2 * Copyright (C) 2012 Red Hat. All rights reserved.
4 * This file is released under the GPL.
8 #include "dm-bio-prison-v2.h"
9 #include "dm-bio-record.h"
10 #include "dm-cache-metadata.h"
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/init.h>
16 #include <linux/mempool.h>
17 #include <linux/module.h>
18 #include <linux/rwsem.h>
19 #include <linux/slab.h>
20 #include <linux/vmalloc.h>
22 #define DM_MSG_PREFIX "cache"
24 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle
,
25 "A percentage of time allocated for copying to and/or from cache");
27 /*----------------------------------------------------------------*/
32 * oblock: index of an origin block
33 * cblock: index of a cache block
34 * promotion: movement of a block from origin to cache
35 * demotion: movement of a block from cache to origin
36 * migration: movement of a block between the origin and cache device,
40 /*----------------------------------------------------------------*/
46 * Sectors of in-flight IO.
51 * The time, in jiffies, when this device became idle (if it is
54 unsigned long idle_time
;
55 unsigned long last_update_time
;
58 static void iot_init(struct io_tracker
*iot
)
60 spin_lock_init(&iot
->lock
);
63 iot
->last_update_time
= jiffies
;
66 static bool __iot_idle_for(struct io_tracker
*iot
, unsigned long jifs
)
71 return time_after(jiffies
, iot
->idle_time
+ jifs
);
74 static bool iot_idle_for(struct io_tracker
*iot
, unsigned long jifs
)
79 spin_lock_irqsave(&iot
->lock
, flags
);
80 r
= __iot_idle_for(iot
, jifs
);
81 spin_unlock_irqrestore(&iot
->lock
, flags
);
86 static void iot_io_begin(struct io_tracker
*iot
, sector_t len
)
90 spin_lock_irqsave(&iot
->lock
, flags
);
91 iot
->in_flight
+= len
;
92 spin_unlock_irqrestore(&iot
->lock
, flags
);
95 static void __iot_io_end(struct io_tracker
*iot
, sector_t len
)
100 iot
->in_flight
-= len
;
102 iot
->idle_time
= jiffies
;
105 static void iot_io_end(struct io_tracker
*iot
, sector_t len
)
109 spin_lock_irqsave(&iot
->lock
, flags
);
110 __iot_io_end(iot
, len
);
111 spin_unlock_irqrestore(&iot
->lock
, flags
);
114 /*----------------------------------------------------------------*/
117 * Represents a chunk of future work. 'input' allows continuations to pass
118 * values between themselves, typically error values.
120 struct continuation
{
121 struct work_struct ws
;
125 static inline void init_continuation(struct continuation
*k
,
126 void (*fn
)(struct work_struct
*))
128 INIT_WORK(&k
->ws
, fn
);
132 static inline void queue_continuation(struct workqueue_struct
*wq
,
133 struct continuation
*k
)
135 queue_work(wq
, &k
->ws
);
138 /*----------------------------------------------------------------*/
141 * The batcher collects together pieces of work that need a particular
142 * operation to occur before they can proceed (typically a commit).
146 * The operation that everyone is waiting for.
148 blk_status_t (*commit_op
)(void *context
);
149 void *commit_context
;
152 * This is how bios should be issued once the commit op is complete
153 * (accounted_request).
155 void (*issue_op
)(struct bio
*bio
, void *context
);
159 * Queued work gets put on here after commit.
