2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/atomic.h>
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
78 * css_set_lock protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex
);
86 DEFINE_SPINLOCK(css_set_lock
);
87 EXPORT_SYMBOL_GPL(cgroup_mutex
);
88 EXPORT_SYMBOL_GPL(css_set_lock
);
90 static DEFINE_MUTEX(cgroup_mutex
);
91 static DEFINE_SPINLOCK(css_set_lock
);
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
98 static DEFINE_SPINLOCK(cgroup_idr_lock
);
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 static DEFINE_SPINLOCK(release_agent_path_lock
);
106 struct percpu_rw_semaphore cgroup_threadgroup_rwsem
;
108 #define cgroup_assert_mutex_or_rcu_locked() \
109 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
110 !lockdep_is_held(&cgroup_mutex), \
111 "cgroup_mutex or RCU read lock required");
114 * cgroup destruction makes heavy use of work items and there can be a lot
115 * of concurrent destructions. Use a separate workqueue so that cgroup
116 * destruction work items don't end up filling up max_active of system_wq
117 * which may lead to deadlock.
119 static struct workqueue_struct
*cgroup_destroy_wq
;
122 * pidlist destructions need to be flushed on cgroup destruction. Use a
123 * separate workqueue as flush domain.
125 static struct workqueue_struct
*cgroup_pidlist_destroy_wq
;
127 /* generate an array of cgroup subsystem pointers */
128 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
129 static struct cgroup_subsys
*cgroup_subsys
[] = {
130 #include <linux/cgroup_subsys.h>
134 /* array of cgroup subsystem names */
135 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
136 static const char *cgroup_subsys_name
[] = {
137 #include <linux/cgroup_subsys.h>
141 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
143 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
145 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
147 #include <linux/cgroup_subsys.h>
150 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
151 static struct static_key_true
*cgroup_subsys_enabled_key
[] = {
152 #include <linux/cgroup_subsys.h>
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
157 static struct static_key_true
*cgroup_subsys_on_dfl_key
[] = {
158 #include <linux/cgroup_subsys.h>
163 * The default hierarchy, reserved for the subsystems that are otherwise
164 * unattached - it never has more than a single cgroup, and all tasks are
165 * part of that cgroup.
167 struct cgroup_root cgrp_dfl_root
;
168 EXPORT_SYMBOL_GPL(cgrp_dfl_root
);
171 * The default hierarchy always exists but is hidden until mounted for the
172 * first time. This is for backward compatibility.
174 static bool cgrp_dfl_root_visible
;
176 /* some controllers are not supported in the default hierarchy */
177 static unsigned long cgrp_dfl_root_inhibit_ss_mask
;
179 /* The list of hierarchy roots */
181 static LIST_HEAD(cgroup_roots
);
182 static int cgroup_root_count
;
184 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
185 static DEFINE_IDR(cgroup_hierarchy_idr
);
188 * Assign a monotonically increasing serial number to csses. It guarantees
189 * cgroups with bigger numbers are newer than those with smaller numbers.
190 * Also, as csses are always appended to the parent's ->children list, it
191 * guarantees that sibling csses are always sorted in the ascending serial
192 * number order on the list. Protected by cgroup_mutex.
194 static u64 css_serial_nr_next
= 1;
197 * These bitmask flags indicate whether tasks in the fork and exit paths have
198 * fork/exit handlers to call. This avoids us having to do extra work in the
199 * fork/exit path to check which subsystems have fork/exit callbacks.
201 static unsigned long have_fork_callback __read_mostly
;
202 static unsigned long have_exit_callback __read_mostly
;
203 static unsigned long have_free_callback __read_mostly
;
205 /* Ditto for the can_fork callback. */
206 static unsigned long have_canfork_callback __read_mostly
;
208 static struct cftype cgroup_dfl_base_files
[];
209 static struct cftype cgroup_legacy_base_files
[];
211 static int rebind_subsystems(struct cgroup_root
*dst_root
,
212 unsigned long ss_mask
);
213 static void css_task_iter_advance(struct css_task_iter
*it
);
214 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
215 static int create_css(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
,
217 static void css_release(struct percpu_ref
*ref
);
218 static void kill_css(struct cgroup_subsys_state
*css
);
219 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
220 struct cgroup
*cgrp
, struct cftype cfts
[],
224 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
225 * @ssid: subsys ID of interest
227 * cgroup_subsys_enabled() can only be used with literal subsys names which
228 * is fine for individual subsystems but unsuitable for cgroup core. This
229 * is slower static_key_enabled() based test indexed by @ssid.
231 static bool cgroup_ssid_enabled(int ssid
)
233 return static_key_enabled(cgroup_subsys_enabled_key
[ssid
]);
237 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
238 * @cgrp: the cgroup of interest
240 * The default hierarchy is the v2 interface of cgroup and this function
241 * can be used to test whether a cgroup is on the default hierarchy for
242 * cases where a subsystem should behave differnetly depending on the
245 * The set of behaviors which change on the default hierarchy are still
246 * being determined and the mount option is prefixed with __DEVEL__.
248 * List of changed behaviors:
250 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
251 * and "name" are disallowed.
253 * - When mounting an existing superblock, mount options should match.
255 * - Remount is disallowed.
257 * - rename(2) is disallowed.
259 * - "tasks" is removed. Everything should be at process granularity. Use
260 * "cgroup.procs" instead.
262 * - "cgroup.procs" is not sorted. pids will be unique unless they got
263 * recycled inbetween reads.
265 * - "release_agent" and "notify_on_release" are removed. Replacement
266 * notification mechanism will be implemented.
268 * - "cgroup.clone_children" is removed.
270 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
271 * and its descendants contain no task; otherwise, 1. The file also
272 * generates kernfs notification which can be monitored through poll and
273 * [di]notify when the value of the file changes.
275 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
276 * take masks of ancestors with non-empty cpus/mems, instead of being
277 * moved to an ancestor.
279 * - cpuset: a task can be moved into an empty cpuset, and again it takes
280 * masks of ancestors.
282 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
285 * - blkcg: blk-throttle becomes properly hierarchical.
287 * - debug: disallowed on the default hierarchy.
289 static bool cgroup_on_dfl(const struct cgroup
*cgrp
)
291 return cgrp
->root
== &cgrp_dfl_root
;
294 /* IDR wrappers which synchronize using cgroup_idr_lock */
295 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
300 idr_preload(gfp_mask
);
301 spin_lock_bh(&cgroup_idr_lock
);
302 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
& ~__GFP_DIRECT_RECLAIM
);
303 spin_unlock_bh(&cgroup_idr_lock
);
308 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
312 spin_lock_bh(&cgroup_idr_lock
);
313 ret
= idr_replace(idr
, ptr
, id
);
314 spin_unlock_bh(&cgroup_idr_lock
);
318 static void cgroup_idr_remove(struct idr
*idr
, int id
)
320 spin_lock_bh(&cgroup_idr_lock
);
322 spin_unlock_bh(&cgroup_idr_lock
);
325 static struct cgroup
*cgroup_parent(struct cgroup
*cgrp
)
327 struct cgroup_subsys_state
*parent_css
= cgrp
->self
.parent
;
330 return container_of(parent_css
, struct cgroup
, self
);
335 * cgroup_css - obtain a cgroup's css for the specified subsystem
336 * @cgrp: the cgroup of interest
337 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
339 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
340 * function must be called either under cgroup_mutex or rcu_read_lock() and
341 * the caller is responsible for pinning the returned css if it wants to
342 * keep accessing it outside the said locks. This function may return
343 * %NULL if @cgrp doesn't have @subsys_id enabled.
345 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
346 struct cgroup_subsys
*ss
)
349 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
350 lockdep_is_held(&cgroup_mutex
));
356 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
357 * @cgrp: the cgroup of interest
358 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
360 * Similar to cgroup_css() but returns the effective css, which is defined
361 * as the matching css of the nearest ancestor including self which has @ss
362 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
363 * function is guaranteed to return non-NULL css.
365 static struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
366 struct cgroup_subsys
*ss
)
368 lockdep_assert_held(&cgroup_mutex
);
373 if (!(cgrp
->root
->subsys_mask
& (1 << ss
->id
)))
377 * This function is used while updating css associations and thus
378 * can't test the csses directly. Use ->child_subsys_mask.
380 while (cgroup_parent(cgrp
) &&
381 !(cgroup_parent(cgrp
)->child_subsys_mask
& (1 << ss
->id
)))
382 cgrp
= cgroup_parent(cgrp
);
384 return cgroup_css(cgrp
, ss
);
388 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
389 * @cgrp: the cgroup of interest
390 * @ss: the subsystem of interest
392 * Find and get the effective css of @cgrp for @ss. The effective css is
393 * defined as the matching css of the nearest ancestor including self which
394 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
395 * the root css is returned, so this function always returns a valid css.
396 * The returned css must be put using css_put().
398 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
399 struct cgroup_subsys
*ss
)
401 struct cgroup_subsys_state
*css
;
406 css
= cgroup_css(cgrp
, ss
);
408 if (css
&& css_tryget_online(css
))
410 cgrp
= cgroup_parent(cgrp
);
413 css
= init_css_set
.subsys
[ss
->id
];
420 /* convenient tests for these bits */
421 static inline bool cgroup_is_dead(const struct cgroup
*cgrp
)
423 return !(cgrp
->self
.flags
& CSS_ONLINE
);
426 static void cgroup_get(struct cgroup
*cgrp
)
428 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
429 css_get(&cgrp
->self
);
432 static bool cgroup_tryget(struct cgroup
*cgrp
)
434 return css_tryget(&cgrp
->self
);
437 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
439 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
440 struct cftype
*cft
= of_cft(of
);
443 * This is open and unprotected implementation of cgroup_css().
444 * seq_css() is only called from a kernfs file operation which has
445 * an active reference on the file. Because all the subsystem
446 * files are drained before a css is disassociated with a cgroup,
447 * the matching css from the cgroup's subsys table is guaranteed to
448 * be and stay valid until the enclosing operation is complete.
451 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
455 EXPORT_SYMBOL_GPL(of_css
);
457 static int notify_on_release(const struct cgroup
*cgrp
)
459 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
463 * for_each_css - iterate all css's of a cgroup
464 * @css: the iteration cursor
465 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
466 * @cgrp: the target cgroup to iterate css's of
468 * Should be called under cgroup_[tree_]mutex.
470 #define for_each_css(css, ssid, cgrp) \
471 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
472 if (!((css) = rcu_dereference_check( \
473 (cgrp)->subsys[(ssid)], \
474 lockdep_is_held(&cgroup_mutex)))) { } \
478 * for_each_e_css - iterate all effective css's of a cgroup
479 * @css: the iteration cursor
480 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
481 * @cgrp: the target cgroup to iterate css's of
483 * Should be called under cgroup_[tree_]mutex.
485 #define for_each_e_css(css, ssid, cgrp) \
486 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
487 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
492 * for_each_subsys - iterate all enabled cgroup subsystems
493 * @ss: the iteration cursor
494 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
496 #define for_each_subsys(ss, ssid) \
497 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
498 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
501 * for_each_subsys_which - filter for_each_subsys with a bitmask
502 * @ss: the iteration cursor
503 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
504 * @ss_maskp: a pointer to the bitmask
506 * The block will only run for cases where the ssid-th bit (1 << ssid) of
509 #define for_each_subsys_which(ss, ssid, ss_maskp) \
510 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
513 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
514 if (((ss) = cgroup_subsys[ssid]) && false) \
518 /* iterate across the hierarchies */
519 #define for_each_root(root) \
520 list_for_each_entry((root), &cgroup_roots, root_list)
522 /* iterate over child cgrps, lock should be held throughout iteration */
523 #define cgroup_for_each_live_child(child, cgrp) \
524 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
525 if (({ lockdep_assert_held(&cgroup_mutex); \
526 cgroup_is_dead(child); })) \
530 static void cgroup_release_agent(struct work_struct
*work
);
531 static void check_for_release(struct cgroup
*cgrp
);
534 * A cgroup can be associated with multiple css_sets as different tasks may
535 * belong to different cgroups on different hierarchies. In the other
536 * direction, a css_set is naturally associated with multiple cgroups.
537 * This M:N relationship is represented by the following link structure
538 * which exists for each association and allows traversing the associations
541 struct cgrp_cset_link
{
542 /* the cgroup and css_set this link associates */
544 struct css_set
*cset
;
546 /* list of cgrp_cset_links anchored at cgrp->cset_links */
547 struct list_head cset_link
;
549 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
550 struct list_head cgrp_link
;
554 * The default css_set - used by init and its children prior to any
555 * hierarchies being mounted. It contains a pointer to the root state
556 * for each subsystem. Also used to anchor the list of css_sets. Not
557 * reference-counted, to improve performance when child cgroups
558 * haven't been created.
560 struct css_set init_css_set
= {
561 .refcount
= ATOMIC_INIT(1),
562 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
563 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
564 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
565 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
566 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
567 .task_iters
= LIST_HEAD_INIT(init_css_set
.task_iters
),
570 static int css_set_count
= 1; /* 1 for init_css_set */
573 * css_set_populated - does a css_set contain any tasks?
574 * @cset: target css_set
576 static bool css_set_populated(struct css_set
*cset
)
578 lockdep_assert_held(&css_set_lock
);
580 return !list_empty(&cset
->tasks
) || !list_empty(&cset
->mg_tasks
);
584 * cgroup_update_populated - updated populated count of a cgroup
585 * @cgrp: the target cgroup
586 * @populated: inc or dec populated count
588 * One of the css_sets associated with @cgrp is either getting its first
589 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
590 * count is propagated towards root so that a given cgroup's populated_cnt
591 * is zero iff the cgroup and all its descendants don't contain any tasks.
593 * @cgrp's interface file "cgroup.populated" is zero if
594 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
595 * changes from or to zero, userland is notified that the content of the
596 * interface file has changed. This can be used to detect when @cgrp and
597 * its descendants become populated or empty.
599 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
601 lockdep_assert_held(&css_set_lock
);
607 trigger
= !cgrp
->populated_cnt
++;
609 trigger
= !--cgrp
->populated_cnt
;
614 check_for_release(cgrp
);
615 cgroup_file_notify(&cgrp
->events_file
);
617 cgrp
= cgroup_parent(cgrp
);
622 * css_set_update_populated - update populated state of a css_set
623 * @cset: target css_set
624 * @populated: whether @cset is populated or depopulated
626 * @cset is either getting the first task or losing the last. Update the
627 * ->populated_cnt of all associated cgroups accordingly.
629 static void css_set_update_populated(struct css_set
*cset
, bool populated
)
631 struct cgrp_cset_link
*link
;
633 lockdep_assert_held(&css_set_lock
);
635 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
)
636 cgroup_update_populated(link
->cgrp
, populated
);
640 * css_set_move_task - move a task from one css_set to another
641 * @task: task being moved
642 * @from_cset: css_set @task currently belongs to (may be NULL)
643 * @to_cset: new css_set @task is being moved to (may be NULL)
644 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
646 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
647 * css_set, @from_cset can be NULL. If @task is being disassociated
648 * instead of moved, @to_cset can be NULL.
650 * This function automatically handles populated_cnt updates and
651 * css_task_iter adjustments but the caller is responsible for managing
652 * @from_cset and @to_cset's reference counts.
654 static void css_set_move_task(struct task_struct
*task
,
655 struct css_set
*from_cset
, struct css_set
*to_cset
,
658 lockdep_assert_held(&css_set_lock
);
661 struct css_task_iter
*it
, *pos
;
663 WARN_ON_ONCE(list_empty(&task
->cg_list
));
666 * @task is leaving, advance task iterators which are
667 * pointing to it so that they can resume at the next
668 * position. Advancing an iterator might remove it from
669 * the list, use safe walk. See css_task_iter_advance*()
672 list_for_each_entry_safe(it
, pos
, &from_cset
->task_iters
,
674 if (it
->task_pos
== &task
->cg_list
)
675 css_task_iter_advance(it
);
677 list_del_init(&task
->cg_list
);
678 if (!css_set_populated(from_cset
))
679 css_set_update_populated(from_cset
, false);
681 WARN_ON_ONCE(!list_empty(&task
->cg_list
));
686 * We are synchronized through cgroup_threadgroup_rwsem
687 * against PF_EXITING setting such that we can't race
688 * against cgroup_exit() changing the css_set to
689 * init_css_set and dropping the old one.
691 WARN_ON_ONCE(task
->flags
& PF_EXITING
);
693 if (!css_set_populated(to_cset
))
694 css_set_update_populated(to_cset
, true);
695 rcu_assign_pointer(task
->cgroups
, to_cset
);
696 list_add_tail(&task
->cg_list
, use_mg_tasks
? &to_cset
->mg_tasks
:
702 * hash table for cgroup groups. This improves the performance to find
703 * an existing css_set. This hash doesn't (currently) take into
704 * account cgroups in empty hierarchies.
706 #define CSS_SET_HASH_BITS 7
707 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
709 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
711 unsigned long key
= 0UL;
712 struct cgroup_subsys
*ss
;
715 for_each_subsys(ss
, i
)
716 key
+= (unsigned long)css
[i
];
717 key
= (key
>> 16) ^ key
;
722 static void put_css_set_locked(struct css_set
*cset
)
724 struct cgrp_cset_link
*link
, *tmp_link
;
725 struct cgroup_subsys
*ss
;
728 lockdep_assert_held(&css_set_lock
);
730 if (!atomic_dec_and_test(&cset
->refcount
))
733 /* This css_set is dead. unlink it and release cgroup refcounts */
734 for_each_subsys(ss
, ssid
)
735 list_del(&cset
->e_cset_node
[ssid
]);
736 hash_del(&cset
->hlist
);
739 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
740 list_del(&link
->cset_link
);
741 list_del(&link
->cgrp_link
);
742 if (cgroup_parent(link
->cgrp
))
743 cgroup_put(link
->cgrp
);
747 kfree_rcu(cset
, rcu_head
);
750 static void put_css_set(struct css_set
*cset
)
753 * Ensure that the refcount doesn't hit zero while any readers
754 * can see it. Similar to atomic_dec_and_lock(), but for an
757 if (atomic_add_unless(&cset
->refcount
, -1, 1))
760 spin_lock_bh(&css_set_lock
);
761 put_css_set_locked(cset
);
762 spin_unlock_bh(&css_set_lock
);
766 * refcounted get/put for css_set objects
768 static inline void get_css_set(struct css_set
*cset
)
770 atomic_inc(&cset
->refcount
);
774 * compare_css_sets - helper function for find_existing_css_set().
775 * @cset: candidate css_set being tested
776 * @old_cset: existing css_set for a task
777 * @new_cgrp: cgroup that's being entered by the task
778 * @template: desired set of css pointers in css_set (pre-calculated)
780 * Returns true if "cset" matches "old_cset" except for the hierarchy
781 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
783 static bool compare_css_sets(struct css_set
*cset
,
784 struct css_set
*old_cset
,
785 struct cgroup
*new_cgrp
,
786 struct cgroup_subsys_state
*template[])
788 struct list_head
*l1
, *l2
;
791 * On the default hierarchy, there can be csets which are
792 * associated with the same set of cgroups but different csses.
793 * Let's first ensure that csses match.
795 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
799 * Compare cgroup pointers in order to distinguish between
800 * different cgroups in hierarchies. As different cgroups may
801 * share the same effective css, this comparison is always
804 l1
= &cset
->cgrp_links
;
805 l2
= &old_cset
->cgrp_links
;
807 struct cgrp_cset_link
*link1
, *link2
;
808 struct cgroup
*cgrp1
, *cgrp2
;
812 /* See if we reached the end - both lists are equal length. */
813 if (l1
== &cset
->cgrp_links
) {
814 BUG_ON(l2
!= &old_cset
->cgrp_links
);
817 BUG_ON(l2
== &old_cset
->cgrp_links
);
819 /* Locate the cgroups associated with these links. */
820 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
821 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
824 /* Hierarchies should be linked in the same order. */
825 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
828 * If this hierarchy is the hierarchy of the cgroup
829 * that's changing, then we need to check that this
830 * css_set points to the new cgroup; if it's any other
831 * hierarchy, then this css_set should point to the
832 * same cgroup as the old css_set.
