udl-kms: avoid prefetch
[linux/fpc-iii.git] / drivers / macintosh / windfarm_pm72.c
blob833021508c05c879b2a8c929105bb2e90b0353cd
1 /*
2 * Windfarm PowerMac thermal control.
3 * Control loops for PowerMac7,2 and 7,3
5 * Copyright (C) 2012 Benjamin Herrenschmidt, IBM Corp.
7 * Use and redistribute under the terms of the GNU GPL v2.
8 */
9 #include <linux/types.h>
10 #include <linux/errno.h>
11 #include <linux/kernel.h>
12 #include <linux/device.h>
13 #include <linux/platform_device.h>
14 #include <linux/reboot.h>
15 #include <asm/prom.h>
16 #include <asm/smu.h>
18 #include "windfarm.h"
19 #include "windfarm_pid.h"
20 #include "windfarm_mpu.h"
22 #define VERSION "1.0"
24 #undef DEBUG
25 #undef LOTSA_DEBUG
27 #ifdef DEBUG
28 #define DBG(args...) printk(args)
29 #else
30 #define DBG(args...) do { } while(0)
31 #endif
33 #ifdef LOTSA_DEBUG
34 #define DBG_LOTS(args...) printk(args)
35 #else
36 #define DBG_LOTS(args...) do { } while(0)
37 #endif
39 /* define this to force CPU overtemp to 60 degree, useful for testing
40 * the overtemp code
42 #undef HACKED_OVERTEMP
44 /* We currently only handle 2 chips */
45 #define NR_CHIPS 2
46 #define NR_CPU_FANS 3 * NR_CHIPS
48 /* Controls and sensors */
49 static struct wf_sensor *sens_cpu_temp[NR_CHIPS];
50 static struct wf_sensor *sens_cpu_volts[NR_CHIPS];
51 static struct wf_sensor *sens_cpu_amps[NR_CHIPS];
52 static struct wf_sensor *backside_temp;
53 static struct wf_sensor *drives_temp;
55 static struct wf_control *cpu_front_fans[NR_CHIPS];
56 static struct wf_control *cpu_rear_fans[NR_CHIPS];
57 static struct wf_control *cpu_pumps[NR_CHIPS];
58 static struct wf_control *backside_fan;
59 static struct wf_control *drives_fan;
60 static struct wf_control *slots_fan;
61 static struct wf_control *cpufreq_clamp;
63 /* We keep a temperature history for average calculation of 180s */
64 #define CPU_TEMP_HIST_SIZE 180
66 /* Fixed speed for slot fan */
67 #define SLOTS_FAN_DEFAULT_PWM 40
69 /* Scale value for CPU intake fans */
70 #define CPU_INTAKE_SCALE 0x0000f852
72 /* PID loop state */
73 static const struct mpu_data *cpu_mpu_data[NR_CHIPS];
74 static struct wf_cpu_pid_state cpu_pid[NR_CHIPS];
75 static bool cpu_pid_combined;
76 static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
77 static int cpu_thist_pt;
78 static s64 cpu_thist_total;
79 static s32 cpu_all_tmax = 100 << 16;
80 static struct wf_pid_state backside_pid;
81 static int backside_tick;
82 static struct wf_pid_state drives_pid;
83 static int drives_tick;
85 static int nr_chips;
86 static bool have_all_controls;
87 static bool have_all_sensors;
88 static bool started;
90 static int failure_state;
91 #define FAILURE_SENSOR 1
92 #define FAILURE_FAN 2
93 #define FAILURE_PERM 4
94 #define FAILURE_LOW_OVERTEMP 8
95 #define FAILURE_HIGH_OVERTEMP 16
97 /* Overtemp values */
98 #define LOW_OVER_AVERAGE 0
99 #define LOW_OVER_IMMEDIATE (10 << 16)
100 #define LOW_OVER_CLEAR ((-10) << 16)
101 #define HIGH_OVER_IMMEDIATE (14 << 16)
102 #define HIGH_OVER_AVERAGE (10 << 16)
103 #define HIGH_OVER_IMMEDIATE (14 << 16)
106 static void cpu_max_all_fans(void)
108 int i;
110 /* We max all CPU fans in case of a sensor error. We also do the