161 struct workqueue_struct
*wq
;
164 struct list_head work_items
;
165 struct bio_list bios
;
166 struct work_struct commit_work
;
168 bool commit_scheduled
;
171 static void __commit(struct work_struct
*_ws
)
173 struct batcher
*b
= container_of(_ws
, struct batcher
, commit_work
);
176 struct list_head work_items
;
177 struct work_struct
*ws
, *tmp
;
178 struct continuation
*k
;
180 struct bio_list bios
;
182 INIT_LIST_HEAD(&work_items
);
183 bio_list_init(&bios
);
186 * We have to grab these before the commit_op to avoid a race
189 spin_lock_irqsave(&b
->lock
, flags
);
190 list_splice_init(&b
->work_items
, &work_items
);
191 bio_list_merge(&bios
, &b
->bios
);
192 bio_list_init(&b
->bios
);
193 b
->commit_scheduled
= false;
194 spin_unlock_irqrestore(&b
->lock
, flags
);
196 r
= b
->commit_op(b
->commit_context
);
198 list_for_each_entry_safe(ws
, tmp
, &work_items
, entry
) {
199 k
= container_of(ws
, struct continuation
, ws
);
201 INIT_LIST_HEAD(&ws
->entry
); /* to avoid a WARN_ON */
202 queue_work(b
->wq
, ws
);
205 while ((bio
= bio_list_pop(&bios
))) {
210 b
->issue_op(bio
, b
->issue_context
);
214 static void batcher_init(struct batcher
*b
,
215 blk_status_t (*commit_op
)(void *),
216 void *commit_context
,
217 void (*issue_op
)(struct bio
*bio
, void *),
219 struct workqueue_struct
*wq
)
221 b
->commit_op
= commit_op
;
222 b
->commit_context
= commit_context
;
223 b
->issue_op
= issue_op
;
224 b
->issue_context
= issue_context
;
227 spin_lock_init(&b
->lock
);
228 INIT_LIST_HEAD(&b
->work_items
);
229 bio_list_init(&b
->bios
);
230 INIT_WORK(&b
->commit_work
, __commit
);
231 b
->commit_scheduled
= false;
234 static void async_commit(struct batcher
*b
)
236 queue_work(b
->wq
, &b
->commit_work
);
239 static void continue_after_commit(struct batcher
*b
, struct continuation
*k
)
242 bool commit_scheduled
;
244 spin_lock_irqsave(&b
->lock
, flags
);
245 commit_scheduled
= b
->commit_scheduled
;
246 list_add_tail(&k
->ws
.entry
, &b
->work_items
);
247 spin_unlock_irqrestore(&b
->lock
, flags
);
249 if (commit_scheduled
)
254 * Bios are errored if commit failed.
256 static void issue_after_commit(struct batcher
*b
, struct bio
*bio
)
259 bool commit_scheduled
;
261 spin_lock_irqsave(&b
->lock
, flags
);
262 commit_scheduled
= b
->commit_scheduled
;
263 bio_list_add(&b
->bios
, bio
);
264 spin_unlock_irqrestore(&b
->lock
, flags
);
266 if (commit_scheduled
)
271 * Call this if some urgent work is waiting for the commit to complete.
273 static void schedule_commit(struct batcher
*b
)
278 spin_lock_irqsave(&b
->lock
, flags
);
279 immediate
= !list_empty(&b
->work_items
) || !bio_list_empty(&b
->bios
);
280 b
->commit_scheduled
= true;
281 spin_unlock_irqrestore(&b
->lock
, flags
);
288 * There are a couple of places where we let a bio run, but want to do some
289 * work before calling its endio function. We do this by temporarily
290 * changing the endio fn.
292 struct dm_hook_info
{
293 bio_end_io_t
*bi_end_io
;
296 static void dm_hook_bio(struct dm_hook_info
*h
, struct bio
*bio
,
297 bio_end_io_t
*bi_end_io
, void *bi_private
)
299 h
->bi_end_io
= bio
->bi_end_io
;
301 bio
->bi_end_io
= bi_end_io
;
302 bio
->bi_private
= bi_private
;
305 static void dm_unhook_bio(struct dm_hook_info
*h
, struct bio
*bio
)
307 bio
->bi_end_io
= h
->bi_end_io
;
310 /*----------------------------------------------------------------*/
312 #define MIGRATION_POOL_SIZE 128
313 #define COMMIT_PERIOD HZ
314 #define MIGRATION_COUNT_WINDOW 10
317 * The block size of the device holding cache data must be
318 * between 32KB and 1GB.
