KVM: PPC: Book3S HV: Handle 1GB pages in radix page fault handler
[linux/fpc-iii.git] / mm / swap_slots.c
blobbebc19292018f355b4e8f500e985c71e4ea3d9e4
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Manage cache of swap slots to be used for and returned from
4 * swap.
6 * Copyright(c) 2016 Intel Corporation.
8 * Author: Tim Chen <tim.c.chen@linux.intel.com>
10 * We allocate the swap slots from the global pool and put
11 * it into local per cpu caches. This has the advantage
12 * of no needing to acquire the swap_info lock every time
13 * we need a new slot.
15 * There is also opportunity to simply return the slot
16 * to local caches without needing to acquire swap_info
17 * lock. We do not reuse the returned slots directly but
18 * move them back to the global pool in a batch. This
19 * allows the slots to coaellesce and reduce fragmentation.
21 * The swap entry allocated is marked with SWAP_HAS_CACHE
22 * flag in map_count that prevents it from being allocated
23 * again from the global pool.
25 * The swap slots cache is protected by a mutex instead of
26 * a spin lock as when we search for slots with scan_swap_map,
27 * we can possibly sleep.
30 #include <linux/swap_slots.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/vmalloc.h>
34 #include <linux/mutex.h>
35 #include <linux/mm.h>
37 #ifdef CONFIG_SWAP
39 static DEFINE_PER_CPU(struct swap_slots_cache, swp_slots);
40 static bool swap_slot_cache_active;
41 bool swap_slot_cache_enabled;
42 static bool swap_slot_cache_initialized;
43 DEFINE_MUTEX(swap_slots_cache_mutex);
44 /* Serialize swap slots cache enable/disable operations */
45 DEFINE_MUTEX(swap_slots_cache_enable_mutex);
47 static void __drain_swap_slots_cache(unsigned int type);
48 static void deactivate_swap_slots_cache(void);
49 static void reactivate_swap_slots_cache(void);
51 #define use_swap_slot_cache (swap_slot_cache_active && \
52 swap_slot_cache_enabled && swap_slot_cache_initialized)
53 #define SLOTS_CACHE 0x1
54 #define SLOTS_CACHE_RET 0x2
56 static void deactivate_swap_slots_cache(void)
58 mutex_lock(&swap_slots_cache_mutex);
59 swap_slot_cache_active = false;
60 __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
61 mutex_unlock(&swap_slots_cache_mutex);
64 static void reactivate_swap_slots_cache(void)
66 mutex_lock(&swap_slots_cache_mutex);
67 swap_slot_cache_active = true;
68 mutex_unlock(&swap_slots_cache_mutex);
71 /* Must not be called with cpu hot plug lock */
72 void disable_swap_slots_cache_lock(void)
74 mutex_lock(&swap_slots_cache_enable_mutex);
75 swap_slot_cache_enabled = false;
76 if (swap_slot_cache_initialized) {
77 /* serialize with cpu hotplug operations */
78 get_online_cpus();
79 __drain_swap_slots_cache(SLOTS_CACHE|SLOTS_CACHE_RET);
80 put_online_cpus();
84 static void __reenable_swap_slots_cache(void)
86 swap_slot_cache_enabled = has_usable_swap();
89 void reenable_swap_slots_cache_unlock(void)
91 __reenable_swap_slots_cache();
92 mutex_unlock(&swap_slots_cache_enable_mutex);
95 static bool check_cache_active(void)
97 long pages;
99 if (!swap_slot_cache_enabled || !swap_slot_cache_initialized)
100 return false;
102 pages = get_nr_swap_pages();
103 if (!swap_slot_cache_active) {
104 if (pages > num_online_cpus() *
105 THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE)
106 reactivate_swap_slots_cache();
107 goto out;
110 /* if global pool of slot caches too low, deactivate cache */
111 if (pages < num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE)
112 deactivate_swap_slots_cache();
113 out:
114 return swap_slot_cache_active;
117 static int alloc_swap_slot_cache(unsigned int cpu)
119 struct swap_slots_cache *cache;
120 swp_entry_t *slots, *slots_ret;
123 * Do allocation outside swap_slots_cache_mutex
124 * as kvzalloc could trigger reclaim and get_swap_page,
125 * which can lock swap_slots_cache_mutex.
