ALSA: usb-audio: mixer: volume quirk for ESS Technology Asus USB DAC
[linux/fpc-iii.git] / drivers / mtd / spi-nor / intel-spi.c
blobd60cbf23d9aa05e61f51b10c62e5a13ec32fb67e
1 /*
2 * Intel PCH/PCU SPI flash driver.
4 * Copyright (C) 2016, Intel Corporation
5 * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/err.h>
13 #include <linux/io.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/sched.h>
17 #include <linux/sizes.h>
18 #include <linux/mtd/mtd.h>
19 #include <linux/mtd/partitions.h>
20 #include <linux/mtd/spi-nor.h>
21 #include <linux/platform_data/intel-spi.h>
23 #include "intel-spi.h"
25 /* Offsets are from @ispi->base */
26 #define BFPREG 0x00
28 #define HSFSTS_CTL 0x04
29 #define HSFSTS_CTL_FSMIE BIT(31)
30 #define HSFSTS_CTL_FDBC_SHIFT 24
31 #define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT)
33 #define HSFSTS_CTL_FCYCLE_SHIFT 17
34 #define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
35 /* HW sequencer opcodes */
36 #define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
37 #define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
38 #define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
39 #define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
40 #define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
41 #define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
42 #define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
44 #define HSFSTS_CTL_FGO BIT(16)
45 #define HSFSTS_CTL_FLOCKDN BIT(15)
46 #define HSFSTS_CTL_FDV BIT(14)
47 #define HSFSTS_CTL_SCIP BIT(5)
48 #define HSFSTS_CTL_AEL BIT(2)
49 #define HSFSTS_CTL_FCERR BIT(1)
50 #define HSFSTS_CTL_FDONE BIT(0)
52 #define FADDR 0x08
53 #define DLOCK 0x0c
54 #define FDATA(n) (0x10 + ((n) * 4))
56 #define FRACC 0x50
58 #define FREG(n) (0x54 + ((n) * 4))
59 #define FREG_BASE_MASK 0x3fff
60 #define FREG_LIMIT_SHIFT 16
61 #define FREG_LIMIT_MASK (0x03fff << FREG_LIMIT_SHIFT)
63 /* Offset is from @ispi->pregs */
64 #define PR(n) ((n) * 4)
65 #define PR_WPE BIT(31)
66 #define PR_LIMIT_SHIFT 16
67 #define PR_LIMIT_MASK (0x3fff << PR_LIMIT_SHIFT)
68 #define PR_RPE BIT(15)
69 #define PR_BASE_MASK 0x3fff
71 /* Offsets are from @ispi->sregs */
72 #define SSFSTS_CTL 0x00
73 #define SSFSTS_CTL_FSMIE BIT(23)
74 #define SSFSTS_CTL_DS BIT(22)
75 #define SSFSTS_CTL_DBC_SHIFT 16
76 #define SSFSTS_CTL_SPOP BIT(11)
77 #define SSFSTS_CTL_ACS BIT(10)
78 #define SSFSTS_CTL_SCGO BIT(9)
79 #define SSFSTS_CTL_COP_SHIFT 12
80 #define SSFSTS_CTL_FRS BIT(7)
81 #define SSFSTS_CTL_DOFRS BIT(6)
82 #define SSFSTS_CTL_AEL BIT(4)
83 #define SSFSTS_CTL_FCERR BIT(3)
84 #define SSFSTS_CTL_FDONE BIT(2)
85 #define SSFSTS_CTL_SCIP BIT(0)
87 #define PREOP_OPTYPE 0x04
88 #define OPMENU0 0x08
89 #define OPMENU1 0x0c
91 #define OPTYPE_READ_NO_ADDR 0
92 #define OPTYPE_WRITE_NO_ADDR 1
93 #define OPTYPE_READ_WITH_ADDR 2
94 #define OPTYPE_WRITE_WITH_ADDR 3
96 /* CPU specifics */
97 #define BYT_PR 0x74
98 #define BYT_SSFSTS_CTL 0x90
99 #define BYT_BCR 0xfc
100 #define BYT_BCR_WPD BIT(0)
101 #define BYT_FREG_NUM 5
102 #define BYT_PR_NUM 5
104 #define LPT_PR 0x74
105 #define LPT_SSFSTS_CTL 0x90
106 #define LPT_FREG_NUM 5
107 #define LPT_PR_NUM 5
109 #define BXT_PR 0x84
110 #define BXT_SSFSTS_CTL 0xa0
111 #define BXT_FREG_NUM 12
112 #define BXT_PR_NUM 6
114 #define LVSCC 0xc4
115 #define UVSCC 0xc8
116 #define ERASE_OPCODE_SHIFT 8
117 #define ERASE_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
118 #define ERASE_64K_OPCODE_SHIFT 16