320 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
321 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
323 enum cache_metadata_mode
{
324 CM_WRITE
, /* metadata may be changed */
325 CM_READ_ONLY
, /* metadata may not be changed */
331 * Data is written to cached blocks only. These blocks are marked
332 * dirty. If you lose the cache device you will lose data.
333 * Potential performance increase for both reads and writes.
338 * Data is written to both cache and origin. Blocks are never
339 * dirty. Potential performance benfit for reads only.
344 * A degraded mode useful for various cache coherency situations
345 * (eg, rolling back snapshots). Reads and writes always go to the
346 * origin. If a write goes to a cached oblock, then the cache
347 * block is invalidated.
352 struct cache_features
{
353 enum cache_metadata_mode mode
;
354 enum cache_io_mode io_mode
;
355 unsigned metadata_version
;
366 atomic_t copies_avoided
;
367 atomic_t cache_cell_clash
;
368 atomic_t commit_count
;
369 atomic_t discard_count
;
373 struct dm_target
*ti
;
377 * Fields for converting from sectors to blocks.
379 int sectors_per_block_shift
;
380 sector_t sectors_per_block
;
382 struct dm_cache_metadata
*cmd
;
385 * Metadata is written to this device.
387 struct dm_dev
*metadata_dev
;
390 * The slower of the two data devices. Typically a spindle.
392 struct dm_dev
*origin_dev
;
395 * The faster of the two data devices. Typically an SSD.
397 struct dm_dev
*cache_dev
;
400 * Size of the origin device in _complete_ blocks and native sectors.
402 dm_oblock_t origin_blocks
;
403 sector_t origin_sectors
;
406 * Size of the cache device in blocks.
408 dm_cblock_t cache_size
;
411 * Invalidation fields.
413 spinlock_t invalidation_lock
;
414 struct list_head invalidation_requests
;
416 sector_t migration_threshold
;
417 wait_queue_head_t migration_wait
;
418 atomic_t nr_allocated_migrations
;
421 * The number of in flight migrations that are performing
422 * background io. eg, promotion, writeback.
424 atomic_t nr_io_migrations
;
426 struct bio_list deferred_bios
;
428 struct rw_semaphore quiesce_lock
;
430 struct dm_target_callbacks callbacks
;
433 * origin_blocks entries, discarded if set.
435 dm_dblock_t discard_nr_blocks
;
436 unsigned long *discard_bitset
;
437 uint32_t discard_block_size
; /* a power of 2 times sectors per block */
440 * Rather than reconstructing the table line for the status we just
441 * save it and regurgitate.
443 unsigned nr_ctr_args
;
444 const char **ctr_args
;
446 struct dm_kcopyd_client
*copier
;
447 struct work_struct deferred_bio_worker
;
448 struct work_struct migration_worker
;
449 struct workqueue_struct
*wq
;
450 struct delayed_work waker
;
451 struct dm_bio_prison_v2
*prison
;
454 * cache_size entries, dirty if set
456 unsigned long *dirty_bitset
;
459 unsigned policy_nr_args
;
460 struct dm_cache_policy
*policy
;
463 * Cache features such as write-through.
