2092 * How do you detect this? Well, if that happened
2093 * the tail page would have moved.
2095 if (ret
== RB_PAGE_NORMAL
) {
2096 struct buffer_page
*buffer_tail_page
;
2098 buffer_tail_page
= READ_ONCE(cpu_buffer
->tail_page
);
2100 * If the tail had moved passed next, then we need
2101 * to reset the pointer.
2103 if (buffer_tail_page
!= tail_page
&&
2104 buffer_tail_page
!= next_page
)
2105 rb_head_page_set_normal(cpu_buffer
, new_head
,
2111 * If this was the outer most commit (the one that
2112 * changed the original pointer from HEAD to UPDATE),
2113 * then it is up to us to reset it to NORMAL.
2115 if (type
== RB_PAGE_HEAD
) {
2116 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
2119 if (RB_WARN_ON(cpu_buffer
,
2120 ret
!= RB_PAGE_UPDATE
))
2128 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2129 unsigned long tail
, struct rb_event_info
*info
)
2131 struct buffer_page
*tail_page
= info
->tail_page
;
2132 struct ring_buffer_event
*event
;
2133 unsigned long length
= info
->length
;
2136 * Only the event that crossed the page boundary
2137 * must fill the old tail_page with padding.
2139 if (tail
>= BUF_PAGE_SIZE
) {
2141 * If the page was filled, then we still need
2142 * to update the real_end. Reset it to zero
2143 * and the reader will ignore it.
2145 if (tail
== BUF_PAGE_SIZE
)
2146 tail_page
->real_end
= 0;
2148 local_sub(length
, &tail_page
->write
);
2152 event
= __rb_page_index(tail_page
, tail
);
2154 /* account for padding bytes */
2155 local_add(BUF_PAGE_SIZE
- tail
, &cpu_buffer
->entries_bytes
);
2158 * Save the original length to the meta data.
2159 * This will be used by the reader to add lost event
2162 tail_page
->real_end
= tail
;
2165 * If this event is bigger than the minimum size, then
2166 * we need to be careful that we don't subtract the
2167 * write counter enough to allow another writer to slip
2169 * We put in a discarded commit instead, to make sure
2170 * that this space is not used again.
2172 * If we are less than the minimum size, we don't need to
2175 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
2176 /* No room for any events */
2178 /* Mark the rest of the page with padding */
2179 rb_event_set_padding(event
);
2181 /* Set the write back to the previous setting */
2182 local_sub(length
, &tail_page
->write
);
2186 /* Put in a discarded event */
2187 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
2188 event
->type_len
= RINGBUF_TYPE_PADDING
;
2189 /* time delta must be non zero */
2190 event
->time_delta
= 1;
2192 /* Set write to end of buffer */
2193 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
2194 local_sub(length
, &tail_page
->write
);
2197 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
);
2200 * This is the slow path, force gcc not to inline it.
2202 static noinline
struct ring_buffer_event
*
2203 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2204 unsigned long tail
, struct rb_event_info
*info
)
2206 struct buffer_page
*tail_page
= info
->tail_page
;
2207 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
2208 struct trace_buffer
*buffer
= cpu_buffer
->buffer
;
2209 struct buffer_page
*next_page
;
2212 next_page
= tail_page
;
2214 rb_inc_page(cpu_buffer
, &next_page
);
2217 * If for some reason, we had an interrupt storm that made
2218 * it all the way around the buffer, bail, and warn
2221 if (unlikely(next_page
== commit_page
)) {
2222 local_inc(&cpu_buffer
->commit_overrun
);
2227 * This is where the fun begins!
2229 * We are fighting against races between a reader that
2230 * could be on another CPU trying to swap its reader
2231 * page with the buffer head.
2233 * We are also fighting against interrupts coming in and
2234 * moving the head or tail on us as well.
2236 * If the next page is the head page then we have filled
2237 * the buffer, unless the commit page is still on the
2240 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
2243 * If the commit is not on the reader page, then
2244 * move the header page.
2246 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
2248 * If we are not in overwrite mode,
2249 * this is easy, just stop here.
2251 if (!(buffer
->flags
& RB_FL_OVERWRITE
)) {
2252 local_inc(&cpu_buffer
->dropped_events
);
2256 ret
= rb_handle_head_page(cpu_buffer
,
2265 * We need to be careful here too. The
2266 * commit page could still be on the reader
2267 * page. We could have a small buffer, and
2268 * have filled up the buffer with events
2269 * from interrupts and such, and wrapped.
2271 * Note, if the tail page is also the on the
2272 * reader_page, we let it move out.
2274 if (unlikely((cpu_buffer
->commit_page
!=
2275 cpu_buffer
->tail_page
) &&
2276 (cpu_buffer
->commit_page
==
2277 cpu_buffer
->reader_page
))) {
2278 local_inc(&cpu_buffer
->commit_overrun
);
2284 rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
2288 rb_reset_tail(cpu_buffer
, tail
, info
);
2290 /* Commit what we have for now. */
2291 rb_end_commit(cpu_buffer
);
2292 /* rb_end_commit() decs committing */
2293 local_inc(&cpu_buffer
->committing
);
2295 /* fail and let the caller try again */
2296 return ERR_PTR(-EAGAIN
);
2300 rb_reset_tail(cpu_buffer
, tail
, info
);
2305 /* Slow path, do not inline */
2306 static noinline
struct ring_buffer_event
*
2307 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
, bool abs
)
2310 event
->type_len
= RINGBUF_TYPE_TIME_STAMP
;
2312 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
2314 /* Not the first event on the page, or not delta? */
2315 if (abs
|| rb_event_index(event
)) {
2316 event
->time_delta
= delta
& TS_MASK
;
2317 event
->array
[0] = delta
>> TS_SHIFT
;
2319 /* nope, just zero it */
2320 event
->time_delta
= 0;
2321 event
->array
[0] = 0;
2324 return skip_time_extend(event
);
2327 static inline bool rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2328 struct ring_buffer_event
*event
);
2331 * rb_update_event - update event type and data
2332 * @cpu_buffer: The per cpu buffer of the @event
2333 * @event: the event to update
2334 * @info: The info to update the @event with (contains length and delta)
2336 * Update the type and data fields of the @event. The length
2337 * is the actual size that is written to the ring buffer,
2338 * and with this, we can determine what to place into the
2342 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
2343 struct ring_buffer_event
*event
,
2344 struct rb_event_info
*info
)
2346 unsigned length
= info
->length
;
2347 u64 delta
= info
->delta
;
2349 /* Only a commit updates the timestamp */
2350 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
2354 * If we need to add a timestamp, then we
2355 * add it to the start of the reserved space.
2357 if (unlikely(info
->add_timestamp
)) {
2358 bool abs
= ring_buffer_time_stamp_abs(cpu_buffer
->buffer
);
2360 event
= rb_add_time_stamp(event
, info
->delta
, abs
);
2361 length
-= RB_LEN_TIME_EXTEND
;
2365 event
->time_delta
= delta
;
2366 length
-= RB_EVNT_HDR_SIZE
;
2367 if (length
> RB_MAX_SMALL_DATA
) {
2368 event
->type_len
= 0;
2369 event
->array
[0] = length
;
2371 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
2374 static unsigned rb_calculate_event_length(unsigned length
)
2376 struct ring_buffer_event event
; /* Used only for sizeof array */
2378 /* zero length can cause confusions */
2382 if (length
> RB_MAX_SMALL_DATA
)
2383 length
+= sizeof(event
.array
[0]);
2385 length
+= RB_EVNT_HDR_SIZE
;
2386 length
= ALIGN(length
, RB_ALIGNMENT
);
2389 * In case the time delta is larger than the 27 bits for it
2390 * in the header, we need to add a timestamp. If another
2391 * event comes in when trying to discard this one to increase
2392 * the length, then the timestamp will be added in the allocated
2393 * space of this event. If length is bigger than the size needed
2394 * for the TIME_EXTEND, then padding has to be used. The events
2395 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
2396 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
2397 * As length is a multiple of 4, we only need to worry if it
2398 * is 12 (RB_LEN_TIME_EXTEND + 4).
2400 if (length
== RB_LEN_TIME_EXTEND
+ RB_ALIGNMENT
)
2401 length
+= RB_ALIGNMENT
;
2406 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2407 static inline bool sched_clock_stable(void)
2414 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2415 struct ring_buffer_event
*event
)
2417 unsigned long new_index
, old_index
;
2418 struct buffer_page
*bpage
;
2419 unsigned long index
;
2422 new_index
= rb_event_index(event
);
2423 old_index
= new_index
+ rb_event_ts_length(event
);
2424 addr
= (unsigned long)event
;
2427 bpage
= READ_ONCE(cpu_buffer
->tail_page
);
2429 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2430 unsigned long write_mask
=
2431 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2432 unsigned long event_length
= rb_event_length(event
);
2434 * This is on the tail page. It is possible that
2435 * a write could come in and move the tail page
2436 * and write to the next page. That is fine
2437 * because we just shorten what is on this page.
2439 old_index
+= write_mask
;
2440 new_index
+= write_mask
;
2441 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2442 if (index
== old_index
) {
2443 /* update counters */
2444 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
2449 /* could not discard */
2453 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2455 local_inc(&cpu_buffer
->committing
);
2456 local_inc(&cpu_buffer
->commits
);
2459 static __always_inline
void
2460 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
2462 unsigned long max_count
;
2465 * We only race with interrupts and NMIs on this CPU.
2466 * If we own the commit event, then we can commit
2467 * all others that interrupted us, since the interruptions
2468 * are in stack format (they finish before they come
2469 * back to us). This allows us to do a simple loop to
2470 * assign the commit to the tail.
2473 max_count
= cpu_buffer
->nr_pages
* 100;
2475 while (cpu_buffer
->commit_page
!= READ_ONCE(cpu_buffer
->tail_page
)) {
2476 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
2478 if (RB_WARN_ON(cpu_buffer
,
2479 rb_is_reader_page(cpu_buffer
->tail_page
)))
2481 local_set(&cpu_buffer
->commit_page
->page
->commit
,
2482 rb_page_write(cpu_buffer
->commit_page
));
2483 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
2484 /* Only update the write stamp if the page has an event */
2485 if (rb_page_write(cpu_buffer
->commit_page
))
2486 cpu_buffer
->write_stamp
=
2487 cpu_buffer
->commit_page
->page
->time_stamp
;
2488 /* add barrier to keep gcc from optimizing too much */
2491 while (rb_commit_index(cpu_buffer
) !=
2492 rb_page_write(cpu_buffer
->commit_page
)) {
2494 local_set(&cpu_buffer
->commit_page
->page
->commit
,
2495 rb_page_write(cpu_buffer
->commit_page
));
2496 RB_WARN_ON(cpu_buffer
,
2497 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
2502 /* again, keep gcc from optimizing */
2506 * If an interrupt came in just after the first while loop
2507 * and pushed the tail page forward, we will be left with
2508 * a dangling commit that will never go forward.