119 #define ERASE_64K_OPCODE_MASK (0xff << ERASE_OPCODE_SHIFT)
121 #define INTEL_SPI_TIMEOUT 5000 /* ms */
122 #define INTEL_SPI_FIFO_SZ 64
125 * struct intel_spi - Driver private data
126 * @dev: Device pointer
127 * @info: Pointer to board specific info
128 * @nor: SPI NOR layer structure
129 * @base: Beginning of MMIO space
130 * @pregs: Start of protection registers
131 * @sregs: Start of software sequencer registers
132 * @nregions: Maximum number of regions
133 * @pr_num: Maximum number of protected range registers
134 * @writeable: Is the chip writeable
135 * @locked: Is SPI setting locked
136 * @swseq_reg: Use SW sequencer in register reads/writes
137 * @swseq_erase: Use SW sequencer in erase operation
138 * @erase_64k: 64k erase supported
139 * @atomic_preopcode: Holds preopcode when atomic sequence is requested
140 * @opcodes: Opcodes which are supported. This are programmed by BIOS
141 * before it locks down the controller.
143 struct intel_spi {
144 struct device *dev;
145 const struct intel_spi_boardinfo *info;
146 struct spi_nor nor;
147 void __iomem *base;
148 void __iomem *pregs;
149 void __iomem *sregs;
150 size_t nregions;
151 size_t pr_num;
152 bool writeable;
153 bool locked;
154 bool swseq_reg;
155 bool swseq_erase;
156 bool erase_64k;
157 u8 atomic_preopcode;
158 u8 opcodes[8];
161 static bool writeable;
162 module_param(writeable, bool, 0);
163 MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
165 static void intel_spi_dump_regs(struct intel_spi *ispi)
167 u32 value;
168 int i;
170 dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
172 value = readl(ispi->base + HSFSTS_CTL);
173 dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
174 if (value & HSFSTS_CTL_FLOCKDN)
175 dev_dbg(ispi->dev, "-> Locked\n");
177 dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
178 dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
180 for (i = 0; i < 16; i++)
181 dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
182 i, readl(ispi->base + FDATA(i)));
184 dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
186 for (i = 0; i < ispi->nregions; i++)
187 dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
188 readl(ispi->base + FREG(i)));
189 for (i = 0; i < ispi->pr_num; i++)
190 dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
191 readl(ispi->pregs + PR(i)));
193 value = readl(ispi->sregs + SSFSTS_CTL);
194 dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
195 dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
196 readl(ispi->sregs + PREOP_OPTYPE));
197 dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", readl(ispi->sregs + OPMENU0));
198 dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", readl(ispi->sregs + OPMENU1));
200 if (ispi->info->type == INTEL_SPI_BYT)
201 dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR));
203 dev_dbg(ispi->dev, "LVSCC=0x%08x\n", readl(ispi->base + LVSCC));
204 dev_dbg(ispi->dev, "UVSCC=0x%08x\n", readl(ispi->base + UVSCC));
206 dev_dbg(ispi->dev, "Protected regions:\n");
207 for (i = 0; i < ispi->pr_num; i++) {
208 u32 base, limit;
210 value = readl(ispi->pregs + PR(i));
211 if (!(value & (PR_WPE | PR_RPE)))
212 continue;
214 limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
215 base = value & PR_BASE_MASK;
217 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
218 i, base << 12, (limit << 12) | 0xfff,
219 value & PR_WPE ? 'W' : '.',
220 value & PR_RPE ? 'R' : '.');
