fm10k: Cleanup MSI-X interrupts in case of failure
[linux/fpc-iii.git] / kernel / cgroup.c
blob4f8f7927b4222a98f924c2d8ac906888fe07210a
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/cgroup.h>
32 #include <linux/cred.h>
33 #include <linux/ctype.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/list.h>
38 #include <linux/magic.h>
39 #include <linux/mm.h>
40 #include <linux/mutex.h>
41 #include <linux/mount.h>
42 #include <linux/pagemap.h>
43 #include <linux/proc_fs.h>
44 #include <linux/rcupdate.h>
45 #include <linux/sched.h>
46 #include <linux/slab.h>
47 #include <linux/spinlock.h>
48 #include <linux/percpu-rwsem.h>
49 #include <linux/string.h>
50 #include <linux/sort.h>
51 #include <linux/kmod.h>
52 #include <linux/delayacct.h>
53 #include <linux/cgroupstats.h>
54 #include <linux/hashtable.h>
55 #include <linux/pid_namespace.h>
56 #include <linux/idr.h>
57 #include <linux/vmalloc.h> /* TODO: replace with more sophisticated array */
58 #include <linux/kthread.h>
59 #include <linux/delay.h>
60 #include <linux/atomic.h>
61 #include <net/sock.h>
64 * pidlists linger the following amount before being destroyed. The goal
65 * is avoiding frequent destruction in the middle of consecutive read calls
66 * Expiring in the middle is a performance problem not a correctness one.
67 * 1 sec should be enough.
69 #define CGROUP_PIDLIST_DESTROY_DELAY HZ
71 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
72 MAX_CFTYPE_NAME + 2)
75 * cgroup_mutex is the master lock. Any modification to cgroup or its
76 * hierarchy must be performed while holding it.
78 * css_set_lock protects task->cgroups pointer, the list of css_set
79 * objects, and the chain of tasks off each css_set.
81 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
82 * cgroup.h can use them for lockdep annotations.
84 #ifdef CONFIG_PROVE_RCU
85 DEFINE_MUTEX(cgroup_mutex);
86 DEFINE_SPINLOCK(css_set_lock);
87 EXPORT_SYMBOL_GPL(cgroup_mutex);
88 EXPORT_SYMBOL_GPL(css_set_lock);
89 #else
90 static DEFINE_MUTEX(cgroup_mutex);
91 static DEFINE_SPINLOCK(css_set_lock);
92 #endif
95 * Protects cgroup_idr and css_idr so that IDs can be released without
96 * grabbing cgroup_mutex.
98 static DEFINE_SPINLOCK(cgroup_idr_lock);
101 * Protects cgroup_subsys->release_agent_path. Modifying it also requires
102 * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock.
104 static DEFINE_SPINLOCK(release_agent_path_lock);
106 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
108 #define cgroup_assert_mutex_or_rcu_locked() \
109 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
110 !lockdep_is_held(&cgroup_mutex), \
111 "cgroup_mutex or RCU read lock required");
114 * cgroup destruction makes heavy use of work items and there can be a lot
115 * of concurrent destructions. Use a separate workqueue so that cgroup
116 * destruction work items don't end up filling up max_active of system_wq
117 * which may lead to deadlock.
119 static struct workqueue_struct *cgroup_destroy_wq;
122 * pidlist destructions need to be flushed on cgroup destruction. Use a
123 * separate workqueue as flush domain.
125 static struct workqueue_struct *cgroup_pidlist_destroy_wq;
127 /* generate an array of cgroup subsystem pointers */
128 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
129 static struct cgroup_subsys *cgroup_subsys[] = {
130 #include <linux/cgroup_subsys.h>
132 #undef SUBSYS
134 /* array of cgroup subsystem names */
135 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
136 static const char *cgroup_subsys_name[] = {
137 #include <linux/cgroup_subsys.h>
139 #undef SUBSYS
141 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
142 #define SUBSYS(_x) \
143 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
144 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
145 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
146 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
147 #include <linux/cgroup_subsys.h>
148 #undef SUBSYS
150 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
151 static struct static_key_true *cgroup_subsys_enabled_key[] = {
152 #include <linux/cgroup_subsys.h>
154 #undef SUBSYS
156 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
157 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
158 #include <linux/cgroup_subsys.h>
160 #undef SUBSYS
163 * The default hierarchy, reserved for the subsystems that are otherwise
164 * unattached - it never has more than a single cgroup, and all tasks are
165 * part of that cgroup.
167 struct cgroup_root cgrp_dfl_root;
168 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
171 * The default hierarchy always exists but is hidden until mounted for the
172 * first time. This is for backward compatibility.
174 static bool cgrp_dfl_root_visible;
176 /* some controllers are not supported in the default hierarchy */
177 static unsigned long cgrp_dfl_root_inhibit_ss_mask;
179 /* The list of hierarchy roots */
181 static LIST_HEAD(cgroup_roots);
182 static int cgroup_root_count;
184 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
185 static DEFINE_IDR(cgroup_hierarchy_idr);
188 * Assign a monotonically increasing serial number to csses. It guarantees
189 * cgroups with bigger numbers are newer than those with smaller numbers.
190 * Also, as csses are always appended to the parent's ->children list, it
191 * guarantees that sibling csses are always sorted in the ascending serial
192 * number order on the list. Protected by cgroup_mutex.
194 static u64 css_serial_nr_next = 1;
197 * These bitmask flags indicate whether tasks in the fork and exit paths have
198 * fork/exit handlers to call. This avoids us having to do extra work in the
199 * fork/exit path to check which subsystems have fork/exit callbacks.
201 static unsigned long have_fork_callback __read_mostly;
202 static unsigned long have_exit_callback __read_mostly;
203 static unsigned long have_free_callback __read_mostly;
205 /* Ditto for the can_fork callback. */
206 static unsigned long have_canfork_callback __read_mostly;
208 static struct cftype cgroup_dfl_base_files[];
209 static struct cftype cgroup_legacy_base_files[];
211 static int rebind_subsystems(struct cgroup_root *dst_root,
212 unsigned long ss_mask);
213 static void css_task_iter_advance(struct css_task_iter *it);
214 static int cgroup_destroy_locked(struct cgroup *cgrp);
215 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
216 bool visible);
217 static void css_release(struct percpu_ref *ref);
218 static void kill_css(struct cgroup_subsys_state *css);
219 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
220 struct cgroup *cgrp, struct cftype cfts[],
221 bool is_add);
224 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
225 * @ssid: subsys ID of interest
227 * cgroup_subsys_enabled() can only be used with literal subsys names which
228 * is fine for individual subsystems but unsuitable for cgroup core. This
229 * is slower static_key_enabled() based test indexed by @ssid.
231 static bool cgroup_ssid_enabled(int ssid)
233 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
237 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
238 * @cgrp: the cgroup of interest
240 * The default hierarchy is the v2 interface of cgroup and this function
241 * can be used to test whether a cgroup is on the default hierarchy for
242 * cases where a subsystem should behave differnetly depending on the
243 * interface version.
245 * The set of behaviors which change on the default hierarchy are still
246 * being determined and the mount option is prefixed with __DEVEL__.
248 * List of changed behaviors:
250 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
251 * and "name" are disallowed.
253 * - When mounting an existing superblock, mount options should match.
255 * - Remount is disallowed.
257 * - rename(2) is disallowed.
259 * - "tasks" is removed. Everything should be at process granularity. Use
260 * "cgroup.procs" instead.
262 * - "cgroup.procs" is not sorted. pids will be unique unless they got
263 * recycled inbetween reads.
265 * - "release_agent" and "notify_on_release" are removed. Replacement
266 * notification mechanism will be implemented.
268 * - "cgroup.clone_children" is removed.
270 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
271 * and its descendants contain no task; otherwise, 1. The file also
272 * generates kernfs notification which can be monitored through poll and
273 * [di]notify when the value of the file changes.
275 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
276 * take masks of ancestors with non-empty cpus/mems, instead of being
277 * moved to an ancestor.
279 * - cpuset: a task can be moved into an empty cpuset, and again it takes
280 * masks of ancestors.
282 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
283 * is not created.
285 * - blkcg: blk-throttle becomes properly hierarchical.
287 * - debug: disallowed on the default hierarchy.
289 static bool cgroup_on_dfl(const struct cgroup *cgrp)
291 return cgrp->root == &cgrp_dfl_root;
294 /* IDR wrappers which synchronize using cgroup_idr_lock */
295 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
296 gfp_t gfp_mask)
298 int ret;
300 idr_preload(gfp_mask);
301 spin_lock_bh(&cgroup_idr_lock);
302 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
303 spin_unlock_bh(&cgroup_idr_lock);
304 idr_preload_end();
305 return ret;
308 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
310 void *ret;
312 spin_lock_bh(&cgroup_idr_lock);
313 ret = idr_replace(idr, ptr, id);
314 spin_unlock_bh(&cgroup_idr_lock);
315 return ret;
318 static void cgroup_idr_remove(struct idr *idr, int id)
320 spin_lock_bh(&cgroup_idr_lock);
321 idr_remove(idr, id);
322 spin_unlock_bh(&cgroup_idr_lock);
325 static struct cgroup *cgroup_parent(struct cgroup *cgrp)
327 struct cgroup_subsys_state *parent_css = cgrp->self.parent;
329 if (parent_css)
330 return container_of(parent_css, struct cgroup, self);
331 return NULL;
335 * cgroup_css - obtain a cgroup's css for the specified subsystem
336 * @cgrp: the cgroup of interest
337 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
339 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
340 * function must be called either under cgroup_mutex or rcu_read_lock() and
341 * the caller is responsible for pinning the returned css if it wants to
342 * keep accessing it outside the said locks. This function may return
343 * %NULL if @cgrp doesn't have @subsys_id enabled.
345 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
346 struct cgroup_subsys *ss)
348 if (ss)
349 return rcu_dereference_check(cgrp->subsys[ss->id],
350 lockdep_is_held(&cgroup_mutex));
351 else
352 return &cgrp->self;
356 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
357 * @cgrp: the cgroup of interest
358 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
360 * Similar to cgroup_css() but returns the effective css, which is defined
361 * as the matching css of the nearest ancestor including self which has @ss
362 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
363 * function is guaranteed to return non-NULL css.
365 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
366 struct cgroup_subsys *ss)
368 lockdep_assert_held(&cgroup_mutex);
370 if (!ss)
371 return &cgrp->self;
373 if (!(cgrp->root->subsys_mask & (1 << ss->id)))
374 return NULL;
377 * This function is used while updating css associations and thus
378 * can't test the csses directly. Use ->child_subsys_mask.
380 while (cgroup_parent(cgrp) &&
381 !(cgroup_parent(cgrp)->child_subsys_mask & (1 << ss->id)))
382 cgrp = cgroup_parent(cgrp);
384 return cgroup_css(cgrp, ss);
388 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
389 * @cgrp: the cgroup of interest
390 * @ss: the subsystem of interest
392 * Find and get the effective css of @cgrp for @ss. The effective css is
393 * defined as the matching css of the nearest ancestor including self which
394 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
395 * the root css is returned, so this function always returns a valid css.
396 * The returned css must be put using css_put().
398 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
399 struct cgroup_subsys *ss)
401 struct cgroup_subsys_state *css;
403 rcu_read_lock();
405 do {
406 css = cgroup_css(cgrp, ss);
408 if (css && css_tryget_online(css))
409 goto out_unlock;
410 cgrp = cgroup_parent(cgrp);
411 } while (cgrp);
413 css = init_css_set.subsys[ss->id];
414 css_get(css);
415 out_unlock:
416 rcu_read_unlock();
417 return css;
420 /* convenient tests for these bits */
421 static inline bool cgroup_is_dead(const struct cgroup *cgrp)
423 return !(cgrp->self.flags & CSS_ONLINE);
426 static void cgroup_get(struct cgroup *cgrp)
428 WARN_ON_ONCE(cgroup_is_dead(cgrp));
429 css_get(&cgrp->self);
432 static bool cgroup_tryget(struct cgroup *cgrp)
434 return css_tryget(&cgrp->self);
437 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
439 struct cgroup *cgrp = of->kn->parent->priv;
440 struct cftype *cft = of_cft(of);
443 * This is open and unprotected implementation of cgroup_css().
444 * seq_css() is only called from a kernfs file operation which has
445 * an active reference on the file. Because all the subsystem
446 * files are drained before a css is disassociated with a cgroup,
447 * the matching css from the cgroup's subsys table is guaranteed to
448 * be and stay valid until the enclosing operation is complete.
450 if (cft->ss)
451 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
452 else
453 return &cgrp->self;
455 EXPORT_SYMBOL_GPL(of_css);
457 static int notify_on_release(const struct cgroup *cgrp)
459 return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
463 * for_each_css - iterate all css's of a cgroup
464 * @css: the iteration cursor
465 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
466 * @cgrp: the target cgroup to iterate css's of
468 * Should be called under cgroup_[tree_]mutex.
470 #define for_each_css(css, ssid, cgrp) \
471 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
472 if (!((css) = rcu_dereference_check( \
473 (cgrp)->subsys[(ssid)], \
474 lockdep_is_held(&cgroup_mutex)))) { } \
475 else
478 * for_each_e_css - iterate all effective css's of a cgroup
479 * @css: the iteration cursor
480 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
481 * @cgrp: the target cgroup to iterate css's of
483 * Should be called under cgroup_[tree_]mutex.
485 #define for_each_e_css(css, ssid, cgrp) \
486 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
487 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
489 else
492 * for_each_subsys - iterate all enabled cgroup subsystems
493 * @ss: the iteration cursor
494 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
496 #define for_each_subsys(ss, ssid) \
497 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \
498 (((ss) = cgroup_subsys[ssid]) || true); (ssid)++)
501 * for_each_subsys_which - filter for_each_subsys with a bitmask
502 * @ss: the iteration cursor
503 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
504 * @ss_maskp: a pointer to the bitmask
506 * The block will only run for cases where the ssid-th bit (1 << ssid) of
507 * mask is set to 1.
509 #define for_each_subsys_which(ss, ssid, ss_maskp) \
510 if (!CGROUP_SUBSYS_COUNT) /* to avoid spurious gcc warning */ \
511 (ssid) = 0; \
512 else \
513 for_each_set_bit(ssid, ss_maskp, CGROUP_SUBSYS_COUNT) \
514 if (((ss) = cgroup_subsys[ssid]) && false) \
515 break; \
516 else
518 /* iterate across the hierarchies */
519 #define for_each_root(root) \
520 list_for_each_entry((root), &cgroup_roots, root_list)
522 /* iterate over child cgrps, lock should be held throughout iteration */
523 #define cgroup_for_each_live_child(child, cgrp) \
524 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
525 if (({ lockdep_assert_held(&cgroup_mutex); \
526 cgroup_is_dead(child); })) \
528 else
530 static void cgroup_release_agent(struct work_struct *work);
531 static void check_for_release(struct cgroup *cgrp);
534 * A cgroup can be associated with multiple css_sets as different tasks may
535 * belong to different cgroups on different hierarchies. In the other
536 * direction, a css_set is naturally associated with multiple cgroups.
537 * This M:N relationship is represented by the following link structure
538 * which exists for each association and allows traversing the associations
539 * from both sides.
541 struct cgrp_cset_link {
542 /* the cgroup and css_set this link associates */
543 struct cgroup *cgrp;
544 struct css_set *cset;
546 /* list of cgrp_cset_links anchored at cgrp->cset_links */
547 struct list_head cset_link;
549 /* list of cgrp_cset_links anchored at css_set->cgrp_links */
550 struct list_head cgrp_link;
554 * The default css_set - used by init and its children prior to any
555 * hierarchies being mounted. It contains a pointer to the root state
556 * for each subsystem. Also used to anchor the list of css_sets. Not
557 * reference-counted, to improve performance when child cgroups
558 * haven't been created.
560 struct css_set init_css_set = {
561 .refcount = ATOMIC_INIT(1),
562 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
563 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
564 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
565 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
566 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
567 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
570 static int css_set_count = 1; /* 1 for init_css_set */
573 * css_set_populated - does a css_set contain any tasks?
574 * @cset: target css_set
576 static bool css_set_populated(struct css_set *cset)
578 lockdep_assert_held(&css_set_lock);
580 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
584 * cgroup_update_populated - updated populated count of a cgroup
585 * @cgrp: the target cgroup
586 * @populated: inc or dec populated count
588 * One of the css_sets associated with @cgrp is either getting its first
589 * task or losing the last. Update @cgrp->populated_cnt accordingly. The
590 * count is propagated towards root so that a given cgroup's populated_cnt
591 * is zero iff the cgroup and all its descendants don't contain any tasks.
593 * @cgrp's interface file "cgroup.populated" is zero if
594 * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt
595 * changes from or to zero, userland is notified that the content of the
596 * interface file has changed. This can be used to detect when @cgrp and
597 * its descendants become populated or empty.
599 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
601 lockdep_assert_held(&css_set_lock);
603 do {
604 bool trigger;
606 if (populated)
607 trigger = !cgrp->populated_cnt++;
608 else
609 trigger = !--cgrp->populated_cnt;
611 if (!trigger)
612 break;
614 check_for_release(cgrp);
615 cgroup_file_notify(&cgrp->events_file);
617 cgrp = cgroup_parent(cgrp);
618 } while (cgrp);
622 * css_set_update_populated - update populated state of a css_set
623 * @cset: target css_set
624 * @populated: whether @cset is populated or depopulated
626 * @cset is either getting the first task or losing the last. Update the
627 * ->populated_cnt of all associated cgroups accordingly.
629 static void css_set_update_populated(struct css_set *cset, bool populated)
631 struct cgrp_cset_link *link;
633 lockdep_assert_held(&css_set_lock);
635 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
636 cgroup_update_populated(link->cgrp, populated);
640 * css_set_move_task - move a task from one css_set to another
641 * @task: task being moved
642 * @from_cset: css_set @task currently belongs to (may be NULL)
643 * @to_cset: new css_set @task is being moved to (may be NULL)
644 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
646 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
647 * css_set, @from_cset can be NULL. If @task is being disassociated
648 * instead of moved, @to_cset can be NULL.
650 * This function automatically handles populated_cnt updates and
651 * css_task_iter adjustments but the caller is responsible for managing
652 * @from_cset and @to_cset's reference counts.
654 static void css_set_move_task(struct task_struct *task,
655 struct css_set *from_cset, struct css_set *to_cset,
656 bool use_mg_tasks)
658 lockdep_assert_held(&css_set_lock);
660 if (from_cset) {
661 struct css_task_iter *it, *pos;
663 WARN_ON_ONCE(list_empty(&task->cg_list));
666 * @task is leaving, advance task iterators which are
667 * pointing to it so that they can resume at the next
668 * position. Advancing an iterator might remove it from
669 * the list, use safe walk. See css_task_iter_advance*()
670 * for details.
672 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
673 iters_node)
674 if (it->task_pos == &task->cg_list)
675 css_task_iter_advance(it);
677 list_del_init(&task->cg_list);
678 if (!css_set_populated(from_cset))
679 css_set_update_populated(from_cset, false);
680 } else {
681 WARN_ON_ONCE(!list_empty(&task->cg_list));
684 if (to_cset) {
686 * We are synchronized through cgroup_threadgroup_rwsem
687 * against PF_EXITING setting such that we can't race
688 * against cgroup_exit() changing the css_set to
689 * init_css_set and dropping the old one.
691 WARN_ON_ONCE(task->flags & PF_EXITING);
693 if (!css_set_populated(to_cset))
694 css_set_update_populated(to_cset, true);
695 rcu_assign_pointer(task->cgroups, to_cset);
696 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
697 &to_cset->tasks);
702 * hash table for cgroup groups. This improves the performance to find
703 * an existing css_set. This hash doesn't (currently) take into
704 * account cgroups in empty hierarchies.
706 #define CSS_SET_HASH_BITS 7
707 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
709 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
711 unsigned long key = 0UL;
712 struct cgroup_subsys *ss;
713 int i;
715 for_each_subsys(ss, i)
716 key += (unsigned long)css[i];
717 key = (key >> 16) ^ key;
719 return key;
722 static void put_css_set_locked(struct css_set *cset)
724 struct cgrp_cset_link *link, *tmp_link;
725 struct cgroup_subsys *ss;
726 int ssid;
728 lockdep_assert_held(&css_set_lock);
730 if (!atomic_dec_and_test(&cset->refcount))
731 return;
733 /* This css_set is dead. unlink it and release cgroup refcounts */
734 for_each_subsys(ss, ssid)
735 list_del(&cset->e_cset_node[ssid]);
736 hash_del(&cset->hlist);
737 css_set_count--;
739 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
740 list_del(&link->cset_link);
741 list_del(&link->cgrp_link);
742 if (cgroup_parent(link->cgrp))
743 cgroup_put(link->cgrp);
744 kfree(link);
747 kfree_rcu(cset, rcu_head);
750 static void put_css_set(struct css_set *cset)
753 * Ensure that the refcount doesn't hit zero while any readers
754 * can see it. Similar to atomic_dec_and_lock(), but for an
755 * rwlock
757 if (atomic_add_unless(&cset->refcount, -1, 1))
758 return;
760 spin_lock_bh(&css_set_lock);
761 put_css_set_locked(cset);
762 spin_unlock_bh(&css_set_lock);
766 * refcounted get/put for css_set objects
768 static inline void get_css_set(struct css_set *cset)
770 atomic_inc(&cset->refcount);
774 * compare_css_sets - helper function for find_existing_css_set().