2510 if (unlikely(cpu_buffer
->commit_page
!= READ_ONCE(cpu_buffer
->tail_page
)))
2514 static __always_inline
void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2516 unsigned long commits
;
2518 if (RB_WARN_ON(cpu_buffer
,
2519 !local_read(&cpu_buffer
->committing
)))
2523 commits
= local_read(&cpu_buffer
->commits
);
2524 /* synchronize with interrupts */
2526 if (local_read(&cpu_buffer
->committing
) == 1)
2527 rb_set_commit_to_write(cpu_buffer
);
2529 local_dec(&cpu_buffer
->committing
);
2531 /* synchronize with interrupts */
2535 * Need to account for interrupts coming in between the
2536 * updating of the commit page and the clearing of the
2537 * committing counter.
2539 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2540 !local_read(&cpu_buffer
->committing
)) {
2541 local_inc(&cpu_buffer
->committing
);
2546 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2548 if (extended_time(event
))
2549 event
= skip_time_extend(event
);
2551 /* array[0] holds the actual length for the discarded event */
2552 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2553 event
->type_len
= RINGBUF_TYPE_PADDING
;
2554 /* time delta must be non zero */
2555 if (!event
->time_delta
)
2556 event
->time_delta
= 1;
2559 static __always_inline
bool
2560 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2561 struct ring_buffer_event
*event
)
2563 unsigned long addr
= (unsigned long)event
;
2564 unsigned long index
;
2566 index
= rb_event_index(event
);
2569 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
2570 rb_commit_index(cpu_buffer
) == index
;
2573 static __always_inline
void
2574 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2575 struct ring_buffer_event
*event
)
2580 * The event first in the commit queue updates the
2583 if (rb_event_is_commit(cpu_buffer
, event
)) {
2585 * A commit event that is first on a page
2586 * updates the write timestamp with the page stamp
2588 if (!rb_event_index(event
))
2589 cpu_buffer
->write_stamp
=
2590 cpu_buffer
->commit_page
->page
->time_stamp
;
2591 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2592 delta
= ring_buffer_event_time_stamp(event
);
2593 cpu_buffer
->write_stamp
+= delta
;
2594 } else if (event
->type_len
== RINGBUF_TYPE_TIME_STAMP
) {
2595 delta
= ring_buffer_event_time_stamp(event
);
2596 cpu_buffer
->write_stamp
= delta
;
2598 cpu_buffer
->write_stamp
+= event
->time_delta
;
2602 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2603 struct ring_buffer_event
*event
)
2605 local_inc(&cpu_buffer
->entries
);
2606 rb_update_write_stamp(cpu_buffer
, event
);
2607 rb_end_commit(cpu_buffer
);
2610 static __always_inline
void
2611 rb_wakeups(struct trace_buffer
*buffer
, struct ring_buffer_per_cpu
*cpu_buffer
)
2617 if (buffer
->irq_work
.waiters_pending
) {
2618 buffer
->irq_work
.waiters_pending
= false;
2619 /* irq_work_queue() supplies it's own memory barriers */
2620 irq_work_queue(&buffer
->irq_work
.work
);
2623 if (cpu_buffer
->irq_work
.waiters_pending
) {
2624 cpu_buffer
->irq_work
.waiters_pending
= false;
2625 /* irq_work_queue() supplies it's own memory barriers */
2626 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2629 if (cpu_buffer
->last_pages_touch
== local_read(&cpu_buffer
->pages_touched
))
2632 if (cpu_buffer
->reader_page
== cpu_buffer
->commit_page
)
2635 if (!cpu_buffer
->irq_work
.full_waiters_pending
)
2638 cpu_buffer
->last_pages_touch
= local_read(&cpu_buffer
->pages_touched
);
2640 full
= cpu_buffer
->shortest_full
;
2641 nr_pages
= cpu_buffer
->nr_pages
;
2642 dirty
= ring_buffer_nr_dirty_pages(buffer
, cpu_buffer
->cpu
);
2643 if (full
&& nr_pages
&& (dirty
* 100) <= full
* nr_pages
)
2646 cpu_buffer
->irq_work
.wakeup_full
= true;
2647 cpu_buffer
->irq_work
.full_waiters_pending
= false;
2648 /* irq_work_queue() supplies it's own memory barriers */
2649 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2653 * The lock and unlock are done within a preempt disable section.
2654 * The current_context per_cpu variable can only be modified
2655 * by the current task between lock and unlock. But it can
2656 * be modified more than once via an interrupt. To pass this
2657 * information from the lock to the unlock without having to
2658 * access the 'in_interrupt()' functions again (which do show
2659 * a bit of overhead in something as critical as function tracing,
2660 * we use a bitmask trick.
2662 * bit 0 = NMI context
2663 * bit 1 = IRQ context
2664 * bit 2 = SoftIRQ context
2665 * bit 3 = normal context.
2667 * This works because this is the order of contexts that can
2668 * preempt other contexts. A SoftIRQ never preempts an IRQ
2671 * When the context is determined, the corresponding bit is
2672 * checked and set (if it was set, then a recursion of that context
2675 * On unlock, we need to clear this bit. To do so, just subtract
2676 * 1 from the current_context and AND it to itself.
2680 * 101 & 100 = 100 (clearing bit zero)
2683 * 1010 & 1001 = 1000 (clearing bit 1)
2685 * The least significant bit can be cleared this way, and it
2686 * just so happens that it is the same bit corresponding to
2687 * the current context.
2690 static __always_inline
int
2691 trace_recursive_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
2693 unsigned int val
= cpu_buffer
->current_context
;
2694 unsigned long pc
= preempt_count();
2697 if (!(pc
& (NMI_MASK
| HARDIRQ_MASK
| SOFTIRQ_OFFSET
)))
2698 bit
= RB_CTX_NORMAL
;
2700 bit
= pc
& NMI_MASK
? RB_CTX_NMI
:
2701 pc
& HARDIRQ_MASK
? RB_CTX_IRQ
: RB_CTX_SOFTIRQ
;
2703 if (unlikely(val
& (1 << (bit
+ cpu_buffer
->nest
))))
2706 val
|= (1 << (bit
+ cpu_buffer
->nest
));
2707 cpu_buffer
->current_context
= val
;
2712 static __always_inline
void
2713 trace_recursive_unlock(struct ring_buffer_per_cpu
*cpu_buffer
)
2715 cpu_buffer
->current_context
&=
2716 cpu_buffer
->current_context
- (1 << cpu_buffer
->nest
);
2719 /* The recursive locking above uses 4 bits */
2720 #define NESTED_BITS 4
2723 * ring_buffer_nest_start - Allow to trace while nested
2724 * @buffer: The ring buffer to modify
2726 * The ring buffer has a safety mechanism to prevent recursion.
2727 * But there may be a case where a trace needs to be done while
2728 * tracing something else. In this case, calling this function
2729 * will allow this function to nest within a currently active
2730 * ring_buffer_lock_reserve().
2732 * Call this function before calling another ring_buffer_lock_reserve() and
2733 * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
2735 void ring_buffer_nest_start(struct trace_buffer
*buffer
)
2737 struct ring_buffer_per_cpu
*cpu_buffer
;
2740 /* Enabled by ring_buffer_nest_end() */
2741 preempt_disable_notrace();
2742 cpu
= raw_smp_processor_id();
2743 cpu_buffer
= buffer
->buffers
[cpu
];
2744 /* This is the shift value for the above recursive locking */
2745 cpu_buffer
->nest
+= NESTED_BITS
;
2749 * ring_buffer_nest_end - Allow to trace while nested
2750 * @buffer: The ring buffer to modify
2752 * Must be called after ring_buffer_nest_start() and after the
2753 * ring_buffer_unlock_commit().
2755 void ring_buffer_nest_end(struct trace_buffer
*buffer
)
2757 struct ring_buffer_per_cpu
*cpu_buffer
;
2760 /* disabled by ring_buffer_nest_start() */
2761 cpu
= raw_smp_processor_id();
2762 cpu_buffer
= buffer
->buffers
[cpu
];
2763 /* This is the shift value for the above recursive locking */
2764 cpu_buffer
->nest
-= NESTED_BITS
;
2765 preempt_enable_notrace();
2769 * ring_buffer_unlock_commit - commit a reserved
2770 * @buffer: The buffer to commit to
2771 * @event: The event pointer to commit.
2773 * This commits the data to the ring buffer, and releases any locks held.
2775 * Must be paired with ring_buffer_lock_reserve.
2777 int ring_buffer_unlock_commit(struct trace_buffer
*buffer
,
2778 struct ring_buffer_event
*event
)
2780 struct ring_buffer_per_cpu
*cpu_buffer
;
2781 int cpu
= raw_smp_processor_id();
2783 cpu_buffer
= buffer
->buffers
[cpu
];
2785 rb_commit(cpu_buffer
, event
);
2787 rb_wakeups(buffer
, cpu_buffer
);
2789 trace_recursive_unlock(cpu_buffer
);
2791 preempt_enable_notrace();
2795 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2797 static noinline
void
2798 rb_handle_timestamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2799 struct rb_event_info
*info
)
2801 WARN_ONCE(info
->delta
> (1ULL << 59),
2802 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2803 (unsigned long long)info
->delta
,
2804 (unsigned long long)info
->ts
,
2805 (unsigned long long)cpu_buffer
->write_stamp
,
2806 sched_clock_stable() ? "" :
2807 "If you just came from a suspend/resume,\n"
2808 "please switch to the trace global clock:\n"
2809 " echo global > /sys/kernel/debug/tracing/trace_clock\n"
2810 "or add trace_clock=global to the kernel command line\n");
2811 info
->add_timestamp
= 1;
2814 static struct ring_buffer_event
*
2815 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2816 struct rb_event_info
*info
)
2818 struct ring_buffer_event
*event
;
2819 struct buffer_page
*tail_page
;
2820 unsigned long tail
, write
;
2823 * If the time delta since the last event is too big to
2824 * hold in the time field of the event, then we append a
2825 * TIME EXTEND event ahead of the data event.