111 * cpufreq clamping now, even if it's supposedly done later by the
112 * generic code anyway, we do it earlier here to react faster
114 if (cpufreq_clamp)
115 wf_control_set_max(cpufreq_clamp);
116 for (i = 0; i < nr_chips; i++) {
117 if (cpu_front_fans[i])
118 wf_control_set_max(cpu_front_fans[i]);
119 if (cpu_rear_fans[i])
120 wf_control_set_max(cpu_rear_fans[i]);
121 if (cpu_pumps[i])
122 wf_control_set_max(cpu_pumps[i]);
126 static int cpu_check_overtemp(s32 temp)
128 int new_state = 0;
129 s32 t_avg, t_old;
130 static bool first = true;
132 /* First check for immediate overtemps */
133 if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
134 new_state |= FAILURE_LOW_OVERTEMP;
135 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
136 printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
137 " temperature !\n");
139 if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
140 new_state |= FAILURE_HIGH_OVERTEMP;
141 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
142 printk(KERN_ERR "windfarm: Critical overtemp due to"
143 " immediate CPU temperature !\n");
147 * The first time around, initialize the array with the first
148 * temperature reading
150 if (first) {
151 int i;
153 cpu_thist_total = 0;
154 for (i = 0; i < CPU_TEMP_HIST_SIZE; i++) {
155 cpu_thist[i] = temp;
156 cpu_thist_total += temp;
158 first = false;
162 * We calculate a history of max temperatures and use that for the
163 * overtemp management
165 t_old = cpu_thist[cpu_thist_pt];
166 cpu_thist[cpu_thist_pt] = temp;
167 cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
168 cpu_thist_total -= t_old;
169 cpu_thist_total += temp;
170 t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
172 DBG_LOTS(" t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
173 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
175 /* Now check for average overtemps */
176 if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
177 new_state |= FAILURE_LOW_OVERTEMP;
178 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
179 printk(KERN_ERR "windfarm: Overtemp due to average CPU"
180 " temperature !\n");
182 if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
183 new_state |= FAILURE_HIGH_OVERTEMP;
184 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
185 printk(KERN_ERR "windfarm: Critical overtemp due to"
186 " average CPU temperature !\n");
189 /* Now handle overtemp conditions. We don't currently use the windfarm
190 * overtemp handling core as it's not fully suited to the needs of those
191 * new machine. This will be fixed later.
193 if (new_state) {
194 /* High overtemp -> immediate shutdown */
195 if (new_state & FAILURE_HIGH_OVERTEMP)
196 machine_power_off();
197 if ((failure_state & new_state) != new_state)
198 cpu_max_all_fans();
199 failure_state |= new_state;
200 } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
201 (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
202 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
203 failure_state &= ~FAILURE_LOW_OVERTEMP;
206 return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
209 static int read_one_cpu_vals(int cpu, s32 *temp, s32 *power)