775 * @cset: candidate css_set being tested
776 * @old_cset: existing css_set for a task
777 * @new_cgrp: cgroup that's being entered by the task
778 * @template: desired set of css pointers in css_set (pre-calculated)
780 * Returns true if "cset" matches "old_cset" except for the hierarchy
781 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
783 static bool compare_css_sets(struct css_set *cset,
784 struct css_set *old_cset,
785 struct cgroup *new_cgrp,
786 struct cgroup_subsys_state *template[])
788 struct list_head *l1, *l2;
791 * On the default hierarchy, there can be csets which are
792 * associated with the same set of cgroups but different csses.
793 * Let's first ensure that csses match.
795 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
796 return false;
799 * Compare cgroup pointers in order to distinguish between
800 * different cgroups in hierarchies. As different cgroups may
801 * share the same effective css, this comparison is always
802 * necessary.
804 l1 = &cset->cgrp_links;
805 l2 = &old_cset->cgrp_links;
806 while (1) {
807 struct cgrp_cset_link *link1, *link2;
808 struct cgroup *cgrp1, *cgrp2;
810 l1 = l1->next;
811 l2 = l2->next;
812 /* See if we reached the end - both lists are equal length. */
813 if (l1 == &cset->cgrp_links) {
814 BUG_ON(l2 != &old_cset->cgrp_links);
815 break;
816 } else {
817 BUG_ON(l2 == &old_cset->cgrp_links);
819 /* Locate the cgroups associated with these links. */
820 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
821 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
822 cgrp1 = link1->cgrp;
823 cgrp2 = link2->cgrp;
824 /* Hierarchies should be linked in the same order. */
825 BUG_ON(cgrp1->root != cgrp2->root);
828 * If this hierarchy is the hierarchy of the cgroup
829 * that's changing, then we need to check that this
830 * css_set points to the new cgroup; if it's any other
831 * hierarchy, then this css_set should point to the
832 * same cgroup as the old css_set.
834 if (cgrp1->root == new_cgrp->root) {
835 if (cgrp1 != new_cgrp)
836 return false;
837 } else {
838 if (cgrp1 != cgrp2)
839 return false;
842 return true;
846 * find_existing_css_set - init css array and find the matching css_set
847 * @old_cset: the css_set that we're using before the cgroup transition
848 * @cgrp: the cgroup that we're moving into
849 * @template: out param for the new set of csses, should be clear on entry
851 static struct css_set *find_existing_css_set(struct css_set *old_cset,
852 struct cgroup *cgrp,
853 struct cgroup_subsys_state *template[])
855 struct cgroup_root *root = cgrp->root;
856 struct cgroup_subsys *ss;
857 struct css_set *cset;
858 unsigned long key;
859 int i;
862 * Build the set of subsystem state objects that we want to see in the
863 * new css_set. while subsystems can change globally, the entries here
864 * won't change, so no need for locking.
866 for_each_subsys(ss, i) {
867 if (root->subsys_mask & (1UL << i)) {
869 * @ss is in this hierarchy, so we want the
870 * effective css from @cgrp.
872 template[i] = cgroup_e_css(cgrp, ss);
873 } else {
875 * @ss is not in this hierarchy, so we don't want
876 * to change the css.
878 template[i] = old_cset->subsys[i];
882 key = css_set_hash(template);
883 hash_for_each_possible(css_set_table, cset, hlist, key) {
884 if (!compare_css_sets(cset, old_cset, cgrp, template))
885 continue;
887 /* This css_set matches what we need */
888 return cset;
891 /* No existing cgroup group matched */
892 return NULL;
895 static void free_cgrp_cset_links(struct list_head *links_to_free)
897 struct cgrp_cset_link *link, *tmp_link;
899 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
900 list_del(&link->cset_link);
901 kfree(link);
906 * allocate_cgrp_cset_links - allocate cgrp_cset_links
907 * @count: the number of links to allocate
908 * @tmp_links: list_head the allocated links are put on
910 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
911 * through ->cset_link. Returns 0 on success or -errno.
913 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
915 struct cgrp_cset_link *link;
916 int i;
918 INIT_LIST_HEAD(tmp_links);
920 for (i = 0; i < count; i++) {
921 link = kzalloc(sizeof(*link), GFP_KERNEL);
922 if (!link) {
923 free_cgrp_cset_links(tmp_links);
924 return -ENOMEM;
926 list_add(&link->cset_link, tmp_links);
928 return 0;
932 * link_css_set - a helper function to link a css_set to a cgroup
933 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
934 * @cset: the css_set to be linked
935 * @cgrp: the destination cgroup
937 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
938 struct cgroup *cgrp)
940 struct cgrp_cset_link *link;
942 BUG_ON(list_empty(tmp_links));
944 if (cgroup_on_dfl(cgrp))
945 cset->dfl_cgrp = cgrp;
947 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
948 link->cset = cset;
949 link->cgrp = cgrp;
952 * Always add links to the tail of the lists so that the lists are
953 * in choronological order.
955 list_move_tail(&link->cset_link, &cgrp->cset_links);
956 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
958 if (cgroup_parent(cgrp))
959 cgroup_get(cgrp);
963 * find_css_set - return a new css_set with one cgroup updated
964 * @old_cset: the baseline css_set
965 * @cgrp: the cgroup to be updated
967 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
968 * substituted into the appropriate hierarchy.
970 static struct css_set *find_css_set(struct css_set *old_cset,
971 struct cgroup *cgrp)
973 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
974 struct css_set *cset;
975 struct list_head tmp_links;
976 struct cgrp_cset_link *link;
977 struct cgroup_subsys *ss;
978 unsigned long key;
979 int ssid;
981 lockdep_assert_held(&cgroup_mutex);
983 /* First see if we already have a cgroup group that matches
984 * the desired set */
985 spin_lock_bh(&css_set_lock);
986 cset = find_existing_css_set(old_cset, cgrp, template);
987 if (cset)
988 get_css_set(cset);
989 spin_unlock_bh(&css_set_lock);
991 if (cset)
992 return cset;
994 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
995 if (!cset)
996 return NULL;
998 /* Allocate all the cgrp_cset_link objects that we'll need */
999 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1000 kfree(cset);
1001 return NULL;
1004 atomic_set(&cset->refcount, 1);
1005 INIT_LIST_HEAD(&cset->cgrp_links);
1006 INIT_LIST_HEAD(&cset->tasks);
1007 INIT_LIST_HEAD(&cset->mg_tasks);
1008 INIT_LIST_HEAD(&cset->mg_preload_node);
1009 INIT_LIST_HEAD(&cset->mg_node);
1010 INIT_LIST_HEAD(&cset->task_iters);
1011 INIT_HLIST_NODE(&cset->hlist);
1013 /* Copy the set of subsystem state objects generated in
1014 * find_existing_css_set() */
1015 memcpy(cset->subsys, template, sizeof(cset->subsys));
1017 spin_lock_bh(&css_set_lock);
1018 /* Add reference counts and links from the new css_set. */
1019 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1020 struct cgroup *c = link->cgrp;
1022 if (c->root == cgrp->root)
1023 c = cgrp;
1024 link_css_set(&tmp_links, cset, c);
1027 BUG_ON(!list_empty(&tmp_links));
1029 css_set_count++;
1031 /* Add @cset to the hash table */
1032 key = css_set_hash(cset->subsys);
1033 hash_add(css_set_table, &cset->hlist, key);
1035 for_each_subsys(ss, ssid)
1036 list_add_tail(&cset->e_cset_node[ssid],
1037 &cset->subsys[ssid]->cgroup->e_csets[ssid]);
1039 spin_unlock_bh(&css_set_lock);
1041 return cset;
1044 static struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1046 struct cgroup *root_cgrp = kf_root->kn->priv;
1048 return root_cgrp->root;
1051 static int cgroup_init_root_id(struct cgroup_root *root)
1053 int id;
1055 lockdep_assert_held(&cgroup_mutex);
1057 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1058 if (id < 0)
1059 return id;
1061 root->hierarchy_id = id;
1062 return 0;
1065 static void cgroup_exit_root_id(struct cgroup_root *root)
1067 lockdep_assert_held(&cgroup_mutex);
1069 if (root->hierarchy_id) {
1070 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1071 root->hierarchy_id = 0;
1075 static void cgroup_free_root(struct cgroup_root *root)
1077 if (root) {
1078 /* hierarchy ID should already have been released */
1079 WARN_ON_ONCE(root->hierarchy_id);
1081 idr_destroy(&root->cgroup_idr);
1082 kfree(root);
1086 static void cgroup_destroy_root(struct cgroup_root *root)
1088 struct cgroup *cgrp = &root->cgrp;
1089 struct cgrp_cset_link *link, *tmp_link;
1091 mutex_lock(&cgroup_mutex);
1093 BUG_ON(atomic_read(&root->nr_cgrps));
1094 BUG_ON(!list_empty(&cgrp->self.children));
1096 /* Rebind all subsystems back to the default hierarchy */
1097 rebind_subsystems(&cgrp_dfl_root, root->subsys_mask);
1100 * Release all the links from cset_links to this hierarchy's
1101 * root cgroup
1103 spin_lock_bh(&css_set_lock);
1105 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1106 list_del(&link->cset_link);
1107 list_del(&link->cgrp_link);
1108 kfree(link);
1111 spin_unlock_bh(&css_set_lock);
1113 if (!list_empty(&root->root_list)) {
1114 list_del(&root->root_list);
1115 cgroup_root_count--;
1118 cgroup_exit_root_id(root);
1120 mutex_unlock(&cgroup_mutex);
1122 kernfs_destroy_root(root->kf_root);
1123 cgroup_free_root(root);
1126 /* look up cgroup associated with given css_set on the specified hierarchy */
1127 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1128 struct cgroup_root *root)
1130 struct cgroup *res = NULL;
1132 lockdep_assert_held(&cgroup_mutex);
1133 lockdep_assert_held(&css_set_lock);
1135 if (cset == &init_css_set) {
1136 res = &root->cgrp;
1137 } else {
1138 struct cgrp_cset_link *link;
1140 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1141 struct cgroup *c = link->cgrp;
1143 if (c->root == root) {
1144 res = c;
1145 break;
1150 BUG_ON(!res);
1151 return res;
1155 * Return the cgroup for "task" from the given hierarchy. Must be
1156 * called with cgroup_mutex and css_set_lock held.
1158 static struct cgroup *task_cgroup_from_root(struct task_struct *task,
1159 struct cgroup_root *root)
1162 * No need to lock the task - since we hold cgroup_mutex the
1163 * task can't change groups, so the only thing that can happen
1164 * is that it exits and its css is set back to init_css_set.
1166 return cset_cgroup_from_root(task_css_set(task), root);
1170 * A task must hold cgroup_mutex to modify cgroups.
1172 * Any task can increment and decrement the count field without lock.
1173 * So in general, code holding cgroup_mutex can't rely on the count
1174 * field not changing. However, if the count goes to zero, then only
1175 * cgroup_attach_task() can increment it again. Because a count of zero
1176 * means that no tasks are currently attached, therefore there is no
1177 * way a task attached to that cgroup can fork (the other way to
1178 * increment the count). So code holding cgroup_mutex can safely
1179 * assume that if the count is zero, it will stay zero. Similarly, if
1180 * a task holds cgroup_mutex on a cgroup with zero count, it
1181 * knows that the cgroup won't be removed, as cgroup_rmdir()
1182 * needs that mutex.
1184 * A cgroup can only be deleted if both its 'count' of using tasks
1185 * is zero, and its list of 'children' cgroups is empty. Since all
1186 * tasks in the system use _some_ cgroup, and since there is always at
1187 * least one task in the system (init, pid == 1), therefore, root cgroup
1188 * always has either children cgroups and/or using tasks. So we don't
1189 * need a special hack to ensure that root cgroup cannot be deleted.
1191 * P.S. One more locking exception. RCU is used to guard the
1192 * update of a tasks cgroup pointer by cgroup_attach_task()
1195 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1196 static const struct file_operations proc_cgroupstats_operations;
1198 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1199 char *buf)
1201 struct cgroup_subsys *ss = cft->ss;
1203 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1204 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1205 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1206 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1207 cft->name);
1208 else
1209 strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1210 return buf;
1214 * cgroup_file_mode - deduce file mode of a control file
1215 * @cft: the control file in question
1217 * S_IRUGO for read, S_IWUSR for write.
1219 static umode_t cgroup_file_mode(const struct cftype *cft)
1221 umode_t mode = 0;
1223 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1224 mode |= S_IRUGO;
1226 if (cft->write_u64 || cft->write_s64 || cft->write) {
1227 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1228 mode |= S_IWUGO;
1229 else
1230 mode |= S_IWUSR;
1233 return mode;
1237 * cgroup_calc_child_subsys_mask - calculate child_subsys_mask
1238 * @cgrp: the target cgroup
1239 * @subtree_control: the new subtree_control mask to consider
1241 * On the default hierarchy, a subsystem may request other subsystems to be
1242 * enabled together through its ->depends_on mask. In such cases, more
1243 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1245 * This function calculates which subsystems need to be enabled if
1246 * @subtree_control is to be applied to @cgrp. The returned mask is always
1247 * a superset of @subtree_control and follows the usual hierarchy rules.
1249 static unsigned long cgroup_calc_child_subsys_mask(struct cgroup *cgrp,
1250 unsigned long subtree_control)
1252 struct cgroup *parent = cgroup_parent(cgrp);
1253 unsigned long cur_ss_mask = subtree_control;
1254 struct cgroup_subsys *ss;
1255 int ssid;
1257 lockdep_assert_held(&cgroup_mutex);
1259 if (!cgroup_on_dfl(cgrp))
1260 return cur_ss_mask;
1262 while (true) {
1263 unsigned long new_ss_mask = cur_ss_mask;
1265 for_each_subsys_which(ss, ssid, &cur_ss_mask)
1266 new_ss_mask |= ss->depends_on;
1269 * Mask out subsystems which aren't available. This can
1270 * happen only if some depended-upon subsystems were bound
1271 * to non-default hierarchies.
1273 if (parent)
1274 new_ss_mask &= parent->child_subsys_mask;
1275 else
1276 new_ss_mask &= cgrp->root->subsys_mask;
1278 if (new_ss_mask == cur_ss_mask)
1279 break;
1280 cur_ss_mask = new_ss_mask;
1283 return cur_ss_mask;
1287 * cgroup_refresh_child_subsys_mask - update child_subsys_mask
1288 * @cgrp: the target cgroup
1290 * Update @cgrp->child_subsys_mask according to the current
1291 * @cgrp->subtree_control using cgroup_calc_child_subsys_mask().
1293 static void cgroup_refresh_child_subsys_mask(struct cgroup *cgrp)
1295 cgrp->child_subsys_mask =
1296 cgroup_calc_child_subsys_mask(cgrp, cgrp->subtree_control);
1300 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1301 * @kn: the kernfs_node being serviced
1303 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1304 * the method finishes if locking succeeded. Note that once this function
1305 * returns the cgroup returned by cgroup_kn_lock_live() may become
1306 * inaccessible any time. If the caller intends to continue to access the
1307 * cgroup, it should pin it before invoking this function.
1309 static void cgroup_kn_unlock(struct kernfs_node *kn)
1311 struct cgroup *cgrp;
1313 if (kernfs_type(kn) == KERNFS_DIR)
1314 cgrp = kn->priv;
1315 else
1316 cgrp = kn->parent->priv;
1318 mutex_unlock(&cgroup_mutex);
1320 kernfs_unbreak_active_protection(kn);
1321 cgroup_put(cgrp);
1325 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1326 * @kn: the kernfs_node being serviced
1328 * This helper is to be used by a cgroup kernfs method currently servicing
1329 * @kn. It breaks the active protection, performs cgroup locking and
1330 * verifies that the associated cgroup is alive. Returns the cgroup if
1331 * alive; otherwise, %NULL. A successful return should be undone by a
1332 * matching cgroup_kn_unlock() invocation.
1334 * Any cgroup kernfs method implementation which requires locking the
1335 * associated cgroup should use this helper. It avoids nesting cgroup
1336 * locking under kernfs active protection and allows all kernfs operations
1337 * including self-removal.
1339 static struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn)
1341 struct cgroup *cgrp;
1343 if (kernfs_type(kn) == KERNFS_DIR)
1344 cgrp = kn->priv;
1345 else
1346 cgrp = kn->parent->priv;
1349 * We're gonna grab cgroup_mutex which nests outside kernfs
1350 * active_ref. cgroup liveliness check alone provides enough
1351 * protection against removal. Ensure @cgrp stays accessible and
1352 * break the active_ref protection.
1354 if (!cgroup_tryget(cgrp))
1355 return NULL;
1356 kernfs_break_active_protection(kn);
1358 mutex_lock(&cgroup_mutex);
1360 if (!cgroup_is_dead(cgrp))
1361 return cgrp;
1363 cgroup_kn_unlock(kn);
1364 return NULL;
1367 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1369 char name[CGROUP_FILE_NAME_MAX];
1371 lockdep_assert_held(&cgroup_mutex);
1372 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1376 * css_clear_dir - remove subsys files in a cgroup directory
1377 * @css: taget css
1378 * @cgrp_override: specify if target cgroup is different from css->cgroup
1380 static void css_clear_dir(struct cgroup_subsys_state *css,
1381 struct cgroup *cgrp_override)
1383 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1384 struct cftype *cfts;
1386 list_for_each_entry(cfts, &css->ss->cfts, node)
1387 cgroup_addrm_files(css, cgrp, cfts, false);
1391 * css_populate_dir - create subsys files in a cgroup directory
1392 * @css: target css
1393 * @cgrp_overried: specify if target cgroup is different from css->cgroup
1395 * On failure, no file is added.
1397 static int css_populate_dir(struct cgroup_subsys_state *css,
1398 struct cgroup *cgrp_override)
1400 struct cgroup *cgrp = cgrp_override ?: css->cgroup;
1401 struct cftype *cfts, *failed_cfts;
1402 int ret;
1404 if (!css->ss) {
1405 if (cgroup_on_dfl(cgrp))
1406 cfts = cgroup_dfl_base_files;
1407 else
1408 cfts = cgroup_legacy_base_files;
1410 return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1413 list_for_each_entry(cfts, &css->ss->cfts, node) {
1414 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1415 if (ret < 0) {
1416 failed_cfts = cfts;
1417 goto err;
1420 return 0;
1421 err:
1422 list_for_each_entry(cfts, &css->ss->cfts, node) {
1423 if (cfts == failed_cfts)
1424 break;
1425 cgroup_addrm_files(css, cgrp, cfts, false);
1427 return ret;
1430 static int rebind_subsystems(struct cgroup_root *dst_root,
1431 unsigned long ss_mask)
1433 struct cgroup *dcgrp = &dst_root->cgrp;
1434 struct cgroup_subsys *ss;
1435 unsigned long tmp_ss_mask;
1436 int ssid, i, ret;
1438 lockdep_assert_held(&cgroup_mutex);
1440 for_each_subsys_which(ss, ssid, &ss_mask) {
1441 /* if @ss has non-root csses attached to it, can't move */
1442 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
1443 return -EBUSY;
1445 /* can't move between two non-dummy roots either */
1446 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1447 return -EBUSY;
1450 /* skip creating root files on dfl_root for inhibited subsystems */
1451 tmp_ss_mask = ss_mask;
1452 if (dst_root == &cgrp_dfl_root)
1453 tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
1455 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
1456 struct cgroup *scgrp = &ss->root->cgrp;
1457 int tssid;
1459 ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
1460 if (!ret)
1461 continue;
1464 * Rebinding back to the default root is not allowed to
1465 * fail. Using both default and non-default roots should
1466 * be rare. Moving subsystems back and forth even more so.
1467 * Just warn about it and continue.
1469 if (dst_root == &cgrp_dfl_root) {
1470 if (cgrp_dfl_root_visible) {
1471 pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
1472 ret, ss_mask);
1473 pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
1475 continue;
1478 for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
1479 if (tssid == ssid)
1480 break;
1481 css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
1483 return ret;
1487 * Nothing can fail from this point on. Remove files for the
1488 * removed subsystems and rebind each subsystem.