834 if (cgrp1
->root
== new_cgrp
->root
) {
835 if (cgrp1
!= new_cgrp
)
846 * find_existing_css_set - init css array and find the matching css_set
847 * @old_cset: the css_set that we're using before the cgroup transition
848 * @cgrp: the cgroup that we're moving into
849 * @template: out param for the new set of csses, should be clear on entry
851 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
853 struct cgroup_subsys_state
*template[])
855 struct cgroup_root
*root
= cgrp
->root
;
856 struct cgroup_subsys
*ss
;
857 struct css_set
*cset
;
862 * Build the set of subsystem state objects that we want to see in the
863 * new css_set. while subsystems can change globally, the entries here
864 * won't change, so no need for locking.
866 for_each_subsys(ss
, i
) {
867 if (root
->subsys_mask
& (1UL << i
)) {
869 * @ss is in this hierarchy, so we want the
870 * effective css from @cgrp.
872 template[i
] = cgroup_e_css(cgrp
, ss
);
875 * @ss is not in this hierarchy, so we don't want
878 template[i
] = old_cset
->subsys
[i
];
882 key
= css_set_hash(template);
883 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
884 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
887 /* This css_set matches what we need */
891 /* No existing cgroup group matched */
895 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
897 struct cgrp_cset_link
*link
, *tmp_link
;
899 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
900 list_del(&link
->cset_link
);
906 * allocate_cgrp_cset_links - allocate cgrp_cset_links
907 * @count: the number of links to allocate
908 * @tmp_links: list_head the allocated links are put on
910 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
911 * through ->cset_link. Returns 0 on success or -errno.
913 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
915 struct cgrp_cset_link
*link
;
918 INIT_LIST_HEAD(tmp_links
);
920 for (i
= 0; i
< count
; i
++) {
921 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
923 free_cgrp_cset_links(tmp_links
);
926 list_add(&link
->cset_link
, tmp_links
);
932 * link_css_set - a helper function to link a css_set to a cgroup
933 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
934 * @cset: the css_set to be linked
935 * @cgrp: the destination cgroup
937 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
940 struct cgrp_cset_link
*link
;
942 BUG_ON(list_empty(tmp_links
));
944 if (cgroup_on_dfl(cgrp
))
945 cset
->dfl_cgrp
= cgrp
;
947 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
952 * Always add links to the tail of the lists so that the lists are
953 * in choronological order.
955 list_move_tail(&link
->cset_link
, &cgrp
->cset_links
);
956 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
958 if (cgroup_parent(cgrp
))
963 * find_css_set - return a new css_set with one cgroup updated
964 * @old_cset: the baseline css_set
965 * @cgrp: the cgroup to be updated
967 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
968 * substituted into the appropriate hierarchy.
970 static struct css_set
*find_css_set(struct css_set
*old_cset
,
973 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
974 struct css_set
*cset
;
975 struct list_head tmp_links
;
976 struct cgrp_cset_link
*link
;
977 struct cgroup_subsys
*ss
;
981 lockdep_assert_held(&cgroup_mutex
);
983 /* First see if we already have a cgroup group that matches
985 spin_lock_bh(&css_set_lock
);
986 cset
= find_existing_css_set(old_cset
, cgrp
, template);
989 spin_unlock_bh(&css_set_lock
);
994 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
998 /* Allocate all the cgrp_cset_link objects that we'll need */
999 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
1004 atomic_set(&cset
->refcount
, 1);
1005 INIT_LIST_HEAD(&cset
->cgrp_links
);
1006 INIT_LIST_HEAD(&cset
->tasks
);
1007 INIT_LIST_HEAD(&cset
->mg_tasks
);
1008 INIT_LIST_HEAD(&cset
->mg_preload_node
);
1009 INIT_LIST_HEAD(&cset
->mg_node
);
1010 INIT_LIST_HEAD(&cset
->task_iters
);
1011 INIT_HLIST_NODE(&cset
->hlist
);
1013 /* Copy the set of subsystem state objects generated in
1014 * find_existing_css_set() */
1015 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
1017 spin_lock_bh(&css_set_lock
);
1018 /* Add reference counts and links from the new css_set. */
1019 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
1020 struct cgroup
*c
= link
->cgrp
;
1022 if (c
->root
== cgrp
->root
)
1024 link_css_set(&tmp_links
, cset
, c
);
1027 BUG_ON(!list_empty(&tmp_links
));
1031 /* Add @cset to the hash table */
1032 key
= css_set_hash(cset
->subsys
);
1033 hash_add(css_set_table
, &cset
->hlist
, key
);
1035 for_each_subsys(ss
, ssid
)
1036 list_add_tail(&cset
->e_cset_node
[ssid
],
1037 &cset
->subsys
[ssid
]->cgroup
->e_csets
[ssid
]);
1039 spin_unlock_bh(&css_set_lock
);
1044 static struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
1046 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
1048 return root_cgrp
->root
;
1051 static int cgroup_init_root_id(struct cgroup_root
*root
)
1055 lockdep_assert_held(&cgroup_mutex
);
1057 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
1061 root
->hierarchy_id
= id
;
1065 static void cgroup_exit_root_id(struct cgroup_root
*root
)
1067 lockdep_assert_held(&cgroup_mutex
);
1069 if (root
->hierarchy_id
) {
1070 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1071 root
->hierarchy_id
= 0;
1075 static void cgroup_free_root(struct cgroup_root
*root
)
1078 /* hierarchy ID should already have been released */
1079 WARN_ON_ONCE(root
->hierarchy_id
);
1081 idr_destroy(&root
->cgroup_idr
);
1086 static void cgroup_destroy_root(struct cgroup_root
*root
)
1088 struct cgroup
*cgrp
= &root
->cgrp
;
1089 struct cgrp_cset_link
*link
, *tmp_link
;
1091 mutex_lock(&cgroup_mutex
);
1093 BUG_ON(atomic_read(&root
->nr_cgrps
));
1094 BUG_ON(!list_empty(&cgrp
->self
.children
));
1096 /* Rebind all subsystems back to the default hierarchy */
1097 rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
);
1100 * Release all the links from cset_links to this hierarchy's
1103 spin_lock_bh(&css_set_lock
);
1105 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1106 list_del(&link
->cset_link
);
1107 list_del(&link
->cgrp_link
);
1111 spin_unlock_bh(&css_set_lock
);
1113 if (!list_empty(&root
->root_list
)) {
1114 list_del(&root
->root_list
);
1115 cgroup_root_count
--;
1118 cgroup_exit_root_id(root
);
1120 mutex_unlock(&cgroup_mutex
);
1122 kernfs_destroy_root(root
->kf_root
);
1123 cgroup_free_root(root
);
1126 /* look up cgroup associated with given css_set on the specified hierarchy */
1127 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
1128 struct cgroup_root
*root
)
1130 struct cgroup
*res
= NULL
;
1132 lockdep_assert_held(&cgroup_mutex
);
1133 lockdep_assert_held(&css_set_lock
);
1135 if (cset
== &init_css_set
) {
1138 struct cgrp_cset_link
*link
;
1140 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1141 struct cgroup
*c
= link
->cgrp
;
1143 if (c
->root
== root
) {
1155 * Return the cgroup for "task" from the given hierarchy. Must be
1156 * called with cgroup_mutex and css_set_lock held.
1158 static struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
1159 struct cgroup_root
*root
)
1162 * No need to lock the task - since we hold cgroup_mutex the
1163 * task can't change groups, so the only thing that can happen
1164 * is that it exits and its css is set back to init_css_set.
1166 return cset_cgroup_from_root(task_css_set(task
), root
);
1170 * A task must hold cgroup_mutex to modify cgroups.
1172 * Any task can increment and decrement the count field without lock.
1173 * So in general, code holding cgroup_mutex can't rely on the count
1174 * field not changing. However, if the count goes to zero, then only
1175 * cgroup_attach_task() can increment it again. Because a count of zero
1176 * means that no tasks are currently attached, therefore there is no
1177 * way a task attached to that cgroup can fork (the other way to
1178 * increment the count). So code holding cgroup_mutex can safely
1179 * assume that if the count is zero, it will stay zero. Similarly, if
1180 * a task holds cgroup_mutex on a cgroup with zero count, it
1181 * knows that the cgroup won't be removed, as cgroup_rmdir()
1184 * A cgroup can only be deleted if both its 'count' of using tasks
1185 * is zero, and its list of 'children' cgroups is empty. Since all
1186 * tasks in the system use _some_ cgroup, and since there is always at
1187 * least one task in the system (init, pid == 1), therefore, root cgroup
1188 * always has either children cgroups and/or using tasks. So we don't
1189 * need a special hack to ensure that root cgroup cannot be deleted.
1191 * P.S. One more locking exception. RCU is used to guard the
1192 * update of a tasks cgroup pointer by cgroup_attach_task()
1195 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1196 static const struct file_operations proc_cgroupstats_operations
;
1198 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1201 struct cgroup_subsys
*ss
= cft
->ss
;
1203 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1204 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
))
1205 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s.%s",
1206 cgroup_on_dfl(cgrp
) ? ss
->name
: ss
->legacy_name
,
1209 strncpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1214 * cgroup_file_mode - deduce file mode of a control file
1215 * @cft: the control file in question
1217 * S_IRUGO for read, S_IWUSR for write.
1219 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1223 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1226 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
) {
1227 if (cft
->flags
& CFTYPE_WORLD_WRITABLE
)
1237 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1238 * @cgrp: the target cgroup
1239 * @subtree_control: the new subtree_control mask to consider
1241 * On the default hierarchy, a subsystem may request other subsystems to be
1242 * enabled together through its ->depends_on mask. In such cases, more
1243 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1245 * This function calculates which subsystems need to be enabled if
1246 * @subtree_control is to be applied to @cgrp. The returned mask is always
1247 * a superset of @subtree_control and follows the usual hierarchy rules.
1249 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup
*cgrp
,
1250 unsigned long subtree_control
)
1252 struct cgroup
*parent
= cgroup_parent(cgrp
);
1253 unsigned long cur_ss_mask
= subtree_control
;
1254 struct cgroup_subsys
*ss
;
1257 lockdep_assert_held(&cgroup_mutex
);
1259 if (!cgroup_on_dfl(cgrp
))
1263 unsigned long new_ss_mask
= cur_ss_mask
;
1265 for_each_subsys_which(ss
, ssid
, &cur_ss_mask
)
1266 new_ss_mask
|= ss
->depends_on
;
1269 * Mask out subsystems which aren't available. This can
1270 * happen only if some depended-upon subsystems were bound
1271 * to non-default hierarchies.
1274 new_ss_mask
&= parent
->child_subsys_mask
;
1276 new_ss_mask
&= cgrp
->root
->subsys_mask
;
1278 if (new_ss_mask
== cur_ss_mask
)
1280 cur_ss_mask
= new_ss_mask
;
1287 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1288 * @cgrp: the target cgroup
1290 * Update @cgrp->child_subsys_mask according to the current
1291 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1293 static void cgroup_refresh_child_subsys_mask(struct cgroup
*cgrp
)
1295 cgrp
->child_subsys_mask
=
1296 cgroup_calc_child_subsys_mask(cgrp
, cgrp
->subtree_control
);
1300 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1301 * @kn: the kernfs_node being serviced
1303 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1304 * the method finishes if locking succeeded. Note that once this function
1305 * returns the cgroup returned by cgroup_kn_lock_live() may become
1306 * inaccessible any time. If the caller intends to continue to access the
1307 * cgroup, it should pin it before invoking this function.
1309 static void cgroup_kn_unlock(struct kernfs_node
*kn
)
1311 struct cgroup
*cgrp
;
1313 if (kernfs_type(kn
) == KERNFS_DIR
)
1316 cgrp
= kn
->parent
->priv
;
1318 mutex_unlock(&cgroup_mutex
);
1320 kernfs_unbreak_active_protection(kn
);
1325 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1326 * @kn: the kernfs_node being serviced
1328 * This helper is to be used by a cgroup kernfs method currently servicing
1329 * @kn. It breaks the active protection, performs cgroup locking and
1330 * verifies that the associated cgroup is alive. Returns the cgroup if
1331 * alive; otherwise, %NULL. A successful return should be undone by a
1332 * matching cgroup_kn_unlock() invocation.
1334 * Any cgroup kernfs method implementation which requires locking the
1335 * associated cgroup should use this helper. It avoids nesting cgroup
1336 * locking under kernfs active protection and allows all kernfs operations
1337 * including self-removal.
1339 static struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
)
1341 struct cgroup
*cgrp
;
1343 if (kernfs_type(kn
) == KERNFS_DIR
)
1346 cgrp
= kn
->parent
->priv
;
1349 * We're gonna grab cgroup_mutex which nests outside kernfs
1350 * active_ref. cgroup liveliness check alone provides enough
1351 * protection against removal. Ensure @cgrp stays accessible and
1352 * break the active_ref protection.
1354 if (!cgroup_tryget(cgrp
))
1356 kernfs_break_active_protection(kn
);
1358 mutex_lock(&cgroup_mutex
);
1360 if (!cgroup_is_dead(cgrp
))
1363 cgroup_kn_unlock(kn
);
1367 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1369 char name
[CGROUP_FILE_NAME_MAX
];
1371 lockdep_assert_held(&cgroup_mutex
);
1372 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1376 * css_clear_dir - remove subsys files in a cgroup directory
1378 * @cgrp_override: specify if target cgroup is different from css->cgroup
1380 static void css_clear_dir(struct cgroup_subsys_state
*css
,
1381 struct cgroup
*cgrp_override
)
1383 struct cgroup
*cgrp
= cgrp_override
?: css
->cgroup
;
1384 struct cftype
*cfts
;
1386 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
)
1387 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1391 * css_populate_dir - create subsys files in a cgroup directory
1393 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1395 * On failure, no file is added.
1397 static int css_populate_dir(struct cgroup_subsys_state
*css
,
1398 struct cgroup
*cgrp_override
)
1400 struct cgroup
*cgrp
= cgrp_override
?: css
->cgroup
;
1401 struct cftype
*cfts
, *failed_cfts
;
1405 if (cgroup_on_dfl(cgrp
))
1406 cfts
= cgroup_dfl_base_files
;
1408 cfts
= cgroup_legacy_base_files
;
1410 return cgroup_addrm_files(&cgrp
->self
, cgrp
, cfts
, true);
1413 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1414 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, true);
1422 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1423 if (cfts
== failed_cfts
)
1425 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1430 static int rebind_subsystems(struct cgroup_root
*dst_root
,
1431 unsigned long ss_mask
)
1433 struct cgroup
*dcgrp
= &dst_root
->cgrp
;
1434 struct cgroup_subsys
*ss
;
1435 unsigned long tmp_ss_mask
;
1438 lockdep_assert_held(&cgroup_mutex
);
1440 for_each_subsys_which(ss
, ssid
, &ss_mask
) {
1441 /* if @ss has non-root csses attached to it, can't move */
1442 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)))
1445 /* can't move between two non-dummy roots either */
1446 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1450 /* skip creating root files on dfl_root for inhibited subsystems */
1451 tmp_ss_mask
= ss_mask
;
1452 if (dst_root
== &cgrp_dfl_root
)
1453 tmp_ss_mask
&= ~cgrp_dfl_root_inhibit_ss_mask
;
1455 for_each_subsys_which(ss
, ssid
, &tmp_ss_mask
) {
1456 struct cgroup
*scgrp
= &ss
->root
->cgrp
;
1459 ret
= css_populate_dir(cgroup_css(scgrp
, ss
), dcgrp
);
1464 * Rebinding back to the default root is not allowed to
1465 * fail. Using both default and non-default roots should
1466 * be rare. Moving subsystems back and forth even more so.
1467 * Just warn about it and continue.
1469 if (dst_root
== &cgrp_dfl_root
) {
1470 if (cgrp_dfl_root_visible
) {
1471 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1473 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1478 for_each_subsys_which(ss
, tssid
, &tmp_ss_mask
) {
1481 css_clear_dir(cgroup_css(scgrp
, ss
), dcgrp
);
1487 * Nothing can fail from this point on. Remove files for the
1488 * removed subsystems and rebind each subsystem.
1490 for_each_subsys_which(ss
, ssid
, &ss_mask
) {
1491 struct cgroup_root
*src_root
= ss
->root
;
1492 struct cgroup
*scgrp
= &src_root
->cgrp
;
1493 struct cgroup_subsys_state
*css
= cgroup_css(scgrp
, ss
);
1494 struct css_set
*cset
;
1496 WARN_ON(!css
|| cgroup_css(dcgrp
, ss
));
1498 css_clear_dir(css
, NULL
);
1500 RCU_INIT_POINTER(scgrp
->subsys
[ssid
], NULL
);
1501 rcu_assign_pointer(dcgrp
->subsys
[ssid
], css
);
1502 ss
->root
= dst_root
;
1503 css
->cgroup
= dcgrp
;
1505 spin_lock_bh(&css_set_lock
);
1506 hash_for_each(css_set_table
, i
, cset
, hlist
)
1507 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1508 &dcgrp
->e_csets
[ss
->id
]);
1509 spin_unlock_bh(&css_set_lock
);
1511 src_root
->subsys_mask
&= ~(1 << ssid
);
1512 scgrp
->subtree_control
&= ~(1 << ssid
);
1513 cgroup_refresh_child_subsys_mask(scgrp
);
1515 /* default hierarchy doesn't enable controllers by default */
1516 dst_root
->subsys_mask
|= 1 << ssid
;
1517 if (dst_root
== &cgrp_dfl_root
) {
1518 static_branch_enable(cgroup_subsys_on_dfl_key
[ssid
]);
1520 dcgrp
->subtree_control
|= 1 << ssid
;
1521 cgroup_refresh_child_subsys_mask(dcgrp
);
1522 static_branch_disable(cgroup_subsys_on_dfl_key
[ssid
]);
1529 kernfs_activate(dcgrp
->kn
);
1533 static int cgroup_show_options(struct seq_file
*seq
,
1534 struct kernfs_root
*kf_root
)
1536 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1537 struct cgroup_subsys
*ss
;
1540 if (root
!= &cgrp_dfl_root
)
1541 for_each_subsys(ss
, ssid
)
1542 if (root
->subsys_mask
& (1 << ssid
))
1543 seq_show_option(seq
, ss
->legacy_name
, NULL
);
1544 if (root
->flags
& CGRP_ROOT_NOPREFIX
)
1545 seq_puts(seq
, ",noprefix");
1546 if (root
->flags
& CGRP_ROOT_XATTR
)
1547 seq_puts(seq
, ",xattr");
1549 spin_lock(&release_agent_path_lock
);
1550 if (strlen(root
->release_agent_path
))
1551 seq_show_option(seq
, "release_agent",
1552 root
->release_agent_path
);
1553 spin_unlock(&release_agent_path_lock
);
1555 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
))
1556 seq_puts(seq
, ",clone_children");
1557 if (strlen(root
->name
))
1558 seq_show_option(seq
, "name", root
->name
);
1562 struct cgroup_sb_opts
{
1563 unsigned long subsys_mask
;
1565 char *release_agent
;
1566 bool cpuset_clone_children
;
1568 /* User explicitly requested empty subsystem */
1572 static int parse_cgroupfs_options(char *data
, struct cgroup_sb_opts
*opts
)
1574 char *token
, *o
= data
;
1575 bool all_ss
= false, one_ss
= false;
1576 unsigned long mask
= -1UL;
1577 struct cgroup_subsys
*ss
;
1581 #ifdef CONFIG_CPUSETS
1582 mask
= ~(1U << cpuset_cgrp_id
);
1585 memset(opts
, 0, sizeof(*opts
));
1587 while ((token
= strsep(&o
, ",")) != NULL
) {
1592 if (!strcmp(token
, "none")) {
1593 /* Explicitly have no subsystems */
1597 if (!strcmp(token
, "all")) {
1598 /* Mutually exclusive option 'all' + subsystem name */
1604 if (!strcmp(token
, "__DEVEL__sane_behavior")) {
1605 opts
->flags
|= CGRP_ROOT_SANE_BEHAVIOR
;
1608 if (!strcmp(token
, "noprefix")) {
1609 opts
->flags
|= CGRP_ROOT_NOPREFIX
;
1612 if (!strcmp(token
, "clone_children")) {
1613 opts
->cpuset_clone_children
= true;
1616 if (!strcmp(token
, "xattr")) {
1617 opts
->flags
|= CGRP_ROOT_XATTR
;
1620 if (!strncmp(token
, "release_agent=", 14)) {
1621 /* Specifying two release agents is forbidden */
1622 if (opts
->release_agent
)
1624 opts
->release_agent
=
1625 kstrndup(token
+ 14, PATH_MAX
- 1, GFP_KERNEL
);
1626 if (!opts
->release_agent
)
1630 if (!strncmp(token
, "name=", 5)) {
1631 const char *name
= token
+ 5;
1632 /* Can't specify an empty name */
1635 /* Must match [\w.-]+ */
1636 for (i
= 0; i
< strlen(name
); i
++) {
1640 if ((c
== '.') || (c
== '-') || (c
== '_'))
1644 /* Specifying two names is forbidden */
1647 opts
->name
= kstrndup(name
,
1648 MAX_CGROUP_ROOT_NAMELEN
- 1,
1656 for_each_subsys(ss
, i
) {
1657 if (strcmp(token
, ss
->legacy_name
))
1659 if (!cgroup_ssid_enabled(i
))
1662 /* Mutually exclusive option 'all' + subsystem name */
1665 opts
->subsys_mask
|= (1 << i
);
1670 if (i
== CGROUP_SUBSYS_COUNT
)
1674 if (opts
->flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1675 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1677 pr_err("sane_behavior: no other mount options allowed\n");
1684 * If the 'all' option was specified select all the subsystems,
1685 * otherwise if 'none', 'name=' and a subsystem name options were
1686 * not specified, let's default to 'all'
1688 if (all_ss
|| (!one_ss
&& !opts
->none
&& !opts
->name
))
1689 for_each_subsys(ss
, i
)
1690 if (cgroup_ssid_enabled(i
))
1691 opts
->subsys_mask
|= (1 << i
);
1694 * We either have to specify by name or by subsystems. (So all
1695 * empty hierarchies must have a name).