223 dev_dbg(ispi->dev, "Flash regions:\n");
224 for (i = 0; i < ispi->nregions; i++) {
225 u32 region, base, limit;
227 region = readl(ispi->base + FREG(i));
228 base = region & FREG_BASE_MASK;
229 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
231 if (base >= limit || (i > 0 && limit == 0))
232 dev_dbg(ispi->dev, " %02d disabled\n", i);
233 else
234 dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
235 i, base << 12, (limit << 12) | 0xfff);
238 dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
239 ispi->swseq_reg ? 'S' : 'H');
240 dev_dbg(ispi->dev, "Using %cW sequencer for erase operation\n",
241 ispi->swseq_erase ? 'S' : 'H');
244 /* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
245 static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
247 size_t bytes;
248 int i = 0;
250 if (size > INTEL_SPI_FIFO_SZ)
251 return -EINVAL;
253 while (size > 0) {
254 bytes = min_t(size_t, size, 4);
255 memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
256 size -= bytes;
257 buf += bytes;
258 i++;
261 return 0;
264 /* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
265 static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
266 size_t size)
268 size_t bytes;
269 int i = 0;
271 if (size > INTEL_SPI_FIFO_SZ)
272 return -EINVAL;
274 while (size > 0) {
275 bytes = min_t(size_t, size, 4);
276 memcpy_toio(ispi->base + FDATA(i), buf, bytes);
277 size -= bytes;
278 buf += bytes;
279 i++;
282 return 0;
285 static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
287 u32 val;
289 return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
290 !(val & HSFSTS_CTL_SCIP), 40,
291 INTEL_SPI_TIMEOUT * 1000);
294 static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
296 u32 val;
298 return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
299 !(val & SSFSTS_CTL_SCIP), 40,
300 INTEL_SPI_TIMEOUT * 1000);
303 static int intel_spi_init(struct intel_spi *ispi)
305 u32 opmenu0, opmenu1, lvscc, uvscc, val;
306 int i;
308 switch (ispi->info->type) {
309 case INTEL_SPI_BYT:
310 ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
311 ispi->pregs = ispi->base + BYT_PR;
312 ispi->nregions = BYT_FREG_NUM;
313 ispi->pr_num = BYT_PR_NUM;
314 ispi->swseq_reg = true;
316 if (writeable) {
317 /* Disable write protection */
318 val = readl(ispi->base + BYT_BCR);
319 if (!(val & BYT_BCR_WPD)) {
320 val |= BYT_BCR_WPD;
321 writel(val, ispi->base + BYT_BCR);
322 val = readl(ispi->base + BYT_BCR);
325 ispi->writeable = !!(val & BYT_BCR_WPD);
328 break;
330 case INTEL_SPI_LPT:
331 ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
332 ispi->pregs = ispi->base + LPT_PR;
333 ispi->nregions = LPT_FREG_NUM;
334 ispi->pr_num = LPT_PR_NUM;
335 ispi->swseq_reg = true;
336 break;
338 case INTEL_SPI_BXT:
339 ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
340 ispi->pregs = ispi->base + BXT_PR;
341 ispi->nregions = BXT_FREG_NUM;
342 ispi->pr_num = BXT_PR_NUM;
343 ispi->erase_64k = true;
344 break;
346 default:
347 return -EINVAL;
350 /* Disable #SMI generation from HW sequencer */
351 val = readl(ispi->base + HSFSTS_CTL);
352 val &= ~HSFSTS_CTL_FSMIE;
353 writel(val, ispi->base + HSFSTS_CTL);
356 * Determine whether erase operation should use HW or SW sequencer.
358 * The HW sequencer has a predefined list of opcodes, with only the
359 * erase opcode being programmable in LVSCC and UVSCC registers.
360 * If these registers don't contain a valid erase opcode, erase
361 * cannot be done using HW sequencer.