2827 if (unlikely(info
->add_timestamp
))
2828 info
->length
+= RB_LEN_TIME_EXTEND
;
2830 /* Don't let the compiler play games with cpu_buffer->tail_page */
2831 tail_page
= info
->tail_page
= READ_ONCE(cpu_buffer
->tail_page
);
2832 write
= local_add_return(info
->length
, &tail_page
->write
);
2834 /* set write to only the index of the write */
2835 write
&= RB_WRITE_MASK
;
2836 tail
= write
- info
->length
;
2839 * If this is the first commit on the page, then it has the same
2840 * timestamp as the page itself.
2842 if (!tail
&& !ring_buffer_time_stamp_abs(cpu_buffer
->buffer
))
2845 /* See if we shot pass the end of this buffer page */
2846 if (unlikely(write
> BUF_PAGE_SIZE
))
2847 return rb_move_tail(cpu_buffer
, tail
, info
);
2849 /* We reserved something on the buffer */
2851 event
= __rb_page_index(tail_page
, tail
);
2852 rb_update_event(cpu_buffer
, event
, info
);
2854 local_inc(&tail_page
->entries
);
2857 * If this is the first commit on the page, then update
2861 tail_page
->page
->time_stamp
= info
->ts
;
2863 /* account for these added bytes */
2864 local_add(info
->length
, &cpu_buffer
->entries_bytes
);
2869 static __always_inline
struct ring_buffer_event
*
2870 rb_reserve_next_event(struct trace_buffer
*buffer
,
2871 struct ring_buffer_per_cpu
*cpu_buffer
,
2872 unsigned long length
)
2874 struct ring_buffer_event
*event
;
2875 struct rb_event_info info
;
2879 rb_start_commit(cpu_buffer
);
2881 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2883 * Due to the ability to swap a cpu buffer from a buffer
2884 * it is possible it was swapped before we committed.
2885 * (committing stops a swap). We check for it here and
2886 * if it happened, we have to fail the write.
2889 if (unlikely(READ_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2890 local_dec(&cpu_buffer
->committing
);
2891 local_dec(&cpu_buffer
->commits
);
2896 info
.length
= rb_calculate_event_length(length
);
2898 info
.add_timestamp
= 0;
2902 * We allow for interrupts to reenter here and do a trace.
2903 * If one does, it will cause this original code to loop
2904 * back here. Even with heavy interrupts happening, this
2905 * should only happen a few times in a row. If this happens
2906 * 1000 times in a row, there must be either an interrupt
2907 * storm or we have something buggy.
2910 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2913 info
.ts
= rb_time_stamp(cpu_buffer
->buffer
);
2914 diff
= info
.ts
- cpu_buffer
->write_stamp
;
2916 /* make sure this diff is calculated here */
2919 if (ring_buffer_time_stamp_abs(buffer
)) {
2920 info
.delta
= info
.ts
;
2921 rb_handle_timestamp(cpu_buffer
, &info
);
2922 } else /* Did the write stamp get updated already? */
2923 if (likely(info
.ts
>= cpu_buffer
->write_stamp
)) {
2925 if (unlikely(test_time_stamp(info
.delta
)))
2926 rb_handle_timestamp(cpu_buffer
, &info
);
2929 event
= __rb_reserve_next(cpu_buffer
, &info
);
2931 if (unlikely(PTR_ERR(event
) == -EAGAIN
)) {
2932 if (info
.add_timestamp
)
2933 info
.length
-= RB_LEN_TIME_EXTEND
;
2943 rb_end_commit(cpu_buffer
);
2948 * ring_buffer_lock_reserve - reserve a part of the buffer
2949 * @buffer: the ring buffer to reserve from
2950 * @length: the length of the data to reserve (excluding event header)
2952 * Returns a reserved event on the ring buffer to copy directly to.
2953 * The user of this interface will need to get the body to write into
2954 * and can use the ring_buffer_event_data() interface.
2956 * The length is the length of the data needed, not the event length
2957 * which also includes the event header.
2959 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2960 * If NULL is returned, then nothing has been allocated or locked.
2962 struct ring_buffer_event
*
2963 ring_buffer_lock_reserve(struct trace_buffer
*buffer
, unsigned long length
)
2965 struct ring_buffer_per_cpu
*cpu_buffer
;
2966 struct ring_buffer_event
*event
;
2969 /* If we are tracing schedule, we don't want to recurse */
2970 preempt_disable_notrace();
2972 if (unlikely(atomic_read(&buffer
->record_disabled
)))
2975 cpu
= raw_smp_processor_id();
2977 if (unlikely(!cpumask_test_cpu(cpu
, buffer
->cpumask
)))
2980 cpu_buffer
= buffer
->buffers
[cpu
];
2982 if (unlikely(atomic_read(&cpu_buffer
->record_disabled
)))
2985 if (unlikely(length
> BUF_MAX_DATA_SIZE
))
2988 if (unlikely(trace_recursive_lock(cpu_buffer
)))
2991 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2998 trace_recursive_unlock(cpu_buffer
);
3000 preempt_enable_notrace();
3003 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
3006 * Decrement the entries to the page that an event is on.
3007 * The event does not even need to exist, only the pointer
3008 * to the page it is on. This may only be called before the commit
3012 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
3013 struct ring_buffer_event
*event
)
3015 unsigned long addr
= (unsigned long)event
;
3016 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
3017 struct buffer_page
*start
;
3021 /* Do the likely case first */
3022 if (likely(bpage
->page
== (void *)addr
)) {
3023 local_dec(&bpage
->entries
);
3028 * Because the commit page may be on the reader page we
3029 * start with the next page and check the end loop there.
3031 rb_inc_page(cpu_buffer
, &bpage
);
3034 if (bpage
->page
== (void *)addr
) {
3035 local_dec(&bpage
->entries
);
3038 rb_inc_page(cpu_buffer
, &bpage
);
3039 } while (bpage
!= start
);
3041 /* commit not part of this buffer?? */
3042 RB_WARN_ON(cpu_buffer
, 1);
3046 * ring_buffer_commit_discard - discard an event that has not been committed
3047 * @buffer: the ring buffer
3048 * @event: non committed event to discard
3050 * Sometimes an event that is in the ring buffer needs to be ignored.
3051 * This function lets the user discard an event in the ring buffer
3052 * and then that event will not be read later.
3054 * This function only works if it is called before the item has been
3055 * committed. It will try to free the event from the ring buffer
3056 * if another event has not been added behind it.
3058 * If another event has been added behind it, it will set the event
3059 * up as discarded, and perform the commit.
3061 * If this function is called, do not call ring_buffer_unlock_commit on
3064 void ring_buffer_discard_commit(struct trace_buffer
*buffer
,
3065 struct ring_buffer_event
*event
)
3067 struct ring_buffer_per_cpu
*cpu_buffer
;
3070 /* The event is discarded regardless */
3071 rb_event_discard(event
);
3073 cpu
= smp_processor_id();
3074 cpu_buffer
= buffer
->buffers
[cpu
];
3077 * This must only be called if the event has not been
3078 * committed yet. Thus we can assume that preemption
3079 * is still disabled.
3081 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
3083 rb_decrement_entry(cpu_buffer
, event
);
3084 if (rb_try_to_discard(cpu_buffer
, event
))
3088 * The commit is still visible by the reader, so we
3089 * must still update the timestamp.
3091 rb_update_write_stamp(cpu_buffer
, event
);
3093 rb_end_commit(cpu_buffer
);
3095 trace_recursive_unlock(cpu_buffer
);
3097 preempt_enable_notrace();
3100 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
3103 * ring_buffer_write - write data to the buffer without reserving
3104 * @buffer: The ring buffer to write to.
3105 * @length: The length of the data being written (excluding the event header)
3106 * @data: The data to write to the buffer.
3108 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
3109 * one function. If you already have the data to write to the buffer, it
3110 * may be easier to simply call this function.
3112 * Note, like ring_buffer_lock_reserve, the length is the length of the data
3113 * and not the length of the event which would hold the header.
3115 int ring_buffer_write(struct trace_buffer
*buffer
,
3116 unsigned long length
,
3119 struct ring_buffer_per_cpu
*cpu_buffer
;
3120 struct ring_buffer_event
*event
;
3125 preempt_disable_notrace();
3127 if (atomic_read(&buffer
->record_disabled
))
3130 cpu
= raw_smp_processor_id();
3132 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3135 cpu_buffer
= buffer
->buffers
[cpu
];
3137 if (atomic_read(&cpu_buffer
->record_disabled
))
3140 if (length
> BUF_MAX_DATA_SIZE
)
3143 if (unlikely(trace_recursive_lock(cpu_buffer
)))
3146 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
3150 body
= rb_event_data(event
);
3152 memcpy(body
, data
, length
);
3154 rb_commit(cpu_buffer
, event
);
3156 rb_wakeups(buffer
, cpu_buffer
);
3161 trace_recursive_unlock(cpu_buffer
);
3164 preempt_enable_notrace();
3168 EXPORT_SYMBOL_GPL(ring_buffer_write
);
3170 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
3172 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
3173 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
3174 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
3176 /* In case of error, head will be NULL */
3177 if (unlikely(!head
))
3180 return reader
->read
== rb_page_commit(reader
) &&
3181 (commit
== reader
||
3183 head
->read
== rb_page_commit(commit
)));
3187 * ring_buffer_record_disable - stop all writes into the buffer
3188 * @buffer: The ring buffer to stop writes to.
3190 * This prevents all writes to the buffer. Any attempt to write
3191 * to the buffer after this will fail and return NULL.
3193 * The caller should call synchronize_rcu() after this.
3195 void ring_buffer_record_disable(struct trace_buffer
*buffer
)
3197 atomic_inc(&buffer
->record_disabled
);
3199 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
3202 * ring_buffer_record_enable - enable writes to the buffer
3203 * @buffer: The ring buffer to enable writes
3205 * Note, multiple disables will need the same number of enables
3206 * to truly enable the writing (much like preempt_disable).
3208 void ring_buffer_record_enable(struct trace_buffer
*buffer
)
3210 atomic_dec(&buffer
->record_disabled
);
3212 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
3215 * ring_buffer_record_off - stop all writes into the buffer
3216 * @buffer: The ring buffer to stop writes to.
3218 * This prevents all writes to the buffer. Any attempt to write
3219 * to the buffer after this will fail and return NULL.