211 s32 dtemp, volts, amps;
212 int rc;
214 /* Get diode temperature */
215 rc = wf_sensor_get(sens_cpu_temp[cpu], &dtemp);
216 if (rc) {
217 DBG(" CPU%d: temp reading error !\n", cpu);
218 return -EIO;
220 DBG_LOTS(" CPU%d: temp = %d.%03d\n", cpu, FIX32TOPRINT((dtemp)));
221 *temp = dtemp;
223 /* Get voltage */
224 rc = wf_sensor_get(sens_cpu_volts[cpu], &volts);
225 if (rc) {
226 DBG(" CPU%d, volts reading error !\n", cpu);
227 return -EIO;
229 DBG_LOTS(" CPU%d: volts = %d.%03d\n", cpu, FIX32TOPRINT((volts)));
231 /* Get current */
232 rc = wf_sensor_get(sens_cpu_amps[cpu], &amps);
233 if (rc) {
234 DBG(" CPU%d, current reading error !\n", cpu);
235 return -EIO;
237 DBG_LOTS(" CPU%d: amps = %d.%03d\n", cpu, FIX32TOPRINT((amps)));
239 /* Calculate power */
241 /* Scale voltage and current raw sensor values according to fixed scales
242 * obtained in Darwin and calculate power from I and V
244 *power = (((u64)volts) * ((u64)amps)) >> 16;
246 DBG_LOTS(" CPU%d: power = %d.%03d\n", cpu, FIX32TOPRINT((*power)));
248 return 0;
252 static void cpu_fans_tick_split(void)
254 int err, cpu;
255 s32 intake, temp, power, t_max = 0;
257 DBG_LOTS("* cpu fans_tick_split()\n");
259 for (cpu = 0; cpu < nr_chips; ++cpu) {
260 struct wf_cpu_pid_state *sp = &cpu_pid[cpu];
262 /* Read current speed */
263 wf_control_get(cpu_rear_fans[cpu], &sp->target);
265 DBG_LOTS(" CPU%d: cur_target = %d RPM\n", cpu, sp->target);
267 err = read_one_cpu_vals(cpu, &temp, &power);
268 if (err) {
269 failure_state |= FAILURE_SENSOR;
270 cpu_max_all_fans();
271 return;
274 /* Keep track of highest temp */
275 t_max = max(t_max, temp);
277 /* Handle possible overtemps */
278 if (cpu_check_overtemp(t_max))
279 return;
281 /* Run PID */
282 wf_cpu_pid_run(sp, power, temp);
284 DBG_LOTS(" CPU%d: target = %d RPM\n", cpu, sp->target);
286 /* Apply result directly to exhaust fan */
287 err = wf_control_set(cpu_rear_fans[cpu], sp->target);
288 if (err) {
289 pr_warning("wf_pm72: Fan %s reports error %d\n",
290 cpu_rear_fans[cpu]->name, err);
291 failure_state |= FAILURE_FAN;
292 break;
295 /* Scale result for intake fan */
296 intake = (sp->target * CPU_INTAKE_SCALE) >> 16;
297 DBG_LOTS(" CPU%d: intake = %d RPM\n", cpu, intake);
298 err = wf_control_set(cpu_front_fans[cpu], intake);
299 if (err) {
300 pr_warning("wf_pm72: Fan %s reports error %d\n",
301 cpu_front_fans[cpu]->name, err);
302 failure_state |= FAILURE_FAN;
303 break;
308 static void cpu_fans_tick_combined(void)
310 s32 temp0, power0, temp1, power1, t_max = 0;
311 s32 temp, power, intake, pump;
312 struct wf_control *pump0, *pump1;
313 struct wf_cpu_pid_state *sp = &cpu_pid[0];
314 int err, cpu;
316 DBG_LOTS("* cpu fans_tick_combined()\n");
318 /* Read current speed from cpu 0 */
319 wf_control_get(cpu_rear_fans[0], &sp->target);
321 DBG_LOTS(" CPUs: cur_target = %d RPM\n", sp->target);
323 /* Read values for both CPUs */
324 err = read_one_cpu_vals(0, &temp0, &power0);
325 if (err) {
326 failure_state |= FAILURE_SENSOR;
327 cpu_max_all_fans();
328 return;
330 err = read_one_cpu_vals(1, &temp1, &power1);
331 if (err) {
332 failure_state |= FAILURE_SENSOR;
333 cpu_max_all_fans();
334 return;