363 lvscc = readl(ispi->base + LVSCC);
364 uvscc = readl(ispi->base + UVSCC);
365 if (!(lvscc & ERASE_OPCODE_MASK) || !(uvscc & ERASE_OPCODE_MASK))
366 ispi->swseq_erase = true;
367 /* SPI controller on Intel BXT supports 64K erase opcode */
368 if (ispi->info->type == INTEL_SPI_BXT && !ispi->swseq_erase)
369 if (!(lvscc & ERASE_64K_OPCODE_MASK) ||
370 !(uvscc & ERASE_64K_OPCODE_MASK))
371 ispi->erase_64k = false;
374 * Some controllers can only do basic operations using hardware
375 * sequencer. All other operations are supposed to be carried out
376 * using software sequencer.
378 if (ispi->swseq_reg) {
379 /* Disable #SMI generation from SW sequencer */
380 val = readl(ispi->sregs + SSFSTS_CTL);
381 val &= ~SSFSTS_CTL_FSMIE;
382 writel(val, ispi->sregs + SSFSTS_CTL);
385 /* Check controller's lock status */
386 val = readl(ispi->base + HSFSTS_CTL);
387 ispi->locked = !!(val & HSFSTS_CTL_FLOCKDN);
389 if (ispi->locked) {
391 * BIOS programs allowed opcodes and then locks down the
392 * register. So read back what opcodes it decided to support.
393 * That's the set we are going to support as well.
395 opmenu0 = readl(ispi->sregs + OPMENU0);
396 opmenu1 = readl(ispi->sregs + OPMENU1);
398 if (opmenu0 && opmenu1) {
399 for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
400 ispi->opcodes[i] = opmenu0 >> i * 8;
401 ispi->opcodes[i + 4] = opmenu1 >> i * 8;
406 intel_spi_dump_regs(ispi);
408 return 0;
411 static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode, int optype)
413 int i;
414 int preop;
416 if (ispi->locked) {
417 for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
418 if (ispi->opcodes[i] == opcode)
419 return i;
421 return -EINVAL;
424 /* The lock is off, so just use index 0 */
425 writel(opcode, ispi->sregs + OPMENU0);
426 preop = readw(ispi->sregs + PREOP_OPTYPE);
427 writel(optype << 16 | preop, ispi->sregs + PREOP_OPTYPE);
429 return 0;
432 static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, int len)
434 u32 val, status;
435 int ret;
437 val = readl(ispi->base + HSFSTS_CTL);
438 val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
440 switch (opcode) {
441 case SPINOR_OP_RDID:
442 val |= HSFSTS_CTL_FCYCLE_RDID;
443 break;
444 case SPINOR_OP_WRSR:
445 val |= HSFSTS_CTL_FCYCLE_WRSR;
446 break;
447 case SPINOR_OP_RDSR:
448 val |= HSFSTS_CTL_FCYCLE_RDSR;
449 break;
450 default:
451 return -EINVAL;
454 if (len > INTEL_SPI_FIFO_SZ)
455 return -EINVAL;
457 val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
458 val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
459 val |= HSFSTS_CTL_FGO;
460 writel(val, ispi->base + HSFSTS_CTL);
462 ret = intel_spi_wait_hw_busy(ispi);
463 if (ret)
464 return ret;
466 status = readl(ispi->base + HSFSTS_CTL);
467 if (status & HSFSTS_CTL_FCERR)
468 return -EIO;
469 else if (status & HSFSTS_CTL_AEL)
470 return -EACCES;
472 return 0;
475 static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, int len,
476 int optype)
478 u32 val = 0, status;
479 u8 atomic_preopcode;
480 int ret;
482 ret = intel_spi_opcode_index(ispi, opcode, optype);
483 if (ret < 0)
484 return ret;
486 if (len > INTEL_SPI_FIFO_SZ)
487 return -EINVAL;
490 * Always clear it after each SW sequencer operation regardless
491 * of whether it is successful or not.
