4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
18 * Roll forward recovery scenarios.
20 * [Term] F: fsync_mark, D: dentry_mark
22 * 1. inode(x) | CP | inode(x) | dnode(F)
23 * -> Update the latest inode(x).
25 * 2. inode(x) | CP | inode(F) | dnode(F)
28 * 3. inode(x) | CP | dnode(F) | inode(x)
29 * -> Recover to the latest dnode(F), and drop the last inode(x)
31 * 4. inode(x) | CP | dnode(F) | inode(F)
34 * 5. CP | inode(x) | dnode(F)
35 * -> The inode(DF) was missing. Should drop this dnode(F).
37 * 6. CP | inode(DF) | dnode(F)
40 * 7. CP | dnode(F) | inode(DF)
41 * -> If f2fs_iget fails, then goto next to find inode(DF).
43 * 8. CP | dnode(F) | inode(x)
44 * -> If f2fs_iget fails, then goto next to find inode(DF).
45 * But it will fail due to no inode(DF).
48 static struct kmem_cache
*fsync_entry_slab
;
50 bool space_for_roll_forward(struct f2fs_sb_info
*sbi
)
52 if (sbi
->last_valid_block_count
+ sbi
->alloc_valid_block_count
53 > sbi
->user_block_count
)
58 static struct fsync_inode_entry
*get_fsync_inode(struct list_head
*head
,
61 struct fsync_inode_entry
*entry
;
63 list_for_each_entry(entry
, head
, list
)
64 if (entry
->inode
->i_ino
== ino
)
70 static int recover_dentry(struct inode
*inode
, struct page
*ipage
)
72 struct f2fs_inode
*raw_inode
= F2FS_INODE(ipage
);
73 nid_t pino
= le32_to_cpu(raw_inode
->i_pino
);
74 struct f2fs_dir_entry
*de
;
77 struct inode
*dir
, *einode
;
80 dir
= f2fs_iget(inode
->i_sb
, pino
);
86 if (file_enc_name(inode
)) {
91 name
.len
= le32_to_cpu(raw_inode
->i_namelen
);
92 name
.name
= raw_inode
->i_name
;
94 if (unlikely(name
.len
> F2FS_NAME_LEN
)) {
100 de
= f2fs_find_entry(dir
, &name
, &page
);
101 if (de
&& inode
->i_ino
== le32_to_cpu(de
->ino
))
105 einode
= f2fs_iget(inode
->i_sb
, le32_to_cpu(de
->ino
));
106 if (IS_ERR(einode
)) {
108 err
= PTR_ERR(einode
);
113 err
= acquire_orphan_inode(F2FS_I_SB(inode
));
118 f2fs_delete_entry(de
, page
, dir
, einode
);
122 err
= __f2fs_add_link(dir
, &name
, inode
, inode
->i_ino
, inode
->i_mode
);
126 if (is_inode_flag_set(F2FS_I(dir
), FI_DELAY_IPUT
)) {
129 add_dirty_dir_inode(dir
);
130 set_inode_flag(F2FS_I(dir
), FI_DELAY_IPUT
);
136 f2fs_dentry_kunmap(dir
, page
);
137 f2fs_put_page(page
, 0);
141 f2fs_msg(inode
->i_sb
, KERN_NOTICE
,
142 "%s: ino = %x, name = %s, dir = %lx, err = %d",
143 __func__
, ino_of_node(ipage
), raw_inode
->i_name
,
144 IS_ERR(dir
) ? 0 : dir
->i_ino
, err
);
148 static void recover_inode(struct inode
*inode
, struct page
*page
)
150 struct f2fs_inode
*raw
= F2FS_INODE(page
);
153 inode
->i_mode
= le16_to_cpu(raw
->i_mode
);
154 i_size_write(inode
, le64_to_cpu(raw
->i_size
));
155 inode
->i_atime
.tv_sec
= le64_to_cpu(raw
->i_mtime
);
156 inode
->i_ctime
.tv_sec
= le64_to_cpu(raw
->i_ctime
);
157 inode
->i_mtime
.tv_sec
= le64_to_cpu(raw
->i_mtime
);
158 inode
->i_atime
.tv_nsec
= le32_to_cpu(raw
->i_mtime_nsec
);
159 inode
->i_ctime
.tv_nsec
= le32_to_cpu(raw
->i_ctime_nsec
);
160 inode
->i_mtime
.tv_nsec
= le32_to_cpu(raw
->i_mtime_nsec
);
162 if (file_enc_name(inode