337 /* Keep track of highest temp */
338 t_max = max(t_max, max(temp0, temp1));
340 /* Handle possible overtemps */
341 if (cpu_check_overtemp(t_max))
342 return;
344 /* Use the max temp & power of both */
345 temp = max(temp0, temp1);
346 power = max(power0, power1);
348 /* Run PID */
349 wf_cpu_pid_run(sp, power, temp);
351 /* Scale result for intake fan */
352 intake = (sp->target * CPU_INTAKE_SCALE) >> 16;
354 /* Same deal with pump speed */
355 pump0 = cpu_pumps[0];
356 pump1 = cpu_pumps[1];
357 if (!pump0) {
358 pump0 = pump1;
359 pump1 = NULL;
361 pump = (sp->target * wf_control_get_max(pump0)) /
362 cpu_mpu_data[0]->rmaxn_exhaust_fan;
364 DBG_LOTS(" CPUs: target = %d RPM\n", sp->target);
365 DBG_LOTS(" CPUs: intake = %d RPM\n", intake);
366 DBG_LOTS(" CPUs: pump = %d RPM\n", pump);
368 for (cpu = 0; cpu < nr_chips; cpu++) {
369 err = wf_control_set(cpu_rear_fans[cpu], sp->target);
370 if (err) {
371 pr_warning("wf_pm72: Fan %s reports error %d\n",
372 cpu_rear_fans[cpu]->name, err);
373 failure_state |= FAILURE_FAN;
375 err = wf_control_set(cpu_front_fans[cpu], intake);
376 if (err) {
377 pr_warning("wf_pm72: Fan %s reports error %d\n",
378 cpu_front_fans[cpu]->name, err);
379 failure_state |= FAILURE_FAN;
381 err = 0;
382 if (cpu_pumps[cpu])
383 err = wf_control_set(cpu_pumps[cpu], pump);
384 if (err) {
385 pr_warning("wf_pm72: Pump %s reports error %d\n",
386 cpu_pumps[cpu]->name, err);
387 failure_state |= FAILURE_FAN;
392 /* Implementation... */
393 static int cpu_setup_pid(int cpu)
395 struct wf_cpu_pid_param pid;
396 const struct mpu_data *mpu = cpu_mpu_data[cpu];
397 s32 tmax, ttarget, ptarget;
398 int fmin, fmax, hsize;
400 /* Get PID params from the appropriate MPU EEPROM */
401 tmax = mpu->tmax << 16;
402 ttarget = mpu->ttarget << 16;
403 ptarget = ((s32)(mpu->pmaxh - mpu->padjmax)) << 16;
405 DBG("wf_72: CPU%d ttarget = %d.%03d, tmax = %d.%03d\n",
406 cpu, FIX32TOPRINT(ttarget), FIX32TOPRINT(tmax));
408 /* We keep a global tmax for overtemp calculations */
409 if (tmax < cpu_all_tmax)
410 cpu_all_tmax = tmax;
412 /* Set PID min/max by using the rear fan min/max */
413 fmin = wf_control_get_min(cpu_rear_fans[cpu]);
414 fmax = wf_control_get_max(cpu_rear_fans[cpu]);
415 DBG("wf_72: CPU%d max RPM range = [%d..%d]\n", cpu, fmin, fmax);
417 /* History size */
418 hsize = min_t(int, mpu->tguardband, WF_PID_MAX_HISTORY);
419 DBG("wf_72: CPU%d history size = %d\n", cpu, hsize);
421 /* Initialize PID loop */
422 pid.interval = 1; /* seconds */
423 pid.history_len = hsize;
424 pid.gd = mpu->pid_gd;
425 pid.gp = mpu->pid_gp;
426 pid.gr = mpu->pid_gr;
427 pid.tmax = tmax;
428 pid.ttarget = ttarget;
429 pid.pmaxadj = ptarget;
430 pid.min = fmin;
431 pid.max = fmax;
433 wf_cpu_pid_init(&cpu_pid[cpu], &pid);
434 cpu_pid[cpu].target = 1000;
436 return 0;
439 /* Backside/U3 fan */
440 static struct wf_pid_param backside_u3_param = {
441 .interval = 5,
442 .history_len = 2,
443 .gd = 40 << 20,
444 .gp = 5 << 20,
445 .gr = 0,
446 .itarget = 65 << 16,
447 .additive = 1,
448 .min = 20,
449 .max = 100,
452 static struct wf_pid_param backside_u3h_param = {
453 .interval = 5,
454 .history_len = 2,
455 .gd = 20 << 20,