493 atomic_preopcode = ispi->atomic_preopcode;
494 ispi->atomic_preopcode = 0;
496 /* Only mark 'Data Cycle' bit when there is data to be transferred */
497 if (len > 0)
498 val = ((len - 1) << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
499 val |= ret << SSFSTS_CTL_COP_SHIFT;
500 val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
501 val |= SSFSTS_CTL_SCGO;
502 if (atomic_preopcode) {
503 u16 preop;
505 switch (optype) {
506 case OPTYPE_WRITE_NO_ADDR:
507 case OPTYPE_WRITE_WITH_ADDR:
508 /* Pick matching preopcode for the atomic sequence */
509 preop = readw(ispi->sregs + PREOP_OPTYPE);
510 if ((preop & 0xff) == atomic_preopcode)
511 ; /* Do nothing */
512 else if ((preop >> 8) == atomic_preopcode)
513 val |= SSFSTS_CTL_SPOP;
514 else
515 return -EINVAL;
517 /* Enable atomic sequence */
518 val |= SSFSTS_CTL_ACS;
519 break;
521 default:
522 return -EINVAL;
526 writel(val, ispi->sregs + SSFSTS_CTL);
528 ret = intel_spi_wait_sw_busy(ispi);
529 if (ret)
530 return ret;
532 status = readl(ispi->sregs + SSFSTS_CTL);
533 if (status & SSFSTS_CTL_FCERR)
534 return -EIO;
535 else if (status & SSFSTS_CTL_AEL)
536 return -EACCES;
538 return 0;
541 static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
543 struct intel_spi *ispi = nor->priv;
544 int ret;
546 /* Address of the first chip */
547 writel(0, ispi->base + FADDR);
549 if (ispi->swseq_reg)
550 ret = intel_spi_sw_cycle(ispi, opcode, len,
551 OPTYPE_READ_NO_ADDR);
552 else
553 ret = intel_spi_hw_cycle(ispi, opcode, len);
555 if (ret)
556 return ret;
558 return intel_spi_read_block(ispi, buf, len);
561 static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
563 struct intel_spi *ispi = nor->priv;
564 int ret;
567 * This is handled with atomic operation and preop code in Intel
568 * controller so we only verify that it is available. If the
569 * controller is not locked, program the opcode to the PREOP
570 * register for later use.
572 * When hardware sequencer is used there is no need to program
573 * any opcodes (it handles them automatically as part of a command).
575 if (opcode == SPINOR_OP_WREN) {
576 u16 preop;
578 if (!ispi->swseq_reg)
579 return 0;
581 preop = readw(ispi->sregs + PREOP_OPTYPE);
582 if ((preop & 0xff) != opcode && (preop >> 8) != opcode) {
583 if (ispi->locked)
584 return -EINVAL;
585 writel(opcode, ispi->sregs + PREOP_OPTYPE);
589 * This enables atomic sequence on next SW sycle. Will
590 * be cleared after next operation.
592 ispi->atomic_preopcode = opcode;
593 return 0;
596 writel(0, ispi->base + FADDR);
598 /* Write the value beforehand */
599 ret = intel_spi_write_block(ispi, buf, len);
600 if (ret)
601 return ret;
603 if (ispi->swseq_reg)
604 return intel_spi_sw_cycle(ispi, opcode, len,
605 OPTYPE_WRITE_NO_ADDR);
606 return intel_spi_hw_cycle(ispi, opcode, len);
609 static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len,
610 u_char *read_buf)
612 struct intel_spi *ispi = nor->priv;
613 size_t block_size, retlen = 0;
614 u32 val, status;
615 ssize_t ret;
618 * Atomic sequence is not expected with HW sequencer reads. Make
619 * sure it is cleared regardless.