1697 if (!opts
->subsys_mask
&& !opts
->name
)
1701 * Option noprefix was introduced just for backward compatibility
1702 * with the old cpuset, so we allow noprefix only if mounting just
1703 * the cpuset subsystem.
1705 if ((opts
->flags
& CGRP_ROOT_NOPREFIX
) && (opts
->subsys_mask
& mask
))
1708 /* Can't specify "none" and some subsystems */
1709 if (opts
->subsys_mask
&& opts
->none
)
1715 static int cgroup_remount(struct kernfs_root
*kf_root
, int *flags
, char *data
)
1718 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
1719 struct cgroup_sb_opts opts
;
1720 unsigned long added_mask
, removed_mask
;
1722 if (root
== &cgrp_dfl_root
) {
1723 pr_err("remount is not allowed\n");
1727 mutex_lock(&cgroup_mutex
);
1729 /* See what subsystems are wanted */
1730 ret
= parse_cgroupfs_options(data
, &opts
);
1734 if (opts
.subsys_mask
!= root
->subsys_mask
|| opts
.release_agent
)
1735 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1736 task_tgid_nr(current
), current
->comm
);
1738 added_mask
= opts
.subsys_mask
& ~root
->subsys_mask
;
1739 removed_mask
= root
->subsys_mask
& ~opts
.subsys_mask
;
1741 /* Don't allow flags or name to change at remount */
1742 if ((opts
.flags
^ root
->flags
) ||
1743 (opts
.name
&& strcmp(opts
.name
, root
->name
))) {
1744 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1745 opts
.flags
, opts
.name
?: "", root
->flags
, root
->name
);
1750 /* remounting is not allowed for populated hierarchies */
1751 if (!list_empty(&root
->cgrp
.self
.children
)) {
1756 ret
= rebind_subsystems(root
, added_mask
);
1760 rebind_subsystems(&cgrp_dfl_root
, removed_mask
);
1762 if (opts
.release_agent
) {
1763 spin_lock(&release_agent_path_lock
);
1764 strcpy(root
->release_agent_path
, opts
.release_agent
);
1765 spin_unlock(&release_agent_path_lock
);
1768 kfree(opts
.release_agent
);
1770 mutex_unlock(&cgroup_mutex
);
1775 * To reduce the fork() overhead for systems that are not actually using
1776 * their cgroups capability, we don't maintain the lists running through
1777 * each css_set to its tasks until we see the list actually used - in other
1778 * words after the first mount.
1780 static bool use_task_css_set_links __read_mostly
;
1782 static void cgroup_enable_task_cg_lists(void)
1784 struct task_struct
*p
, *g
;
1786 spin_lock_bh(&css_set_lock
);
1788 if (use_task_css_set_links
)
1791 use_task_css_set_links
= true;
1794 * We need tasklist_lock because RCU is not safe against
1795 * while_each_thread(). Besides, a forking task that has passed
1796 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1797 * is not guaranteed to have its child immediately visible in the
1798 * tasklist if we walk through it with RCU.
1800 read_lock(&tasklist_lock
);
1801 do_each_thread(g
, p
) {
1802 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1803 task_css_set(p
) != &init_css_set
);
1806 * We should check if the process is exiting, otherwise
1807 * it will race with cgroup_exit() in that the list
1808 * entry won't be deleted though the process has exited.
1809 * Do it while holding siglock so that we don't end up
1810 * racing against cgroup_exit().
1812 spin_lock_irq(&p
->sighand
->siglock
);
1813 if (!(p
->flags
& PF_EXITING
)) {
1814 struct css_set
*cset
= task_css_set(p
);
1816 if (!css_set_populated(cset
))
1817 css_set_update_populated(cset
, true);
1818 list_add_tail(&p
->cg_list
, &cset
->tasks
);
1821 spin_unlock_irq(&p
->sighand
->siglock
);
1822 } while_each_thread(g
, p
);
1823 read_unlock(&tasklist_lock
);
1825 spin_unlock_bh(&css_set_lock
);
1828 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1830 struct cgroup_subsys
*ss
;
1833 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1834 INIT_LIST_HEAD(&cgrp
->self
.children
);
1835 INIT_LIST_HEAD(&cgrp
->self
.files
);
1836 INIT_LIST_HEAD(&cgrp
->cset_links
);
1837 INIT_LIST_HEAD(&cgrp
->pidlists
);
1838 mutex_init(&cgrp
->pidlist_mutex
);
1839 cgrp
->self
.cgroup
= cgrp
;
1840 cgrp
->self
.flags
|= CSS_ONLINE
;
1842 for_each_subsys(ss
, ssid
)
1843 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1845 init_waitqueue_head(&cgrp
->offline_waitq
);
1846 INIT_WORK(&cgrp
->release_agent_work
, cgroup_release_agent
);
1849 static void init_cgroup_root(struct cgroup_root
*root
,
1850 struct cgroup_sb_opts
*opts
)
1852 struct cgroup
*cgrp
= &root
->cgrp
;
1854 INIT_LIST_HEAD(&root
->root_list
);
1855 atomic_set(&root
->nr_cgrps
, 1);
1857 init_cgroup_housekeeping(cgrp
);
1858 idr_init(&root
->cgroup_idr
);
1860 root
->flags
= opts
->flags
;
1861 if (opts
->release_agent
)
1862 strcpy(root
->release_agent_path
, opts
->release_agent
);
1864 strcpy(root
->name
, opts
->name
);
1865 if (opts
->cpuset_clone_children
)
1866 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1869 static int cgroup_setup_root(struct cgroup_root
*root
, unsigned long ss_mask
)
1871 LIST_HEAD(tmp_links
);
1872 struct cgroup
*root_cgrp
= &root
->cgrp
;
1873 struct css_set
*cset
;
1876 lockdep_assert_held(&cgroup_mutex
);
1878 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_KERNEL
);
1881 root_cgrp
->id
= ret
;
1882 root_cgrp
->ancestor_ids
[0] = ret
;
1884 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
, 0,
1890 * We're accessing css_set_count without locking css_set_lock here,
1891 * but that's OK - it can only be increased by someone holding
1892 * cgroup_lock, and that's us. The worst that can happen is that we
1893 * have some link structures left over
1895 ret
= allocate_cgrp_cset_links(css_set_count
, &tmp_links
);
1899 ret
= cgroup_init_root_id(root
);
1903 root
->kf_root
= kernfs_create_root(&cgroup_kf_syscall_ops
,
1904 KERNFS_ROOT_CREATE_DEACTIVATED
,
1906 if (IS_ERR(root
->kf_root
)) {
1907 ret
= PTR_ERR(root
->kf_root
);
1910 root_cgrp
->kn
= root
->kf_root
->kn
;
1912 ret
= css_populate_dir(&root_cgrp
->self
, NULL
);
1916 ret
= rebind_subsystems(root
, ss_mask
);
1921 * There must be no failure case after here, since rebinding takes
1922 * care of subsystems' refcounts, which are explicitly dropped in
1923 * the failure exit path.
1925 list_add(&root
->root_list
, &cgroup_roots
);
1926 cgroup_root_count
++;
1929 * Link the root cgroup in this hierarchy into all the css_set
1932 spin_lock_bh(&css_set_lock
);
1933 hash_for_each(css_set_table
, i
, cset
, hlist
) {
1934 link_css_set(&tmp_links
, cset
, root_cgrp
);
1935 if (css_set_populated(cset
))
1936 cgroup_update_populated(root_cgrp
, true);
1938 spin_unlock_bh(&css_set_lock
);
1940 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
1941 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
1943 kernfs_activate(root_cgrp
->kn
);
1948 kernfs_destroy_root(root
->kf_root
);
1949 root
->kf_root
= NULL
;
1951 cgroup_exit_root_id(root
);
1953 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
1955 free_cgrp_cset_links(&tmp_links
);
1959 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
1960 int flags
, const char *unused_dev_name
,
1963 struct super_block
*pinned_sb
= NULL
;
1964 struct cgroup_subsys
*ss
;
1965 struct cgroup_root
*root
;
1966 struct cgroup_sb_opts opts
;
1967 struct dentry
*dentry
;
1973 * The first time anyone tries to mount a cgroup, enable the list
1974 * linking each css_set to its tasks and fix up all existing tasks.
1976 if (!use_task_css_set_links
)
1977 cgroup_enable_task_cg_lists();
1979 mutex_lock(&cgroup_mutex
);
1981 /* First find the desired set of subsystems */
1982 ret
= parse_cgroupfs_options(data
, &opts
);
1986 /* look for a matching existing root */
1987 if (opts
.flags
& CGRP_ROOT_SANE_BEHAVIOR
) {
1988 cgrp_dfl_root_visible
= true;
1989 root
= &cgrp_dfl_root
;
1990 cgroup_get(&root
->cgrp
);
1996 * Destruction of cgroup root is asynchronous, so subsystems may
1997 * still be dying after the previous unmount. Let's drain the
1998 * dying subsystems. We just need to ensure that the ones
1999 * unmounted previously finish dying and don't care about new ones
2000 * starting. Testing ref liveliness is good enough.
2002 for_each_subsys(ss
, i
) {
2003 if (!(opts
.subsys_mask
& (1 << i
)) ||
2004 ss
->root
== &cgrp_dfl_root
)
2007 if (!percpu_ref_tryget_live(&ss
->root
->cgrp
.self
.refcnt
)) {
2008 mutex_unlock(&cgroup_mutex
);
2010 ret
= restart_syscall();
2013 cgroup_put(&ss
->root
->cgrp
);
2016 for_each_root(root
) {
2017 bool name_match
= false;
2019 if (root
== &cgrp_dfl_root
)
2023 * If we asked for a name then it must match. Also, if
2024 * name matches but sybsys_mask doesn't, we should fail.
2025 * Remember whether name matched.
2028 if (strcmp(opts
.name
, root
->name
))
2034 * If we asked for subsystems (or explicitly for no
2035 * subsystems) then they must match.
2037 if ((opts
.subsys_mask
|| opts
.none
) &&
2038 (opts
.subsys_mask
!= root
->subsys_mask
)) {
2045 if (root
->flags
^ opts
.flags
)
2046 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2049 * We want to reuse @root whose lifetime is governed by its
2050 * ->cgrp. Let's check whether @root is alive and keep it
2051 * that way. As cgroup_kill_sb() can happen anytime, we
2052 * want to block it by pinning the sb so that @root doesn't
2053 * get killed before mount is complete.
2055 * With the sb pinned, tryget_live can reliably indicate
2056 * whether @root can be reused. If it's being killed,
2057 * drain it. We can use wait_queue for the wait but this
2058 * path is super cold. Let's just sleep a bit and retry.
2060 pinned_sb
= kernfs_pin_sb(root
->kf_root
, NULL
);
2061 if (IS_ERR(pinned_sb
) ||
2062 !percpu_ref_tryget_live(&root
->cgrp
.self
.refcnt
)) {
2063 mutex_unlock(&cgroup_mutex
);
2064 if (!IS_ERR_OR_NULL(pinned_sb
))
2065 deactivate_super(pinned_sb
);
2067 ret
= restart_syscall();
2076 * No such thing, create a new one. name= matching without subsys
2077 * specification is allowed for already existing hierarchies but we
2078 * can't create new one without subsys specification.
2080 if (!opts
.subsys_mask
&& !opts
.none
) {
2085 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
2091 init_cgroup_root(root
, &opts
);
2093 ret
= cgroup_setup_root(root
, opts
.subsys_mask
);
2095 cgroup_free_root(root
);
2098 mutex_unlock(&cgroup_mutex
);
2100 kfree(opts
.release_agent
);
2104 return ERR_PTR(ret
);
2106 dentry
= kernfs_mount(fs_type
, flags
, root
->kf_root
,
2107 CGROUP_SUPER_MAGIC
, &new_sb
);
2108 if (IS_ERR(dentry
) || !new_sb
)
2109 cgroup_put(&root
->cgrp
);
2112 * If @pinned_sb, we're reusing an existing root and holding an
2113 * extra ref on its sb. Mount is complete. Put the extra ref.
2117 deactivate_super(pinned_sb
);
2123 static void cgroup_kill_sb(struct super_block
*sb
)
2125 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
2126 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
2129 * If @root doesn't have any mounts or children, start killing it.
2130 * This prevents new mounts by disabling percpu_ref_tryget_live().
2131 * cgroup_mount() may wait for @root's release.
2133 * And don't kill the default root.
2135 if (!list_empty(&root
->cgrp
.self
.children
) ||
2136 root
== &cgrp_dfl_root
)
2137 cgroup_put(&root
->cgrp
);
2139 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
2144 static struct file_system_type cgroup_fs_type
= {
2146 .mount
= cgroup_mount
,
2147 .kill_sb
= cgroup_kill_sb
,
2151 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2152 * @task: target task
2153 * @buf: the buffer to write the path into
2154 * @buflen: the length of the buffer
2156 * Determine @task's cgroup on the first (the one with the lowest non-zero
2157 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2158 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2159 * cgroup controller callbacks.
2161 * Return value is the same as kernfs_path().
2163 char *task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
2165 struct cgroup_root
*root
;
2166 struct cgroup
*cgrp
;
2167 int hierarchy_id
= 1;
2170 mutex_lock(&cgroup_mutex
);
2171 spin_lock_bh(&css_set_lock
);
2173 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
2176 cgrp
= task_cgroup_from_root(task
, root
);
2177 path
= cgroup_path(cgrp
, buf
, buflen
);
2179 /* if no hierarchy exists, everyone is in "/" */
2180 if (strlcpy(buf
, "/", buflen
) < buflen
)
2184 spin_unlock_bh(&css_set_lock
);
2185 mutex_unlock(&cgroup_mutex
);
2188 EXPORT_SYMBOL_GPL(task_cgroup_path
);
2190 /* used to track tasks and other necessary states during migration */
2191 struct cgroup_taskset
{
2192 /* the src and dst cset list running through cset->mg_node */
2193 struct list_head src_csets
;
2194 struct list_head dst_csets
;
2197 * Fields for cgroup_taskset_*() iteration.
2199 * Before migration is committed, the target migration tasks are on
2200 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2201 * the csets on ->dst_csets. ->csets point to either ->src_csets
2202 * or ->dst_csets depending on whether migration is committed.
2204 * ->cur_csets and ->cur_task point to the current task position
2207 struct list_head
*csets
;
2208 struct css_set
*cur_cset
;
2209 struct task_struct
*cur_task
;
2212 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2213 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2214 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2215 .csets = &tset.src_csets, \
2219 * cgroup_taskset_add - try to add a migration target task to a taskset
2220 * @task: target task
2221 * @tset: target taskset
2223 * Add @task, which is a migration target, to @tset. This function becomes
2224 * noop if @task doesn't need to be migrated. @task's css_set should have
2225 * been added as a migration source and @task->cg_list will be moved from
2226 * the css_set's tasks list to mg_tasks one.
2228 static void cgroup_taskset_add(struct task_struct
*task
,
2229 struct cgroup_taskset
*tset
)
2231 struct css_set
*cset
;
2233 lockdep_assert_held(&css_set_lock
);
2235 /* @task either already exited or can't exit until the end */
2236 if (task
->flags
& PF_EXITING
)
2239 /* leave @task alone if post_fork() hasn't linked it yet */
2240 if (list_empty(&task
->cg_list
))
2243 cset
= task_css_set(task
);
2244 if (!cset
->mg_src_cgrp
)
2247 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2248 if (list_empty(&cset
->mg_node
))
2249 list_add_tail(&cset
->mg_node
, &tset
->src_csets
);
2250 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2251 list_move_tail(&cset
->mg_dst_cset
->mg_node
,
2256 * cgroup_taskset_first - reset taskset and return the first task
2257 * @tset: taskset of interest
2259 * @tset iteration is initialized and the first task is returned.
2261 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
)
2263 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2264 tset
->cur_task
= NULL
;
2266 return cgroup_taskset_next(tset
);
2270 * cgroup_taskset_next - iterate to the next task in taskset
2271 * @tset: taskset of interest
2273 * Return the next task in @tset. Iteration must have been initialized
2274 * with cgroup_taskset_first().
2276 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
)
2278 struct css_set
*cset
= tset
->cur_cset
;
2279 struct task_struct
*task
= tset
->cur_task
;
2281 while (&cset
->mg_node
!= tset
->csets
) {
2283 task
= list_first_entry(&cset
->mg_tasks
,
2284 struct task_struct
, cg_list
);
2286 task
= list_next_entry(task
, cg_list
);
2288 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2289 tset
->cur_cset
= cset
;
2290 tset
->cur_task
= task
;
2294 cset
= list_next_entry(cset
, mg_node
);
2302 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2303 * @tset: taget taskset
2304 * @dst_cgrp: destination cgroup
2306 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2307 * ->can_attach callbacks fails and guarantees that either all or none of
2308 * the tasks in @tset are migrated. @tset is consumed regardless of
2311 static int cgroup_taskset_migrate(struct cgroup_taskset
*tset
,
2312 struct cgroup
*dst_cgrp
)
2314 struct cgroup_subsys_state
*css
, *failed_css
= NULL
;
2315 struct task_struct
*task
, *tmp_task
;
2316 struct css_set
*cset
, *tmp_cset
;
2319 /* methods shouldn't be called if no task is actually migrating */
2320 if (list_empty(&tset
->src_csets
))
2323 /* check that we can legitimately attach to the cgroup */
2324 for_each_e_css(css
, i
, dst_cgrp
) {
2325 if (css
->ss
->can_attach
) {
2326 ret
= css
->ss
->can_attach(css
, tset
);
2329 goto out_cancel_attach
;
2335 * Now that we're guaranteed success, proceed to move all tasks to
2336 * the new cgroup. There are no failure cases after here, so this
2337 * is the commit point.