456 .gp = 5 << 20,
457 .gr = 0,
458 .itarget = 75 << 16,
459 .additive = 1,
460 .min = 20,
461 .max = 100,
464 static void backside_fan_tick(void)
466 s32 temp;
467 int speed;
468 int err;
470 if (!backside_fan || !backside_temp || !backside_tick)
471 return;
472 if (--backside_tick > 0)
473 return;
474 backside_tick = backside_pid.param.interval;
476 DBG_LOTS("* backside fans tick\n");
478 /* Update fan speed from actual fans */
479 err = wf_control_get(backside_fan, &speed);
480 if (!err)
481 backside_pid.target = speed;
483 err = wf_sensor_get(backside_temp, &temp);
484 if (err) {
485 printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
486 err);
487 failure_state |= FAILURE_SENSOR;
488 wf_control_set_max(backside_fan);
489 return;
491 speed = wf_pid_run(&backside_pid, temp);
493 DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
494 FIX32TOPRINT(temp), speed);
496 err = wf_control_set(backside_fan, speed);
497 if (err) {
498 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
499 failure_state |= FAILURE_FAN;
503 static void backside_setup_pid(void)
505 /* first time initialize things */
506 s32 fmin = wf_control_get_min(backside_fan);
507 s32 fmax = wf_control_get_max(backside_fan);
508 struct wf_pid_param param;
509 struct device_node *u3;
510 int u3h = 1; /* conservative by default */
512 u3 = of_find_node_by_path("/u3@0,f8000000");
513 if (u3 != NULL) {
514 const u32 *vers = of_get_property(u3, "device-rev", NULL);
515 if (vers)
516 if (((*vers) & 0x3f) < 0x34)
517 u3h = 0;
518 of_node_put(u3);
521 param = u3h ? backside_u3h_param : backside_u3_param;
523 param.min = max(param.min, fmin);
524 param.max = min(param.max, fmax);
525 wf_pid_init(&backside_pid, &param);
526 backside_tick = 1;
528 pr_info("wf_pm72: Backside control loop started.\n");
531 /* Drive bay fan */
532 static const struct wf_pid_param drives_param = {
533 .interval = 5,
534 .history_len = 2,
535 .gd = 30 << 20,
536 .gp = 5 << 20,
537 .gr = 0,
538 .itarget = 40 << 16,
539 .additive = 1,
540 .min = 300,
541 .max = 4000,
544 static void drives_fan_tick(void)
546 s32 temp;
547 int speed;
548 int err;
550 if (!drives_fan || !drives_temp || !drives_tick)
551 return;
552 if (--drives_tick > 0)
553 return;
554 drives_tick = drives_pid.param.interval;
556 DBG_LOTS("* drives fans tick\n");
558 /* Update fan speed from actual fans */
559 err = wf_control_get(drives_fan, &speed);
560 if (!err)
561 drives_pid.target = speed;
563 err = wf_sensor_get(drives_temp, &temp);
564 if (err) {
565 pr_warning("wf_pm72: drive bay temp sensor error %d\n", err);
566 failure_state |= FAILURE_SENSOR;
567 wf_control_set_max(drives_fan);
568 return;
570 speed = wf_pid_run(&drives_pid, temp);
572 DBG_LOTS("drives PID temp=%d.%.3d speed=%d\n",
573 FIX32TOPRINT(temp), speed);
575 err = wf_control_set(drives_fan, speed);
576 if (err) {
577 printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
578 failure_state |= FAILURE_FAN;
582 static void drives_setup_pid(void)
584 /* first time initialize things */
585 s32 fmin = wf_control_get_min(drives_fan);
586 s32 fmax = wf_control_get_max(drives_fan);
587 struct wf_pid_param param = drives_param;
589 param.min = max(param.min, fmin);