621 if (WARN_ON_ONCE(ispi->atomic_preopcode))
622 ispi->atomic_preopcode = 0;
624 switch (nor->read_opcode) {
625 case SPINOR_OP_READ:
626 case SPINOR_OP_READ_FAST:
627 break;
628 default:
629 return -EINVAL;
632 while (len > 0) {
633 block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
635 /* Read cannot cross 4K boundary */
636 block_size = min_t(loff_t, from + block_size,
637 round_up(from + 1, SZ_4K)) - from;
639 writel(from, ispi->base + FADDR);
641 val = readl(ispi->base + HSFSTS_CTL);
642 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
643 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
644 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
645 val |= HSFSTS_CTL_FCYCLE_READ;
646 val |= HSFSTS_CTL_FGO;
647 writel(val, ispi->base + HSFSTS_CTL);
649 ret = intel_spi_wait_hw_busy(ispi);
650 if (ret)
651 return ret;
653 status = readl(ispi->base + HSFSTS_CTL);
654 if (status & HSFSTS_CTL_FCERR)
655 ret = -EIO;
656 else if (status & HSFSTS_CTL_AEL)
657 ret = -EACCES;
659 if (ret < 0) {
660 dev_err(ispi->dev, "read error: %llx: %#x\n", from,
661 status);
662 return ret;
665 ret = intel_spi_read_block(ispi, read_buf, block_size);
666 if (ret)
667 return ret;
669 len -= block_size;
670 from += block_size;
671 retlen += block_size;
672 read_buf += block_size;
675 return retlen;
678 static ssize_t intel_spi_write(struct spi_nor *nor, loff_t to, size_t len,
679 const u_char *write_buf)
681 struct intel_spi *ispi = nor->priv;
682 size_t block_size, retlen = 0;
683 u32 val, status;
684 ssize_t ret;
686 /* Not needed with HW sequencer write, make sure it is cleared */
687 ispi->atomic_preopcode = 0;
689 while (len > 0) {
690 block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
692 /* Write cannot cross 4K boundary */
693 block_size = min_t(loff_t, to + block_size,
694 round_up(to + 1, SZ_4K)) - to;
696 writel(to, ispi->base + FADDR);
698 val = readl(ispi->base + HSFSTS_CTL);
699 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
700 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
701 val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
702 val |= HSFSTS_CTL_FCYCLE_WRITE;
704 ret = intel_spi_write_block(ispi, write_buf, block_size);
705 if (ret) {
706 dev_err(ispi->dev, "failed to write block\n");
707 return ret;
710 /* Start the write now */
711 val |= HSFSTS_CTL_FGO;
712 writel(val, ispi->base + HSFSTS_CTL);
714 ret = intel_spi_wait_hw_busy(ispi);
715 if (ret) {
716 dev_err(ispi->dev, "timeout\n");
717 return ret;
720 status = readl(ispi->base + HSFSTS_CTL);
721 if (status & HSFSTS_CTL_FCERR)
722 ret = -EIO;
723 else if (status & HSFSTS_CTL_AEL)
724 ret = -EACCES;
726 if (ret < 0) {
727 dev_err(ispi->dev, "write error: %llx: %#x\n", to,
728 status);
729 return ret;
732 len -= block_size;
733 to += block_size;
734 retlen += block_size;
735 write_buf += block_size;
738 return retlen;
741 static int intel_spi_erase(struct spi_nor *nor, loff_t offs)
743 size_t erase_size, len = nor->mtd.erasesize;
744 struct intel_spi *ispi = nor->priv;
745 u32 val, status, cmd;
746 int ret;
748 /* If the hardware can do 64k erase use that when possible */
749 if (len >= SZ_64K && ispi->erase_64k) {
750 cmd = HSFSTS_CTL_FCYCLE_ERASE_64K;
751 erase_size = SZ_64K;
752 } else {
753 cmd = HSFSTS_CTL_FCYCLE_ERASE;
754 erase_size = SZ_4K;
757 if (ispi->swseq_erase) {
758 while (len > 0) {
759 writel(offs, ispi->base + FADDR);
761 ret = intel_spi_sw_cycle(ispi, nor->erase_opcode,
762 0, OPTYPE_WRITE_WITH_ADDR);
763 if (ret)
764 return ret;
766 offs += erase_size;
767 len -= erase_size;
770 return 0;
773 /* Not needed with HW sequencer erase, make sure it is cleared */
774 ispi->atomic_preopcode = 0;
776 while (len > 0) {
777 writel(offs, ispi->base + FADDR);
779 val = readl(ispi->base + HSFSTS_CTL);
780 val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
781 val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
782 val |= cmd;
783 val |= HSFSTS_CTL_FGO;
784 writel(val, ispi->base + HSFSTS_CTL);
786 ret = intel_spi_wait_hw_busy(ispi);
787 if (ret)
788 return ret;
790 status = readl(ispi->base + HSFSTS_CTL);
791 if (status & HSFSTS_CTL_FCERR)
792 return -EIO;
793 else if (status & HSFSTS_CTL_AEL)
794 return -EACCES;
796 offs += erase_size;
797 len -= erase_size;
800 return 0;
803 static bool intel_spi_is_protected(const struct intel_spi *ispi,
804 unsigned int base, unsigned int limit)
806 int i;
808 for (i = 0; i < ispi->pr_num; i++) {
809 u32 pr_base, pr_limit, pr_value;
811 pr_value = readl(ispi->pregs + PR(i));
812 if (!(pr_value & (PR_WPE | PR_RPE)))
813 continue;
815 pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
816 pr_base = pr_value & PR_BASE_MASK;
818 if (pr_base >= base && pr_limit <= limit)
819 return true;
822 return false;
826 * There will be a single partition holding all enabled flash regions. We
827 * call this "BIOS".