3221 * This is different than ring_buffer_record_disable() as
3222 * it works like an on/off switch, where as the disable() version
3223 * must be paired with a enable().
3225 void ring_buffer_record_off(struct trace_buffer
*buffer
)
3228 unsigned int new_rd
;
3231 rd
= atomic_read(&buffer
->record_disabled
);
3232 new_rd
= rd
| RB_BUFFER_OFF
;
3233 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3235 EXPORT_SYMBOL_GPL(ring_buffer_record_off
);
3238 * ring_buffer_record_on - restart writes into the buffer
3239 * @buffer: The ring buffer to start writes to.
3241 * This enables all writes to the buffer that was disabled by
3242 * ring_buffer_record_off().
3244 * This is different than ring_buffer_record_enable() as
3245 * it works like an on/off switch, where as the enable() version
3246 * must be paired with a disable().
3248 void ring_buffer_record_on(struct trace_buffer
*buffer
)
3251 unsigned int new_rd
;
3254 rd
= atomic_read(&buffer
->record_disabled
);
3255 new_rd
= rd
& ~RB_BUFFER_OFF
;
3256 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3258 EXPORT_SYMBOL_GPL(ring_buffer_record_on
);
3261 * ring_buffer_record_is_on - return true if the ring buffer can write
3262 * @buffer: The ring buffer to see if write is enabled
3264 * Returns true if the ring buffer is in a state that it accepts writes.
3266 bool ring_buffer_record_is_on(struct trace_buffer
*buffer
)
3268 return !atomic_read(&buffer
->record_disabled
);
3272 * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
3273 * @buffer: The ring buffer to see if write is set enabled
3275 * Returns true if the ring buffer is set writable by ring_buffer_record_on().
3276 * Note that this does NOT mean it is in a writable state.
3278 * It may return true when the ring buffer has been disabled by
3279 * ring_buffer_record_disable(), as that is a temporary disabling of
3282 bool ring_buffer_record_is_set_on(struct trace_buffer
*buffer
)
3284 return !(atomic_read(&buffer
->record_disabled
) & RB_BUFFER_OFF
);
3288 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3289 * @buffer: The ring buffer to stop writes to.
3290 * @cpu: The CPU buffer to stop
3292 * This prevents all writes to the buffer. Any attempt to write
3293 * to the buffer after this will fail and return NULL.
3295 * The caller should call synchronize_rcu() after this.
3297 void ring_buffer_record_disable_cpu(struct trace_buffer
*buffer
, int cpu
)
3299 struct ring_buffer_per_cpu
*cpu_buffer
;
3301 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3304 cpu_buffer
= buffer
->buffers
[cpu
];
3305 atomic_inc(&cpu_buffer
->record_disabled
);
3307 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
3310 * ring_buffer_record_enable_cpu - enable writes to the buffer
3311 * @buffer: The ring buffer to enable writes
3312 * @cpu: The CPU to enable.
3314 * Note, multiple disables will need the same number of enables
3315 * to truly enable the writing (much like preempt_disable).
3317 void ring_buffer_record_enable_cpu(struct trace_buffer
*buffer
, int cpu
)
3319 struct ring_buffer_per_cpu
*cpu_buffer
;
3321 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3324 cpu_buffer
= buffer
->buffers
[cpu
];
3325 atomic_dec(&cpu_buffer
->record_disabled
);
3327 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
3330 * The total entries in the ring buffer is the running counter
3331 * of entries entered into the ring buffer, minus the sum of
3332 * the entries read from the ring buffer and the number of
3333 * entries that were overwritten.
3335 static inline unsigned long
3336 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
3338 return local_read(&cpu_buffer
->entries
) -
3339 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
3343 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3344 * @buffer: The ring buffer
3345 * @cpu: The per CPU buffer to read from.
3347 u64
ring_buffer_oldest_event_ts(struct trace_buffer
*buffer
, int cpu
)
3349 unsigned long flags
;
3350 struct ring_buffer_per_cpu
*cpu_buffer
;
3351 struct buffer_page
*bpage
;
3354 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3357 cpu_buffer
= buffer
->buffers
[cpu
];
3358 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3360 * if the tail is on reader_page, oldest time stamp is on the reader
3363 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
3364 bpage
= cpu_buffer
->reader_page
;
3366 bpage
= rb_set_head_page(cpu_buffer
);
3368 ret
= bpage
->page
->time_stamp
;
3369 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3373 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
3376 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3377 * @buffer: The ring buffer
3378 * @cpu: The per CPU buffer to read from.
3380 unsigned long ring_buffer_bytes_cpu(struct trace_buffer
*buffer
, int cpu
)
3382 struct ring_buffer_per_cpu
*cpu_buffer
;
3385 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3388 cpu_buffer
= buffer
->buffers
[cpu
];
3389 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
3393 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
3396 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3397 * @buffer: The ring buffer
3398 * @cpu: The per CPU buffer to get the entries from.
3400 unsigned long ring_buffer_entries_cpu(struct trace_buffer
*buffer
, int cpu
)
3402 struct ring_buffer_per_cpu
*cpu_buffer
;
3404 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3407 cpu_buffer
= buffer
->buffers
[cpu
];
3409 return rb_num_of_entries(cpu_buffer
);
3411 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
3414 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3415 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3416 * @buffer: The ring buffer
3417 * @cpu: The per CPU buffer to get the number of overruns from
3419 unsigned long ring_buffer_overrun_cpu(struct trace_buffer
*buffer
, int cpu
)
3421 struct ring_buffer_per_cpu
*cpu_buffer
;
3424 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3427 cpu_buffer
= buffer
->buffers
[cpu
];
3428 ret
= local_read(&cpu_buffer
->overrun
);
3432 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
3435 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3436 * commits failing due to the buffer wrapping around while there are uncommitted
3437 * events, such as during an interrupt storm.
3438 * @buffer: The ring buffer
3439 * @cpu: The per CPU buffer to get the number of overruns from
3442 ring_buffer_commit_overrun_cpu(struct trace_buffer
*buffer
, int cpu
)
3444 struct ring_buffer_per_cpu
*cpu_buffer
;
3447 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3450 cpu_buffer
= buffer
->buffers
[cpu
];
3451 ret
= local_read(&cpu_buffer
->commit_overrun
);
3455 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
3458 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3459 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3460 * @buffer: The ring buffer
3461 * @cpu: The per CPU buffer to get the number of overruns from
3464 ring_buffer_dropped_events_cpu(struct trace_buffer
*buffer
, int cpu
)
3466 struct ring_buffer_per_cpu
*cpu_buffer
;
3469 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3472 cpu_buffer
= buffer
->buffers
[cpu
];
3473 ret
= local_read(&cpu_buffer
->dropped_events
);
3477 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu
);
3480 * ring_buffer_read_events_cpu - get the number of events successfully read
3481 * @buffer: The ring buffer
3482 * @cpu: The per CPU buffer to get the number of events read
3485 ring_buffer_read_events_cpu(struct trace_buffer
*buffer
, int cpu
)
3487 struct ring_buffer_per_cpu
*cpu_buffer
;
3489 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3492 cpu_buffer
= buffer
->buffers
[cpu
];
3493 return cpu_buffer
->read
;
3495 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu
);
3498 * ring_buffer_entries - get the number of entries in a buffer
3499 * @buffer: The ring buffer
3501 * Returns the total number of entries in the ring buffer
3504 unsigned long ring_buffer_entries(struct trace_buffer
*buffer
)
3506 struct ring_buffer_per_cpu
*cpu_buffer
;
3507 unsigned long entries
= 0;
3510 /* if you care about this being correct, lock the buffer */
3511 for_each_buffer_cpu(buffer
, cpu
) {
3512 cpu_buffer
= buffer
->buffers
[cpu
];
3513 entries
+= rb_num_of_entries(cpu_buffer
);
3518 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
3521 * ring_buffer_overruns - get the number of overruns in buffer
3522 * @buffer: The ring buffer
3524 * Returns the total number of overruns in the ring buffer
3527 unsigned long ring_buffer_overruns(struct trace_buffer
*buffer
)
3529 struct ring_buffer_per_cpu
*cpu_buffer
;
3530 unsigned long overruns
= 0;
3533 /* if you care about this being correct, lock the buffer */
3534 for_each_buffer_cpu(buffer
, cpu
) {
3535 cpu_buffer
= buffer
->buffers
[cpu
];
3536 overruns
+= local_read(&cpu_buffer
->overrun
);
3541 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
3543 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
3545 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3547 /* Iterator usage is expected to have record disabled */
3548 iter
->head_page
= cpu_buffer
->reader_page
;
3549 iter
->head
= cpu_buffer
->reader_page
->read
;
3551 iter
->cache_reader_page
= iter
->head_page
;
3552 iter
->cache_read
= cpu_buffer
->read
;
3555 iter
->read_stamp
= cpu_buffer
->read_stamp
;
3557 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3561 * ring_buffer_iter_reset - reset an iterator
3562 * @iter: The iterator to reset
3564 * Resets the iterator, so that it will start from the beginning
3567 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
3569 struct ring_buffer_per_cpu
*cpu_buffer
;
3570 unsigned long flags
;
3575 cpu_buffer
= iter
->cpu_buffer
;
3577 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3578 rb_iter_reset(iter
);
3579 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3581 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
3584 * ring_buffer_iter_empty - check if an iterator has no more to read
3585 * @iter: The iterator to check
3587 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
3589 struct ring_buffer_per_cpu
*cpu_buffer
;
3590 struct buffer_page
*reader
;
3591 struct buffer_page
*head_page
;
3592 struct buffer_page
*commit_page
;
3595 cpu_buffer
= iter
->cpu_buffer
;
3597 /* Remember, trace recording is off when iterator is in use */
3598 reader
= cpu_buffer
->reader_page
;
3599 head_page
= cpu_buffer
->head_page
;
3600 commit_page
= cpu_buffer
->commit_page
;
3601 commit
= rb_page_commit(commit_page
);
3603 return ((iter
->head_page
== commit_page
&& iter
->head
== commit
) ||
3604 (iter
->head_page
== reader
&& commit_page
== head_page
&&
3605 head_page
->read
== commit
&&
3606 iter
->head
== rb_page_commit(cpu_buffer
->reader_page
)));
3608 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
3611 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3612 struct ring_buffer_event
*event
)
3616 switch (event
->type_len
) {
3617 case RINGBUF_TYPE_PADDING
:
3620 case RINGBUF_TYPE_TIME_EXTEND
:
3621 delta
= ring_buffer_event_time_stamp(event
);
3622 cpu_buffer
->read_stamp
+= delta
;
3625 case RINGBUF_TYPE_TIME_STAMP
:
3626 delta
= ring_buffer_event_time_stamp(event
);
3627 cpu_buffer
->read_stamp
= delta
;
3630 case RINGBUF_TYPE_DATA
:
3631 cpu_buffer
->read_stamp
+= event
->time_delta
;
3641 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
3642 struct ring_buffer_event
*event
)
3646 switch (event
->type_len
) {
3647 case RINGBUF_TYPE_PADDING
:
3650 case RINGBUF_TYPE_TIME_EXTEND
:
3651 delta
= ring_buffer_event_time_stamp(event
);
3652 iter
->read_stamp
+= delta
;
3655 case RINGBUF_TYPE_TIME_STAMP
:
3656 delta
= ring_buffer_event_time_stamp(event
);
3657 iter
->read_stamp
= delta
;
3660 case RINGBUF_TYPE_DATA
:
3661 iter
->read_stamp
+= event
->time_delta
;
3670 static struct buffer_page
*
3671 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
3673 struct buffer_page
*reader
= NULL
;
3674 unsigned long overwrite
;
3675 unsigned long flags
;
3679 local_irq_save(flags
);
3680 arch_spin_lock(&cpu_buffer
->lock
);
3684 * This should normally only loop twice. But because the
3685 * start of the reader inserts an empty page, it causes
3686 * a case where we will loop three times. There should be no
3687 * reason to loop four times (that I know of).