))
163 name
= "<encrypted>";
165 name
= F2FS_INODE(page
)->i_name
;
167 f2fs_msg(inode
->i_sb
, KERN_NOTICE
, "recover_inode: ino = %x, name = %s",
168 ino_of_node(page
), name
);
171 static int find_fsync_dnodes(struct f2fs_sb_info
*sbi
, struct list_head
*head
)
173 unsigned long long cp_ver
= cur_cp_version(F2FS_CKPT(sbi
));
174 struct curseg_info
*curseg
;
175 struct page
*page
= NULL
;
179 /* get node pages in the current segment */
180 curseg
= CURSEG_I(sbi
, CURSEG_WARM_NODE
);
181 blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
183 ra_meta_pages(sbi
, blkaddr
, 1, META_POR
);
186 struct fsync_inode_entry
*entry
;
188 if (!is_valid_blkaddr(sbi
, blkaddr
, META_POR
))
191 page
= get_meta_page(sbi
, blkaddr
);
193 if (cp_ver
!= cpver_of_node(page
))
196 if (!is_fsync_dnode(page
))
199 entry
= get_fsync_inode(head
, ino_of_node(page
));
201 if (IS_INODE(page
) && is_dent_dnode(page
)) {
202 err
= recover_inode_page(sbi
, page
);
207 /* add this fsync inode to the list */
208 entry
= kmem_cache_alloc(fsync_entry_slab
, GFP_F2FS_ZERO
);
214 * CP | dnode(F) | inode(DF)
215 * For this case, we should not give up now.
217 entry
->inode
= f2fs_iget(sbi
->sb
, ino_of_node(page
));
218 if (IS_ERR(entry
->inode
)) {
219 err
= PTR_ERR(entry
->inode
);
220 kmem_cache_free(fsync_entry_slab
, entry
);
221 if (err
== -ENOENT
) {
227 list_add_tail(&entry
->list
, head
);
229 entry
->blkaddr
= blkaddr
;
231 if (IS_INODE(page
)) {
232 entry
->last_inode
= blkaddr
;
233 if (is_dent_dnode(page
))
234 entry
->last_dentry
= blkaddr
;
237 /* check next segment */
238 blkaddr
= next_blkaddr_of_node(page
);
239 f2fs_put_page(page
, 1);
241 ra_meta_pages_cond(sbi
, blkaddr
);
243 f2fs_put_page(page
, 1);
247 static void destroy_fsync_dnodes(struct list_head
*head
)
249 struct fsync_inode_entry
*entry
, *tmp
;
251 list_for_each_entry_safe(entry
, tmp
, head
, list
) {
253 list_del(&entry
->list
);
254 kmem_cache_free(fsync_entry_slab
, entry
);
258 static int check_index_in_prev_nodes(struct f2fs_sb_info
*sbi
,
259 block_t blkaddr
, struct dnode_of_data
*dn
)
261 struct seg_entry
*sentry
;
262 unsigned int segno
= GET_SEGNO(sbi
, blkaddr
);
263 unsigned short blkoff
= GET_BLKOFF_FROM_SEG0(sbi
, blkaddr
);
264 struct f2fs_summary_block
*sum_node
;
265 struct f2fs_summary sum
;
266 struct page
*sum_page
, *node_page
;
267 struct dnode_of_data tdn
= *dn
;
274 sentry
= get_seg_entry(sbi
, segno
);
275 if (!f2fs_test_bit(blkoff
, sentry
->cur_valid_map
))
278 /* Get the previous summary */
279 for (i
= CURSEG_WARM_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
280 struct curseg_info
*curseg
= CURSEG_I(sbi
, i
);
281 if (curseg
->segno
== segno
) {
282 sum
= curseg
->sum_blk
->entries
[blkoff
];
287 sum_page
= get_sum_page(sbi
, segno
);
288 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
289 sum
= sum_node
->entries
[blkoff
];
290 f2fs_put_page(sum_page
, 1);
292 /* Use the locked dnode page and inode */
293 nid
= le32_to_cpu(sum
.nid
);
294 if (dn
->inode
->i_ino
== nid
) {
296 if (!dn