2339 spin_lock_bh(&css_set_lock
);
2340 list_for_each_entry(cset
, &tset
->src_csets
, mg_node
) {
2341 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
) {
2342 struct css_set
*from_cset
= task_css_set(task
);
2343 struct css_set
*to_cset
= cset
->mg_dst_cset
;
2345 get_css_set(to_cset
);
2346 css_set_move_task(task
, from_cset
, to_cset
, true);
2347 put_css_set_locked(from_cset
);
2350 spin_unlock_bh(&css_set_lock
);
2353 * Migration is committed, all target tasks are now on dst_csets.
2354 * Nothing is sensitive to fork() after this point. Notify
2355 * controllers that migration is complete.
2357 tset
->csets
= &tset
->dst_csets
;
2359 for_each_e_css(css
, i
, dst_cgrp
)
2360 if (css
->ss
->attach
)
2361 css
->ss
->attach(css
, tset
);
2364 goto out_release_tset
;
2367 for_each_e_css(css
, i
, dst_cgrp
) {
2368 if (css
== failed_css
)
2370 if (css
->ss
->cancel_attach
)
2371 css
->ss
->cancel_attach(css
, tset
);
2374 spin_lock_bh(&css_set_lock
);
2375 list_splice_init(&tset
->dst_csets
, &tset
->src_csets
);
2376 list_for_each_entry_safe(cset
, tmp_cset
, &tset
->src_csets
, mg_node
) {
2377 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2378 list_del_init(&cset
->mg_node
);
2380 spin_unlock_bh(&css_set_lock
);
2385 * cgroup_migrate_finish - cleanup after attach
2386 * @preloaded_csets: list of preloaded css_sets
2388 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2389 * those functions for details.
2391 static void cgroup_migrate_finish(struct list_head
*preloaded_csets
)
2393 struct css_set
*cset
, *tmp_cset
;
2395 lockdep_assert_held(&cgroup_mutex
);
2397 spin_lock_bh(&css_set_lock
);
2398 list_for_each_entry_safe(cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2399 cset
->mg_src_cgrp
= NULL
;
2400 cset
->mg_dst_cset
= NULL
;
2401 list_del_init(&cset
->mg_preload_node
);
2402 put_css_set_locked(cset
);
2404 spin_unlock_bh(&css_set_lock
);
2408 * cgroup_migrate_add_src - add a migration source css_set
2409 * @src_cset: the source css_set to add
2410 * @dst_cgrp: the destination cgroup
2411 * @preloaded_csets: list of preloaded css_sets
2413 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2414 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2415 * up by cgroup_migrate_finish().
2417 * This function may be called without holding cgroup_threadgroup_rwsem
2418 * even if the target is a process. Threads may be created and destroyed
2419 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2420 * into play and the preloaded css_sets are guaranteed to cover all
2423 static void cgroup_migrate_add_src(struct css_set
*src_cset
,
2424 struct cgroup
*dst_cgrp
,
2425 struct list_head
*preloaded_csets
)
2427 struct cgroup
*src_cgrp
;
2429 lockdep_assert_held(&cgroup_mutex
);
2430 lockdep_assert_held(&css_set_lock
);
2432 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2434 if (!list_empty(&src_cset
->mg_preload_node
))
2437 WARN_ON(src_cset
->mg_src_cgrp
);
2438 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2439 WARN_ON(!list_empty(&src_cset
->mg_node
));
2441 src_cset
->mg_src_cgrp
= src_cgrp
;
2442 get_css_set(src_cset
);
2443 list_add(&src_cset
->mg_preload_node
, preloaded_csets
);
2447 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2448 * @dst_cgrp: the destination cgroup (may be %NULL)
2449 * @preloaded_csets: list of preloaded source css_sets
2451 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2452 * have been preloaded to @preloaded_csets. This function looks up and
2453 * pins all destination css_sets, links each to its source, and append them
2454 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2455 * source css_set is assumed to be its cgroup on the default hierarchy.
2457 * This function must be called after cgroup_migrate_add_src() has been
2458 * called on each migration source css_set. After migration is performed
2459 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2462 static int cgroup_migrate_prepare_dst(struct cgroup
*dst_cgrp
,
2463 struct list_head
*preloaded_csets
)
2466 struct css_set
*src_cset
, *tmp_cset
;
2468 lockdep_assert_held(&cgroup_mutex
);
2471 * Except for the root, child_subsys_mask must be zero for a cgroup
2472 * with tasks so that child cgroups don't compete against tasks.
2474 if (dst_cgrp
&& cgroup_on_dfl(dst_cgrp
) && cgroup_parent(dst_cgrp
) &&
2475 dst_cgrp
->child_subsys_mask
)
2478 /* look up the dst cset for each src cset and link it to src */
2479 list_for_each_entry_safe(src_cset
, tmp_cset
, preloaded_csets
, mg_preload_node
) {
2480 struct css_set
*dst_cset
;
2482 dst_cset
= find_css_set(src_cset
,
2483 dst_cgrp
?: src_cset
->dfl_cgrp
);
2487 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2490 * If src cset equals dst, it's noop. Drop the src.
2491 * cgroup_migrate() will skip the cset too. Note that we
2492 * can't handle src == dst as some nodes are used by both.
2494 if (src_cset
== dst_cset
) {
2495 src_cset
->mg_src_cgrp
= NULL
;
2496 list_del_init(&src_cset
->mg_preload_node
);
2497 put_css_set(src_cset
);
2498 put_css_set(dst_cset
);
2502 src_cset
->mg_dst_cset
= dst_cset
;
2504 if (list_empty(&dst_cset
->mg_preload_node
))
2505 list_add(&dst_cset
->mg_preload_node
, &csets
);
2507 put_css_set(dst_cset
);
2510 list_splice_tail(&csets
, preloaded_csets
);
2513 cgroup_migrate_finish(&csets
);
2518 * cgroup_migrate - migrate a process or task to a cgroup
2519 * @leader: the leader of the process or the task to migrate
2520 * @threadgroup: whether @leader points to the whole process or a single task
2521 * @cgrp: the destination cgroup
2523 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2524 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2525 * caller is also responsible for invoking cgroup_migrate_add_src() and
2526 * cgroup_migrate_prepare_dst() on the targets before invoking this
2527 * function and following up with cgroup_migrate_finish().
2529 * As long as a controller's ->can_attach() doesn't fail, this function is
2530 * guaranteed to succeed. This means that, excluding ->can_attach()
2531 * failure, when migrating multiple targets, the success or failure can be
2532 * decided for all targets by invoking group_migrate_prepare_dst() before
2533 * actually starting migrating.
2535 static int cgroup_migrate(struct task_struct
*leader
, bool threadgroup
,
2536 struct cgroup
*cgrp
)
2538 struct cgroup_taskset tset
= CGROUP_TASKSET_INIT(tset
);
2539 struct task_struct
*task
;
2542 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2543 * already PF_EXITING could be freed from underneath us unless we
2544 * take an rcu_read_lock.
2546 spin_lock_bh(&css_set_lock
);
2550 cgroup_taskset_add(task
, &tset
);
2553 } while_each_thread(leader
, task
);
2555 spin_unlock_bh(&css_set_lock
);
2557 return cgroup_taskset_migrate(&tset
, cgrp
);
2561 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2562 * @dst_cgrp: the cgroup to attach to
2563 * @leader: the task or the leader of the threadgroup to be attached
2564 * @threadgroup: attach the whole threadgroup?
2566 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2568 static int cgroup_attach_task(struct cgroup
*dst_cgrp
,
2569 struct task_struct
*leader
, bool threadgroup
)
2571 LIST_HEAD(preloaded_csets
);
2572 struct task_struct
*task
;
2575 /* look up all src csets */
2576 spin_lock_bh(&css_set_lock
);
2580 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
,
2584 } while_each_thread(leader
, task
);
2586 spin_unlock_bh(&css_set_lock
);
2588 /* prepare dst csets and commit */
2589 ret
= cgroup_migrate_prepare_dst(dst_cgrp
, &preloaded_csets
);
2591 ret
= cgroup_migrate(leader
, threadgroup
, dst_cgrp
);
2593 cgroup_migrate_finish(&preloaded_csets
);
2597 static int cgroup_procs_write_permission(struct task_struct
*task
,
2598 struct cgroup
*dst_cgrp
,
2599 struct kernfs_open_file
*of
)
2601 const struct cred
*cred
= current_cred();
2602 const struct cred
*tcred
= get_task_cred(task
);
2606 * even if we're attaching all tasks in the thread group, we only
2607 * need to check permissions on one of them.
2609 if (!uid_eq(cred
->euid
, GLOBAL_ROOT_UID
) &&
2610 !uid_eq(cred
->euid
, tcred
->uid
) &&
2611 !uid_eq(cred
->euid
, tcred
->suid
))
2614 if (!ret
&& cgroup_on_dfl(dst_cgrp
)) {
2615 struct super_block
*sb
= of
->file
->f_path
.dentry
->d_sb
;
2616 struct cgroup
*cgrp
;
2617 struct inode
*inode
;
2619 spin_lock_bh(&css_set_lock
);
2620 cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
2621 spin_unlock_bh(&css_set_lock
);
2623 while (!cgroup_is_descendant(dst_cgrp
, cgrp
))
2624 cgrp
= cgroup_parent(cgrp
);
2627 inode
= kernfs_get_inode(sb
, cgrp
->procs_file
.kn
);
2629 ret
= inode_permission(inode
, MAY_WRITE
);
2639 * Find the task_struct of the task to attach by vpid and pass it along to the
2640 * function to attach either it or all tasks in its threadgroup. Will lock
2641 * cgroup_mutex and threadgroup.
2643 static ssize_t
__cgroup_procs_write(struct kernfs_open_file
*of
, char *buf
,
2644 size_t nbytes
, loff_t off
, bool threadgroup
)
2646 struct task_struct
*tsk
;
2647 struct cgroup
*cgrp
;
2651 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2654 cgrp
= cgroup_kn_lock_live(of
->kn
);
2658 percpu_down_write(&cgroup_threadgroup_rwsem
);
2661 tsk
= find_task_by_vpid(pid
);
2664 goto out_unlock_rcu
;
2671 tsk
= tsk
->group_leader
;
2674 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2675 * trapped in a cpuset, or RT worker may be born in a cgroup
2676 * with no rt_runtime allocated. Just say no.
2678 if (tsk
== kthreadd_task
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2680 goto out_unlock_rcu
;
2683 get_task_struct(tsk
);
2686 ret
= cgroup_procs_write_permission(tsk
, cgrp
, of
);
2688 ret
= cgroup_attach_task(cgrp
, tsk
, threadgroup
);
2690 put_task_struct(tsk
);
2691 goto out_unlock_threadgroup
;
2695 out_unlock_threadgroup
:
2696 percpu_up_write(&cgroup_threadgroup_rwsem
);
2697 cgroup_kn_unlock(of
->kn
);
2698 return ret
?: nbytes
;
2702 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2703 * @from: attach to all cgroups of a given task
2704 * @tsk: the task to be attached
2706 int cgroup_attach_task_all(struct task_struct
*from
, struct task_struct
*tsk
)
2708 struct cgroup_root
*root
;
2711 mutex_lock(&cgroup_mutex
);
2712 for_each_root(root
) {
2713 struct cgroup
*from_cgrp
;
2715 if (root
== &cgrp_dfl_root
)
2718 spin_lock_bh(&css_set_lock
);
2719 from_cgrp
= task_cgroup_from_root(from
, root
);
2720 spin_unlock_bh(&css_set_lock
);
2722 retval
= cgroup_attach_task(from_cgrp
, tsk
, false);
2726 mutex_unlock(&cgroup_mutex
);
2730 EXPORT_SYMBOL_GPL(cgroup_attach_task_all
);
2732 static ssize_t
cgroup_tasks_write(struct kernfs_open_file
*of
,
2733 char *buf
, size_t nbytes
, loff_t off
)
2735 return __cgroup_procs_write(of
, buf
, nbytes
, off
, false);
2738 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
2739 char *buf
, size_t nbytes
, loff_t off
)
2741 return __cgroup_procs_write(of
, buf
, nbytes
, off
, true);
2744 static ssize_t
cgroup_release_agent_write(struct kernfs_open_file
*of
,
2745 char *buf
, size_t nbytes
, loff_t off
)
2747 struct cgroup
*cgrp
;
2749 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
2751 cgrp
= cgroup_kn_lock_live(of
->kn
);
2754 spin_lock(&release_agent_path_lock
);
2755 strlcpy(cgrp
->root
->release_agent_path
, strstrip(buf
),
2756 sizeof(cgrp
->root
->release_agent_path
));
2757 spin_unlock(&release_agent_path_lock
);
2758 cgroup_kn_unlock(of
->kn
);
2762 static int cgroup_release_agent_show(struct seq_file
*seq
, void *v
)
2764 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2766 spin_lock(&release_agent_path_lock
);
2767 seq_puts(seq
, cgrp
->root
->release_agent_path
);
2768 spin_unlock(&release_agent_path_lock
);
2769 seq_putc(seq
, '\n');
2773 static int cgroup_sane_behavior_show(struct seq_file
*seq
, void *v
)
2775 seq_puts(seq
, "0\n");
2779 static void cgroup_print_ss_mask(struct seq_file
*seq
, unsigned long ss_mask
)
2781 struct cgroup_subsys
*ss
;
2782 bool printed
= false;
2785 for_each_subsys_which(ss
, ssid
, &ss_mask
) {
2788 seq_printf(seq
, "%s", ss
->name
);
2792 seq_putc(seq
, '\n');
2795 /* show controllers which are currently attached to the default hierarchy */
2796 static int cgroup_root_controllers_show(struct seq_file
*seq
, void *v
)
2798 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2800 cgroup_print_ss_mask(seq
, cgrp
->root
->subsys_mask
&
2801 ~cgrp_dfl_root_inhibit_ss_mask
);
2805 /* show controllers which are enabled from the parent */
2806 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2808 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2810 cgroup_print_ss_mask(seq
, cgroup_parent(cgrp
)->subtree_control
);
2814 /* show controllers which are enabled for a given cgroup's children */
2815 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2817 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2819 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
2824 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2825 * @cgrp: root of the subtree to update csses for
2827 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2828 * css associations need to be updated accordingly. This function looks up
2829 * all css_sets which are attached to the subtree, creates the matching
2830 * updated css_sets and migrates the tasks to the new ones.
2832 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
2834 LIST_HEAD(preloaded_csets
);
2835 struct cgroup_taskset tset
= CGROUP_TASKSET_INIT(tset
);
2836 struct cgroup_subsys_state
*css
;
2837 struct css_set
*src_cset
;
2840 lockdep_assert_held(&cgroup_mutex
);
2842 percpu_down_write(&cgroup_threadgroup_rwsem
);
2844 /* look up all csses currently attached to @cgrp's subtree */
2845 spin_lock_bh(&css_set_lock
);
2846 css_for_each_descendant_pre(css
, cgroup_css(cgrp
, NULL
)) {
2847 struct cgrp_cset_link
*link
;
2849 /* self is not affected by child_subsys_mask change */
2850 if (css
->cgroup
== cgrp
)
2853 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
)
2854 cgroup_migrate_add_src(link
->cset
, cgrp
,
2857 spin_unlock_bh(&css_set_lock
);
2859 /* NULL dst indicates self on default hierarchy */
2860 ret
= cgroup_migrate_prepare_dst(NULL
, &preloaded_csets
);
2864 spin_lock_bh(&css_set_lock
);
2865 list_for_each_entry(src_cset
, &preloaded_csets
, mg_preload_node
) {
2866 struct task_struct
*task
, *ntask
;
2868 /* src_csets precede dst_csets, break on the first dst_cset */
2869 if (!src_cset
->mg_src_cgrp
)
2872 /* all tasks in src_csets need to be migrated */
2873 list_for_each_entry_safe(task
, ntask
, &src_cset
->tasks
, cg_list
)
2874 cgroup_taskset_add(task
, &tset
);
2876 spin_unlock_bh(&css_set_lock
);
2878 ret
= cgroup_taskset_migrate(&tset
, cgrp
);
2880 cgroup_migrate_finish(&preloaded_csets
);
2881 percpu_up_write(&cgroup_threadgroup_rwsem
);
2885 /* change the enabled child controllers for a cgroup in the default hierarchy */
2886 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
2887 char *buf
, size_t nbytes
,
2890 unsigned long enable
= 0, disable
= 0;
2891 unsigned long css_enable
, css_disable
, old_sc
, new_sc
, old_ss
, new_ss
;
2892 struct cgroup
*cgrp
, *child
;
2893 struct cgroup_subsys
*ss
;
2898 * Parse input - space separated list of subsystem names prefixed
2899 * with either + or -.
2901 buf
= strstrip(buf
);
2902 while ((tok
= strsep(&buf
, " "))) {
2903 unsigned long tmp_ss_mask
= ~cgrp_dfl_root_inhibit_ss_mask
;
2907 for_each_subsys_which(ss
, ssid
, &tmp_ss_mask
) {
2908 if (!cgroup_ssid_enabled(ssid
) ||
2909 strcmp(tok
+ 1, ss
->name
))
2913 enable
|= 1 << ssid
;
2914 disable
&= ~(1 << ssid
);
2915 } else if (*tok
== '-') {
2916 disable
|= 1 << ssid
;
2917 enable
&= ~(1 << ssid
);
2923 if (ssid
== CGROUP_SUBSYS_COUNT
)
2927 cgrp
= cgroup_kn_lock_live(of
->kn
);
2931 for_each_subsys(ss
, ssid
) {
2932 if (enable
& (1 << ssid
)) {
2933 if (cgrp
->subtree_control
& (1 << ssid
)) {
2934 enable
&= ~(1 << ssid
);
2938 /* unavailable or not enabled on the parent? */
2939 if (!(cgrp_dfl_root
.subsys_mask
& (1 << ssid
)) ||
2940 (cgroup_parent(cgrp
) &&
2941 !(cgroup_parent(cgrp
)->subtree_control
& (1 << ssid
)))) {
2945 } else if (disable
& (1 << ssid
)) {
2946 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
2947 disable
&= ~(1 << ssid
);
2951 /* a child has it enabled? */
2952 cgroup_for_each_live_child(child
, cgrp
) {
2953 if (child
->subtree_control
& (1 << ssid
)) {
2961 if (!enable
&& !disable
) {
2967 * Except for the root, subtree_control must be zero for a cgroup
2968 * with tasks so that child cgroups don't compete against tasks.
2970 if (enable
&& cgroup_parent(cgrp
) && !list_empty(&cgrp
->cset_links
)) {
2976 * Update subsys masks and calculate what needs to be done. More
2977 * subsystems than specified may need to be enabled or disabled
2978 * depending on subsystem dependencies.