465 struct cache_features features
;
467 struct cache_stats stats
;
469 bool need_tick_bio
:1;
472 bool commit_requested
:1;
473 bool loaded_mappings
:1;
474 bool loaded_discards
:1;
476 struct rw_semaphore background_work_lock
;
478 struct batcher committer
;
479 struct work_struct commit_ws
;
481 struct io_tracker tracker
;
483 mempool_t migration_pool
;
488 struct per_bio_data
{
491 struct dm_bio_prison_cell_v2
*cell
;
492 struct dm_hook_info hook_info
;
496 struct dm_cache_migration
{
497 struct continuation k
;
500 struct policy_work
*op
;
501 struct bio
*overwrite_bio
;
502 struct dm_bio_prison_cell_v2
*cell
;
504 dm_cblock_t invalidate_cblock
;
505 dm_oblock_t invalidate_oblock
;
508 /*----------------------------------------------------------------*/
510 static bool writethrough_mode(struct cache
*cache
)
512 return cache
->features
.io_mode
== CM_IO_WRITETHROUGH
;
515 static bool writeback_mode(struct cache
*cache
)
517 return cache
->features
.io_mode
== CM_IO_WRITEBACK
;
520 static inline bool passthrough_mode(struct cache
*cache
)
522 return unlikely(cache
->features
.io_mode
== CM_IO_PASSTHROUGH
);
525 /*----------------------------------------------------------------*/
527 static void wake_deferred_bio_worker(struct cache
*cache
)
529 queue_work(cache
->wq
, &cache
->deferred_bio_worker
);
532 static void wake_migration_worker(struct cache
*cache
)
534 if (passthrough_mode(cache
))
537 queue_work(cache
->wq
, &cache
->migration_worker
);
540 /*----------------------------------------------------------------*/
542 static struct dm_bio_prison_cell_v2
*alloc_prison_cell(struct cache
*cache
)
544 return dm_bio_prison_alloc_cell_v2(cache
->prison
, GFP_NOWAIT
);
547 static void free_prison_cell(struct cache
*cache
, struct dm_bio_prison_cell_v2
*cell
)
549 dm_bio_prison_free_cell_v2(cache
->prison
, cell
);
552 static struct dm_cache_migration
*alloc_migration(struct cache
*cache
)
554 struct dm_cache_migration
*mg
;
556 mg
= mempool_alloc(&cache
->migration_pool
, GFP_NOWAIT
);
560 memset(mg
, 0, sizeof(*mg
));
563 atomic_inc(&cache
->nr_allocated_migrations
);
568 static void free_migration(struct dm_cache_migration
*mg
)
570 struct cache
*cache
= mg
->cache
;
572 if (atomic_dec_and_test(&cache
->nr_allocated_migrations
))
573 wake_up(&cache
->migration_wait
);
575 mempool_free(mg
, &cache
->migration_pool
);
578 /*----------------------------------------------------------------*/
580 static inline dm_oblock_t
oblock_succ(dm_oblock_t b
)
582 return to_oblock(from_oblock(b
) + 1ull);
585 static void build_key(dm_oblock_t begin
, dm_oblock_t end
, struct dm_cell_key_v2
*key
)
589 key
->block_begin
= from_oblock(begin
);
590 key
->block_end
= from_oblock(end
);
594 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
595 * level 1 which prevents *both* READs and WRITEs.
597 #define WRITE_LOCK_LEVEL 0
598 #define READ_WRITE_LOCK_LEVEL 1
600 static unsigned lock_level(struct bio
*bio
)
602 return bio_data_dir(bio
) == WRITE
?