->inode_page_locked
)
297 lock_page(dn
->inode_page
);
298 tdn
.node_page
= dn
->inode_page
;
299 tdn
.ofs_in_node
= le16_to_cpu(sum
.ofs_in_node
);
301 } else if (dn
->nid
== nid
) {
302 tdn
.ofs_in_node
= le16_to_cpu(sum
.ofs_in_node
);
306 /* Get the node page */
307 node_page
= get_node_page(sbi
, nid
);
308 if (IS_ERR(node_page
))
309 return PTR_ERR(node_page
);
311 offset
= ofs_of_node(node_page
);
312 ino
= ino_of_node(node_page
);
313 f2fs_put_page(node_page
, 1);
315 if (ino
!= dn
->inode
->i_ino
) {
316 /* Deallocate previous index in the node page */
317 inode
= f2fs_iget(sbi
->sb
, ino
);
319 return PTR_ERR(inode
);
324 bidx
= start_bidx_of_node(offset
, F2FS_I(inode
)) +
325 le16_to_cpu(sum
.ofs_in_node
);
328 * if inode page is locked, unlock temporarily, but its reference
331 if (ino
== dn
->inode
->i_ino
&& dn
->inode_page_locked
)
332 unlock_page(dn
->inode_page
);
334 set_new_dnode(&tdn
, inode
, NULL
, NULL
, 0);
335 if (get_dnode_of_data(&tdn
, bidx
, LOOKUP_NODE
))
338 if (tdn
.data_blkaddr
== blkaddr
)
339 truncate_data_blocks_range(&tdn
, 1);
341 f2fs_put_dnode(&tdn
);
343 if (ino
!= dn
->inode
->i_ino
)
345 else if (dn
->inode_page_locked
)
346 lock_page(dn
->inode_page
);
350 if (datablock_addr(tdn
.node_page
, tdn
.ofs_in_node
) == blkaddr
)
351 truncate_data_blocks_range(&tdn
, 1);
352 if (dn
->inode
->i_ino
== nid
&& !dn
->inode_page_locked
)
353 unlock_page(dn
->inode_page
);
357 static int do_recover_data(struct f2fs_sb_info
*sbi
, struct inode
*inode
,
358 struct page
*page
, block_t blkaddr
)
360 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
361 unsigned int start
, end
;
362 struct dnode_of_data dn
;
364 int err
= 0, recovered
= 0;
366 /* step 1: recover xattr */
367 if (IS_INODE(page
)) {
368 recover_inline_xattr(inode
, page
);
369 } else if (f2fs_has_xattr_block(ofs_of_node(page
))) {
371 * Deprecated; xattr blocks should be found from cold log.
372 * But, we should remain this for backward compatibility.
374 recover_xattr_data(inode
, page
, blkaddr
);
378 /* step 2: recover inline data */
379 if (recover_inline_data(inode
, page
))
382 /* step 3: recover data indices */
383 start
= start_bidx_of_node(ofs_of_node(page
), fi
);
384 end
= start
+ ADDRS_PER_PAGE(page
, fi
);
388 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
390 err
= get_dnode_of_data(&dn
, start
, ALLOC_NODE
);
396 f2fs_wait_on_page_writeback(dn
.node_page
, NODE
);
398 get_node_info(sbi
, dn
.nid
, &ni
);
399 f2fs_bug_on(sbi
, ni
.ino
!= ino_of_node(page
));
400 f2fs_bug_on(sbi
, ofs_of_node(dn
.node_page
) != ofs_of_node(page
));
402 for (; start
< end
; start
++, dn
.ofs_in_node
++) {
405 src
= datablock_addr(dn
.node_page
, dn
.ofs_in_node
);
406 dest
= datablock_addr(page
, dn
.ofs_in_node
);
408 /* skip recovering if dest is the same as src */
412 /* dest is invalid, just invalidate src block */
413 if (dest
== NULL_ADDR
) {
414 truncate_data_blocks_range(&dn
, 1);
419 * dest is reserved block, invalidate src block
420 * and then reserve one new block in dnode page.