2980 old_sc
= cgrp
->subtree_control
;
2981 old_ss
= cgrp
->child_subsys_mask
;
2982 new_sc
= (old_sc
| enable
) & ~disable
;
2983 new_ss
= cgroup_calc_child_subsys_mask(cgrp
, new_sc
);
2985 css_enable
= ~old_ss
& new_ss
;
2986 css_disable
= old_ss
& ~new_ss
;
2987 enable
|= css_enable
;
2988 disable
|= css_disable
;
2991 * Because css offlining is asynchronous, userland might try to
2992 * re-enable the same controller while the previous instance is
2993 * still around. In such cases, wait till it's gone using
2996 for_each_subsys_which(ss
, ssid
, &css_enable
) {
2997 cgroup_for_each_live_child(child
, cgrp
) {
3000 if (!cgroup_css(child
, ss
))
3004 prepare_to_wait(&child
->offline_waitq
, &wait
,
3005 TASK_UNINTERRUPTIBLE
);
3006 cgroup_kn_unlock(of
->kn
);
3008 finish_wait(&child
->offline_waitq
, &wait
);
3011 return restart_syscall();
3015 cgrp
->subtree_control
= new_sc
;
3016 cgrp
->child_subsys_mask
= new_ss
;
3019 * Create new csses or make the existing ones visible. A css is
3020 * created invisible if it's being implicitly enabled through
3021 * dependency. An invisible css is made visible when the userland
3022 * explicitly enables it.
3024 for_each_subsys(ss
, ssid
) {
3025 if (!(enable
& (1 << ssid
)))
3028 cgroup_for_each_live_child(child
, cgrp
) {
3029 if (css_enable
& (1 << ssid
))
3030 ret
= create_css(child
, ss
,
3031 cgrp
->subtree_control
& (1 << ssid
));
3033 ret
= css_populate_dir(cgroup_css(child
, ss
),
3041 * At this point, cgroup_e_css() results reflect the new csses
3042 * making the following cgroup_update_dfl_csses() properly update
3043 * css associations of all tasks in the subtree.
3045 ret
= cgroup_update_dfl_csses(cgrp
);
3050 * All tasks are migrated out of disabled csses. Kill or hide
3051 * them. A css is hidden when the userland requests it to be
3052 * disabled while other subsystems are still depending on it. The
3053 * css must not actively control resources and be in the vanilla
3054 * state if it's made visible again later. Controllers which may
3055 * be depended upon should provide ->css_reset() for this purpose.
3057 for_each_subsys(ss
, ssid
) {
3058 if (!(disable
& (1 << ssid
)))
3061 cgroup_for_each_live_child(child
, cgrp
) {
3062 struct cgroup_subsys_state
*css
= cgroup_css(child
, ss
);
3064 if (css_disable
& (1 << ssid
)) {
3067 css_clear_dir(css
, NULL
);
3075 * The effective csses of all the descendants (excluding @cgrp) may
3076 * have changed. Subsystems can optionally subscribe to this event
3077 * by implementing ->css_e_css_changed() which is invoked if any of
3078 * the effective csses seen from the css's cgroup may have changed.
3080 for_each_subsys(ss
, ssid
) {
3081 struct cgroup_subsys_state
*this_css
= cgroup_css(cgrp
, ss
);
3082 struct cgroup_subsys_state
*css
;
3084 if (!ss
->css_e_css_changed
|| !this_css
)
3087 css_for_each_descendant_pre(css
, this_css
)
3088 if (css
!= this_css
)
3089 ss
->css_e_css_changed(css
);
3092 kernfs_activate(cgrp
->kn
);
3095 cgroup_kn_unlock(of
->kn
);
3096 return ret
?: nbytes
;
3099 cgrp
->subtree_control
= old_sc
;
3100 cgrp
->child_subsys_mask
= old_ss
;
3102 for_each_subsys(ss
, ssid
) {
3103 if (!(enable
& (1 << ssid
)))
3106 cgroup_for_each_live_child(child
, cgrp
) {
3107 struct cgroup_subsys_state
*css
= cgroup_css(child
, ss
);
3112 if (css_enable
& (1 << ssid
))
3115 css_clear_dir(css
, NULL
);
3121 static int cgroup_events_show(struct seq_file
*seq
, void *v
)
3123 seq_printf(seq
, "populated %d\n",
3124 cgroup_is_populated(seq_css(seq
)->cgroup
));
3128 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
3129 size_t nbytes
, loff_t off
)
3131 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
3132 struct cftype
*cft
= of
->kn
->priv
;
3133 struct cgroup_subsys_state
*css
;
3137 return cft
->write(of
, buf
, nbytes
, off
);
3140 * kernfs guarantees that a file isn't deleted with operations in
3141 * flight, which means that the matching css is and stays alive and
3142 * doesn't need to be pinned. The RCU locking is not necessary
3143 * either. It's just for the convenience of using cgroup_css().
3146 css
= cgroup_css(cgrp
, cft
->ss
);
3149 if (cft
->write_u64
) {
3150 unsigned long long v
;
3151 ret
= kstrtoull(buf
, 0, &v
);
3153 ret
= cft
->write_u64(css
, cft
, v
);
3154 } else if (cft
->write_s64
) {
3156 ret
= kstrtoll(buf
, 0, &v
);
3158 ret
= cft
->write_s64(css
, cft
, v
);
3163 return ret
?: nbytes
;
3166 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
3168 return seq_cft(seq
)->seq_start(seq
, ppos
);
3171 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
3173 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
3176 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
3178 seq_cft(seq
)->seq_stop(seq
, v
);
3181 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
3183 struct cftype
*cft
= seq_cft(m
);
3184 struct cgroup_subsys_state
*css
= seq_css(m
);
3187 return cft
->seq_show(m
, arg
);
3190 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
3191 else if (cft
->read_s64
)
3192 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
3198 static struct kernfs_ops cgroup_kf_single_ops
= {
3199 .atomic_write_len
= PAGE_SIZE
,
3200 .write
= cgroup_file_write
,
3201 .seq_show
= cgroup_seqfile_show
,
3204 static struct kernfs_ops cgroup_kf_ops
= {
3205 .atomic_write_len
= PAGE_SIZE
,
3206 .write
= cgroup_file_write
,
3207 .seq_start
= cgroup_seqfile_start
,
3208 .seq_next
= cgroup_seqfile_next
,
3209 .seq_stop
= cgroup_seqfile_stop
,
3210 .seq_show
= cgroup_seqfile_show
,
3214 * cgroup_rename - Only allow simple rename of directories in place.
3216 static int cgroup_rename(struct kernfs_node
*kn
, struct kernfs_node
*new_parent
,
3217 const char *new_name_str
)
3219 struct cgroup
*cgrp
= kn
->priv
;
3222 if (kernfs_type(kn
) != KERNFS_DIR
)
3224 if (kn
->parent
!= new_parent
)
3228 * This isn't a proper migration and its usefulness is very
3229 * limited. Disallow on the default hierarchy.
3231 if (cgroup_on_dfl(cgrp
))
3235 * We're gonna grab cgroup_mutex which nests outside kernfs
3236 * active_ref. kernfs_rename() doesn't require active_ref
3237 * protection. Break them before grabbing cgroup_mutex.
3239 kernfs_break_active_protection(new_parent
);
3240 kernfs_break_active_protection(kn
);
3242 mutex_lock(&cgroup_mutex
);
3244 ret
= kernfs_rename(kn
, new_parent
, new_name_str
);
3246 mutex_unlock(&cgroup_mutex
);
3248 kernfs_unbreak_active_protection(kn
);
3249 kernfs_unbreak_active_protection(new_parent
);
3253 /* set uid and gid of cgroup dirs and files to that of the creator */
3254 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3256 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3257 .ia_uid
= current_fsuid(),
3258 .ia_gid
= current_fsgid(), };
3260 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3261 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3264 return kernfs_setattr(kn
, &iattr
);
3267 static int cgroup_add_file(struct cgroup_subsys_state
*css
, struct cgroup
*cgrp
,
3270 char name
[CGROUP_FILE_NAME_MAX
];
3271 struct kernfs_node
*kn
;
3272 struct lock_class_key
*key
= NULL
;
3275 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3276 key
= &cft
->lockdep_key
;
3278 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3279 cgroup_file_mode(cft
), 0, cft
->kf_ops
, cft
,
3284 ret
= cgroup_kn_set_ugid(kn
);
3290 if (cft
->file_offset
) {
3291 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
3295 list_add(&cfile
->node
, &css
->files
);
3302 * cgroup_addrm_files - add or remove files to a cgroup directory
3303 * @css: the target css
3304 * @cgrp: the target cgroup (usually css->cgroup)
3305 * @cfts: array of cftypes to be added
3306 * @is_add: whether to add or remove
3308 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3309 * For removals, this function never fails.
3311 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
3312 struct cgroup
*cgrp
, struct cftype cfts
[],
3315 struct cftype
*cft
, *cft_end
= NULL
;
3318 lockdep_assert_held(&cgroup_mutex
);
3321 for (cft
= cfts
; cft
!= cft_end
&& cft
->name
[0] != '\0'; cft
++) {
3322 /* does cft->flags tell us to skip this file on @cgrp? */
3323 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3325 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3327 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3329 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3333 ret
= cgroup_add_file(css
, cgrp
, cft
);
3335 pr_warn("%s: failed to add %s, err=%d\n",
3336 __func__
, cft
->name
, ret
);
3342 cgroup_rm_file(cgrp
, cft
);
3348 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3351 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3352 struct cgroup
*root
= &ss
->root
->cgrp
;
3353 struct cgroup_subsys_state
*css
;
3356 lockdep_assert_held(&cgroup_mutex
);
3358 /* add/rm files for all cgroups created before */
3359 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3360 struct cgroup
*cgrp
= css
->cgroup
;
3362 if (cgroup_is_dead(cgrp
))
3365 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, is_add
);
3371 kernfs_activate(root
->kn
);
3375 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3379 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3380 /* free copy for custom atomic_write_len, see init_cftypes() */
3381 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3386 /* revert flags set by cgroup core while adding @cfts */
3387 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3391 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3395 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3396 struct kernfs_ops
*kf_ops
;
3398 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3401 kf_ops
= &cgroup_kf_ops
;
3403 kf_ops
= &cgroup_kf_single_ops
;
3406 * Ugh... if @cft wants a custom max_write_len, we need to
3407 * make a copy of kf_ops to set its atomic_write_len.
3409 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3410 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3412 cgroup_exit_cftypes(cfts
);
3415 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3418 cft
->kf_ops
= kf_ops
;
3425 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3427 lockdep_assert_held(&cgroup_mutex
);
3429 if (!cfts
|| !cfts
[0].ss
)
3432 list_del(&cfts
->node
);
3433 cgroup_apply_cftypes(cfts
, false);
3434 cgroup_exit_cftypes(cfts
);
3439 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3440 * @cfts: zero-length name terminated array of cftypes
3442 * Unregister @cfts. Files described by @cfts are removed from all
3443 * existing cgroups and all future cgroups won't have them either. This
3444 * function can be called anytime whether @cfts' subsys is attached or not.
3446 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3449 int cgroup_rm_cftypes(struct cftype
*cfts
)
3453 mutex_lock(&cgroup_mutex
);
3454 ret
= cgroup_rm_cftypes_locked(cfts
);
3455 mutex_unlock(&cgroup_mutex
);
3460 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3461 * @ss: target cgroup subsystem
3462 * @cfts: zero-length name terminated array of cftypes
3464 * Register @cfts to @ss. Files described by @cfts are created for all
3465 * existing cgroups to which @ss is attached and all future cgroups will
3466 * have them too. This function can be called anytime whether @ss is
3469 * Returns 0 on successful registration, -errno on failure. Note that this
3470 * function currently returns 0 as long as @cfts registration is successful
3471 * even if some file creation attempts on existing cgroups fail.
3473 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3477 if (!cgroup_ssid_enabled(ss
->id
))
3480 if (!cfts
|| cfts
[0].name
[0] == '\0')
3483 ret
= cgroup_init_cftypes(ss
, cfts
);
3487 mutex_lock(&cgroup_mutex
);
3489 list_add_tail(&cfts
->node
, &ss
->cfts
);
3490 ret
= cgroup_apply_cftypes(cfts
, true);
3492 cgroup_rm_cftypes_locked(cfts
);
3494 mutex_unlock(&cgroup_mutex
);
3499 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3500 * @ss: target cgroup subsystem
3501 * @cfts: zero-length name terminated array of cftypes
3503 * Similar to cgroup_add_cftypes() but the added files are only used for
3504 * the default hierarchy.
3506 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3510 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3511 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
3512 return cgroup_add_cftypes(ss
, cfts
);
3516 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3517 * @ss: target cgroup subsystem
3518 * @cfts: zero-length name terminated array of cftypes
3520 * Similar to cgroup_add_cftypes() but the added files are only used for
3521 * the legacy hierarchies.
3523 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3527 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3528 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
3529 return cgroup_add_cftypes(ss
, cfts
);
3533 * cgroup_task_count - count the number of tasks in a cgroup.
3534 * @cgrp: the cgroup in question
3536 * Return the number of tasks in the cgroup.
3538 static int cgroup_task_count(const struct cgroup
*cgrp
)
3541 struct cgrp_cset_link
*link
;
3543 spin_lock_bh(&css_set_lock
);
3544 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
3545 count
+= atomic_read(&link
->cset
->refcount
);
3546 spin_unlock_bh(&css_set_lock
);
3551 * css_next_child - find the next child of a given css
3552 * @pos: the current position (%NULL to initiate traversal)
3553 * @parent: css whose children to walk
3555 * This function returns the next child of @parent and should be called
3556 * under either cgroup_mutex or RCU read lock. The only requirement is
3557 * that @parent and @pos are accessible. The next sibling is guaranteed to
3558 * be returned regardless of their states.
3560 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3561 * css which finished ->css_online() is guaranteed to be visible in the
3562 * future iterations and will stay visible until the last reference is put.
3563 * A css which hasn't finished ->css_online() or already finished
3564 * ->css_offline() may show up during traversal. It's each subsystem's
3565 * responsibility to synchronize against on/offlining.
3567 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
3568 struct cgroup_subsys_state
*parent
)
3570 struct cgroup_subsys_state
*next
;
3572 cgroup_assert_mutex_or_rcu_locked();
3575 * @pos could already have been unlinked from the sibling list.
3576 * Once a cgroup is removed, its ->sibling.next is no longer
3577 * updated when its next sibling changes. CSS_RELEASED is set when
3578 * @pos is taken off list, at which time its next pointer is valid,
3579 * and, as releases are serialized, the one pointed to by the next
3580 * pointer is guaranteed to not have started release yet. This
3581 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3582 * critical section, the one pointed to by its next pointer is
3583 * guaranteed to not have finished its RCU grace period even if we
3584 * have dropped rcu_read_lock() inbetween iterations.
3586 * If @pos has CSS_RELEASED set, its next pointer can't be
3587 * dereferenced; however, as each css is given a monotonically
3588 * increasing unique serial number and always appended to the
3589 * sibling list, the next one can be found by walking the parent's
3590 * children until the first css with higher serial number than
3591 * @pos's. While this path can be slower, it happens iff iteration
3592 * races against release and the race window is very small.
3595 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
3596 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
3597 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
3599 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
3600 if (next
->serial_nr
> pos
->serial_nr
)
3605 * @next, if not pointing to the head, can be dereferenced and is
3608 if (&next
->sibling
!= &parent
->children
)
3614 * css_next_descendant_pre - find the next descendant for pre-order walk
3615 * @pos: the current position (%NULL to initiate traversal)
3616 * @root: css whose descendants to walk
3618 * To be used by css_for_each_descendant_pre(). Find the next descendant
3619 * to visit for pre-order traversal of @root's descendants. @root is
3620 * included in the iteration and the first node to be visited.
3622 * While this function requires cgroup_mutex or RCU read locking, it
3623 * doesn't require the whole traversal to be contained in a single critical
3624 * section. This function will return the correct next descendant as long
3625 * as both @pos and @root are accessible and @pos is a descendant of @root.
3627 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3628 * css which finished ->css_online() is guaranteed to be visible in the
3629 * future iterations and will stay visible until the last reference is put.
3630 * A css which hasn't finished ->css_online() or already finished
3631 * ->css_offline() may show up during traversal. It's each subsystem's
3632 * responsibility to synchronize against on/offlining.
3634 struct cgroup_subsys_state
*
3635 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
3636 struct cgroup_subsys_state
*root
)
3638 struct cgroup_subsys_state
*next
;
3640 cgroup_assert_mutex_or_rcu_locked();
3642 /* if first iteration, visit @root */
3646 /* visit the first child if exists */
3647 next
= css_next_child(NULL
, pos
);
3651 /* no child, visit my or the closest ancestor's next sibling */
3652 while (pos
!= root
) {
3653 next
= css_next_child(pos
, pos
->parent
);
3663 * css_rightmost_descendant - return the rightmost descendant of a css
3664 * @pos: css of interest
3666 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3667 * is returned. This can be used during pre-order traversal to skip
3670 * While this function requires cgroup_mutex or RCU read locking, it
3671 * doesn't require the whole traversal to be contained in a single critical
3672 * section. This function will return the correct rightmost descendant as
3673 * long as @pos is accessible.
3675 struct cgroup_subsys_state
*
3676 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
3678 struct cgroup_subsys_state
*last
, *tmp
;
3680 cgroup_assert_mutex_or_rcu_locked();
3684 /* ->prev isn't RCU safe, walk ->next till the end */
3686 css_for_each_child(tmp
, last
)
3693 static struct cgroup_subsys_state
*
3694 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
3696 struct cgroup_subsys_state
*last
;
3700 pos
= css_next_child(NULL
, pos
);
3707 * css_next_descendant_post - find the next descendant for post-order walk
3708 * @pos: the current position (%NULL to initiate traversal)
3709 * @root: css whose descendants to walk
3711 * To be used by css_for_each_descendant_post(). Find the next descendant
3712 * to visit for post-order traversal of @root's descendants. @root is
3713 * included in the iteration and the last node to be visited.
3715 * While this function requires cgroup_mutex or RCU read locking, it
3716 * doesn't require the whole traversal to be contained in a single critical
3717 * section. This function will return the correct next descendant as long
3718 * as both @pos and @cgroup are accessible and @pos is a descendant of
3721 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3722 * css which finished ->css_online() is guaranteed to be visible in the
3723 * future iterations and will stay visible until the last reference is put.
3724 * A css which hasn't finished ->css_online() or already finished
3725 * ->css_offline() may show up during traversal. It's each subsystem's
3726 * responsibility to synchronize against on/offlining.
3728 struct cgroup_subsys_state
*
3729 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
3730 struct cgroup_subsys_state
*root
)
3732 struct cgroup_subsys_state
*next
;
3734 cgroup_assert_mutex_or_rcu_locked();
3736 /* if first iteration, visit leftmost descendant which may be @root */
3738 return css_leftmost_descendant(root
);
3740 /* if we visited @root, we're done */
3744 /* if there's an unvisited sibling, visit its leftmost descendant */
3745 next
= css_next_child(pos
, pos
->parent
);
3747 return css_leftmost_descendant(next
);
3749 /* no sibling left, visit parent */
3754 * css_has_online_children - does a css have online children
3755 * @css: the target css
3757 * Returns %true if @css has any online children; otherwise, %false. This
3758 * function can be called from any context but the caller is responsible
3759 * for synchronizing against on/offlining as necessary.
3761 bool css_has_online_children(struct cgroup_subsys_state
*css
)
3763 struct cgroup_subsys_state
*child
;
3767 css_for_each_child(child
, css
) {
3768 if (child
->flags
& CSS_ONLINE
) {
3778 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3779 * @it: the iterator to advance
3781 * Advance @it to the next css_set to walk.