3689 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
3694 reader
= cpu_buffer
->reader_page
;
3696 /* If there's more to read, return this page */
3697 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
3700 /* Never should we have an index greater than the size */
3701 if (RB_WARN_ON(cpu_buffer
,
3702 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
3705 /* check if we caught up to the tail */
3707 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
3710 /* Don't bother swapping if the ring buffer is empty */
3711 if (rb_num_of_entries(cpu_buffer
) == 0)
3715 * Reset the reader page to size zero.
3717 local_set(&cpu_buffer
->reader_page
->write
, 0);
3718 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3719 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3720 cpu_buffer
->reader_page
->real_end
= 0;
3724 * Splice the empty reader page into the list around the head.
3726 reader
= rb_set_head_page(cpu_buffer
);
3729 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
3730 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
3733 * cpu_buffer->pages just needs to point to the buffer, it
3734 * has no specific buffer page to point to. Lets move it out
3735 * of our way so we don't accidentally swap it.
3737 cpu_buffer
->pages
= reader
->list
.prev
;
3739 /* The reader page will be pointing to the new head */
3740 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
3743 * We want to make sure we read the overruns after we set up our
3744 * pointers to the next object. The writer side does a
3745 * cmpxchg to cross pages which acts as the mb on the writer
3746 * side. Note, the reader will constantly fail the swap
3747 * while the writer is updating the pointers, so this
3748 * guarantees that the overwrite recorded here is the one we
3749 * want to compare with the last_overrun.
3752 overwrite
= local_read(&(cpu_buffer
->overrun
));
3755 * Here's the tricky part.
3757 * We need to move the pointer past the header page.
3758 * But we can only do that if a writer is not currently
3759 * moving it. The page before the header page has the
3760 * flag bit '1' set if it is pointing to the page we want.
3761 * but if the writer is in the process of moving it
3762 * than it will be '2' or already moved '0'.
3765 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
3768 * If we did not convert it, then we must try again.
3774 * Yay! We succeeded in replacing the page.
3776 * Now make the new head point back to the reader page.
3778 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
3779 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
3781 local_inc(&cpu_buffer
->pages_read
);
3783 /* Finally update the reader page to the new head */
3784 cpu_buffer
->reader_page
= reader
;
3785 cpu_buffer
->reader_page
->read
= 0;
3787 if (overwrite
!= cpu_buffer
->last_overrun
) {
3788 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3789 cpu_buffer
->last_overrun
= overwrite
;
3795 /* Update the read_stamp on the first event */
3796 if (reader
&& reader
->read
== 0)
3797 cpu_buffer
->read_stamp
= reader
->page
->time_stamp
;
3799 arch_spin_unlock(&cpu_buffer
->lock
);
3800 local_irq_restore(flags
);
3805 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3807 struct ring_buffer_event
*event
;
3808 struct buffer_page
*reader
;
3811 reader
= rb_get_reader_page(cpu_buffer
);
3813 /* This function should not be called when buffer is empty */
3814 if (RB_WARN_ON(cpu_buffer
, !reader
))
3817 event
= rb_reader_event(cpu_buffer
);
3819 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3822 rb_update_read_stamp(cpu_buffer
, event
);
3824 length
= rb_event_length(event
);
3825 cpu_buffer
->reader_page
->read
+= length
;
3828 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3830 struct ring_buffer_per_cpu
*cpu_buffer
;
3831 struct ring_buffer_event
*event
;
3834 cpu_buffer
= iter
->cpu_buffer
;
3837 * Check if we are at the end of the buffer.
3839 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3840 /* discarded commits can make the page empty */
3841 if (iter
->head_page
== cpu_buffer
->commit_page
)
3847 event
= rb_iter_head_event(iter
);
3849 length
= rb_event_length(event
);
3852 * This should not be called to advance the header if we are
3853 * at the tail of the buffer.
3855 if (RB_WARN_ON(cpu_buffer
,
3856 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3857 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3860 rb_update_iter_read_stamp(iter
, event
);
3862 iter
->head
+= length
;
3864 /* check for end of page padding */
3865 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3866 (iter
->head_page
!= cpu_buffer
->commit_page
))
3870 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3872 return cpu_buffer
->lost_events
;
3875 static struct ring_buffer_event
*
3876 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3877 unsigned long *lost_events
)
3879 struct ring_buffer_event
*event
;
3880 struct buffer_page
*reader
;
3887 * We repeat when a time extend is encountered.
3888 * Since the time extend is always attached to a data event,
3889 * we should never loop more than once.
3890 * (We never hit the following condition more than twice).
3892 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3895 reader
= rb_get_reader_page(cpu_buffer
);
3899 event
= rb_reader_event(cpu_buffer
);
3901 switch (event
->type_len
) {
3902 case RINGBUF_TYPE_PADDING
:
3903 if (rb_null_event(event
))
3904 RB_WARN_ON(cpu_buffer
, 1);
3906 * Because the writer could be discarding every
3907 * event it creates (which would probably be bad)
3908 * if we were to go back to "again" then we may never
3909 * catch up, and will trigger the warn on, or lock
3910 * the box. Return the padding, and we will release
3911 * the current locks, and try again.
3915 case RINGBUF_TYPE_TIME_EXTEND
:
3916 /* Internal data, OK to advance */
3917 rb_advance_reader(cpu_buffer
);
3920 case RINGBUF_TYPE_TIME_STAMP
:
3922 *ts
= ring_buffer_event_time_stamp(event
);
3923 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3924 cpu_buffer
->cpu
, ts
);
3926 /* Internal data, OK to advance */
3927 rb_advance_reader(cpu_buffer
);
3930 case RINGBUF_TYPE_DATA
:
3932 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3933 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3934 cpu_buffer
->cpu
, ts
);
3937 *lost_events
= rb_lost_events(cpu_buffer
);
3946 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3948 static struct ring_buffer_event
*
3949 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3951 struct trace_buffer
*buffer
;
3952 struct ring_buffer_per_cpu
*cpu_buffer
;
3953 struct ring_buffer_event
*event
;
3959 cpu_buffer
= iter
->cpu_buffer
;
3960 buffer
= cpu_buffer
->buffer
;
3963 * Check if someone performed a consuming read to
3964 * the buffer. A consuming read invalidates the iterator
3965 * and we need to reset the iterator in this case.
3967 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3968 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3969 rb_iter_reset(iter
);
3972 if (ring_buffer_iter_empty(iter
))
3976 * We repeat when a time extend is encountered or we hit
3977 * the end of the page. Since the time extend is always attached
3978 * to a data event, we should never loop more than three times.
3979 * Once for going to next page, once on time extend, and
3980 * finally once to get the event.
3981 * (We never hit the following condition more than thrice).
3983 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3))
3986 if (rb_per_cpu_empty(cpu_buffer
))
3989 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3994 event
= rb_iter_head_event(iter
);
3996 switch (event
->type_len
) {
3997 case RINGBUF_TYPE_PADDING
:
3998 if (rb_null_event(event
)) {
4002 rb_advance_iter(iter
);
4005 case RINGBUF_TYPE_TIME_EXTEND
:
4006 /* Internal data, OK to advance */
4007 rb_advance_iter(iter
);
4010 case RINGBUF_TYPE_TIME_STAMP
:
4012 *ts
= ring_buffer_event_time_stamp(event
);
4013 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
4014 cpu_buffer
->cpu
, ts
);
4016 /* Internal data, OK to advance */
4017 rb_advance_iter(iter
);
4020 case RINGBUF_TYPE_DATA
:
4022 *ts
= iter
->read_stamp
+ event
->time_delta
;
4023 ring_buffer_normalize_time_stamp(buffer
,
4024 cpu_buffer
->cpu
, ts
);
4034 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
4036 static inline bool rb_reader_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
4038 if (likely(!in_nmi())) {
4039 raw_spin_lock(&cpu_buffer
->reader_lock
);
4044 * If an NMI die dumps out the content of the ring buffer
4045 * trylock must be used to prevent a deadlock if the NMI
4046 * preempted a task that holds the ring buffer locks. If
4047 * we get the lock then all is fine, if not, then continue
4048 * to do the read, but this can corrupt the ring buffer,
4049 * so it must be permanently disabled from future writes.
4050 * Reading from NMI is a oneshot deal.
4052 if (raw_spin_trylock(&cpu_buffer
->reader_lock
))
4055 /* Continue without locking, but disable the ring buffer */
4056 atomic_inc(&cpu_buffer
->record_disabled
);
4061 rb_reader_unlock(struct ring_buffer_per_cpu
*cpu_buffer
, bool locked
)
4064 raw_spin_unlock(&cpu_buffer
->reader_lock
);
4069 * ring_buffer_peek - peek at the next event to be read
4070 * @buffer: The ring buffer to read
4071 * @cpu: The cpu to peak at
4072 * @ts: The timestamp counter of this event.
