4 * Copyright (C) 1992 Rick Sladkey
6 * nfs directory handling functions
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
20 #include <linux/module.h>
21 #include <linux/time.h>
22 #include <linux/errno.h>
23 #include <linux/stat.h>
24 #include <linux/fcntl.h>
25 #include <linux/string.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
29 #include <linux/sunrpc/clnt.h>
30 #include <linux/nfs_fs.h>
31 #include <linux/nfs_mount.h>
32 #include <linux/pagemap.h>
33 #include <linux/pagevec.h>
34 #include <linux/namei.h>
35 #include <linux/mount.h>
36 #include <linux/swap.h>
37 #include <linux/sched.h>
38 #include <linux/kmemleak.h>
39 #include <linux/xattr.h>
41 #include "delegation.h"
48 /* #define NFS_DEBUG_VERBOSE 1 */
50 static int nfs_opendir(struct inode
*, struct file
*);
51 static int nfs_closedir(struct inode
*, struct file
*);
52 static int nfs_readdir(struct file
*, struct dir_context
*);
53 static int nfs_fsync_dir(struct file
*, loff_t
, loff_t
, int);
54 static loff_t
nfs_llseek_dir(struct file
*, loff_t
, int);
55 static void nfs_readdir_clear_array(struct page
*);
57 const struct file_operations nfs_dir_operations
= {
58 .llseek
= nfs_llseek_dir
,
59 .read
= generic_read_dir
,
60 .iterate
= nfs_readdir
,
62 .release
= nfs_closedir
,
63 .fsync
= nfs_fsync_dir
,
66 const struct address_space_operations nfs_dir_aops
= {
67 .freepage
= nfs_readdir_clear_array
,
70 static struct nfs_open_dir_context
*alloc_nfs_open_dir_context(struct inode
*dir
, struct rpc_cred
*cred
)
72 struct nfs_inode
*nfsi
= NFS_I(dir
);
73 struct nfs_open_dir_context
*ctx
;
74 ctx
= kmalloc(sizeof(*ctx
), GFP_KERNEL
);
77 ctx
->attr_gencount
= nfsi
->attr_gencount
;
80 ctx
->cred
= get_rpccred(cred
);
81 spin_lock(&dir
->i_lock
);
82 list_add(&ctx
->list
, &nfsi
->open_files
);
83 spin_unlock(&dir
->i_lock
);
86 return ERR_PTR(-ENOMEM
);
89 static void put_nfs_open_dir_context(struct inode
*dir
, struct nfs_open_dir_context
*ctx
)
91 spin_lock(&dir
->i_lock
);
93 spin_unlock(&dir
->i_lock
);
94 put_rpccred(ctx
->cred
);
102 nfs_opendir(struct inode
*inode
, struct file
*filp
)
105 struct nfs_open_dir_context
*ctx
;
106 struct rpc_cred
*cred
;
108 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp
);
110 nfs_inc_stats(inode
, NFSIOS_VFSOPEN
);
112 cred
= rpc_lookup_cred();
114 return PTR_ERR(cred
);
115 ctx
= alloc_nfs_open_dir_context(inode
, cred
);
120 filp
->private_data
= ctx
;
121 if (filp
->f_path
.dentry
== filp
->f_path
.mnt
->mnt_root
) {
122 /* This is a mountpoint, so d_revalidate will never
123 * have been called, so we need to refresh the
124 * inode (for close-open consistency) ourselves.
126 __nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
134 nfs_closedir(struct inode
*inode
, struct file
*filp
)
136 put_nfs_open_dir_context(file_inode(filp
), filp
->private_data
);
140 struct nfs_cache_array_entry
{
144 unsigned char d_type
;
147 struct nfs_cache_array
{
151 struct nfs_cache_array_entry array
[0];
154 typedef int (*decode_dirent_t
)(struct xdr_stream
*, struct nfs_entry
*, int);
158 struct dir_context
*ctx
;
159 unsigned long page_index
;
162 loff_t current_index
;
163 decode_dirent_t decode
;
165 unsigned long timestamp
;
166 unsigned long gencount
;
167 unsigned int cache_entry_index
;
170 } nfs_readdir_descriptor_t
;
173 * The caller is responsible for calling nfs_readdir_release_array(page)
176 struct nfs_cache_array
*nfs_readdir_get_array(struct page
*page
)
180 return ERR_PTR(-EIO
);
183 return ERR_PTR(-ENOMEM
);
188 void nfs_readdir_release_array(struct page
*page
)
194 * we are freeing strings created by nfs_add_to_readdir_array()
197 void nfs_readdir_clear_array(struct page
*page
)
199 struct nfs_cache_array
*array
;
202 array
= kmap_atomic(page
);
203 for (i
= 0; i
< array
->size
; i
++)
204 kfree(array
->array
[i
].string
.name
);
205 kunmap_atomic(array
);
209 * the caller is responsible for freeing qstr.name
210 * when called by nfs_readdir_add_to_array, the strings will be freed in
211 * nfs_clear_readdir_array()
214 int nfs_readdir_make_qstr(struct qstr
*string
, const char *name
, unsigned int len
)
217 string
->name
= kmemdup(name
, len
, GFP_KERNEL
);
218 if (string
->name
== NULL
)
221 * Avoid a kmemleak false positive. The pointer to the name is stored
222 * in a page cache page which kmemleak does not scan.
224 kmemleak_not_leak(string
->name
);
225 string
->hash
= full_name_hash(name
, len
);
230 int nfs_readdir_add_to_array(struct nfs_entry
*entry
, struct page
*page
)
232 struct nfs_cache_array
*array
= nfs_readdir_get_array(page
);
233 struct nfs_cache_array_entry
*cache_entry
;
237 return PTR_ERR(array
);
239 cache_entry
= &array
->array
[array
->size
];
241 /* Check that this entry lies within the page bounds */
243 if ((char *)&cache_entry
[1] - (char *)page_address(page
) > PAGE_SIZE
)
246 cache_entry
->cookie
= entry
->prev_cookie
;
247 cache_entry
->ino
= entry
->ino
;
248 cache_entry
->d_type
= entry
->d_type
;
249 ret
= nfs_readdir_make_qstr(&cache_entry
->string
, entry
->name
, entry
->len
);
252 array
->last_cookie
= entry
->cookie
;
255 array
->eof_index
= array
->size
;
257 nfs_readdir_release_array(page
);
262 int nfs_readdir_search_for_pos(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
264 loff_t diff
= desc
->ctx
->pos
- desc
->current_index
;
269 if (diff
>= array
->size
) {
270 if (array
->eof_index
>= 0)
275 index
= (unsigned int)diff
;
276 *desc
->dir_cookie
= array
->array
[index
].cookie
;
277 desc
->cache_entry_index
= index
;
285 nfs_readdir_inode_mapping_valid(struct nfs_inode
*nfsi
)
287 if (nfsi
->cache_validity
& (NFS_INO_INVALID_ATTR
|NFS_INO_INVALID_DATA
))
290 return !test_bit(NFS_INO_INVALIDATING
, &nfsi
->flags
);
294 int nfs_readdir_search_for_cookie(struct nfs_cache_array
*array
, nfs_readdir_descriptor_t
*desc
)
298 int status
= -EAGAIN
;
300 for (i
= 0; i
< array
->size
; i
++) {
301 if (array
->array
[i
].cookie
== *desc
->dir_cookie
) {
302 struct nfs_inode
*nfsi
= NFS_I(file_inode(desc
->file
));
303 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
305 new_pos
= desc
->current_index
+ i
;
306 if (ctx
->attr_gencount
!= nfsi
->attr_gencount
||
307 !nfs_readdir_inode_mapping_valid(nfsi
)) {
309 ctx
->attr_gencount
= nfsi
->attr_gencount
;
310 } else if (new_pos
< desc
->ctx
->pos
) {
312 && ctx
->dup_cookie
== *desc
->dir_cookie
) {
313 if (printk_ratelimit()) {
314 pr_notice("NFS: directory %pD2 contains a readdir loop."