3783 static void css_task_iter_advance_css_set(struct css_task_iter
*it
)
3785 struct list_head
*l
= it
->cset_pos
;
3786 struct cgrp_cset_link
*link
;
3787 struct css_set
*cset
;
3789 lockdep_assert_held(&css_set_lock
);
3791 /* Advance to the next non-empty css_set */
3794 if (l
== it
->cset_head
) {
3795 it
->cset_pos
= NULL
;
3796 it
->task_pos
= NULL
;
3801 cset
= container_of(l
, struct css_set
,
3802 e_cset_node
[it
->ss
->id
]);
3804 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
3807 } while (!css_set_populated(cset
));
3811 if (!list_empty(&cset
->tasks
))
3812 it
->task_pos
= cset
->tasks
.next
;
3814 it
->task_pos
= cset
->mg_tasks
.next
;
3816 it
->tasks_head
= &cset
->tasks
;
3817 it
->mg_tasks_head
= &cset
->mg_tasks
;
3820 * We don't keep css_sets locked across iteration steps and thus
3821 * need to take steps to ensure that iteration can be resumed after
3822 * the lock is re-acquired. Iteration is performed at two levels -
3823 * css_sets and tasks in them.
3825 * Once created, a css_set never leaves its cgroup lists, so a
3826 * pinned css_set is guaranteed to stay put and we can resume
3827 * iteration afterwards.
3829 * Tasks may leave @cset across iteration steps. This is resolved
3830 * by registering each iterator with the css_set currently being
3831 * walked and making css_set_move_task() advance iterators whose
3832 * next task is leaving.
3835 list_del(&it
->iters_node
);
3836 put_css_set_locked(it
->cur_cset
);
3839 it
->cur_cset
= cset
;
3840 list_add(&it
->iters_node
, &cset
->task_iters
);
3843 static void css_task_iter_advance(struct css_task_iter
*it
)
3845 struct list_head
*l
= it
->task_pos
;
3847 lockdep_assert_held(&css_set_lock
);
3851 * Advance iterator to find next entry. cset->tasks is consumed
3852 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3857 if (l
== it
->tasks_head
)
3858 l
= it
->mg_tasks_head
->next
;
3860 if (l
== it
->mg_tasks_head
)
3861 css_task_iter_advance_css_set(it
);
3867 * css_task_iter_start - initiate task iteration
3868 * @css: the css to walk tasks of
3869 * @it: the task iterator to use
3871 * Initiate iteration through the tasks of @css. The caller can call
3872 * css_task_iter_next() to walk through the tasks until the function
3873 * returns NULL. On completion of iteration, css_task_iter_end() must be
3876 void css_task_iter_start(struct cgroup_subsys_state
*css
,
3877 struct css_task_iter
*it
)
3879 /* no one should try to iterate before mounting cgroups */
3880 WARN_ON_ONCE(!use_task_css_set_links
);
3882 memset(it
, 0, sizeof(*it
));
3884 spin_lock_bh(&css_set_lock
);
3889 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
3891 it
->cset_pos
= &css
->cgroup
->cset_links
;
3893 it
->cset_head
= it
->cset_pos
;
3895 css_task_iter_advance_css_set(it
);
3897 spin_unlock_bh(&css_set_lock
);
3901 * css_task_iter_next - return the next task for the iterator
3902 * @it: the task iterator being iterated
3904 * The "next" function for task iteration. @it should have been
3905 * initialized via css_task_iter_start(). Returns NULL when the iteration
3908 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
3911 put_task_struct(it
->cur_task
);
3912 it
->cur_task
= NULL
;
3915 spin_lock_bh(&css_set_lock
);
3918 it
->cur_task
= list_entry(it
->task_pos
, struct task_struct
,
3920 get_task_struct(it
->cur_task
);
3921 css_task_iter_advance(it
);
3924 spin_unlock_bh(&css_set_lock
);
3926 return it
->cur_task
;
3930 * css_task_iter_end - finish task iteration
3931 * @it: the task iterator to finish
3933 * Finish task iteration started by css_task_iter_start().
3935 void css_task_iter_end(struct css_task_iter
*it
)
3938 spin_lock_bh(&css_set_lock
);
3939 list_del(&it
->iters_node
);
3940 put_css_set_locked(it
->cur_cset
);
3941 spin_unlock_bh(&css_set_lock
);
3945 put_task_struct(it
->cur_task
);
3949 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3950 * @to: cgroup to which the tasks will be moved
3951 * @from: cgroup in which the tasks currently reside
3953 * Locking rules between cgroup_post_fork() and the migration path
3954 * guarantee that, if a task is forking while being migrated, the new child
3955 * is guaranteed to be either visible in the source cgroup after the
3956 * parent's migration is complete or put into the target cgroup. No task
3957 * can slip out of migration through forking.
3959 int cgroup_transfer_tasks(struct cgroup
*to
, struct cgroup
*from
)
3961 LIST_HEAD(preloaded_csets
);
3962 struct cgrp_cset_link
*link
;
3963 struct css_task_iter it
;
3964 struct task_struct
*task
;
3967 mutex_lock(&cgroup_mutex
);
3969 /* all tasks in @from are being moved, all csets are source */
3970 spin_lock_bh(&css_set_lock
);
3971 list_for_each_entry(link
, &from
->cset_links
, cset_link
)
3972 cgroup_migrate_add_src(link
->cset
, to
, &preloaded_csets
);
3973 spin_unlock_bh(&css_set_lock
);
3975 ret
= cgroup_migrate_prepare_dst(to
, &preloaded_csets
);
3980 * Migrate tasks one-by-one until @form is empty. This fails iff
3981 * ->can_attach() fails.
3984 css_task_iter_start(&from
->self
, &it
);
3985 task
= css_task_iter_next(&it
);
3987 get_task_struct(task
);
3988 css_task_iter_end(&it
);
3991 ret
= cgroup_migrate(task
, false, to
);
3992 put_task_struct(task
);
3994 } while (task
&& !ret
);
3996 cgroup_migrate_finish(&preloaded_csets
);
3997 mutex_unlock(&cgroup_mutex
);
4002 * Stuff for reading the 'tasks'/'procs' files.
4004 * Reading this file can return large amounts of data if a cgroup has
4005 * *lots* of attached tasks. So it may need several calls to read(),
4006 * but we cannot guarantee that the information we produce is correct
4007 * unless we produce it entirely atomically.
4011 /* which pidlist file are we talking about? */
4012 enum cgroup_filetype
{
4018 * A pidlist is a list of pids that virtually represents the contents of one
4019 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4020 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4023 struct cgroup_pidlist
{
4025 * used to find which pidlist is wanted. doesn't change as long as
4026 * this particular list stays in the list.
4028 struct { enum cgroup_filetype type
; struct pid_namespace
*ns
; } key
;
4031 /* how many elements the above list has */
4033 /* each of these stored in a list by its cgroup */
4034 struct list_head links
;
4035 /* pointer to the cgroup we belong to, for list removal purposes */
4036 struct cgroup
*owner
;
4037 /* for delayed destruction */
4038 struct delayed_work destroy_dwork
;
4042 * The following two functions "fix" the issue where there are more pids
4043 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4044 * TODO: replace with a kernel-wide solution to this problem
4046 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4047 static void *pidlist_allocate(int count
)
4049 if (PIDLIST_TOO_LARGE(count
))
4050 return vmalloc(count
* sizeof(pid_t
));
4052 return kmalloc(count
* sizeof(pid_t
), GFP_KERNEL
);
4055 static void pidlist_free(void *p
)
4061 * Used to destroy all pidlists lingering waiting for destroy timer. None
4062 * should be left afterwards.
4064 static void cgroup_pidlist_destroy_all(struct cgroup
*cgrp
)
4066 struct cgroup_pidlist
*l
, *tmp_l
;
4068 mutex_lock(&cgrp
->pidlist_mutex
);
4069 list_for_each_entry_safe(l
, tmp_l
, &cgrp
->pidlists
, links
)
4070 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
, 0);
4071 mutex_unlock(&cgrp
->pidlist_mutex
);
4073 flush_workqueue(cgroup_pidlist_destroy_wq
);
4074 BUG_ON(!list_empty(&cgrp
->pidlists
));
4077 static void cgroup_pidlist_destroy_work_fn(struct work_struct
*work
)
4079 struct delayed_work
*dwork
= to_delayed_work(work
);
4080 struct cgroup_pidlist
*l
= container_of(dwork
, struct cgroup_pidlist
,
4082 struct cgroup_pidlist
*tofree
= NULL
;
4084 mutex_lock(&l
->owner
->pidlist_mutex
);
4087 * Destroy iff we didn't get queued again. The state won't change
4088 * as destroy_dwork can only be queued while locked.
4090 if (!delayed_work_pending(dwork
)) {
4091 list_del(&l
->links
);
4092 pidlist_free(l
->list
);
4093 put_pid_ns(l
->key
.ns
);
4097 mutex_unlock(&l
->owner
->pidlist_mutex
);
4102 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4103 * Returns the number of unique elements.
4105 static int pidlist_uniq(pid_t
*list
, int length
)
4110 * we presume the 0th element is unique, so i starts at 1. trivial
4111 * edge cases first; no work needs to be done for either
4113 if (length
== 0 || length
== 1)
4115 /* src and dest walk down the list; dest counts unique elements */
4116 for (src
= 1; src
< length
; src
++) {
4117 /* find next unique element */
4118 while (list
[src
] == list
[src
-1]) {
4123 /* dest always points to where the next unique element goes */
4124 list
[dest
] = list
[src
];
4132 * The two pid files - task and cgroup.procs - guaranteed that the result
4133 * is sorted, which forced this whole pidlist fiasco. As pid order is
4134 * different per namespace, each namespace needs differently sorted list,
4135 * making it impossible to use, for example, single rbtree of member tasks
4136 * sorted by task pointer. As pidlists can be fairly large, allocating one
4137 * per open file is dangerous, so cgroup had to implement shared pool of
4138 * pidlists keyed by cgroup and namespace.
4140 * All this extra complexity was caused by the original implementation
4141 * committing to an entirely unnecessary property. In the long term, we
4142 * want to do away with it. Explicitly scramble sort order if on the
4143 * default hierarchy so that no such expectation exists in the new
4146 * Scrambling is done by swapping every two consecutive bits, which is
4147 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4149 static pid_t
pid_fry(pid_t pid
)
4151 unsigned a
= pid
& 0x55555555;
4152 unsigned b
= pid
& 0xAAAAAAAA;
4154 return (a
<< 1) | (b
>> 1);
4157 static pid_t
cgroup_pid_fry(struct cgroup
*cgrp
, pid_t pid
)
4159 if (cgroup_on_dfl(cgrp
))
4160 return pid_fry(pid
);
4165 static int cmppid(const void *a
, const void *b
)
4167 return *(pid_t
*)a
- *(pid_t
*)b
;
4170 static int fried_cmppid(const void *a
, const void *b
)
4172 return pid_fry(*(pid_t
*)a
) - pid_fry(*(pid_t
*)b
);
4175 static struct cgroup_pidlist
*cgroup_pidlist_find(struct cgroup
*cgrp
,
4176 enum cgroup_filetype type
)
4178 struct cgroup_pidlist
*l
;
4179 /* don't need task_nsproxy() if we're looking at ourself */
4180 struct pid_namespace
*ns
= task_active_pid_ns(current
);
4182 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4184 list_for_each_entry(l
, &cgrp
->pidlists
, links
)
4185 if (l
->key
.type
== type
&& l
->key
.ns
== ns
)
4191 * find the appropriate pidlist for our purpose (given procs vs tasks)
4192 * returns with the lock on that pidlist already held, and takes care
4193 * of the use count, or returns NULL with no locks held if we're out of
4196 static struct cgroup_pidlist
*cgroup_pidlist_find_create(struct cgroup
*cgrp
,
4197 enum cgroup_filetype type
)
4199 struct cgroup_pidlist
*l
;
4201 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4203 l
= cgroup_pidlist_find(cgrp
, type
);
4207 /* entry not found; create a new one */
4208 l
= kzalloc(sizeof(struct cgroup_pidlist
), GFP_KERNEL
);
4212 INIT_DELAYED_WORK(&l
->destroy_dwork
, cgroup_pidlist_destroy_work_fn
);
4214 /* don't need task_nsproxy() if we're looking at ourself */
4215 l
->key
.ns
= get_pid_ns(task_active_pid_ns(current
));
4217 list_add(&l
->links
, &cgrp
->pidlists
);
4222 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4224 static int pidlist_array_load(struct cgroup
*cgrp
, enum cgroup_filetype type
,
4225 struct cgroup_pidlist
**lp
)
4229 int pid
, n
= 0; /* used for populating the array */
4230 struct css_task_iter it
;
4231 struct task_struct
*tsk
;
4232 struct cgroup_pidlist
*l
;
4234 lockdep_assert_held(&cgrp
->pidlist_mutex
);
4237 * If cgroup gets more users after we read count, we won't have
4238 * enough space - tough. This race is indistinguishable to the
4239 * caller from the case that the additional cgroup users didn't
4240 * show up until sometime later on.
4242 length
= cgroup_task_count(cgrp
);
4243 array
= pidlist_allocate(length
);
4246 /* now, populate the array */
4247 css_task_iter_start(&cgrp
->self
, &it
);
4248 while ((tsk
= css_task_iter_next(&it
))) {
4249 if (unlikely(n
== length
))
4251 /* get tgid or pid for procs or tasks file respectively */
4252 if (type
== CGROUP_FILE_PROCS
)
4253 pid
= task_tgid_vnr(tsk
);
4255 pid
= task_pid_vnr(tsk
);
4256 if (pid
> 0) /* make sure to only use valid results */
4259 css_task_iter_end(&it
);
4261 /* now sort & (if procs) strip out duplicates */
4262 if (cgroup_on_dfl(cgrp
))
4263 sort(array
, length
, sizeof(pid_t
), fried_cmppid
, NULL
);
4265 sort(array
, length
, sizeof(pid_t
), cmppid
, NULL
);
4266 if (type
== CGROUP_FILE_PROCS
)
4267 length
= pidlist_uniq(array
, length
);
4269 l
= cgroup_pidlist_find_create(cgrp
, type
);
4271 pidlist_free(array
);
4275 /* store array, freeing old if necessary */
4276 pidlist_free(l
->list
);
4284 * cgroupstats_build - build and fill cgroupstats
4285 * @stats: cgroupstats to fill information into
4286 * @dentry: A dentry entry belonging to the cgroup for which stats have
4289 * Build and fill cgroupstats so that taskstats can export it to user
4292 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
4294 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
4295 struct cgroup
*cgrp
;
4296 struct css_task_iter it
;
4297 struct task_struct
*tsk
;
4299 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4300 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
4301 kernfs_type(kn
) != KERNFS_DIR
)
4304 mutex_lock(&cgroup_mutex
);
4307 * We aren't being called from kernfs and there's no guarantee on
4308 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4309 * @kn->priv is RCU safe. Let's do the RCU dancing.
4312 cgrp
= rcu_dereference(kn
->priv
);
4313 if (!cgrp
|| cgroup_is_dead(cgrp
)) {
4315 mutex_unlock(&cgroup_mutex
);
4320 css_task_iter_start(&cgrp
->self
, &it
);
4321 while ((tsk
= css_task_iter_next(&it
))) {
4322 switch (tsk
->state
) {
4324 stats
->nr_running
++;
4326 case TASK_INTERRUPTIBLE
:
4327 stats
->nr_sleeping
++;
4329 case TASK_UNINTERRUPTIBLE
:
4330 stats
->nr_uninterruptible
++;
4333 stats
->nr_stopped
++;
4336 if (delayacct_is_task_waiting_on_io(tsk
))
4337 stats
->nr_io_wait
++;
4341 css_task_iter_end(&it
);
4343 mutex_unlock(&cgroup_mutex
);
4349 * seq_file methods for the tasks/procs files. The seq_file position is the
4350 * next pid to display; the seq_file iterator is a pointer to the pid
4351 * in the cgroup->l->list array.
4354 static void *cgroup_pidlist_start(struct seq_file
*s
, loff_t
*pos
)
4357 * Initially we receive a position value that corresponds to
4358 * one more than the last pid shown (or 0 on the first call or
4359 * after a seek to the start). Use a binary-search to find the
4360 * next pid to display, if any
4362 struct kernfs_open_file
*of
= s
->private;
4363 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4364 struct cgroup_pidlist
*l
;
4365 enum cgroup_filetype type
= seq_cft(s
)->private;
4366 int index
= 0, pid
= *pos
;
4369 mutex_lock(&cgrp
->pidlist_mutex
);
4372 * !NULL @of->priv indicates that this isn't the first start()
4373 * after open. If the matching pidlist is around, we can use that.
4374 * Look for it. Note that @of->priv can't be used directly. It
4375 * could already have been destroyed.
4378 of
->priv
= cgroup_pidlist_find(cgrp
, type
);
4381 * Either this is the first start() after open or the matching
4382 * pidlist has been destroyed inbetween. Create a new one.
4385 ret
= pidlist_array_load(cgrp
, type
,
4386 (struct cgroup_pidlist
**)&of
->priv
);
4388 return ERR_PTR(ret
);
4393 int end
= l
->length
;
4395 while (index
< end
) {
4396 int mid
= (index
+ end
) / 2;
4397 if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) == pid
) {
4400 } else if (cgroup_pid_fry(cgrp
, l
->list
[mid
]) <= pid
)
4406 /* If we're off the end of the array, we're done */
4407 if (index
>= l
->length
)
4409 /* Update the abstract position to be the actual pid that we found */
4410 iter
= l
->list
+ index
;
4411 *pos
= cgroup_pid_fry(cgrp
, *iter
);
4415 static void cgroup_pidlist_stop(struct seq_file
*s
, void *v
)
4417 struct kernfs_open_file
*of
= s
->private;
4418 struct cgroup_pidlist
*l
= of
->priv
;
4421 mod_delayed_work(cgroup_pidlist_destroy_wq
, &l
->destroy_dwork
,
4422 CGROUP_PIDLIST_DESTROY_DELAY
);
4423 mutex_unlock(&seq_css(s
)->cgroup
->pidlist_mutex
);
4426 static void *cgroup_pidlist_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4428 struct kernfs_open_file
*of
= s
->private;
4429 struct cgroup_pidlist
*l
= of
->priv
;
4431 pid_t
*end
= l
->list
+ l
->length
;
4433 * Advance to the next pid in the array. If this goes off the
4440 *pos
= cgroup_pid_fry(seq_css(s
)->cgroup
, *p
);
4445 static int cgroup_pidlist_show(struct seq_file
*s
, void *v
)
4447 seq_printf(s
, "%d\n", *(int *)v
);
4452 static u64
cgroup_read_notify_on_release(struct cgroup_subsys_state
*css
,
4455 return notify_on_release(css
->cgroup
);
4458 static int cgroup_write_notify_on_release(struct cgroup_subsys_state
*css
,
4459 struct cftype
*cft
, u64 val
)
4462 set_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4464 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &css
->cgroup
->flags
);
4468 static u64
cgroup_clone_children_read(struct cgroup_subsys_state
*css
,
4471 return test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4474 static int cgroup_clone_children_write(struct cgroup_subsys_state
*css
,
4475 struct cftype
*cft
, u64 val
)
4478 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4480 clear_bit(CGRP_CPUSET_CLONE_CHILDREN
, &css
->cgroup
->flags
);
4484 /* cgroup core interface files for the default hierarchy */
4485 static struct cftype cgroup_dfl_base_files
[] = {
4487 .name
= "cgroup.procs",
4488 .file_offset
= offsetof(struct cgroup
, procs_file
),
4489 .seq_start
= cgroup_pidlist_start
,
4490 .seq_next
= cgroup_pidlist_next
,
4491 .seq_stop
= cgroup_pidlist_stop
,
4492 .seq_show
= cgroup_pidlist_show
,
4493 .private = CGROUP_FILE_PROCS
,
4494 .write
= cgroup_procs_write
,
4497 .name
= "cgroup.controllers",
4498 .flags
= CFTYPE_ONLY_ON_ROOT
,
4499 .seq_show
= cgroup_root_controllers_show
,
4502 .name
= "cgroup.controllers",
4503 .flags
= CFTYPE_NOT_ON_ROOT
,
4504 .seq_show
= cgroup_controllers_show
,
4507 .name
= "cgroup.subtree_control",
4508 .seq_show
= cgroup_subtree_control_show
,
4509 .write
= cgroup_subtree_control_write
,
4512 .name
= "cgroup.events",
4513 .flags
= CFTYPE_NOT_ON_ROOT
,
4514 .file_offset
= offsetof(struct cgroup
, events_file
),
4515 .seq_show
= cgroup_events_show
,
4520 /* cgroup core interface files for the legacy hierarchies */
4521 static struct cftype cgroup_legacy_base_files
[] = {
4523 .name
= "cgroup.procs",
4524 .seq_start
= cgroup_pidlist_start
,
4525 .seq_next
= cgroup_pidlist_next
,
4526 .seq_stop
= cgroup_pidlist_stop
,
4527 .seq_show
= cgroup_pidlist_show
,
4528 .private = CGROUP_FILE_PROCS
,
4529 .write
= cgroup_procs_write
,
4532 .name
= "cgroup.clone_children",
4533 .read_u64
= cgroup_clone_children_read
,
4534 .write_u64
= cgroup_clone_children_write
,
4537 .name
= "cgroup.sane_behavior",
4538 .flags
= CFTYPE_ONLY_ON_ROOT
,
4539 .seq_show
= cgroup_sane_behavior_show
,
4543 .seq_start
= cgroup_pidlist_start
,
4544 .seq_next
= cgroup_pidlist_next
,
4545 .seq_stop
= cgroup_pidlist_stop
,
4546 .seq_show
= cgroup_pidlist_show
,
4547 .private = CGROUP_FILE_TASKS
,
4548 .write
= cgroup_tasks_write
,
4551 .name
= "notify_on_release",
4552 .read_u64
= cgroup_read_notify_on_release
,
4553 .write_u64
= cgroup_write_notify_on_release
,
4556 .name
= "release_agent",
4557 .flags
= CFTYPE_ONLY_ON_ROOT
,
4558 .seq_show
= cgroup_release_agent_show
,
4559 .write
= cgroup_release_agent_write
,
4560 .max_write_len
= PATH_MAX
- 1,
4566 * css destruction is four-stage process.
