2 * zsmalloc memory allocator
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
23 * page->units: first object offset in a subpage of zspage
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/shrinker.h>
50 #include <linux/types.h>
51 #include <linux/debugfs.h>
52 #include <linux/zsmalloc.h>
53 #include <linux/zpool.h>
54 #include <linux/mount.h>
55 #include <linux/migrate.h>
56 #include <linux/pagemap.h>
59 #define ZSPAGE_MAGIC 0x58
62 * This must be power of 2 and greater than of equal to sizeof(link_free).
63 * These two conditions ensure that any 'struct link_free' itself doesn't
64 * span more than 1 page which avoids complex case of mapping 2 pages simply
65 * to restore link_free pointer values.
70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
73 #define ZS_MAX_ZSPAGE_ORDER 2
74 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
76 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
79 * Object location (<PFN>, <obj_idx>) is encoded as
80 * as single (unsigned long) handle value.
82 * Note that object index <obj_idx> starts from 0.
84 * This is made more complicated by various memory models and PAE.
87 #ifndef MAX_PHYSMEM_BITS
88 #ifdef CONFIG_HIGHMEM64G
89 #define MAX_PHYSMEM_BITS 36
90 #else /* !CONFIG_HIGHMEM64G */
92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
95 #define MAX_PHYSMEM_BITS BITS_PER_LONG
98 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
101 * Memory for allocating for handle keeps object position by
102 * encoding <page, obj_idx> and the encoded value has a room
103 * in least bit(ie, look at obj_to_location).
104 * We use the bit to synchronize between object access by
105 * user and migration.
107 #define HANDLE_PIN_BIT 0
110 * Head in allocated object should have OBJ_ALLOCATED_TAG
111 * to identify the object was allocated or not.
112 * It's okay to add the status bit in the least bit because
113 * header keeps handle which is 4byte-aligned address so we
114 * have room for two bit at least.
116 #define OBJ_ALLOCATED_TAG 1
117 #define OBJ_TAG_BITS 1
118 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
119 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
121 #define FULLNESS_BITS 2
123 #define ISOLATED_BITS 3
124 #define MAGIC_VAL_BITS 8
126 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
127 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
128 #define ZS_MIN_ALLOC_SIZE \
129 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
130 /* each chunk includes extra space to keep handle */
131 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
134 * On systems with 4K page size, this gives 255 size classes! There is a
136 * - Large number of size classes is potentially wasteful as free page are
137 * spread across these classes
138 * - Small number of size classes causes large internal fragmentation
139 * - Probably its better to use specific size classes (empirically
140 * determined). NOTE: all those class sizes must be set as multiple of
141 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
143 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
146 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
147 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
148 ZS_SIZE_CLASS_DELTA) + 1)
150 enum fullness_group
{
168 struct zs_size_stat
{
169 unsigned long objs
[NR_ZS_STAT_TYPE
];
172 #ifdef CONFIG_ZSMALLOC_STAT
173 static struct dentry
*zs_stat_root
;
176 #ifdef CONFIG_COMPACTION
177 static struct vfsmount
*zsmalloc_mnt
;
181 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
183 * n = number of allocated objects
184 * N = total number of objects zspage can store
185 * f = fullness_threshold_frac
187 * Similarly, we assign zspage to:
188 * ZS_ALMOST_FULL when n > N / f
189 * ZS_EMPTY when n == 0
190 * ZS_FULL when n == N
192 * (see: fix_fullness_group())
194 static const int fullness_threshold_frac
= 4;
198 struct list_head fullness_list
[NR_ZS_FULLNESS
];
200 * Size of objects stored in this class. Must be multiple
205 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
206 int pages_per_zspage
;
209 struct zs_size_stat stats
;
212 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
213 static void SetPageHugeObject(struct page
*page
)
215 SetPageOwnerPriv1(page
);
218 static void ClearPageHugeObject(struct page
*page
)
220 ClearPageOwnerPriv1(page
);
223 static int PageHugeObject(struct page
*page
)
225 return PageOwnerPriv1(page
);
229 * Placed within free objects to form a singly linked list.
230 * For every zspage, zspage->freeobj gives head of this list.
232 * This must be power of 2 and less than or equal to ZS_ALIGN
238 * It's valid for non-allocated object
242 * Handle of allocated object.
244 unsigned long handle
;
251 struct size_class
*size_class
[ZS_SIZE_CLASSES
];
252 struct kmem_cache
*handle_cachep
;
253 struct kmem_cache
*zspage_cachep
;
255 atomic_long_t pages_allocated
;
257 struct zs_pool_stats stats
;
259 /* Compact classes */
260 struct shrinker shrinker
;
262 #ifdef CONFIG_ZSMALLOC_STAT
263 struct dentry
*stat_dentry
;
265 #ifdef CONFIG_COMPACTION
267 struct work_struct free_work
;
273 unsigned int fullness
:FULLNESS_BITS
;
274 unsigned int class:CLASS_BITS
+ 1;
275 unsigned int isolated
:ISOLATED_BITS
;
276 unsigned int magic
:MAGIC_VAL_BITS
;
279 unsigned int freeobj
;
280 struct page
*first_page
;
281 struct list_head list
; /* fullness list */
282 #ifdef CONFIG_COMPACTION
287 struct mapping_area
{
288 #ifdef CONFIG_PGTABLE_MAPPING
289 struct vm_struct
*vm
; /* vm area for mapping object that span pages */
291 char *vm_buf
; /* copy buffer for objects that span pages */
293 char *vm_addr
; /* address of kmap_atomic()'ed pages */
294 enum zs_mapmode vm_mm
; /* mapping mode */
297 #ifdef CONFIG_COMPACTION
298 static int zs_register_migration(struct zs_pool
*pool
);
299 static void zs_unregister_migration(struct zs_pool
*pool
);
300 static void migrate_lock_init(struct zspage
*zspage
);
301 static void migrate_read_lock(struct zspage
*zspage
);
302 static void migrate_read_unlock(struct zspage
*zspage
);
303 static void kick_deferred_free(struct zs_pool
*pool
);
304 static void init_deferred_free(struct zs_pool
*pool
);
305 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
);
307 static int zsmalloc_mount(void) { return 0; }
308 static void zsmalloc_unmount(void) {}
309 static int zs_register_migration(struct zs_pool
*pool
) { return 0; }
310 static void zs_unregister_migration(struct zs_pool
*pool
) {}
311 static void migrate_lock_init(struct zspage
*zspage
) {}
312 static void migrate_read_lock(struct zspage
*zspage
) {}
313 static void migrate_read_unlock(struct zspage
*zspage
) {}
314 static void kick_deferred_free(struct zs_pool
*pool
) {}
315 static void init_deferred_free(struct zs_pool
*pool
) {}
316 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
) {}
319 static int create_cache(struct zs_pool
*pool
)
321 pool
->handle_cachep
= kmem_cache_create("zs_handle", ZS_HANDLE_SIZE
,
323 if (!pool
->handle_cachep
)
326 pool
->zspage_cachep
= kmem_cache_create("zspage", sizeof(struct zspage
),
328 if (!pool
->zspage_cachep
) {
329 kmem_cache_destroy(pool
->handle_cachep
);
330 pool
->handle_cachep
= NULL
;
337 static void destroy_cache(struct zs_pool
*pool
)
339 kmem_cache_destroy(pool
->handle_cachep
);
340 kmem_cache_destroy(pool
->zspage_cachep
);
343 static unsigned long cache_alloc_handle(struct zs_pool
*pool
, gfp_t gfp
)
345 return (unsigned long)kmem_cache_alloc(pool
->handle_cachep
,
346 gfp
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
349 static void cache_free_handle(struct zs_pool
*pool
, unsigned long handle
)
351 kmem_cache_free(pool
->handle_cachep
, (void *)handle
);
354 static struct zspage
*cache_alloc_zspage(struct zs_pool
*pool
, gfp_t flags
)
356 return kmem_cache_alloc(pool
->zspage_cachep
,
357 flags
& ~(__GFP_HIGHMEM
|__GFP_MOVABLE
));
360 static void cache_free_zspage(struct zs_pool
*pool
, struct zspage
*zspage
)
362 kmem_cache_free(pool
->zspage_cachep
, zspage
);
365 static void record_obj(unsigned long handle
, unsigned long obj
)
368 * lsb of @obj represents handle lock while other bits
369 * represent object value the handle is pointing so
370 * updating shouldn't do store tearing.