4073 * @lost_events: a variable to store if events were lost (may be NULL)
4075 * This will return the event that will be read next, but does
4076 * not consume the data.
4078 struct ring_buffer_event
*
4079 ring_buffer_peek(struct trace_buffer
*buffer
, int cpu
, u64
*ts
,
4080 unsigned long *lost_events
)
4082 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4083 struct ring_buffer_event
*event
;
4084 unsigned long flags
;
4087 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4091 local_irq_save(flags
);
4092 dolock
= rb_reader_lock(cpu_buffer
);
4093 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
4094 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4095 rb_advance_reader(cpu_buffer
);
4096 rb_reader_unlock(cpu_buffer
, dolock
);
4097 local_irq_restore(flags
);
4099 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4106 * ring_buffer_iter_peek - peek at the next event to be read
4107 * @iter: The ring buffer iterator
4108 * @ts: The timestamp counter of this event.
4110 * This will return the event that will be read next, but does
4111 * not increment the iterator.
4113 struct ring_buffer_event
*
4114 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
4116 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4117 struct ring_buffer_event
*event
;
4118 unsigned long flags
;
4121 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4122 event
= rb_iter_peek(iter
, ts
);
4123 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4125 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4132 * ring_buffer_consume - return an event and consume it
4133 * @buffer: The ring buffer to get the next event from
4134 * @cpu: the cpu to read the buffer from
4135 * @ts: a variable to store the timestamp (may be NULL)
4136 * @lost_events: a variable to store if events were lost (may be NULL)
4138 * Returns the next event in the ring buffer, and that event is consumed.
4139 * Meaning, that sequential reads will keep returning a different event,
4140 * and eventually empty the ring buffer if the producer is slower.
4142 struct ring_buffer_event
*
4143 ring_buffer_consume(struct trace_buffer
*buffer
, int cpu
, u64
*ts
,
4144 unsigned long *lost_events
)
4146 struct ring_buffer_per_cpu
*cpu_buffer
;
4147 struct ring_buffer_event
*event
= NULL
;
4148 unsigned long flags
;
4152 /* might be called in atomic */
4155 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4158 cpu_buffer
= buffer
->buffers
[cpu
];
4159 local_irq_save(flags
);
4160 dolock
= rb_reader_lock(cpu_buffer
);
4162 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
4164 cpu_buffer
->lost_events
= 0;
4165 rb_advance_reader(cpu_buffer
);
4168 rb_reader_unlock(cpu_buffer
, dolock
);
4169 local_irq_restore(flags
);
4174 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
4179 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
4182 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
4183 * @buffer: The ring buffer to read from
4184 * @cpu: The cpu buffer to iterate over
4185 * @flags: gfp flags to use for memory allocation
4187 * This performs the initial preparations necessary to iterate
4188 * through the buffer. Memory is allocated, buffer recording
4189 * is disabled, and the iterator pointer is returned to the caller.
4191 * Disabling buffer recording prevents the reading from being
4192 * corrupted. This is not a consuming read, so a producer is not
4195 * After a sequence of ring_buffer_read_prepare calls, the user is
4196 * expected to make at least one call to ring_buffer_read_prepare_sync.
4197 * Afterwards, ring_buffer_read_start is invoked to get things going
4200 * This overall must be paired with ring_buffer_read_finish.
4202 struct ring_buffer_iter
*
4203 ring_buffer_read_prepare(struct trace_buffer
*buffer
, int cpu
, gfp_t flags
)
4205 struct ring_buffer_per_cpu
*cpu_buffer
;
4206 struct ring_buffer_iter
*iter
;
4208 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4211 iter
= kmalloc(sizeof(*iter
), flags
);
4215 cpu_buffer
= buffer
->buffers
[cpu
];
4217 iter
->cpu_buffer
= cpu_buffer
;
4219 atomic_inc(&buffer
->resize_disabled
);
4220 atomic_inc(&cpu_buffer
->record_disabled
);
4224 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
4227 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4229 * All previously invoked ring_buffer_read_prepare calls to prepare
4230 * iterators will be synchronized. Afterwards, read_buffer_read_start
4231 * calls on those iterators are allowed.
4234 ring_buffer_read_prepare_sync(void)
4238 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
4241 * ring_buffer_read_start - start a non consuming read of the buffer
4242 * @iter: The iterator returned by ring_buffer_read_prepare
4244 * This finalizes the startup of an iteration through the buffer.
4245 * The iterator comes from a call to ring_buffer_read_prepare and
4246 * an intervening ring_buffer_read_prepare_sync must have been
4249 * Must be paired with ring_buffer_read_finish.
4252 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
4254 struct ring_buffer_per_cpu
*cpu_buffer
;
4255 unsigned long flags
;
4260 cpu_buffer
= iter
->cpu_buffer
;
4262 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4263 arch_spin_lock(&cpu_buffer
->lock
);
4264 rb_iter_reset(iter
);
4265 arch_spin_unlock(&cpu_buffer
->lock
);
4266 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4268 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
4271 * ring_buffer_read_finish - finish reading the iterator of the buffer
4272 * @iter: The iterator retrieved by ring_buffer_start
4274 * This re-enables the recording to the buffer, and frees the
4278 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
4280 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4281 unsigned long flags
;
4284 * Ring buffer is disabled from recording, here's a good place
4285 * to check the integrity of the ring buffer.
4286 * Must prevent readers from trying to read, as the check
4287 * clears the HEAD page and readers require it.
4289 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4290 rb_check_pages(cpu_buffer
);
4291 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4293 atomic_dec(&cpu_buffer
->record_disabled
);
4294 atomic_dec(&cpu_buffer
->buffer
->resize_disabled
);
4297 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
4300 * ring_buffer_read - read the next item in the ring buffer by the iterator
4301 * @iter: The ring buffer iterator
4302 * @ts: The time stamp of the event read.
4304 * This reads the next event in the ring buffer and increments the iterator.
4306 struct ring_buffer_event
*
4307 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
4309 struct ring_buffer_event
*event
;
4310 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4311 unsigned long flags
;
4313 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4315 event
= rb_iter_peek(iter
, ts
);
4319 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
4322 rb_advance_iter(iter
);
4324 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4328 EXPORT_SYMBOL_GPL(ring_buffer_read
);
4331 * ring_buffer_size - return the size of the ring buffer (in bytes)
4332 * @buffer: The ring buffer.
4333 * @cpu: The CPU to get ring buffer size from.
4335 unsigned long ring_buffer_size(struct trace_buffer
*buffer
, int cpu
)
4338 * Earlier, this method returned
4339 * BUF_PAGE_SIZE * buffer->nr_pages
4340 * Since the nr_pages field is now removed, we have converted this to
4341 * return the per cpu buffer value.
4343 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4346 return BUF_PAGE_SIZE
* buffer
->buffers
[cpu
]->nr_pages
;
4348 EXPORT_SYMBOL_GPL(ring_buffer_size
);
4351 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
4353 rb_head_page_deactivate(cpu_buffer
);
4355 cpu_buffer
->head_page
4356 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
4357 local_set(&cpu_buffer
->head_page
->write
, 0);
4358 local_set(&cpu_buffer
->head_page
->entries
, 0);
4359 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
4361 cpu_buffer
->head_page
->read
= 0;
4363 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
4364 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
4366 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
4367 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
4368 local_set(&cpu_buffer
->reader_page
->write
, 0);
4369 local_set(&cpu_buffer
->reader_page
->entries
, 0);
4370 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
4371 cpu_buffer
->reader_page
->read
= 0;
4373 local_set(&cpu_buffer
->entries_bytes
, 0);
4374 local_set(&cpu_buffer
->overrun
, 0);
4375 local_set(&cpu_buffer
->commit_overrun
, 0);
4376 local_set(&cpu_buffer
->dropped_events
, 0);
4377 local_set(&cpu_buffer
->entries
, 0);
4378 local_set(&cpu_buffer
->committing
, 0);
4379 local_set(&cpu_buffer
->commits
, 0);
4380 local_set(&cpu_buffer
->pages_touched
, 0);
4381 local_set(&cpu_buffer
->pages_read
, 0);
4382 cpu_buffer
->last_pages_touch
= 0;
4383 cpu_buffer
->shortest_full
= 0;
4384 cpu_buffer
->read
= 0;
4385 cpu_buffer
->read_bytes
= 0;
4387 cpu_buffer
->write_stamp
= 0;
4388 cpu_buffer
->read_stamp
= 0;
4390 cpu_buffer
->lost_events
= 0;
4391 cpu_buffer
->last_overrun
= 0;
4393 rb_head_page_activate(cpu_buffer
);
4397 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4398 * @buffer: The ring buffer to reset a per cpu buffer of
4399 * @cpu: The CPU buffer to be reset
4401 void ring_buffer_reset_cpu(struct trace_buffer
*buffer
, int cpu
)
4403 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4404 unsigned long flags
;
4406 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4409 atomic_inc(&buffer
->resize_disabled
);
4410 atomic_inc(&cpu_buffer
->record_disabled
);
4412 /* Make sure all commits have finished */
4415 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4417 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
4420 arch_spin_lock(&cpu_buffer
->lock
);
4422 rb_reset_cpu(cpu_buffer
);
4424 arch_spin_unlock(&cpu_buffer
->lock
);
4427 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4429 atomic_dec(&cpu_buffer
->record_disabled
);
4430 atomic_dec(&buffer
->resize_disabled
);
4432 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
4435 * ring_buffer_reset - reset a ring buffer
4436 * @buffer: The ring buffer to reset all cpu buffers
4438 void ring_buffer_reset(struct trace_buffer
*buffer
)
4442 for_each_buffer_cpu(buffer
, cpu
)
4443 ring_buffer_reset_cpu(buffer
, cpu
);
4445 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
4448 * rind_buffer_empty - is the ring buffer empty?