604 READ_WRITE_LOCK_LEVEL
;
607 /*----------------------------------------------------------------
609 *--------------------------------------------------------------*/
611 static struct per_bio_data
*get_per_bio_data(struct bio
*bio
)
613 struct per_bio_data
*pb
= dm_per_bio_data(bio
, sizeof(struct per_bio_data
));
618 static struct per_bio_data
*init_per_bio_data(struct bio
*bio
)
620 struct per_bio_data
*pb
= get_per_bio_data(bio
);
623 pb
->req_nr
= dm_bio_get_target_bio_nr(bio
);
630 /*----------------------------------------------------------------*/
632 static void defer_bio(struct cache
*cache
, struct bio
*bio
)
636 spin_lock_irqsave(&cache
->lock
, flags
);
637 bio_list_add(&cache
->deferred_bios
, bio
);
638 spin_unlock_irqrestore(&cache
->lock
, flags
);
640 wake_deferred_bio_worker(cache
);
643 static void defer_bios(struct cache
*cache
, struct bio_list
*bios
)
647 spin_lock_irqsave(&cache
->lock
, flags
);
648 bio_list_merge(&cache
->deferred_bios
, bios
);
650 spin_unlock_irqrestore(&cache
->lock
, flags
);
652 wake_deferred_bio_worker(cache
);
655 /*----------------------------------------------------------------*/
657 static bool bio_detain_shared(struct cache
*cache
, dm_oblock_t oblock
, struct bio
*bio
)
660 struct per_bio_data
*pb
;
661 struct dm_cell_key_v2 key
;
662 dm_oblock_t end
= to_oblock(from_oblock(oblock
) + 1ULL);
663 struct dm_bio_prison_cell_v2
*cell_prealloc
, *cell
;
665 cell_prealloc
= alloc_prison_cell(cache
); /* FIXME: allow wait if calling from worker */
666 if (!cell_prealloc
) {
667 defer_bio(cache
, bio
);
671 build_key(oblock
, end
, &key
);
672 r
= dm_cell_get_v2(cache
->prison
, &key
, lock_level(bio
), bio
, cell_prealloc
, &cell
);
675 * Failed to get the lock.
677 free_prison_cell(cache
, cell_prealloc
);
681 if (cell
!= cell_prealloc
)
682 free_prison_cell(cache
, cell_prealloc
);
684 pb
= get_per_bio_data(bio
);
690 /*----------------------------------------------------------------*/
692 static bool is_dirty(struct cache
*cache
, dm_cblock_t b
)
694 return test_bit(from_cblock(b
), cache
->dirty_bitset
);
697 static void set_dirty(struct cache
*cache
, dm_cblock_t cblock
)
699 if (!test_and_set_bit(from_cblock(cblock
), cache
->dirty_bitset
)) {
700 atomic_inc(&cache
->nr_dirty
);
701 policy_set_dirty(cache
->policy
, cblock
);
706 * These two are called when setting after migrations to force the policy
707 * and dirty bitset to be in sync.
709 static void force_set_dirty(struct cache
*cache
, dm_cblock_t cblock
)
711 if (!test_and_set_bit(from_cblock(cblock
), cache
->dirty_bitset
))
712 atomic_inc(&cache
->nr_dirty
);
713 policy_set_dirty(cache
->policy
, cblock
);
716 static void force_clear_dirty(struct cache
*cache
, dm_cblock_t cblock
)
718 if (test_and_clear_bit(from_cblock(cblock
), cache
->dirty_bitset
)) {
719 if (atomic_dec_return(&cache
->nr_dirty
) == 0)
720 dm_table_event(cache
->ti
->table
);
723 policy_clear_dirty(cache
->policy
, cblock
);
726 /*----------------------------------------------------------------*/
728 static bool block_size_is_power_of_two(struct cache
*cache
)
730 return cache
->sectors_per_block_shift
>= 0;
733 /* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
734 #if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
737 static dm_block_t
block_div(dm_block_t b
, uint32_t n
)
744 static dm_block_t
oblocks_per_dblock(struct cache
*cache
)
746 dm_block_t oblocks
