1 // SPDX-License-Identifier: GPL-2.0
3 * Manage cache of swap slots to be used for and returned from
6 * Copyright(c) 2016 Intel Corporation.
8 * Author: Tim Chen <tim.c.chen@linux.intel.com>
10 * We allocate the swap slots from the global pool and put
11 * it into local per cpu caches. This has the advantage
12 * of no needing to acquire the swap_info lock every time
15 * There is also opportunity to simply return the slot
16 * to local caches without needing to acquire swap_info
17 * lock. We do not reuse the returned slots directly but
18 * move them back to the global pool in a batch. This
19 * allows the slots to coaellesce and reduce fragmentation.
21 * The swap entry allocated is marked with SWAP_HAS_CACHE
22 * flag in map_count that prevents it from being allocated
23 * again from the global pool.
25 * The swap slots cache is protected by a mutex instead of
26 * a spin lock as when we search for slots with scan_swap_map,
27 * we can possibly sleep.
30 #include <linux/swap_slots.h>
31 #include <linux/cpu.h>
32 #include <linux/cpumask.h>
33 #include <linux/vmalloc.h>
34 #include <linux/mutex.h>
39 static DEFINE_PER_CPU(struct swap_slots_cache
, swp_slots
);
40 static bool swap_slot_cache_active
;
41 bool swap_slot_cache_enabled
;
42 static bool swap_slot_cache_initialized
;
43 DEFINE_MUTEX(swap_slots_cache_mutex
);
44 /* Serialize swap slots cache enable/disable operations */
45 DEFINE_MUTEX(swap_slots_cache_enable_mutex
);
47 static void __drain_swap_slots_cache(unsigned int type
);
48 static void deactivate_swap_slots_cache(void);
49 static void reactivate_swap_slots_cache(void);
51 #define use_swap_slot_cache (swap_slot_cache_active && \
52 swap_slot_cache_enabled && swap_slot_cache_initialized)
53 #define SLOTS_CACHE 0x1
54 #define SLOTS_CACHE_RET 0x2
56 static void deactivate_swap_slots_cache(void)
58 mutex_lock(&swap_slots_cache_mutex
);
59 swap_slot_cache_active
= false;
60 __drain_swap_slots_cache(SLOTS_CACHE
|SLOTS_CACHE_RET
);
61 mutex_unlock(&swap_slots_cache_mutex
);
64 static void reactivate_swap_slots_cache(void)
66 mutex_lock(&swap_slots_cache_mutex
);
67 swap_slot_cache_active
= true;
68 mutex_unlock(&swap_slots_cache_mutex
);
71 /* Must not be called with cpu hot plug lock */
72 void disable_swap_slots_cache_lock(void)
74 mutex_lock(&swap_slots_cache_enable_mutex
);
75 swap_slot_cache_enabled
= false;
76 if (swap_slot_cache_initialized
) {
77 /* serialize with cpu hotplug operations */
79 __drain_swap_slots_cache(SLOTS_CACHE
|SLOTS_CACHE_RET
);
84 static void __reenable_swap_slots_cache(void)
86 swap_slot_cache_enabled
= has_usable_swap();
89 void reenable_swap_slots_cache_unlock(void)
91 __reenable_swap_slots_cache();
92 mutex_unlock(&swap_slots_cache_enable_mutex
);
95 static bool check_cache_active(void)
99 if (!swap_slot_cache_enabled
|| !swap_slot_cache_initialized
)
102 pages
= get_nr_swap_pages();
103 if (!swap_slot_cache_active
) {
104 if (pages
> num_online_cpus() *
105 THRESHOLD_ACTIVATE_SWAP_SLOTS_CACHE
)
106 reactivate_swap_slots_cache();
110 /* if global pool of slot caches too low, deactivate cache */
111 if (pages
< num_online_cpus() * THRESHOLD_DEACTIVATE_SWAP_SLOTS_CACHE
)
112 deactivate_swap_slots_cache();
114 return swap_slot_cache_active
;
117 static int alloc_swap_slot_cache(unsigned int cpu
)
119 struct swap_slots_cache
*cache
;
120 swp_entry_t
*slots
, *slots_ret
;
123 * Do allocation outside swap_slots_cache_mutex
124 * as kvzalloc could trigger reclaim and get_swap_page,
125 * which can lock swap_slots_cache_mutex.
127 slots
= kvzalloc(sizeof(swp_entry_t
) * SWAP_SLOTS_CACHE_SIZE
,
132 slots_ret
= kvzalloc(sizeof(swp_entry_t
) * SWAP_SLOTS_CACHE_SIZE
,
139 mutex_lock(&swap_slots_cache_mutex
);
140 cache
= &per_cpu(swp_slots
, cpu
);
141 if (cache
->slots
|| cache
->slots_ret
)
142 /* cache already allocated */
144 if (!cache
->lock_initialized
) {
145 mutex_init(&cache
->alloc_lock
);
146 spin_lock_init(&cache
->free_lock
);
147 cache
->lock_initialized
= true;
153 * We initialized alloc_lock and free_lock earlier. We use
154 * !cache->slots or !cache->slots_ret to know if it is safe to acquire
155 * the corresponding lock and use the cache. Memory barrier below
156 * ensures the assumption.
159 cache
->slots
= slots
;
161 cache
->slots_ret
= slots_ret
;
164 mutex_unlock(&swap_slots_cache_mutex
);
172 static void drain_slots_cache_cpu(unsigned int cpu
, unsigned int type
,
175 struct swap_slots_cache
*cache
;
176 swp_entry_t
*slots
= NULL
;
178 cache
= &per_cpu(swp_slots
, cpu
);
179 if ((type
& SLOTS_CACHE
) && cache
->slots
) {
180 mutex_lock(&cache
->alloc_lock
);
181 swapcache_free_entries(cache
->slots
+ cache
->cur
, cache
->nr
);
184 if (free_slots
&& cache
->slots
) {
185 kvfree(cache
->slots
);
188 mutex_unlock(&cache
->alloc_lock
);
190 if ((type
& SLOTS_CACHE_RET
) && cache
->slots_ret
) {
191 spin_lock_irq(&cache
->free_lock
);
192 swapcache_free_entries(cache
->slots_ret
, cache
->n_ret
);
194 if (free_slots
&& cache
->slots_ret
) {
195 slots
= cache
->slots_ret
;
196 cache
->slots_ret
= NULL
;
198 spin_unlock_irq(&cache
->free_lock
);
204 static void __drain_swap_slots_cache(unsigned int type
)
209 * This function is called during
210 * 1) swapoff, when we have to make sure no
211 * left over slots are in cache when we remove
213 * 2) disabling of swap slot cache, when we run low
214 * on swap slots when allocating memory and need
215 * to return swap slots to global pool.
217 * We cannot acquire cpu hot plug lock here as
218 * this function can be invoked in the cpu
220 * cpu_up -> lock cpu_hotplug -> cpu hotplug state callback
221 * -> memory allocation -> direct reclaim -> get_swap_page
222 * -> drain_swap_slots_cache
224 * Hence the loop over current online cpu below could miss cpu that
225 * is being brought online but not yet marked as online.
226 * That is okay as we do not schedule and run anything on a
227 * cpu before it has been marked online. Hence, we will not
228 * fill any swap slots in slots cache of such cpu.
229 * There are no slots on such cpu that need to be drained.
231 for_each_online_cpu(cpu
)
232 drain_slots_cache_cpu(cpu
, type
, false);
235 static int free_slot_cache(unsigned int cpu
)
237 mutex_lock(&swap_slots_cache_mutex
);
238 drain_slots_cache_cpu(cpu
, SLOTS_CACHE
| SLOTS_CACHE_RET
, true);
239 mutex_unlock(&swap_slots_cache_mutex
);
243 int enable_swap_slots_cache(void)
247 mutex_lock(&swap_slots_cache_enable_mutex
);
248 if (swap_slot_cache_initialized
) {
249 __reenable_swap_slots_cache();
253 ret
= cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "swap_slots_cache",
254 alloc_swap_slot_cache
, free_slot_cache
);
255 if (WARN_ONCE(ret
< 0, "Cache allocation failed (%s), operating "
256 "without swap slots cache.\n", __func__
))
259 swap_slot_cache_initialized
= true;
260 __reenable_swap_slots_cache();
262 mutex_unlock(&swap_slots_cache_enable_mutex
);
266 /* called with swap slot cache's alloc lock held */
267 static int refill_swap_slots_cache(struct swap_slots_cache
*cache
)
269 if (!use_swap_slot_cache
|| cache
->nr
)
273 if (swap_slot_cache_active
)
274 cache
->nr
= get_swap_pages(SWAP_SLOTS_CACHE_SIZE
, false,
280 int free_swap_slot(swp_entry_t entry
)
282 struct swap_slots_cache
*cache
;
284 cache
= raw_cpu_ptr(&swp_slots
);
285 if (likely(use_swap_slot_cache
&& cache
->slots_ret
)) {
286 spin_lock_irq(&cache
->free_lock
);
287 /* Swap slots cache may be deactivated before acquiring lock */
288 if (!use_swap_slot_cache
|| !cache
->slots_ret
) {
289 spin_unlock_irq(&cache
->free_lock
);
292 if (cache
->n_ret
>= SWAP_SLOTS_CACHE_SIZE
) {
294 * Return slots to global pool.
295 * The current swap_map value is SWAP_HAS_CACHE.
296 * Set it to 0 to indicate it is available for
297 * allocation in global pool
299 swapcache_free_entries(cache
->slots_ret
, cache
->n_ret
);
302 cache
->slots_ret
[cache
->n_ret
++] = entry
;
303 spin_unlock_irq(&cache
->free_lock
);
306 swapcache_free_entries(&entry
, 1);
312 swp_entry_t
get_swap_page(struct page
*page
)
314 swp_entry_t entry
, *pentry
;
315 struct swap_slots_cache
*cache
;
319 if (PageTransHuge(page
)) {
320 if (IS_ENABLED(CONFIG_THP_SWAP
))
321 get_swap_pages(1, true, &entry
);
326 * Preemption is allowed here, because we may sleep
327 * in refill_swap_slots_cache(). But it is safe, because
328 * accesses to the per-CPU data structure are protected by the
329 * mutex cache->alloc_lock.
331 * The alloc path here does not touch cache->slots_ret
332 * so cache->free_lock is not taken.
334 cache
= raw_cpu_ptr(&swp_slots
);
336 if (likely(check_cache_active() && cache
->slots
)) {
337 mutex_lock(&cache
->alloc_lock
);
341 pentry
= &cache
->slots
[cache
->cur
++];
346 if (refill_swap_slots_cache(cache
))
350 mutex_unlock(&cache
->alloc_lock
);
355 get_swap_pages(1, false, &entry
);
360 #endif /* CONFIG_SWAP */