1490 for_each_subsys_which(ss, ssid, &ss_mask) {
1491 struct cgroup_root *src_root = ss->root;
1492 struct cgroup *scgrp = &src_root->cgrp;
1493 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1494 struct css_set *cset;
1496 WARN_ON(!css || cgroup_css(dcgrp, ss));
1498 css_clear_dir(css, NULL);
1500 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1501 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1502 ss->root = dst_root;
1503 css->cgroup = dcgrp;
1505 spin_lock_bh(&css_set_lock);
1506 hash_for_each(css_set_table, i, cset, hlist)
1507 list_move_tail(&cset->e_cset_node[ss->id],
1508 &dcgrp->e_csets[ss->id]);
1509 spin_unlock_bh(&css_set_lock);
1511 src_root->subsys_mask &= ~(1 << ssid);
1512 scgrp->subtree_control &= ~(1 << ssid);
1513 cgroup_refresh_child_subsys_mask(scgrp);
1515 /* default hierarchy doesn't enable controllers by default */
1516 dst_root->subsys_mask |= 1 << ssid;
1517 if (dst_root == &cgrp_dfl_root) {
1518 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1519 } else {
1520 dcgrp->subtree_control |= 1 << ssid;
1521 cgroup_refresh_child_subsys_mask(dcgrp);
1522 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1525 if (ss->bind)
1526 ss->bind(css);
1529 kernfs_activate(dcgrp->kn);
1530 return 0;
1533 static int cgroup_show_options(struct seq_file *seq,
1534 struct kernfs_root *kf_root)
1536 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1537 struct cgroup_subsys *ss;
1538 int ssid;
1540 if (root != &cgrp_dfl_root)
1541 for_each_subsys(ss, ssid)
1542 if (root->subsys_mask & (1 << ssid))
1543 seq_show_option(seq, ss->legacy_name, NULL);
1544 if (root->flags & CGRP_ROOT_NOPREFIX)
1545 seq_puts(seq, ",noprefix");
1546 if (root->flags & CGRP_ROOT_XATTR)
1547 seq_puts(seq, ",xattr");
1549 spin_lock(&release_agent_path_lock);
1550 if (strlen(root->release_agent_path))
1551 seq_show_option(seq, "release_agent",
1552 root->release_agent_path);
1553 spin_unlock(&release_agent_path_lock);
1555 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags))
1556 seq_puts(seq, ",clone_children");
1557 if (strlen(root->name))
1558 seq_show_option(seq, "name", root->name);
1559 return 0;
1562 struct cgroup_sb_opts {
1563 unsigned long subsys_mask;
1564 unsigned int flags;
1565 char *release_agent;
1566 bool cpuset_clone_children;
1567 char *name;
1568 /* User explicitly requested empty subsystem */
1569 bool none;
1572 static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts)
1574 char *token, *o = data;
1575 bool all_ss = false, one_ss = false;
1576 unsigned long mask = -1UL;
1577 struct cgroup_subsys *ss;
1578 int nr_opts = 0;
1579 int i;
1581 #ifdef CONFIG_CPUSETS
1582 mask = ~(1U << cpuset_cgrp_id);
1583 #endif
1585 memset(opts, 0, sizeof(*opts));
1587 while ((token = strsep(&o, ",")) != NULL) {
1588 nr_opts++;
1590 if (!*token)
1591 return -EINVAL;
1592 if (!strcmp(token, "none")) {
1593 /* Explicitly have no subsystems */
1594 opts->none = true;
1595 continue;
1597 if (!strcmp(token, "all")) {
1598 /* Mutually exclusive option 'all' + subsystem name */
1599 if (one_ss)
1600 return -EINVAL;
1601 all_ss = true;
1602 continue;
1604 if (!strcmp(token, "__DEVEL__sane_behavior")) {
1605 opts->flags |= CGRP_ROOT_SANE_BEHAVIOR;
1606 continue;
1608 if (!strcmp(token, "noprefix")) {
1609 opts->flags |= CGRP_ROOT_NOPREFIX;
1610 continue;
1612 if (!strcmp(token, "clone_children")) {
1613 opts->cpuset_clone_children = true;
1614 continue;
1616 if (!strcmp(token, "xattr")) {
1617 opts->flags |= CGRP_ROOT_XATTR;
1618 continue;
1620 if (!strncmp(token, "release_agent=", 14)) {
1621 /* Specifying two release agents is forbidden */
1622 if (opts->release_agent)
1623 return -EINVAL;
1624 opts->release_agent =
1625 kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL);
1626 if (!opts->release_agent)
1627 return -ENOMEM;
1628 continue;
1630 if (!strncmp(token, "name=", 5)) {
1631 const char *name = token + 5;
1632 /* Can't specify an empty name */
1633 if (!strlen(name))
1634 return -EINVAL;
1635 /* Must match [\w.-]+ */
1636 for (i = 0; i < strlen(name); i++) {
1637 char c = name[i];
1638 if (isalnum(c))
1639 continue;
1640 if ((c == '.') || (c == '-') || (c == '_'))
1641 continue;
1642 return -EINVAL;
1644 /* Specifying two names is forbidden */
1645 if (opts->name)
1646 return -EINVAL;
1647 opts->name = kstrndup(name,
1648 MAX_CGROUP_ROOT_NAMELEN - 1,
1649 GFP_KERNEL);
1650 if (!opts->name)
1651 return -ENOMEM;
1653 continue;
1656 for_each_subsys(ss, i) {
1657 if (strcmp(token, ss->legacy_name))
1658 continue;
1659 if (!cgroup_ssid_enabled(i))
1660 continue;
1662 /* Mutually exclusive option 'all' + subsystem name */
1663 if (all_ss)
1664 return -EINVAL;
1665 opts->subsys_mask |= (1 << i);
1666 one_ss = true;
1668 break;
1670 if (i == CGROUP_SUBSYS_COUNT)
1671 return -ENOENT;
1674 if (opts->flags & CGRP_ROOT_SANE_BEHAVIOR) {
1675 pr_warn("sane_behavior: this is still under development and its behaviors will change, proceed at your own risk\n");
1676 if (nr_opts != 1) {
1677 pr_err("sane_behavior: no other mount options allowed\n");
1678 return -EINVAL;
1680 return 0;
1684 * If the 'all' option was specified select all the subsystems,
1685 * otherwise if 'none', 'name=' and a subsystem name options were
1686 * not specified, let's default to 'all'
1688 if (all_ss || (!one_ss && !opts->none && !opts->name))
1689 for_each_subsys(ss, i)
1690 if (cgroup_ssid_enabled(i))
1691 opts->subsys_mask |= (1 << i);
1694 * We either have to specify by name or by subsystems. (So all
1695 * empty hierarchies must have a name).
1697 if (!opts->subsys_mask && !opts->name)
1698 return -EINVAL;
1701 * Option noprefix was introduced just for backward compatibility
1702 * with the old cpuset, so we allow noprefix only if mounting just
1703 * the cpuset subsystem.
1705 if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask))
1706 return -EINVAL;
1708 /* Can't specify "none" and some subsystems */
1709 if (opts->subsys_mask && opts->none)
1710 return -EINVAL;
1712 return 0;
1715 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1717 int ret = 0;
1718 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
1719 struct cgroup_sb_opts opts;
1720 unsigned long added_mask, removed_mask;
1722 if (root == &cgrp_dfl_root) {
1723 pr_err("remount is not allowed\n");
1724 return -EINVAL;
1727 mutex_lock(&cgroup_mutex);
1729 /* See what subsystems are wanted */
1730 ret = parse_cgroupfs_options(data, &opts);
1731 if (ret)
1732 goto out_unlock;
1734 if (opts.subsys_mask != root->subsys_mask || opts.release_agent)
1735 pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n",
1736 task_tgid_nr(current), current->comm);
1738 added_mask = opts.subsys_mask & ~root->subsys_mask;
1739 removed_mask = root->subsys_mask & ~opts.subsys_mask;
1741 /* Don't allow flags or name to change at remount */
1742 if ((opts.flags ^ root->flags) ||
1743 (opts.name && strcmp(opts.name, root->name))) {
1744 pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n",
1745 opts.flags, opts.name ?: "", root->flags, root->name);
1746 ret = -EINVAL;
1747 goto out_unlock;
1750 /* remounting is not allowed for populated hierarchies */
1751 if (!list_empty(&root->cgrp.self.children)) {
1752 ret = -EBUSY;
1753 goto out_unlock;
1756 ret = rebind_subsystems(root, added_mask);
1757 if (ret)
1758 goto out_unlock;
1760 rebind_subsystems(&cgrp_dfl_root, removed_mask);
1762 if (opts.release_agent) {
1763 spin_lock(&release_agent_path_lock);
1764 strcpy(root->release_agent_path, opts.release_agent);
1765 spin_unlock(&release_agent_path_lock);
1767 out_unlock:
1768 kfree(opts.release_agent);
1769 kfree(opts.name);
1770 mutex_unlock(&cgroup_mutex);
1771 return ret;
1775 * To reduce the fork() overhead for systems that are not actually using
1776 * their cgroups capability, we don't maintain the lists running through
1777 * each css_set to its tasks until we see the list actually used - in other
1778 * words after the first mount.
1780 static bool use_task_css_set_links __read_mostly;
1782 static void cgroup_enable_task_cg_lists(void)
1784 struct task_struct *p, *g;
1786 spin_lock_bh(&css_set_lock);
1788 if (use_task_css_set_links)
1789 goto out_unlock;
1791 use_task_css_set_links = true;
1794 * We need tasklist_lock because RCU is not safe against
1795 * while_each_thread(). Besides, a forking task that has passed
1796 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1797 * is not guaranteed to have its child immediately visible in the
1798 * tasklist if we walk through it with RCU.
1800 read_lock(&tasklist_lock);
1801 do_each_thread(g, p) {
1802 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1803 task_css_set(p) != &init_css_set);
1806 * We should check if the process is exiting, otherwise
1807 * it will race with cgroup_exit() in that the list
1808 * entry won't be deleted though the process has exited.
1809 * Do it while holding siglock so that we don't end up
1810 * racing against cgroup_exit().
1812 spin_lock_irq(&p->sighand->siglock);
1813 if (!(p->flags & PF_EXITING)) {
1814 struct css_set *cset = task_css_set(p);
1816 if (!css_set_populated(cset))
1817 css_set_update_populated(cset, true);
1818 list_add_tail(&p->cg_list, &cset->tasks);
1819 get_css_set(cset);
1821 spin_unlock_irq(&p->sighand->siglock);
1822 } while_each_thread(g, p);
1823 read_unlock(&tasklist_lock);
1824 out_unlock:
1825 spin_unlock_bh(&css_set_lock);
1828 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1830 struct cgroup_subsys *ss;
1831 int ssid;
1833 INIT_LIST_HEAD(&cgrp->self.sibling);
1834 INIT_LIST_HEAD(&cgrp->self.children);
1835 INIT_LIST_HEAD(&cgrp->self.files);
1836 INIT_LIST_HEAD(&cgrp->cset_links);
1837 INIT_LIST_HEAD(&cgrp->pidlists);
1838 mutex_init(&cgrp->pidlist_mutex);
1839 cgrp->self.cgroup = cgrp;
1840 cgrp->self.flags |= CSS_ONLINE;
1842 for_each_subsys(ss, ssid)
1843 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1845 init_waitqueue_head(&cgrp->offline_waitq);
1846 INIT_WORK(&cgrp->release_agent_work, cgroup_release_agent);
1849 static void init_cgroup_root(struct cgroup_root *root,
1850 struct cgroup_sb_opts *opts)
1852 struct cgroup *cgrp = &root->cgrp;
1854 INIT_LIST_HEAD(&root->root_list);
1855 atomic_set(&root->nr_cgrps, 1);
1856 cgrp->root = root;
1857 init_cgroup_housekeeping(cgrp);
1858 idr_init(&root->cgroup_idr);
1860 root->flags = opts->flags;
1861 if (opts->release_agent)
1862 strcpy(root->release_agent_path, opts->release_agent);
1863 if (opts->name)
1864 strcpy(root->name, opts->name);
1865 if (opts->cpuset_clone_children)
1866 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1869 static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
1871 LIST_HEAD(tmp_links);
1872 struct cgroup *root_cgrp = &root->cgrp;
1873 struct css_set *cset;
1874 int i, ret;
1876 lockdep_assert_held(&cgroup_mutex);
1878 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1879 if (ret < 0)
1880 goto out;
1881 root_cgrp->id = ret;
1882 root_cgrp->ancestor_ids[0] = ret;
1884 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
1885 GFP_KERNEL);
1886 if (ret)
1887 goto out;
1890 * We're accessing css_set_count without locking css_set_lock here,
1891 * but that's OK - it can only be increased by someone holding
1892 * cgroup_lock, and that's us. The worst that can happen is that we
1893 * have some link structures left over
1895 ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
1896 if (ret)
1897 goto cancel_ref;
1899 ret = cgroup_init_root_id(root);
1900 if (ret)
1901 goto cancel_ref;
1903 root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
1904 KERNFS_ROOT_CREATE_DEACTIVATED,
1905 root_cgrp);
1906 if (IS_ERR(root->kf_root)) {
1907 ret = PTR_ERR(root->kf_root);
1908 goto exit_root_id;
1910 root_cgrp->kn = root->kf_root->kn;
1912 ret = css_populate_dir(&root_cgrp->self, NULL);
1913 if (ret)
1914 goto destroy_root;
1916 ret = rebind_subsystems(root, ss_mask);
1917 if (ret)
1918 goto destroy_root;
1921 * There must be no failure case after here, since rebinding takes
1922 * care of subsystems' refcounts, which are explicitly dropped in
1923 * the failure exit path.
1925 list_add(&root->root_list, &cgroup_roots);
1926 cgroup_root_count++;
1929 * Link the root cgroup in this hierarchy into all the css_set
1930 * objects.
1932 spin_lock_bh(&css_set_lock);
1933 hash_for_each(css_set_table, i, cset, hlist) {
1934 link_css_set(&tmp_links, cset, root_cgrp);
1935 if (css_set_populated(cset))
1936 cgroup_update_populated(root_cgrp, true);
1938 spin_unlock_bh(&css_set_lock);
1940 BUG_ON(!list_empty(&root_cgrp->self.children));
1941 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1943 kernfs_activate(root_cgrp->kn);
1944 ret = 0;
1945 goto out;
1947 destroy_root:
1948 kernfs_destroy_root(root->kf_root);
1949 root->kf_root = NULL;
1950 exit_root_id:
1951 cgroup_exit_root_id(root);
1952 cancel_ref:
1953 percpu_ref_exit(&root_cgrp->self.refcnt);
1954 out:
1955 free_cgrp_cset_links(&tmp_links);
1956 return ret;
1959 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
1960 int flags, const char *unused_dev_name,
1961 void *data)
1963 struct super_block *pinned_sb = NULL;
1964 struct cgroup_subsys *ss;
1965 struct cgroup_root *root;
1966 struct cgroup_sb_opts opts;
1967 struct dentry *dentry;
1968 int ret;
1969 int i;
1970 bool new_sb;
1973 * The first time anyone tries to mount a cgroup, enable the list
1974 * linking each css_set to its tasks and fix up all existing tasks.
1976 if (!use_task_css_set_links)
1977 cgroup_enable_task_cg_lists();
1979 mutex_lock(&cgroup_mutex);
1981 /* First find the desired set of subsystems */
1982 ret = parse_cgroupfs_options(data, &opts);
1983 if (ret)
1984 goto out_unlock;
1986 /* look for a matching existing root */
1987 if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
1988 cgrp_dfl_root_visible = true;
1989 root = &cgrp_dfl_root;
1990 cgroup_get(&root->cgrp);
1991 ret = 0;
1992 goto out_unlock;
1996 * Destruction of cgroup root is asynchronous, so subsystems may
1997 * still be dying after the previous unmount. Let's drain the
1998 * dying subsystems. We just need to ensure that the ones
1999 * unmounted previously finish dying and don't care about new ones
2000 * starting. Testing ref liveliness is good enough.
2002 for_each_subsys(ss, i) {
2003 if (!(opts.subsys_mask & (1 << i)) ||
2004 ss->root == &cgrp_dfl_root)
2005 continue;
2007 if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
2008 mutex_unlock(&cgroup_mutex);
2009 msleep(10);
2010 ret = restart_syscall();
2011 goto out_free;
2013 cgroup_put(&ss->root->cgrp);
2016 for_each_root(root) {
2017 bool name_match = false;
2019 if (root == &cgrp_dfl_root)
2020 continue;
2023 * If we asked for a name then it must match. Also, if
2024 * name matches but sybsys_mask doesn't, we should fail.
2025 * Remember whether name matched.
2027 if (opts.name) {
2028 if (strcmp(opts.name, root->name))
2029 continue;
2030 name_match = true;
2034 * If we asked for subsystems (or explicitly for no
2035 * subsystems) then they must match.
2037 if ((opts.subsys_mask || opts.none) &&
2038 (opts.subsys_mask != root->subsys_mask)) {
2039 if (!name_match)
2040 continue;
2041 ret = -EBUSY;
2042 goto out_unlock;
2045 if (root->flags ^ opts.flags)
2046 pr_warn("new mount options do not match the existing superblock, will be ignored\n");
2049 * We want to reuse @root whose lifetime is governed by its
2050 * ->cgrp. Let's check whether @root is alive and keep it
2051 * that way. As cgroup_kill_sb() can happen anytime, we
2052 * want to block it by pinning the sb so that @root doesn't
2053 * get killed before mount is complete.
2055 * With the sb pinned, tryget_live can reliably indicate
2056 * whether @root can be reused. If it's being killed,
2057 * drain it. We can use wait_queue for the wait but this
2058 * path is super cold. Let's just sleep a bit and retry.
2060 pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
2061 if (IS_ERR(pinned_sb) ||
2062 !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
2063 mutex_unlock(&cgroup_mutex);
2064 if (!IS_ERR_OR_NULL(pinned_sb))
2065 deactivate_super(pinned_sb);
2066 msleep(10);
2067 ret = restart_syscall();
2068 goto out_free;
2071 ret = 0;
2072 goto out_unlock;
2076 * No such thing, create a new one. name= matching without subsys
2077 * specification is allowed for already existing hierarchies but we
2078 * can't create new one without subsys specification.
2080 if (!opts.subsys_mask && !opts.none) {
2081 ret = -EINVAL;
2082 goto out_unlock;
2085 root = kzalloc(sizeof(*root), GFP_KERNEL);
2086 if (!root) {
2087 ret = -ENOMEM;
2088 goto out_unlock;
2091 init_cgroup_root(root, &opts);
2093 ret = cgroup_setup_root(root, opts.subsys_mask);
2094 if (ret)
2095 cgroup_free_root(root);
2097 out_unlock:
2098 mutex_unlock(&cgroup_mutex);
2099 out_free:
2100 kfree(opts.release_agent);
2101 kfree(opts.name);
2103 if (ret)
2104 return ERR_PTR(ret);
2106 dentry = kernfs_mount(fs_type, flags, root->kf_root,
2107 CGROUP_SUPER_MAGIC, &new_sb);
2108 if (IS_ERR(dentry) || !new_sb)
2109 cgroup_put(&root->cgrp);
2112 * If @pinned_sb, we're reusing an existing root and holding an
2113 * extra ref on its sb. Mount is complete. Put the extra ref.
2115 if (pinned_sb) {
2116 WARN_ON(new_sb);
2117 deactivate_super(pinned_sb);
2120 return dentry;
2123 static void cgroup_kill_sb(struct super_block *sb)
2125 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2126 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2129 * If @root doesn't have any mounts or children, start killing it.
2130 * This prevents new mounts by disabling percpu_ref_tryget_live().
2131 * cgroup_mount() may wait for @root's release.
2133 * And don't kill the default root.
2135 if (!list_empty(&root->cgrp.self.children) ||
2136 root == &cgrp_dfl_root)
2137 cgroup_put(&root->cgrp);
2138 else
2139 percpu_ref_kill(&root->cgrp.self.refcnt);
2141 kernfs_kill_sb(sb);
2144 static struct file_system_type cgroup_fs_type = {
2145 .name = "cgroup",
2146 .mount = cgroup_mount,
2147 .kill_sb = cgroup_kill_sb,
2151 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2152 * @task: target task
2153 * @buf: the buffer to write the path into
2154 * @buflen: the length of the buffer
2156 * Determine @task's cgroup on the first (the one with the lowest non-zero
2157 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2158 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2159 * cgroup controller callbacks.
2161 * Return value is the same as kernfs_path().
2163 char *task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2165 struct cgroup_root *root;
2166 struct cgroup *cgrp;
2167 int hierarchy_id = 1;
2168 char *path = NULL;
2170 mutex_lock(&cgroup_mutex);
2171 spin_lock_bh(&css_set_lock);
2173 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2175 if (root) {
2176 cgrp = task_cgroup_from_root(task, root);
2177 path = cgroup_path(cgrp, buf, buflen);
2178 } else {
2179 /* if no hierarchy exists, everyone is in "/" */
2180 if (strlcpy(buf, "/", buflen) < buflen)
2181 path = buf;
2184 spin_unlock_bh(&css_set_lock);
2185 mutex_unlock(&cgroup_mutex);
2186 return path;
2188 EXPORT_SYMBOL_GPL(task_cgroup_path);
2190 /* used to track tasks and other necessary states during migration */
2191 struct cgroup_taskset {
2192 /* the src and dst cset list running through cset->mg_node */
2193 struct list_head src_csets;
2194 struct list_head dst_csets;
2197 * Fields for cgroup_taskset_*() iteration.
2199 * Before migration is committed, the target migration tasks are on
2200 * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of
2201 * the csets on ->dst_csets. ->csets point to either ->src_csets
2202 * or ->dst_csets depending on whether migration is committed.
2204 * ->cur_csets and ->cur_task point to the current task position
2205 * during iteration.
2207 struct list_head *csets;
2208 struct css_set *cur_cset;
2209 struct task_struct *cur_task;
2212 #define CGROUP_TASKSET_INIT(tset) (struct cgroup_taskset){ \
2213 .src_csets = LIST_HEAD_INIT(tset.src_csets), \
2214 .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \
2215 .csets = &tset.src_csets, \
2219 * cgroup_taskset_add - try to add a migration target task to a taskset
2220 * @task: target task
2221 * @tset: target taskset
2223 * Add @task, which is a migration target, to @tset. This function becomes
2224 * noop if @task doesn't need to be migrated. @task's css_set should have
2225 * been added as a migration source and @task->cg_list will be moved from
2226 * the css_set's tasks list to mg_tasks one.
2228 static void cgroup_taskset_add(struct task_struct *task,
2229 struct cgroup_taskset *tset)
2231 struct css_set *cset;
2233 lockdep_assert_held(&css_set_lock);
2235 /* @task either already exited or can't exit until the end */
2236 if (task->flags & PF_EXITING)
2237 return;
2239 /* leave @task alone if post_fork() hasn't linked it yet */
2240 if (list_empty(&task->cg_list))
2241 return;
2243 cset = task_css_set(task);
2244 if (!cset->mg_src_cgrp)
2245 return;
2247 list_move_tail(&task->cg_list, &cset->mg_tasks);
2248 if (list_empty(&cset->mg_node))
2249 list_add_tail(&cset->mg_node, &tset->src_csets);
2250 if (list_empty(&cset->mg_dst_cset->mg_node))
2251 list_move_tail(&cset->mg_dst_cset->mg_node,
2252 &tset->dst_csets);
2256 * cgroup_taskset_first - reset taskset and return the first task
2257 * @tset: taskset of interest
2259 * @tset iteration is initialized and the first task is returned.