4568 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4569 * Implemented in kill_css().
4571 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4572 * and thus css_tryget_online() is guaranteed to fail, the css can be
4573 * offlined by invoking offline_css(). After offlining, the base ref is
4574 * put. Implemented in css_killed_work_fn().
4576 * 3. When the percpu_ref reaches zero, the only possible remaining
4577 * accessors are inside RCU read sections. css_release() schedules the
4580 * 4. After the grace period, the css can be freed. Implemented in
4581 * css_free_work_fn().
4583 * It is actually hairier because both step 2 and 4 require process context
4584 * and thus involve punting to css->destroy_work adding two additional
4585 * steps to the already complex sequence.
4587 static void css_free_work_fn(struct work_struct
*work
)
4589 struct cgroup_subsys_state
*css
=
4590 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4591 struct cgroup_subsys
*ss
= css
->ss
;
4592 struct cgroup
*cgrp
= css
->cgroup
;
4593 struct cgroup_file
*cfile
;
4595 percpu_ref_exit(&css
->refcnt
);
4597 list_for_each_entry(cfile
, &css
->files
, node
)
4598 kernfs_put(cfile
->kn
);
4605 css_put(css
->parent
);
4608 cgroup_idr_remove(&ss
->css_idr
, id
);
4611 /* cgroup free path */
4612 atomic_dec(&cgrp
->root
->nr_cgrps
);
4613 cgroup_pidlist_destroy_all(cgrp
);
4614 cancel_work_sync(&cgrp
->release_agent_work
);
4616 if (cgroup_parent(cgrp
)) {
4618 * We get a ref to the parent, and put the ref when
4619 * this cgroup is being freed, so it's guaranteed
4620 * that the parent won't be destroyed before its
4623 cgroup_put(cgroup_parent(cgrp
));
4624 kernfs_put(cgrp
->kn
);
4628 * This is root cgroup's refcnt reaching zero,
4629 * which indicates that the root should be
4632 cgroup_destroy_root(cgrp
->root
);
4637 static void css_free_rcu_fn(struct rcu_head
*rcu_head
)
4639 struct cgroup_subsys_state
*css
=
4640 container_of(rcu_head
, struct cgroup_subsys_state
, rcu_head
);
4642 INIT_WORK(&css
->destroy_work
, css_free_work_fn
);
4643 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4646 static void css_release_work_fn(struct work_struct
*work
)
4648 struct cgroup_subsys_state
*css
=
4649 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4650 struct cgroup_subsys
*ss
= css
->ss
;
4651 struct cgroup
*cgrp
= css
->cgroup
;
4653 mutex_lock(&cgroup_mutex
);
4655 css
->flags
|= CSS_RELEASED
;
4656 list_del_rcu(&css
->sibling
);
4659 /* css release path */
4660 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
4661 if (ss
->css_released
)
4662 ss
->css_released(css
);
4664 /* cgroup release path */
4665 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4669 * There are two control paths which try to determine
4670 * cgroup from dentry without going through kernfs -
4671 * cgroupstats_build() and css_tryget_online_from_dir().
4672 * Those are supported by RCU protecting clearing of
4673 * cgrp->kn->priv backpointer.
4675 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
, NULL
);
4678 mutex_unlock(&cgroup_mutex
);
4680 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4683 static void css_release(struct percpu_ref
*ref
)
4685 struct cgroup_subsys_state
*css
=
4686 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4688 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
4689 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4692 static void init_and_link_css(struct cgroup_subsys_state
*css
,
4693 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
4695 lockdep_assert_held(&cgroup_mutex
);
4699 memset(css
, 0, sizeof(*css
));
4702 INIT_LIST_HEAD(&css
->sibling
);
4703 INIT_LIST_HEAD(&css
->children
);
4704 INIT_LIST_HEAD(&css
->files
);
4705 css
->serial_nr
= css_serial_nr_next
++;
4707 if (cgroup_parent(cgrp
)) {
4708 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
4709 css_get(css
->parent
);
4712 BUG_ON(cgroup_css(cgrp
, ss
));
4715 /* invoke ->css_online() on a new CSS and mark it online if successful */
4716 static int online_css(struct cgroup_subsys_state
*css
)
4718 struct cgroup_subsys
*ss
= css
->ss
;
4721 lockdep_assert_held(&cgroup_mutex
);
4724 ret
= ss
->css_online(css
);
4726 css
->flags
|= CSS_ONLINE
;
4727 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
4732 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4733 static void offline_css(struct cgroup_subsys_state
*css
)
4735 struct cgroup_subsys
*ss
= css
->ss
;
4737 lockdep_assert_held(&cgroup_mutex
);
4739 if (!(css
->flags
& CSS_ONLINE
))
4742 if (ss
->css_offline
)
4743 ss
->css_offline(css
);
4745 css
->flags
&= ~CSS_ONLINE
;
4746 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
4748 wake_up_all(&css
->cgroup
->offline_waitq
);
4752 * create_css - create a cgroup_subsys_state
4753 * @cgrp: the cgroup new css will be associated with
4754 * @ss: the subsys of new css
4755 * @visible: whether to create control knobs for the new css or not
4757 * Create a new css associated with @cgrp - @ss pair. On success, the new
4758 * css is online and installed in @cgrp with all interface files created if
4759 * @visible. Returns 0 on success, -errno on failure.
4761 static int create_css(struct cgroup
*cgrp
, struct cgroup_subsys
*ss
,
4764 struct cgroup
*parent
= cgroup_parent(cgrp
);
4765 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
4766 struct cgroup_subsys_state
*css
;
4769 lockdep_assert_held(&cgroup_mutex
);
4771 css
= ss
->css_alloc(parent_css
);
4773 return PTR_ERR(css
);
4775 init_and_link_css(css
, ss
, cgrp
);
4777 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
4781 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_KERNEL
);
4783 goto err_free_percpu_ref
;
4787 err
= css_populate_dir(css
, NULL
);
4792 /* @css is ready to be brought online now, make it visible */
4793 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
4794 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
4796 err
= online_css(css
);
4800 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4801 cgroup_parent(parent
)) {
4802 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4803 current
->comm
, current
->pid
, ss
->name
);
4804 if (!strcmp(ss
->name
, "memory"))
4805 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4806 ss
->warned_broken_hierarchy
= true;
4812 list_del_rcu(&css
->sibling
);
4813 css_clear_dir(css
, NULL
);
4815 cgroup_idr_remove(&ss
->css_idr
, css
->id
);
4816 err_free_percpu_ref
:
4817 percpu_ref_exit(&css
->refcnt
);
4819 call_rcu(&css
->rcu_head
, css_free_rcu_fn
);
4823 static int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
,
4826 struct cgroup
*parent
, *cgrp
, *tcgrp
;
4827 struct cgroup_root
*root
;
4828 struct cgroup_subsys
*ss
;
4829 struct kernfs_node
*kn
;
4830 int level
, ssid
, ret
;
4832 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4834 if (strchr(name
, '\n'))
4837 parent
= cgroup_kn_lock_live(parent_kn
);
4840 root
= parent
->root
;
4841 level
= parent
->level
+ 1;
4843 /* allocate the cgroup and its ID, 0 is reserved for the root */
4844 cgrp
= kzalloc(sizeof(*cgrp
) +
4845 sizeof(cgrp
->ancestor_ids
[0]) * (level
+ 1), GFP_KERNEL
);
4851 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
4856 * Temporarily set the pointer to NULL, so idr_find() won't return
4857 * a half-baked cgroup.
4859 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_KERNEL
);
4862 goto out_cancel_ref
;
4865 init_cgroup_housekeeping(cgrp
);
4867 cgrp
->self
.parent
= &parent
->self
;
4869 cgrp
->level
= level
;
4871 for (tcgrp
= cgrp
; tcgrp
; tcgrp
= cgroup_parent(tcgrp
))
4872 cgrp
->ancestor_ids
[tcgrp
->level
] = tcgrp
->id
;
4874 if (notify_on_release(parent
))
4875 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4877 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
4878 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
4880 /* create the directory */
4881 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
4889 * This extra ref will be put in cgroup_free_fn() and guarantees
4890 * that @cgrp->kn is always accessible.
4894 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
4896 /* allocation complete, commit to creation */
4897 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
4898 atomic_inc(&root
->nr_cgrps
);
4902 * @cgrp is now fully operational. If something fails after this
4903 * point, it'll be released via the normal destruction path.
4905 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
4907 ret
= cgroup_kn_set_ugid(kn
);
4911 ret
= css_populate_dir(&cgrp
->self
, NULL
);
4915 /* let's create and online css's */
4916 for_each_subsys(ss
, ssid
) {
4917 if (parent
->child_subsys_mask
& (1 << ssid
)) {
4918 ret
= create_css(cgrp
, ss
,
4919 parent
->subtree_control
& (1 << ssid
));
4926 * On the default hierarchy, a child doesn't automatically inherit
4927 * subtree_control from the parent. Each is configured manually.
4929 if (!cgroup_on_dfl(cgrp
)) {
4930 cgrp
->subtree_control
= parent
->subtree_control
;
4931 cgroup_refresh_child_subsys_mask(cgrp
);
4934 kernfs_activate(kn
);
4940 cgroup_idr_remove(&root
->cgroup_idr
, cgrp
->id
);
4942 percpu_ref_exit(&cgrp
->self
.refcnt
);
4946 cgroup_kn_unlock(parent_kn
);
4950 cgroup_destroy_locked(cgrp
);
4955 * This is called when the refcnt of a css is confirmed to be killed.
4956 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4957 * initate destruction and put the css ref from kill_css().
4959 static void css_killed_work_fn(struct work_struct
*work
)
4961 struct cgroup_subsys_state
*css
=
4962 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4964 mutex_lock(&cgroup_mutex
);
4966 mutex_unlock(&cgroup_mutex
);
4971 /* css kill confirmation processing requires process context, bounce */
4972 static void css_killed_ref_fn(struct percpu_ref
*ref
)
4974 struct cgroup_subsys_state
*css
=
4975 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4977 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
4978 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4982 * kill_css - destroy a css
4983 * @css: css to destroy
4985 * This function initiates destruction of @css by removing cgroup interface
4986 * files and putting its base reference. ->css_offline() will be invoked
4987 * asynchronously once css_tryget_online() is guaranteed to fail and when
4988 * the reference count reaches zero, @css will be released.
4990 static void kill_css(struct cgroup_subsys_state
*css
)
4992 lockdep_assert_held(&cgroup_mutex
);
4995 * This must happen before css is disassociated with its cgroup.
4996 * See seq_css() for details.
4998 css_clear_dir(css
, NULL
);
5001 * Killing would put the base ref, but we need to keep it alive
5002 * until after ->css_offline().
5007 * cgroup core guarantees that, by the time ->css_offline() is
5008 * invoked, no new css reference will be given out via
5009 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5010 * proceed to offlining css's because percpu_ref_kill() doesn't
5011 * guarantee that the ref is seen as killed on all CPUs on return.
5013 * Use percpu_ref_kill_and_confirm() to get notifications as each
5014 * css is confirmed to be seen as killed on all CPUs.
5016 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
5020 * cgroup_destroy_locked - the first stage of cgroup destruction
5021 * @cgrp: cgroup to be destroyed
5023 * css's make use of percpu refcnts whose killing latency shouldn't be
5024 * exposed to userland and are RCU protected. Also, cgroup core needs to
5025 * guarantee that css_tryget_online() won't succeed by the time
5026 * ->css_offline() is invoked. To satisfy all the requirements,
5027 * destruction is implemented in the following two steps.
5029 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5030 * userland visible parts and start killing the percpu refcnts of
5031 * css's. Set up so that the next stage will be kicked off once all
5032 * the percpu refcnts are confirmed to be killed.
5034 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5035 * rest of destruction. Once all cgroup references are gone, the
5036 * cgroup is RCU-freed.
5038 * This function implements s1. After this step, @cgrp is gone as far as
5039 * the userland is concerned and a new cgroup with the same name may be
5040 * created. As cgroup doesn't care about the names internally, this
5041 * doesn't cause any problem.
5043 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
5044 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
5046 struct cgroup_subsys_state
*css
;
5049 lockdep_assert_held(&cgroup_mutex
);
5052 * Only migration can raise populated from zero and we're already
5053 * holding cgroup_mutex.
5055 if (cgroup_is_populated(cgrp
))
5059 * Make sure there's no live children. We can't test emptiness of
5060 * ->self.children as dead children linger on it while being
5061 * drained; otherwise, "rmdir parent/child parent" may fail.
5063 if (css_has_online_children(&cgrp
->self
))
5067 * Mark @cgrp dead. This prevents further task migration and child
5068 * creation by disabling cgroup_lock_live_group().
5070 cgrp
->self
.flags
&= ~CSS_ONLINE
;
5072 /* initiate massacre of all css's */
5073 for_each_css(css
, ssid
, cgrp
)
5077 * Remove @cgrp directory along with the base files. @cgrp has an
5078 * extra ref on its kn.
5080 kernfs_remove(cgrp
->kn
);
5082 check_for_release(cgroup_parent(cgrp
));
5084 /* put the base reference */
5085 percpu_ref_kill(&cgrp
->self
.refcnt
);
5090 static int cgroup_rmdir(struct kernfs_node
*kn
)
5092 struct cgroup
*cgrp
;
5095 cgrp
= cgroup_kn_lock_live(kn
);
5099 ret
= cgroup_destroy_locked(cgrp
);
5101 cgroup_kn_unlock(kn
);
5105 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
5106 .remount_fs
= cgroup_remount
,
5107 .show_options
= cgroup_show_options
,
5108 .mkdir
= cgroup_mkdir
,
5109 .rmdir
= cgroup_rmdir
,
5110 .rename
= cgroup_rename
,
5113 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
5115 struct cgroup_subsys_state
*css
;
5117 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
5119 mutex_lock(&cgroup_mutex
);
5121 idr_init(&ss
->css_idr
);
5122 INIT_LIST_HEAD(&ss
->cfts
);
5124 /* Create the root cgroup state for this subsystem */
5125 ss
->root
= &cgrp_dfl_root
;
5126 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
5127 /* We don't handle early failures gracefully */
5128 BUG_ON(IS_ERR(css
));
5129 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
5132 * Root csses are never destroyed and we can't initialize
5133 * percpu_ref during early init. Disable refcnting.
5135 css
->flags
|= CSS_NO_REF
;
5138 /* allocation can't be done safely during early init */
5141 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
5142 BUG_ON(css
->id
< 0);
5145 /* Update the init_css_set to contain a subsys
5146 * pointer to this state - since the subsystem is
5147 * newly registered, all tasks and hence the
5148 * init_css_set is in the subsystem's root cgroup. */
5149 init_css_set
.subsys
[ss
->id
] = css
;
5151 have_fork_callback
|= (bool)ss
->fork
<< ss
->id
;
5152 have_exit_callback
|= (bool)ss
->exit
<< ss
->id
;
5153 have_free_callback
|= (bool)ss
->free
<< ss
->id
;
5154 have_canfork_callback
|= (bool)ss
->can_fork
<< ss
->id
;
5156 /* At system boot, before all subsystems have been
5157 * registered, no tasks have been forked, so we don't
5158 * need to invoke fork callbacks here. */
5159 BUG_ON(!list_empty(&init_task
.tasks
));
5161 BUG_ON(online_css(css
));
5163 mutex_unlock(&cgroup_mutex
);
5167 * cgroup_init_early - cgroup initialization at system boot
5169 * Initialize cgroups at system boot, and initialize any
5170 * subsystems that request early init.
5172 int __init
cgroup_init_early(void)
5174 static struct cgroup_sb_opts __initdata opts
;
5175 struct cgroup_subsys
*ss
;
5178 init_cgroup_root(&cgrp_dfl_root
, &opts
);
5179 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
5181 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5183 for_each_subsys(ss
, i
) {
5184 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
5185 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5186 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
5188 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
5189 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
5192 ss
->name
= cgroup_subsys_name
[i
];
5193 if (!ss
->legacy_name
)
5194 ss
->legacy_name
= cgroup_subsys_name
[i
];
5197 cgroup_init_subsys(ss
, true);
5202 static unsigned long cgroup_disable_mask __initdata
;
5205 * cgroup_init - cgroup initialization
5207 * Register cgroup filesystem and /proc file, and initialize
5208 * any subsystems that didn't request early init.
5210 int __init
cgroup_init(void)
5212 struct cgroup_subsys
*ss
;
5216 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem
));
5217 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_dfl_base_files
));
5218 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_legacy_base_files
));
5220 mutex_lock(&cgroup_mutex
);
5222 /* Add init_css_set to the hash table */
5223 key
= css_set_hash(init_css_set
.subsys
);
5224 hash_add(css_set_table
, &init_css_set
.hlist
, key
);
5226 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0));
5228 mutex_unlock(&cgroup_mutex
);
5230 for_each_subsys(ss
, ssid
) {
5231 if (ss
->early_init
) {
5232 struct cgroup_subsys_state
*css
=
5233 init_css_set
.subsys
[ss
->id
];
5235 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5237 BUG_ON(css
->id
< 0);
5239 cgroup_init_subsys(ss
, false);
5242 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5243 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5246 * Setting dfl_root subsys_mask needs to consider the
5247 * disabled flag and cftype registration needs kmalloc,
5248 * both of which aren't available during early_init.