127 slots = kvzalloc(sizeof(swp_entry_t) * SWAP_SLOTS_CACHE_SIZE,
128 GFP_KERNEL);
129 if (!slots)
130 return -ENOMEM;
132 slots_ret = kvzalloc(sizeof(swp_entry_t) * SWAP_SLOTS_CACHE_SIZE,
133 GFP_KERNEL);
134 if (!slots_ret) {
135 kvfree(slots);
136 return -ENOMEM;
139 mutex_lock(&swap_slots_cache_mutex);
140 cache = &per_cpu(swp_slots, cpu);
141 if (cache->slots || cache->slots_ret)
142 /* cache already allocated */
143 goto out;
144 if (!cache->lock_initialized) {
145 mutex_init(&cache->alloc_lock);
146 spin_lock_init(&cache->free_lock);
147 cache->lock_initialized = true;
149 cache->nr = 0;
150 cache->cur = 0;
151 cache->n_ret = 0;
153 * We initialized alloc_lock and free_lock earlier. We use
154 * !cache->slots or !cache->slots_ret to know if it is safe to acquire
155 * the corresponding lock and use the cache. Memory barrier below
156 * ensures the assumption.
158 mb();
159 cache->slots = slots;
160 slots = NULL;
161 cache->slots_ret = slots_ret;
162 slots_ret = NULL;
163 out:
164 mutex_unlock(&swap_slots_cache_mutex);
165 if (slots)
166 kvfree(slots);
167 if (slots_ret)
168 kvfree(slots_ret);
169 return 0;
172 static void drain_slots_cache_cpu(unsigned int cpu, unsigned int type,
173 bool free_slots)
175 struct swap_slots_cache *cache;
176 swp_entry_t *slots = NULL;
178 cache = &per_cpu(swp_slots, cpu);
179 if ((type & SLOTS_CACHE) && cache->slots) {
180 mutex_lock(&cache->alloc_lock);
181 swapcache_free_entries(cache->slots + cache->cur, cache->nr);
182 cache->cur = 0;
183 cache->nr = 0;
184 if (free_slots && cache->slots) {
185 kvfree(cache->slots);
186 cache->slots = NULL;
188 mutex_unlock(&cache->alloc_lock);
190 if ((type & SLOTS_CACHE_RET) && cache->slots_ret) {
191 spin_lock_irq(&cache->free_lock);
192 swapcache_free_entries(cache->slots_ret, cache->n_ret);
193 cache->n_ret = 0;
194 if (free_slots && cache->slots_ret) {
195 slots = cache->slots_ret;
196 cache->slots_ret = NULL;
198 spin_unlock_irq(&cache->free_lock);
199 if (slots)
200 kvfree(slots);
204 static void __drain_swap_slots_cache(unsigned int type)
206 unsigned int cpu;
209 * This function is called during
210 * 1) swapoff, when we have to make sure no
211 * left over slots are in cache when we remove
212 * a swap device;
213 * 2) disabling of swap slot cache, when we run low
214 * on swap slots when allocating memory and need
215 * to return swap slots to global pool.
217 * We cannot acquire cpu hot plug lock here as
218 * this function can be invoked in the cpu
219 * hot plug path:
220 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
221 * -> memory allocation -> direct reclaim -> get_swap_page
222 * -> drain_swap_slots_cache
224 * Hence the loop over current online cpu below could miss cpu that
225 * is being brought online but not yet marked as online.
226 * That is okay as we do not schedule and run anything on a
227 * cpu before it has been marked online. Hence, we will not
228 * fill any swap slots in slots cache of such cpu.
229 * There are no slots on such cpu that need to be drained.
231 for_each_online_cpu(cpu)
232 drain_slots_cache_cpu(cpu, type, false);
235 static int free_slot_cache(unsigned int cpu)
237 mutex_lock(&swap_slots_cache_mutex);
238 drain_slots_cache_cpu(cpu, SLOTS_CACHE | SLOTS_CACHE_RET, true);
239 mutex_unlock(&swap_slots_cache_mutex);
240 return 0;
243 int enable_swap_slots_cache(void)
245 int ret = 0;
247 mutex_lock(&swap_slots_cache_enable_mutex);
248 if (swap_slot_cache_initialized) {
249 __reenable_swap_slots_cache();
250 goto out_unlock;
253 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "swap_slots_cache",
254 alloc_swap_slot_cache, free_slot_cache);
255 if (WARN_ONCE(ret < 0, "Cache allocation failed (%s), operating "
256 "without swap slots cache.\n", __func__))
257 goto out_unlock;
259 swap_slot_cache_initialized = true;
260 __reenable_swap_slots_cache();
261 out_unlock:
262 mutex_unlock(&swap_slots_cache_enable_mutex);
263 return 0;
266 /* called with swap slot cache's alloc lock held */
267 static int refill_swap_slots_cache(struct swap_slots_cache *cache)
269 if (!use_swap_slot_cache || cache->nr)
270 return 0;
272 cache->cur = 0;
273 if (swap_slot_cache_active)
274 cache->nr = get_swap_pages(SWAP_SLOTS_CACHE_SIZE, false,
275 cache->slots);
277 return cache->nr;
280 int free_swap_slot(swp_entry_t entry)
282 struct swap_slots_cache *cache;
284 cache = raw_cpu_ptr(&swp_slots);
285 if (likely(use_swap_slot_cache && cache->slots_ret)) {
286 spin_lock_irq(&cache->free_lock);
287 /* Swap slots cache may be deactivated before acquiring lock */
288 if (!use_swap_slot_cache || !cache->slots_ret) {
289 spin_unlock_irq(&cache->free_lock);
290 goto direct_free;
292 if (cache->n_ret >= SWAP_SLOTS_CACHE_SIZE) {
294 * Return slots to global pool.
295 * The current swap_map value is SWAP_HAS_CACHE.
296 * Set it to 0 to indicate it is available for
297 * allocation in global pool
299 swapcache_free_entries(cache->slots_ret, cache->n_ret);
300 cache->n_ret = 0;
302 cache->slots_ret[cache->n_ret++] = entry;
303 spin_unlock_irq(&cache->free_lock);
304 } else {
305 direct_free:
306 swapcache_free_entries(&entry, 1);
309 return 0;
312 swp_entry_t get_swap_page(struct page *page)
314 swp_entry_t entry, *pentry;
315 struct swap_slots_cache *cache;
317 entry.val = 0;
319 if (PageTransHuge(page)) {
320 if (IS_ENABLED(CONFIG_THP_SWAP))
321 get_swap_pages(1, true, &entry);
322 return entry;
326 * Preemption is allowed here, because we may sleep
327 * in refill_swap_slots_cache(). But it is safe, because
328 * accesses to the per-CPU data structure are protected by the
329 * mutex cache->alloc_lock.
331 * The alloc path here does not touch cache->slots_ret
332 * so cache->free_lock is not taken.
334 cache = raw_cpu_ptr(&swp_slots);
336 if (likely(check_cache_active() && cache->slots)) {
337 mutex_lock(&cache->alloc_lock);
338 if (cache->slots) {
339 repeat:
340 if (cache->nr) {
341 pentry = &cache->slots[cache->cur++];
342 entry = *pentry;
343 pentry->val = 0;
344 cache->nr--;
345 } else {
346 if (refill_swap_slots_cache(cache))
347 goto repeat;
350 mutex_unlock(&cache->alloc_lock);
351 if (entry.val)
352 return entry;
355 get_swap_pages(1, false, &entry);
357 return entry;
360 #endif /* CONFIG_SWAP */