2261 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset)
2263 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2264 tset->cur_task = NULL;
2266 return cgroup_taskset_next(tset);
2270 * cgroup_taskset_next - iterate to the next task in taskset
2271 * @tset: taskset of interest
2273 * Return the next task in @tset. Iteration must have been initialized
2274 * with cgroup_taskset_first().
2276 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset)
2278 struct css_set *cset = tset->cur_cset;
2279 struct task_struct *task = tset->cur_task;
2281 while (&cset->mg_node != tset->csets) {
2282 if (!task)
2283 task = list_first_entry(&cset->mg_tasks,
2284 struct task_struct, cg_list);
2285 else
2286 task = list_next_entry(task, cg_list);
2288 if (&task->cg_list != &cset->mg_tasks) {
2289 tset->cur_cset = cset;
2290 tset->cur_task = task;
2291 return task;
2294 cset = list_next_entry(cset, mg_node);
2295 task = NULL;
2298 return NULL;
2302 * cgroup_taskset_migrate - migrate a taskset to a cgroup
2303 * @tset: taget taskset
2304 * @dst_cgrp: destination cgroup
2306 * Migrate tasks in @tset to @dst_cgrp. This function fails iff one of the
2307 * ->can_attach callbacks fails and guarantees that either all or none of
2308 * the tasks in @tset are migrated. @tset is consumed regardless of
2309 * success.
2311 static int cgroup_taskset_migrate(struct cgroup_taskset *tset,
2312 struct cgroup *dst_cgrp)
2314 struct cgroup_subsys_state *css, *failed_css = NULL;
2315 struct task_struct *task, *tmp_task;
2316 struct css_set *cset, *tmp_cset;
2317 int i, ret;
2319 /* methods shouldn't be called if no task is actually migrating */
2320 if (list_empty(&tset->src_csets))
2321 return 0;
2323 /* check that we can legitimately attach to the cgroup */
2324 for_each_e_css(css, i, dst_cgrp) {
2325 if (css->ss->can_attach) {
2326 ret = css->ss->can_attach(css, tset);
2327 if (ret) {
2328 failed_css = css;
2329 goto out_cancel_attach;
2335 * Now that we're guaranteed success, proceed to move all tasks to
2336 * the new cgroup. There are no failure cases after here, so this
2337 * is the commit point.
2339 spin_lock_bh(&css_set_lock);
2340 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2341 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2342 struct css_set *from_cset = task_css_set(task);
2343 struct css_set *to_cset = cset->mg_dst_cset;
2345 get_css_set(to_cset);
2346 css_set_move_task(task, from_cset, to_cset, true);
2347 put_css_set_locked(from_cset);
2350 spin_unlock_bh(&css_set_lock);
2353 * Migration is committed, all target tasks are now on dst_csets.
2354 * Nothing is sensitive to fork() after this point. Notify
2355 * controllers that migration is complete.
2357 tset->csets = &tset->dst_csets;
2359 for_each_e_css(css, i, dst_cgrp)
2360 if (css->ss->attach)
2361 css->ss->attach(css, tset);
2363 ret = 0;
2364 goto out_release_tset;
2366 out_cancel_attach:
2367 for_each_e_css(css, i, dst_cgrp) {
2368 if (css == failed_css)
2369 break;
2370 if (css->ss->cancel_attach)
2371 css->ss->cancel_attach(css, tset);
2373 out_release_tset:
2374 spin_lock_bh(&css_set_lock);
2375 list_splice_init(&tset->dst_csets, &tset->src_csets);
2376 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2377 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2378 list_del_init(&cset->mg_node);
2380 spin_unlock_bh(&css_set_lock);
2381 return ret;
2385 * cgroup_migrate_finish - cleanup after attach
2386 * @preloaded_csets: list of preloaded css_sets
2388 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2389 * those functions for details.
2391 static void cgroup_migrate_finish(struct list_head *preloaded_csets)
2393 struct css_set *cset, *tmp_cset;
2395 lockdep_assert_held(&cgroup_mutex);
2397 spin_lock_bh(&css_set_lock);
2398 list_for_each_entry_safe(cset, tmp_cset, preloaded_csets, mg_preload_node) {
2399 cset->mg_src_cgrp = NULL;
2400 cset->mg_dst_cset = NULL;
2401 list_del_init(&cset->mg_preload_node);
2402 put_css_set_locked(cset);
2404 spin_unlock_bh(&css_set_lock);
2408 * cgroup_migrate_add_src - add a migration source css_set
2409 * @src_cset: the source css_set to add
2410 * @dst_cgrp: the destination cgroup
2411 * @preloaded_csets: list of preloaded css_sets
2413 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2414 * @src_cset and add it to @preloaded_csets, which should later be cleaned
2415 * up by cgroup_migrate_finish().
2417 * This function may be called without holding cgroup_threadgroup_rwsem
2418 * even if the target is a process. Threads may be created and destroyed
2419 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2420 * into play and the preloaded css_sets are guaranteed to cover all
2421 * migrations.
2423 static void cgroup_migrate_add_src(struct css_set *src_cset,
2424 struct cgroup *dst_cgrp,
2425 struct list_head *preloaded_csets)
2427 struct cgroup *src_cgrp;
2429 lockdep_assert_held(&cgroup_mutex);
2430 lockdep_assert_held(&css_set_lock);
2432 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2434 if (!list_empty(&src_cset->mg_preload_node))
2435 return;
2437 WARN_ON(src_cset->mg_src_cgrp);
2438 WARN_ON(!list_empty(&src_cset->mg_tasks));
2439 WARN_ON(!list_empty(&src_cset->mg_node));
2441 src_cset->mg_src_cgrp = src_cgrp;
2442 get_css_set(src_cset);
2443 list_add(&src_cset->mg_preload_node, preloaded_csets);
2447 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2448 * @dst_cgrp: the destination cgroup (may be %NULL)
2449 * @preloaded_csets: list of preloaded source css_sets
2451 * Tasks are about to be moved to @dst_cgrp and all the source css_sets
2452 * have been preloaded to @preloaded_csets. This function looks up and
2453 * pins all destination css_sets, links each to its source, and append them
2454 * to @preloaded_csets. If @dst_cgrp is %NULL, the destination of each
2455 * source css_set is assumed to be its cgroup on the default hierarchy.
2457 * This function must be called after cgroup_migrate_add_src() has been
2458 * called on each migration source css_set. After migration is performed
2459 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2460 * @preloaded_csets.
2462 static int cgroup_migrate_prepare_dst(struct cgroup *dst_cgrp,
2463 struct list_head *preloaded_csets)
2465 LIST_HEAD(csets);
2466 struct css_set *src_cset, *tmp_cset;
2468 lockdep_assert_held(&cgroup_mutex);
2471 * Except for the root, child_subsys_mask must be zero for a cgroup
2472 * with tasks so that child cgroups don't compete against tasks.
2474 if (dst_cgrp && cgroup_on_dfl(dst_cgrp) && cgroup_parent(dst_cgrp) &&
2475 dst_cgrp->child_subsys_mask)
2476 return -EBUSY;
2478 /* look up the dst cset for each src cset and link it to src */
2479 list_for_each_entry_safe(src_cset, tmp_cset, preloaded_csets, mg_preload_node) {
2480 struct css_set *dst_cset;
2482 dst_cset = find_css_set(src_cset,
2483 dst_cgrp ?: src_cset->dfl_cgrp);
2484 if (!dst_cset)
2485 goto err;
2487 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2490 * If src cset equals dst, it's noop. Drop the src.
2491 * cgroup_migrate() will skip the cset too. Note that we
2492 * can't handle src == dst as some nodes are used by both.
2494 if (src_cset == dst_cset) {
2495 src_cset->mg_src_cgrp = NULL;
2496 list_del_init(&src_cset->mg_preload_node);
2497 put_css_set(src_cset);
2498 put_css_set(dst_cset);
2499 continue;
2502 src_cset->mg_dst_cset = dst_cset;
2504 if (list_empty(&dst_cset->mg_preload_node))
2505 list_add(&dst_cset->mg_preload_node, &csets);
2506 else
2507 put_css_set(dst_cset);
2510 list_splice_tail(&csets, preloaded_csets);
2511 return 0;
2512 err:
2513 cgroup_migrate_finish(&csets);
2514 return -ENOMEM;
2518 * cgroup_migrate - migrate a process or task to a cgroup
2519 * @leader: the leader of the process or the task to migrate
2520 * @threadgroup: whether @leader points to the whole process or a single task
2521 * @cgrp: the destination cgroup
2523 * Migrate a process or task denoted by @leader to @cgrp. If migrating a
2524 * process, the caller must be holding cgroup_threadgroup_rwsem. The
2525 * caller is also responsible for invoking cgroup_migrate_add_src() and
2526 * cgroup_migrate_prepare_dst() on the targets before invoking this
2527 * function and following up with cgroup_migrate_finish().
2529 * As long as a controller's ->can_attach() doesn't fail, this function is
2530 * guaranteed to succeed. This means that, excluding ->can_attach()
2531 * failure, when migrating multiple targets, the success or failure can be
2532 * decided for all targets by invoking group_migrate_prepare_dst() before
2533 * actually starting migrating.
2535 static int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2536 struct cgroup *cgrp)
2538 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2539 struct task_struct *task;
2542 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2543 * already PF_EXITING could be freed from underneath us unless we
2544 * take an rcu_read_lock.
2546 spin_lock_bh(&css_set_lock);
2547 rcu_read_lock();
2548 task = leader;
2549 do {
2550 cgroup_taskset_add(task, &tset);
2551 if (!threadgroup)
2552 break;
2553 } while_each_thread(leader, task);
2554 rcu_read_unlock();
2555 spin_unlock_bh(&css_set_lock);
2557 return cgroup_taskset_migrate(&tset, cgrp);
2561 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2562 * @dst_cgrp: the cgroup to attach to
2563 * @leader: the task or the leader of the threadgroup to be attached
2564 * @threadgroup: attach the whole threadgroup?
2566 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2568 static int cgroup_attach_task(struct cgroup *dst_cgrp,
2569 struct task_struct *leader, bool threadgroup)
2571 LIST_HEAD(preloaded_csets);
2572 struct task_struct *task;
2573 int ret;
2575 /* look up all src csets */
2576 spin_lock_bh(&css_set_lock);
2577 rcu_read_lock();
2578 task = leader;
2579 do {
2580 cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
2581 &preloaded_csets);
2582 if (!threadgroup)
2583 break;
2584 } while_each_thread(leader, task);
2585 rcu_read_unlock();
2586 spin_unlock_bh(&css_set_lock);
2588 /* prepare dst csets and commit */
2589 ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
2590 if (!ret)
2591 ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
2593 cgroup_migrate_finish(&preloaded_csets);
2594 return ret;
2597 static int cgroup_procs_write_permission(struct task_struct *task,
2598 struct cgroup *dst_cgrp,
2599 struct kernfs_open_file *of)
2601 const struct cred *cred = current_cred();
2602 const struct cred *tcred = get_task_cred(task);
2603 int ret = 0;
2606 * even if we're attaching all tasks in the thread group, we only
2607 * need to check permissions on one of them.
2609 if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) &&
2610 !uid_eq(cred->euid, tcred->uid) &&
2611 !uid_eq(cred->euid, tcred->suid))
2612 ret = -EACCES;
2614 if (!ret && cgroup_on_dfl(dst_cgrp)) {
2615 struct super_block *sb = of->file->f_path.dentry->d_sb;
2616 struct cgroup *cgrp;
2617 struct inode *inode;
2619 spin_lock_bh(&css_set_lock);
2620 cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
2621 spin_unlock_bh(&css_set_lock);
2623 while (!cgroup_is_descendant(dst_cgrp, cgrp))
2624 cgrp = cgroup_parent(cgrp);
2626 ret = -ENOMEM;
2627 inode = kernfs_get_inode(sb, cgrp->procs_file.kn);
2628 if (inode) {
2629 ret = inode_permission(inode, MAY_WRITE);
2630 iput(inode);
2634 put_cred(tcred);
2635 return ret;
2639 * Find the task_struct of the task to attach by vpid and pass it along to the
2640 * function to attach either it or all tasks in its threadgroup. Will lock
2641 * cgroup_mutex and threadgroup.
2643 static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
2644 size_t nbytes, loff_t off, bool threadgroup)
2646 struct task_struct *tsk;
2647 struct cgroup *cgrp;
2648 pid_t pid;
2649 int ret;
2651 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2652 return -EINVAL;
2654 cgrp = cgroup_kn_lock_live(of->kn);
2655 if (!cgrp)
2656 return -ENODEV;
2658 percpu_down_write(&cgroup_threadgroup_rwsem);
2659 rcu_read_lock();
2660 if (pid) {
2661 tsk = find_task_by_vpid(pid);
2662 if (!tsk) {
2663 ret = -ESRCH;
2664 goto out_unlock_rcu;
2666 } else {
2667 tsk = current;
2670 if (threadgroup)
2671 tsk = tsk->group_leader;
2674 * Workqueue threads may acquire PF_NO_SETAFFINITY and become
2675 * trapped in a cpuset, or RT worker may be born in a cgroup
2676 * with no rt_runtime allocated. Just say no.
2678 if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
2679 ret = -EINVAL;
2680 goto out_unlock_rcu;
2683 get_task_struct(tsk);
2684 rcu_read_unlock();
2686 ret = cgroup_procs_write_permission(tsk, cgrp, of);
2687 if (!ret)
2688 ret = cgroup_attach_task(cgrp, tsk, threadgroup);
2690 put_task_struct(tsk);
2691 goto out_unlock_threadgroup;
2693 out_unlock_rcu:
2694 rcu_read_unlock();
2695 out_unlock_threadgroup:
2696 percpu_up_write(&cgroup_threadgroup_rwsem);
2697 cgroup_kn_unlock(of->kn);
2698 return ret ?: nbytes;
2702 * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from'
2703 * @from: attach to all cgroups of a given task
2704 * @tsk: the task to be attached
2706 int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk)
2708 struct cgroup_root *root;
2709 int retval = 0;
2711 mutex_lock(&cgroup_mutex);
2712 for_each_root(root) {
2713 struct cgroup *from_cgrp;
2715 if (root == &cgrp_dfl_root)
2716 continue;
2718 spin_lock_bh(&css_set_lock);
2719 from_cgrp = task_cgroup_from_root(from, root);
2720 spin_unlock_bh(&css_set_lock);
2722 retval = cgroup_attach_task(from_cgrp, tsk, false);
2723 if (retval)
2724 break;
2726 mutex_unlock(&cgroup_mutex);
2728 return retval;
2730 EXPORT_SYMBOL_GPL(cgroup_attach_task_all);
2732 static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
2733 char *buf, size_t nbytes, loff_t off)
2735 return __cgroup_procs_write(of, buf, nbytes, off, false);
2738 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
2739 char *buf, size_t nbytes, loff_t off)
2741 return __cgroup_procs_write(of, buf, nbytes, off, true);
2744 static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of,
2745 char *buf, size_t nbytes, loff_t off)
2747 struct cgroup *cgrp;
2749 BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX);
2751 cgrp = cgroup_kn_lock_live(of->kn);
2752 if (!cgrp)
2753 return -ENODEV;
2754 spin_lock(&release_agent_path_lock);
2755 strlcpy(cgrp->root->release_agent_path, strstrip(buf),
2756 sizeof(cgrp->root->release_agent_path));
2757 spin_unlock(&release_agent_path_lock);
2758 cgroup_kn_unlock(of->kn);
2759 return nbytes;
2762 static int cgroup_release_agent_show(struct seq_file *seq, void *v)
2764 struct cgroup *cgrp = seq_css(seq)->cgroup;
2766 spin_lock(&release_agent_path_lock);
2767 seq_puts(seq, cgrp->root->release_agent_path);
2768 spin_unlock(&release_agent_path_lock);
2769 seq_putc(seq, '\n');
2770 return 0;
2773 static int cgroup_sane_behavior_show(struct seq_file *seq, void *v)
2775 seq_puts(seq, "0\n");
2776 return 0;
2779 static void cgroup_print_ss_mask(struct seq_file *seq, unsigned long ss_mask)
2781 struct cgroup_subsys *ss;
2782 bool printed = false;
2783 int ssid;
2785 for_each_subsys_which(ss, ssid, &ss_mask) {
2786 if (printed)
2787 seq_putc(seq, ' ');
2788 seq_printf(seq, "%s", ss->name);
2789 printed = true;
2791 if (printed)
2792 seq_putc(seq, '\n');
2795 /* show controllers which are currently attached to the default hierarchy */
2796 static int cgroup_root_controllers_show(struct seq_file *seq, void *v)
2798 struct cgroup *cgrp = seq_css(seq)->cgroup;
2800 cgroup_print_ss_mask(seq, cgrp->root->subsys_mask &
2801 ~cgrp_dfl_root_inhibit_ss_mask);
2802 return 0;
2805 /* show controllers which are enabled from the parent */
2806 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2808 struct cgroup *cgrp = seq_css(seq)->cgroup;
2810 cgroup_print_ss_mask(seq, cgroup_parent(cgrp)->subtree_control);
2811 return 0;
2814 /* show controllers which are enabled for a given cgroup's children */
2815 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2817 struct cgroup *cgrp = seq_css(seq)->cgroup;
2819 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2820 return 0;
2824 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2825 * @cgrp: root of the subtree to update csses for
2827 * @cgrp's child_subsys_mask has changed and its subtree's (self excluded)
2828 * css associations need to be updated accordingly. This function looks up
2829 * all css_sets which are attached to the subtree, creates the matching
2830 * updated css_sets and migrates the tasks to the new ones.
2832 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2834 LIST_HEAD(preloaded_csets);
2835 struct cgroup_taskset tset = CGROUP_TASKSET_INIT(tset);
2836 struct cgroup_subsys_state *css;
2837 struct css_set *src_cset;
2838 int ret;
2840 lockdep_assert_held(&cgroup_mutex);
2842 percpu_down_write(&cgroup_threadgroup_rwsem);
2844 /* look up all csses currently attached to @cgrp's subtree */
2845 spin_lock_bh(&css_set_lock);
2846 css_for_each_descendant_pre(css, cgroup_css(cgrp, NULL)) {
2847 struct cgrp_cset_link *link;
2849 /* self is not affected by child_subsys_mask change */
2850 if (css->cgroup == cgrp)
2851 continue;
2853 list_for_each_entry(link, &css->cgroup->cset_links, cset_link)
2854 cgroup_migrate_add_src(link->cset, cgrp,
2855 &preloaded_csets);
2857 spin_unlock_bh(&css_set_lock);
2859 /* NULL dst indicates self on default hierarchy */
2860 ret = cgroup_migrate_prepare_dst(NULL, &preloaded_csets);
2861 if (ret)
2862 goto out_finish;
2864 spin_lock_bh(&css_set_lock);
2865 list_for_each_entry(src_cset, &preloaded_csets, mg_preload_node) {
2866 struct task_struct *task, *ntask;
2868 /* src_csets precede dst_csets, break on the first dst_cset */
2869 if (!src_cset->mg_src_cgrp)
2870 break;
2872 /* all tasks in src_csets need to be migrated */
2873 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2874 cgroup_taskset_add(task, &tset);
2876 spin_unlock_bh(&css_set_lock);
2878 ret = cgroup_taskset_migrate(&tset, cgrp);
2879 out_finish:
2880 cgroup_migrate_finish(&preloaded_csets);
2881 percpu_up_write(&cgroup_threadgroup_rwsem);
2882 return ret;
2885 /* change the enabled child controllers for a cgroup in the default hierarchy */
2886 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
2887 char *buf, size_t nbytes,
2888 loff_t off)
2890 unsigned long enable = 0, disable = 0;
2891 unsigned long css_enable, css_disable, old_sc, new_sc, old_ss, new_ss;
2892 struct cgroup *cgrp, *child;
2893 struct cgroup_subsys *ss;
2894 char *tok;
2895 int ssid, ret;
2898 * Parse input - space separated list of subsystem names prefixed
2899 * with either + or -.
2901 buf = strstrip(buf);
2902 while ((tok = strsep(&buf, " "))) {
2903 unsigned long tmp_ss_mask = ~cgrp_dfl_root_inhibit_ss_mask;
2905 if (tok[0] == '\0')
2906 continue;
2907 for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
2908 if (!cgroup_ssid_enabled(ssid) ||
2909 strcmp(tok + 1, ss->name))
2910 continue;
2912 if (*tok == '+') {
2913 enable |= 1 << ssid;
2914 disable &= ~(1 << ssid);
2915 } else if (*tok == '-') {
2916 disable |= 1 << ssid;
2917 enable &= ~(1 << ssid);
2918 } else {
2919 return -EINVAL;
2921 break;
2923 if (ssid == CGROUP_SUBSYS_COUNT)
2924 return -EINVAL;
2927 cgrp = cgroup_kn_lock_live(of->kn);
2928 if (!cgrp)
2929 return -ENODEV;
2931 for_each_subsys(ss, ssid) {
2932 if (enable & (1 << ssid)) {
2933 if (cgrp->subtree_control & (1 << ssid)) {
2934 enable &= ~(1 << ssid);
2935 continue;
2938 /* unavailable or not enabled on the parent? */
2939 if (!(cgrp_dfl_root.subsys_mask & (1 << ssid)) ||
2940 (cgroup_parent(cgrp) &&
2941 !(cgroup_parent(cgrp)->subtree_control & (1 << ssid)))) {
2942 ret = -ENOENT;
2943 goto out_unlock;
2945 } else if (disable & (1 << ssid)) {
2946 if (!(cgrp->subtree_control & (1 << ssid))) {
2947 disable &= ~(1 << ssid);
2948 continue;
2951 /* a child has it enabled? */
2952 cgroup_for_each_live_child(child, cgrp) {
2953 if (child->subtree_control & (1 << ssid)) {
2954 ret = -EBUSY;
2955 goto out_unlock;
2961 if (!enable && !disable) {
2962 ret = 0;
2963 goto out_unlock;
2967 * Except for the root, subtree_control must be zero for a cgroup
2968 * with tasks so that child cgroups don't compete against tasks.