315 "Please contact your server vendor. "
316 "The file: %.*s has duplicate cookie %llu\n",
317 desc
->file
, array
->array
[i
].string
.len
,
318 array
->array
[i
].string
.name
, *desc
->dir_cookie
);
323 ctx
->dup_cookie
= *desc
->dir_cookie
;
326 desc
->ctx
->pos
= new_pos
;
327 desc
->cache_entry_index
= i
;
331 if (array
->eof_index
>= 0) {
332 status
= -EBADCOOKIE
;
333 if (*desc
->dir_cookie
== array
->last_cookie
)
341 int nfs_readdir_search_array(nfs_readdir_descriptor_t
*desc
)
343 struct nfs_cache_array
*array
;
346 array
= nfs_readdir_get_array(desc
->page
);
348 status
= PTR_ERR(array
);
352 if (*desc
->dir_cookie
== 0)
353 status
= nfs_readdir_search_for_pos(array
, desc
);
355 status
= nfs_readdir_search_for_cookie(array
, desc
);
357 if (status
== -EAGAIN
) {
358 desc
->last_cookie
= array
->last_cookie
;
359 desc
->current_index
+= array
->size
;
362 nfs_readdir_release_array(desc
->page
);
367 /* Fill a page with xdr information before transferring to the cache page */
369 int nfs_readdir_xdr_filler(struct page
**pages
, nfs_readdir_descriptor_t
*desc
,
370 struct nfs_entry
*entry
, struct file
*file
, struct inode
*inode
)
372 struct nfs_open_dir_context
*ctx
= file
->private_data
;
373 struct rpc_cred
*cred
= ctx
->cred
;
374 unsigned long timestamp
, gencount
;
379 gencount
= nfs_inc_attr_generation_counter();
380 error
= NFS_PROTO(inode
)->readdir(file
->f_path
.dentry
, cred
, entry
->cookie
, pages
,
381 NFS_SERVER(inode
)->dtsize
, desc
->plus
);
383 /* We requested READDIRPLUS, but the server doesn't grok it */
384 if (error
== -ENOTSUPP
&& desc
->plus
) {
385 NFS_SERVER(inode
)->caps
&= ~NFS_CAP_READDIRPLUS
;
386 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
392 desc
->timestamp
= timestamp
;
393 desc
->gencount
= gencount
;
398 static int xdr_decode(nfs_readdir_descriptor_t
*desc
,
399 struct nfs_entry
*entry
, struct xdr_stream
*xdr
)
403 error
= desc
->decode(xdr
, entry
, desc
->plus
);
406 entry
->fattr
->time_start
= desc
->timestamp
;
407 entry
->fattr
->gencount
= desc
->gencount
;
411 /* Match file and dirent using either filehandle or fileid
412 * Note: caller is responsible for checking the fsid
415 int nfs_same_file(struct dentry
*dentry
, struct nfs_entry
*entry
)
417 struct nfs_inode
*nfsi
;
419 if (d_really_is_negative(dentry
))
422 nfsi
= NFS_I(d_inode(dentry
));
423 if (entry
->fattr
->fileid
== nfsi
->fileid
)
425 if (nfs_compare_fh(entry
->fh
, &nfsi
->fh
) == 0)
431 bool nfs_use_readdirplus(struct inode
*dir
, struct dir_context
*ctx
)
433 if (!nfs_server_capable(dir
, NFS_CAP_READDIRPLUS
))
435 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
))
443 * This function is called by the lookup code to request the use of
444 * readdirplus to accelerate any future lookups in the same
448 void nfs_advise_use_readdirplus(struct inode
*dir
)
450 set_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(dir
)->flags
);
454 * This function is mainly for use by nfs_getattr().
456 * If this is an 'ls -l', we want to force use of readdirplus.
457 * Do this by checking if there is an active file descriptor
458 * and calling nfs_advise_use_readdirplus, then forcing a
461 void nfs_force_use_readdirplus(struct inode
*dir
)
463 if (!list_empty(&NFS_I(dir
)->open_files
)) {
464 nfs_advise_use_readdirplus(dir
);
465 nfs_zap_mapping(dir
, dir
->i_mapping
);
470 void nfs_prime_dcache(struct dentry
*parent
, struct nfs_entry
*entry
)
472 struct qstr filename
= QSTR_INIT(entry
->name
, entry
->len
);
473 struct dentry
*dentry
;
474 struct dentry
*alias
;
475 struct inode
*dir
= d_inode(parent
);
479 if (!(entry
->fattr
->valid
& NFS_ATTR_FATTR_FILEID
))
481 if (!(entry
->fattr
->valid
& NFS_ATTR_FATTR_FSID
))
483 if (filename
.name
[0] == '.') {
484 if (filename
.len
== 1)
486 if (filename
.len
== 2 && filename
.name
[1] == '.')
489 filename
.hash
= full_name_hash(filename
.name
, filename
.len
);
491 dentry
= d_lookup(parent
, &filename
);
492 if (dentry
!= NULL
) {
493 /* Is there a mountpoint here? If so, just exit */
494 if (!nfs_fsid_equal(&NFS_SB(dentry
->d_sb
)->fsid
,
495 &entry
->fattr
->fsid
))
497 if (nfs_same_file(dentry
, entry
)) {
498 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
499 status
= nfs_refresh_inode(d_inode(dentry
), entry
->fattr
);
501 nfs_setsecurity(d_inode(dentry
), entry
->fattr
, entry
->label
);
504 d_invalidate(dentry
);
509 dentry
= d_alloc(parent
, &filename
);
513 inode
= nfs_fhget(dentry
->d_sb
, entry
->fh
, entry
->fattr
, entry
->label
);
517 alias
= d_splice_alias(inode
, dentry
);
521 nfs_set_verifier(alias
, nfs_save_change_attribute(dir
));
524 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
530 /* Perform conversion from xdr to cache array */
532 int nfs_readdir_page_filler(nfs_readdir_descriptor_t
*desc
, struct nfs_entry
*entry
,
533 struct page
**xdr_pages
, struct page
*page
, unsigned int buflen
)
535 struct xdr_stream stream
;
537 struct page
*scratch
;
538 struct nfs_cache_array
*array
;
539 unsigned int count
= 0;
542 scratch
= alloc_page(GFP_KERNEL
);
549 xdr_init_decode_pages(&stream
, &buf
, xdr_pages
, buflen
);
550 xdr_set_scratch_buffer(&stream
, page_address(scratch
), PAGE_SIZE
);
553 status
= xdr_decode(desc
, entry
, &stream
);
555 if (status
== -EAGAIN
)
563 nfs_prime_dcache(desc
->file
->f_path
.dentry
, entry
);
565 status
= nfs_readdir_add_to_array(entry
, page
);
568 } while (!entry
->eof
);
571 if (count
== 0 || (status
== -EBADCOOKIE
&& entry
->eof
!= 0)) {
572 array
= nfs_readdir_get_array(page
);
573 if (!IS_ERR(array
)) {
574 array
->eof_index
= array
->size
;
576 nfs_readdir_release_array(page
);
578 status
= PTR_ERR(array
);
586 void nfs_readdir_free_pagearray(struct page
**pages
, unsigned int npages
)
589 for (i
= 0; i
< npages
; i
++)
594 void nfs_readdir_free_large_page(void *ptr
, struct page
**pages
,
597 nfs_readdir_free_pagearray(pages
, npages
);
601 * nfs_readdir_large_page will allocate pages that must be freed with a call
602 * to nfs_readdir_free_large_page
605 int nfs_readdir_large_page(struct page
**pages
, unsigned int npages
)
609 for (i
= 0; i
< npages
; i
++) {
610 struct page
*page
= alloc_page(GFP_KERNEL
);
618 nfs_readdir_free_pagearray(pages
, i
);
623 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t
*desc
, struct page
*page
, struct inode
*inode
)
625 struct page
*pages
[NFS_MAX_READDIR_PAGES
];
626 void *pages_ptr
= NULL
;
627 struct nfs_entry entry
;
628 struct file
*file
= desc
->file
;
629 struct nfs_cache_array
*array
;
630 int status
= -ENOMEM
;
631 unsigned int array_size
= ARRAY_SIZE(pages
);
633 entry
.prev_cookie
= 0;
634 entry
.cookie
= desc
->last_cookie
;
636 entry
.fh
= nfs_alloc_fhandle();
637 entry
.fattr
= nfs_alloc_fattr();
638 entry
.server
= NFS_SERVER(inode
);
639 if (entry
.fh
== NULL
|| entry
.fattr
== NULL
)
642 entry
.label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
643 if (IS_ERR(entry
.label
)) {
644 status
= PTR_ERR(entry
.label
);
648 array
= nfs_readdir_get_array(page
);
650 status
= PTR_ERR(array
);
653 memset(array
, 0, sizeof(struct nfs_cache_array
));
654 array
->eof_index
= -1;
656 status
= nfs_readdir_large_page(pages
, array_size
);
658 goto out_release_array
;
661 status
= nfs_readdir_xdr_filler(pages
, desc
, &entry
, file
, inode
);
666 status
= nfs_readdir_page_filler(desc
, &entry
, pages
, page
, pglen
);
668 if (status
== -ENOSPC
)
672 } while (array
->eof_index
< 0);
674 nfs_readdir_free_large_page(pages_ptr
, pages
, array_size
);
676 nfs_readdir_release_array(page
);
678 nfs4_label_free(entry
.label
);
680 nfs_free_fattr(entry
.fattr
);
681 nfs_free_fhandle(entry
.fh
);
686 * Now we cache directories properly, by converting xdr information
687 * to an array that can be used for lookups later. This results in
688 * fewer cache pages, since we can store more information on each page.
689 * We only need to convert from xdr once so future lookups are much simpler
692 int nfs_readdir_filler(nfs_readdir_descriptor_t
*desc
, struct page
* page
)
694 struct inode
*inode
= file_inode(desc
->file
);
697 ret
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
700 SetPageUptodate(page
);
702 if (invalidate_inode_pages2_range(inode
->i_mapping
, page
->index
+ 1, -1) < 0) {
703 /* Should never happen */
704 nfs_zap_mapping(inode
, inode
->i_mapping
);
714 void cache_page_release(nfs_readdir_descriptor_t
*desc
)
716 if (!desc
->page
->mapping
)
717 nfs_readdir_clear_array(desc
->page
);
718 page_cache_release(desc
->page
);
723 struct page
*get_cache_page(nfs_readdir_descriptor_t
*desc
)
725 return read_cache_page(file_inode(desc
->file
)->i_mapping
,
726 desc
->page_index
, (filler_t
*)nfs_readdir_filler
, desc
);
730 * Returns 0 if desc->dir_cookie was found on page desc->page_index
733 int find_cache_page(nfs_readdir_descriptor_t
*desc
)
737 desc
->page
= get_cache_page(desc
);
738 if (IS_ERR(desc
->page
))
739 return PTR_ERR(desc
->page
);
741 res
= nfs_readdir_search_array(desc
);
743 cache_page_release(desc
);
747 /* Search for desc->dir_cookie from the beginning of the page cache */
749 int readdir_search_pagecache(nfs_readdir_descriptor_t
*desc
)
753 if (desc
->page_index
== 0) {
754 desc
->current_index
= 0;
755 desc
->last_cookie
= 0;
758 res
= find_cache_page(desc
);
759 } while (res
== -EAGAIN
);
764 * Once we've found the start of the dirent within a page: fill 'er up...
767 int nfs_do_filldir(nfs_readdir_descriptor_t
*desc
)
769 struct file
*file
= desc
->file
;
772 struct nfs_cache_array
*array
= NULL
;
773 struct nfs_open_dir_context
*ctx
= file
->private_data
;
775 array
= nfs_readdir_get_array(desc
->page
);
777 res
= PTR_ERR(array
);
781 for (i
= desc
->cache_entry_index
; i
< array
->size
; i
++) {
782 struct nfs_cache_array_entry
*ent
;
784 ent
= &array
->array
[i
];
785 if (!dir_emit(desc
->ctx
, ent
->string
.name
, ent
->string
.len
,
786 nfs_compat_user_ino64(ent
->ino
), ent
->d_type
)) {
791 if (i
< (array
->size
-1))
792 *desc
->dir_cookie
= array
->array
[i
+1].cookie
;
794 *desc
->dir_cookie
= array
->last_cookie
;
798 if (array
->eof_index
>= 0)
801 nfs_readdir_release_array(desc
->page
);
803 cache_page_release(desc
);
804 dfprintk(DIRCACHE
, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
805 (unsigned long long)*desc
->dir_cookie
, res
);
810 * If we cannot find a cookie in our cache, we suspect that this is
811 * because it points to a deleted file, so we ask the server to return
812 * whatever it thinks is the next entry. We then feed this to filldir.
813 * If all goes well, we should then be able to find our way round the
814 * cache on the next call to readdir_search_pagecache();
816 * NOTE: we cannot add the anonymous page to the pagecache because
817 * the data it contains might not be page aligned. Besides,
818 * we should already have a complete representation of the
819 * directory in the page cache by the time we get here.
822 int uncached_readdir(nfs_readdir_descriptor_t
*desc
)
824 struct page
*page
= NULL
;
826 struct inode
*inode
= file_inode(desc
->file
);
827 struct nfs_open_dir_context
*ctx
= desc
->file
->private_data
;
829 dfprintk(DIRCACHE
, "NFS: uncached_readdir() searching for cookie %Lu\n",
830 (unsigned long long)*desc
->dir_cookie
);
832 page
= alloc_page(GFP_HIGHUSER
);
838 desc
->page_index
= 0;
839 desc
->last_cookie
= *desc
->dir_cookie
;
843 status
= nfs_readdir_xdr_to_array(desc
, page
, inode
);
847 status
= nfs_do_filldir(desc
);
850 dfprintk(DIRCACHE
, "NFS: %s: returns %d\n",
854 cache_page_release(desc
);
858 static bool nfs_dir_mapping_need_revalidate(struct inode
*dir
)
860 struct nfs_inode
*nfsi
= NFS_I(dir
);
862 if (nfs_attribute_cache_expired(dir
))
864 if (nfsi
->cache_validity
& NFS_INO_INVALID_DATA
)
869 /* The file offset position represents the dirent entry number. A
870 last cookie cache takes care of the common case of reading the
873 static int nfs_readdir(struct file
*file
, struct dir_context
*ctx
)
875 struct dentry
*dentry
= file
->f_path
.dentry
;
876 struct inode
*inode
= d_inode(dentry
);
877 nfs_readdir_descriptor_t my_desc
,
879 struct nfs_open_dir_context
*dir_ctx
= file
->private_data
;
882 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
883 file
, (long long)ctx
->pos
);
884 nfs_inc_stats(inode
, NFSIOS_VFSGETDENTS
);
887 * ctx->pos points to the dirent entry number.
888 * *desc->dir_cookie has the cookie for the next entry. We have
889 * to either find the entry with the appropriate number or
890 * revalidate the cookie.
892 memset(desc
, 0, sizeof(*desc
));
896 desc
->dir_cookie
= &dir_ctx
->dir_cookie
;
897 desc
->decode
= NFS_PROTO(inode
)->decode_dirent
;
898 desc
->plus
= nfs_use_readdirplus(inode
, ctx
) ? 1 : 0;
900 nfs_block_sillyrename(dentry
);
901 if (ctx
->pos
== 0 || nfs_dir_mapping_need_revalidate(inode
))
902 res
= nfs_revalidate_mapping(inode
, file
->f_mapping
);
907 res
= readdir_search_pagecache(desc
);
909 if (res
== -EBADCOOKIE
) {
911 /* This means either end of directory */
912 if (*desc
->dir_cookie
&& desc
->eof
== 0) {
913 /* Or that the server has 'lost' a cookie */
914 res
= uncached_readdir(desc
);
920 if (res
== -ETOOSMALL
&& desc
->plus
) {
921 clear_bit(NFS_INO_ADVISE_RDPLUS
, &NFS_I(inode
)->flags
);
922 nfs_zap_caches(inode
);
923 desc
->page_index
= 0;
931 res
= nfs_do_filldir(desc
);
934 } while (!desc
->eof
);
936 nfs_unblock_sillyrename(dentry
);
939 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file
, res
);
943 static loff_t
nfs_llseek_dir(struct file
*filp
, loff_t offset
, int whence
)
945 struct inode
*inode
= file_inode(filp
);
946 struct nfs_open_dir_context
*dir_ctx
= filp
->private_data
;
948 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
949 filp
, offset
, whence
);
951 mutex_lock(&inode
->i_mutex
);
954 offset
+= filp
->f_pos
;
962 if (offset
!= filp
->f_pos
) {
963 filp
->f_pos
= offset
;
964 dir_ctx
->dir_cookie
= 0;
968 mutex_unlock(&inode
->i_mutex
);
973 * All directory operations under NFS are synchronous, so fsync()
974 * is a dummy operation.
976 static int nfs_fsync_dir(struct file
*filp
, loff_t start
, loff_t end
,
979 struct inode
*inode
= file_inode(filp
);
981 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp
, datasync
);
983 mutex_lock(&inode
->i_mutex
);
984 nfs_inc_stats(inode
, NFSIOS_VFSFSYNC
);
985 mutex_unlock(&inode
->i_mutex
);
990 * nfs_force_lookup_revalidate - Mark the directory as having changed
991 * @dir - pointer to directory inode
993 * This forces the revalidation code in nfs_lookup_revalidate() to do a
994 * full lookup on all child dentries of 'dir' whenever a change occurs
995 * on the server that might have invalidated our dcache.
997 * The caller should be holding dir->i_lock
999 void nfs_force_lookup_revalidate(struct inode
*dir
)
1001 NFS_I(dir
)->cache_change_attribute
++;
1003 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate
);
1006 * A check for whether or not the parent directory has changed.
1007 * In the case it has, we assume that the dentries are untrustworthy
1008 * and may need to be looked up again.
1009 * If rcu_walk prevents us from performing a full check, return 0.
1011 static int nfs_check_verifier(struct inode
*dir
, struct dentry
*dentry
,
1016 if (IS_ROOT(dentry
))
1018 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONE
)
1020 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
1022 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1024 ret
= nfs_revalidate_inode_rcu(NFS_SERVER(dir
), dir
);
1026 ret
= nfs_revalidate_inode(NFS_SERVER(dir
), dir
);
1029 if (!nfs_verify_change_attribute(dir
, dentry
->d_time
))
1035 * Use intent information to check whether or not we're going to do
1036 * an O_EXCL create using this path component.
1038 static int nfs_is_exclusive_create(struct inode
*dir
, unsigned int flags
)
1040 if (NFS_PROTO(dir
)->version
== 2)
1042 return flags
& LOOKUP_EXCL
;
1046 * Inode and filehandle revalidation for lookups.
1048 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1049 * or if the intent information indicates that we're about to open this
1050 * particular file and the "nocto" mount flag is not set.
1054 int nfs_lookup_verify_inode(struct inode
*inode
, unsigned int flags
)
1056 struct nfs_server
*server
= NFS_SERVER(inode
);
1059 if (IS_AUTOMOUNT(inode
))
1061 /* VFS wants an on-the-wire revalidation */
1062 if (flags
& LOOKUP_REVAL
)
1064 /* This is an open(2) */
1065 if ((flags
& LOOKUP_OPEN
) && !(server
->flags
& NFS_MOUNT_NOCTO
) &&
1066 (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
)))
1069 return (inode
->i_nlink
== 0) ? -ENOENT
: 0;
1071 if (flags
& LOOKUP_RCU
)
1073 ret
= __nfs_revalidate_inode(server
, inode
);
1080 * We judge how long we want to trust negative
1081 * dentries by looking at the parent inode mtime.
1083 * If parent mtime has changed, we revalidate, else we wait for a
1084 * period corresponding to the parent's attribute cache timeout value.
1086 * If LOOKUP_RCU prevents us from performing a full check, return 1
1087 * suggesting a reval is needed.
1090 int nfs_neg_need_reval(struct inode
*dir
, struct dentry
*dentry
,
1093 /* Don't revalidate a negative dentry if we're creating a new file */
1094 if (flags
& LOOKUP_CREATE
)
1096 if (NFS_SERVER(dir
)->flags
& NFS_MOUNT_LOOKUP_CACHE_NONEG
)
1098 return !nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
);
1102 * This is called every time the dcache has a lookup hit,
1103 * and we should check whether we can really trust that
1106 * NOTE! The hit can be a negative hit too, don't assume
1109 * If the parent directory is seen to have changed, we throw out the
1110 * cached dentry and do a new lookup.
1112 static int nfs_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1115 struct inode
*inode
;
1116 struct dentry
*parent
;
1117 struct nfs_fh
*fhandle
= NULL
;
1118 struct nfs_fattr
*fattr
= NULL
;
1119 struct nfs4_label
*label
= NULL
;
1122 if (flags
& LOOKUP_RCU
) {
1123 parent
= ACCESS_ONCE(dentry
->d_parent
);
1124 dir
= d_inode_rcu(parent
);
1128 parent
= dget_parent(dentry
);
1129 dir
= d_inode(parent
);
1131 nfs_inc_stats(dir
, NFSIOS_DENTRYREVALIDATE
);
1132 inode
= d_inode(dentry
);
1135 if (nfs_neg_need_reval(dir
, dentry
, flags
)) {
1136 if (flags
& LOOKUP_RCU
)
1140 goto out_valid_noent
;
1143 if (is_bad_inode(inode
)) {
1144 if (flags
& LOOKUP_RCU
)
1146 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1151 if (NFS_PROTO(dir
)->have_delegation(inode
, FMODE_READ
))
1152 goto out_set_verifier
;
1154 /* Force a full look up iff the parent directory has changed */
1155 if (!nfs_is_exclusive_create(dir
, flags
) &&
1156 nfs_check_verifier(dir
, dentry
, flags
& LOOKUP_RCU
)) {
1158 if (nfs_lookup_verify_inode(inode
, flags
)) {
1159 if (flags
& LOOKUP_RCU
)
1161 goto out_zap_parent
;
1166 if (flags
& LOOKUP_RCU
)
1169 if (NFS_STALE(inode
))
1173 fhandle
= nfs_alloc_fhandle();
1174 fattr
= nfs_alloc_fattr();
1175 if (fhandle
== NULL
|| fattr
== NULL
)
1178 label
= nfs4_label_alloc(NFS_SERVER(inode
), GFP_NOWAIT
);
1182 trace_nfs_lookup_revalidate_enter(dir
, dentry
, flags
);
1183 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1184 trace_nfs_lookup_revalidate_exit(dir
, dentry
, flags
, error
);
1187 if (nfs_compare_fh(NFS_FH(inode
), fhandle
))
1189 if ((error
= nfs_refresh_inode(inode
, fattr
)) != 0)
1192 nfs_setsecurity(inode
, fattr
, label
);
1194 nfs_free_fattr(fattr
);
1195 nfs_free_fhandle(fhandle
);
1196 nfs4_label_free(label
);
1199 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1201 /* Success: notify readdir to use READDIRPLUS */
1202 nfs_advise_use_readdirplus(dir
);
1204 if (flags
& LOOKUP_RCU
) {
1205 if (parent
!= ACCESS_ONCE(dentry
->d_parent
))
1209 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is valid\n",
1213 nfs_zap_caches(dir
);
1215 WARN_ON(flags
& LOOKUP_RCU
);
1216 nfs_free_fattr(fattr
);
1217 nfs_free_fhandle(fhandle
);
1218 nfs4_label_free(label
);
1219 nfs_mark_for_revalidate(dir
);
1220 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1221 /* Purge readdir caches. */
1222 nfs_zap_caches(inode
);
1224 * We can't d_drop the root of a disconnected tree:
1225 * its d_hash is on the s_anon list and d_drop() would hide
1226 * it from shrink_dcache_for_unmount(), leading to busy
1227 * inodes on unmount and further oopses.
1229 if (IS_ROOT(dentry
))
1233 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) is invalid\n",
1237 WARN_ON(flags
& LOOKUP_RCU
);
1238 nfs_free_fattr(fattr
);
1239 nfs_free_fhandle(fhandle
);
1240 nfs4_label_free(label
);
1242 dfprintk(LOOKUPCACHE
, "NFS: %s(%pd2) lookup returned error %d\n",
1243 __func__
, dentry
, error
);
1248 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1249 * when we don't really care about the dentry name. This is called when a
1250 * pathwalk ends on a dentry that was not found via a normal lookup in the
1251 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1253 * In this situation, we just want to verify that the inode itself is OK
1254 * since the dentry might have changed on the server.
1256 static int nfs_weak_revalidate(struct dentry
*dentry
, unsigned int flags
)
1259 struct inode
*inode
= d_inode(dentry
);
1262 * I believe we can only get a negative dentry here in the case of a
1263 * procfs-style symlink. Just assume it's correct for now, but we may
1264 * eventually need to do something more here.
1267 dfprintk(LOOKUPCACHE
, "%s: %pd2 has negative inode\n",
1272 if (is_bad_inode(inode
)) {
1273 dfprintk(LOOKUPCACHE
, "%s: %pd2 has dud inode\n",
1278 error
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
1279 dfprintk(LOOKUPCACHE
, "NFS: %s: inode %lu is %s\n",
1280 __func__
, inode
->i_ino
, error
? "invalid" : "valid");
1285 * This is called from dput() when d_count is going to 0.
1287 static int nfs_dentry_delete(const struct dentry
*dentry
)
1289 dfprintk(VFS
, "NFS: dentry_delete(%pd2, %x)\n",
1290 dentry
, dentry
->d_flags
);
1292 /* Unhash any dentry with a stale inode */
1293 if (d_really_is_positive(dentry
) && NFS_STALE(d_inode(dentry
)))
1296 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1297 /* Unhash it, so that ->d_iput() would be called */
1300 if (!(dentry
->d_sb
->s_flags
& MS_ACTIVE
)) {
1301 /* Unhash it, so that ancestors of killed async unlink
1302 * files will be cleaned up during umount */
1309 /* Ensure that we revalidate inode->i_nlink */
1310 static void nfs_drop_nlink(struct inode
*inode
)
1312 spin_lock(&inode
->i_lock
);
1313 /* drop the inode if we're reasonably sure this is the last link */
1314 if (inode
->i_nlink
== 1)
1316 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_ATTR
;
1317 spin_unlock(&inode
->i_lock
);
1321 * Called when the dentry loses inode.
1322 * We use it to clean up silly-renamed files.
1324 static void nfs_dentry_iput(struct dentry
*dentry
, struct inode
*inode
)
1326 if (S_ISDIR(inode
->i_mode
))
1327 /* drop any readdir cache as it could easily be old */
1328 NFS_I(inode
)->cache_validity
|= NFS_INO_INVALID_DATA
;
1330 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1331 nfs_complete_unlink(dentry
, inode
);
1332 nfs_drop_nlink(inode
);
1337 static void nfs_d_release(struct dentry
*dentry
)
1339 /* free cached devname value, if it survived that far */
1340 if (unlikely(dentry
->d_fsdata
)) {
1341 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
)
1344 kfree(dentry
->d_fsdata
);
1348 const struct dentry_operations nfs_dentry_operations
= {
1349 .d_revalidate
= nfs_lookup_revalidate
,
1350 .d_weak_revalidate
= nfs_weak_revalidate
,
1351 .d_delete
= nfs_dentry_delete
,
1352 .d_iput
= nfs_dentry_iput
,
1353 .d_automount
= nfs_d_automount
,
1354 .d_release
= nfs_d_release
,
1356 EXPORT_SYMBOL_GPL(nfs_dentry_operations
);
1358 struct dentry
*nfs_lookup(struct inode
*dir
, struct dentry
* dentry
, unsigned int flags
)
1361 struct dentry
*parent
;
1362 struct inode
*inode
= NULL
;
1363 struct nfs_fh
*fhandle
= NULL
;
1364 struct nfs_fattr
*fattr
= NULL
;
1365 struct nfs4_label
*label
= NULL
;
1368 dfprintk(VFS
, "NFS: lookup(%pd2)\n", dentry
);
1369 nfs_inc_stats(dir
, NFSIOS_VFSLOOKUP
);
1371 res
= ERR_PTR(-ENAMETOOLONG
);
1372 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
1376 * If we're doing an exclusive create, optimize away the lookup
1377 * but don't hash the dentry.
1379 if (nfs_is_exclusive_create(dir
, flags
)) {
1380 d_instantiate(dentry
, NULL
);
1385 res
= ERR_PTR(-ENOMEM
);
1386 fhandle
= nfs_alloc_fhandle();
1387 fattr
= nfs_alloc_fattr();
1388 if (fhandle
== NULL
|| fattr
== NULL
)
1391 label
= nfs4_label_alloc(NFS_SERVER(dir
), GFP_NOWAIT
);
1395 parent
= dentry
->d_parent
;
1396 /* Protect against concurrent sillydeletes */
1397 trace_nfs_lookup_enter(dir
, dentry
, flags
);
1398 nfs_block_sillyrename(parent
);
1399 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, label
);
1400 if (error
== -ENOENT
)
1403 res
= ERR_PTR(error
);
1404 goto out_unblock_sillyrename
;
1406 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1407 res
= ERR_CAST(inode
);
1409 goto out_unblock_sillyrename
;
1411 /* Success: notify readdir to use READDIRPLUS */
1412 nfs_advise_use_readdirplus(dir
);
1415 res
= d_splice_alias(inode
, dentry
);
1418 goto out_unblock_sillyrename
;
1421 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1422 out_unblock_sillyrename
:
1423 nfs_unblock_sillyrename(parent
);
1424 trace_nfs_lookup_exit(dir
, dentry
, flags
, error
);
1425 nfs4_label_free(label
);
1427 nfs_free_fattr(fattr
);
1428 nfs_free_fhandle(fhandle
);
1431 EXPORT_SYMBOL_GPL(nfs_lookup
);
1433 #if IS_ENABLED(CONFIG_NFS_V4)
1434 static int nfs4_lookup_revalidate(struct dentry
*, unsigned int);
1436 const struct dentry_operations nfs4_dentry_operations
= {
1437 .d_revalidate
= nfs4_lookup_revalidate
,
1438 .d_delete
= nfs_dentry_delete
,
1439 .d_iput
= nfs_dentry_iput
,
1440 .d_automount
= nfs_d_automount
,
1441 .d_release
= nfs_d_release
,
1443 EXPORT_SYMBOL_GPL(nfs4_dentry_operations
);
1445 static fmode_t
flags_to_mode(int flags
)
1447 fmode_t res
= (__force fmode_t
)flags
& FMODE_EXEC
;
1448 if ((flags
& O_ACCMODE
) != O_WRONLY
)
1450 if ((flags
& O_ACCMODE
) != O_RDONLY
)
1455 static struct nfs_open_context
*create_nfs_open_context(struct dentry
*dentry
, int open_flags
)
1457 return alloc_nfs_open_context(dentry
, flags_to_mode(open_flags
));
1460 static int do_open(struct inode
*inode
, struct file
*filp
)
1462 nfs_fscache_open_file(inode
, filp
);
1466 static int nfs_finish_open(struct nfs_open_context
*ctx
,
1467 struct dentry
*dentry
,
1468 struct file
*file
, unsigned open_flags
,
1473 err
= finish_open(file
, dentry
, do_open
, opened
);
1476 nfs_file_set_open_context(file
, ctx
);
1482 int nfs_atomic_open(struct inode
*dir
, struct dentry
*dentry
,
1483 struct file
*file
, unsigned open_flags
,
1484 umode_t mode
, int *opened
)
1486 struct nfs_open_context
*ctx
;
1488 struct iattr attr
= { .ia_valid
= ATTR_OPEN
};
1489 struct inode
*inode
;
1490 unsigned int lookup_flags
= 0;
1493 /* Expect a negative dentry */
1494 BUG_ON(d_inode(dentry
));
1496 dfprintk(VFS
, "NFS: atomic_open(%s/%lu), %pd\n",
1497 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1499 err
= nfs_check_flags(open_flags
);
1503 /* NFS only supports OPEN on regular files */
1504 if ((open_flags
& O_DIRECTORY
)) {
1505 if (!d_unhashed(dentry
)) {
1507 * Hashed negative dentry with O_DIRECTORY: dentry was
1508 * revalidated and is fine, no need to perform lookup
1513 lookup_flags
= LOOKUP_OPEN
|LOOKUP_DIRECTORY
;
1517 if (dentry
->d_name
.len
> NFS_SERVER(dir
)->namelen
)
1518 return -ENAMETOOLONG
;
1520 if (open_flags
& O_CREAT
) {
1521 attr
.ia_valid
|= ATTR_MODE
;
1522 attr
.ia_mode
= mode
& ~current_umask();
1524 if (open_flags
& O_TRUNC
) {
1525 attr
.ia_valid
|= ATTR_SIZE
;
1529 ctx
= create_nfs_open_context(dentry
, open_flags
);
1534 trace_nfs_atomic_open_enter(dir
, ctx
, open_flags
);
1535 nfs_block_sillyrename(dentry
->d_parent
);
1536 inode
= NFS_PROTO(dir
)->open_context(dir
, ctx
, open_flags
, &attr
, opened
);
1537 nfs_unblock_sillyrename(dentry
->d_parent
);
1538 if (IS_ERR(inode
)) {
1539 err
= PTR_ERR(inode
);
1540 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1541 put_nfs_open_context(ctx
);
1545 d_add(dentry
, NULL
);
1546 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1552 if (!(open_flags
& O_NOFOLLOW
))
1562 err
= nfs_finish_open(ctx
, ctx
->dentry
, file
, open_flags
, opened
);
1563 trace_nfs_atomic_open_exit(dir
, ctx
, open_flags
, err
);
1564 put_nfs_open_context(ctx
);
1569 res
= nfs_lookup(dir
, dentry
, lookup_flags
);
1574 return finish_no_open(file
, res
);
1576 EXPORT_SYMBOL_GPL(nfs_atomic_open
);
1578 static int nfs4_lookup_revalidate(struct dentry
*dentry
, unsigned int flags
)
1580 struct inode
*inode
;
1583 if (!(flags
& LOOKUP_OPEN
) || (flags
& LOOKUP_DIRECTORY
))
1585 if (d_mountpoint(dentry
))
1587 if (NFS_SB(dentry
->d_sb
)->caps
& NFS_CAP_ATOMIC_OPEN_V1
)
1590 inode
= d_inode(dentry
);
1592 /* We can't create new files in nfs_open_revalidate(), so we
1593 * optimize away revalidation of negative dentries.
1595 if (inode
== NULL
) {
1596 struct dentry
*parent
;
1599 if (flags
& LOOKUP_RCU
) {
1600 parent
= ACCESS_ONCE(dentry
->d_parent
);
1601 dir
= d_inode_rcu(parent
);
1605 parent
= dget_parent(dentry
);
1606 dir
= d_inode(parent
);
1608 if (!nfs_neg_need_reval(dir
, dentry
, flags
))
1610 else if (flags
& LOOKUP_RCU
)
1612 if (!(flags
& LOOKUP_RCU
))
1614 else if (parent
!= ACCESS_ONCE(dentry
->d_parent
))
1619 /* NFS only supports OPEN on regular files */
1620 if (!S_ISREG(inode
->i_mode
))
1622 /* We cannot do exclusive creation on a positive dentry */
1623 if (flags
& LOOKUP_EXCL
)
1626 /* Let f_op->open() actually open (and revalidate) the file */
1633 return nfs_lookup_revalidate(dentry
, flags
);
1636 #endif /* CONFIG_NFSV4 */
1639 * Code common to create, mkdir, and mknod.
1641 int nfs_instantiate(struct dentry
*dentry
, struct nfs_fh
*fhandle
,
1642 struct nfs_fattr
*fattr
,
1643 struct nfs4_label
*label
)
1645 struct dentry
*parent
= dget_parent(dentry
);
1646 struct inode
*dir
= d_inode(parent
);
1647 struct inode
*inode
;
1648 int error
= -EACCES
;
1652 /* We may have been initialized further down */
1653 if (d_really_is_positive(dentry
))
1655 if (fhandle
->size
== 0) {
1656 error
= NFS_PROTO(dir
)->lookup(dir
, &dentry
->d_name
, fhandle
, fattr
, NULL
);
1660 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1661 if (!(fattr
->valid
& NFS_ATTR_FATTR
)) {
1662 struct nfs_server
*server
= NFS_SB(dentry
->d_sb
);
1663 error
= server
->nfs_client
->rpc_ops
->getattr(server
, fhandle
, fattr
, NULL
);
1667 inode
= nfs_fhget(dentry
->d_sb
, fhandle
, fattr
, label
);
1668 error
= PTR_ERR(inode
);
1671 d_add(dentry
, inode
);
1676 nfs_mark_for_revalidate(dir
);
1680 EXPORT_SYMBOL_GPL(nfs_instantiate
);
1683 * Following a failed create operation, we drop the dentry rather
1684 * than retain a negative dentry. This avoids a problem in the event
1685 * that the operation succeeded on the server, but an error in the
1686 * reply path made it appear to have failed.
1688 int nfs_create(struct inode
*dir
, struct dentry
*dentry
,
1689 umode_t mode
, bool excl
)
1692 int open_flags
= excl
? O_CREAT
| O_EXCL
: O_CREAT
;
1695 dfprintk(VFS
, "NFS: create(%s/%lu), %pd\n",
1696 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1698 attr
.ia_mode
= mode
;
1699 attr
.ia_valid
= ATTR_MODE
;
1701 trace_nfs_create_enter(dir
, dentry
, open_flags
);
1702 error
= NFS_PROTO(dir
)->create(dir
, dentry
, &attr
, open_flags
);
1703 trace_nfs_create_exit(dir
, dentry
, open_flags
, error
);
1711 EXPORT_SYMBOL_GPL(nfs_create
);
1714 * See comments for nfs_proc_create regarding failed operations.
1717 nfs_mknod(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
, dev_t rdev
)
1722 dfprintk(VFS
, "NFS: mknod(%s/%lu), %pd\n",
1723 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1725 if (!new_valid_dev(rdev
))
1728 attr
.ia_mode
= mode
;
1729 attr
.ia_valid
= ATTR_MODE
;
1731 trace_nfs_mknod_enter(dir
, dentry
);
1732 status
= NFS_PROTO(dir
)->mknod(dir
, dentry
, &attr
, rdev
);
1733 trace_nfs_mknod_exit(dir
, dentry
, status
);
1741 EXPORT_SYMBOL_GPL(nfs_mknod
);
1744 * See comments for nfs_proc_create regarding failed operations.
1746 int nfs_mkdir(struct inode
*dir
, struct dentry
*dentry
, umode_t mode
)
1751 dfprintk(VFS
, "NFS: mkdir(%s/%lu), %pd\n",
1752 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1754 attr
.ia_valid
= ATTR_MODE
;
1755 attr
.ia_mode
= mode
| S_IFDIR
;
1757 trace_nfs_mkdir_enter(dir
, dentry
);
1758 error
= NFS_PROTO(dir
)->mkdir(dir
, dentry
, &attr
);
1759 trace_nfs_mkdir_exit(dir
, dentry
, error
);
1767 EXPORT_SYMBOL_GPL(nfs_mkdir
);
1769 static void nfs_dentry_handle_enoent(struct dentry
*dentry
)
1771 if (simple_positive(dentry
))
1775 int nfs_rmdir(struct inode
*dir
, struct dentry
*dentry
)
1779 dfprintk(VFS
, "NFS: rmdir(%s/%lu), %pd\n",
1780 dir
->i_sb
->s_id
, dir
->i_ino
, dentry
);
1782 trace_nfs_rmdir_enter(dir
, dentry
);
1783 if (d_really_is_positive(dentry
)) {
1784 nfs_wait_on_sillyrename(dentry
);
1785 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1786 /* Ensure the VFS deletes this inode */
1789 clear_nlink(d_inode(dentry
));
1792 nfs_dentry_handle_enoent(dentry
);
1795 error
= NFS_PROTO(dir
)->rmdir(dir
, &dentry
->d_name
);
1796 trace_nfs_rmdir_exit(dir
, dentry
, error
);
1800 EXPORT_SYMBOL_GPL(nfs_rmdir
);
1803 * Remove a file after making sure there are no pending writes,
1804 * and after checking that the file has only one user.
1806 * We invalidate the attribute cache and free the inode prior to the operation
1807 * to avoid possible races if the server reuses the inode.
1809 static int nfs_safe_remove(struct dentry
*dentry
)
1811 struct inode
*dir
= d_inode(dentry
->d_parent
);
1812 struct inode
*inode
= d_inode(dentry
);
1815 dfprintk(VFS
, "NFS: safe_remove(%pd2)\n", dentry
);
1817 /* If the dentry was sillyrenamed, we simply call d_delete() */
1818 if (dentry
->d_flags
& DCACHE_NFSFS_RENAMED
) {
1823 trace_nfs_remove_enter(dir
, dentry
);
1824 if (inode
!= NULL
) {
1825 NFS_PROTO(inode
)->return_delegation(inode
);
1826 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1828 nfs_drop_nlink(inode
);
1830 error
= NFS_PROTO(dir
)->remove(dir
, &dentry
->d_name
);
1831 if (error
== -ENOENT
)
1832 nfs_dentry_handle_enoent(dentry
);
1833 trace_nfs_remove_exit(dir
, dentry
, error
);
1838 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1839 * belongs to an active ".nfs..." file and we return -EBUSY.
1841 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1843 int nfs_unlink(struct inode
*dir
, struct dentry
*dentry
)
1846 int need_rehash
= 0;
1848 dfprintk(VFS
, "NFS: unlink(%s/%lu, %pd)\n", dir
->i_sb
->s_id
,
1849 dir
->i_ino
, dentry
);
1851 trace_nfs_unlink_enter(dir
, dentry
);
1852 spin_lock(&dentry
->d_lock
);
1853 if (d_count(dentry
) > 1) {
1854 spin_unlock(&dentry
->d_lock
);
1855 /* Start asynchronous writeout of the inode */
1856 write_inode_now(d_inode(dentry
), 0);
1857 error
= nfs_sillyrename(dir
, dentry
);
1860 if (!d_unhashed(dentry
)) {
1864 spin_unlock(&dentry
->d_lock
);
1865 error
= nfs_safe_remove(dentry
);
1866 if (!error
|| error
== -ENOENT
) {
1867 nfs_set_verifier(dentry
, nfs_save_change_attribute(dir
));
1868 } else if (need_rehash
)
1871 trace_nfs_unlink_exit(dir
, dentry
, error
);
1874 EXPORT_SYMBOL_GPL(nfs_unlink
);
1877 * To create a symbolic link, most file systems instantiate a new inode,
1878 * add a page to it containing the path, then write it out to the disk
1879 * using prepare_write/commit_write.
1881 * Unfortunately the NFS client can't create the in-core inode first
1882 * because it needs a file handle to create an in-core inode (see
1883 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1884 * symlink request has completed on the server.
1886 * So instead we allocate a raw page, copy the symname into it, then do
1887 * the SYMLINK request with the page as the buffer. If it succeeds, we
1888 * now have a new file handle and can instantiate an in-core NFS inode
1889 * and move the raw page into its mapping.
1891 int nfs_symlink(struct inode
*dir
, struct dentry
*dentry
, const char *symname
)
1896 unsigned int pathlen
= strlen(symname
);
1899 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s)\n", dir
->i_sb
->s_id
,
1900 dir
->i_ino
, dentry
, symname
);
1902 if (pathlen
> PAGE_SIZE
)
1903 return -ENAMETOOLONG
;
1905 attr
.ia_mode
= S_IFLNK
| S_IRWXUGO
;
1906 attr
.ia_valid
= ATTR_MODE
;
1908 page
= alloc_page(GFP_HIGHUSER
);
1912 kaddr
= kmap_atomic(page
);
1913 memcpy(kaddr
, symname
, pathlen
);
1914 if (pathlen
< PAGE_SIZE
)
1915 memset(kaddr
+ pathlen
, 0, PAGE_SIZE
- pathlen
);
1916 kunmap_atomic(kaddr
);
1918 trace_nfs_symlink_enter(dir
, dentry
);
1919 error
= NFS_PROTO(dir
)->symlink(dir
, dentry
, page
, pathlen
, &attr
);
1920 trace_nfs_symlink_exit(dir
, dentry
, error
);
1922 dfprintk(VFS
, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
1923 dir
->i_sb
->s_id
, dir
->i_ino
,
1924 dentry
, symname
, error
);
1931 * No big deal if we can't add this page to the page cache here.
1932 * READLINK will get the missing page from the server if needed.
1934 if (!add_to_page_cache_lru(page
, d_inode(dentry
)->i_mapping
, 0,
1936 SetPageUptodate(page
);
1939 * add_to_page_cache_lru() grabs an extra page refcount.
1940 * Drop it here to avoid leaking this page later.
1942 page_cache_release(page
);
1948 EXPORT_SYMBOL_GPL(nfs_symlink
);
1951 nfs_link(struct dentry
*old_dentry
, struct inode
*dir
, struct dentry
*dentry
)
1953 struct inode
*inode
= d_inode(old_dentry
);
1956 dfprintk(VFS
, "NFS: link(%pd2 -> %pd2)\n",
1957 old_dentry
, dentry
);
1959 trace_nfs_link_enter(inode
, dir
, dentry
);
1960 NFS_PROTO(inode
)->return_delegation(inode
);
1963 error
= NFS_PROTO(dir
)->link(inode
, dir
, &dentry
->d_name
);
1966 d_add(dentry
, inode
);
1968 trace_nfs_link_exit(inode
, dir
, dentry
, error
);
1971 EXPORT_SYMBOL_GPL(nfs_link
);
1975 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1976 * different file handle for the same inode after a rename (e.g. when
1977 * moving to a different directory). A fail-safe method to do so would
1978 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1979 * rename the old file using the sillyrename stuff. This way, the original
1980 * file in old_dir will go away when the last process iput()s the inode.
1984 * It actually works quite well. One needs to have the possibility for
1985 * at least one ".nfs..." file in each directory the file ever gets
1986 * moved or linked to which happens automagically with the new
1987 * implementation that only depends on the dcache stuff instead of
1988 * using the inode layer
1990 * Unfortunately, things are a little more complicated than indicated
1991 * above. For a cross-directory move, we want to make sure we can get
1992 * rid of the old inode after the operation. This means there must be
1993 * no pending writes (if it's a file), and the use count must be 1.
1994 * If these conditions are met, we can drop the dentries before doing
1997 int nfs_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1998 struct inode
*new_dir
, struct dentry
*new_dentry
)
2000 struct inode
*old_inode
= d_inode(old_dentry
);
2001 struct inode
*new_inode
= d_inode(new_dentry
);
2002 struct dentry
*dentry
= NULL
, *rehash
= NULL
;
2003 struct rpc_task
*task
;
2006 dfprintk(VFS
, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2007 old_dentry
, new_dentry
,
2008 d_count(new_dentry
));
2010 trace_nfs_rename_enter(old_dir
, old_dentry
, new_dir
, new_dentry
);
2012 * For non-directories, check whether the target is busy and if so,
2013 * make a copy of the dentry and then do a silly-rename. If the
2014 * silly-rename succeeds, the copied dentry is hashed and becomes
2017 if (new_inode
&& !S_ISDIR(new_inode
->i_mode
)) {
2019 * To prevent any new references to the target during the
2020 * rename, we unhash the dentry in advance.
2022 if (!d_unhashed(new_dentry
)) {
2024 rehash
= new_dentry
;
2027 if (d_count(new_dentry
) > 2) {
2030 /* copy the target dentry's name */
2031 dentry
= d_alloc(new_dentry
->d_parent
,
2032 &new_dentry
->d_name
);
2036 /* silly-rename the existing target ... */
2037 err
= nfs_sillyrename(new_dir
, new_dentry
);
2041 new_dentry
= dentry
;
2047 NFS_PROTO(old_inode
)->return_delegation(old_inode
);
2048 if (new_inode
!= NULL
)
2049 NFS_PROTO(new_inode
)->return_delegation(new_inode
);
2051 task
= nfs_async_rename(old_dir
, new_dir
, old_dentry
, new_dentry
, NULL
);
2053 error
= PTR_ERR(task
);
2057 error
= rpc_wait_for_completion_task(task
);
2059 error
= task
->tk_status
;
2061 nfs_mark_for_revalidate(old_inode
);
2065 trace_nfs_rename_exit(old_dir
, old_dentry
,
2066 new_dir
, new_dentry
, error
);
2068 if (new_inode
!= NULL
)
2069 nfs_drop_nlink(new_inode
);
2070 d_move(old_dentry
, new_dentry
);
2071 nfs_set_verifier(new_dentry
,
2072 nfs_save_change_attribute(new_dir
));
2073 } else if (error
== -ENOENT
)
2074 nfs_dentry_handle_enoent(old_dentry
);
2076 /* new dentry created? */
2081 EXPORT_SYMBOL_GPL(nfs_rename
);
2083 static DEFINE_SPINLOCK(nfs_access_lru_lock
);
2084 static LIST_HEAD(nfs_access_lru_list
);
2085 static atomic_long_t nfs_access_nr_entries
;
2087 static unsigned long nfs_access_max_cachesize
= ULONG_MAX
;
2088 module_param(nfs_access_max_cachesize
, ulong
, 0644);
2089 MODULE_PARM_DESC(nfs_access_max_cachesize
, "NFS access maximum total cache length");
2091 static void nfs_access_free_entry(struct nfs_access_entry
*entry
)
2093 put_rpccred(entry
->cred
);
2094 kfree_rcu(entry
, rcu_head
);
2095 smp_mb__before_atomic();
2096 atomic_long_dec(&nfs_access_nr_entries
);
2097 smp_mb__after_atomic();
2100 static void nfs_access_free_list(struct list_head
*head
)
2102 struct nfs_access_entry
*cache
;
2104 while (!list_empty(head
)) {
2105 cache
= list_entry(head
->next
, struct nfs_access_entry
, lru
);
2106 list_del(&cache
->lru
);
2107 nfs_access_free_entry(cache
);
2111 static unsigned long
2112 nfs_do_access_cache_scan(unsigned int nr_to_scan
)
2115 struct nfs_inode
*nfsi
, *next
;
2116 struct nfs_access_entry
*cache
;
2119 spin_lock(&nfs_access_lru_lock
);
2120 list_for_each_entry_safe(nfsi
, next
, &nfs_access_lru_list
, access_cache_inode_lru
) {
2121 struct inode
*inode
;
2123 if (nr_to_scan
-- == 0)
2125 inode
= &nfsi
->vfs_inode
;
2126 spin_lock(&inode
->i_lock
);
2127 if (list_empty(&nfsi
->access_cache_entry_lru
))
2128 goto remove_lru_entry
;
2129 cache
= list_entry(nfsi
->access_cache_entry_lru
.next
,
2130 struct nfs_access_entry
, lru
);
2131 list_move(&cache
->lru
, &head
);
2132 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
2134 if (!list_empty(&nfsi
->access_cache_entry_lru
))
2135 list_move_tail(&nfsi
->access_cache_inode_lru
,
2136 &nfs_access_lru_list
);
2139 list_del_init(&nfsi
->access_cache_inode_lru
);
2140 smp_mb__before_atomic();
2141 clear_bit(NFS_INO_ACL_LRU_SET
, &nfsi
->flags
);
2142 smp_mb__after_atomic();
2144 spin_unlock(&inode
->i_lock
);
2146 spin_unlock(&nfs_access_lru_lock
);
2147 nfs_access_free_list(&head
);
2152 nfs_access_cache_scan(struct shrinker
*shrink
, struct shrink_control
*sc
)
2154 int nr_to_scan
= sc
->nr_to_scan
;
2155 gfp_t gfp_mask
= sc
->gfp_mask
;
2157 if ((gfp_mask
& GFP_KERNEL
) != GFP_KERNEL
)
2159 return nfs_do_access_cache_scan(nr_to_scan
);
2164 nfs_access_cache_count(struct shrinker
*shrink
, struct shrink_control
*sc
)
2166 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries
));
2170 nfs_access_cache_enforce_limit(void)
2172 long nr_entries
= atomic_long_read(&nfs_access_nr_entries
);
2174 unsigned int nr_to_scan
;
2176 if (nr_entries
< 0 || nr_entries
<= nfs_access_max_cachesize
)
2179 diff
= nr_entries
- nfs_access_max_cachesize
;
2180 if (diff
< nr_to_scan
)
2182 nfs_do_access_cache_scan(nr_to_scan
);
2185 static void __nfs_access_zap_cache(struct nfs_inode
*nfsi
, struct list_head
*head
)
2187 struct rb_root
*root_node
= &nfsi
->access_cache
;
2189 struct nfs_access_entry
*entry
;
2191 /* Unhook entries from the cache */
2192 while ((n
= rb_first(root_node
)) != NULL
) {
2193 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2194 rb_erase(n
, root_node
);
2195 list_move(&entry
->lru
, head
);
2197 nfsi
->cache_validity
&= ~NFS_INO_INVALID_ACCESS
;
2200 void nfs_access_zap_cache(struct inode
*inode
)
2204 if (test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
) == 0)
2206 /* Remove from global LRU init */
2207 spin_lock(&nfs_access_lru_lock
);
2208 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2209 list_del_init(&NFS_I(inode
)->access_cache_inode_lru
);
2211 spin_lock(&inode
->i_lock
);
2212 __nfs_access_zap_cache(NFS_I(inode
), &head
);
2213 spin_unlock(&inode
->i_lock
);
2214 spin_unlock(&nfs_access_lru_lock
);
2215 nfs_access_free_list(&head
);
2217 EXPORT_SYMBOL_GPL(nfs_access_zap_cache
);
2219 static struct nfs_access_entry
*nfs_access_search_rbtree(struct inode
*inode
, struct rpc_cred
*cred
)
2221 struct rb_node
*n
= NFS_I(inode
)->access_cache
.rb_node
;
2222 struct nfs_access_entry
*entry
;
2225 entry
= rb_entry(n
, struct nfs_access_entry
, rb_node
);
2227 if (cred
< entry
->cred
)
2229 else if (cred
> entry
->cred
)
2237 static int nfs_access_get_cached(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
2239 struct nfs_inode
*nfsi
= NFS_I(inode
);
2240 struct nfs_access_entry
*cache
;
2243 spin_lock(&inode
->i_lock
);
2244 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2246 cache
= nfs_access_search_rbtree(inode
, cred
);
2249 if (!nfs_have_delegated_attributes(inode
) &&
2250 !time_in_range_open(jiffies
, cache
->jiffies
, cache
->jiffies
+ nfsi
->attrtimeo
))
2252 res
->jiffies
= cache
->jiffies
;
2253 res
->cred
= cache
->cred
;
2254 res
->mask
= cache
->mask
;
2255 list_move_tail(&cache
->lru
, &nfsi
->access_cache_entry_lru
);
2258 spin_unlock(&inode
->i_lock
);
2261 rb_erase(&cache
->rb_node
, &nfsi
->access_cache
);
2262 list_del(&cache
->lru
);
2263 spin_unlock(&inode
->i_lock
);
2264 nfs_access_free_entry(cache
);
2267 spin_unlock(&inode
->i_lock
);
2268 nfs_access_zap_cache(inode
);
2272 static int nfs_access_get_cached_rcu(struct inode
*inode
, struct rpc_cred
*cred
, struct nfs_access_entry
*res
)
2274 /* Only check the most recently returned cache entry,
2275 * but do it without locking.
2277 struct nfs_inode
*nfsi
= NFS_I(inode
);
2278 struct nfs_access_entry
*cache
;
2280 struct list_head
*lh
;
2283 if (nfsi
->cache_validity
& NFS_INO_INVALID_ACCESS
)
2285 lh
= rcu_dereference(nfsi
->access_cache_entry_lru
.prev
);
2286 cache
= list_entry(lh
, struct nfs_access_entry
, lru
);
2287 if (lh
== &nfsi
->access_cache_entry_lru
||
2288 cred
!= cache
->cred
)
2292 if (!nfs_have_delegated_attributes(inode
) &&
2293 !time_in_range_open(jiffies
, cache
->jiffies
, cache
->jiffies
+ nfsi
->attrtimeo
))
2295 res
->jiffies
= cache
->jiffies
;
2296 res
->cred
= cache
->cred
;
2297 res
->mask
= cache
->mask
;
2304 static void nfs_access_add_rbtree(struct inode
*inode
, struct nfs_access_entry
*set
)
2306 struct nfs_inode
*nfsi
= NFS_I(inode
);
2307 struct rb_root
*root_node
= &nfsi
->access_cache
;
2308 struct rb_node
**p
= &root_node
->rb_node
;
2309 struct rb_node
*parent
= NULL
;
2310 struct nfs_access_entry
*entry
;
2312 spin_lock(&inode
->i_lock
);
2313 while (*p
!= NULL
) {
2315 entry
= rb_entry(parent
, struct nfs_access_entry
, rb_node
);
2317 if (set
->cred
< entry
->cred
)
2318 p
= &parent
->rb_left
;
2319 else if (set
->cred
> entry
->cred
)
2320 p
= &parent
->rb_right
;
2324 rb_link_node(&set
->rb_node
, parent
, p
);
2325 rb_insert_color(&set
->rb_node
, root_node
);
2326 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2327 spin_unlock(&inode
->i_lock
);
2330 rb_replace_node(parent
, &set
->rb_node
, root_node
);
2331 list_add_tail(&set
->lru
, &nfsi
->access_cache_entry_lru
);
2332 list_del(&entry
->lru
);
2333 spin_unlock(&inode
->i_lock
);
2334 nfs_access_free_entry(entry
);
2337 void nfs_access_add_cache(struct inode
*inode
, struct nfs_access_entry
*set
)
2339 struct nfs_access_entry
*cache
= kmalloc(sizeof(*cache
), GFP_KERNEL
);
2342 RB_CLEAR_NODE(&cache
->rb_node
);
2343 cache
->jiffies
= set
->jiffies
;
2344 cache
->cred
= get_rpccred(set
->cred
);
2345 cache
->mask
= set
->mask
;
2347 /* The above field assignments must be visible
2348 * before this item appears on the lru. We cannot easily
2349 * use rcu_assign_pointer, so just force the memory barrier.
2352 nfs_access_add_rbtree(inode
, cache
);
2354 /* Update accounting */
2355 smp_mb__before_atomic();
2356 atomic_long_inc(&nfs_access_nr_entries
);
2357 smp_mb__after_atomic();
2359 /* Add inode to global LRU list */
2360 if (!test_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
)) {
2361 spin_lock(&nfs_access_lru_lock
);
2362 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET
, &NFS_I(inode
)->flags
))
2363 list_add_tail(&NFS_I(inode
)->access_cache_inode_lru
,
2364 &nfs_access_lru_list
);
2365 spin_unlock(&nfs_access_lru_lock
);
2367 nfs_access_cache_enforce_limit();
2369 EXPORT_SYMBOL_GPL(nfs_access_add_cache
);
2371 void nfs_access_set_mask(struct nfs_access_entry
*entry
, u32 access_result
)
2374 if (access_result
& NFS4_ACCESS_READ
)
2375 entry
->mask
|= MAY_READ
;
2377 (NFS4_ACCESS_MODIFY
| NFS4_ACCESS_EXTEND
| NFS4_ACCESS_DELETE
))
2378 entry
->mask
|= MAY_WRITE
;
2379 if (access_result
& (NFS4_ACCESS_LOOKUP
|NFS4_ACCESS_EXECUTE
))
2380 entry
->mask
|= MAY_EXEC
;
2382 EXPORT_SYMBOL_GPL(nfs_access_set_mask
);
2384 static int nfs_do_access(struct inode
*inode
, struct rpc_cred
*cred
, int mask
)
2386 struct nfs_access_entry cache
;
2389 trace_nfs_access_enter(inode
);
2391 status
= nfs_access_get_cached_rcu(inode
, cred
, &cache
);
2393 status
= nfs_access_get_cached(inode
, cred
, &cache
);
2398 if (mask
& MAY_NOT_BLOCK
)
2401 /* Be clever: ask server to check for all possible rights */
2402 cache
.mask
= MAY_EXEC
| MAY_WRITE
| MAY_READ
;
2404 cache
.jiffies
= jiffies
;
2405 status
= NFS_PROTO(inode
)->access(inode
, &cache
);
2407 if (status
== -ESTALE
) {
2408 nfs_zap_caches(inode
);
2409 if (!S_ISDIR(inode
->i_mode
))
2410 set_bit(NFS_INO_STALE
, &NFS_I(inode
)->flags
);
2414 nfs_access_add_cache(inode
, &cache
);
2416 if ((mask
& ~cache
.mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) != 0)
2419 trace_nfs_access_exit(inode
, status
);
2423 static int nfs_open_permission_mask(int openflags
)
2427 if (openflags
& __FMODE_EXEC
) {
2428 /* ONLY check exec rights */
2431 if ((openflags
& O_ACCMODE
) != O_WRONLY
)
2433 if ((openflags
& O_ACCMODE
) != O_RDONLY
)
2440 int nfs_may_open(struct inode
*inode
, struct rpc_cred
*cred
, int openflags
)
2442 return nfs_do_access(inode
, cred
, nfs_open_permission_mask(openflags
));
2444 EXPORT_SYMBOL_GPL(nfs_may_open
);
2446 int nfs_permission(struct inode
*inode
, int mask
)
2448 struct rpc_cred
*cred
;
2451 nfs_inc_stats(inode
, NFSIOS_VFSACCESS
);
2453 if ((mask
& (MAY_READ
| MAY_WRITE
| MAY_EXEC
)) == 0)
2455 /* Is this sys_access() ? */
2456 if (mask
& (MAY_ACCESS
| MAY_CHDIR
))
2459 switch (inode
->i_mode
& S_IFMT
) {
2466 * Optimize away all write operations, since the server
2467 * will check permissions when we perform the op.
2469 if ((mask
& MAY_WRITE
) && !(mask
& MAY_READ
))
2474 if (!NFS_PROTO(inode
)->access
)
2477 /* Always try fast lookups first */
2479 cred
= rpc_lookup_cred_nonblock();
2481 res
= nfs_do_access(inode
, cred
, mask
|MAY_NOT_BLOCK
);
2483 res
= PTR_ERR(cred
);
2485 if (res
== -ECHILD
&& !(mask
& MAY_NOT_BLOCK
)) {
2486 /* Fast lookup failed, try the slow way */
2487 cred
= rpc_lookup_cred();
2488 if (!IS_ERR(cred
)) {
2489 res
= nfs_do_access(inode
, cred
, mask
);
2492 res
= PTR_ERR(cred
);
2495 if (!res
&& (mask
& MAY_EXEC
) && !execute_ok(inode
))
2498 dfprintk(VFS
, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2499 inode
->i_sb
->s_id
, inode
->i_ino
, mask
, res
);
2502 if (mask
& MAY_NOT_BLOCK
)
2505 res
= nfs_revalidate_inode(NFS_SERVER(inode
), inode
);
2507 res
= generic_permission(inode
, mask
);
2510 EXPORT_SYMBOL_GPL(nfs_permission
);
2514 * version-control: t
2515 * kept-new-versions: 5