= cache
->discard_block_size
;
748 if (block_size_is_power_of_two(cache
))
749 oblocks
>>= cache
->sectors_per_block_shift
;
751 oblocks
= block_div(oblocks
, cache
->sectors_per_block
);
756 static dm_dblock_t
oblock_to_dblock(struct cache
*cache
, dm_oblock_t oblock
)
758 return to_dblock(block_div(from_oblock(oblock
),
759 oblocks_per_dblock(cache
)));
762 static void set_discard(struct cache
*cache
, dm_dblock_t b
)
766 BUG_ON(from_dblock(b
) >= from_dblock(cache
->discard_nr_blocks
));
767 atomic_inc(&cache
->stats
.discard_count
);
769 spin_lock_irqsave(&cache
->lock
, flags
);
770 set_bit(from_dblock(b
), cache
->discard_bitset
);
771 spin_unlock_irqrestore(&cache
->lock
, flags
);
774 static void clear_discard(struct cache
*cache
, dm_dblock_t b
)
778 spin_lock_irqsave(&cache
->lock
, flags
);
779 clear_bit(from_dblock(b
), cache
->discard_bitset
);
780 spin_unlock_irqrestore(&cache
->lock
, flags
);
783 static bool is_discarded(struct cache
*cache
, dm_dblock_t b
)
788 spin_lock_irqsave(&cache
->lock
, flags
);
789 r
= test_bit(from_dblock(b
), cache
->discard_bitset
);
790 spin_unlock_irqrestore(&cache
->lock
, flags
);
795 static bool is_discarded_oblock(struct cache
*cache
, dm_oblock_t b
)
800 spin_lock_irqsave(&cache
->lock
, flags
);
801 r
= test_bit(from_dblock(oblock_to_dblock(cache
, b
)),
802 cache
->discard_bitset
);
803 spin_unlock_irqrestore(&cache
->lock
, flags
);
808 /*----------------------------------------------------------------
810 *--------------------------------------------------------------*/
811 static void remap_to_origin(struct cache
*cache
, struct bio
*bio
)
813 bio_set_dev(bio
, cache
->origin_dev
->bdev
);
816 static void remap_to_cache(struct cache
*cache
, struct bio
*bio
,
819 sector_t bi_sector
= bio
->bi_iter
.bi_sector
;
820 sector_t block
= from_cblock(cblock
);
822 bio_set_dev(bio
, cache
->cache_dev
->bdev
);
823 if (!block_size_is_power_of_two(cache
))
824 bio
->bi_iter
.bi_sector
=
825 (block
* cache
->sectors_per_block
) +
826 sector_div(bi_sector
, cache
->sectors_per_block
);
828 bio
->bi_iter
.bi_sector
=
829 (block
<< cache
->sectors_per_block_shift
) |
830 (bi_sector
& (cache
->sectors_per_block
- 1));
833 static void check_if_tick_bio_needed(struct cache
*cache
, struct bio
*bio
)
836 struct per_bio_data
*pb
;
838 spin_lock_irqsave(&cache
->lock
, flags
);
839 if (cache
->need_tick_bio
&& !op_is_flush(bio
->bi_opf
) &&
840 bio_op(bio
) != REQ_OP_DISCARD
) {
841 pb
= get_per_bio_data(bio
);
843 cache
->need_tick_bio
= false;
845 spin_unlock_irqrestore(&cache
->lock
, flags
);
848 static void __remap_to_origin_clear_discard(struct cache
*cache
, struct bio
*bio
,
849 dm_oblock_t oblock
, bool bio_has_pbd
)
852 check_if_tick_bio_needed(cache
, bio
);
853 remap_to_origin(cache
, bio
);
854 if (bio_data_dir(bio
) == WRITE
)
855 clear_discard(cache
, oblock_to_dblock(cache
, oblock
));
858 static void remap_to_origin_clear_discard(struct cache
*cache
, struct bio
*bio
,
861 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
862 __remap_to_origin_clear_discard(cache
, bio
, oblock
, true);
865 static void remap_to_cache_dirty(struct cache
*cache
, struct bio
*bio
,
866 dm_oblock_t oblock
, dm_cblock_t cblock
)
868 check_if_tick_bio_needed(cache
, bio
);
869 remap_to_cache(cache
, bio
, cblock
);
870 if (bio_data_dir(bio
) == WRITE
) {
871 set_dirty(cache
, cblock
);
872 clear_discard(cache