2970 if (enable && cgroup_parent(cgrp) && !list_empty(&cgrp->cset_links)) {
2971 ret = -EBUSY;
2972 goto out_unlock;
2976 * Update subsys masks and calculate what needs to be done. More
2977 * subsystems than specified may need to be enabled or disabled
2978 * depending on subsystem dependencies.
2980 old_sc = cgrp->subtree_control;
2981 old_ss = cgrp->child_subsys_mask;
2982 new_sc = (old_sc | enable) & ~disable;
2983 new_ss = cgroup_calc_child_subsys_mask(cgrp, new_sc);
2985 css_enable = ~old_ss & new_ss;
2986 css_disable = old_ss & ~new_ss;
2987 enable |= css_enable;
2988 disable |= css_disable;
2991 * Because css offlining is asynchronous, userland might try to
2992 * re-enable the same controller while the previous instance is
2993 * still around. In such cases, wait till it's gone using
2994 * offline_waitq.
2996 for_each_subsys_which(ss, ssid, &css_enable) {
2997 cgroup_for_each_live_child(child, cgrp) {
2998 DEFINE_WAIT(wait);
3000 if (!cgroup_css(child, ss))
3001 continue;
3003 cgroup_get(child);
3004 prepare_to_wait(&child->offline_waitq, &wait,
3005 TASK_UNINTERRUPTIBLE);
3006 cgroup_kn_unlock(of->kn);
3007 schedule();
3008 finish_wait(&child->offline_waitq, &wait);
3009 cgroup_put(child);
3011 return restart_syscall();
3015 cgrp->subtree_control = new_sc;
3016 cgrp->child_subsys_mask = new_ss;
3019 * Create new csses or make the existing ones visible. A css is
3020 * created invisible if it's being implicitly enabled through
3021 * dependency. An invisible css is made visible when the userland
3022 * explicitly enables it.
3024 for_each_subsys(ss, ssid) {
3025 if (!(enable & (1 << ssid)))
3026 continue;
3028 cgroup_for_each_live_child(child, cgrp) {
3029 if (css_enable & (1 << ssid))
3030 ret = create_css(child, ss,
3031 cgrp->subtree_control & (1 << ssid));
3032 else
3033 ret = css_populate_dir(cgroup_css(child, ss),
3034 NULL);
3035 if (ret)
3036 goto err_undo_css;
3041 * At this point, cgroup_e_css() results reflect the new csses
3042 * making the following cgroup_update_dfl_csses() properly update
3043 * css associations of all tasks in the subtree.
3045 ret = cgroup_update_dfl_csses(cgrp);
3046 if (ret)
3047 goto err_undo_css;
3050 * All tasks are migrated out of disabled csses. Kill or hide
3051 * them. A css is hidden when the userland requests it to be
3052 * disabled while other subsystems are still depending on it. The
3053 * css must not actively control resources and be in the vanilla
3054 * state if it's made visible again later. Controllers which may
3055 * be depended upon should provide ->css_reset() for this purpose.
3057 for_each_subsys(ss, ssid) {
3058 if (!(disable & (1 << ssid)))
3059 continue;
3061 cgroup_for_each_live_child(child, cgrp) {
3062 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3064 if (css_disable & (1 << ssid)) {
3065 kill_css(css);
3066 } else {
3067 css_clear_dir(css, NULL);
3068 if (ss->css_reset)
3069 ss->css_reset(css);
3075 * The effective csses of all the descendants (excluding @cgrp) may
3076 * have changed. Subsystems can optionally subscribe to this event
3077 * by implementing ->css_e_css_changed() which is invoked if any of
3078 * the effective csses seen from the css's cgroup may have changed.
3080 for_each_subsys(ss, ssid) {
3081 struct cgroup_subsys_state *this_css = cgroup_css(cgrp, ss);
3082 struct cgroup_subsys_state *css;
3084 if (!ss->css_e_css_changed || !this_css)
3085 continue;
3087 css_for_each_descendant_pre(css, this_css)
3088 if (css != this_css)
3089 ss->css_e_css_changed(css);
3092 kernfs_activate(cgrp->kn);
3093 ret = 0;
3094 out_unlock:
3095 cgroup_kn_unlock(of->kn);
3096 return ret ?: nbytes;
3098 err_undo_css:
3099 cgrp->subtree_control = old_sc;
3100 cgrp->child_subsys_mask = old_ss;
3102 for_each_subsys(ss, ssid) {
3103 if (!(enable & (1 << ssid)))
3104 continue;
3106 cgroup_for_each_live_child(child, cgrp) {
3107 struct cgroup_subsys_state *css = cgroup_css(child, ss);
3109 if (!css)
3110 continue;
3112 if (css_enable & (1 << ssid))
3113 kill_css(css);
3114 else
3115 css_clear_dir(css, NULL);
3118 goto out_unlock;
3121 static int cgroup_events_show(struct seq_file *seq, void *v)
3123 seq_printf(seq, "populated %d\n",
3124 cgroup_is_populated(seq_css(seq)->cgroup));
3125 return 0;
3128 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3129 size_t nbytes, loff_t off)
3131 struct cgroup *cgrp = of->kn->parent->priv;
3132 struct cftype *cft = of->kn->priv;
3133 struct cgroup_subsys_state *css;
3134 int ret;
3136 if (cft->write)
3137 return cft->write(of, buf, nbytes, off);
3140 * kernfs guarantees that a file isn't deleted with operations in
3141 * flight, which means that the matching css is and stays alive and
3142 * doesn't need to be pinned. The RCU locking is not necessary
3143 * either. It's just for the convenience of using cgroup_css().
3145 rcu_read_lock();
3146 css = cgroup_css(cgrp, cft->ss);
3147 rcu_read_unlock();
3149 if (cft->write_u64) {
3150 unsigned long long v;
3151 ret = kstrtoull(buf, 0, &v);
3152 if (!ret)
3153 ret = cft->write_u64(css, cft, v);
3154 } else if (cft->write_s64) {
3155 long long v;
3156 ret = kstrtoll(buf, 0, &v);
3157 if (!ret)
3158 ret = cft->write_s64(css, cft, v);
3159 } else {
3160 ret = -EINVAL;
3163 return ret ?: nbytes;
3166 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3168 return seq_cft(seq)->seq_start(seq, ppos);
3171 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3173 return seq_cft(seq)->seq_next(seq, v, ppos);
3176 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3178 seq_cft(seq)->seq_stop(seq, v);
3181 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3183 struct cftype *cft = seq_cft(m);
3184 struct cgroup_subsys_state *css = seq_css(m);
3186 if (cft->seq_show)
3187 return cft->seq_show(m, arg);
3189 if (cft->read_u64)
3190 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3191 else if (cft->read_s64)
3192 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3193 else
3194 return -EINVAL;
3195 return 0;
3198 static struct kernfs_ops cgroup_kf_single_ops = {
3199 .atomic_write_len = PAGE_SIZE,
3200 .write = cgroup_file_write,
3201 .seq_show = cgroup_seqfile_show,
3204 static struct kernfs_ops cgroup_kf_ops = {
3205 .atomic_write_len = PAGE_SIZE,
3206 .write = cgroup_file_write,
3207 .seq_start = cgroup_seqfile_start,
3208 .seq_next = cgroup_seqfile_next,
3209 .seq_stop = cgroup_seqfile_stop,
3210 .seq_show = cgroup_seqfile_show,
3214 * cgroup_rename - Only allow simple rename of directories in place.
3216 static int cgroup_rename(struct kernfs_node *kn, struct kernfs_node *new_parent,
3217 const char *new_name_str)
3219 struct cgroup *cgrp = kn->priv;
3220 int ret;
3222 if (kernfs_type(kn) != KERNFS_DIR)
3223 return -ENOTDIR;
3224 if (kn->parent != new_parent)
3225 return -EIO;
3228 * This isn't a proper migration and its usefulness is very
3229 * limited. Disallow on the default hierarchy.
3231 if (cgroup_on_dfl(cgrp))
3232 return -EPERM;
3235 * We're gonna grab cgroup_mutex which nests outside kernfs
3236 * active_ref. kernfs_rename() doesn't require active_ref
3237 * protection. Break them before grabbing cgroup_mutex.
3239 kernfs_break_active_protection(new_parent);
3240 kernfs_break_active_protection(kn);
3242 mutex_lock(&cgroup_mutex);
3244 ret = kernfs_rename(kn, new_parent, new_name_str);
3246 mutex_unlock(&cgroup_mutex);
3248 kernfs_unbreak_active_protection(kn);
3249 kernfs_unbreak_active_protection(new_parent);
3250 return ret;
3253 /* set uid and gid of cgroup dirs and files to that of the creator */
3254 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3256 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3257 .ia_uid = current_fsuid(),
3258 .ia_gid = current_fsgid(), };
3260 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3261 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3262 return 0;
3264 return kernfs_setattr(kn, &iattr);
3267 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3268 struct cftype *cft)
3270 char name[CGROUP_FILE_NAME_MAX];
3271 struct kernfs_node *kn;
3272 struct lock_class_key *key = NULL;
3273 int ret;
3275 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3276 key = &cft->lockdep_key;
3277 #endif
3278 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3279 cgroup_file_mode(cft), 0, cft->kf_ops, cft,
3280 NULL, key);
3281 if (IS_ERR(kn))
3282 return PTR_ERR(kn);
3284 ret = cgroup_kn_set_ugid(kn);
3285 if (ret) {
3286 kernfs_remove(kn);
3287 return ret;
3290 if (cft->file_offset) {
3291 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3293 kernfs_get(kn);
3294 cfile->kn = kn;
3295 list_add(&cfile->node, &css->files);
3298 return 0;
3302 * cgroup_addrm_files - add or remove files to a cgroup directory
3303 * @css: the target css
3304 * @cgrp: the target cgroup (usually css->cgroup)
3305 * @cfts: array of cftypes to be added
3306 * @is_add: whether to add or remove
3308 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3309 * For removals, this function never fails.
3311 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3312 struct cgroup *cgrp, struct cftype cfts[],
3313 bool is_add)
3315 struct cftype *cft, *cft_end = NULL;
3316 int ret;
3318 lockdep_assert_held(&cgroup_mutex);
3320 restart:
3321 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3322 /* does cft->flags tell us to skip this file on @cgrp? */
3323 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3324 continue;
3325 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3326 continue;
3327 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3328 continue;
3329 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3330 continue;
3332 if (is_add) {
3333 ret = cgroup_add_file(css, cgrp, cft);
3334 if (ret) {
3335 pr_warn("%s: failed to add %s, err=%d\n",
3336 __func__, cft->name, ret);
3337 cft_end = cft;
3338 is_add = false;
3339 goto restart;
3341 } else {
3342 cgroup_rm_file(cgrp, cft);
3345 return 0;
3348 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3350 LIST_HEAD(pending);
3351 struct cgroup_subsys *ss = cfts[0].ss;
3352 struct cgroup *root = &ss->root->cgrp;
3353 struct cgroup_subsys_state *css;
3354 int ret = 0;
3356 lockdep_assert_held(&cgroup_mutex);
3358 /* add/rm files for all cgroups created before */
3359 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3360 struct cgroup *cgrp = css->cgroup;
3362 if (cgroup_is_dead(cgrp))
3363 continue;
3365 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3366 if (ret)
3367 break;
3370 if (is_add && !ret)
3371 kernfs_activate(root->kn);
3372 return ret;
3375 static void cgroup_exit_cftypes(struct cftype *cfts)
3377 struct cftype *cft;
3379 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3380 /* free copy for custom atomic_write_len, see init_cftypes() */
3381 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3382 kfree(cft->kf_ops);
3383 cft->kf_ops = NULL;
3384 cft->ss = NULL;
3386 /* revert flags set by cgroup core while adding @cfts */
3387 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3391 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3393 struct cftype *cft;
3395 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3396 struct kernfs_ops *kf_ops;
3398 WARN_ON(cft->ss || cft->kf_ops);
3400 if (cft->seq_start)
3401 kf_ops = &cgroup_kf_ops;
3402 else
3403 kf_ops = &cgroup_kf_single_ops;
3406 * Ugh... if @cft wants a custom max_write_len, we need to
3407 * make a copy of kf_ops to set its atomic_write_len.
3409 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3410 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3411 if (!kf_ops) {
3412 cgroup_exit_cftypes(cfts);
3413 return -ENOMEM;
3415 kf_ops->atomic_write_len = cft->max_write_len;
3418 cft->kf_ops = kf_ops;
3419 cft->ss = ss;
3422 return 0;
3425 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3427 lockdep_assert_held(&cgroup_mutex);
3429 if (!cfts || !cfts[0].ss)
3430 return -ENOENT;
3432 list_del(&cfts->node);
3433 cgroup_apply_cftypes(cfts, false);
3434 cgroup_exit_cftypes(cfts);
3435 return 0;
3439 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3440 * @cfts: zero-length name terminated array of cftypes
3442 * Unregister @cfts. Files described by @cfts are removed from all
3443 * existing cgroups and all future cgroups won't have them either. This
3444 * function can be called anytime whether @cfts' subsys is attached or not.
3446 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3447 * registered.
3449 int cgroup_rm_cftypes(struct cftype *cfts)
3451 int ret;
3453 mutex_lock(&cgroup_mutex);
3454 ret = cgroup_rm_cftypes_locked(cfts);
3455 mutex_unlock(&cgroup_mutex);
3456 return ret;
3460 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3461 * @ss: target cgroup subsystem
3462 * @cfts: zero-length name terminated array of cftypes
3464 * Register @cfts to @ss. Files described by @cfts are created for all
3465 * existing cgroups to which @ss is attached and all future cgroups will
3466 * have them too. This function can be called anytime whether @ss is
3467 * attached or not.
3469 * Returns 0 on successful registration, -errno on failure. Note that this
3470 * function currently returns 0 as long as @cfts registration is successful
3471 * even if some file creation attempts on existing cgroups fail.
3473 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3475 int ret;
3477 if (!cgroup_ssid_enabled(ss->id))
3478 return 0;
3480 if (!cfts || cfts[0].name[0] == '\0')
3481 return 0;
3483 ret = cgroup_init_cftypes(ss, cfts);
3484 if (ret)
3485 return ret;
3487 mutex_lock(&cgroup_mutex);
3489 list_add_tail(&cfts->node, &ss->cfts);
3490 ret = cgroup_apply_cftypes(cfts, true);
3491 if (ret)
3492 cgroup_rm_cftypes_locked(cfts);
3494 mutex_unlock(&cgroup_mutex);
3495 return ret;
3499 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3500 * @ss: target cgroup subsystem
3501 * @cfts: zero-length name terminated array of cftypes
3503 * Similar to cgroup_add_cftypes() but the added files are only used for
3504 * the default hierarchy.
3506 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3508 struct cftype *cft;
3510 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3511 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3512 return cgroup_add_cftypes(ss, cfts);
3516 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3517 * @ss: target cgroup subsystem
3518 * @cfts: zero-length name terminated array of cftypes
3520 * Similar to cgroup_add_cftypes() but the added files are only used for
3521 * the legacy hierarchies.
3523 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3525 struct cftype *cft;
3527 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3528 cft->flags |= __CFTYPE_NOT_ON_DFL;
3529 return cgroup_add_cftypes(ss, cfts);
3533 * cgroup_task_count - count the number of tasks in a cgroup.
3534 * @cgrp: the cgroup in question
3536 * Return the number of tasks in the cgroup.
3538 static int cgroup_task_count(const struct cgroup *cgrp)
3540 int count = 0;
3541 struct cgrp_cset_link *link;
3543 spin_lock_bh(&css_set_lock);
3544 list_for_each_entry(link, &cgrp->cset_links, cset_link)
3545 count += atomic_read(&link->cset->refcount);
3546 spin_unlock_bh(&css_set_lock);
3547 return count;
3551 * css_next_child - find the next child of a given css
3552 * @pos: the current position (%NULL to initiate traversal)
3553 * @parent: css whose children to walk
3555 * This function returns the next child of @parent and should be called
3556 * under either cgroup_mutex or RCU read lock. The only requirement is
3557 * that @parent and @pos are accessible. The next sibling is guaranteed to
3558 * be returned regardless of their states.
3560 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3561 * css which finished ->css_online() is guaranteed to be visible in the
3562 * future iterations and will stay visible until the last reference is put.
3563 * A css which hasn't finished ->css_online() or already finished
3564 * ->css_offline() may show up during traversal. It's each subsystem's
3565 * responsibility to synchronize against on/offlining.
3567 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3568 struct cgroup_subsys_state *parent)
3570 struct cgroup_subsys_state *next;
3572 cgroup_assert_mutex_or_rcu_locked();
3575 * @pos could already have been unlinked from the sibling list.
3576 * Once a cgroup is removed, its ->sibling.next is no longer
3577 * updated when its next sibling changes. CSS_RELEASED is set when
3578 * @pos is taken off list, at which time its next pointer is valid,
3579 * and, as releases are serialized, the one pointed to by the next
3580 * pointer is guaranteed to not have started release yet. This
3581 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3582 * critical section, the one pointed to by its next pointer is
3583 * guaranteed to not have finished its RCU grace period even if we
3584 * have dropped rcu_read_lock() inbetween iterations.
3586 * If @pos has CSS_RELEASED set, its next pointer can't be
3587 * dereferenced; however, as each css is given a monotonically
3588 * increasing unique serial number and always appended to the
3589 * sibling list, the next one can be found by walking the parent's
3590 * children until the first css with higher serial number than
3591 * @pos's. While this path can be slower, it happens iff iteration
3592 * races against release and the race window is very small.
3594 if (!pos) {
3595 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3596 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3597 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3598 } else {
3599 list_for_each_entry_rcu(next, &parent->children, sibling)
3600 if (next->serial_nr > pos->serial_nr)
3601 break;
3605 * @next, if not pointing to the head, can be dereferenced and is
3606 * the next sibling.
3608 if (&next->sibling != &parent->children)
3609 return next;
3610 return NULL;
3614 * css_next_descendant_pre - find the next descendant for pre-order walk
3615 * @pos: the current position (%NULL to initiate traversal)
3616 * @root: css whose descendants to walk
3618 * To be used by css_for_each_descendant_pre(). Find the next descendant
3619 * to visit for pre-order traversal of @root's descendants. @root is
3620 * included in the iteration and the first node to be visited.
3622 * While this function requires cgroup_mutex or RCU read locking, it
3623 * doesn't require the whole traversal to be contained in a single critical
3624 * section. This function will return the correct next descendant as long
3625 * as both @pos and @root are accessible and @pos is a descendant of @root.
3627 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3628 * css which finished ->css_online() is guaranteed to be visible in the
3629 * future iterations and will stay visible until the last reference is put.
3630 * A css which hasn't finished ->css_online() or already finished
3631 * ->css_offline() may show up during traversal. It's each subsystem's
3632 * responsibility to synchronize against on/offlining.
3634 struct cgroup_subsys_state *
3635 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3636 struct cgroup_subsys_state *root)
3638 struct cgroup_subsys_state *next;
3640 cgroup_assert_mutex_or_rcu_locked();
3642 /* if first iteration, visit @root */
3643 if (!pos)
3644 return root;
3646 /* visit the first child if exists */
3647 next = css_next_child(NULL, pos);
3648 if (next)
3649 return next;
3651 /* no child, visit my or the closest ancestor's next sibling */
3652 while (pos != root) {
3653 next = css_next_child(pos, pos->parent);
3654 if (next)
3655 return next;
3656 pos = pos->parent;
3659 return NULL;
3663 * css_rightmost_descendant - return the rightmost descendant of a css
3664 * @pos: css of interest
3666 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3667 * is returned. This can be used during pre-order traversal to skip
3668 * subtree of @pos.
3670 * While this function requires cgroup_mutex or RCU read locking, it
3671 * doesn't require the whole traversal to be contained in a single critical
3672 * section. This function will return the correct rightmost descendant as
3673 * long as @pos is accessible.
3675 struct cgroup_subsys_state *
3676 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3678 struct cgroup_subsys_state *last, *tmp;
3680 cgroup_assert_mutex_or_rcu_locked();
3682 do {
3683 last = pos;
3684 /* ->prev isn't RCU safe, walk ->next till the end */
3685 pos = NULL;
3686 css_for_each_child(tmp, last)
3687 pos = tmp;
3688 } while (pos);
3690 return last;
3693 static struct cgroup_subsys_state *
3694 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3696 struct cgroup_subsys_state *last;
3698 do {
3699 last = pos;
3700 pos = css_next_child(NULL, pos);
3701 } while (pos);
3703 return last;
3707 * css_next_descendant_post - find the next descendant for post-order walk
3708 * @pos: the current position (%NULL to initiate traversal)
3709 * @root: css whose descendants to walk
3711 * To be used by css_for_each_descendant_post(). Find the next descendant
3712 * to visit for post-order traversal of @root's descendants. @root is
3713 * included in the iteration and the last node to be visited.
3715 * While this function requires cgroup_mutex or RCU read locking, it
3716 * doesn't require the whole traversal to be contained in a single critical
3717 * section. This function will return the correct next descendant as long
3718 * as both @pos and @cgroup are accessible and @pos is a descendant of
3719 * @cgroup.
3721 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3722 * css which finished ->css_online() is guaranteed to be visible in the
3723 * future iterations and will stay visible until the last reference is put.
3724 * A css which hasn't finished ->css_online() or already finished
3725 * ->css_offline() may show up during traversal. It's each subsystem's
3726 * responsibility to synchronize against on/offlining.
3728 struct cgroup_subsys_state *
3729 css_next_descendant_post(struct cgroup_subsys_state *pos,
3730 struct cgroup_subsys_state *root)
3732 struct cgroup_subsys_state *next;
3734 cgroup_assert_mutex_or_rcu_locked();
3736 /* if first iteration, visit leftmost descendant which may be @root */
3737 if (!pos)
3738 return css_leftmost_descendant(root);
3740 /* if we visited @root, we're done */
3741 if (pos == root)
3742 return NULL;
3744 /* if there's an unvisited sibling, visit its leftmost descendant */
3745 next = css_next_child(pos, pos->parent);
3746 if (next)
3747 return css_leftmost_descendant(next);
3749 /* no sibling left, visit parent */
3750 return pos->parent;
3754 * css_has_online_children - does a css have online children
3755 * @css: the target css
3757 * Returns %true if @css has any online children; otherwise, %false. This
3758 * function can be called from any context but the caller is responsible
3759 * for synchronizing against on/offlining as necessary.
3761 bool css_has_online_children(struct cgroup_subsys_state *css)
3763 struct cgroup_subsys_state *child;
3764 bool ret = false;
3766 rcu_read_lock();
3767 css_for_each_child(child, css) {
3768 if (child->flags & CSS_ONLINE) {
3769 ret = true;
3770 break;
3773 rcu_read_unlock();
3774 return ret;
3778 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
3779 * @it: the iterator to advance
3781 * Advance @it to the next css_set to walk.
3783 static void css_task_iter_advance_css_set(struct css_task_iter *it)
3785 struct list_head *l = it->cset_pos;
3786 struct cgrp_cset_link *link;
3787 struct css_set *cset;
3789 lockdep_assert_held(&css_set_lock);
3791 /* Advance to the next non-empty css_set */
3792 do {
3793 l = l->next;
3794 if (l == it->cset_head) {
3795 it->cset_pos = NULL;
3796 it->task_pos = NULL;
3797 return;
3800 if (it->ss) {
3801 cset = container_of(l, struct css_set,
3802 e_cset_node[it->ss->id]);
3803 } else {
3804 link = list_entry(l, struct cgrp_cset_link, cset_link);
3805 cset = link->cset;
3807 } while (!css_set_populated(cset));
3809 it->cset_pos = l;
3811 if (!list_empty(&cset->tasks))
3812 it->task_pos = cset->tasks.next;
3813 else
3814 it->task_pos = cset->mg_tasks.next;
3816 it->tasks_head = &cset->tasks;
3817 it->mg_tasks_head = &cset->mg_tasks;
3820 * We don't keep css_sets locked across iteration steps and thus
3821 * need to take steps to ensure that iteration can be resumed after
3822 * the lock is re-acquired. Iteration is performed at two levels -
3823 * css_sets and tasks in them.
3825 * Once created, a css_set never leaves its cgroup lists, so a
3826 * pinned css_set is guaranteed to stay put and we can resume
3827 * iteration afterwards.
3829 * Tasks may leave @cset across iteration steps. This is resolved
3830 * by registering each iterator with the css_set currently being
3831 * walked and making css_set_move_task() advance iterators whose
3832 * next task is leaving.
3834 if (it->cur_cset) {
3835 list_del(&it->iters_node);
3836 put_css_set_locked(it->cur_cset);
3838 get_css_set(cset);
3839 it->cur_cset = cset;
3840 list_add(&it->iters_node, &cset->task_iters);
3843 static void css_task_iter_advance(struct css_task_iter *it)
3845 struct list_head *l = it->task_pos;
3847 lockdep_assert_held(&css_set_lock);
3848 WARN_ON_ONCE(!l);
3851 * Advance iterator to find next entry. cset->tasks is consumed
3852 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
3853 * next cset.
3855 l = l->next;
3857 if (l == it->tasks_head)
3858 l = it->mg_tasks_head->next;
3860 if (l == it->mg_tasks_head)
3861 css_task_iter_advance_css_set(it);
3862 else
3863 it->task_pos = l;
3867 * css_task_iter_start - initiate task iteration
3868 * @css: the css to walk tasks of
3869 * @it: the task iterator to use
3871 * Initiate iteration through the tasks of @css. The caller can call
3872 * css_task_iter_next() to walk through the tasks until the function
3873 * returns NULL. On completion of iteration, css_task_iter_end() must be
3874 * called.
3876 void css_task_iter_start(struct cgroup_subsys_state *css,
3877 struct css_task_iter *it)
3879 /* no one should try to iterate before mounting cgroups */
3880 WARN_ON_ONCE(!use_task_css_set_links);
3882 memset(it, 0, sizeof(*it));
3884 spin_lock_bh(&css_set_lock);
3886 it->ss = css->ss;
3888 if (it->ss)
3889 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
3890 else
3891 it->cset_pos = &css->cgroup->cset_links;
3893 it->cset_head = it->cset_pos;
3895 css_task_iter_advance_css_set(it);
3897 spin_unlock_bh(&css_set_lock);
3901 * css_task_iter_next - return the next task for the iterator
3902 * @it: the task iterator being iterated
3904 * The "next" function for task iteration. @it should have been
3905 * initialized via css_task_iter_start(). Returns NULL when the iteration
3906 * reaches the end.
3908 struct task_struct *css_task_iter_next(struct css_task_iter *it)
3910 if (it->cur_task) {
3911 put_task_struct(it->cur_task);
3912 it->cur_task = NULL;
3915 spin_lock_bh(&css_set_lock);
3917 if (it->task_pos) {
3918 it->cur_task = list_entry(it->task_pos, struct task_struct,
3919 cg_list);
3920 get_task_struct(it->cur_task);
3921 css_task_iter_advance(it);
3924 spin_unlock_bh(&css_set_lock);
3926 return it->cur_task;
3930 * css_task_iter_end - finish task iteration
3931 * @it: the task iterator to finish
3933 * Finish task iteration started by css_task_iter_start().
3935 void css_task_iter_end(struct css_task_iter *it)
3937 if (it->cur_cset) {
3938 spin_lock_bh(&css_set_lock);
3939 list_del(&it->iters_node);
3940 put_css_set_locked(it->cur_cset);
3941 spin_unlock_bh(&css_set_lock);
3944 if (it->cur_task)
3945 put_task_struct(it->cur_task);
3949 * cgroup_trasnsfer_tasks - move tasks from one cgroup to another
3950 * @to: cgroup to which the tasks will be moved
3951 * @from: cgroup in which the tasks currently reside
3953 * Locking rules between cgroup_post_fork() and the migration path
3954 * guarantee that, if a task is forking while being migrated, the new child
3955 * is guaranteed to be either visible in the source cgroup after the
3956 * parent's migration is complete or put into the target cgroup. No task
3957 * can slip out of migration through forking.
3959 int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from)
3961 LIST_HEAD(preloaded_csets);
3962 struct cgrp_cset_link *link;
3963 struct css_task_iter it;
3964 struct task_struct *task;
3965 int ret;
3967 mutex_lock(&cgroup_mutex);
3969 /* all tasks in @from are being moved, all csets are source */
3970 spin_lock_bh(&css_set_lock);
3971 list_for_each_entry(link, &from->cset_links, cset_link)
3972 cgroup_migrate_add_src(link->cset, to, &preloaded_csets);
3973 spin_unlock_bh(&css_set_lock);
3975 ret = cgroup_migrate_prepare_dst(to, &preloaded_csets);
3976 if (ret)
3977 goto out_err;
3980 * Migrate tasks one-by-one until @form is empty. This fails iff
3981 * ->can_attach() fails.
3983 do {
3984 css_task_iter_start(&from->self, &it);
3985 task = css_task_iter_next(&it);
3986 if (task)
3987 get_task_struct(task);
3988 css_task_iter_end(&it);
3990 if (task) {
3991 ret = cgroup_migrate(task, false, to);
3992 put_task_struct(task);
3994 } while (task && !ret);
3995 out_err:
3996 cgroup_migrate_finish(&preloaded_csets);
3997 mutex_unlock(&cgroup_mutex);
3998 return ret;
4002 * Stuff for reading the 'tasks'/'procs' files.
4004 * Reading this file can return large amounts of data if a cgroup has
4005 * *lots* of attached tasks. So it may need several calls to read(),
4006 * but we cannot guarantee that the information we produce is correct
4007 * unless we produce it entirely atomically.
4011 /* which pidlist file are we talking about? */
4012 enum cgroup_filetype {
4013 CGROUP_FILE_PROCS,
4014 CGROUP_FILE_TASKS,
4018 * A pidlist is a list of pids that virtually represents the contents of one
4019 * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists,
4020 * a pair (one each for procs, tasks) for each pid namespace that's relevant
4021 * to the cgroup.
4023 struct cgroup_pidlist {
4025 * used to find which pidlist is wanted. doesn't change as long as
4026 * this particular list stays in the list.
4028 struct { enum cgroup_filetype type; struct pid_namespace *ns; } key;
4029 /* array of xids */
4030 pid_t *list;
4031 /* how many elements the above list has */
4032 int length;
4033 /* each of these stored in a list by its cgroup */
4034 struct list_head links;
4035 /* pointer to the cgroup we belong to, for list removal purposes */
4036 struct cgroup *owner;
4037 /* for delayed destruction */
4038 struct delayed_work destroy_dwork;
4042 * The following two functions "fix" the issue where there are more pids
4043 * than kmalloc will give memory for; in such cases, we use vmalloc/vfree.
4044 * TODO: replace with a kernel-wide solution to this problem
4046 #define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2))
4047 static void *pidlist_allocate(int count)
4049 if (PIDLIST_TOO_LARGE(count))
4050 return vmalloc(count * sizeof(pid_t));
4051 else
4052 return kmalloc(count * sizeof(pid_t), GFP_KERNEL);
4055 static void pidlist_free(void *p)
4057 kvfree(p);
4061 * Used to destroy all pidlists lingering waiting for destroy timer. None
4062 * should be left afterwards.
4064 static void cgroup_pidlist_destroy_all(struct cgroup *cgrp)
4066 struct cgroup_pidlist *l, *tmp_l;
4068 mutex_lock(&cgrp->pidlist_mutex);
4069 list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links)
4070 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0);
4071 mutex_unlock(&cgrp->pidlist_mutex);
4073 flush_workqueue(cgroup_pidlist_destroy_wq);
4074 BUG_ON(!list_empty(&cgrp->pidlists));
4077 static void cgroup_pidlist_destroy_work_fn(struct work_struct *work)
4079 struct delayed_work *dwork = to_delayed_work(work);
4080 struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist,
4081 destroy_dwork);
4082 struct cgroup_pidlist *tofree = NULL;
4084 mutex_lock(&l->owner->pidlist_mutex);
4087 * Destroy iff we didn't get queued again. The state won't change
4088 * as destroy_dwork can only be queued while locked.
4090 if (!delayed_work_pending(dwork)) {
4091 list_del(&l->links);
4092 pidlist_free(l->list);
4093 put_pid_ns(l->key.ns);
4094 tofree = l;
4097 mutex_unlock(&l->owner->pidlist_mutex);
4098 kfree(tofree);
4102 * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries
4103 * Returns the number of unique elements.
4105 static int pidlist_uniq(pid_t *list, int length)
4107 int src, dest = 1;
4110 * we presume the 0th element is unique, so i starts at 1. trivial
4111 * edge cases first; no work needs to be done for either
4113 if (length == 0 || length == 1)
4114 return length;
4115 /* src and dest walk down the list; dest counts unique elements */
4116 for (src = 1; src < length; src++) {
4117 /* find next unique element */
4118 while (list[src] == list[src-1]) {
4119 src++;
4120 if (src == length)
4121 goto after;
4123 /* dest always points to where the next unique element goes */
4124 list[dest] = list[src];
4125 dest++;
4127 after:
4128 return dest;
4132 * The two pid files - task and cgroup.procs - guaranteed that the result
4133 * is sorted, which forced this whole pidlist fiasco. As pid order is
4134 * different per namespace, each namespace needs differently sorted list,
4135 * making it impossible to use, for example, single rbtree of member tasks
4136 * sorted by task pointer. As pidlists can be fairly large, allocating one
4137 * per open file is dangerous, so cgroup had to implement shared pool of
4138 * pidlists keyed by cgroup and namespace.
4140 * All this extra complexity was caused by the original implementation
4141 * committing to an entirely unnecessary property. In the long term, we
4142 * want to do away with it. Explicitly scramble sort order if on the
4143 * default hierarchy so that no such expectation exists in the new
4144 * interface.
4146 * Scrambling is done by swapping every two consecutive bits, which is
4147 * non-identity one-to-one mapping which disturbs sort order sufficiently.
4149 static pid_t pid_fry(pid_t pid)
4151 unsigned a = pid & 0x55555555;
4152 unsigned b = pid & 0xAAAAAAAA;
4154 return (a << 1) | (b >> 1);
4157 static pid_t cgroup_pid_fry(struct cgroup *cgrp, pid_t pid)
4159 if (cgroup_on_dfl(cgrp))
4160 return pid_fry(pid);
4161 else
4162 return pid;
4165 static int cmppid(const void *a, const void *b)
4167 return *(pid_t *)a - *(pid_t *)b;
4170 static int fried_cmppid(const void *a, const void *b)
4172 return pid_fry(*(pid_t *)a) - pid_fry(*(pid_t *)b);
4175 static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp,
4176 enum cgroup_filetype type)
4178 struct cgroup_pidlist *l;
4179 /* don't need task_nsproxy() if we're looking at ourself */
4180 struct pid_namespace *ns = task_active_pid_ns(current);
4182 lockdep_assert_held(&cgrp->pidlist_mutex);
4184 list_for_each_entry(l, &cgrp->pidlists, links)
4185 if (l->key.type == type && l->key.ns == ns)
4186 return l;
4187 return NULL;
4191 * find the appropriate pidlist for our purpose (given procs vs tasks)
4192 * returns with the lock on that pidlist already held, and takes care
4193 * of the use count, or returns NULL with no locks held if we're out of
4194 * memory.
4196 static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp,
4197 enum cgroup_filetype type)
4199 struct cgroup_pidlist *l;
4201 lockdep_assert_held(&cgrp->pidlist_mutex);
4203 l = cgroup_pidlist_find(cgrp, type);
4204 if (l)
4205 return l;
4207 /* entry not found; create a new one */
4208 l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL);
4209 if (!l)
4210 return l;
4212 INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn);
4213 l->key.type = type;
4214 /* don't need task_nsproxy() if we're looking at ourself */
4215 l->key.ns = get_pid_ns(task_active_pid_ns(current));
4216 l->owner = cgrp;
4217 list_add(&l->links, &cgrp->pidlists);
4218 return l;
4222 * Load a cgroup's pidarray with either procs' tgids or tasks' pids
4224 static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type,
4225 struct cgroup_pidlist **lp)
4227 pid_t *array;
4228 int length;
4229 int pid, n = 0; /* used for populating the array */
4230 struct css_task_iter it;
4231 struct task_struct *tsk;
4232 struct cgroup_pidlist *l;
4234 lockdep_assert_held(&cgrp->pidlist_mutex);
4237 * If cgroup gets more users after we read count, we won't have
4238 * enough space - tough. This race is indistinguishable to the
4239 * caller from the case that the additional cgroup users didn't
4240 * show up until sometime later on.
4242 length = cgroup_task_count(cgrp);
4243 array = pidlist_allocate(length);
4244 if (!array)
4245 return -ENOMEM;
4246 /* now, populate the array */
4247 css_task_iter_start(&cgrp->self, &it);
4248 while ((tsk = css_task_iter_next(&it))) {
4249 if (unlikely(n == length))
4250 break;
4251 /* get tgid or pid for procs or tasks file respectively */
4252 if (type == CGROUP_FILE_PROCS)
4253 pid = task_tgid_vnr(tsk);
4254 else
4255 pid = task_pid_vnr(tsk);
4256 if (pid > 0) /* make sure to only use valid results */
4257 array[n++] = pid;
4259 css_task_iter_end(&it);
4260 length = n;
4261 /* now sort & (if procs) strip out duplicates */
4262 if (cgroup_on_dfl(cgrp))
4263 sort(array, length, sizeof(pid_t), fried_cmppid, NULL);
4264 else
4265 sort(array, length, sizeof(pid_t), cmppid, NULL);
4266 if (type == CGROUP_FILE_PROCS)
4267 length = pidlist_uniq(array, length);
4269 l = cgroup_pidlist_find_create(cgrp, type);
4270 if (!l) {
4271 pidlist_free(array);
4272 return -ENOMEM;
4275 /* store array, freeing old if necessary */
4276 pidlist_free(l->list);
4277 l->list = array;
4278 l->length = length;
4279 *lp = l;
4280 return 0;
4284 * cgroupstats_build - build and fill cgroupstats
4285 * @stats: cgroupstats to fill information into
4286 * @dentry: A dentry entry belonging to the cgroup for which stats have
4287 * been requested.
4289 * Build and fill cgroupstats so that taskstats can export it to user
4290 * space.
4292 int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry)
4294 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
4295 struct cgroup *cgrp;
4296 struct css_task_iter it;
4297 struct task_struct *tsk;
4299 /* it should be kernfs_node belonging to cgroupfs and is a directory */
4300 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
4301 kernfs_type(kn) != KERNFS_DIR)
4302 return -EINVAL;
4304 mutex_lock(&cgroup_mutex);
4307 * We aren't being called from kernfs and there's no guarantee on
4308 * @kn->priv's validity. For this and css_tryget_online_from_dir(),
4309 * @kn->priv is RCU safe. Let's do the RCU dancing.
4311 rcu_read_lock();
4312 cgrp = rcu_dereference(kn->priv);
4313 if (!cgrp || cgroup_is_dead(cgrp)) {
4314 rcu_read_unlock();
4315 mutex_unlock(&cgroup_mutex);
4316 return -ENOENT;
4318 rcu_read_unlock();
4320 css_task_iter_start(&cgrp->self, &it);
4321 while ((tsk = css_task_iter_next(&it))) {
4322 switch (tsk->state) {
4323 case TASK_RUNNING:
4324 stats->nr_running++;
4325 break;
4326 case TASK_INTERRUPTIBLE:
4327 stats->nr_sleeping++;
4328 break;
4329 case TASK_UNINTERRUPTIBLE:
4330 stats->nr_uninterruptible++;
4331 break;
4332 case TASK_STOPPED:
4333 stats->nr_stopped++;
4334 break;
4335 default:
4336 if (delayacct_is_task_waiting_on_io(tsk))
4337 stats->nr_io_wait++;
4338 break;
4341 css_task_iter_end(&it);
4343 mutex_unlock(&cgroup_mutex);
4344 return 0;
4349 * seq_file methods for the tasks/procs files. The seq_file position is the
4350 * next pid to display; the seq_file iterator is a pointer to the pid
4351 * in the cgroup->l->list array.
4354 static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos)
4357 * Initially we receive a position value that corresponds to
4358 * one more than the last pid shown (or 0 on the first call or
4359 * after a seek to the start). Use a binary-search to find the
4360 * next pid to display, if any
4362 struct kernfs_open_file *of = s->private;
4363 struct cgroup *cgrp = seq_css(s)->cgroup;
4364 struct cgroup_pidlist *l;
4365 enum cgroup_filetype type = seq_cft(s)->private;
4366 int index = 0, pid = *pos;
4367 int *iter, ret;
4369 mutex_lock(&cgrp->pidlist_mutex);
4372 * !NULL @of->priv indicates that this isn't the first start()
4373 * after open. If the matching pidlist is around, we can use that.
4374 * Look for it. Note that @of->priv can't be used directly. It
4375 * could already have been destroyed.
4377 if (of->priv)
4378 of->priv = cgroup_pidlist_find(cgrp, type);
4381 * Either this is the first start() after open or the matching
4382 * pidlist has been destroyed inbetween. Create a new one.
4384 if (!of->priv) {
4385 ret = pidlist_array_load(cgrp, type,
4386 (struct cgroup_pidlist **)&of->priv);
4387 if (ret)
4388 return ERR_PTR(ret);
4390 l = of->priv;
4392 if (pid) {
4393 int end = l->length;
4395 while (index < end) {
4396 int mid = (index + end) / 2;
4397 if (cgroup_pid_fry(cgrp, l->list[mid]) == pid) {
4398 index = mid;
4399 break;
4400 } else if (cgroup_pid_fry(cgrp, l->list[mid]) <= pid)
4401 index = mid + 1;
4402 else
4403 end = mid;
4406 /* If we're off the end of the array, we're done */
4407 if (index >= l->length)
4408 return NULL;
4409 /* Update the abstract position to be the actual pid that we found */
4410 iter = l->list + index;
4411 *pos = cgroup_pid_fry(cgrp, *iter);
4412 return iter;
4415 static void cgroup_pidlist_stop(struct seq_file *s, void *v)
4417 struct kernfs_open_file *of = s->private;
4418 struct cgroup_pidlist *l = of->priv;
4420 if (l)
4421 mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork,
4422 CGROUP_PIDLIST_DESTROY_DELAY);
4423 mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex);
4426 static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos)
4428 struct kernfs_open_file *of = s->private;
4429 struct cgroup_pidlist *l = of->priv;
4430 pid_t *p = v;
4431 pid_t *end = l->list + l->length;
4433 * Advance to the next pid in the array. If this goes off the
4434 * end, we're done
4436 p++;
4437 if (p >= end) {
4438 return NULL;
4439 } else {
4440 *pos = cgroup_pid_fry(seq_css(s)->cgroup, *p);
4441 return p;
4445 static int cgroup_pidlist_show(struct seq_file *s, void *v)
4447 seq_printf(s, "%d\n", *(int *)v);
4449 return 0;
4452 static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css,
4453 struct cftype *cft)
4455 return notify_on_release(css->cgroup);
4458 static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css,
4459 struct cftype *cft, u64 val)
4461 if (val)
4462 set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4463 else
4464 clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags);
4465 return 0;
4468 static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css,
4469 struct cftype *cft)
4471 return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4474 static int cgroup_clone_children_write(struct cgroup_subsys_state *css,
4475 struct cftype *cft, u64 val)
4477 if (val)
4478 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4479 else
4480 clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags);
4481 return 0;
4484 /* cgroup core interface files for the default hierarchy */
4485 static struct cftype cgroup_dfl_base_files[] = {
4487 .name = "cgroup.procs",
4488 .file_offset = offsetof(struct cgroup, procs_file),
4489 .seq_start = cgroup_pidlist_start,
4490 .seq_next = cgroup_pidlist_next,
4491 .seq_stop = cgroup_pidlist_stop,
4492 .seq_show = cgroup_pidlist_show,
4493 .private = CGROUP_FILE_PROCS,
4494 .write = cgroup_procs_write,
4497 .name = "cgroup.controllers",
4498 .flags = CFTYPE_ONLY_ON_ROOT,
4499 .seq_show = cgroup_root_controllers_show,
4502 .name = "cgroup.controllers",
4503 .flags = CFTYPE_NOT_ON_ROOT,
4504 .seq_show = cgroup_controllers_show,
4507 .name = "cgroup.subtree_control",
4508 .seq_show = cgroup_subtree_control_show,
4509 .write = cgroup_subtree_control_write,
4512 .name = "cgroup.events",
4513 .flags = CFTYPE_NOT_ON_ROOT,
4514 .file_offset = offsetof(struct cgroup, events_file),
4515 .seq_show = cgroup_events_show,
4517 { } /* terminate */
4520 /* cgroup core interface files for the legacy hierarchies */
4521 static struct cftype cgroup_legacy_base_files[] = {
4523 .name = "cgroup.procs",
4524 .seq_start = cgroup_pidlist_start,
4525 .seq_next = cgroup_pidlist_next,
4526 .seq_stop = cgroup_pidlist_stop,
4527 .seq_show = cgroup_pidlist_show,
4528 .private = CGROUP_FILE_PROCS,
4529 .write = cgroup_procs_write,
4532 .name = "cgroup.clone_children",
4533 .read_u64 = cgroup_clone_children_read,
4534 .write_u64 = cgroup_clone_children_write,
4537 .name = "cgroup.sane_behavior",
4538 .flags = CFTYPE_ONLY_ON_ROOT,
4539 .seq_show = cgroup_sane_behavior_show,
4542 .name = "tasks",
4543 .seq_start = cgroup_pidlist_start,
4544 .seq_next = cgroup_pidlist_next,
4545 .seq_stop = cgroup_pidlist_stop,
4546 .seq_show = cgroup_pidlist_show,
4547 .private = CGROUP_FILE_TASKS,
4548 .write = cgroup_tasks_write,
4551 .name = "notify_on_release",
4552 .read_u64 = cgroup_read_notify_on_release,
4553 .write_u64 = cgroup_write_notify_on_release,
4556 .name = "release_agent",
4557 .flags = CFTYPE_ONLY_ON_ROOT,
4558 .seq_show = cgroup_release_agent_show,
4559 .write = cgroup_release_agent_write,
4560 .max_write_len = PATH_MAX - 1,
4562 { } /* terminate */
4566 * css destruction is four-stage process.
4568 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4569 * Implemented in kill_css().
4571 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4572 * and thus css_tryget_online() is guaranteed to fail, the css can be
4573 * offlined by invoking offline_css(). After offlining, the base ref is
4574 * put. Implemented in css_killed_work_fn().
4576 * 3. When the percpu_ref reaches zero, the only possible remaining
4577 * accessors are inside RCU read sections. css_release() schedules the
4578 * RCU callback.
4580 * 4. After the grace period, the css can be freed. Implemented in
4581 * css_free_work_fn().
4583 * It is actually hairier because both step 2 and 4 require process context
4584 * and thus involve punting to css->destroy_work adding two additional
4585 * steps to the already complex sequence.
4587 static void css_free_work_fn(struct work_struct *work)
4589 struct cgroup_subsys_state *css =
4590 container_of(work, struct cgroup_subsys_state, destroy_work);
4591 struct cgroup_subsys *ss = css->ss;
4592 struct cgroup *cgrp = css->cgroup;
4593 struct cgroup_file *cfile;
4595 percpu_ref_exit(&css->refcnt);
4597 list_for_each_entry(cfile, &css->files, node)
4598 kernfs_put(cfile->kn);
4600 if (ss) {
4601 /* css free path */
4602 int id = css->id;
4604 if (css->parent)
4605 css_put(css->parent);
4607 ss->css_free(css);
4608 cgroup_idr_remove(&ss->css_idr, id);
4609 cgroup_put(cgrp);
4610 } else {
4611 /* cgroup free path */
4612 atomic_dec(&cgrp->root->nr_cgrps);
4613 cgroup_pidlist_destroy_all(cgrp);
4614 cancel_work_sync(&cgrp->release_agent_work);
4616 if (cgroup_parent(cgrp)) {
4618 * We get a ref to the parent, and put the ref when
4619 * this cgroup is being freed, so it's guaranteed
4620 * that the parent won't be destroyed before its
4621 * children.
4623 cgroup_put(cgroup_parent(cgrp));
4624 kernfs_put(cgrp->kn);
4625 kfree(cgrp);
4626 } else {
4628 * This is root cgroup's refcnt reaching zero,
4629 * which indicates that the root should be
4630 * released.
4632 cgroup_destroy_root(cgrp->root);
4637 static void css_free_rcu_fn(struct rcu_head *rcu_head)
4639 struct cgroup_subsys_state *css =
4640 container_of(rcu_head, struct cgroup_subsys_state, rcu_head);
4642 INIT_WORK(&css->destroy_work, css_free_work_fn);
4643 queue_work(cgroup_destroy_wq, &css->destroy_work);
4646 static void css_release_work_fn(struct work_struct *work)
4648 struct cgroup_subsys_state *css =
4649 container_of(work, struct cgroup_subsys_state, destroy_work);
4650 struct cgroup_subsys *ss = css->ss;
4651 struct cgroup *cgrp = css->cgroup;
4653 mutex_lock(&cgroup_mutex);
4655 css->flags |= CSS_RELEASED;
4656 list_del_rcu(&css->sibling);
4658 if (ss) {
4659 /* css release path */
4660 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4661 if (ss->css_released)
4662 ss->css_released(css);
4663 } else {
4664 /* cgroup release path */
4665 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4666 cgrp->id = -1;
4669 * There are two control paths which try to determine
4670 * cgroup from dentry without going through kernfs -
4671 * cgroupstats_build() and css_tryget_online_from_dir().
4672 * Those are supported by RCU protecting clearing of
4673 * cgrp->kn->priv backpointer.
4675 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, NULL);
4678 mutex_unlock(&cgroup_mutex);
4680 call_rcu(&css->rcu_head, css_free_rcu_fn);
4683 static void css_release(struct percpu_ref *ref)
4685 struct cgroup_subsys_state *css =
4686 container_of(ref, struct cgroup_subsys_state, refcnt);
4688 INIT_WORK(&css->destroy_work, css_release_work_fn);
4689 queue_work(cgroup_destroy_wq, &css->destroy_work);
4692 static void init_and_link_css(struct cgroup_subsys_state *css,
4693 struct cgroup_subsys *ss, struct cgroup *cgrp)
4695 lockdep_assert_held(&cgroup_mutex);
4697 cgroup_get(cgrp);
4699 memset(css, 0, sizeof(*css));
4700 css->cgroup = cgrp;
4701 css->ss = ss;
4702 INIT_LIST_HEAD(&css->sibling);
4703 INIT_LIST_HEAD(&css->children);
4704 INIT_LIST_HEAD(&css->files);
4705 css->serial_nr = css_serial_nr_next++;
4707 if (cgroup_parent(cgrp)) {
4708 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4709 css_get(css->parent);
4712 BUG_ON(cgroup_css(cgrp, ss));
4715 /* invoke ->css_online() on a new CSS and mark it online if successful */
4716 static int online_css(struct cgroup_subsys_state *css)
4718 struct cgroup_subsys *ss = css->ss;
4719 int ret = 0;
4721 lockdep_assert_held(&cgroup_mutex);
4723 if (ss->css_online)
4724 ret = ss->css_online(css);
4725 if (!ret) {
4726 css->flags |= CSS_ONLINE;
4727 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4729 return ret;
4732 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4733 static void offline_css(struct cgroup_subsys_state *css)
4735 struct cgroup_subsys *ss = css->ss;
4737 lockdep_assert_held(&cgroup_mutex);
4739 if (!(css->flags & CSS_ONLINE))
4740 return;
4742 if (ss->css_offline)
4743 ss->css_offline(css);
4745 css->flags &= ~CSS_ONLINE;
4746 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4748 wake_up_all(&css->cgroup->offline_waitq);
4752 * create_css - create a cgroup_subsys_state
4753 * @cgrp: the cgroup new css will be associated with
4754 * @ss: the subsys of new css
4755 * @visible: whether to create control knobs for the new css or not
4757 * Create a new css associated with @cgrp - @ss pair. On success, the new
4758 * css is online and installed in @cgrp with all interface files created if
4759 * @visible. Returns 0 on success, -errno on failure.
4761 static int create_css(struct cgroup *cgrp, struct cgroup_subsys *ss,
4762 bool visible)
4764 struct cgroup *parent = cgroup_parent(cgrp);
4765 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4766 struct cgroup_subsys_state *css;
4767 int err;
4769 lockdep_assert_held(&cgroup_mutex);
4771 css = ss->css_alloc(parent_css);
4772 if (IS_ERR(css))
4773 return PTR_ERR(css);
4775 init_and_link_css(css, ss, cgrp);
4777 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4778 if (err)
4779 goto err_free_css;
4781 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4782 if (err < 0)
4783 goto err_free_percpu_ref;
4784 css->id = err;
4786 if (visible) {
4787 err = css_populate_dir(css, NULL);
4788 if (err)
4789 goto err_free_id;
4792 /* @css is ready to be brought online now, make it visible */
4793 list_add_tail_rcu(&css->sibling, &parent_css->children);
4794 cgroup_idr_replace(&ss->css_idr, css, css->id);
4796 err = online_css(css);
4797 if (err)
4798 goto err_list_del;
4800 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4801 cgroup_parent(parent)) {
4802 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4803 current->comm, current->pid, ss->name);
4804 if (!strcmp(ss->name, "memory"))
4805 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4806 ss->warned_broken_hierarchy = true;
4809 return 0;
4811 err_list_del:
4812 list_del_rcu(&css->sibling);
4813 css_clear_dir(css, NULL);
4814 err_free_id:
4815 cgroup_idr_remove(&ss->css_idr, css->id);
4816 err_free_percpu_ref:
4817 percpu_ref_exit(&css->refcnt);
4818 err_free_css:
4819 call_rcu(&css->rcu_head, css_free_rcu_fn);
4820 return err;
4823 static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
4824 umode_t mode)
4826 struct cgroup *parent, *cgrp, *tcgrp;
4827 struct cgroup_root *root;
4828 struct cgroup_subsys *ss;
4829 struct kernfs_node *kn;
4830 int level, ssid, ret;
4832 /* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
4834 if (strchr(name, '\n'))
4835 return -EINVAL;
4837 parent = cgroup_kn_lock_live(parent_kn);
4838 if (!parent)
4839 return -ENODEV;
4840 root = parent->root;
4841 level = parent->level + 1;
4843 /* allocate the cgroup and its ID, 0 is reserved for the root */
4844 cgrp = kzalloc(sizeof(*cgrp) +
4845 sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL);
4846 if (!cgrp) {
4847 ret = -ENOMEM;
4848 goto out_unlock;
4851 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4852 if (ret)
4853 goto out_free_cgrp;
4856 * Temporarily set the pointer to NULL, so idr_find() won't return
4857 * a half-baked cgroup.
4859 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4860 if (cgrp->id < 0) {
4861 ret = -ENOMEM;
4862 goto out_cancel_ref;
4865 init_cgroup_housekeeping(cgrp);
4867 cgrp->self.parent = &parent->self;
4868 cgrp->root = root;
4869 cgrp->level = level;
4871 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp))
4872 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4874 if (notify_on_release(parent))
4875 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4877 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4878 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4880 /* create the directory */
4881 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4882 if (IS_ERR(kn)) {
4883 ret = PTR_ERR(kn);
4884 goto out_free_id;
4886 cgrp->kn = kn;
4889 * This extra ref will be put in cgroup_free_fn() and guarantees
4890 * that @cgrp->kn is always accessible.
4892 kernfs_get(kn);
4894 cgrp->self.serial_nr = css_serial_nr_next++;
4896 /* allocation complete, commit to creation */
4897 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4898 atomic_inc(&root->nr_cgrps);
4899 cgroup_get(parent);
4902 * @cgrp is now fully operational. If something fails after this
4903 * point, it'll be released via the normal destruction path.
4905 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4907 ret = cgroup_kn_set_ugid(kn);
4908 if (ret)
4909 goto out_destroy;
4911 ret = css_populate_dir(&cgrp->self, NULL);
4912 if (ret)
4913 goto out_destroy;
4915 /* let's create and online css's */
4916 for_each_subsys(ss, ssid) {
4917 if (parent->child_subsys_mask & (1 << ssid)) {
4918 ret = create_css(cgrp, ss,
4919 parent->subtree_control & (1 << ssid));
4920 if (ret)
4921 goto out_destroy;
4926 * On the default hierarchy, a child doesn't automatically inherit
4927 * subtree_control from the parent. Each is configured manually.
4929 if (!cgroup_on_dfl(cgrp)) {
4930 cgrp->subtree_control = parent->subtree_control;
4931 cgroup_refresh_child_subsys_mask(cgrp);
4934 kernfs_activate(kn);
4936 ret = 0;
4937 goto out_unlock;
4939 out_free_id:
4940 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4941 out_cancel_ref:
4942 percpu_ref_exit(&cgrp->self.refcnt);
4943 out_free_cgrp:
4944 kfree(cgrp);
4945 out_unlock:
4946 cgroup_kn_unlock(parent_kn);
4947 return ret;
4949 out_destroy:
4950 cgroup_destroy_locked(cgrp);
4951 goto out_unlock;
4955 * This is called when the refcnt of a css is confirmed to be killed.
4956 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
4957 * initate destruction and put the css ref from kill_css().
4959 static void css_killed_work_fn(struct work_struct *work)
4961 struct cgroup_subsys_state *css =
4962 container_of(work, struct cgroup_subsys_state, destroy_work);
4964 mutex_lock(&cgroup_mutex);
4965 offline_css(css);
4966 mutex_unlock(&cgroup_mutex);
4968 css_put(css);
4971 /* css kill confirmation processing requires process context, bounce */
4972 static void css_killed_ref_fn(struct percpu_ref *ref)
4974 struct cgroup_subsys_state *css =
4975 container_of(ref, struct cgroup_subsys_state, refcnt);
4977 INIT_WORK(&css->destroy_work, css_killed_work_fn);
4978 queue_work(cgroup_destroy_wq, &css->destroy_work);
4982 * kill_css - destroy a css
4983 * @css: css to destroy
4985 * This function initiates destruction of @css by removing cgroup interface
4986 * files and putting its base reference. ->css_offline() will be invoked
4987 * asynchronously once css_tryget_online() is guaranteed to fail and when
4988 * the reference count reaches zero, @css will be released.
4990 static void kill_css(struct cgroup_subsys_state *css)
4992 lockdep_assert_held(&cgroup_mutex);
4995 * This must happen before css is disassociated with its cgroup.
4996 * See seq_css() for details.
4998 css_clear_dir(css, NULL);
5001 * Killing would put the base ref, but we need to keep it alive
5002 * until after ->css_offline().
5004 css_get(css);
5007 * cgroup core guarantees that, by the time ->css_offline() is
5008 * invoked, no new css reference will be given out via
5009 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5010 * proceed to offlining css's because percpu_ref_kill() doesn't
5011 * guarantee that the ref is seen as killed on all CPUs on return.
5013 * Use percpu_ref_kill_and_confirm() to get notifications as each
5014 * css is confirmed to be seen as killed on all CPUs.
5016 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5020 * cgroup_destroy_locked - the first stage of cgroup destruction
5021 * @cgrp: cgroup to be destroyed
5023 * css's make use of percpu refcnts whose killing latency shouldn't be
5024 * exposed to userland and are RCU protected. Also, cgroup core needs to
5025 * guarantee that css_tryget_online() won't succeed by the time
5026 * ->css_offline() is invoked. To satisfy all the requirements,
5027 * destruction is implemented in the following two steps.
5029 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5030 * userland visible parts and start killing the percpu refcnts of
5031 * css's. Set up so that the next stage will be kicked off once all
5032 * the percpu refcnts are confirmed to be killed.
5034 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5035 * rest of destruction. Once all cgroup references are gone, the
5036 * cgroup is RCU-freed.
5038 * This function implements s1. After this step, @cgrp is gone as far as
5039 * the userland is concerned and a new cgroup with the same name may be
5040 * created. As cgroup doesn't care about the names internally, this
5041 * doesn't cause any problem.
5043 static int cgroup_destroy_locked(struct cgroup *cgrp)
5044 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5046 struct cgroup_subsys_state *css;
5047 int ssid;
5049 lockdep_assert_held(&cgroup_mutex);
5052 * Only migration can raise populated from zero and we're already
5053 * holding cgroup_mutex.
5055 if (cgroup_is_populated(cgrp))
5056 return -EBUSY;
5059 * Make sure there's no live children. We can't test emptiness of
5060 * ->self.children as dead children linger on it while being
5061 * drained; otherwise, "rmdir parent/child parent" may fail.
5063 if (css_has_online_children(&cgrp->self))
5064 return -EBUSY;
5067 * Mark @cgrp dead. This prevents further task migration and child
5068 * creation by disabling cgroup_lock_live_group().
5070 cgrp->self.flags &= ~CSS_ONLINE;
5072 /* initiate massacre of all css's */
5073 for_each_css(css, ssid, cgrp)
5074 kill_css(css);
5077 * Remove @cgrp directory along with the base files. @cgrp has an
5078 * extra ref on its kn.
5080 kernfs_remove(cgrp->kn);
5082 check_for_release(cgroup_parent(cgrp));
5084 /* put the base reference */
5085 percpu_ref_kill(&cgrp->self.refcnt);
5087 return 0;
5090 static int cgroup_rmdir(struct kernfs_node *kn)
5092 struct cgroup *cgrp;
5093 int ret = 0;
5095 cgrp = cgroup_kn_lock_live(kn);
5096 if (!cgrp)
5097 return 0;
5099 ret = cgroup_destroy_locked(cgrp);
5101 cgroup_kn_unlock(kn);
5102 return ret;
5105 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5106 .remount_fs = cgroup_remount,
5107 .show_options = cgroup_show_options,
5108 .mkdir = cgroup_mkdir,
5109 .rmdir = cgroup_rmdir,
5110 .rename = cgroup_rename,
5113 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5115 struct cgroup_subsys_state *css;
5117 printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
5119 mutex_lock(&cgroup_mutex);
5121 idr_init(&ss->css_idr);
5122 INIT_LIST_HEAD(&ss->cfts);
5124 /* Create the root cgroup state for this subsystem */
5125 ss->root = &cgrp_dfl_root;
5126 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5127 /* We don't handle early failures gracefully */
5128 BUG_ON(IS_ERR(css));
5129 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5132 * Root csses are never destroyed and we can't initialize
5133 * percpu_ref during early init. Disable refcnting.
5135 css->flags |= CSS_NO_REF;
5137 if (early) {
5138 /* allocation can't be done safely during early init */
5139 css->id = 1;
5140 } else {
5141 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5142 BUG_ON(css->id < 0);
5145 /* Update the init_css_set to contain a subsys
5146 * pointer to this state - since the subsystem is
5147 * newly registered, all tasks and hence the
5148 * init_css_set is in the subsystem's root cgroup. */
5149 init_css_set.subsys[ss->id] = css;
5151 have_fork_callback |= (bool)ss->fork << ss->id;
5152 have_exit_callback |= (bool)ss->exit << ss->id;
5153 have_free_callback |= (bool)ss->free << ss->id;
5154 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5156 /* At system boot, before all subsystems have been
5157 * registered, no tasks have been forked, so we don't
5158 * need to invoke fork callbacks here. */
5159 BUG_ON(!list_empty(&init_task.tasks));
5161 BUG_ON(online_css(css));
5163 mutex_unlock(&cgroup_mutex);
5167 * cgroup_init_early - cgroup initialization at system boot
5169 * Initialize cgroups at system boot, and initialize any
5170 * subsystems that request early init.
5172 int __init cgroup_init_early(void)
5174 static struct cgroup_sb_opts __initdata opts;
5175 struct cgroup_subsys *ss;
5176 int i;
5178 init_cgroup_root(&cgrp_dfl_root, &opts);
5179 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5181 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5183 for_each_subsys(ss, i) {
5184 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5185 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
5186 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5187 ss->id, ss->name);
5188 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5189 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5191 ss->id = i;
5192 ss->name = cgroup_subsys_name[i];
5193 if (!ss->legacy_name)
5194 ss->legacy_name = cgroup_subsys_name[i];
5196 if (ss->early_init)
5197 cgroup_init_subsys(ss, true);
5199 return 0;
5202 static unsigned long cgroup_disable_mask __initdata;
5205 * cgroup_init - cgroup initialization
5207 * Register cgroup filesystem and /proc file, and initialize
5208 * any subsystems that didn't request early init.