590 param.max = min(param.max, fmax);
591 wf_pid_init(&drives_pid, &param);
592 drives_tick = 1;
594 pr_info("wf_pm72: Drive bay control loop started.\n");
597 static void set_fail_state(void)
599 cpu_max_all_fans();
601 if (backside_fan)
602 wf_control_set_max(backside_fan);
603 if (slots_fan)
604 wf_control_set_max(slots_fan);
605 if (drives_fan)
606 wf_control_set_max(drives_fan);
609 static void pm72_tick(void)
611 int i, last_failure;
613 if (!started) {
614 started = true;
615 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
616 for (i = 0; i < nr_chips; ++i) {
617 if (cpu_setup_pid(i) < 0) {
618 failure_state = FAILURE_PERM;
619 set_fail_state();
620 break;
623 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
625 backside_setup_pid();
626 drives_setup_pid();
629 * We don't have the right stuff to drive the PCI fan
630 * so we fix it to a default value
632 wf_control_set(slots_fan, SLOTS_FAN_DEFAULT_PWM);
634 #ifdef HACKED_OVERTEMP
635 cpu_all_tmax = 60 << 16;
636 #endif
639 /* Permanent failure, bail out */
640 if (failure_state & FAILURE_PERM)
641 return;
644 * Clear all failure bits except low overtemp which will be eventually
645 * cleared by the control loop itself
647 last_failure = failure_state;
648 failure_state &= FAILURE_LOW_OVERTEMP;
649 if (cpu_pid_combined)
650 cpu_fans_tick_combined();
651 else
652 cpu_fans_tick_split();
653 backside_fan_tick();
654 drives_fan_tick();
656 DBG_LOTS(" last_failure: 0x%x, failure_state: %x\n",
657 last_failure, failure_state);
659 /* Check for failures. Any failure causes cpufreq clamping */
660 if (failure_state && last_failure == 0 && cpufreq_clamp)
661 wf_control_set_max(cpufreq_clamp);
662 if (failure_state == 0 && last_failure && cpufreq_clamp)
663 wf_control_set_min(cpufreq_clamp);
665 /* That's it for now, we might want to deal with other failures
666 * differently in the future though
670 static void pm72_new_control(struct wf_control *ct)
672 bool all_controls;
673 bool had_pump = cpu_pumps[0] || cpu_pumps[1];
675 if (!strcmp(ct->name, "cpu-front-fan-0"))
676 cpu_front_fans[0] = ct;
677 else if (!strcmp(ct->name, "cpu-front-fan-1"))
678 cpu_front_fans[1] = ct;
679 else if (!strcmp(ct->name, "cpu-rear-fan-0"))
680 cpu_rear_fans[0] = ct;
681 else if (!strcmp(ct->name, "cpu-rear-fan-1"))
682 cpu_rear_fans[1] = ct;
683 else if (!strcmp(ct->name, "cpu-pump-0"))
684 cpu_pumps[0] = ct;
685 else if (!strcmp(ct->name, "cpu-pump-1"))
686 cpu_pumps[1] = ct;
687 else if (!strcmp(ct->name, "backside-fan"))
688 backside_fan = ct;
689 else if (!strcmp(ct->name, "slots-fan"))
690 slots_fan = ct;
691 else if (!strcmp(ct->name, "drive-bay-fan"))
692 drives_fan = ct;
693 else if (!strcmp(ct->name, "cpufreq-clamp"))
694 cpufreq_clamp = ct;
696 all_controls =
697 cpu_front_fans[0] &&
698 cpu_rear_fans[0] &&
699 backside_fan &&
700 slots_fan &&
701 drives_fan;
702 if (nr_chips > 1)
703 all_controls &=
704 cpu_front_fans[1] &&
705 cpu_rear_fans[1];
706 have_all_controls = all_controls;
708 if ((cpu_pumps[0] || cpu_pumps[1]) && !had_pump) {
709 pr_info("wf_pm72: Liquid cooling pump(s) detected,"
710 " using new algorithm !\n");
711 cpu_pid_combined = true;