4449 * @buffer: The ring buffer to test
4451 bool ring_buffer_empty(struct trace_buffer
*buffer
)
4453 struct ring_buffer_per_cpu
*cpu_buffer
;
4454 unsigned long flags
;
4459 /* yes this is racy, but if you don't like the race, lock the buffer */
4460 for_each_buffer_cpu(buffer
, cpu
) {
4461 cpu_buffer
= buffer
->buffers
[cpu
];
4462 local_irq_save(flags
);
4463 dolock
= rb_reader_lock(cpu_buffer
);
4464 ret
= rb_per_cpu_empty(cpu_buffer
);
4465 rb_reader_unlock(cpu_buffer
, dolock
);
4466 local_irq_restore(flags
);
4474 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
4477 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4478 * @buffer: The ring buffer
4479 * @cpu: The CPU buffer to test
4481 bool ring_buffer_empty_cpu(struct trace_buffer
*buffer
, int cpu
)
4483 struct ring_buffer_per_cpu
*cpu_buffer
;
4484 unsigned long flags
;
4488 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4491 cpu_buffer
= buffer
->buffers
[cpu
];
4492 local_irq_save(flags
);
4493 dolock
= rb_reader_lock(cpu_buffer
);
4494 ret
= rb_per_cpu_empty(cpu_buffer
);
4495 rb_reader_unlock(cpu_buffer
, dolock
);
4496 local_irq_restore(flags
);
4500 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
4502 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4504 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4505 * @buffer_a: One buffer to swap with
4506 * @buffer_b: The other buffer to swap with
4507 * @cpu: the CPU of the buffers to swap
4509 * This function is useful for tracers that want to take a "snapshot"
4510 * of a CPU buffer and has another back up buffer lying around.
4511 * it is expected that the tracer handles the cpu buffer not being
4512 * used at the moment.
4514 int ring_buffer_swap_cpu(struct trace_buffer
*buffer_a
,
4515 struct trace_buffer
*buffer_b
, int cpu
)
4517 struct ring_buffer_per_cpu
*cpu_buffer_a
;
4518 struct ring_buffer_per_cpu
*cpu_buffer_b
;
4521 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
4522 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
4525 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
4526 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
4528 /* At least make sure the two buffers are somewhat the same */
4529 if (cpu_buffer_a
->nr_pages
!= cpu_buffer_b
->nr_pages
)
4534 if (atomic_read(&buffer_a
->record_disabled
))
4537 if (atomic_read(&buffer_b
->record_disabled
))
4540 if (atomic_read(&cpu_buffer_a
->record_disabled
))
4543 if (atomic_read(&cpu_buffer_b
->record_disabled
))
4547 * We can't do a synchronize_rcu here because this
4548 * function can be called in atomic context.
4549 * Normally this will be called from the same CPU as cpu.
4550 * If not it's up to the caller to protect this.
4552 atomic_inc(&cpu_buffer_a
->record_disabled
);
4553 atomic_inc(&cpu_buffer_b
->record_disabled
);
4556 if (local_read(&cpu_buffer_a
->committing
))
4558 if (local_read(&cpu_buffer_b
->committing
))
4561 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
4562 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
4564 cpu_buffer_b
->buffer
= buffer_a
;
4565 cpu_buffer_a
->buffer
= buffer_b
;
4570 atomic_dec(&cpu_buffer_a
->record_disabled
);
4571 atomic_dec(&cpu_buffer_b
->record_disabled
);
4575 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
4576 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4579 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4580 * @buffer: the buffer to allocate for.
4581 * @cpu: the cpu buffer to allocate.
4583 * This function is used in conjunction with ring_buffer_read_page.
4584 * When reading a full page from the ring buffer, these functions
4585 * can be used to speed up the process. The calling function should
4586 * allocate a few pages first with this function. Then when it
4587 * needs to get pages from the ring buffer, it passes the result
4588 * of this function into ring_buffer_read_page, which will swap
4589 * the page that was allocated, with the read page of the buffer.
4592 * The page allocated, or ERR_PTR
4594 void *ring_buffer_alloc_read_page(struct trace_buffer
*buffer
, int cpu
)
4596 struct ring_buffer_per_cpu
*cpu_buffer
;
4597 struct buffer_data_page
*bpage
= NULL
;
4598 unsigned long flags
;
4601 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4602 return ERR_PTR(-ENODEV
);
4604 cpu_buffer
= buffer
->buffers
[cpu
];
4605 local_irq_save(flags
);
4606 arch_spin_lock(&cpu_buffer
->lock
);
4608 if (cpu_buffer
->free_page
) {
4609 bpage
= cpu_buffer
->free_page
;
4610 cpu_buffer
->free_page
= NULL
;
4613 arch_spin_unlock(&cpu_buffer
->lock
);
4614 local_irq_restore(flags
);
4619 page
= alloc_pages_node(cpu_to_node(cpu
),
4620 GFP_KERNEL
| __GFP_NORETRY
, 0);
4622 return ERR_PTR(-ENOMEM
);
4624 bpage
= page_address(page
);
4627 rb_init_page(bpage
);
4631 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
4634 * ring_buffer_free_read_page - free an allocated read page
4635 * @buffer: the buffer the page was allocate for
4636 * @cpu: the cpu buffer the page came from
4637 * @data: the page to free
4639 * Free a page allocated from ring_buffer_alloc_read_page.
4641 void ring_buffer_free_read_page(struct trace_buffer
*buffer
, int cpu
, void *data
)
4643 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4644 struct buffer_data_page
*bpage
= data
;
4645 struct page
*page
= virt_to_page(bpage
);
4646 unsigned long flags
;
4648 /* If the page is still in use someplace else, we can't reuse it */
4649 if (page_ref_count(page
) > 1)
4652 local_irq_save(flags
);
4653 arch_spin_lock(&cpu_buffer
->lock
);
4655 if (!cpu_buffer
->free_page
) {
4656 cpu_buffer
->free_page
= bpage
;
4660 arch_spin_unlock(&cpu_buffer
->lock
);
4661 local_irq_restore(flags
);
4664 free_page((unsigned long)bpage
);
4666 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
4669 * ring_buffer_read_page - extract a page from the ring buffer
4670 * @buffer: buffer to extract from
4671 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4672 * @len: amount to extract
4673 * @cpu: the cpu of the buffer to extract
4674 * @full: should the extraction only happen when the page is full.
4676 * This function will pull out a page from the ring buffer and consume it.
4677 * @data_page must be the address of the variable that was returned
4678 * from ring_buffer_alloc_read_page. This is because the page might be used
4679 * to swap with a page in the ring buffer.
4682 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4683 * if (IS_ERR(rpage))
4684 * return PTR_ERR(rpage);
4685 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4687 * process_page(rpage, ret);
4689 * When @full is set, the function will not return true unless
4690 * the writer is off the reader page.
4692 * Note: it is up to the calling functions to handle sleeps and wakeups.
4693 * The ring buffer can be used anywhere in the kernel and can not
4694 * blindly call wake_up. The layer that uses the ring buffer must be
4695 * responsible for that.
4698 * >=0 if data has been transferred, returns the offset of consumed data.
4699 * <0 if no data has been transferred.
4701 int ring_buffer_read_page(struct trace_buffer
*buffer
,
4702 void **data_page
, size_t len
, int cpu
, int full
)
4704 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4705 struct ring_buffer_event
*event
;
4706 struct buffer_data_page
*bpage
;
4707 struct buffer_page
*reader
;
4708 unsigned long missed_events
;
4709 unsigned long flags
;
4710 unsigned int commit
;
4715 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4719 * If len is not big enough to hold the page header, then
4720 * we can not copy anything.
4722 if (len
<= BUF_PAGE_HDR_SIZE
)
4725 len
-= BUF_PAGE_HDR_SIZE
;
4734 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4736 reader
= rb_get_reader_page(cpu_buffer
);
4740 event
= rb_reader_event(cpu_buffer
);
4742 read
= reader
->read
;
4743 commit
= rb_page_commit(reader
);
4745 /* Check if any events were dropped */
4746 missed_events
= cpu_buffer
->lost_events
;
4749 * If this page has been partially read or
4750 * if len is not big enough to read the rest of the page or
4751 * a writer is still on the page, then
4752 * we must copy the data from the page to the buffer.
4753 * Otherwise, we can simply swap the page with the one passed in.
4755 if (read
|| (len
< (commit
- read
)) ||
4756 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
4757 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
4758 unsigned int rpos
= read
;
4759 unsigned int pos
= 0;
4765 if (len
> (commit
- read
))
4766 len
= (commit
- read
);
4768 /* Always keep the time extend and data together */
4769 size
= rb_event_ts_length(event
);
4774 /* save the current timestamp, since the user will need it */
4775 save_timestamp
= cpu_buffer
->read_stamp
;
4777 /* Need to copy one event at a time */
4779 /* We need the size of one event, because
4780 * rb_advance_reader only advances by one event,
4781 * whereas rb_event_ts_length may include the size of
4782 * one or two events.
4783 * We have already ensured there's enough space if this
4784 * is a time extend. */
4785 size
= rb_event_length(event
);
4786 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
4790 rb_advance_reader(cpu_buffer
);
4791 rpos
= reader
->read
;
4797 event
= rb_reader_event(cpu_buffer
);
4798 /* Always keep the time extend and data together */
4799 size
= rb_event_ts_length(event
);
4800 } while (len
>= size
);
4803 local_set(&bpage
->commit
, pos
);
4804 bpage
->time_stamp
= save_timestamp
;
4806 /* we copied everything to the beginning */
4809 /* update the entry counter */
4810 cpu_buffer
->read
+= rb_page_entries(reader
);
4811 cpu_buffer
->read_bytes
+= BUF_PAGE_SIZE
;
4813 /* swap the pages */
4814 rb_init_page(bpage
);
4815 bpage
= reader
->page
;
4816 reader
->page
= *data_page
;
4817 local_set(&reader
->write
, 0);
4818 local_set(&reader
->entries
, 0);
4823 * Use the real_end for the data size,
4824 * This gives us a chance to store the lost events
4827 if (reader
->real_end
)
4828 local_set(&bpage
->commit
, reader
->real_end
);
4832 cpu_buffer
->lost_events
= 0;
4834 commit
= local_read(&bpage
->commit
);
4836 * Set a flag in the commit field if we lost events
4838 if (missed_events
) {
4839 /* If there is room at the end of the page to save the
4840 * missed events, then record it there.
4842 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
4843 memcpy(&bpage
->data
[commit
], &missed_events
,
4844 sizeof(missed_events
));
4845 local_add(RB_MISSED_STORED
, &bpage
->commit
);
4846 commit
+= sizeof(missed_events
);
4848 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
4852 * This page may be off to user land. Zero it out here.
4854 if (commit
< BUF_PAGE_SIZE
)
4855 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
4858 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4863 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
4866 * We only allocate new buffers, never free them if the CPU goes down.