372 WRITE_ONCE(*(unsigned long *)handle
, obj
);
379 static void *zs_zpool_create(const char *name
, gfp_t gfp
,
380 const struct zpool_ops
*zpool_ops
,
384 * Ignore global gfp flags: zs_malloc() may be invoked from
385 * different contexts and its caller must provide a valid
388 return zs_create_pool(name
);
391 static void zs_zpool_destroy(void *pool
)
393 zs_destroy_pool(pool
);
396 static int zs_zpool_malloc(void *pool
, size_t size
, gfp_t gfp
,
397 unsigned long *handle
)
399 *handle
= zs_malloc(pool
, size
, gfp
);
400 return *handle
? 0 : -1;
402 static void zs_zpool_free(void *pool
, unsigned long handle
)
404 zs_free(pool
, handle
);
407 static void *zs_zpool_map(void *pool
, unsigned long handle
,
408 enum zpool_mapmode mm
)
410 enum zs_mapmode zs_mm
;
419 case ZPOOL_MM_RW
: /* fallthru */
425 return zs_map_object(pool
, handle
, zs_mm
);
427 static void zs_zpool_unmap(void *pool
, unsigned long handle
)
429 zs_unmap_object(pool
, handle
);
432 static u64
zs_zpool_total_size(void *pool
)
434 return zs_get_total_pages(pool
) << PAGE_SHIFT
;
437 static struct zpool_driver zs_zpool_driver
= {
439 .owner
= THIS_MODULE
,
440 .create
= zs_zpool_create
,
441 .destroy
= zs_zpool_destroy
,
442 .malloc
= zs_zpool_malloc
,
443 .free
= zs_zpool_free
,
445 .unmap
= zs_zpool_unmap
,
446 .total_size
= zs_zpool_total_size
,
449 MODULE_ALIAS("zpool-zsmalloc");
450 #endif /* CONFIG_ZPOOL */
452 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
453 static DEFINE_PER_CPU(struct mapping_area
, zs_map_area
);
455 static bool is_zspage_isolated(struct zspage
*zspage
)
457 return zspage
->isolated
;
460 static __maybe_unused
int is_first_page(struct page
*page
)
462 return PagePrivate(page
);
465 /* Protected by class->lock */
466 static inline int get_zspage_inuse(struct zspage
*zspage
)
468 return zspage
->inuse
;
471 static inline void set_zspage_inuse(struct zspage
*zspage
, int val
)
476 static inline void mod_zspage_inuse(struct zspage
*zspage
, int val
)
478 zspage
->inuse
+= val
;
481 static inline struct page
*get_first_page(struct zspage
*zspage
)
483 struct page
*first_page
= zspage
->first_page
;
485 VM_BUG_ON_PAGE(!is_first_page(first_page
), first_page
);
489 static inline int get_first_obj_offset(struct page
*page
)
494 static inline void set_first_obj_offset(struct page
*page
, int offset
)
496 page
->units
= offset
;
499 static inline unsigned int get_freeobj(struct zspage
*zspage
)
501 return zspage
->freeobj
;
504 static inline void set_freeobj(struct zspage
*zspage
, unsigned int obj
)
506 zspage
->freeobj
= obj
;
509 static void get_zspage_mapping(struct zspage
*zspage
,
510 unsigned int *class_idx
,
511 enum fullness_group
*fullness
)
513 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
515 *fullness
= zspage
->fullness
;
516 *class_idx
= zspage
->class;
519 static void set_zspage_mapping(struct zspage
*zspage
,
520 unsigned int class_idx
,
521 enum fullness_group fullness
)
523 zspage
->class = class_idx
;
524 zspage
->fullness
= fullness
;
528 * zsmalloc divides the pool into various size classes where each
529 * class maintains a list of zspages where each zspage is divided
530 * into equal sized chunks. Each allocation falls into one of these
531 * classes depending on its size. This function returns index of the
532 * size class which has chunk size big enough to hold the give size.
534 static int get_size_class_index(int size
)
538 if (likely(size
> ZS_MIN_ALLOC_SIZE
))
539 idx
= DIV_ROUND_UP(size
- ZS_MIN_ALLOC_SIZE
,
540 ZS_SIZE_CLASS_DELTA
);
542 return min_t(int, ZS_SIZE_CLASSES
- 1, idx
);
545 /* type can be of enum type zs_stat_type or fullness_group */
546 static inline void zs_stat_inc(struct size_class
*class,
547 int type
, unsigned long cnt
)
549 class->stats
.objs
[type
] += cnt
;
552 /* type can be of enum type zs_stat_type or fullness_group */
553 static inline void zs_stat_dec(struct size_class
*class,
554 int type
, unsigned long cnt
)
556 class->stats
.objs
[type
] -= cnt
;
559 /* type can be of enum type zs_stat_type or fullness_group */
560 static inline unsigned long zs_stat_get(struct size_class
*class,
563 return class->stats
.objs
[type
];
566 #ifdef CONFIG_ZSMALLOC_STAT
568 static void __init
zs_stat_init(void)
570 if (!debugfs_initialized()) {
571 pr_warn("debugfs not available, stat dir not created\n");
575 zs_stat_root
= debugfs_create_dir("zsmalloc", NULL
);
577 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
580 static void __exit
zs_stat_exit(void)
582 debugfs_remove_recursive(zs_stat_root
);
585 static unsigned long zs_can_compact(struct size_class
*class);
587 static int zs_stats_size_show(struct seq_file
*s
, void *v
)
590 struct zs_pool
*pool
= s
->private;
591 struct size_class
*class;
593 unsigned long class_almost_full
, class_almost_empty
;
594 unsigned long obj_allocated
, obj_used
, pages_used
, freeable
;
595 unsigned long total_class_almost_full
= 0, total_class_almost_empty
= 0;
596 unsigned long total_objs
= 0, total_used_objs
= 0, total_pages
= 0;
597 unsigned long total_freeable
= 0;
599 seq_printf(s
, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
600 "class", "size", "almost_full", "almost_empty",
601 "obj_allocated", "obj_used", "pages_used",
602 "pages_per_zspage", "freeable");
604 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
605 class = pool
->size_class
[i
];
607 if (class->index
!= i
)
610 spin_lock(&class->lock
);
611 class_almost_full
= zs_stat_get(class, CLASS_ALMOST_FULL
);
612 class_almost_empty
= zs_stat_get(class, CLASS_ALMOST_EMPTY
);
613 obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
614 obj_used
= zs_stat_get(class, OBJ_USED
);
615 freeable
= zs_can_compact(class);
616 spin_unlock(&class->lock
);
618 objs_per_zspage
= class->objs_per_zspage
;
619 pages_used
= obj_allocated
/ objs_per_zspage
*
620 class->pages_per_zspage
;
622 seq_printf(s
, " %5u %5u %11lu %12lu %13lu"
623 " %10lu %10lu %16d %8lu\n",
624 i
, class->size
, class_almost_full
, class_almost_empty
,
625 obj_allocated
, obj_used
, pages_used
,
626 class->pages_per_zspage
, freeable
);
628 total_class_almost_full
+= class_almost_full
;
629 total_class_almost_empty
+= class_almost_empty
;
630 total_objs
+= obj_allocated
;
631 total_used_objs
+= obj_used
;
632 total_pages
+= pages_used
;
633 total_freeable
+= freeable
;
637 seq_printf(s
, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
638 "Total", "", total_class_almost_full
,
639 total_class_almost_empty
, total_objs
,
640 total_used_objs
, total_pages
, "", total_freeable
);
645 static int zs_stats_size_open(struct inode
*inode
, struct file
*file
)
647 return single_open(file
, zs_stats_size_show
, inode
->i_private
);
650 static const struct file_operations zs_stat_size_ops
= {
651 .open
= zs_stats_size_open
,
654 .release
= single_release
,
657 static void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
659 struct dentry
*entry
;
662 pr_warn("no root stat dir, not creating <%s> stat dir\n", name
);
666 entry
= debugfs_create_dir(name
, zs_stat_root
);
668 pr_warn("debugfs dir <%s> creation failed\n", name
);
671 pool
->stat_dentry
= entry
;
673 entry
= debugfs_create_file("classes", S_IFREG
| S_IRUGO
,
674 pool
->stat_dentry
, pool
, &zs_stat_size_ops
);
676 pr_warn("%s: debugfs file entry <%s> creation failed\n",
678 debugfs_remove_recursive(pool
->stat_dentry
);
679 pool
->stat_dentry
= NULL
;
683 static void zs_pool_stat_destroy(struct zs_pool
*pool
)
685 debugfs_remove_recursive(pool
->stat_dentry
);
688 #else /* CONFIG_ZSMALLOC_STAT */
689 static void __init
zs_stat_init(void)
693 static void __exit
zs_stat_exit(void)
697 static inline void zs_pool_stat_create(struct zs_pool
*pool
, const char *name
)
701 static inline void zs_pool_stat_destroy(struct zs_pool
*pool
)
708 * For each size class, zspages are divided into different groups
709 * depending on how "full" they are. This was done so that we could
710 * easily find empty or nearly empty zspages when we try to shrink
711 * the pool (not yet implemented). This function returns fullness
712 * status of the given page.
714 static enum fullness_group
get_fullness_group(struct size_class
*class,
715 struct zspage
*zspage
)
717 int inuse
, objs_per_zspage
;
718 enum fullness_group fg
;
720 inuse
= get_zspage_inuse(zspage
);
721 objs_per_zspage
= class->objs_per_zspage
;
725 else if (inuse
== objs_per_zspage
)
727 else if (inuse
<= 3 * objs_per_zspage
/ fullness_threshold_frac
)
728 fg
= ZS_ALMOST_EMPTY
;
736 * Each size class maintains various freelists and zspages are assigned
737 * to one of these freelists based on the number of live objects they
738 * have. This functions inserts the given zspage into the freelist
739 * identified by <class, fullness_group>.
741 static void insert_zspage(struct size_class
*class,
742 struct zspage
*zspage
,
743 enum fullness_group fullness
)
747 zs_stat_inc(class, fullness
, 1);
748 head
= list_first_entry_or_null(&class->fullness_list
[fullness
],
749 struct zspage
, list
);
751 * We want to see more ZS_FULL pages and less almost empty/full.
752 * Put pages with higher ->inuse first.
755 if (get_zspage_inuse(zspage
) < get_zspage_inuse(head
)) {
756 list_add(&zspage
->list
, &head
->list
);
760 list_add(&zspage
->list
, &class->fullness_list
[fullness
]);
764 * This function removes the given zspage from the freelist identified
765 * by <class, fullness_group>.
767 static void remove_zspage(struct size_class
*class,
768 struct zspage
*zspage
,
769 enum fullness_group fullness
)
771 VM_BUG_ON(list_empty(&class->fullness_list
[fullness
]));
772 VM_BUG_ON(is_zspage_isolated(zspage
));
774 list_del_init(&zspage
->list
);
775 zs_stat_dec(class, fullness
, 1);
779 * Each size class maintains zspages in different fullness groups depending
780 * on the number of live objects they contain. When allocating or freeing
781 * objects, the fullness status of the page can change, say, from ALMOST_FULL
782 * to ALMOST_EMPTY when freeing an object. This function checks if such
783 * a status change has occurred for the given page and accordingly moves the
784 * page from the freelist of the old fullness group to that of the new
787 static enum fullness_group
fix_fullness_group(struct size_class
*class,
788 struct zspage
*zspage
)
791 enum fullness_group currfg
, newfg
;
793 get_zspage_mapping(zspage
, &class_idx
, &currfg
);
794 newfg
= get_fullness_group(class, zspage
);
798 if (!is_zspage_isolated(zspage
)) {
799 remove_zspage(class, zspage
, currfg
);
800 insert_zspage(class, zspage
, newfg
);
803 set_zspage_mapping(zspage
, class_idx
, newfg
);
810 * We have to decide on how many pages to link together
811 * to form a zspage for each size class. This is important
812 * to reduce wastage due to unusable space left at end of
813 * each zspage which is given as:
814 * wastage = Zp % class_size
815 * usage = Zp - wastage
816 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
818 * For example, for size class of 3/8 * PAGE_SIZE, we should
819 * link together 3 PAGE_SIZE sized pages to form a zspage
820 * since then we can perfectly fit in 8 such objects.
822 static int get_pages_per_zspage(int class_size
)
824 int i
, max_usedpc
= 0;
825 /* zspage order which gives maximum used size per KB */
826 int max_usedpc_order
= 1;
828 for (i
= 1; i
<= ZS_MAX_PAGES_PER_ZSPAGE
; i
++) {
832 zspage_size
= i
* PAGE_SIZE
;
833 waste
= zspage_size
% class_size
;
834 usedpc
= (zspage_size
- waste
) * 100 / zspage_size
;
836 if (usedpc
> max_usedpc
) {
838 max_usedpc_order
= i
;
842 return max_usedpc_order
;
845 static struct zspage
*get_zspage(struct page
*page
)
847 struct zspage
*zspage
= (struct zspage
*)page
->private;
849 BUG_ON(zspage
->magic
!= ZSPAGE_MAGIC
);
853 static struct page
*get_next_page(struct page
*page
)
855 if (unlikely(PageHugeObject(page
)))
858 return page
->freelist
;
862 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
863 * @page: page object resides in zspage
864 * @obj_idx: object index
866 static void obj_to_location(unsigned long obj
, struct page
**page
,
867 unsigned int *obj_idx
)
869 obj
>>= OBJ_TAG_BITS
;
870 *page
= pfn_to_page(obj
>> OBJ_INDEX_BITS
);
871 *obj_idx
= (obj
& OBJ_INDEX_MASK
);
875 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
876 * @page: page object resides in zspage
877 * @obj_idx: object index
879 static unsigned long location_to_obj(struct page
*page
, unsigned int obj_idx
)
883 obj
= page_to_pfn(page
) << OBJ_INDEX_BITS
;
884 obj
|= obj_idx
& OBJ_INDEX_MASK
;
885 obj
<<= OBJ_TAG_BITS
;
890 static unsigned long handle_to_obj(unsigned long handle
)
892 return *(unsigned long *)handle
;
895 static unsigned long obj_to_head(struct page
*page
, void *obj
)
897 if (unlikely(PageHugeObject(page
))) {
898 VM_BUG_ON_PAGE(!is_first_page(page
), page
);
901 return *(unsigned long *)obj
;
904 static inline int testpin_tag(unsigned long handle
)
906 return bit_spin_is_locked(HANDLE_PIN_BIT
, (unsigned long *)handle
);
909 static inline int trypin_tag(unsigned long handle
)
911 return bit_spin_trylock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
914 static void pin_tag(unsigned long handle
)
916 bit_spin_lock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
919 static void unpin_tag(unsigned long handle
)
921 bit_spin_unlock(HANDLE_PIN_BIT
, (unsigned long *)handle
);
924 static void reset_page(struct page
*page
)
926 __ClearPageMovable(page
);
927 ClearPagePrivate(page
);
928 set_page_private(page
, 0);
929 page_mapcount_reset(page
);
930 ClearPageHugeObject(page
);
931 page
->freelist
= NULL
;
935 * To prevent zspage destroy during migration, zspage freeing should
936 * hold locks of all pages in the zspage.
938 void lock_zspage(struct zspage
*zspage
)
940 struct page
*page
= get_first_page(zspage
);
944 } while ((page
= get_next_page(page
)) != NULL
);
947 int trylock_zspage(struct zspage
*zspage
)
949 struct page
*cursor
, *fail
;
951 for (cursor
= get_first_page(zspage
); cursor
!= NULL
; cursor
=
952 get_next_page(cursor
)) {
953 if (!trylock_page(cursor
)) {
961 for (cursor
= get_first_page(zspage
); cursor
!= fail
; cursor
=
962 get_next_page(cursor
))
968 static void __free_zspage(struct zs_pool
*pool
, struct size_class
*class,
969 struct zspage
*zspage
)
971 struct page
*page
, *next
;
972 enum fullness_group fg
;
973 unsigned int class_idx
;
975 get_zspage_mapping(zspage
, &class_idx
, &fg
);
977 assert_spin_locked(&class->lock
);
979 VM_BUG_ON(get_zspage_inuse(zspage
));
980 VM_BUG_ON(fg
!= ZS_EMPTY
);
982 next
= page
= get_first_page(zspage
);
984 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
985 next
= get_next_page(page
);
988 dec_zone_page_state(page
, NR_ZSPAGES
);
991 } while (page
!= NULL
);
993 cache_free_zspage(pool
, zspage
);
995 zs_stat_dec(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
996 atomic_long_sub(class->pages_per_zspage
,
997 &pool
->pages_allocated
);
1000 static void free_zspage(struct zs_pool
*pool
, struct size_class
*class,
1001 struct zspage
*zspage
)
1003 VM_BUG_ON(get_zspage_inuse(zspage
));
1004 VM_BUG_ON(list_empty(&zspage
->list
));
1006 if (!trylock_zspage(zspage
)) {
1007 kick_deferred_free(pool
);
1011 remove_zspage(class, zspage
, ZS_EMPTY
);
1012 __free_zspage(pool
, class, zspage
);
1015 /* Initialize a newly allocated zspage */
1016 static void init_zspage(struct size_class
*class, struct zspage
*zspage
)
1018 unsigned int freeobj
= 1;
1019 unsigned long off
= 0;
1020 struct page
*page
= get_first_page(zspage
);
1023 struct page
*next_page
;
1024 struct link_free
*link
;
1027 set_first_obj_offset(page
, off
);
1029 vaddr
= kmap_atomic(page
);
1030 link
= (struct link_free
*)vaddr
+ off
/ sizeof(*link
);
1032 while ((off
+= class->size
) < PAGE_SIZE
) {
1033 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1034 link
+= class->size
/ sizeof(*link
);
1038 * We now come to the last (full or partial) object on this
1039 * page, which must point to the first object on the next
1042 next_page
= get_next_page(page
);
1044 link
->next
= freeobj
++ << OBJ_TAG_BITS
;
1047 * Reset OBJ_TAG_BITS bit to last link to tell
1048 * whether it's allocated object or not.
1050 link
->next
= -1UL << OBJ_TAG_BITS
;
1052 kunmap_atomic(vaddr
);
1057 set_freeobj(zspage
, 0);
1060 static void create_page_chain(struct size_class
*class, struct zspage
*zspage
,
1061 struct page
*pages
[])
1065 struct page
*prev_page
= NULL
;
1066 int nr_pages
= class->pages_per_zspage
;
1069 * Allocate individual pages and link them together as:
1070 * 1. all pages are linked together using page->freelist
1071 * 2. each sub-page point to zspage using page->private
1073 * we set PG_private to identify the first page (i.e. no other sub-page
1074 * has this flag set).
1076 for (i
= 0; i
< nr_pages
; i
++) {
1078 set_page_private(page
, (unsigned long)zspage
);
1079 page
->freelist
= NULL
;
1081 zspage
->first_page
= page
;
1082 SetPagePrivate(page
);
1083 if (unlikely(class->objs_per_zspage
== 1 &&
1084 class->pages_per_zspage
== 1))
1085 SetPageHugeObject(page
);
1087 prev_page
->freelist
= page
;
1094 * Allocate a zspage for the given size class
1096 static struct zspage
*alloc_zspage(struct zs_pool
*pool
,
1097 struct size_class
*class,
1101 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
];
1102 struct zspage
*zspage
= cache_alloc_zspage(pool
, gfp
);
1107 memset(zspage
, 0, sizeof(struct zspage
));
1108 zspage
->magic
= ZSPAGE_MAGIC
;
1109 migrate_lock_init(zspage
);
1111 for (i
= 0; i
< class->pages_per_zspage
; i
++) {
1114 page
= alloc_page(gfp
);
1117 dec_zone_page_state(pages
[i
], NR_ZSPAGES
);
1118 __free_page(pages
[i
]);
1120 cache_free_zspage(pool
, zspage
);
1124 inc_zone_page_state(page
, NR_ZSPAGES
);
1128 create_page_chain(class, zspage
, pages
);
1129 init_zspage(class, zspage
);
1134 static struct zspage
*find_get_zspage(struct size_class
*class)
1137 struct zspage
*zspage
;
1139 for (i
= ZS_ALMOST_FULL
; i
>= ZS_EMPTY
; i
--) {
1140 zspage
= list_first_entry_or_null(&class->fullness_list
[i
],
1141 struct zspage
, list
);
1149 #ifdef CONFIG_PGTABLE_MAPPING
1150 static inline int __zs_cpu_up(struct mapping_area
*area
)
1153 * Make sure we don't leak memory if a cpu UP notification
1154 * and zs_init() race and both call zs_cpu_up() on the same cpu
1158 area
->vm
= alloc_vm_area(PAGE_SIZE
* 2, NULL
);
1164 static inline void __zs_cpu_down(struct mapping_area
*area
)
1167 free_vm_area(area
->vm
);
1171 static inline void *__zs_map_object(struct mapping_area
*area
,
1172 struct page
*pages
[2], int off
, int size
)
1174 BUG_ON(map_vm_area(area
->vm
, PAGE_KERNEL
, pages
));
1175 area
->vm_addr
= area
->vm
->addr
;
1176 return area
->vm_addr
+ off
;
1179 static inline void __zs_unmap_object(struct mapping_area
*area
,
1180 struct page
*pages
[2], int off
, int size
)
1182 unsigned long addr
= (unsigned long)area
->vm_addr
;
1184 unmap_kernel_range(addr
, PAGE_SIZE
* 2);
1187 #else /* CONFIG_PGTABLE_MAPPING */
1189 static inline int __zs_cpu_up(struct mapping_area
*area
)
1192 * Make sure we don't leak memory if a cpu UP notification
1193 * and zs_init() race and both call zs_cpu_up() on the same cpu
1197 area
->vm_buf
= kmalloc(ZS_MAX_ALLOC_SIZE
, GFP_KERNEL
);
1203 static inline void __zs_cpu_down(struct mapping_area
*area
)
1205 kfree(area
->vm_buf
);
1206 area
->vm_buf
= NULL
;
1209 static void *__zs_map_object(struct mapping_area
*area
,
1210 struct page
*pages
[2], int off
, int size
)
1214 char *buf
= area
->vm_buf
;
1216 /* disable page faults to match kmap_atomic() return conditions */
1217 pagefault_disable();
1219 /* no read fastpath */
1220 if (area
->vm_mm
== ZS_MM_WO
)
1223 sizes
[0] = PAGE_SIZE
- off
;
1224 sizes
[1] = size
- sizes
[0];
1226 /* copy object to per-cpu buffer */
1227 addr
= kmap_atomic(pages
[0]);
1228 memcpy(buf
, addr
+ off
, sizes
[0]);
1229 kunmap_atomic(addr
);
1230 addr
= kmap_atomic(pages
[1]);
1231 memcpy(buf
+ sizes
[0], addr
, sizes
[1]);
1232 kunmap_atomic(addr
);
1234 return area
->vm_buf
;
1237 static void __zs_unmap_object(struct mapping_area
*area
,
1238 struct page
*pages
[2], int off
, int size
)
1244 /* no write fastpath */
1245 if (area
->vm_mm
== ZS_MM_RO
)
1249 buf
= buf
+ ZS_HANDLE_SIZE
;
1250 size
-= ZS_HANDLE_SIZE
;
1251 off
+= ZS_HANDLE_SIZE
;
1253 sizes
[0] = PAGE_SIZE
- off
;
1254 sizes
[1] = size
- sizes
[0];
1256 /* copy per-cpu buffer to object */
1257 addr
= kmap_atomic(pages
[0]);
1258 memcpy(addr
+ off
, buf
, sizes
[0]);
1259 kunmap_atomic(addr
);
1260 addr
= kmap_atomic(pages
[1]);
1261 memcpy(addr
, buf
+ sizes
[0], sizes
[1]);
1262 kunmap_atomic(addr
);
1265 /* enable page faults to match kunmap_atomic() return conditions */
1269 #endif /* CONFIG_PGTABLE_MAPPING */
1271 static int zs_cpu_prepare(unsigned int cpu
)
1273 struct mapping_area
*area
;
1275 area
= &per_cpu(zs_map_area
, cpu
);
1276 return __zs_cpu_up(area
);
1279 static int zs_cpu_dead(unsigned int cpu
)
1281 struct mapping_area
*area
;
1283 area
= &per_cpu(zs_map_area
, cpu
);
1284 __zs_cpu_down(area
);
1288 static bool can_merge(struct size_class
*prev
, int pages_per_zspage
,
1289 int objs_per_zspage
)
1291 if (prev
->pages_per_zspage
== pages_per_zspage
&&
1292 prev
->objs_per_zspage
== objs_per_zspage
)
1298 static bool zspage_full(struct size_class
*class, struct zspage
*zspage
)
1300 return get_zspage_inuse(zspage
) == class->objs_per_zspage
;
1303 unsigned long zs_get_total_pages(struct zs_pool
*pool
)
1305 return atomic_long_read(&pool
->pages_allocated
);
1307 EXPORT_SYMBOL_GPL(zs_get_total_pages
);
1310 * zs_map_object - get address of allocated object from handle.
1311 * @pool: pool from which the object was allocated
1312 * @handle: handle returned from zs_malloc
1314 * Before using an object allocated from zs_malloc, it must be mapped using
1315 * this function. When done with the object, it must be unmapped using
1318 * Only one object can be mapped per cpu at a time. There is no protection
1319 * against nested mappings.
1321 * This function returns with preemption and page faults disabled.
1323 void *zs_map_object(struct zs_pool
*pool
, unsigned long handle
,
1326 struct zspage
*zspage
;
1328 unsigned long obj
, off
;
1329 unsigned int obj_idx
;
1331 unsigned int class_idx
;
1332 enum fullness_group fg
;
1333 struct size_class
*class;
1334 struct mapping_area
*area
;
1335 struct page
*pages
[2];
1339 * Because we use per-cpu mapping areas shared among the
1340 * pools/users, we can't allow mapping in interrupt context
1341 * because it can corrupt another users mappings.
1343 BUG_ON(in_interrupt());
1345 /* From now on, migration cannot move the object */
1348 obj
= handle_to_obj(handle
);
1349 obj_to_location(obj
, &page
, &obj_idx
);
1350 zspage
= get_zspage(page
);
1352 /* migration cannot move any subpage in this zspage */
1353 migrate_read_lock(zspage
);
1355 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1356 class = pool
->size_class
[class_idx
];
1357 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1359 area
= &get_cpu_var(zs_map_area
);
1361 if (off
+ class->size
<= PAGE_SIZE
) {
1362 /* this object is contained entirely within a page */
1363 area
->vm_addr
= kmap_atomic(page
);
1364 ret
= area
->vm_addr
+ off
;
1368 /* this object spans two pages */
1370 pages
[1] = get_next_page(page
);
1373 ret
= __zs_map_object(area
, pages
, off
, class->size
);
1375 if (likely(!PageHugeObject(page
)))
1376 ret
+= ZS_HANDLE_SIZE
;
1380 EXPORT_SYMBOL_GPL(zs_map_object
);
1382 void zs_unmap_object(struct zs_pool
*pool
, unsigned long handle
)
1384 struct zspage
*zspage
;
1386 unsigned long obj
, off
;
1387 unsigned int obj_idx
;
1389 unsigned int class_idx
;
1390 enum fullness_group fg
;
1391 struct size_class
*class;
1392 struct mapping_area
*area
;
1394 obj
= handle_to_obj(handle
);
1395 obj_to_location(obj
, &page
, &obj_idx
);
1396 zspage
= get_zspage(page
);
1397 get_zspage_mapping(zspage
, &class_idx
, &fg
);
1398 class = pool
->size_class
[class_idx
];
1399 off
= (class->size
* obj_idx
) & ~PAGE_MASK
;
1401 area
= this_cpu_ptr(&zs_map_area
);
1402 if (off
+ class->size
<= PAGE_SIZE
)
1403 kunmap_atomic(area
->vm_addr
);
1405 struct page
*pages
[2];
1408 pages
[1] = get_next_page(page
);
1411 __zs_unmap_object(area
, pages
, off
, class->size
);
1413 put_cpu_var(zs_map_area
);
1415 migrate_read_unlock(zspage
);
1418 EXPORT_SYMBOL_GPL(zs_unmap_object
);
1420 static unsigned long obj_malloc(struct size_class
*class,
1421 struct zspage
*zspage
, unsigned long handle
)
1423 int i
, nr_page
, offset
;
1425 struct link_free
*link
;
1427 struct page
*m_page
;
1428 unsigned long m_offset
;
1431 handle
|= OBJ_ALLOCATED_TAG
;
1432 obj
= get_freeobj(zspage
);
1434 offset
= obj
* class->size
;
1435 nr_page
= offset
>> PAGE_SHIFT
;
1436 m_offset
= offset
& ~PAGE_MASK
;
1437 m_page
= get_first_page(zspage
);
1439 for (i
= 0; i
< nr_page
; i
++)
1440 m_page
= get_next_page(m_page
);
1442 vaddr
= kmap_atomic(m_page
);
1443 link
= (struct link_free
*)vaddr
+ m_offset
/ sizeof(*link
);
1444 set_freeobj(zspage
, link
->next
>> OBJ_TAG_BITS
);
1445 if (likely(!PageHugeObject(m_page
)))
1446 /* record handle in the header of allocated chunk */
1447 link
->handle
= handle
;
1449 /* record handle to page->index */
1450 zspage
->first_page
->index
= handle
;
1452 kunmap_atomic(vaddr
);
1453 mod_zspage_inuse(zspage
, 1);
1454 zs_stat_inc(class, OBJ_USED
, 1);
1456 obj
= location_to_obj(m_page
, obj
);
1463 * zs_malloc - Allocate block of given size from pool.
1464 * @pool: pool to allocate from
1465 * @size: size of block to allocate
1466 * @gfp: gfp flags when allocating object
1468 * On success, handle to the allocated object is returned,
1470 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1472 unsigned long zs_malloc(struct zs_pool
*pool
, size_t size
, gfp_t gfp
)
1474 unsigned long handle
, obj
;
1475 struct size_class
*class;
1476 enum fullness_group newfg
;
1477 struct zspage
*zspage
;
1479 if (unlikely(!size
|| size
> ZS_MAX_ALLOC_SIZE
))
1482 handle
= cache_alloc_handle(pool
, gfp
);
1486 /* extra space in chunk to keep the handle */
1487 size
+= ZS_HANDLE_SIZE
;
1488 class = pool
->size_class
[get_size_class_index(size
)];
1490 spin_lock(&class->lock
);
1491 zspage
= find_get_zspage(class);
1492 if (likely(zspage
)) {
1493 obj
= obj_malloc(class, zspage
, handle
);
1494 /* Now move the zspage to another fullness group, if required */
1495 fix_fullness_group(class, zspage
);
1496 record_obj(handle
, obj
);
1497 spin_unlock(&class->lock
);
1502 spin_unlock(&class->lock
);
1504 zspage
= alloc_zspage(pool
, class, gfp
);
1506 cache_free_handle(pool
, handle
);
1510 spin_lock(&class->lock
);
1511 obj
= obj_malloc(class, zspage
, handle
);
1512 newfg
= get_fullness_group(class, zspage
);
1513 insert_zspage(class, zspage
, newfg
);
1514 set_zspage_mapping(zspage
, class->index
, newfg
);
1515 record_obj(handle
, obj
);
1516 atomic_long_add(class->pages_per_zspage
,
1517 &pool
->pages_allocated
);
1518 zs_stat_inc(class, OBJ_ALLOCATED
, class->objs_per_zspage
);
1520 /* We completely set up zspage so mark them as movable */
1521 SetZsPageMovable(pool
, zspage
);
1522 spin_unlock(&class->lock
);
1526 EXPORT_SYMBOL_GPL(zs_malloc
);
1528 static void obj_free(struct size_class
*class, unsigned long obj
)
1530 struct link_free
*link
;
1531 struct zspage
*zspage
;
1532 struct page
*f_page
;
1533 unsigned long f_offset
;
1534 unsigned int f_objidx
;
1537 obj
&= ~OBJ_ALLOCATED_TAG
;
1538 obj_to_location(obj
, &f_page
, &f_objidx
);
1539 f_offset
= (class->size
* f_objidx
) & ~PAGE_MASK
;
1540 zspage
= get_zspage(f_page
);
1542 vaddr
= kmap_atomic(f_page
);
1544 /* Insert this object in containing zspage's freelist */
1545 link
= (struct link_free
*)(vaddr
+ f_offset
);
1546 link
->next
= get_freeobj(zspage
) << OBJ_TAG_BITS
;
1547 kunmap_atomic(vaddr
);
1548 set_freeobj(zspage
, f_objidx
);
1549 mod_zspage_inuse(zspage
, -1);
1550 zs_stat_dec(class, OBJ_USED
, 1);
1553 void zs_free(struct zs_pool
*pool
, unsigned long handle
)
1555 struct zspage
*zspage
;
1556 struct page
*f_page
;
1558 unsigned int f_objidx
;
1560 struct size_class
*class;
1561 enum fullness_group fullness
;
1564 if (unlikely(!handle
))
1568 obj
= handle_to_obj(handle
);
1569 obj_to_location(obj
, &f_page
, &f_objidx
);
1570 zspage
= get_zspage(f_page
);
1572 migrate_read_lock(zspage
);
1574 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1575 class = pool
->size_class
[class_idx
];
1577 spin_lock(&class->lock
);
1578 obj_free(class, obj
);
1579 fullness
= fix_fullness_group(class, zspage
);