716 static void pm72_new_sensor(struct wf_sensor *sr)
718 bool all_sensors;
720 if (!strcmp(sr->name, "cpu-diode-temp-0"))
721 sens_cpu_temp[0] = sr;
722 else if (!strcmp(sr->name, "cpu-diode-temp-1"))
723 sens_cpu_temp[1] = sr;
724 else if (!strcmp(sr->name, "cpu-voltage-0"))
725 sens_cpu_volts[0] = sr;
726 else if (!strcmp(sr->name, "cpu-voltage-1"))
727 sens_cpu_volts[1] = sr;
728 else if (!strcmp(sr->name, "cpu-current-0"))
729 sens_cpu_amps[0] = sr;
730 else if (!strcmp(sr->name, "cpu-current-1"))
731 sens_cpu_amps[1] = sr;
732 else if (!strcmp(sr->name, "backside-temp"))
733 backside_temp = sr;
734 else if (!strcmp(sr->name, "hd-temp"))
735 drives_temp = sr;
737 all_sensors =
738 sens_cpu_temp[0] &&
739 sens_cpu_volts[0] &&
740 sens_cpu_amps[0] &&
741 backside_temp &&
742 drives_temp;
743 if (nr_chips > 1)
744 all_sensors &=
745 sens_cpu_temp[1] &&
746 sens_cpu_volts[1] &&
747 sens_cpu_amps[1];
749 have_all_sensors = all_sensors;
752 static int pm72_wf_notify(struct notifier_block *self,
753 unsigned long event, void *data)
755 switch (event) {
756 case WF_EVENT_NEW_SENSOR:
757 pm72_new_sensor(data);
758 break;
759 case WF_EVENT_NEW_CONTROL:
760 pm72_new_control(data);
761 break;
762 case WF_EVENT_TICK:
763 if (have_all_controls && have_all_sensors)
764 pm72_tick();
766 return 0;
769 static struct notifier_block pm72_events = {
770 .notifier_call = pm72_wf_notify,
773 static int wf_pm72_probe(struct platform_device *dev)
775 wf_register_client(&pm72_events);
776 return 0;
779 static int wf_pm72_remove(struct platform_device *dev)
781 wf_unregister_client(&pm72_events);
783 /* should release all sensors and controls */
784 return 0;
787 static struct platform_driver wf_pm72_driver = {
788 .probe = wf_pm72_probe,
789 .remove = wf_pm72_remove,
790 .driver = {
791 .name = "windfarm",
795 static int __init wf_pm72_init(void)
797 struct device_node *cpu;
798 int i;
800 if (!of_machine_is_compatible("PowerMac7,2") &&
801 !of_machine_is_compatible("PowerMac7,3"))
802 return -ENODEV;
804 /* Count the number of CPU cores */
805 nr_chips = 0;
806 for_each_node_by_type(cpu, "cpu")
807 ++nr_chips;
808 if (nr_chips > NR_CHIPS)
809 nr_chips = NR_CHIPS;
811 pr_info("windfarm: Initializing for desktop G5 with %d chips\n",
812 nr_chips);
814 /* Get MPU data for each CPU */
815 for (i = 0; i < nr_chips; i++) {
816 cpu_mpu_data[i] = wf_get_mpu(i);
817 if (!cpu_mpu_data[i]) {
818 pr_err("wf_pm72: Failed to find MPU data for CPU %d\n", i);
819 return -ENXIO;
823 #ifdef MODULE
824 request_module("windfarm_fcu_controls");
825 request_module("windfarm_lm75_sensor");
826 request_module("windfarm_ad7417_sensor");
827 request_module("windfarm_max6690_sensor");
828 request_module("windfarm_cpufreq_clamp");
829 #endif /* MODULE */
831 platform_driver_register(&wf_pm72_driver);
832 return 0;
835 static void __exit wf_pm72_exit(void)
837 platform_driver_unregister(&wf_pm72_driver);
840 module_init(wf_pm72_init);
841 module_exit(wf_pm72_exit);
843 MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
844 MODULE_DESCRIPTION("Thermal control for AGP PowerMac G5s");
845 MODULE_LICENSE("GPL");
846 MODULE_ALIAS("platform:windfarm");