4867 * If we were to free the buffer, then the user would lose any trace that was in
4870 int trace_rb_cpu_prepare(unsigned int cpu
, struct hlist_node
*node
)
4872 struct trace_buffer
*buffer
;
4875 unsigned long nr_pages
;
4877 buffer
= container_of(node
, struct trace_buffer
, node
);
4878 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4883 /* check if all cpu sizes are same */
4884 for_each_buffer_cpu(buffer
, cpu_i
) {
4885 /* fill in the size from first enabled cpu */
4887 nr_pages
= buffer
->buffers
[cpu_i
]->nr_pages
;
4888 if (nr_pages
!= buffer
->buffers
[cpu_i
]->nr_pages
) {
4893 /* allocate minimum pages, user can later expand it */
4896 buffer
->buffers
[cpu
] =
4897 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
4898 if (!buffer
->buffers
[cpu
]) {
4899 WARN(1, "failed to allocate ring buffer on CPU %u\n",
4904 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4908 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4910 * This is a basic integrity check of the ring buffer.
4911 * Late in the boot cycle this test will run when configured in.
4912 * It will kick off a thread per CPU that will go into a loop
4913 * writing to the per cpu ring buffer various sizes of data.
4914 * Some of the data will be large items, some small.
4916 * Another thread is created that goes into a spin, sending out
4917 * IPIs to the other CPUs to also write into the ring buffer.
4918 * this is to test the nesting ability of the buffer.
4920 * Basic stats are recorded and reported. If something in the
4921 * ring buffer should happen that's not expected, a big warning
4922 * is displayed and all ring buffers are disabled.
4924 static struct task_struct
*rb_threads
[NR_CPUS
] __initdata
;
4926 struct rb_test_data
{
4927 struct trace_buffer
*buffer
;
4928 unsigned long events
;
4929 unsigned long bytes_written
;
4930 unsigned long bytes_alloc
;
4931 unsigned long bytes_dropped
;
4932 unsigned long events_nested
;
4933 unsigned long bytes_written_nested
;
4934 unsigned long bytes_alloc_nested
;
4935 unsigned long bytes_dropped_nested
;
4936 int min_size_nested
;
4937 int max_size_nested
;
4944 static struct rb_test_data rb_data
[NR_CPUS
] __initdata
;
4947 #define RB_TEST_BUFFER_SIZE 1048576
4949 static char rb_string
[] __initdata
=
4950 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4951 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4952 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4954 static bool rb_test_started __initdata
;
4961 static __init
int rb_write_something(struct rb_test_data
*data
, bool nested
)
4963 struct ring_buffer_event
*event
;
4964 struct rb_item
*item
;
4971 /* Have nested writes different that what is written */
4972 cnt
= data
->cnt
+ (nested
? 27 : 0);
4974 /* Multiply cnt by ~e, to make some unique increment */
4975 size
= (cnt
* 68 / 25) % (sizeof(rb_string
) - 1);
4977 len
= size
+ sizeof(struct rb_item
);
4979 started
= rb_test_started
;
4980 /* read rb_test_started before checking buffer enabled */
4983 event
= ring_buffer_lock_reserve(data
->buffer
, len
);
4985 /* Ignore dropped events before test starts. */
4988 data
->bytes_dropped
+= len
;
4990 data
->bytes_dropped_nested
+= len
;
4995 event_len
= ring_buffer_event_length(event
);
4997 if (RB_WARN_ON(data
->buffer
, event_len
< len
))
5000 item
= ring_buffer_event_data(event
);
5002 memcpy(item
->str
, rb_string
, size
);
5005 data
->bytes_alloc_nested
+= event_len
;
5006 data
->bytes_written_nested
+= len
;
5007 data
->events_nested
++;
5008 if (!data
->min_size_nested
|| len
< data
->min_size_nested
)
5009 data
->min_size_nested
= len
;
5010 if (len
> data
->max_size_nested
)
5011 data
->max_size_nested
= len
;
5013 data
->bytes_alloc
+= event_len
;
5014 data
->bytes_written
+= len
;
5016 if (!data
->min_size
|| len
< data
->min_size
)
5017 data
->max_size
= len
;
5018 if (len
> data
->max_size
)
5019 data
->max_size
= len
;
5023 ring_buffer_unlock_commit(data
->buffer
, event
);
5028 static __init
int rb_test(void *arg
)
5030 struct rb_test_data
*data
= arg
;
5032 while (!kthread_should_stop()) {
5033 rb_write_something(data
, false);
5036 set_current_state(TASK_INTERRUPTIBLE
);
5037 /* Now sleep between a min of 100-300us and a max of 1ms */
5038 usleep_range(((data
->cnt
% 3) + 1) * 100, 1000);
5044 static __init
void rb_ipi(void *ignore
)
5046 struct rb_test_data
*data
;
5047 int cpu
= smp_processor_id();
5049 data
= &rb_data
[cpu
];
5050 rb_write_something(data
, true);
5053 static __init
int rb_hammer_test(void *arg
)
5055 while (!kthread_should_stop()) {
5057 /* Send an IPI to all cpus to write data! */
5058 smp_call_function(rb_ipi
, NULL
, 1);
5059 /* No sleep, but for non preempt, let others run */
5066 static __init
int test_ringbuffer(void)
5068 struct task_struct
*rb_hammer
;
5069 struct trace_buffer
*buffer
;
5073 if (security_locked_down(LOCKDOWN_TRACEFS
)) {
5074 pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
5078 pr_info("Running ring buffer tests...\n");
5080 buffer
= ring_buffer_alloc(RB_TEST_BUFFER_SIZE
, RB_FL_OVERWRITE
);
5081 if (WARN_ON(!buffer
))
5084 /* Disable buffer so that threads can't write to it yet */
5085 ring_buffer_record_off(buffer
);
5087 for_each_online_cpu(cpu
) {
5088 rb_data
[cpu
].buffer
= buffer
;
5089 rb_data
[cpu
].cpu
= cpu
;
5090 rb_data
[cpu
].cnt
= cpu
;
5091 rb_threads
[cpu
] = kthread_create(rb_test
, &rb_data
[cpu
],
5092 "rbtester/%d", cpu
);
5093 if (WARN_ON(IS_ERR(rb_threads
[cpu
]))) {
5094 pr_cont("FAILED\n");
5095 ret
= PTR_ERR(rb_threads
[cpu
]);
5099 kthread_bind(rb_threads
[cpu
], cpu
);
5100 wake_up_process(rb_threads
[cpu
]);
5103 /* Now create the rb hammer! */
5104 rb_hammer
= kthread_run(rb_hammer_test
, NULL
, "rbhammer");
5105 if (WARN_ON(IS_ERR(rb_hammer
))) {
5106 pr_cont("FAILED\n");
5107 ret
= PTR_ERR(rb_hammer
);
5111 ring_buffer_record_on(buffer
);
5113 * Show buffer is enabled before setting rb_test_started.
5114 * Yes there's a small race window where events could be
5115 * dropped and the thread wont catch it. But when a ring
5116 * buffer gets enabled, there will always be some kind of
5117 * delay before other CPUs see it. Thus, we don't care about
5118 * those dropped events. We care about events dropped after
5119 * the threads see that the buffer is active.
5122 rb_test_started
= true;
5124 set_current_state(TASK_INTERRUPTIBLE
);
5125 /* Just run for 10 seconds */;
5126 schedule_timeout(10 * HZ
);
5128 kthread_stop(rb_hammer
);
5131 for_each_online_cpu(cpu
) {
5132 if (!rb_threads
[cpu
])
5134 kthread_stop(rb_threads
[cpu
]);
5137 ring_buffer_free(buffer
);
5142 pr_info("finished\n");
5143 for_each_online_cpu(cpu
) {
5144 struct ring_buffer_event
*event
;
5145 struct rb_test_data
*data
= &rb_data
[cpu
];
5146 struct rb_item
*item
;
5147 unsigned long total_events
;
5148 unsigned long total_dropped
;
5149 unsigned long total_written
;
5150 unsigned long total_alloc
;
5151 unsigned long total_read
= 0;
5152 unsigned long total_size
= 0;
5153 unsigned long total_len
= 0;
5154 unsigned long total_lost
= 0;
5157 int small_event_size
;
5161 total_events
= data
->events
+ data
->events_nested
;
5162 total_written
= data
->bytes_written
+ data
->bytes_written_nested
;
5163 total_alloc
= data
->bytes_alloc
+ data
->bytes_alloc_nested
;
5164 total_dropped
= data
->bytes_dropped
+ data
->bytes_dropped_nested
;
5166 big_event_size
= data
->max_size
+ data
->max_size_nested
;
5167 small_event_size
= data
->min_size
+ data
->min_size_nested
;
5169 pr_info("CPU %d:\n", cpu
);
5170 pr_info(" events: %ld\n", total_events
);
5171 pr_info(" dropped bytes: %ld\n", total_dropped
);
5172 pr_info(" alloced bytes: %ld\n", total_alloc
);
5173 pr_info(" written bytes: %ld\n", total_written
);
5174 pr_info(" biggest event: %d\n", big_event_size
);
5175 pr_info(" smallest event: %d\n", small_event_size
);
5177 if (RB_WARN_ON(buffer
, total_dropped
))
5182 while ((event
= ring_buffer_consume(buffer
, cpu
, NULL
, &lost
))) {
5184 item
= ring_buffer_event_data(event
);
5185 total_len
+= ring_buffer_event_length(event
);
5186 total_size
+= item
->size
+ sizeof(struct rb_item
);
5187 if (memcmp(&item
->str
[0], rb_string
, item
->size
) != 0) {
5188 pr_info("FAILED!\n");
5189 pr_info("buffer had: %.*s\n", item
->size
, item
->str
);
5190 pr_info("expected: %.*s\n", item
->size
, rb_string
);
5191 RB_WARN_ON(buffer
, 1);
5202 pr_info(" read events: %ld\n", total_read
);
5203 pr_info(" lost events: %ld\n", total_lost
);
5204 pr_info(" total events: %ld\n", total_lost
+ total_read
);
5205 pr_info(" recorded len bytes: %ld\n", total_len
);
5206 pr_info(" recorded size bytes: %ld\n", total_size
);
5208 pr_info(" With dropped events, record len and size may not match\n"
5209 " alloced and written from above\n");
5211 if (RB_WARN_ON(buffer
, total_len
!= total_alloc
||
5212 total_size
!= total_written
))
5215 if (RB_WARN_ON(buffer
, total_lost
+ total_read
!= total_events
))
5221 pr_info("Ring buffer PASSED!\n");
5223 ring_buffer_free(buffer
);
5227 late_initcall(test_ringbuffer
);
5228 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */