drm: Add the debug info in generic drm mode by using DRM_DEBUG_KMS
[linux/fpc-iii.git] / drivers / char / tty_io.c
bloba3afa0c387cdeb79c9dc9a406eb70935ceaf50d4
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
110 #undef TTY_DEBUG_HANGUP
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
126 EXPORT_SYMBOL(tty_std_termios);
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 static int tty_release(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
159 * alloc_tty_struct - allocate a tty object
161 * Return a new empty tty structure. The data fields have not
162 * been initialized in any way but has been zeroed
164 * Locking: none
167 struct tty_struct *alloc_tty_struct(void)
169 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
173 * free_tty_struct - free a disused tty
174 * @tty: tty struct to free
176 * Free the write buffers, tty queue and tty memory itself.
178 * Locking: none. Must be called after tty is definitely unused
181 void free_tty_struct(struct tty_struct *tty)
183 kfree(tty->write_buf);
184 tty_buffer_free_all(tty);
185 kfree(tty);
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
191 * tty_name - return tty naming
192 * @tty: tty structure
193 * @buf: buffer for output
195 * Convert a tty structure into a name. The name reflects the kernel
196 * naming policy and if udev is in use may not reflect user space
198 * Locking: none
201 char *tty_name(struct tty_struct *tty, char *buf)
203 if (!tty) /* Hmm. NULL pointer. That's fun. */
204 strcpy(buf, "NULL tty");
205 else
206 strcpy(buf, tty->name);
207 return buf;
210 EXPORT_SYMBOL(tty_name);
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213 const char *routine)
215 #ifdef TTY_PARANOIA_CHECK
216 if (!tty) {
217 printk(KERN_WARNING
218 "null TTY for (%d:%d) in %s\n",
219 imajor(inode), iminor(inode), routine);
220 return 1;
222 if (tty->magic != TTY_MAGIC) {
223 printk(KERN_WARNING
224 "bad magic number for tty struct (%d:%d) in %s\n",
225 imajor(inode), iminor(inode), routine);
226 return 1;
228 #endif
229 return 0;
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
234 #ifdef CHECK_TTY_COUNT
235 struct list_head *p;
236 int count = 0;
238 file_list_lock();
239 list_for_each(p, &tty->tty_files) {
240 count++;
242 file_list_unlock();
243 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244 tty->driver->subtype == PTY_TYPE_SLAVE &&
245 tty->link && tty->link->count)
246 count++;
247 if (tty->count != count) {
248 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249 "!= #fd's(%d) in %s\n",
250 tty->name, tty->count, count, routine);
251 return count;
253 #endif
254 return 0;
258 * get_tty_driver - find device of a tty
259 * @dev_t: device identifier
260 * @index: returns the index of the tty
262 * This routine returns a tty driver structure, given a device number
263 * and also passes back the index number.
265 * Locking: caller must hold tty_mutex
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
270 struct tty_driver *p;
272 list_for_each_entry(p, &tty_drivers, tty_drivers) {
273 dev_t base = MKDEV(p->major, p->minor_start);
274 if (device < base || device >= base + p->num)
275 continue;
276 *index = device - base;
277 return tty_driver_kref_get(p);
279 return NULL;
282 #ifdef CONFIG_CONSOLE_POLL
285 * tty_find_polling_driver - find device of a polled tty
286 * @name: name string to match
287 * @line: pointer to resulting tty line nr
289 * This routine returns a tty driver structure, given a name
290 * and the condition that the tty driver is capable of polled
291 * operation.
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
295 struct tty_driver *p, *res = NULL;
296 int tty_line = 0;
297 int len;
298 char *str, *stp;
300 for (str = name; *str; str++)
301 if ((*str >= '0' && *str <= '9') || *str == ',')
302 break;
303 if (!*str)
304 return NULL;
306 len = str - name;
307 tty_line = simple_strtoul(str, &str, 10);
309 mutex_lock(&tty_mutex);
310 /* Search through the tty devices to look for a match */
311 list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 if (strncmp(name, p->name, len) != 0)
313 continue;
314 stp = str;
315 if (*stp == ',')
316 stp++;
317 if (*stp == '\0')
318 stp = NULL;
320 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
321 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
322 res = tty_driver_kref_get(p);
323 *line = tty_line;
324 break;
327 mutex_unlock(&tty_mutex);
329 return res;
331 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
332 #endif
335 * tty_check_change - check for POSIX terminal changes
336 * @tty: tty to check
338 * If we try to write to, or set the state of, a terminal and we're
339 * not in the foreground, send a SIGTTOU. If the signal is blocked or
340 * ignored, go ahead and perform the operation. (POSIX 7.2)
342 * Locking: ctrl_lock
345 int tty_check_change(struct tty_struct *tty)
347 unsigned long flags;
348 int ret = 0;
350 if (current->signal->tty != tty)
351 return 0;
353 spin_lock_irqsave(&tty->ctrl_lock, flags);
355 if (!tty->pgrp) {
356 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
357 goto out_unlock;
359 if (task_pgrp(current) == tty->pgrp)
360 goto out_unlock;
361 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
362 if (is_ignored(SIGTTOU))
363 goto out;
364 if (is_current_pgrp_orphaned()) {
365 ret = -EIO;
366 goto out;
368 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
369 set_thread_flag(TIF_SIGPENDING);
370 ret = -ERESTARTSYS;
371 out:
372 return ret;
373 out_unlock:
374 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
375 return ret;
378 EXPORT_SYMBOL(tty_check_change);
380 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
381 size_t count, loff_t *ppos)
383 return 0;
386 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
387 size_t count, loff_t *ppos)
389 return -EIO;
392 /* No kernel lock held - none needed ;) */
393 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
395 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
398 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
399 unsigned long arg)
401 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
404 static long hung_up_tty_compat_ioctl(struct file *file,
405 unsigned int cmd, unsigned long arg)
407 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
410 static const struct file_operations tty_fops = {
411 .llseek = no_llseek,
412 .read = tty_read,
413 .write = tty_write,
414 .poll = tty_poll,
415 .unlocked_ioctl = tty_ioctl,
416 .compat_ioctl = tty_compat_ioctl,
417 .open = tty_open,
418 .release = tty_release,
419 .fasync = tty_fasync,
422 static const struct file_operations console_fops = {
423 .llseek = no_llseek,
424 .read = tty_read,
425 .write = redirected_tty_write,
426 .poll = tty_poll,
427 .unlocked_ioctl = tty_ioctl,
428 .compat_ioctl = tty_compat_ioctl,
429 .open = tty_open,
430 .release = tty_release,
431 .fasync = tty_fasync,
434 static const struct file_operations hung_up_tty_fops = {
435 .llseek = no_llseek,
436 .read = hung_up_tty_read,
437 .write = hung_up_tty_write,
438 .poll = hung_up_tty_poll,
439 .unlocked_ioctl = hung_up_tty_ioctl,
440 .compat_ioctl = hung_up_tty_compat_ioctl,
441 .release = tty_release,
444 static DEFINE_SPINLOCK(redirect_lock);
445 static struct file *redirect;
448 * tty_wakeup - request more data
449 * @tty: terminal
451 * Internal and external helper for wakeups of tty. This function
452 * informs the line discipline if present that the driver is ready
453 * to receive more output data.
456 void tty_wakeup(struct tty_struct *tty)
458 struct tty_ldisc *ld;
460 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
461 ld = tty_ldisc_ref(tty);
462 if (ld) {
463 if (ld->ops->write_wakeup)
464 ld->ops->write_wakeup(tty);
465 tty_ldisc_deref(ld);
468 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
471 EXPORT_SYMBOL_GPL(tty_wakeup);
474 * do_tty_hangup - actual handler for hangup events
475 * @work: tty device
477 * This can be called by the "eventd" kernel thread. That is process
478 * synchronous but doesn't hold any locks, so we need to make sure we
479 * have the appropriate locks for what we're doing.
481 * The hangup event clears any pending redirections onto the hung up
482 * device. It ensures future writes will error and it does the needed
483 * line discipline hangup and signal delivery. The tty object itself
484 * remains intact.
486 * Locking:
487 * BKL
488 * redirect lock for undoing redirection
489 * file list lock for manipulating list of ttys
490 * tty_ldisc_lock from called functions
491 * termios_mutex resetting termios data
492 * tasklist_lock to walk task list for hangup event
493 * ->siglock to protect ->signal/->sighand
495 static void do_tty_hangup(struct work_struct *work)
497 struct tty_struct *tty =
498 container_of(work, struct tty_struct, hangup_work);
499 struct file *cons_filp = NULL;
500 struct file *filp, *f = NULL;
501 struct task_struct *p;
502 int closecount = 0, n;
503 unsigned long flags;
504 int refs = 0;
506 if (!tty)
507 return;
509 /* inuse_filps is protected by the single kernel lock */
510 lock_kernel();
512 spin_lock(&redirect_lock);
513 if (redirect && redirect->private_data == tty) {
514 f = redirect;
515 redirect = NULL;
517 spin_unlock(&redirect_lock);
519 check_tty_count(tty, "do_tty_hangup");
520 file_list_lock();
521 /* This breaks for file handles being sent over AF_UNIX sockets ? */
522 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
523 if (filp->f_op->write == redirected_tty_write)
524 cons_filp = filp;
525 if (filp->f_op->write != tty_write)
526 continue;
527 closecount++;
528 tty_fasync(-1, filp, 0); /* can't block */
529 filp->f_op = &hung_up_tty_fops;
531 file_list_unlock();
533 tty_ldisc_hangup(tty);
535 read_lock(&tasklist_lock);
536 if (tty->session) {
537 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
538 spin_lock_irq(&p->sighand->siglock);
539 if (p->signal->tty == tty) {
540 p->signal->tty = NULL;
541 /* We defer the dereferences outside fo
542 the tasklist lock */
543 refs++;
545 if (!p->signal->leader) {
546 spin_unlock_irq(&p->sighand->siglock);
547 continue;
549 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
550 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
551 put_pid(p->signal->tty_old_pgrp); /* A noop */
552 spin_lock_irqsave(&tty->ctrl_lock, flags);
553 if (tty->pgrp)
554 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
555 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
556 spin_unlock_irq(&p->sighand->siglock);
557 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
559 read_unlock(&tasklist_lock);
561 spin_lock_irqsave(&tty->ctrl_lock, flags);
562 clear_bit(TTY_THROTTLED, &tty->flags);
563 clear_bit(TTY_PUSH, &tty->flags);
564 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
565 put_pid(tty->session);
566 put_pid(tty->pgrp);
567 tty->session = NULL;
568 tty->pgrp = NULL;
569 tty->ctrl_status = 0;
570 set_bit(TTY_HUPPED, &tty->flags);
571 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
573 /* Account for the p->signal references we killed */
574 while (refs--)
575 tty_kref_put(tty);
578 * If one of the devices matches a console pointer, we
579 * cannot just call hangup() because that will cause
580 * tty->count and state->count to go out of sync.
581 * So we just call close() the right number of times.
583 if (cons_filp) {
584 if (tty->ops->close)
585 for (n = 0; n < closecount; n++)
586 tty->ops->close(tty, cons_filp);
587 } else if (tty->ops->hangup)
588 (tty->ops->hangup)(tty);
590 * We don't want to have driver/ldisc interactions beyond
591 * the ones we did here. The driver layer expects no
592 * calls after ->hangup() from the ldisc side. However we
593 * can't yet guarantee all that.
595 set_bit(TTY_HUPPED, &tty->flags);
596 tty_ldisc_enable(tty);
597 unlock_kernel();
598 if (f)
599 fput(f);
603 * tty_hangup - trigger a hangup event
604 * @tty: tty to hangup
606 * A carrier loss (virtual or otherwise) has occurred on this like
607 * schedule a hangup sequence to run after this event.
610 void tty_hangup(struct tty_struct *tty)
612 #ifdef TTY_DEBUG_HANGUP
613 char buf[64];
614 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
615 #endif
616 schedule_work(&tty->hangup_work);
619 EXPORT_SYMBOL(tty_hangup);
622 * tty_vhangup - process vhangup
623 * @tty: tty to hangup
625 * The user has asked via system call for the terminal to be hung up.
626 * We do this synchronously so that when the syscall returns the process
627 * is complete. That guarantee is necessary for security reasons.
630 void tty_vhangup(struct tty_struct *tty)
632 #ifdef TTY_DEBUG_HANGUP
633 char buf[64];
635 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
636 #endif
637 do_tty_hangup(&tty->hangup_work);
640 EXPORT_SYMBOL(tty_vhangup);
643 * tty_vhangup_self - process vhangup for own ctty
645 * Perform a vhangup on the current controlling tty
648 void tty_vhangup_self(void)
650 struct tty_struct *tty;
652 tty = get_current_tty();
653 if (tty) {
654 tty_vhangup(tty);
655 tty_kref_put(tty);
660 * tty_hung_up_p - was tty hung up
661 * @filp: file pointer of tty
663 * Return true if the tty has been subject to a vhangup or a carrier
664 * loss
667 int tty_hung_up_p(struct file *filp)
669 return (filp->f_op == &hung_up_tty_fops);
672 EXPORT_SYMBOL(tty_hung_up_p);
674 static void session_clear_tty(struct pid *session)
676 struct task_struct *p;
677 do_each_pid_task(session, PIDTYPE_SID, p) {
678 proc_clear_tty(p);
679 } while_each_pid_task(session, PIDTYPE_SID, p);
683 * disassociate_ctty - disconnect controlling tty
684 * @on_exit: true if exiting so need to "hang up" the session
686 * This function is typically called only by the session leader, when
687 * it wants to disassociate itself from its controlling tty.
689 * It performs the following functions:
690 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
691 * (2) Clears the tty from being controlling the session
692 * (3) Clears the controlling tty for all processes in the
693 * session group.
695 * The argument on_exit is set to 1 if called when a process is
696 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
698 * Locking:
699 * BKL is taken for hysterical raisins
700 * tty_mutex is taken to protect tty
701 * ->siglock is taken to protect ->signal/->sighand
702 * tasklist_lock is taken to walk process list for sessions
703 * ->siglock is taken to protect ->signal/->sighand
706 void disassociate_ctty(int on_exit)
708 struct tty_struct *tty;
709 struct pid *tty_pgrp = NULL;
712 tty = get_current_tty();
713 if (tty) {
714 tty_pgrp = get_pid(tty->pgrp);
715 lock_kernel();
716 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
717 tty_vhangup(tty);
718 unlock_kernel();
719 tty_kref_put(tty);
720 } else if (on_exit) {
721 struct pid *old_pgrp;
722 spin_lock_irq(&current->sighand->siglock);
723 old_pgrp = current->signal->tty_old_pgrp;
724 current->signal->tty_old_pgrp = NULL;
725 spin_unlock_irq(&current->sighand->siglock);
726 if (old_pgrp) {
727 kill_pgrp(old_pgrp, SIGHUP, on_exit);
728 kill_pgrp(old_pgrp, SIGCONT, on_exit);
729 put_pid(old_pgrp);
731 return;
733 if (tty_pgrp) {
734 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
735 if (!on_exit)
736 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
737 put_pid(tty_pgrp);
740 spin_lock_irq(&current->sighand->siglock);
741 put_pid(current->signal->tty_old_pgrp);
742 current->signal->tty_old_pgrp = NULL;
743 spin_unlock_irq(&current->sighand->siglock);
745 tty = get_current_tty();
746 if (tty) {
747 unsigned long flags;
748 spin_lock_irqsave(&tty->ctrl_lock, flags);
749 put_pid(tty->session);
750 put_pid(tty->pgrp);
751 tty->session = NULL;
752 tty->pgrp = NULL;
753 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
754 tty_kref_put(tty);
755 } else {
756 #ifdef TTY_DEBUG_HANGUP
757 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
758 " = NULL", tty);
759 #endif
762 /* Now clear signal->tty under the lock */
763 read_lock(&tasklist_lock);
764 session_clear_tty(task_session(current));
765 read_unlock(&tasklist_lock);
770 * no_tty - Ensure the current process does not have a controlling tty
772 void no_tty(void)
774 struct task_struct *tsk = current;
775 lock_kernel();
776 if (tsk->signal->leader)
777 disassociate_ctty(0);
778 unlock_kernel();
779 proc_clear_tty(tsk);
784 * stop_tty - propagate flow control
785 * @tty: tty to stop
787 * Perform flow control to the driver. For PTY/TTY pairs we
788 * must also propagate the TIOCKPKT status. May be called
789 * on an already stopped device and will not re-call the driver
790 * method.
792 * This functionality is used by both the line disciplines for
793 * halting incoming flow and by the driver. It may therefore be
794 * called from any context, may be under the tty atomic_write_lock
795 * but not always.
797 * Locking:
798 * Uses the tty control lock internally
801 void stop_tty(struct tty_struct *tty)
803 unsigned long flags;
804 spin_lock_irqsave(&tty->ctrl_lock, flags);
805 if (tty->stopped) {
806 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
807 return;
809 tty->stopped = 1;
810 if (tty->link && tty->link->packet) {
811 tty->ctrl_status &= ~TIOCPKT_START;
812 tty->ctrl_status |= TIOCPKT_STOP;
813 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
815 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
816 if (tty->ops->stop)
817 (tty->ops->stop)(tty);
820 EXPORT_SYMBOL(stop_tty);
823 * start_tty - propagate flow control
824 * @tty: tty to start
826 * Start a tty that has been stopped if at all possible. Perform
827 * any necessary wakeups and propagate the TIOCPKT status. If this
828 * is the tty was previous stopped and is being started then the
829 * driver start method is invoked and the line discipline woken.
831 * Locking:
832 * ctrl_lock
835 void start_tty(struct tty_struct *tty)
837 unsigned long flags;
838 spin_lock_irqsave(&tty->ctrl_lock, flags);
839 if (!tty->stopped || tty->flow_stopped) {
840 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
841 return;
843 tty->stopped = 0;
844 if (tty->link && tty->link->packet) {
845 tty->ctrl_status &= ~TIOCPKT_STOP;
846 tty->ctrl_status |= TIOCPKT_START;
847 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
849 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
850 if (tty->ops->start)
851 (tty->ops->start)(tty);
852 /* If we have a running line discipline it may need kicking */
853 tty_wakeup(tty);
856 EXPORT_SYMBOL(start_tty);
859 * tty_read - read method for tty device files
860 * @file: pointer to tty file
861 * @buf: user buffer
862 * @count: size of user buffer
863 * @ppos: unused
865 * Perform the read system call function on this terminal device. Checks
866 * for hung up devices before calling the line discipline method.
868 * Locking:
869 * Locks the line discipline internally while needed. Multiple
870 * read calls may be outstanding in parallel.
873 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
874 loff_t *ppos)
876 int i;
877 struct tty_struct *tty;
878 struct inode *inode;
879 struct tty_ldisc *ld;
881 tty = (struct tty_struct *)file->private_data;
882 inode = file->f_path.dentry->d_inode;
883 if (tty_paranoia_check(tty, inode, "tty_read"))
884 return -EIO;
885 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
886 return -EIO;
888 /* We want to wait for the line discipline to sort out in this
889 situation */
890 ld = tty_ldisc_ref_wait(tty);
891 if (ld->ops->read)
892 i = (ld->ops->read)(tty, file, buf, count);
893 else
894 i = -EIO;
895 tty_ldisc_deref(ld);
896 if (i > 0)
897 inode->i_atime = current_fs_time(inode->i_sb);
898 return i;
901 void tty_write_unlock(struct tty_struct *tty)
903 mutex_unlock(&tty->atomic_write_lock);
904 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
907 int tty_write_lock(struct tty_struct *tty, int ndelay)
909 if (!mutex_trylock(&tty->atomic_write_lock)) {
910 if (ndelay)
911 return -EAGAIN;
912 if (mutex_lock_interruptible(&tty->atomic_write_lock))
913 return -ERESTARTSYS;
915 return 0;
919 * Split writes up in sane blocksizes to avoid
920 * denial-of-service type attacks
922 static inline ssize_t do_tty_write(
923 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
924 struct tty_struct *tty,
925 struct file *file,
926 const char __user *buf,
927 size_t count)
929 ssize_t ret, written = 0;
930 unsigned int chunk;
932 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
933 if (ret < 0)
934 return ret;
937 * We chunk up writes into a temporary buffer. This
938 * simplifies low-level drivers immensely, since they
939 * don't have locking issues and user mode accesses.
941 * But if TTY_NO_WRITE_SPLIT is set, we should use a
942 * big chunk-size..
944 * The default chunk-size is 2kB, because the NTTY
945 * layer has problems with bigger chunks. It will
946 * claim to be able to handle more characters than
947 * it actually does.
949 * FIXME: This can probably go away now except that 64K chunks
950 * are too likely to fail unless switched to vmalloc...
952 chunk = 2048;
953 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
954 chunk = 65536;
955 if (count < chunk)
956 chunk = count;
958 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
959 if (tty->write_cnt < chunk) {
960 unsigned char *buf_chunk;
962 if (chunk < 1024)
963 chunk = 1024;
965 buf_chunk = kmalloc(chunk, GFP_KERNEL);
966 if (!buf_chunk) {
967 ret = -ENOMEM;
968 goto out;
970 kfree(tty->write_buf);
971 tty->write_cnt = chunk;
972 tty->write_buf = buf_chunk;
975 /* Do the write .. */
976 for (;;) {
977 size_t size = count;
978 if (size > chunk)
979 size = chunk;
980 ret = -EFAULT;
981 if (copy_from_user(tty->write_buf, buf, size))
982 break;
983 ret = write(tty, file, tty->write_buf, size);
984 if (ret <= 0)
985 break;
986 written += ret;
987 buf += ret;
988 count -= ret;
989 if (!count)
990 break;
991 ret = -ERESTARTSYS;
992 if (signal_pending(current))
993 break;
994 cond_resched();
996 if (written) {
997 struct inode *inode = file->f_path.dentry->d_inode;
998 inode->i_mtime = current_fs_time(inode->i_sb);
999 ret = written;
1001 out:
1002 tty_write_unlock(tty);
1003 return ret;
1007 * tty_write_message - write a message to a certain tty, not just the console.
1008 * @tty: the destination tty_struct
1009 * @msg: the message to write
1011 * This is used for messages that need to be redirected to a specific tty.
1012 * We don't put it into the syslog queue right now maybe in the future if
1013 * really needed.
1015 * We must still hold the BKL and test the CLOSING flag for the moment.
1018 void tty_write_message(struct tty_struct *tty, char *msg)
1020 lock_kernel();
1021 if (tty) {
1022 mutex_lock(&tty->atomic_write_lock);
1023 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1024 tty->ops->write(tty, msg, strlen(msg));
1025 tty_write_unlock(tty);
1027 unlock_kernel();
1028 return;
1033 * tty_write - write method for tty device file
1034 * @file: tty file pointer
1035 * @buf: user data to write
1036 * @count: bytes to write
1037 * @ppos: unused
1039 * Write data to a tty device via the line discipline.
1041 * Locking:
1042 * Locks the line discipline as required
1043 * Writes to the tty driver are serialized by the atomic_write_lock
1044 * and are then processed in chunks to the device. The line discipline
1045 * write method will not be invoked in parallel for each device.
1048 static ssize_t tty_write(struct file *file, const char __user *buf,
1049 size_t count, loff_t *ppos)
1051 struct tty_struct *tty;
1052 struct inode *inode = file->f_path.dentry->d_inode;
1053 ssize_t ret;
1054 struct tty_ldisc *ld;
1056 tty = (struct tty_struct *)file->private_data;
1057 if (tty_paranoia_check(tty, inode, "tty_write"))
1058 return -EIO;
1059 if (!tty || !tty->ops->write ||
1060 (test_bit(TTY_IO_ERROR, &tty->flags)))
1061 return -EIO;
1062 /* Short term debug to catch buggy drivers */
1063 if (tty->ops->write_room == NULL)
1064 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1065 tty->driver->name);
1066 ld = tty_ldisc_ref_wait(tty);
1067 if (!ld->ops->write)
1068 ret = -EIO;
1069 else
1070 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1071 tty_ldisc_deref(ld);
1072 return ret;
1075 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1076 size_t count, loff_t *ppos)
1078 struct file *p = NULL;
1080 spin_lock(&redirect_lock);
1081 if (redirect) {
1082 get_file(redirect);
1083 p = redirect;
1085 spin_unlock(&redirect_lock);
1087 if (p) {
1088 ssize_t res;
1089 res = vfs_write(p, buf, count, &p->f_pos);
1090 fput(p);
1091 return res;
1093 return tty_write(file, buf, count, ppos);
1096 static char ptychar[] = "pqrstuvwxyzabcde";
1099 * pty_line_name - generate name for a pty
1100 * @driver: the tty driver in use
1101 * @index: the minor number
1102 * @p: output buffer of at least 6 bytes
1104 * Generate a name from a driver reference and write it to the output
1105 * buffer.
1107 * Locking: None
1109 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1111 int i = index + driver->name_base;
1112 /* ->name is initialized to "ttyp", but "tty" is expected */
1113 sprintf(p, "%s%c%x",
1114 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1115 ptychar[i >> 4 & 0xf], i & 0xf);
1119 * tty_line_name - generate name for a tty
1120 * @driver: the tty driver in use
1121 * @index: the minor number
1122 * @p: output buffer of at least 7 bytes
1124 * Generate a name from a driver reference and write it to the output
1125 * buffer.
1127 * Locking: None
1129 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1131 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1135 * tty_driver_lookup_tty() - find an existing tty, if any
1136 * @driver: the driver for the tty
1137 * @idx: the minor number
1139 * Return the tty, if found or ERR_PTR() otherwise.
1141 * Locking: tty_mutex must be held. If tty is found, the mutex must
1142 * be held until the 'fast-open' is also done. Will change once we
1143 * have refcounting in the driver and per driver locking
1145 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1146 struct inode *inode, int idx)
1148 struct tty_struct *tty;
1150 if (driver->ops->lookup)
1151 return driver->ops->lookup(driver, inode, idx);
1153 tty = driver->ttys[idx];
1154 return tty;
1158 * tty_init_termios - helper for termios setup
1159 * @tty: the tty to set up
1161 * Initialise the termios structures for this tty. Thus runs under
1162 * the tty_mutex currently so we can be relaxed about ordering.
1165 int tty_init_termios(struct tty_struct *tty)
1167 struct ktermios *tp;
1168 int idx = tty->index;
1170 tp = tty->driver->termios[idx];
1171 if (tp == NULL) {
1172 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1173 if (tp == NULL)
1174 return -ENOMEM;
1175 memcpy(tp, &tty->driver->init_termios,
1176 sizeof(struct ktermios));
1177 tty->driver->termios[idx] = tp;
1179 tty->termios = tp;
1180 tty->termios_locked = tp + 1;
1182 /* Compatibility until drivers always set this */
1183 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1184 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1185 return 0;
1189 * tty_driver_install_tty() - install a tty entry in the driver
1190 * @driver: the driver for the tty
1191 * @tty: the tty
1193 * Install a tty object into the driver tables. The tty->index field
1194 * will be set by the time this is called. This method is responsible
1195 * for ensuring any need additional structures are allocated and
1196 * configured.
1198 * Locking: tty_mutex for now
1200 static int tty_driver_install_tty(struct tty_driver *driver,
1201 struct tty_struct *tty)
1203 int idx = tty->index;
1205 if (driver->ops->install)
1206 return driver->ops->install(driver, tty);
1208 if (tty_init_termios(tty) == 0) {
1209 tty_driver_kref_get(driver);
1210 tty->count++;
1211 driver->ttys[idx] = tty;
1212 return 0;
1214 return -ENOMEM;
1218 * tty_driver_remove_tty() - remove a tty from the driver tables
1219 * @driver: the driver for the tty
1220 * @idx: the minor number
1222 * Remvoe a tty object from the driver tables. The tty->index field
1223 * will be set by the time this is called.
1225 * Locking: tty_mutex for now
1227 static void tty_driver_remove_tty(struct tty_driver *driver,
1228 struct tty_struct *tty)
1230 if (driver->ops->remove)
1231 driver->ops->remove(driver, tty);
1232 else
1233 driver->ttys[tty->index] = NULL;
1237 * tty_reopen() - fast re-open of an open tty
1238 * @tty - the tty to open
1240 * Return 0 on success, -errno on error.
1242 * Locking: tty_mutex must be held from the time the tty was found
1243 * till this open completes.
1245 static int tty_reopen(struct tty_struct *tty)
1247 struct tty_driver *driver = tty->driver;
1249 if (test_bit(TTY_CLOSING, &tty->flags))
1250 return -EIO;
1252 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1253 driver->subtype == PTY_TYPE_MASTER) {
1255 * special case for PTY masters: only one open permitted,
1256 * and the slave side open count is incremented as well.
1258 if (tty->count)
1259 return -EIO;
1261 tty->link->count++;
1263 tty->count++;
1264 tty->driver = driver; /* N.B. why do this every time?? */
1266 mutex_lock(&tty->ldisc_mutex);
1267 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1268 mutex_unlock(&tty->ldisc_mutex);
1270 return 0;
1274 * tty_init_dev - initialise a tty device
1275 * @driver: tty driver we are opening a device on
1276 * @idx: device index
1277 * @ret_tty: returned tty structure
1278 * @first_ok: ok to open a new device (used by ptmx)
1280 * Prepare a tty device. This may not be a "new" clean device but
1281 * could also be an active device. The pty drivers require special
1282 * handling because of this.
1284 * Locking:
1285 * The function is called under the tty_mutex, which
1286 * protects us from the tty struct or driver itself going away.
1288 * On exit the tty device has the line discipline attached and
1289 * a reference count of 1. If a pair was created for pty/tty use
1290 * and the other was a pty master then it too has a reference count of 1.
1292 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1293 * failed open. The new code protects the open with a mutex, so it's
1294 * really quite straightforward. The mutex locking can probably be
1295 * relaxed for the (most common) case of reopening a tty.
1298 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1299 int first_ok)
1301 struct tty_struct *tty;
1302 int retval;
1304 /* Check if pty master is being opened multiple times */
1305 if (driver->subtype == PTY_TYPE_MASTER &&
1306 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1307 return ERR_PTR(-EIO);
1310 * First time open is complex, especially for PTY devices.
1311 * This code guarantees that either everything succeeds and the
1312 * TTY is ready for operation, or else the table slots are vacated
1313 * and the allocated memory released. (Except that the termios
1314 * and locked termios may be retained.)
1317 if (!try_module_get(driver->owner))
1318 return ERR_PTR(-ENODEV);
1320 tty = alloc_tty_struct();
1321 if (!tty)
1322 goto fail_no_mem;
1323 initialize_tty_struct(tty, driver, idx);
1325 retval = tty_driver_install_tty(driver, tty);
1326 if (retval < 0) {
1327 free_tty_struct(tty);
1328 module_put(driver->owner);
1329 return ERR_PTR(retval);
1333 * Structures all installed ... call the ldisc open routines.
1334 * If we fail here just call release_tty to clean up. No need
1335 * to decrement the use counts, as release_tty doesn't care.
1338 retval = tty_ldisc_setup(tty, tty->link);
1339 if (retval)
1340 goto release_mem_out;
1341 return tty;
1343 fail_no_mem:
1344 module_put(driver->owner);
1345 return ERR_PTR(-ENOMEM);
1347 /* call the tty release_tty routine to clean out this slot */
1348 release_mem_out:
1349 if (printk_ratelimit())
1350 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1351 "clearing slot %d\n", idx);
1352 release_tty(tty, idx);
1353 return ERR_PTR(retval);
1356 void tty_free_termios(struct tty_struct *tty)
1358 struct ktermios *tp;
1359 int idx = tty->index;
1360 /* Kill this flag and push into drivers for locking etc */
1361 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1362 /* FIXME: Locking on ->termios array */
1363 tp = tty->termios;
1364 tty->driver->termios[idx] = NULL;
1365 kfree(tp);
1368 EXPORT_SYMBOL(tty_free_termios);
1370 void tty_shutdown(struct tty_struct *tty)
1372 tty_driver_remove_tty(tty->driver, tty);
1373 tty_free_termios(tty);
1375 EXPORT_SYMBOL(tty_shutdown);
1378 * release_one_tty - release tty structure memory
1379 * @kref: kref of tty we are obliterating
1381 * Releases memory associated with a tty structure, and clears out the
1382 * driver table slots. This function is called when a device is no longer
1383 * in use. It also gets called when setup of a device fails.
1385 * Locking:
1386 * tty_mutex - sometimes only
1387 * takes the file list lock internally when working on the list
1388 * of ttys that the driver keeps.
1390 static void release_one_tty(struct kref *kref)
1392 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1393 struct tty_driver *driver = tty->driver;
1395 if (tty->ops->shutdown)
1396 tty->ops->shutdown(tty);
1397 else
1398 tty_shutdown(tty);
1399 tty->magic = 0;
1400 tty_driver_kref_put(driver);
1401 module_put(driver->owner);
1403 file_list_lock();
1404 list_del_init(&tty->tty_files);
1405 file_list_unlock();
1407 free_tty_struct(tty);
1411 * tty_kref_put - release a tty kref
1412 * @tty: tty device
1414 * Release a reference to a tty device and if need be let the kref
1415 * layer destruct the object for us
1418 void tty_kref_put(struct tty_struct *tty)
1420 if (tty)
1421 kref_put(&tty->kref, release_one_tty);
1423 EXPORT_SYMBOL(tty_kref_put);
1426 * release_tty - release tty structure memory
1428 * Release both @tty and a possible linked partner (think pty pair),
1429 * and decrement the refcount of the backing module.
1431 * Locking:
1432 * tty_mutex - sometimes only
1433 * takes the file list lock internally when working on the list
1434 * of ttys that the driver keeps.
1435 * FIXME: should we require tty_mutex is held here ??
1438 static void release_tty(struct tty_struct *tty, int idx)
1440 /* This should always be true but check for the moment */
1441 WARN_ON(tty->index != idx);
1443 if (tty->link)
1444 tty_kref_put(tty->link);
1445 tty_kref_put(tty);
1449 * Even releasing the tty structures is a tricky business.. We have
1450 * to be very careful that the structures are all released at the
1451 * same time, as interrupts might otherwise get the wrong pointers.
1453 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1454 * lead to double frees or releasing memory still in use.
1456 void tty_release_dev(struct file *filp)
1458 struct tty_struct *tty, *o_tty;
1459 int pty_master, tty_closing, o_tty_closing, do_sleep;
1460 int devpts;
1461 int idx;
1462 char buf[64];
1463 struct inode *inode;
1465 inode = filp->f_path.dentry->d_inode;
1466 tty = (struct tty_struct *)filp->private_data;
1467 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1468 return;
1470 check_tty_count(tty, "tty_release_dev");
1472 tty_fasync(-1, filp, 0);
1474 idx = tty->index;
1475 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1476 tty->driver->subtype == PTY_TYPE_MASTER);
1477 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1478 o_tty = tty->link;
1480 #ifdef TTY_PARANOIA_CHECK
1481 if (idx < 0 || idx >= tty->driver->num) {
1482 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1483 "free (%s)\n", tty->name);
1484 return;
1486 if (!devpts) {
1487 if (tty != tty->driver->ttys[idx]) {
1488 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1489 "for (%s)\n", idx, tty->name);
1490 return;
1492 if (tty->termios != tty->driver->termios[idx]) {
1493 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1494 "for (%s)\n",
1495 idx, tty->name);
1496 return;
1499 #endif
1501 #ifdef TTY_DEBUG_HANGUP
1502 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1503 tty_name(tty, buf), tty->count);
1504 #endif
1506 #ifdef TTY_PARANOIA_CHECK
1507 if (tty->driver->other &&
1508 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1509 if (o_tty != tty->driver->other->ttys[idx]) {
1510 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1511 "not o_tty for (%s)\n",
1512 idx, tty->name);
1513 return;
1515 if (o_tty->termios != tty->driver->other->termios[idx]) {
1516 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1517 "not o_termios for (%s)\n",
1518 idx, tty->name);
1519 return;
1521 if (o_tty->link != tty) {
1522 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1523 return;
1526 #endif
1527 if (tty->ops->close)
1528 tty->ops->close(tty, filp);
1531 * Sanity check: if tty->count is going to zero, there shouldn't be
1532 * any waiters on tty->read_wait or tty->write_wait. We test the
1533 * wait queues and kick everyone out _before_ actually starting to
1534 * close. This ensures that we won't block while releasing the tty
1535 * structure.
1537 * The test for the o_tty closing is necessary, since the master and
1538 * slave sides may close in any order. If the slave side closes out
1539 * first, its count will be one, since the master side holds an open.
1540 * Thus this test wouldn't be triggered at the time the slave closes,
1541 * so we do it now.
1543 * Note that it's possible for the tty to be opened again while we're
1544 * flushing out waiters. By recalculating the closing flags before
1545 * each iteration we avoid any problems.
1547 while (1) {
1548 /* Guard against races with tty->count changes elsewhere and
1549 opens on /dev/tty */
1551 mutex_lock(&tty_mutex);
1552 tty_closing = tty->count <= 1;
1553 o_tty_closing = o_tty &&
1554 (o_tty->count <= (pty_master ? 1 : 0));
1555 do_sleep = 0;
1557 if (tty_closing) {
1558 if (waitqueue_active(&tty->read_wait)) {
1559 wake_up_poll(&tty->read_wait, POLLIN);
1560 do_sleep++;
1562 if (waitqueue_active(&tty->write_wait)) {
1563 wake_up_poll(&tty->write_wait, POLLOUT);
1564 do_sleep++;
1567 if (o_tty_closing) {
1568 if (waitqueue_active(&o_tty->read_wait)) {
1569 wake_up_poll(&o_tty->read_wait, POLLIN);
1570 do_sleep++;
1572 if (waitqueue_active(&o_tty->write_wait)) {
1573 wake_up_poll(&o_tty->write_wait, POLLOUT);
1574 do_sleep++;
1577 if (!do_sleep)
1578 break;
1580 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1581 "active!\n", tty_name(tty, buf));
1582 mutex_unlock(&tty_mutex);
1583 schedule();
1587 * The closing flags are now consistent with the open counts on
1588 * both sides, and we've completed the last operation that could
1589 * block, so it's safe to proceed with closing.
1591 if (pty_master) {
1592 if (--o_tty->count < 0) {
1593 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1594 "(%d) for %s\n",
1595 o_tty->count, tty_name(o_tty, buf));
1596 o_tty->count = 0;
1599 if (--tty->count < 0) {
1600 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1601 tty->count, tty_name(tty, buf));
1602 tty->count = 0;
1606 * We've decremented tty->count, so we need to remove this file
1607 * descriptor off the tty->tty_files list; this serves two
1608 * purposes:
1609 * - check_tty_count sees the correct number of file descriptors
1610 * associated with this tty.
1611 * - do_tty_hangup no longer sees this file descriptor as
1612 * something that needs to be handled for hangups.
1614 file_kill(filp);
1615 filp->private_data = NULL;
1618 * Perform some housekeeping before deciding whether to return.
1620 * Set the TTY_CLOSING flag if this was the last open. In the
1621 * case of a pty we may have to wait around for the other side
1622 * to close, and TTY_CLOSING makes sure we can't be reopened.
1624 if (tty_closing)
1625 set_bit(TTY_CLOSING, &tty->flags);
1626 if (o_tty_closing)
1627 set_bit(TTY_CLOSING, &o_tty->flags);
1630 * If _either_ side is closing, make sure there aren't any
1631 * processes that still think tty or o_tty is their controlling
1632 * tty.
1634 if (tty_closing || o_tty_closing) {
1635 read_lock(&tasklist_lock);
1636 session_clear_tty(tty->session);
1637 if (o_tty)
1638 session_clear_tty(o_tty->session);
1639 read_unlock(&tasklist_lock);
1642 mutex_unlock(&tty_mutex);
1644 /* check whether both sides are closing ... */
1645 if (!tty_closing || (o_tty && !o_tty_closing))
1646 return;
1648 #ifdef TTY_DEBUG_HANGUP
1649 printk(KERN_DEBUG "freeing tty structure...");
1650 #endif
1652 * Ask the line discipline code to release its structures
1654 tty_ldisc_release(tty, o_tty);
1656 * The release_tty function takes care of the details of clearing
1657 * the slots and preserving the termios structure.
1659 release_tty(tty, idx);
1661 /* Make this pty number available for reallocation */
1662 if (devpts)
1663 devpts_kill_index(inode, idx);
1667 * __tty_open - open a tty device
1668 * @inode: inode of device file
1669 * @filp: file pointer to tty
1671 * tty_open and tty_release keep up the tty count that contains the
1672 * number of opens done on a tty. We cannot use the inode-count, as
1673 * different inodes might point to the same tty.
1675 * Open-counting is needed for pty masters, as well as for keeping
1676 * track of serial lines: DTR is dropped when the last close happens.
1677 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1679 * The termios state of a pty is reset on first open so that
1680 * settings don't persist across reuse.
1682 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1683 * tty->count should protect the rest.
1684 * ->siglock protects ->signal/->sighand
1687 static int __tty_open(struct inode *inode, struct file *filp)
1689 struct tty_struct *tty = NULL;
1690 int noctty, retval;
1691 struct tty_driver *driver;
1692 int index;
1693 dev_t device = inode->i_rdev;
1694 unsigned saved_flags = filp->f_flags;
1696 nonseekable_open(inode, filp);
1698 retry_open:
1699 noctty = filp->f_flags & O_NOCTTY;
1700 index = -1;
1701 retval = 0;
1703 mutex_lock(&tty_mutex);
1705 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1706 tty = get_current_tty();
1707 if (!tty) {
1708 mutex_unlock(&tty_mutex);
1709 return -ENXIO;
1711 driver = tty_driver_kref_get(tty->driver);
1712 index = tty->index;
1713 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1714 /* noctty = 1; */
1715 /* FIXME: Should we take a driver reference ? */
1716 tty_kref_put(tty);
1717 goto got_driver;
1719 #ifdef CONFIG_VT
1720 if (device == MKDEV(TTY_MAJOR, 0)) {
1721 extern struct tty_driver *console_driver;
1722 driver = tty_driver_kref_get(console_driver);
1723 index = fg_console;
1724 noctty = 1;
1725 goto got_driver;
1727 #endif
1728 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1729 struct tty_driver *console_driver = console_device(&index);
1730 if (console_driver) {
1731 driver = tty_driver_kref_get(console_driver);
1732 if (driver) {
1733 /* Don't let /dev/console block */
1734 filp->f_flags |= O_NONBLOCK;
1735 noctty = 1;
1736 goto got_driver;
1739 mutex_unlock(&tty_mutex);
1740 return -ENODEV;
1743 driver = get_tty_driver(device, &index);
1744 if (!driver) {
1745 mutex_unlock(&tty_mutex);
1746 return -ENODEV;
1748 got_driver:
1749 if (!tty) {
1750 /* check whether we're reopening an existing tty */
1751 tty = tty_driver_lookup_tty(driver, inode, index);
1753 if (IS_ERR(tty)) {
1754 mutex_unlock(&tty_mutex);
1755 return PTR_ERR(tty);
1759 if (tty) {
1760 retval = tty_reopen(tty);
1761 if (retval)
1762 tty = ERR_PTR(retval);
1763 } else
1764 tty = tty_init_dev(driver, index, 0);
1766 mutex_unlock(&tty_mutex);
1767 tty_driver_kref_put(driver);
1768 if (IS_ERR(tty))
1769 return PTR_ERR(tty);
1771 filp->private_data = tty;
1772 file_move(filp, &tty->tty_files);
1773 check_tty_count(tty, "tty_open");
1774 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1775 tty->driver->subtype == PTY_TYPE_MASTER)
1776 noctty = 1;
1777 #ifdef TTY_DEBUG_HANGUP
1778 printk(KERN_DEBUG "opening %s...", tty->name);
1779 #endif
1780 if (!retval) {
1781 if (tty->ops->open)
1782 retval = tty->ops->open(tty, filp);
1783 else
1784 retval = -ENODEV;
1786 filp->f_flags = saved_flags;
1788 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1789 !capable(CAP_SYS_ADMIN))
1790 retval = -EBUSY;
1792 if (retval) {
1793 #ifdef TTY_DEBUG_HANGUP
1794 printk(KERN_DEBUG "error %d in opening %s...", retval,
1795 tty->name);
1796 #endif
1797 tty_release_dev(filp);
1798 if (retval != -ERESTARTSYS)
1799 return retval;
1800 if (signal_pending(current))
1801 return retval;
1802 schedule();
1804 * Need to reset f_op in case a hangup happened.
1806 if (filp->f_op == &hung_up_tty_fops)
1807 filp->f_op = &tty_fops;
1808 goto retry_open;
1811 mutex_lock(&tty_mutex);
1812 spin_lock_irq(&current->sighand->siglock);
1813 if (!noctty &&
1814 current->signal->leader &&
1815 !current->signal->tty &&
1816 tty->session == NULL)
1817 __proc_set_tty(current, tty);
1818 spin_unlock_irq(&current->sighand->siglock);
1819 mutex_unlock(&tty_mutex);
1820 return 0;
1823 /* BKL pushdown: scary code avoidance wrapper */
1824 static int tty_open(struct inode *inode, struct file *filp)
1826 int ret;
1828 lock_kernel();
1829 ret = __tty_open(inode, filp);
1830 unlock_kernel();
1831 return ret;
1838 * tty_release - vfs callback for close
1839 * @inode: inode of tty
1840 * @filp: file pointer for handle to tty
1842 * Called the last time each file handle is closed that references
1843 * this tty. There may however be several such references.
1845 * Locking:
1846 * Takes bkl. See tty_release_dev
1849 static int tty_release(struct inode *inode, struct file *filp)
1851 lock_kernel();
1852 tty_release_dev(filp);
1853 unlock_kernel();
1854 return 0;
1858 * tty_poll - check tty status
1859 * @filp: file being polled
1860 * @wait: poll wait structures to update
1862 * Call the line discipline polling method to obtain the poll
1863 * status of the device.
1865 * Locking: locks called line discipline but ldisc poll method
1866 * may be re-entered freely by other callers.
1869 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1871 struct tty_struct *tty;
1872 struct tty_ldisc *ld;
1873 int ret = 0;
1875 tty = (struct tty_struct *)filp->private_data;
1876 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1877 return 0;
1879 ld = tty_ldisc_ref_wait(tty);
1880 if (ld->ops->poll)
1881 ret = (ld->ops->poll)(tty, filp, wait);
1882 tty_ldisc_deref(ld);
1883 return ret;
1886 static int tty_fasync(int fd, struct file *filp, int on)
1888 struct tty_struct *tty;
1889 unsigned long flags;
1890 int retval = 0;
1892 lock_kernel();
1893 tty = (struct tty_struct *)filp->private_data;
1894 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1895 goto out;
1897 retval = fasync_helper(fd, filp, on, &tty->fasync);
1898 if (retval <= 0)
1899 goto out;
1901 if (on) {
1902 enum pid_type type;
1903 struct pid *pid;
1904 if (!waitqueue_active(&tty->read_wait))
1905 tty->minimum_to_wake = 1;
1906 spin_lock_irqsave(&tty->ctrl_lock, flags);
1907 if (tty->pgrp) {
1908 pid = tty->pgrp;
1909 type = PIDTYPE_PGID;
1910 } else {
1911 pid = task_pid(current);
1912 type = PIDTYPE_PID;
1914 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1915 retval = __f_setown(filp, pid, type, 0);
1916 if (retval)
1917 goto out;
1918 } else {
1919 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1920 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1922 retval = 0;
1923 out:
1924 unlock_kernel();
1925 return retval;
1929 * tiocsti - fake input character
1930 * @tty: tty to fake input into
1931 * @p: pointer to character
1933 * Fake input to a tty device. Does the necessary locking and
1934 * input management.
1936 * FIXME: does not honour flow control ??
1938 * Locking:
1939 * Called functions take tty_ldisc_lock
1940 * current->signal->tty check is safe without locks
1942 * FIXME: may race normal receive processing
1945 static int tiocsti(struct tty_struct *tty, char __user *p)
1947 char ch, mbz = 0;
1948 struct tty_ldisc *ld;
1950 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
1951 return -EPERM;
1952 if (get_user(ch, p))
1953 return -EFAULT;
1954 tty_audit_tiocsti(tty, ch);
1955 ld = tty_ldisc_ref_wait(tty);
1956 ld->ops->receive_buf(tty, &ch, &mbz, 1);
1957 tty_ldisc_deref(ld);
1958 return 0;
1962 * tiocgwinsz - implement window query ioctl
1963 * @tty; tty
1964 * @arg: user buffer for result
1966 * Copies the kernel idea of the window size into the user buffer.
1968 * Locking: tty->termios_mutex is taken to ensure the winsize data
1969 * is consistent.
1972 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
1974 int err;
1976 mutex_lock(&tty->termios_mutex);
1977 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
1978 mutex_unlock(&tty->termios_mutex);
1980 return err ? -EFAULT: 0;
1984 * tty_do_resize - resize event
1985 * @tty: tty being resized
1986 * @rows: rows (character)
1987 * @cols: cols (character)
1989 * Update the termios variables and send the neccessary signals to
1990 * peform a terminal resize correctly
1993 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
1995 struct pid *pgrp;
1996 unsigned long flags;
1998 /* Lock the tty */
1999 mutex_lock(&tty->termios_mutex);
2000 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2001 goto done;
2002 /* Get the PID values and reference them so we can
2003 avoid holding the tty ctrl lock while sending signals */
2004 spin_lock_irqsave(&tty->ctrl_lock, flags);
2005 pgrp = get_pid(tty->pgrp);
2006 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2008 if (pgrp)
2009 kill_pgrp(pgrp, SIGWINCH, 1);
2010 put_pid(pgrp);
2012 tty->winsize = *ws;
2013 done:
2014 mutex_unlock(&tty->termios_mutex);
2015 return 0;
2019 * tiocswinsz - implement window size set ioctl
2020 * @tty; tty side of tty
2021 * @arg: user buffer for result
2023 * Copies the user idea of the window size to the kernel. Traditionally
2024 * this is just advisory information but for the Linux console it
2025 * actually has driver level meaning and triggers a VC resize.
2027 * Locking:
2028 * Driver dependant. The default do_resize method takes the
2029 * tty termios mutex and ctrl_lock. The console takes its own lock
2030 * then calls into the default method.
2033 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2035 struct winsize tmp_ws;
2036 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2037 return -EFAULT;
2039 if (tty->ops->resize)
2040 return tty->ops->resize(tty, &tmp_ws);
2041 else
2042 return tty_do_resize(tty, &tmp_ws);
2046 * tioccons - allow admin to move logical console
2047 * @file: the file to become console
2049 * Allow the adminstrator to move the redirected console device
2051 * Locking: uses redirect_lock to guard the redirect information
2054 static int tioccons(struct file *file)
2056 if (!capable(CAP_SYS_ADMIN))
2057 return -EPERM;
2058 if (file->f_op->write == redirected_tty_write) {
2059 struct file *f;
2060 spin_lock(&redirect_lock);
2061 f = redirect;
2062 redirect = NULL;
2063 spin_unlock(&redirect_lock);
2064 if (f)
2065 fput(f);
2066 return 0;
2068 spin_lock(&redirect_lock);
2069 if (redirect) {
2070 spin_unlock(&redirect_lock);
2071 return -EBUSY;
2073 get_file(file);
2074 redirect = file;
2075 spin_unlock(&redirect_lock);
2076 return 0;
2080 * fionbio - non blocking ioctl
2081 * @file: file to set blocking value
2082 * @p: user parameter
2084 * Historical tty interfaces had a blocking control ioctl before
2085 * the generic functionality existed. This piece of history is preserved
2086 * in the expected tty API of posix OS's.
2088 * Locking: none, the open fle handle ensures it won't go away.
2091 static int fionbio(struct file *file, int __user *p)
2093 int nonblock;
2095 if (get_user(nonblock, p))
2096 return -EFAULT;
2098 spin_lock(&file->f_lock);
2099 if (nonblock)
2100 file->f_flags |= O_NONBLOCK;
2101 else
2102 file->f_flags &= ~O_NONBLOCK;
2103 spin_unlock(&file->f_lock);
2104 return 0;
2108 * tiocsctty - set controlling tty
2109 * @tty: tty structure
2110 * @arg: user argument
2112 * This ioctl is used to manage job control. It permits a session
2113 * leader to set this tty as the controlling tty for the session.
2115 * Locking:
2116 * Takes tty_mutex() to protect tty instance
2117 * Takes tasklist_lock internally to walk sessions
2118 * Takes ->siglock() when updating signal->tty
2121 static int tiocsctty(struct tty_struct *tty, int arg)
2123 int ret = 0;
2124 if (current->signal->leader && (task_session(current) == tty->session))
2125 return ret;
2127 mutex_lock(&tty_mutex);
2129 * The process must be a session leader and
2130 * not have a controlling tty already.
2132 if (!current->signal->leader || current->signal->tty) {
2133 ret = -EPERM;
2134 goto unlock;
2137 if (tty->session) {
2139 * This tty is already the controlling
2140 * tty for another session group!
2142 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2144 * Steal it away
2146 read_lock(&tasklist_lock);
2147 session_clear_tty(tty->session);
2148 read_unlock(&tasklist_lock);
2149 } else {
2150 ret = -EPERM;
2151 goto unlock;
2154 proc_set_tty(current, tty);
2155 unlock:
2156 mutex_unlock(&tty_mutex);
2157 return ret;
2161 * tty_get_pgrp - return a ref counted pgrp pid
2162 * @tty: tty to read
2164 * Returns a refcounted instance of the pid struct for the process
2165 * group controlling the tty.
2168 struct pid *tty_get_pgrp(struct tty_struct *tty)
2170 unsigned long flags;
2171 struct pid *pgrp;
2173 spin_lock_irqsave(&tty->ctrl_lock, flags);
2174 pgrp = get_pid(tty->pgrp);
2175 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2177 return pgrp;
2179 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2182 * tiocgpgrp - get process group
2183 * @tty: tty passed by user
2184 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2185 * @p: returned pid
2187 * Obtain the process group of the tty. If there is no process group
2188 * return an error.
2190 * Locking: none. Reference to current->signal->tty is safe.
2193 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2195 struct pid *pid;
2196 int ret;
2198 * (tty == real_tty) is a cheap way of
2199 * testing if the tty is NOT a master pty.
2201 if (tty == real_tty && current->signal->tty != real_tty)
2202 return -ENOTTY;
2203 pid = tty_get_pgrp(real_tty);
2204 ret = put_user(pid_vnr(pid), p);
2205 put_pid(pid);
2206 return ret;
2210 * tiocspgrp - attempt to set process group
2211 * @tty: tty passed by user
2212 * @real_tty: tty side device matching tty passed by user
2213 * @p: pid pointer
2215 * Set the process group of the tty to the session passed. Only
2216 * permitted where the tty session is our session.
2218 * Locking: RCU, ctrl lock
2221 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2223 struct pid *pgrp;
2224 pid_t pgrp_nr;
2225 int retval = tty_check_change(real_tty);
2226 unsigned long flags;
2228 if (retval == -EIO)
2229 return -ENOTTY;
2230 if (retval)
2231 return retval;
2232 if (!current->signal->tty ||
2233 (current->signal->tty != real_tty) ||
2234 (real_tty->session != task_session(current)))
2235 return -ENOTTY;
2236 if (get_user(pgrp_nr, p))
2237 return -EFAULT;
2238 if (pgrp_nr < 0)
2239 return -EINVAL;
2240 rcu_read_lock();
2241 pgrp = find_vpid(pgrp_nr);
2242 retval = -ESRCH;
2243 if (!pgrp)
2244 goto out_unlock;
2245 retval = -EPERM;
2246 if (session_of_pgrp(pgrp) != task_session(current))
2247 goto out_unlock;
2248 retval = 0;
2249 spin_lock_irqsave(&tty->ctrl_lock, flags);
2250 put_pid(real_tty->pgrp);
2251 real_tty->pgrp = get_pid(pgrp);
2252 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2253 out_unlock:
2254 rcu_read_unlock();
2255 return retval;
2259 * tiocgsid - get session id
2260 * @tty: tty passed by user
2261 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2262 * @p: pointer to returned session id
2264 * Obtain the session id of the tty. If there is no session
2265 * return an error.
2267 * Locking: none. Reference to current->signal->tty is safe.
2270 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2273 * (tty == real_tty) is a cheap way of
2274 * testing if the tty is NOT a master pty.
2276 if (tty == real_tty && current->signal->tty != real_tty)
2277 return -ENOTTY;
2278 if (!real_tty->session)
2279 return -ENOTTY;
2280 return put_user(pid_vnr(real_tty->session), p);
2284 * tiocsetd - set line discipline
2285 * @tty: tty device
2286 * @p: pointer to user data
2288 * Set the line discipline according to user request.
2290 * Locking: see tty_set_ldisc, this function is just a helper
2293 static int tiocsetd(struct tty_struct *tty, int __user *p)
2295 int ldisc;
2296 int ret;
2298 if (get_user(ldisc, p))
2299 return -EFAULT;
2301 lock_kernel();
2302 ret = tty_set_ldisc(tty, ldisc);
2303 unlock_kernel();
2305 return ret;
2309 * send_break - performed time break
2310 * @tty: device to break on
2311 * @duration: timeout in mS
2313 * Perform a timed break on hardware that lacks its own driver level
2314 * timed break functionality.
2316 * Locking:
2317 * atomic_write_lock serializes
2321 static int send_break(struct tty_struct *tty, unsigned int duration)
2323 int retval;
2325 if (tty->ops->break_ctl == NULL)
2326 return 0;
2328 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2329 retval = tty->ops->break_ctl(tty, duration);
2330 else {
2331 /* Do the work ourselves */
2332 if (tty_write_lock(tty, 0) < 0)
2333 return -EINTR;
2334 retval = tty->ops->break_ctl(tty, -1);
2335 if (retval)
2336 goto out;
2337 if (!signal_pending(current))
2338 msleep_interruptible(duration);
2339 retval = tty->ops->break_ctl(tty, 0);
2340 out:
2341 tty_write_unlock(tty);
2342 if (signal_pending(current))
2343 retval = -EINTR;
2345 return retval;
2349 * tty_tiocmget - get modem status
2350 * @tty: tty device
2351 * @file: user file pointer
2352 * @p: pointer to result
2354 * Obtain the modem status bits from the tty driver if the feature
2355 * is supported. Return -EINVAL if it is not available.
2357 * Locking: none (up to the driver)
2360 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2362 int retval = -EINVAL;
2364 if (tty->ops->tiocmget) {
2365 retval = tty->ops->tiocmget(tty, file);
2367 if (retval >= 0)
2368 retval = put_user(retval, p);
2370 return retval;
2374 * tty_tiocmset - set modem status
2375 * @tty: tty device
2376 * @file: user file pointer
2377 * @cmd: command - clear bits, set bits or set all
2378 * @p: pointer to desired bits
2380 * Set the modem status bits from the tty driver if the feature
2381 * is supported. Return -EINVAL if it is not available.
2383 * Locking: none (up to the driver)
2386 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2387 unsigned __user *p)
2389 int retval;
2390 unsigned int set, clear, val;
2392 if (tty->ops->tiocmset == NULL)
2393 return -EINVAL;
2395 retval = get_user(val, p);
2396 if (retval)
2397 return retval;
2398 set = clear = 0;
2399 switch (cmd) {
2400 case TIOCMBIS:
2401 set = val;
2402 break;
2403 case TIOCMBIC:
2404 clear = val;
2405 break;
2406 case TIOCMSET:
2407 set = val;
2408 clear = ~val;
2409 break;
2411 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2412 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2413 return tty->ops->tiocmset(tty, file, set, clear);
2416 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2418 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2419 tty->driver->subtype == PTY_TYPE_MASTER)
2420 tty = tty->link;
2421 return tty;
2423 EXPORT_SYMBOL(tty_pair_get_tty);
2425 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2427 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2428 tty->driver->subtype == PTY_TYPE_MASTER)
2429 return tty;
2430 return tty->link;
2432 EXPORT_SYMBOL(tty_pair_get_pty);
2435 * Split this up, as gcc can choke on it otherwise..
2437 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2439 struct tty_struct *tty, *real_tty;
2440 void __user *p = (void __user *)arg;
2441 int retval;
2442 struct tty_ldisc *ld;
2443 struct inode *inode = file->f_dentry->d_inode;
2445 tty = (struct tty_struct *)file->private_data;
2446 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2447 return -EINVAL;
2449 real_tty = tty_pair_get_tty(tty);
2452 * Factor out some common prep work
2454 switch (cmd) {
2455 case TIOCSETD:
2456 case TIOCSBRK:
2457 case TIOCCBRK:
2458 case TCSBRK:
2459 case TCSBRKP:
2460 retval = tty_check_change(tty);
2461 if (retval)
2462 return retval;
2463 if (cmd != TIOCCBRK) {
2464 tty_wait_until_sent(tty, 0);
2465 if (signal_pending(current))
2466 return -EINTR;
2468 break;
2472 * Now do the stuff.
2474 switch (cmd) {
2475 case TIOCSTI:
2476 return tiocsti(tty, p);
2477 case TIOCGWINSZ:
2478 return tiocgwinsz(real_tty, p);
2479 case TIOCSWINSZ:
2480 return tiocswinsz(real_tty, p);
2481 case TIOCCONS:
2482 return real_tty != tty ? -EINVAL : tioccons(file);
2483 case FIONBIO:
2484 return fionbio(file, p);
2485 case TIOCEXCL:
2486 set_bit(TTY_EXCLUSIVE, &tty->flags);
2487 return 0;
2488 case TIOCNXCL:
2489 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2490 return 0;
2491 case TIOCNOTTY:
2492 if (current->signal->tty != tty)
2493 return -ENOTTY;
2494 no_tty();
2495 return 0;
2496 case TIOCSCTTY:
2497 return tiocsctty(tty, arg);
2498 case TIOCGPGRP:
2499 return tiocgpgrp(tty, real_tty, p);
2500 case TIOCSPGRP:
2501 return tiocspgrp(tty, real_tty, p);
2502 case TIOCGSID:
2503 return tiocgsid(tty, real_tty, p);
2504 case TIOCGETD:
2505 return put_user(tty->ldisc->ops->num, (int __user *)p);
2506 case TIOCSETD:
2507 return tiocsetd(tty, p);
2509 * Break handling
2511 case TIOCSBRK: /* Turn break on, unconditionally */
2512 if (tty->ops->break_ctl)
2513 return tty->ops->break_ctl(tty, -1);
2514 return 0;
2515 case TIOCCBRK: /* Turn break off, unconditionally */
2516 if (tty->ops->break_ctl)
2517 return tty->ops->break_ctl(tty, 0);
2518 return 0;
2519 case TCSBRK: /* SVID version: non-zero arg --> no break */
2520 /* non-zero arg means wait for all output data
2521 * to be sent (performed above) but don't send break.
2522 * This is used by the tcdrain() termios function.
2524 if (!arg)
2525 return send_break(tty, 250);
2526 return 0;
2527 case TCSBRKP: /* support for POSIX tcsendbreak() */
2528 return send_break(tty, arg ? arg*100 : 250);
2530 case TIOCMGET:
2531 return tty_tiocmget(tty, file, p);
2532 case TIOCMSET:
2533 case TIOCMBIC:
2534 case TIOCMBIS:
2535 return tty_tiocmset(tty, file, cmd, p);
2536 case TCFLSH:
2537 switch (arg) {
2538 case TCIFLUSH:
2539 case TCIOFLUSH:
2540 /* flush tty buffer and allow ldisc to process ioctl */
2541 tty_buffer_flush(tty);
2542 break;
2544 break;
2546 if (tty->ops->ioctl) {
2547 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2548 if (retval != -ENOIOCTLCMD)
2549 return retval;
2551 ld = tty_ldisc_ref_wait(tty);
2552 retval = -EINVAL;
2553 if (ld->ops->ioctl) {
2554 retval = ld->ops->ioctl(tty, file, cmd, arg);
2555 if (retval == -ENOIOCTLCMD)
2556 retval = -EINVAL;
2558 tty_ldisc_deref(ld);
2559 return retval;
2562 #ifdef CONFIG_COMPAT
2563 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2564 unsigned long arg)
2566 struct inode *inode = file->f_dentry->d_inode;
2567 struct tty_struct *tty = file->private_data;
2568 struct tty_ldisc *ld;
2569 int retval = -ENOIOCTLCMD;
2571 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2572 return -EINVAL;
2574 if (tty->ops->compat_ioctl) {
2575 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2576 if (retval != -ENOIOCTLCMD)
2577 return retval;
2580 ld = tty_ldisc_ref_wait(tty);
2581 if (ld->ops->compat_ioctl)
2582 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2583 tty_ldisc_deref(ld);
2585 return retval;
2587 #endif
2590 * This implements the "Secure Attention Key" --- the idea is to
2591 * prevent trojan horses by killing all processes associated with this
2592 * tty when the user hits the "Secure Attention Key". Required for
2593 * super-paranoid applications --- see the Orange Book for more details.
2595 * This code could be nicer; ideally it should send a HUP, wait a few
2596 * seconds, then send a INT, and then a KILL signal. But you then
2597 * have to coordinate with the init process, since all processes associated
2598 * with the current tty must be dead before the new getty is allowed
2599 * to spawn.
2601 * Now, if it would be correct ;-/ The current code has a nasty hole -
2602 * it doesn't catch files in flight. We may send the descriptor to ourselves
2603 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2605 * Nasty bug: do_SAK is being called in interrupt context. This can
2606 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2608 void __do_SAK(struct tty_struct *tty)
2610 #ifdef TTY_SOFT_SAK
2611 tty_hangup(tty);
2612 #else
2613 struct task_struct *g, *p;
2614 struct pid *session;
2615 int i;
2616 struct file *filp;
2617 struct fdtable *fdt;
2619 if (!tty)
2620 return;
2621 session = tty->session;
2623 tty_ldisc_flush(tty);
2625 tty_driver_flush_buffer(tty);
2627 read_lock(&tasklist_lock);
2628 /* Kill the entire session */
2629 do_each_pid_task(session, PIDTYPE_SID, p) {
2630 printk(KERN_NOTICE "SAK: killed process %d"
2631 " (%s): task_session(p)==tty->session\n",
2632 task_pid_nr(p), p->comm);
2633 send_sig(SIGKILL, p, 1);
2634 } while_each_pid_task(session, PIDTYPE_SID, p);
2635 /* Now kill any processes that happen to have the
2636 * tty open.
2638 do_each_thread(g, p) {
2639 if (p->signal->tty == tty) {
2640 printk(KERN_NOTICE "SAK: killed process %d"
2641 " (%s): task_session(p)==tty->session\n",
2642 task_pid_nr(p), p->comm);
2643 send_sig(SIGKILL, p, 1);
2644 continue;
2646 task_lock(p);
2647 if (p->files) {
2649 * We don't take a ref to the file, so we must
2650 * hold ->file_lock instead.
2652 spin_lock(&p->files->file_lock);
2653 fdt = files_fdtable(p->files);
2654 for (i = 0; i < fdt->max_fds; i++) {
2655 filp = fcheck_files(p->files, i);
2656 if (!filp)
2657 continue;
2658 if (filp->f_op->read == tty_read &&
2659 filp->private_data == tty) {
2660 printk(KERN_NOTICE "SAK: killed process %d"
2661 " (%s): fd#%d opened to the tty\n",
2662 task_pid_nr(p), p->comm, i);
2663 force_sig(SIGKILL, p);
2664 break;
2667 spin_unlock(&p->files->file_lock);
2669 task_unlock(p);
2670 } while_each_thread(g, p);
2671 read_unlock(&tasklist_lock);
2672 #endif
2675 static void do_SAK_work(struct work_struct *work)
2677 struct tty_struct *tty =
2678 container_of(work, struct tty_struct, SAK_work);
2679 __do_SAK(tty);
2683 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2684 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2685 * the values which we write to it will be identical to the values which it
2686 * already has. --akpm
2688 void do_SAK(struct tty_struct *tty)
2690 if (!tty)
2691 return;
2692 schedule_work(&tty->SAK_work);
2695 EXPORT_SYMBOL(do_SAK);
2698 * initialize_tty_struct
2699 * @tty: tty to initialize
2701 * This subroutine initializes a tty structure that has been newly
2702 * allocated.
2704 * Locking: none - tty in question must not be exposed at this point
2707 void initialize_tty_struct(struct tty_struct *tty,
2708 struct tty_driver *driver, int idx)
2710 memset(tty, 0, sizeof(struct tty_struct));
2711 kref_init(&tty->kref);
2712 tty->magic = TTY_MAGIC;
2713 tty_ldisc_init(tty);
2714 tty->session = NULL;
2715 tty->pgrp = NULL;
2716 tty->overrun_time = jiffies;
2717 tty->buf.head = tty->buf.tail = NULL;
2718 tty_buffer_init(tty);
2719 mutex_init(&tty->termios_mutex);
2720 mutex_init(&tty->ldisc_mutex);
2721 init_waitqueue_head(&tty->write_wait);
2722 init_waitqueue_head(&tty->read_wait);
2723 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2724 mutex_init(&tty->atomic_read_lock);
2725 mutex_init(&tty->atomic_write_lock);
2726 mutex_init(&tty->output_lock);
2727 mutex_init(&tty->echo_lock);
2728 spin_lock_init(&tty->read_lock);
2729 spin_lock_init(&tty->ctrl_lock);
2730 INIT_LIST_HEAD(&tty->tty_files);
2731 INIT_WORK(&tty->SAK_work, do_SAK_work);
2733 tty->driver = driver;
2734 tty->ops = driver->ops;
2735 tty->index = idx;
2736 tty_line_name(driver, idx, tty->name);
2740 * tty_put_char - write one character to a tty
2741 * @tty: tty
2742 * @ch: character
2744 * Write one byte to the tty using the provided put_char method
2745 * if present. Returns the number of characters successfully output.
2747 * Note: the specific put_char operation in the driver layer may go
2748 * away soon. Don't call it directly, use this method
2751 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2753 if (tty->ops->put_char)
2754 return tty->ops->put_char(tty, ch);
2755 return tty->ops->write(tty, &ch, 1);
2757 EXPORT_SYMBOL_GPL(tty_put_char);
2759 struct class *tty_class;
2762 * tty_register_device - register a tty device
2763 * @driver: the tty driver that describes the tty device
2764 * @index: the index in the tty driver for this tty device
2765 * @device: a struct device that is associated with this tty device.
2766 * This field is optional, if there is no known struct device
2767 * for this tty device it can be set to NULL safely.
2769 * Returns a pointer to the struct device for this tty device
2770 * (or ERR_PTR(-EFOO) on error).
2772 * This call is required to be made to register an individual tty device
2773 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2774 * that bit is not set, this function should not be called by a tty
2775 * driver.
2777 * Locking: ??
2780 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2781 struct device *device)
2783 char name[64];
2784 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2786 if (index >= driver->num) {
2787 printk(KERN_ERR "Attempt to register invalid tty line number "
2788 " (%d).\n", index);
2789 return ERR_PTR(-EINVAL);
2792 if (driver->type == TTY_DRIVER_TYPE_PTY)
2793 pty_line_name(driver, index, name);
2794 else
2795 tty_line_name(driver, index, name);
2797 return device_create(tty_class, device, dev, NULL, name);
2799 EXPORT_SYMBOL(tty_register_device);
2802 * tty_unregister_device - unregister a tty device
2803 * @driver: the tty driver that describes the tty device
2804 * @index: the index in the tty driver for this tty device
2806 * If a tty device is registered with a call to tty_register_device() then
2807 * this function must be called when the tty device is gone.
2809 * Locking: ??
2812 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2814 device_destroy(tty_class,
2815 MKDEV(driver->major, driver->minor_start) + index);
2817 EXPORT_SYMBOL(tty_unregister_device);
2819 struct tty_driver *alloc_tty_driver(int lines)
2821 struct tty_driver *driver;
2823 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2824 if (driver) {
2825 kref_init(&driver->kref);
2826 driver->magic = TTY_DRIVER_MAGIC;
2827 driver->num = lines;
2828 /* later we'll move allocation of tables here */
2830 return driver;
2832 EXPORT_SYMBOL(alloc_tty_driver);
2834 static void destruct_tty_driver(struct kref *kref)
2836 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2837 int i;
2838 struct ktermios *tp;
2839 void *p;
2841 if (driver->flags & TTY_DRIVER_INSTALLED) {
2843 * Free the termios and termios_locked structures because
2844 * we don't want to get memory leaks when modular tty
2845 * drivers are removed from the kernel.
2847 for (i = 0; i < driver->num; i++) {
2848 tp = driver->termios[i];
2849 if (tp) {
2850 driver->termios[i] = NULL;
2851 kfree(tp);
2853 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2854 tty_unregister_device(driver, i);
2856 p = driver->ttys;
2857 proc_tty_unregister_driver(driver);
2858 driver->ttys = NULL;
2859 driver->termios = NULL;
2860 kfree(p);
2861 cdev_del(&driver->cdev);
2863 kfree(driver);
2866 void tty_driver_kref_put(struct tty_driver *driver)
2868 kref_put(&driver->kref, destruct_tty_driver);
2870 EXPORT_SYMBOL(tty_driver_kref_put);
2872 void tty_set_operations(struct tty_driver *driver,
2873 const struct tty_operations *op)
2875 driver->ops = op;
2877 EXPORT_SYMBOL(tty_set_operations);
2879 void put_tty_driver(struct tty_driver *d)
2881 tty_driver_kref_put(d);
2883 EXPORT_SYMBOL(put_tty_driver);
2886 * Called by a tty driver to register itself.
2888 int tty_register_driver(struct tty_driver *driver)
2890 int error;
2891 int i;
2892 dev_t dev;
2893 void **p = NULL;
2895 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2896 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2897 if (!p)
2898 return -ENOMEM;
2901 if (!driver->major) {
2902 error = alloc_chrdev_region(&dev, driver->minor_start,
2903 driver->num, driver->name);
2904 if (!error) {
2905 driver->major = MAJOR(dev);
2906 driver->minor_start = MINOR(dev);
2908 } else {
2909 dev = MKDEV(driver->major, driver->minor_start);
2910 error = register_chrdev_region(dev, driver->num, driver->name);
2912 if (error < 0) {
2913 kfree(p);
2914 return error;
2917 if (p) {
2918 driver->ttys = (struct tty_struct **)p;
2919 driver->termios = (struct ktermios **)(p + driver->num);
2920 } else {
2921 driver->ttys = NULL;
2922 driver->termios = NULL;
2925 cdev_init(&driver->cdev, &tty_fops);
2926 driver->cdev.owner = driver->owner;
2927 error = cdev_add(&driver->cdev, dev, driver->num);
2928 if (error) {
2929 unregister_chrdev_region(dev, driver->num);
2930 driver->ttys = NULL;
2931 driver->termios = NULL;
2932 kfree(p);
2933 return error;
2936 mutex_lock(&tty_mutex);
2937 list_add(&driver->tty_drivers, &tty_drivers);
2938 mutex_unlock(&tty_mutex);
2940 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2941 for (i = 0; i < driver->num; i++)
2942 tty_register_device(driver, i, NULL);
2944 proc_tty_register_driver(driver);
2945 driver->flags |= TTY_DRIVER_INSTALLED;
2946 return 0;
2949 EXPORT_SYMBOL(tty_register_driver);
2952 * Called by a tty driver to unregister itself.
2954 int tty_unregister_driver(struct tty_driver *driver)
2956 #if 0
2957 /* FIXME */
2958 if (driver->refcount)
2959 return -EBUSY;
2960 #endif
2961 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
2962 driver->num);
2963 mutex_lock(&tty_mutex);
2964 list_del(&driver->tty_drivers);
2965 mutex_unlock(&tty_mutex);
2966 return 0;
2969 EXPORT_SYMBOL(tty_unregister_driver);
2971 dev_t tty_devnum(struct tty_struct *tty)
2973 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
2975 EXPORT_SYMBOL(tty_devnum);
2977 void proc_clear_tty(struct task_struct *p)
2979 unsigned long flags;
2980 struct tty_struct *tty;
2981 spin_lock_irqsave(&p->sighand->siglock, flags);
2982 tty = p->signal->tty;
2983 p->signal->tty = NULL;
2984 spin_unlock_irqrestore(&p->sighand->siglock, flags);
2985 tty_kref_put(tty);
2988 /* Called under the sighand lock */
2990 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
2992 if (tty) {
2993 unsigned long flags;
2994 /* We should not have a session or pgrp to put here but.... */
2995 spin_lock_irqsave(&tty->ctrl_lock, flags);
2996 put_pid(tty->session);
2997 put_pid(tty->pgrp);
2998 tty->pgrp = get_pid(task_pgrp(tsk));
2999 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3000 tty->session = get_pid(task_session(tsk));
3001 if (tsk->signal->tty) {
3002 printk(KERN_DEBUG "tty not NULL!!\n");
3003 tty_kref_put(tsk->signal->tty);
3006 put_pid(tsk->signal->tty_old_pgrp);
3007 tsk->signal->tty = tty_kref_get(tty);
3008 tsk->signal->tty_old_pgrp = NULL;
3011 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3013 spin_lock_irq(&tsk->sighand->siglock);
3014 __proc_set_tty(tsk, tty);
3015 spin_unlock_irq(&tsk->sighand->siglock);
3018 struct tty_struct *get_current_tty(void)
3020 struct tty_struct *tty;
3021 unsigned long flags;
3023 spin_lock_irqsave(&current->sighand->siglock, flags);
3024 tty = tty_kref_get(current->signal->tty);
3025 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3026 return tty;
3028 EXPORT_SYMBOL_GPL(get_current_tty);
3030 void tty_default_fops(struct file_operations *fops)
3032 *fops = tty_fops;
3036 * Initialize the console device. This is called *early*, so
3037 * we can't necessarily depend on lots of kernel help here.
3038 * Just do some early initializations, and do the complex setup
3039 * later.
3041 void __init console_init(void)
3043 initcall_t *call;
3045 /* Setup the default TTY line discipline. */
3046 tty_ldisc_begin();
3049 * set up the console device so that later boot sequences can
3050 * inform about problems etc..
3052 call = __con_initcall_start;
3053 while (call < __con_initcall_end) {
3054 (*call)();
3055 call++;
3059 static int __init tty_class_init(void)
3061 tty_class = class_create(THIS_MODULE, "tty");
3062 if (IS_ERR(tty_class))
3063 return PTR_ERR(tty_class);
3064 return 0;
3067 postcore_initcall(tty_class_init);
3069 /* 3/2004 jmc: why do these devices exist? */
3071 static struct cdev tty_cdev, console_cdev;
3074 * Ok, now we can initialize the rest of the tty devices and can count
3075 * on memory allocations, interrupts etc..
3077 static int __init tty_init(void)
3079 cdev_init(&tty_cdev, &tty_fops);
3080 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3081 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3082 panic("Couldn't register /dev/tty driver\n");
3083 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3084 "tty");
3086 cdev_init(&console_cdev, &console_fops);
3087 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3088 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3089 panic("Couldn't register /dev/console driver\n");
3090 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3091 "console");
3093 #ifdef CONFIG_VT
3094 vty_init(&console_fops);
3095 #endif
3096 return 0;
3098 module_init(tty_init);