422 if (dest
== NEW_ADDR
) {
423 truncate_data_blocks_range(&dn
, 1);
424 err
= reserve_new_block(&dn
);
425 f2fs_bug_on(sbi
, err
);
429 /* dest is valid block, try to recover from src to dest */
430 if (is_valid_blkaddr(sbi
, dest
, META_POR
)) {
432 if (src
== NULL_ADDR
) {
433 err
= reserve_new_block(&dn
);
434 /* We should not get -ENOSPC */
435 f2fs_bug_on(sbi
, err
);
438 /* Check the previous node page having this index */
439 err
= check_index_in_prev_nodes(sbi
, dest
, &dn
);
443 /* write dummy data page */
444 f2fs_replace_block(sbi
, &dn
, src
, dest
,
450 if (IS_INODE(dn
.node_page
))
451 sync_inode_page(&dn
);
453 copy_node_footer(dn
.node_page
, page
);
454 fill_node_footer(dn
.node_page
, dn
.nid
, ni
.ino
,
455 ofs_of_node(page
), false);
456 set_page_dirty(dn
.node_page
);
461 f2fs_msg(sbi
->sb
, KERN_NOTICE
,
462 "recover_data: ino = %lx, recovered = %d blocks, err = %d",
463 inode
->i_ino
, recovered
, err
);
467 static int recover_data(struct f2fs_sb_info
*sbi
,
468 struct list_head
*head
, int type
)
470 unsigned long long cp_ver
= cur_cp_version(F2FS_CKPT(sbi
));
471 struct curseg_info
*curseg
;
472 struct page
*page
= NULL
;
476 /* get node pages in the current segment */
477 curseg
= CURSEG_I(sbi
, type
);
478 blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
481 struct fsync_inode_entry
*entry
;
483 if (!is_valid_blkaddr(sbi
, blkaddr
, META_POR
))
486 ra_meta_pages_cond(sbi
, blkaddr
);
488 page
= get_meta_page(sbi
, blkaddr
);
490 if (cp_ver
!= cpver_of_node(page
)) {
491 f2fs_put_page(page
, 1);
495 entry
= get_fsync_inode(head
, ino_of_node(page
));
499 * inode(x) | CP | inode(x) | dnode(F)
500 * In this case, we can lose the latest inode(x).
501 * So, call recover_inode for the inode update.
503 if (entry
->last_inode
== blkaddr
)
504 recover_inode(entry
->inode
, page
);
505 if (entry
->last_dentry
== blkaddr
) {
506 err
= recover_dentry(entry
->inode
, page
);
508 f2fs_put_page(page
, 1);
512 err
= do_recover_data(sbi
, entry
->inode
, page
, blkaddr
);
514 f2fs_put_page(page
, 1);
518 if (entry
->blkaddr
== blkaddr
) {
520 list_del(&entry
->list
);
521 kmem_cache_free(fsync_entry_slab
, entry
);
524 /* check next segment */
525 blkaddr
= next_blkaddr_of_node(page
);
526 f2fs_put_page(page
, 1);
529 allocate_new_segments(sbi
);
533 int recover_fsync_data(struct f2fs_sb_info
*sbi
)
535 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_WARM_NODE
);
536 struct list_head inode_list
;
539 bool need_writecp
= false;
541 fsync_entry_slab
= f2fs_kmem_cache_create("f2fs_fsync_inode_entry",
542 sizeof(struct fsync_inode_entry
));
543 if (!fsync_entry_slab
)
546 INIT_LIST_HEAD(&inode_list
);
548 /* prevent checkpoint */
549 mutex_lock(&sbi
->cp_mutex
);
551 blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
553 /* step #1: find fsynced inode numbers */
554 err
= find_fsync_dnodes(sbi
, &inode_list
);
558 if (list_empty(&inode_list
))
563 /* step #2: recover data */
564 err
= recover_data(sbi
, &inode_list
, CURSEG_WARM_NODE
);
566 f2fs_bug_on(sbi
, !list_empty(&inode_list
));
568 destroy_fsync_dnodes(&inode_list
);
569 kmem_cache_destroy(fsync_entry_slab
);
571 /* truncate meta pages to be used by the recovery */
572 truncate_inode_pages_range(META_MAPPING(sbi
),
573 MAIN_BLKADDR(sbi
) << PAGE_CACHE_SHIFT
, -1);
576 truncate_inode_pages_final(NODE_MAPPING(sbi
));
577 truncate_inode_pages_final(META_MAPPING(sbi
));
580 clear_sbi_flag(sbi
, SBI_POR_DOING
);
582 bool invalidate
= false;
584 if (discard_next_dnode(sbi
, blkaddr
))
587 /* Flush all the NAT/SIT pages */
588 while (get_pages(sbi
, F2FS_DIRTY_META
))
589 sync_meta_pages(sbi
, META
, LONG_MAX
);
591 /* invalidate temporary meta page */
593 invalidate_mapping_pages(META_MAPPING(sbi
),
596 set_ckpt_flags(sbi
->ckpt
, CP_ERROR_FLAG
);
597 mutex_unlock(&sbi
->cp_mutex
);
598 } else if (need_writecp
) {
599 struct cp_control cpc
= {
600 .reason
= CP_RECOVERY
,
602 mutex_unlock(&sbi
->cp_mutex
);
603 write_checkpoint(sbi
, &cpc
);
605 mutex_unlock(&sbi
->cp_mutex
);