1580 if (fullness
!= ZS_EMPTY
) {
1581 migrate_read_unlock(zspage
);
1585 isolated
= is_zspage_isolated(zspage
);
1586 migrate_read_unlock(zspage
);
1587 /* If zspage is isolated, zs_page_putback will free the zspage */
1588 if (likely(!isolated
))
1589 free_zspage(pool
, class, zspage
);
1592 spin_unlock(&class->lock
);
1594 cache_free_handle(pool
, handle
);
1596 EXPORT_SYMBOL_GPL(zs_free
);
1598 static void zs_object_copy(struct size_class
*class, unsigned long dst
,
1601 struct page
*s_page
, *d_page
;
1602 unsigned int s_objidx
, d_objidx
;
1603 unsigned long s_off
, d_off
;
1604 void *s_addr
, *d_addr
;
1605 int s_size
, d_size
, size
;
1608 s_size
= d_size
= class->size
;
1610 obj_to_location(src
, &s_page
, &s_objidx
);
1611 obj_to_location(dst
, &d_page
, &d_objidx
);
1613 s_off
= (class->size
* s_objidx
) & ~PAGE_MASK
;
1614 d_off
= (class->size
* d_objidx
) & ~PAGE_MASK
;
1616 if (s_off
+ class->size
> PAGE_SIZE
)
1617 s_size
= PAGE_SIZE
- s_off
;
1619 if (d_off
+ class->size
> PAGE_SIZE
)
1620 d_size
= PAGE_SIZE
- d_off
;
1622 s_addr
= kmap_atomic(s_page
);
1623 d_addr
= kmap_atomic(d_page
);
1626 size
= min(s_size
, d_size
);
1627 memcpy(d_addr
+ d_off
, s_addr
+ s_off
, size
);
1630 if (written
== class->size
)
1638 if (s_off
>= PAGE_SIZE
) {
1639 kunmap_atomic(d_addr
);
1640 kunmap_atomic(s_addr
);
1641 s_page
= get_next_page(s_page
);
1642 s_addr
= kmap_atomic(s_page
);
1643 d_addr
= kmap_atomic(d_page
);
1644 s_size
= class->size
- written
;
1648 if (d_off
>= PAGE_SIZE
) {
1649 kunmap_atomic(d_addr
);
1650 d_page
= get_next_page(d_page
);
1651 d_addr
= kmap_atomic(d_page
);
1652 d_size
= class->size
- written
;
1657 kunmap_atomic(d_addr
);
1658 kunmap_atomic(s_addr
);
1662 * Find alloced object in zspage from index object and
1665 static unsigned long find_alloced_obj(struct size_class
*class,
1666 struct page
*page
, int *obj_idx
)
1670 int index
= *obj_idx
;
1671 unsigned long handle
= 0;
1672 void *addr
= kmap_atomic(page
);
1674 offset
= get_first_obj_offset(page
);
1675 offset
+= class->size
* index
;
1677 while (offset
< PAGE_SIZE
) {
1678 head
= obj_to_head(page
, addr
+ offset
);
1679 if (head
& OBJ_ALLOCATED_TAG
) {
1680 handle
= head
& ~OBJ_ALLOCATED_TAG
;
1681 if (trypin_tag(handle
))
1686 offset
+= class->size
;
1690 kunmap_atomic(addr
);
1697 struct zs_compact_control
{
1698 /* Source spage for migration which could be a subpage of zspage */
1699 struct page
*s_page
;
1700 /* Destination page for migration which should be a first page
1702 struct page
*d_page
;
1703 /* Starting object index within @s_page which used for live object
1704 * in the subpage. */
1708 static int migrate_zspage(struct zs_pool
*pool
, struct size_class
*class,
1709 struct zs_compact_control
*cc
)
1711 unsigned long used_obj
, free_obj
;
1712 unsigned long handle
;
1713 struct page
*s_page
= cc
->s_page
;
1714 struct page
*d_page
= cc
->d_page
;
1715 int obj_idx
= cc
->obj_idx
;
1719 handle
= find_alloced_obj(class, s_page
, &obj_idx
);
1721 s_page
= get_next_page(s_page
);
1728 /* Stop if there is no more space */
1729 if (zspage_full(class, get_zspage(d_page
))) {
1735 used_obj
= handle_to_obj(handle
);
1736 free_obj
= obj_malloc(class, get_zspage(d_page
), handle
);
1737 zs_object_copy(class, free_obj
, used_obj
);
1740 * record_obj updates handle's value to free_obj and it will
1741 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1742 * breaks synchronization using pin_tag(e,g, zs_free) so
1743 * let's keep the lock bit.
1745 free_obj
|= BIT(HANDLE_PIN_BIT
);
1746 record_obj(handle
, free_obj
);
1748 obj_free(class, used_obj
);
1751 /* Remember last position in this iteration */
1752 cc
->s_page
= s_page
;
1753 cc
->obj_idx
= obj_idx
;
1758 static struct zspage
*isolate_zspage(struct size_class
*class, bool source
)
1761 struct zspage
*zspage
;
1762 enum fullness_group fg
[2] = {ZS_ALMOST_EMPTY
, ZS_ALMOST_FULL
};
1765 fg
[0] = ZS_ALMOST_FULL
;
1766 fg
[1] = ZS_ALMOST_EMPTY
;
1769 for (i
= 0; i
< 2; i
++) {
1770 zspage
= list_first_entry_or_null(&class->fullness_list
[fg
[i
]],
1771 struct zspage
, list
);
1773 VM_BUG_ON(is_zspage_isolated(zspage
));
1774 remove_zspage(class, zspage
, fg
[i
]);
1783 * putback_zspage - add @zspage into right class's fullness list
1784 * @class: destination class
1785 * @zspage: target page
1787 * Return @zspage's fullness_group
1789 static enum fullness_group
putback_zspage(struct size_class
*class,
1790 struct zspage
*zspage
)
1792 enum fullness_group fullness
;
1794 VM_BUG_ON(is_zspage_isolated(zspage
));
1796 fullness
= get_fullness_group(class, zspage
);
1797 insert_zspage(class, zspage
, fullness
);
1798 set_zspage_mapping(zspage
, class->index
, fullness
);
1803 #ifdef CONFIG_COMPACTION
1804 static struct dentry
*zs_mount(struct file_system_type
*fs_type
,
1805 int flags
, const char *dev_name
, void *data
)
1807 static const struct dentry_operations ops
= {
1808 .d_dname
= simple_dname
,
1811 return mount_pseudo(fs_type
, "zsmalloc:", NULL
, &ops
, ZSMALLOC_MAGIC
);
1814 static struct file_system_type zsmalloc_fs
= {
1817 .kill_sb
= kill_anon_super
,
1820 static int zsmalloc_mount(void)
1824 zsmalloc_mnt
= kern_mount(&zsmalloc_fs
);
1825 if (IS_ERR(zsmalloc_mnt
))
1826 ret
= PTR_ERR(zsmalloc_mnt
);
1831 static void zsmalloc_unmount(void)
1833 kern_unmount(zsmalloc_mnt
);
1836 static void migrate_lock_init(struct zspage
*zspage
)
1838 rwlock_init(&zspage
->lock
);
1841 static void migrate_read_lock(struct zspage
*zspage
)
1843 read_lock(&zspage
->lock
);
1846 static void migrate_read_unlock(struct zspage
*zspage
)
1848 read_unlock(&zspage
->lock
);
1851 static void migrate_write_lock(struct zspage
*zspage
)
1853 write_lock(&zspage
->lock
);
1856 static void migrate_write_unlock(struct zspage
*zspage
)
1858 write_unlock(&zspage
->lock
);
1861 /* Number of isolated subpage for *page migration* in this zspage */
1862 static void inc_zspage_isolation(struct zspage
*zspage
)
1867 static void dec_zspage_isolation(struct zspage
*zspage
)
1872 static void replace_sub_page(struct size_class
*class, struct zspage
*zspage
,
1873 struct page
*newpage
, struct page
*oldpage
)
1876 struct page
*pages
[ZS_MAX_PAGES_PER_ZSPAGE
] = {NULL
, };
1879 page
= get_first_page(zspage
);
1881 if (page
== oldpage
)
1882 pages
[idx
] = newpage
;
1886 } while ((page
= get_next_page(page
)) != NULL
);
1888 create_page_chain(class, zspage
, pages
);
1889 set_first_obj_offset(newpage
, get_first_obj_offset(oldpage
));
1890 if (unlikely(PageHugeObject(oldpage
)))
1891 newpage
->index
= oldpage
->index
;
1892 __SetPageMovable(newpage
, page_mapping(oldpage
));
1895 bool zs_page_isolate(struct page
*page
, isolate_mode_t mode
)
1897 struct zs_pool
*pool
;
1898 struct size_class
*class;
1900 enum fullness_group fullness
;
1901 struct zspage
*zspage
;
1902 struct address_space
*mapping
;
1905 * Page is locked so zspage couldn't be destroyed. For detail, look at
1906 * lock_zspage in free_zspage.
1908 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1909 VM_BUG_ON_PAGE(PageIsolated(page
), page
);
1911 zspage
= get_zspage(page
);
1914 * Without class lock, fullness could be stale while class_idx is okay
1915 * because class_idx is constant unless page is freed so we should get
1916 * fullness again under class lock.
1918 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1919 mapping
= page_mapping(page
);
1920 pool
= mapping
->private_data
;
1921 class = pool
->size_class
[class_idx
];
1923 spin_lock(&class->lock
);
1924 if (get_zspage_inuse(zspage
) == 0) {
1925 spin_unlock(&class->lock
);
1929 /* zspage is isolated for object migration */
1930 if (list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1931 spin_unlock(&class->lock
);
1936 * If this is first time isolation for the zspage, isolate zspage from
1937 * size_class to prevent further object allocation from the zspage.
1939 if (!list_empty(&zspage
->list
) && !is_zspage_isolated(zspage
)) {
1940 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1941 remove_zspage(class, zspage
, fullness
);
1944 inc_zspage_isolation(zspage
);
1945 spin_unlock(&class->lock
);
1950 int zs_page_migrate(struct address_space
*mapping
, struct page
*newpage
,
1951 struct page
*page
, enum migrate_mode mode
)
1953 struct zs_pool
*pool
;
1954 struct size_class
*class;
1956 enum fullness_group fullness
;
1957 struct zspage
*zspage
;
1959 void *s_addr
, *d_addr
, *addr
;
1961 unsigned long handle
, head
;
1962 unsigned long old_obj
, new_obj
;
1963 unsigned int obj_idx
;
1967 * We cannot support the _NO_COPY case here, because copy needs to
1968 * happen under the zs lock, which does not work with
1969 * MIGRATE_SYNC_NO_COPY workflow.
1971 if (mode
== MIGRATE_SYNC_NO_COPY
)
1974 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
1975 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
1977 zspage
= get_zspage(page
);
1979 /* Concurrent compactor cannot migrate any subpage in zspage */
1980 migrate_write_lock(zspage
);
1981 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
1982 pool
= mapping
->private_data
;
1983 class = pool
->size_class
[class_idx
];
1984 offset
= get_first_obj_offset(page
);
1986 spin_lock(&class->lock
);
1987 if (!get_zspage_inuse(zspage
)) {
1989 * Set "offset" to end of the page so that every loops
1990 * skips unnecessary object scanning.
1996 s_addr
= kmap_atomic(page
);
1997 while (pos
< PAGE_SIZE
) {
1998 head
= obj_to_head(page
, s_addr
+ pos
);
1999 if (head
& OBJ_ALLOCATED_TAG
) {
2000 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2001 if (!trypin_tag(handle
))
2008 * Here, any user cannot access all objects in the zspage so let's move.
2010 d_addr
= kmap_atomic(newpage
);
2011 memcpy(d_addr
, s_addr
, PAGE_SIZE
);
2012 kunmap_atomic(d_addr
);
2014 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2015 addr
+= class->size
) {
2016 head
= obj_to_head(page
, addr
);
2017 if (head
& OBJ_ALLOCATED_TAG
) {
2018 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2019 if (!testpin_tag(handle
))
2022 old_obj
= handle_to_obj(handle
);
2023 obj_to_location(old_obj
, &dummy
, &obj_idx
);
2024 new_obj
= (unsigned long)location_to_obj(newpage
,
2026 new_obj
|= BIT(HANDLE_PIN_BIT
);
2027 record_obj(handle
, new_obj
);
2031 replace_sub_page(class, zspage
, newpage
, page
);
2034 dec_zspage_isolation(zspage
);
2037 * Page migration is done so let's putback isolated zspage to
2038 * the list if @page is final isolated subpage in the zspage.
2040 if (!is_zspage_isolated(zspage
))
2041 putback_zspage(class, zspage
);
2047 ret
= MIGRATEPAGE_SUCCESS
;
2049 for (addr
= s_addr
+ offset
; addr
< s_addr
+ pos
;
2050 addr
+= class->size
) {
2051 head
= obj_to_head(page
, addr
);
2052 if (head
& OBJ_ALLOCATED_TAG
) {
2053 handle
= head
& ~OBJ_ALLOCATED_TAG
;
2054 if (!testpin_tag(handle
))
2059 kunmap_atomic(s_addr
);
2060 spin_unlock(&class->lock
);
2061 migrate_write_unlock(zspage
);
2066 void zs_page_putback(struct page
*page
)
2068 struct zs_pool
*pool
;
2069 struct size_class
*class;
2071 enum fullness_group fg
;
2072 struct address_space
*mapping
;
2073 struct zspage
*zspage
;
2075 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
2076 VM_BUG_ON_PAGE(!PageIsolated(page
), page
);
2078 zspage
= get_zspage(page
);
2079 get_zspage_mapping(zspage
, &class_idx
, &fg
);
2080 mapping
= page_mapping(page
);
2081 pool
= mapping
->private_data
;
2082 class = pool
->size_class
[class_idx
];
2084 spin_lock(&class->lock
);
2085 dec_zspage_isolation(zspage
);
2086 if (!is_zspage_isolated(zspage
)) {
2087 fg
= putback_zspage(class, zspage
);
2089 * Due to page_lock, we cannot free zspage immediately
2093 schedule_work(&pool
->free_work
);
2095 spin_unlock(&class->lock
);
2098 const struct address_space_operations zsmalloc_aops
= {
2099 .isolate_page
= zs_page_isolate
,
2100 .migratepage
= zs_page_migrate
,
2101 .putback_page
= zs_page_putback
,
2104 static int zs_register_migration(struct zs_pool
*pool
)
2106 pool
->inode
= alloc_anon_inode(zsmalloc_mnt
->mnt_sb
);
2107 if (IS_ERR(pool
->inode
)) {
2112 pool
->inode
->i_mapping
->private_data
= pool
;
2113 pool
->inode
->i_mapping
->a_ops
= &zsmalloc_aops
;
2117 static void zs_unregister_migration(struct zs_pool
*pool
)
2119 flush_work(&pool
->free_work
);
2124 * Caller should hold page_lock of all pages in the zspage
2125 * In here, we cannot use zspage meta data.
2127 static void async_free_zspage(struct work_struct
*work
)
2130 struct size_class
*class;
2131 unsigned int class_idx
;
2132 enum fullness_group fullness
;
2133 struct zspage
*zspage
, *tmp
;
2134 LIST_HEAD(free_pages
);
2135 struct zs_pool
*pool
= container_of(work
, struct zs_pool
,
2138 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2139 class = pool
->size_class
[i
];
2140 if (class->index
!= i
)
2143 spin_lock(&class->lock
);
2144 list_splice_init(&class->fullness_list
[ZS_EMPTY
], &free_pages
);
2145 spin_unlock(&class->lock
);
2149 list_for_each_entry_safe(zspage
, tmp
, &free_pages
, list
) {
2150 list_del(&zspage
->list
);
2151 lock_zspage(zspage
);
2153 get_zspage_mapping(zspage
, &class_idx
, &fullness
);
2154 VM_BUG_ON(fullness
!= ZS_EMPTY
);
2155 class = pool
->size_class
[class_idx
];
2156 spin_lock(&class->lock
);
2157 __free_zspage(pool
, pool
->size_class
[class_idx
], zspage
);
2158 spin_unlock(&class->lock
);
2162 static void kick_deferred_free(struct zs_pool
*pool
)
2164 schedule_work(&pool
->free_work
);
2167 static void init_deferred_free(struct zs_pool
*pool
)
2169 INIT_WORK(&pool
->free_work
, async_free_zspage
);
2172 static void SetZsPageMovable(struct zs_pool
*pool
, struct zspage
*zspage
)
2174 struct page
*page
= get_first_page(zspage
);
2177 WARN_ON(!trylock_page(page
));
2178 __SetPageMovable(page
, pool
->inode
->i_mapping
);
2180 } while ((page
= get_next_page(page
)) != NULL
);
2186 * Based on the number of unused allocated objects calculate
2187 * and return the number of pages that we can free.
2189 static unsigned long zs_can_compact(struct size_class
*class)
2191 unsigned long obj_wasted
;
2192 unsigned long obj_allocated
= zs_stat_get(class, OBJ_ALLOCATED
);
2193 unsigned long obj_used
= zs_stat_get(class, OBJ_USED
);
2195 if (obj_allocated
<= obj_used
)
2198 obj_wasted
= obj_allocated
- obj_used
;
2199 obj_wasted
/= class->objs_per_zspage
;
2201 return obj_wasted
* class->pages_per_zspage
;
2204 static void __zs_compact(struct zs_pool
*pool
, struct size_class
*class)
2206 struct zs_compact_control cc
;
2207 struct zspage
*src_zspage
;
2208 struct zspage
*dst_zspage
= NULL
;
2210 spin_lock(&class->lock
);
2211 while ((src_zspage
= isolate_zspage(class, true))) {
2213 if (!zs_can_compact(class))
2217 cc
.s_page
= get_first_page(src_zspage
);
2219 while ((dst_zspage
= isolate_zspage(class, false))) {
2220 cc
.d_page
= get_first_page(dst_zspage
);
2222 * If there is no more space in dst_page, resched
2223 * and see if anyone had allocated another zspage.
2225 if (!migrate_zspage(pool
, class, &cc
))
2228 putback_zspage(class, dst_zspage
);
2231 /* Stop if we couldn't find slot */
2232 if (dst_zspage
== NULL
)
2235 putback_zspage(class, dst_zspage
);
2236 if (putback_zspage(class, src_zspage
) == ZS_EMPTY
) {
2237 free_zspage(pool
, class, src_zspage
);
2238 pool
->stats
.pages_compacted
+= class->pages_per_zspage
;
2240 spin_unlock(&class->lock
);
2242 spin_lock(&class->lock
);
2246 putback_zspage(class, src_zspage
);
2248 spin_unlock(&class->lock
);
2251 unsigned long zs_compact(struct zs_pool
*pool
)
2254 struct size_class
*class;
2256 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2257 class = pool
->size_class
[i
];
2260 if (class->index
!= i
)
2262 __zs_compact(pool
, class);
2265 return pool
->stats
.pages_compacted
;
2267 EXPORT_SYMBOL_GPL(zs_compact
);
2269 void zs_pool_stats(struct zs_pool
*pool
, struct zs_pool_stats
*stats
)
2271 memcpy(stats
, &pool
->stats
, sizeof(struct zs_pool_stats
));
2273 EXPORT_SYMBOL_GPL(zs_pool_stats
);
2275 static unsigned long zs_shrinker_scan(struct shrinker
*shrinker
,
2276 struct shrink_control
*sc
)
2278 unsigned long pages_freed
;
2279 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2282 pages_freed
= pool
->stats
.pages_compacted
;
2284 * Compact classes and calculate compaction delta.
2285 * Can run concurrently with a manually triggered
2286 * (by user) compaction.
2288 pages_freed
= zs_compact(pool
) - pages_freed
;
2290 return pages_freed
? pages_freed
: SHRINK_STOP
;
2293 static unsigned long zs_shrinker_count(struct shrinker
*shrinker
,
2294 struct shrink_control
*sc
)
2297 struct size_class
*class;
2298 unsigned long pages_to_free
= 0;
2299 struct zs_pool
*pool
= container_of(shrinker
, struct zs_pool
,
2302 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2303 class = pool
->size_class
[i
];
2306 if (class->index
!= i
)
2309 pages_to_free
+= zs_can_compact(class);
2312 return pages_to_free
;
2315 static void zs_unregister_shrinker(struct zs_pool
*pool
)
2317 unregister_shrinker(&pool
->shrinker
);
2320 static int zs_register_shrinker(struct zs_pool
*pool
)
2322 pool
->shrinker
.scan_objects
= zs_shrinker_scan
;
2323 pool
->shrinker
.count_objects
= zs_shrinker_count
;
2324 pool
->shrinker
.batch
= 0;
2325 pool
->shrinker
.seeks
= DEFAULT_SEEKS
;
2327 return register_shrinker(&pool
->shrinker
);
2331 * zs_create_pool - Creates an allocation pool to work from.
2332 * @name: pool name to be created
2334 * This function must be called before anything when using
2335 * the zsmalloc allocator.
2337 * On success, a pointer to the newly created pool is returned,
2340 struct zs_pool
*zs_create_pool(const char *name
)
2343 struct zs_pool
*pool
;
2344 struct size_class
*prev_class
= NULL
;
2346 pool
= kzalloc(sizeof(*pool
), GFP_KERNEL
);
2350 init_deferred_free(pool
);
2352 pool
->name
= kstrdup(name
, GFP_KERNEL
);
2356 if (create_cache(pool
))
2360 * Iterate reversely, because, size of size_class that we want to use
2361 * for merging should be larger or equal to current size.
2363 for (i
= ZS_SIZE_CLASSES
- 1; i
>= 0; i
--) {
2365 int pages_per_zspage
;
2366 int objs_per_zspage
;
2367 struct size_class
*class;
2370 size
= ZS_MIN_ALLOC_SIZE
+ i
* ZS_SIZE_CLASS_DELTA
;
2371 if (size
> ZS_MAX_ALLOC_SIZE
)
2372 size
= ZS_MAX_ALLOC_SIZE
;
2373 pages_per_zspage
= get_pages_per_zspage(size
);
2374 objs_per_zspage
= pages_per_zspage
* PAGE_SIZE
/ size
;
2377 * size_class is used for normal zsmalloc operation such
2378 * as alloc/free for that size. Although it is natural that we
2379 * have one size_class for each size, there is a chance that we
2380 * can get more memory utilization if we use one size_class for
2381 * many different sizes whose size_class have same
2382 * characteristics. So, we makes size_class point to
2383 * previous size_class if possible.
2386 if (can_merge(prev_class
, pages_per_zspage
, objs_per_zspage
)) {
2387 pool
->size_class
[i
] = prev_class
;
2392 class = kzalloc(sizeof(struct size_class
), GFP_KERNEL
);
2398 class->pages_per_zspage
= pages_per_zspage
;
2399 class->objs_per_zspage
= objs_per_zspage
;
2400 spin_lock_init(&class->lock
);
2401 pool
->size_class
[i
] = class;
2402 for (fullness
= ZS_EMPTY
; fullness
< NR_ZS_FULLNESS
;
2404 INIT_LIST_HEAD(&class->fullness_list
[fullness
]);
2409 /* debug only, don't abort if it fails */
2410 zs_pool_stat_create(pool
, name
);
2412 if (zs_register_migration(pool
))
2416 * Not critical since shrinker is only used to trigger internal
2417 * defragmentation of the pool which is pretty optional thing. If
2418 * registration fails we still can use the pool normally and user can
2419 * trigger compaction manually. Thus, ignore return code.
2421 zs_register_shrinker(pool
);
2426 zs_destroy_pool(pool
);
2429 EXPORT_SYMBOL_GPL(zs_create_pool
);
2431 void zs_destroy_pool(struct zs_pool
*pool
)
2435 zs_unregister_shrinker(pool
);
2436 zs_unregister_migration(pool
);
2437 zs_pool_stat_destroy(pool
);
2439 for (i
= 0; i
< ZS_SIZE_CLASSES
; i
++) {
2441 struct size_class
*class = pool
->size_class
[i
];
2446 if (class->index
!= i
)
2449 for (fg
= ZS_EMPTY
; fg
< NR_ZS_FULLNESS
; fg
++) {
2450 if (!list_empty(&class->fullness_list
[fg
])) {
2451 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2458 destroy_cache(pool
);
2462 EXPORT_SYMBOL_GPL(zs_destroy_pool
);
2464 static int __init
zs_init(void)
2468 ret
= zsmalloc_mount();
2472 ret
= cpuhp_setup_state(CPUHP_MM_ZS_PREPARE
, "mm/zsmalloc:prepare",
2473 zs_cpu_prepare
, zs_cpu_dead
);
2478 zpool_register_driver(&zs_zpool_driver
);
2491 static void __exit
zs_exit(void)
2494 zpool_unregister_driver(&zs_zpool_driver
);
2497 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE
);
2502 module_init(zs_init
);
2503 module_exit(zs_exit
);
2505 MODULE_LICENSE("Dual BSD/GPL");
2506 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");