829 static void intel_spi_fill_partition(struct intel_spi *ispi,
830 struct mtd_partition *part)
832 u64 end;
833 int i;
835 memset(part, 0, sizeof(*part));
837 /* Start from the mandatory descriptor region */
838 part->size = 4096;
839 part->name = "BIOS";
842 * Now try to find where this partition ends based on the flash
843 * region registers.
845 for (i = 1; i < ispi->nregions; i++) {
846 u32 region, base, limit;
848 region = readl(ispi->base + FREG(i));
849 base = region & FREG_BASE_MASK;
850 limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
852 if (base >= limit || limit == 0)
853 continue;
856 * If any of the regions have protection bits set, make the
857 * whole partition read-only to be on the safe side.
859 if (intel_spi_is_protected(ispi, base, limit))
860 ispi->writeable = false;
862 end = (limit << 12) + 4096;
863 if (end > part->size)
864 part->size = end;
868 struct intel_spi *intel_spi_probe(struct device *dev,
869 struct resource *mem, const struct intel_spi_boardinfo *info)
871 const struct spi_nor_hwcaps hwcaps = {
872 .mask = SNOR_HWCAPS_READ |
873 SNOR_HWCAPS_READ_FAST |
874 SNOR_HWCAPS_PP,
876 struct mtd_partition part;
877 struct intel_spi *ispi;
878 int ret;
880 if (!info || !mem)
881 return ERR_PTR(-EINVAL);
883 ispi = devm_kzalloc(dev, sizeof(*ispi), GFP_KERNEL);
884 if (!ispi)
885 return ERR_PTR(-ENOMEM);
887 ispi->base = devm_ioremap_resource(dev, mem);
888 if (IS_ERR(ispi->base))
889 return ERR_CAST(ispi->base);
891 ispi->dev = dev;
892 ispi->info = info;
893 ispi->writeable = info->writeable;
895 ret = intel_spi_init(ispi);
896 if (ret)
897 return ERR_PTR(ret);
899 ispi->nor.dev = ispi->dev;
900 ispi->nor.priv = ispi;
901 ispi->nor.read_reg = intel_spi_read_reg;
902 ispi->nor.write_reg = intel_spi_write_reg;
903 ispi->nor.read = intel_spi_read;
904 ispi->nor.write = intel_spi_write;
905 ispi->nor.erase = intel_spi_erase;
907 ret = spi_nor_scan(&ispi->nor, NULL, &hwcaps);
908 if (ret) {
909 dev_info(dev, "failed to locate the chip\n");
910 return ERR_PTR(ret);
913 intel_spi_fill_partition(ispi, &part);
915 /* Prevent writes if not explicitly enabled */
916 if (!ispi->writeable || !writeable)
917 ispi->nor.mtd.flags &= ~MTD_WRITEABLE;
919 ret = mtd_device_register(&ispi->nor.mtd, &part, 1);
920 if (ret)
921 return ERR_PTR(ret);
923 return ispi;
925 EXPORT_SYMBOL_GPL(intel_spi_probe);
927 int intel_spi_remove(struct intel_spi *ispi)
929 return mtd_device_unregister(&ispi->nor.mtd);
931 EXPORT_SYMBOL_GPL(intel_spi_remove);
933 MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
934 MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
935 MODULE_LICENSE("GPL v2");