5210 int __init cgroup_init(void)
5212 struct cgroup_subsys *ss;
5213 unsigned long key;
5214 int ssid;
5216 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5217 BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
5218 BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
5220 mutex_lock(&cgroup_mutex);
5222 /* Add init_css_set to the hash table */
5223 key = css_set_hash(init_css_set.subsys);
5224 hash_add(css_set_table, &init_css_set.hlist, key);
5226 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
5228 mutex_unlock(&cgroup_mutex);
5230 for_each_subsys(ss, ssid) {
5231 if (ss->early_init) {
5232 struct cgroup_subsys_state *css =
5233 init_css_set.subsys[ss->id];
5235 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5236 GFP_KERNEL);
5237 BUG_ON(css->id < 0);
5238 } else {
5239 cgroup_init_subsys(ss, false);
5242 list_add_tail(&init_css_set.e_cset_node[ssid],
5243 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5246 * Setting dfl_root subsys_mask needs to consider the
5247 * disabled flag and cftype registration needs kmalloc,
5248 * both of which aren't available during early_init.
5250 if (cgroup_disable_mask & (1 << ssid)) {
5251 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5252 printk(KERN_INFO "Disabling %s control group subsystem\n",
5253 ss->name);
5254 continue;
5257 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5259 if (!ss->dfl_cftypes)
5260 cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
5262 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5263 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5264 } else {
5265 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5266 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5269 if (ss->bind)
5270 ss->bind(init_css_set.subsys[ssid]);
5273 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5274 WARN_ON(register_filesystem(&cgroup_fs_type));
5275 WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
5277 return 0;
5280 static int __init cgroup_wq_init(void)
5283 * There isn't much point in executing destruction path in
5284 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5285 * Use 1 for @max_active.
5287 * We would prefer to do this in cgroup_init() above, but that
5288 * is called before init_workqueues(): so leave this until after.
5290 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5291 BUG_ON(!cgroup_destroy_wq);
5294 * Used to destroy pidlists and separate to serve as flush domain.
5295 * Cap @max_active to 1 too.
5297 cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy",
5298 0, 1);
5299 BUG_ON(!cgroup_pidlist_destroy_wq);
5301 return 0;
5303 core_initcall(cgroup_wq_init);
5306 * proc_cgroup_show()
5307 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5308 * - Used for /proc/<pid>/cgroup.
5310 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5311 struct pid *pid, struct task_struct *tsk)
5313 char *buf, *path;
5314 int retval;
5315 struct cgroup_root *root;
5317 retval = -ENOMEM;
5318 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5319 if (!buf)
5320 goto out;
5322 mutex_lock(&cgroup_mutex);
5323 spin_lock_bh(&css_set_lock);
5325 for_each_root(root) {
5326 struct cgroup_subsys *ss;
5327 struct cgroup *cgrp;
5328 int ssid, count = 0;
5330 if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
5331 continue;
5333 seq_printf(m, "%d:", root->hierarchy_id);
5334 if (root != &cgrp_dfl_root)
5335 for_each_subsys(ss, ssid)
5336 if (root->subsys_mask & (1 << ssid))
5337 seq_printf(m, "%s%s", count++ ? "," : "",
5338 ss->legacy_name);
5339 if (strlen(root->name))
5340 seq_printf(m, "%sname=%s", count ? "," : "",
5341 root->name);
5342 seq_putc(m, ':');
5344 cgrp = task_cgroup_from_root(tsk, root);
5347 * On traditional hierarchies, all zombie tasks show up as
5348 * belonging to the root cgroup. On the default hierarchy,
5349 * while a zombie doesn't show up in "cgroup.procs" and
5350 * thus can't be migrated, its /proc/PID/cgroup keeps
5351 * reporting the cgroup it belonged to before exiting. If
5352 * the cgroup is removed before the zombie is reaped,
5353 * " (deleted)" is appended to the cgroup path.
5355 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5356 path = cgroup_path(cgrp, buf, PATH_MAX);
5357 if (!path) {
5358 retval = -ENAMETOOLONG;
5359 goto out_unlock;
5361 } else {
5362 path = "/";
5365 seq_puts(m, path);
5367 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5368 seq_puts(m, " (deleted)\n");
5369 else
5370 seq_putc(m, '\n');
5373 retval = 0;
5374 out_unlock:
5375 spin_unlock_bh(&css_set_lock);
5376 mutex_unlock(&cgroup_mutex);
5377 kfree(buf);
5378 out:
5379 return retval;
5382 /* Display information about each subsystem and each hierarchy */
5383 static int proc_cgroupstats_show(struct seq_file *m, void *v)
5385 struct cgroup_subsys *ss;
5386 int i;
5388 seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
5390 * ideally we don't want subsystems moving around while we do this.
5391 * cgroup_mutex is also necessary to guarantee an atomic snapshot of
5392 * subsys/hierarchy state.
5394 mutex_lock(&cgroup_mutex);
5396 for_each_subsys(ss, i)
5397 seq_printf(m, "%s\t%d\t%d\t%d\n",
5398 ss->legacy_name, ss->root->hierarchy_id,
5399 atomic_read(&ss->root->nr_cgrps),
5400 cgroup_ssid_enabled(i));
5402 mutex_unlock(&cgroup_mutex);
5403 return 0;
5406 static int cgroupstats_open(struct inode *inode, struct file *file)
5408 return single_open(file, proc_cgroupstats_show, NULL);
5411 static const struct file_operations proc_cgroupstats_operations = {
5412 .open = cgroupstats_open,
5413 .read = seq_read,
5414 .llseek = seq_lseek,
5415 .release = single_release,
5418 static void **subsys_canfork_priv_p(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5420 if (CGROUP_CANFORK_START <= i && i < CGROUP_CANFORK_END)
5421 return &ss_priv[i - CGROUP_CANFORK_START];
5422 return NULL;
5425 static void *subsys_canfork_priv(void *ss_priv[CGROUP_CANFORK_COUNT], int i)
5427 void **private = subsys_canfork_priv_p(ss_priv, i);
5428 return private ? *private : NULL;
5432 * cgroup_fork - initialize cgroup related fields during copy_process()
5433 * @child: pointer to task_struct of forking parent process.
5435 * A task is associated with the init_css_set until cgroup_post_fork()
5436 * attaches it to the parent's css_set. Empty cg_list indicates that
5437 * @child isn't holding reference to its css_set.
5439 void cgroup_fork(struct task_struct *child)
5441 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5442 INIT_LIST_HEAD(&child->cg_list);
5446 * cgroup_can_fork - called on a new task before the process is exposed
5447 * @child: the task in question.
5449 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5450 * returns an error, the fork aborts with that error code. This allows for
5451 * a cgroup subsystem to conditionally allow or deny new forks.
5453 int cgroup_can_fork(struct task_struct *child,
5454 void *ss_priv[CGROUP_CANFORK_COUNT])
5456 struct cgroup_subsys *ss;
5457 int i, j, ret;
5459 for_each_subsys_which(ss, i, &have_canfork_callback) {
5460 ret = ss->can_fork(child, subsys_canfork_priv_p(ss_priv, i));
5461 if (ret)
5462 goto out_revert;
5465 return 0;
5467 out_revert:
5468 for_each_subsys(ss, j) {
5469 if (j >= i)
5470 break;
5471 if (ss->cancel_fork)
5472 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, j));
5475 return ret;
5479 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5480 * @child: the task in question
5482 * This calls the cancel_fork() callbacks if a fork failed *after*
5483 * cgroup_can_fork() succeded.
5485 void cgroup_cancel_fork(struct task_struct *child,
5486 void *ss_priv[CGROUP_CANFORK_COUNT])
5488 struct cgroup_subsys *ss;
5489 int i;
5491 for_each_subsys(ss, i)
5492 if (ss->cancel_fork)
5493 ss->cancel_fork(child, subsys_canfork_priv(ss_priv, i));
5497 * cgroup_post_fork - called on a new task after adding it to the task list
5498 * @child: the task in question
5500 * Adds the task to the list running through its css_set if necessary and
5501 * call the subsystem fork() callbacks. Has to be after the task is
5502 * visible on the task list in case we race with the first call to
5503 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5504 * list.
5506 void cgroup_post_fork(struct task_struct *child,
5507 void *old_ss_priv[CGROUP_CANFORK_COUNT])
5509 struct cgroup_subsys *ss;
5510 int i;
5513 * This may race against cgroup_enable_task_cg_lists(). As that
5514 * function sets use_task_css_set_links before grabbing
5515 * tasklist_lock and we just went through tasklist_lock to add
5516 * @child, it's guaranteed that either we see the set
5517 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5518 * @child during its iteration.
5520 * If we won the race, @child is associated with %current's
5521 * css_set. Grabbing css_set_lock guarantees both that the
5522 * association is stable, and, on completion of the parent's
5523 * migration, @child is visible in the source of migration or
5524 * already in the destination cgroup. This guarantee is necessary
5525 * when implementing operations which need to migrate all tasks of
5526 * a cgroup to another.
5528 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5529 * will remain in init_css_set. This is safe because all tasks are
5530 * in the init_css_set before cg_links is enabled and there's no
5531 * operation which transfers all tasks out of init_css_set.
5533 if (use_task_css_set_links) {
5534 struct css_set *cset;
5536 spin_lock_bh(&css_set_lock);
5537 cset = task_css_set(current);
5538 if (list_empty(&child->cg_list)) {
5539 get_css_set(cset);
5540 css_set_move_task(child, NULL, cset, false);
5542 spin_unlock_bh(&css_set_lock);
5546 * Call ss->fork(). This must happen after @child is linked on
5547 * css_set; otherwise, @child might change state between ->fork()
5548 * and addition to css_set.
5550 for_each_subsys_which(ss, i, &have_fork_callback)
5551 ss->fork(child, subsys_canfork_priv(old_ss_priv, i));
5555 * cgroup_exit - detach cgroup from exiting task
5556 * @tsk: pointer to task_struct of exiting process
5558 * Description: Detach cgroup from @tsk and release it.
5560 * Note that cgroups marked notify_on_release force every task in
5561 * them to take the global cgroup_mutex mutex when exiting.
5562 * This could impact scaling on very large systems. Be reluctant to
5563 * use notify_on_release cgroups where very high task exit scaling
5564 * is required on large systems.
5566 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5567 * call cgroup_exit() while the task is still competent to handle
5568 * notify_on_release(), then leave the task attached to the root cgroup in
5569 * each hierarchy for the remainder of its exit. No need to bother with
5570 * init_css_set refcnting. init_css_set never goes away and we can't race
5571 * with migration path - PF_EXITING is visible to migration path.
5573 void cgroup_exit(struct task_struct *tsk)
5575 struct cgroup_subsys *ss;
5576 struct css_set *cset;
5577 int i;
5580 * Unlink from @tsk from its css_set. As migration path can't race
5581 * with us, we can check css_set and cg_list without synchronization.
5583 cset = task_css_set(tsk);
5585 if (!list_empty(&tsk->cg_list)) {
5586 spin_lock_bh(&css_set_lock);
5587 css_set_move_task(tsk, cset, NULL, false);
5588 spin_unlock_bh(&css_set_lock);
5589 } else {
5590 get_css_set(cset);
5593 /* see cgroup_post_fork() for details */
5594 for_each_subsys_which(ss, i, &have_exit_callback)
5595 ss->exit(tsk);
5598 void cgroup_free(struct task_struct *task)
5600 struct css_set *cset = task_css_set(task);
5601 struct cgroup_subsys *ss;
5602 int ssid;
5604 for_each_subsys_which(ss, ssid, &have_free_callback)
5605 ss->free(task);
5607 put_css_set(cset);
5610 static void check_for_release(struct cgroup *cgrp)
5612 if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) &&
5613 !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp))
5614 schedule_work(&cgrp->release_agent_work);
5618 * Notify userspace when a cgroup is released, by running the
5619 * configured release agent with the name of the cgroup (path
5620 * relative to the root of cgroup file system) as the argument.
5622 * Most likely, this user command will try to rmdir this cgroup.
5624 * This races with the possibility that some other task will be
5625 * attached to this cgroup before it is removed, or that some other
5626 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
5627 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
5628 * unused, and this cgroup will be reprieved from its death sentence,
5629 * to continue to serve a useful existence. Next time it's released,
5630 * we will get notified again, if it still has 'notify_on_release' set.
5632 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
5633 * means only wait until the task is successfully execve()'d. The
5634 * separate release agent task is forked by call_usermodehelper(),
5635 * then control in this thread returns here, without waiting for the
5636 * release agent task. We don't bother to wait because the caller of
5637 * this routine has no use for the exit status of the release agent
5638 * task, so no sense holding our caller up for that.
5640 static void cgroup_release_agent(struct work_struct *work)
5642 struct cgroup *cgrp =
5643 container_of(work, struct cgroup, release_agent_work);
5644 char *pathbuf = NULL, *agentbuf = NULL, *path;
5645 char *argv[3], *envp[3];
5647 mutex_lock(&cgroup_mutex);
5649 pathbuf = kmalloc(PATH_MAX, GFP_KERNEL);
5650 agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL);
5651 if (!pathbuf || !agentbuf)
5652 goto out;
5654 path = cgroup_path(cgrp, pathbuf, PATH_MAX);
5655 if (!path)
5656 goto out;
5658 argv[0] = agentbuf;
5659 argv[1] = path;
5660 argv[2] = NULL;
5662 /* minimal command environment */
5663 envp[0] = "HOME=/";
5664 envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
5665 envp[2] = NULL;
5667 mutex_unlock(&cgroup_mutex);
5668 call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
5669 goto out_free;
5670 out:
5671 mutex_unlock(&cgroup_mutex);
5672 out_free:
5673 kfree(agentbuf);
5674 kfree(pathbuf);
5677 static int __init cgroup_disable(char *str)
5679 struct cgroup_subsys *ss;
5680 char *token;
5681 int i;
5683 while ((token = strsep(&str, ",")) != NULL) {
5684 if (!*token)
5685 continue;
5687 for_each_subsys(ss, i) {
5688 if (strcmp(token, ss->name) &&
5689 strcmp(token, ss->legacy_name))
5690 continue;
5691 cgroup_disable_mask |= 1 << i;
5694 return 1;
5696 __setup("cgroup_disable=", cgroup_disable);
5699 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5700 * @dentry: directory dentry of interest
5701 * @ss: subsystem of interest
5703 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5704 * to get the corresponding css and return it. If such css doesn't exist
5705 * or can't be pinned, an ERR_PTR value is returned.
5707 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5708 struct cgroup_subsys *ss)
5710 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5711 struct cgroup_subsys_state *css = NULL;
5712 struct cgroup *cgrp;
5714 /* is @dentry a cgroup dir? */
5715 if (dentry->d_sb->s_type != &cgroup_fs_type || !kn ||
5716 kernfs_type(kn) != KERNFS_DIR)
5717 return ERR_PTR(-EBADF);
5719 rcu_read_lock();
5722 * This path doesn't originate from kernfs and @kn could already
5723 * have been or be removed at any point. @kn->priv is RCU
5724 * protected for this access. See css_release_work_fn() for details.
5726 cgrp = rcu_dereference(kn->priv);
5727 if (cgrp)
5728 css = cgroup_css(cgrp, ss);
5730 if (!css || !css_tryget_online(css))
5731 css = ERR_PTR(-ENOENT);
5733 rcu_read_unlock();
5734 return css;
5738 * css_from_id - lookup css by id
5739 * @id: the cgroup id
5740 * @ss: cgroup subsys to be looked into
5742 * Returns the css if there's valid one with @id, otherwise returns NULL.
5743 * Should be called under rcu_read_lock().
5745 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5747 WARN_ON_ONCE(!rcu_read_lock_held());
5748 return id > 0 ? idr_find(&ss->css_idr, id) : NULL;
5752 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5753 * @path: path on the default hierarchy
5755 * Find the cgroup at @path on the default hierarchy, increment its
5756 * reference count and return it. Returns pointer to the found cgroup on
5757 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5758 * if @path points to a non-directory.
5760 struct cgroup *cgroup_get_from_path(const char *path)
5762 struct kernfs_node *kn;
5763 struct cgroup *cgrp;
5765 mutex_lock(&cgroup_mutex);
5767 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5768 if (kn) {
5769 if (kernfs_type(kn) == KERNFS_DIR) {
5770 cgrp = kn->priv;
5771 cgroup_get(cgrp);
5772 } else {
5773 cgrp = ERR_PTR(-ENOTDIR);
5775 kernfs_put(kn);
5776 } else {
5777 cgrp = ERR_PTR(-ENOENT);
5780 mutex_unlock(&cgroup_mutex);
5781 return cgrp;
5783 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5786 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5787 * definition in cgroup-defs.h.
5789 #ifdef CONFIG_SOCK_CGROUP_DATA
5791 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5793 spinlock_t cgroup_sk_update_lock;
5794 static bool cgroup_sk_alloc_disabled __read_mostly;
5796 void cgroup_sk_alloc_disable(void)
5798 if (cgroup_sk_alloc_disabled)
5799 return;
5800 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5801 cgroup_sk_alloc_disabled = true;
5804 #else
5806 #define cgroup_sk_alloc_disabled false
5808 #endif
5810 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5812 if (cgroup_sk_alloc_disabled)
5813 return;
5815 rcu_read_lock();
5817 while (true) {
5818 struct css_set *cset;
5820 cset = task_css_set(current);
5821 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5822 skcd->val = (unsigned long)cset->dfl_cgrp;
5823 break;
5825 cpu_relax();
5828 rcu_read_unlock();
5831 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5833 cgroup_put(sock_cgroup_ptr(skcd));
5836 #endif /* CONFIG_SOCK_CGROUP_DATA */
5838 #ifdef CONFIG_CGROUP_DEBUG
5839 static struct cgroup_subsys_state *
5840 debug_css_alloc(struct cgroup_subsys_state *parent_css)
5842 struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL);
5844 if (!css)
5845 return ERR_PTR(-ENOMEM);
5847 return css;
5850 static void debug_css_free(struct cgroup_subsys_state *css)
5852 kfree(css);
5855 static u64 debug_taskcount_read(struct cgroup_subsys_state *css,
5856 struct cftype *cft)
5858 return cgroup_task_count(css->cgroup);
5861 static u64 current_css_set_read(struct cgroup_subsys_state *css,
5862 struct cftype *cft)
5864 return (u64)(unsigned long)current->cgroups;
5867 static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css,
5868 struct cftype *cft)
5870 u64 count;
5872 rcu_read_lock();
5873 count = atomic_read(&task_css_set(current)->refcount);
5874 rcu_read_unlock();
5875 return count;
5878 static int current_css_set_cg_links_read(struct seq_file *seq, void *v)
5880 struct cgrp_cset_link *link;
5881 struct css_set *cset;
5882 char *name_buf;
5884 name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
5885 if (!name_buf)
5886 return -ENOMEM;
5888 spin_lock_bh(&css_set_lock);
5889 rcu_read_lock();
5890 cset = rcu_dereference(current->cgroups);
5891 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
5892 struct cgroup *c = link->cgrp;
5894 cgroup_name(c, name_buf, NAME_MAX + 1);
5895 seq_printf(seq, "Root %d group %s\n",
5896 c->root->hierarchy_id, name_buf);
5898 rcu_read_unlock();
5899 spin_unlock_bh(&css_set_lock);
5900 kfree(name_buf);
5901 return 0;
5904 #define MAX_TASKS_SHOWN_PER_CSS 25
5905 static int cgroup_css_links_read(struct seq_file *seq, void *v)
5907 struct cgroup_subsys_state *css = seq_css(seq);
5908 struct cgrp_cset_link *link;
5910 spin_lock_bh(&css_set_lock);
5911 list_for_each_entry(link, &css->cgroup->cset_links, cset_link) {
5912 struct css_set *cset = link->cset;
5913 struct task_struct *task;
5914 int count = 0;
5916 seq_printf(seq, "css_set %p\n", cset);
5918 list_for_each_entry(task, &cset->tasks, cg_list) {
5919 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5920 goto overflow;
5921 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5924 list_for_each_entry(task, &cset->mg_tasks, cg_list) {
5925 if (count++ > MAX_TASKS_SHOWN_PER_CSS)
5926 goto overflow;
5927 seq_printf(seq, " task %d\n", task_pid_vnr(task));
5929 continue;
5930 overflow:
5931 seq_puts(seq, " ...\n");
5933 spin_unlock_bh(&css_set_lock);
5934 return 0;
5937 static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft)
5939 return (!cgroup_is_populated(css->cgroup) &&
5940 !css_has_online_children(&css->cgroup->self));
5943 static struct cftype debug_files[] = {
5945 .name = "taskcount",
5946 .read_u64 = debug_taskcount_read,
5950 .name = "current_css_set",
5951 .read_u64 = current_css_set_read,
5955 .name = "current_css_set_refcount",
5956 .read_u64 = current_css_set_refcount_read,
5960 .name = "current_css_set_cg_links",
5961 .seq_show = current_css_set_cg_links_read,
5965 .name = "cgroup_css_links",
5966 .seq_show = cgroup_css_links_read,
5970 .name = "releasable",
5971 .read_u64 = releasable_read,
5974 { } /* terminate */
5977 struct cgroup_subsys debug_cgrp_subsys = {
5978 .css_alloc = debug_css_alloc,
5979 .css_free = debug_css_free,
5980 .legacy_cftypes = debug_files,
5982 #endif /* CONFIG_CGROUP_DEBUG */