5250 if (cgroup_disable_mask
& (1 << ssid
)) {
5251 static_branch_disable(cgroup_subsys_enabled_key
[ssid
]);
5252 printk(KERN_INFO
"Disabling %s control group subsystem\n",
5257 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5259 if (!ss
->dfl_cftypes
)
5260 cgrp_dfl_root_inhibit_ss_mask
|= 1 << ss
->id
;
5262 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5263 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5265 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5266 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5270 ss
->bind(init_css_set
.subsys
[ssid
]);
5273 WARN_ON(sysfs_create_mount_point(fs_kobj
, "cgroup"));
5274 WARN_ON(register_filesystem(&cgroup_fs_type
));
5275 WARN_ON(!proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
));
5280 static int __init
cgroup_wq_init(void)
5283 * There isn't much point in executing destruction path in
5284 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5285 * Use 1 for @max_active.
5287 * We would prefer to do this in cgroup_init() above, but that
5288 * is called before init_workqueues(): so leave this until after.
5290 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5291 BUG_ON(!cgroup_destroy_wq
);
5294 * Used to destroy pidlists and separate to serve as flush domain.
5295 * Cap @max_active to 1 too.
5297 cgroup_pidlist_destroy_wq
= alloc_workqueue("cgroup_pidlist_destroy",
5299 BUG_ON(!cgroup_pidlist_destroy_wq
);
5303 core_initcall(cgroup_wq_init
);
5306 * proc_cgroup_show()
5307 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5308 * - Used for /proc/<pid>/cgroup.
5310 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5311 struct pid
*pid
, struct task_struct
*tsk
)
5315 struct cgroup_root
*root
;
5318 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5322 mutex_lock(&cgroup_mutex
);
5323 spin_lock_bh(&css_set_lock
);
5325 for_each_root(root
) {
5326 struct cgroup_subsys
*ss
;
5327 struct cgroup
*cgrp
;
5328 int ssid
, count
= 0;
5330 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_root_visible
)
5333 seq_printf(m
, "%d:", root
->hierarchy_id
);
5334 if (root
!= &cgrp_dfl_root
)
5335 for_each_subsys(ss
, ssid
)
5336 if (root
->subsys_mask
& (1 << ssid
))
5337 seq_printf(m
, "%s%s", count
++ ? "," : "",
5339 if (strlen(root
->name
))
5340 seq_printf(m
, "%sname=%s", count
? "," : "",
5344 cgrp
= task_cgroup_from_root(tsk
, root
);
5347 * On traditional hierarchies, all zombie tasks show up as
5348 * belonging to the root cgroup. On the default hierarchy,
5349 * while a zombie doesn't show up in "cgroup.procs" and
5350 * thus can't be migrated, its /proc/PID/cgroup keeps
5351 * reporting the cgroup it belonged to before exiting. If
5352 * the cgroup is removed before the zombie is reaped,
5353 * " (deleted)" is appended to the cgroup path.
5355 if (cgroup_on_dfl(cgrp
) || !(tsk
->flags
& PF_EXITING
)) {
5356 path
= cgroup_path(cgrp
, buf
, PATH_MAX
);
5358 retval
= -ENAMETOOLONG
;
5367 if (cgroup_on_dfl(cgrp
) && cgroup_is_dead(cgrp
))
5368 seq_puts(m
, " (deleted)\n");
5375 spin_unlock_bh(&css_set_lock
);
5376 mutex_unlock(&cgroup_mutex
);
5382 /* Display information about each subsystem and each hierarchy */
5383 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
5385 struct cgroup_subsys
*ss
;
5388 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5390 * ideally we don't want subsystems moving around while we do this.
5391 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5392 * subsys/hierarchy state.
5394 mutex_lock(&cgroup_mutex
);
5396 for_each_subsys(ss
, i
)
5397 seq_printf(m
, "%s\t%d\t%d\t%d\n",
5398 ss
->legacy_name
, ss
->root
->hierarchy_id
,
5399 atomic_read(&ss
->root
->nr_cgrps
),
5400 cgroup_ssid_enabled(i
));
5402 mutex_unlock(&cgroup_mutex
);
5406 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
5408 return single_open(file
, proc_cgroupstats_show
, NULL
);
5411 static const struct file_operations proc_cgroupstats_operations
= {
5412 .open
= cgroupstats_open
,
5414 .llseek
= seq_lseek
,
5415 .release
= single_release
,
5418 static void **subsys_canfork_priv_p(void *ss_priv
[CGROUP_CANFORK_COUNT
], int i
)
5420 if (CGROUP_CANFORK_START
<= i
&& i
< CGROUP_CANFORK_END
)
5421 return &ss_priv
[i
- CGROUP_CANFORK_START
];
5425 static void *subsys_canfork_priv(void *ss_priv
[CGROUP_CANFORK_COUNT
], int i
)
5427 void **private = subsys_canfork_priv_p(ss_priv
, i
);
5428 return private ? *private : NULL
;
5432 * cgroup_fork - initialize cgroup related fields during copy_process()
5433 * @child: pointer to task_struct of forking parent process.
5435 * A task is associated with the init_css_set until cgroup_post_fork()
5436 * attaches it to the parent's css_set. Empty cg_list indicates that
5437 * @child isn't holding reference to its css_set.
5439 void cgroup_fork(struct task_struct
*child
)
5441 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5442 INIT_LIST_HEAD(&child
->cg_list
);
5446 * cgroup_can_fork - called on a new task before the process is exposed
5447 * @child: the task in question.
5449 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5450 * returns an error, the fork aborts with that error code. This allows for
5451 * a cgroup subsystem to conditionally allow or deny new forks.
5453 int cgroup_can_fork(struct task_struct
*child
,
5454 void *ss_priv
[CGROUP_CANFORK_COUNT
])
5456 struct cgroup_subsys
*ss
;
5459 for_each_subsys_which(ss
, i
, &have_canfork_callback
) {
5460 ret
= ss
->can_fork(child
, subsys_canfork_priv_p(ss_priv
, i
));
5468 for_each_subsys(ss
, j
) {
5471 if (ss
->cancel_fork
)
5472 ss
->cancel_fork(child
, subsys_canfork_priv(ss_priv
, j
));
5479 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5480 * @child: the task in question
5482 * This calls the cancel_fork() callbacks if a fork failed *after*
5483 * cgroup_can_fork() succeded.
5485 void cgroup_cancel_fork(struct task_struct
*child
,
5486 void *ss_priv
[CGROUP_CANFORK_COUNT
])
5488 struct cgroup_subsys
*ss
;
5491 for_each_subsys(ss
, i
)
5492 if (ss
->cancel_fork
)
5493 ss
->cancel_fork(child
, subsys_canfork_priv(ss_priv
, i
));
5497 * cgroup_post_fork - called on a new task after adding it to the task list
5498 * @child: the task in question
5500 * Adds the task to the list running through its css_set if necessary and
5501 * call the subsystem fork() callbacks. Has to be after the task is
5502 * visible on the task list in case we race with the first call to
5503 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5506 void cgroup_post_fork(struct task_struct
*child
,
5507 void *old_ss_priv
[CGROUP_CANFORK_COUNT
])
5509 struct cgroup_subsys
*ss
;
5513 * This may race against cgroup_enable_task_cg_lists(). As that
5514 * function sets use_task_css_set_links before grabbing
5515 * tasklist_lock and we just went through tasklist_lock to add
5516 * @child, it's guaranteed that either we see the set
5517 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5518 * @child during its iteration.
5520 * If we won the race, @child is associated with %current's
5521 * css_set. Grabbing css_set_lock guarantees both that the
5522 * association is stable, and, on completion of the parent's
5523 * migration, @child is visible in the source of migration or
5524 * already in the destination cgroup. This guarantee is necessary
5525 * when implementing operations which need to migrate all tasks of
5526 * a cgroup to another.
5528 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5529 * will remain in init_css_set. This is safe because all tasks are
5530 * in the init_css_set before cg_links is enabled and there's no
5531 * operation which transfers all tasks out of init_css_set.
5533 if (use_task_css_set_links
) {
5534 struct css_set
*cset
;
5536 spin_lock_bh(&css_set_lock
);
5537 cset
= task_css_set(current
);
5538 if (list_empty(&child
->cg_list
)) {
5540 css_set_move_task(child
, NULL
, cset
, false);
5542 spin_unlock_bh(&css_set_lock
);
5546 * Call ss->fork(). This must happen after @child is linked on
5547 * css_set; otherwise, @child might change state between ->fork()
5548 * and addition to css_set.
5550 for_each_subsys_which(ss
, i
, &have_fork_callback
)
5551 ss
->fork(child
, subsys_canfork_priv(old_ss_priv
, i
));
5555 * cgroup_exit - detach cgroup from exiting task
5556 * @tsk: pointer to task_struct of exiting process
5558 * Description: Detach cgroup from @tsk and release it.
5560 * Note that cgroups marked notify_on_release force every task in
5561 * them to take the global cgroup_mutex mutex when exiting.
5562 * This could impact scaling on very large systems. Be reluctant to
5563 * use notify_on_release cgroups where very high task exit scaling
5564 * is required on large systems.
5566 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5567 * call cgroup_exit() while the task is still competent to handle
5568 * notify_on_release(), then leave the task attached to the root cgroup in
5569 * each hierarchy for the remainder of its exit. No need to bother with
5570 * init_css_set refcnting. init_css_set never goes away and we can't race
5571 * with migration path - PF_EXITING is visible to migration path.
5573 void cgroup_exit(struct task_struct
*tsk
)
5575 struct cgroup_subsys
*ss
;
5576 struct css_set
*cset
;
5580 * Unlink from @tsk from its css_set. As migration path can't race
5581 * with us, we can check css_set and cg_list without synchronization.
5583 cset
= task_css_set(tsk
);
5585 if (!list_empty(&tsk
->cg_list
)) {
5586 spin_lock_bh(&css_set_lock
);
5587 css_set_move_task(tsk
, cset
, NULL
, false);
5588 spin_unlock_bh(&css_set_lock
);
5593 /* see cgroup_post_fork() for details */
5594 for_each_subsys_which(ss
, i
, &have_exit_callback
)
5598 void cgroup_free(struct task_struct
*task
)
5600 struct css_set
*cset
= task_css_set(task
);
5601 struct cgroup_subsys
*ss
;
5604 for_each_subsys_which(ss
, ssid
, &have_free_callback
)
5610 static void check_for_release(struct cgroup
*cgrp
)
5612 if (notify_on_release(cgrp
) && !cgroup_is_populated(cgrp
) &&
5613 !css_has_online_children(&cgrp
->self
) && !cgroup_is_dead(cgrp
))
5614 schedule_work(&cgrp
->release_agent_work
);
5618 * Notify userspace when a cgroup is released, by running the
5619 * configured release agent with the name of the cgroup (path
5620 * relative to the root of cgroup file system) as the argument.
5622 * Most likely, this user command will try to rmdir this cgroup.
5624 * This races with the possibility that some other task will be
5625 * attached to this cgroup before it is removed, or that some other
5626 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5627 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5628 * unused, and this cgroup will be reprieved from its death sentence,
5629 * to continue to serve a useful existence. Next time it's released,
5630 * we will get notified again, if it still has 'notify_on_release' set.
5632 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5633 * means only wait until the task is successfully execve()'d. The
5634 * separate release agent task is forked by call_usermodehelper(),
5635 * then control in this thread returns here, without waiting for the
5636 * release agent task. We don't bother to wait because the caller of
5637 * this routine has no use for the exit status of the release agent
5638 * task, so no sense holding our caller up for that.
5640 static void cgroup_release_agent(struct work_struct
*work
)
5642 struct cgroup
*cgrp
=
5643 container_of(work
, struct cgroup
, release_agent_work
);
5644 char *pathbuf
= NULL
, *agentbuf
= NULL
, *path
;
5645 char *argv
[3], *envp
[3];
5647 mutex_lock(&cgroup_mutex
);
5649 pathbuf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5650 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
5651 if (!pathbuf
|| !agentbuf
)
5654 path
= cgroup_path(cgrp
, pathbuf
, PATH_MAX
);
5662 /* minimal command environment */
5664 envp
[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5667 mutex_unlock(&cgroup_mutex
);
5668 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
5671 mutex_unlock(&cgroup_mutex
);
5677 static int __init
cgroup_disable(char *str
)
5679 struct cgroup_subsys
*ss
;
5683 while ((token
= strsep(&str
, ",")) != NULL
) {
5687 for_each_subsys(ss
, i
) {
5688 if (strcmp(token
, ss
->name
) &&
5689 strcmp(token
, ss
->legacy_name
))
5691 cgroup_disable_mask
|= 1 << i
;
5696 __setup("cgroup_disable=", cgroup_disable
);
5699 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5700 * @dentry: directory dentry of interest
5701 * @ss: subsystem of interest
5703 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5704 * to get the corresponding css and return it. If such css doesn't exist
5705 * or can't be pinned, an ERR_PTR value is returned.
5707 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
5708 struct cgroup_subsys
*ss
)
5710 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
5711 struct cgroup_subsys_state
*css
= NULL
;
5712 struct cgroup
*cgrp
;
5714 /* is @dentry a cgroup dir? */
5715 if (dentry
->d_sb
->s_type
!= &cgroup_fs_type
|| !kn
||
5716 kernfs_type(kn
) != KERNFS_DIR
)
5717 return ERR_PTR(-EBADF
);
5722 * This path doesn't originate from kernfs and @kn could already
5723 * have been or be removed at any point. @kn->priv is RCU
5724 * protected for this access. See css_release_work_fn() for details.
5726 cgrp
= rcu_dereference(kn
->priv
);
5728 css
= cgroup_css(cgrp
, ss
);
5730 if (!css
|| !css_tryget_online(css
))
5731 css
= ERR_PTR(-ENOENT
);
5738 * css_from_id - lookup css by id
5739 * @id: the cgroup id
5740 * @ss: cgroup subsys to be looked into
5742 * Returns the css if there's valid one with @id, otherwise returns NULL.
5743 * Should be called under rcu_read_lock().
5745 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
5747 WARN_ON_ONCE(!rcu_read_lock_held());
5748 return id
> 0 ? idr_find(&ss
->css_idr
, id
) : NULL
;
5752 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5753 * @path: path on the default hierarchy
5755 * Find the cgroup at @path on the default hierarchy, increment its
5756 * reference count and return it. Returns pointer to the found cgroup on
5757 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5758 * if @path points to a non-directory.
5760 struct cgroup
*cgroup_get_from_path(const char *path
)
5762 struct kernfs_node
*kn
;
5763 struct cgroup
*cgrp
;
5765 mutex_lock(&cgroup_mutex
);
5767 kn
= kernfs_walk_and_get(cgrp_dfl_root
.cgrp
.kn
, path
);
5769 if (kernfs_type(kn
) == KERNFS_DIR
) {
5773 cgrp
= ERR_PTR(-ENOTDIR
);
5777 cgrp
= ERR_PTR(-ENOENT
);
5780 mutex_unlock(&cgroup_mutex
);
5783 EXPORT_SYMBOL_GPL(cgroup_get_from_path
);
5786 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5787 * definition in cgroup-defs.h.
5789 #ifdef CONFIG_SOCK_CGROUP_DATA
5791 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5793 spinlock_t cgroup_sk_update_lock
;
5794 static bool cgroup_sk_alloc_disabled __read_mostly
;
5796 void cgroup_sk_alloc_disable(void)
5798 if (cgroup_sk_alloc_disabled
)
5800 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5801 cgroup_sk_alloc_disabled
= true;
5806 #define cgroup_sk_alloc_disabled false
5810 void cgroup_sk_alloc(struct sock_cgroup_data
*skcd
)
5812 if (cgroup_sk_alloc_disabled
)
5818 struct css_set
*cset
;
5820 cset
= task_css_set(current
);
5821 if (likely(cgroup_tryget(cset
->dfl_cgrp
))) {
5822 skcd
->val
= (unsigned long)cset
->dfl_cgrp
;
5831 void cgroup_sk_free(struct sock_cgroup_data
*skcd
)
5833 cgroup_put(sock_cgroup_ptr(skcd
));
5836 #endif /* CONFIG_SOCK_CGROUP_DATA */
5838 #ifdef CONFIG_CGROUP_DEBUG
5839 static struct cgroup_subsys_state
*
5840 debug_css_alloc(struct cgroup_subsys_state
*parent_css
)
5842 struct cgroup_subsys_state
*css
= kzalloc(sizeof(*css
), GFP_KERNEL
);
5845 return ERR_PTR(-ENOMEM
);
5850 static void debug_css_free(struct cgroup_subsys_state
*css
)
5855 static u64
debug_taskcount_read(struct cgroup_subsys_state
*css
,
5858 return cgroup_task_count(css
->cgroup
);
5861 static u64
current_css_set_read(struct cgroup_subsys_state
*css
,
5864 return (u64
)(unsigned long)current
->cgroups
;
5867 static u64
current_css_set_refcount_read(struct cgroup_subsys_state
*css
,
5873 count
= atomic_read(&task_css_set(current
)->refcount
);
5878 static int current_css_set_cg_links_read(struct seq_file
*seq
, void *v
)
5880 struct cgrp_cset_link
*link
;
5881 struct css_set
*cset
;
5884 name_buf
= kmalloc(NAME_MAX
+ 1, GFP_KERNEL
);
5888 spin_lock_bh(&css_set_lock
);
5890 cset
= rcu_dereference(current
->cgroups
);
5891 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
5892 struct cgroup
*c
= link
->cgrp
;
5894 cgroup_name(c
, name_buf
, NAME_MAX
+ 1);
5895 seq_printf(seq
, "Root %d group %s\n",
5896 c
->root
->hierarchy_id
, name_buf
);
5899 spin_unlock_bh(&css_set_lock
);
5904 #define MAX_TASKS_SHOWN_PER_CSS 25
5905 static int cgroup_css_links_read(struct seq_file
*seq
, void *v
)
5907 struct cgroup_subsys_state
*css
= seq_css(seq
);
5908 struct cgrp_cset_link
*link
;
5910 spin_lock_bh(&css_set_lock
);
5911 list_for_each_entry(link
, &css
->cgroup
->cset_links
, cset_link
) {
5912 struct css_set
*cset
= link
->cset
;
5913 struct task_struct
*task
;
5916 seq_printf(seq
, "css_set %p\n", cset
);
5918 list_for_each_entry(task
, &cset
->tasks
, cg_list
) {
5919 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
5921 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
5924 list_for_each_entry(task
, &cset
->mg_tasks
, cg_list
) {
5925 if (count
++ > MAX_TASKS_SHOWN_PER_CSS
)
5927 seq_printf(seq
, " task %d\n", task_pid_vnr(task
));
5931 seq_puts(seq
, " ...\n");
5933 spin_unlock_bh(&css_set_lock
);
5937 static u64
releasable_read(struct cgroup_subsys_state
*css
, struct cftype
*cft
)
5939 return (!cgroup_is_populated(css
->cgroup
) &&
5940 !css_has_online_children(&css
->cgroup
->self
));
5943 static struct cftype debug_files
[] = {
5945 .name
= "taskcount",
5946 .read_u64
= debug_taskcount_read
,
5950 .name
= "current_css_set",
5951 .read_u64
= current_css_set_read
,
5955 .name
= "current_css_set_refcount",
5956 .read_u64
= current_css_set_refcount_read
,
5960 .name
= "current_css_set_cg_links",
5961 .seq_show
= current_css_set_cg_links_read
,
5965 .name
= "cgroup_css_links",
5966 .seq_show
= cgroup_css_links_read
,
5970 .name
= "releasable",
5971 .read_u64
= releasable_read
,
5977 struct cgroup_subsys debug_cgrp_subsys
= {
5978 .css_alloc
= debug_css_alloc
,
5979 .css_free
= debug_css_free
,
5980 .legacy_cftypes
= debug_files
,
5982 #endif /* CONFIG_CGROUP_DEBUG */