, oblock_to_dblock(cache
, oblock
));
876 static dm_oblock_t
get_bio_block(struct cache
*cache
, struct bio
*bio
)
878 sector_t block_nr
= bio
->bi_iter
.bi_sector
;
880 if (!block_size_is_power_of_two(cache
))
881 (void) sector_div(block_nr
, cache
->sectors_per_block
);
883 block_nr
>>= cache
->sectors_per_block_shift
;
885 return to_oblock(block_nr
);
888 static bool accountable_bio(struct cache
*cache
, struct bio
*bio
)
890 return bio_op(bio
) != REQ_OP_DISCARD
;
893 static void accounted_begin(struct cache
*cache
, struct bio
*bio
)
895 struct per_bio_data
*pb
;
897 if (accountable_bio(cache
, bio
)) {
898 pb
= get_per_bio_data(bio
);
899 pb
->len
= bio_sectors(bio
);
900 iot_io_begin(&cache
->tracker
, pb
->len
);
904 static void accounted_complete(struct cache
*cache
, struct bio
*bio
)
906 struct per_bio_data
*pb
= get_per_bio_data(bio
);
908 iot_io_end(&cache
->tracker
, pb
->len
);
911 static void accounted_request(struct cache
*cache
, struct bio
*bio
)
913 accounted_begin(cache
, bio
);
914 generic_make_request(bio
);
917 static void issue_op(struct bio
*bio
, void *context
)
919 struct cache
*cache
= context
;
920 accounted_request(cache
, bio
);
924 * When running in writethrough mode we need to send writes to clean blocks
925 * to both the cache and origin devices. Clone the bio and send them in parallel.
927 static void remap_to_origin_and_cache(struct cache
*cache
, struct bio
*bio
,
928 dm_oblock_t oblock
, dm_cblock_t cblock
)
930 struct bio
*origin_bio
= bio_clone_fast(bio
, GFP_NOIO
, &cache
->bs
);
934 bio_chain(origin_bio
, bio
);
936 * Passing false to __remap_to_origin_clear_discard() skips
937 * all code that might use per_bio_data (since clone doesn't have it)
939 __remap_to_origin_clear_discard(cache
, origin_bio
, oblock
, false);
940 submit_bio(origin_bio
);
942 remap_to_cache(cache
, bio
, cblock
);
945 /*----------------------------------------------------------------
947 *--------------------------------------------------------------*/
948 static enum cache_metadata_mode
get_cache_mode(struct cache
*cache
)
950 return cache
->features
.mode
;
953 static const char *cache_device_name(struct cache
*cache
)
955 return dm_device_name(dm_table_get_md(cache
->ti
->table
));
958 static void notify_mode_switch(struct cache
*cache
, enum cache_metadata_mode mode
)
960 const char *descs
[] = {
966 dm_table_event(cache
->ti
->table
);
967 DMINFO("%s: switching cache to %s mode",
968 cache_device_name(cache
), descs
[(int)mode
]);
971 static void set_cache_mode(struct cache
*cache
, enum cache_metadata_mode new_mode
)
974 enum cache_metadata_mode old_mode
= get_cache_mode(cache
);
976 if (dm_cache_metadata_needs_check(cache
->cmd
, &needs_check
)) {
977 DMERR("%s: unable to read needs_check flag, setting failure mode.",
978 cache_device_name(cache
));
982 if (new_mode
== CM_WRITE
&& needs_check
) {
983 DMERR("%s: unable to switch cache to write mode until repaired.",
984 cache_device_name(cache
));
985 if (old_mode
!= new_mode
)
988 new_mode
= CM_READ_ONLY
;
991 /* Never move out of fail mode */
992 if (old_mode
== CM_FAIL
)
998 dm_cache_metadata_set_read_only(cache
->cmd
);
1002 dm_cache_metadata_set_read_write(cache
->cmd
);
1006 cache
->features
.mode
= new_mode
;
1008 if (new_mode
!= old_mode
)
1009 notify_mode_switch(cache
, new_mode
);
1012 static void abort_transaction(struct cache
*cache
)
1014 const char *dev_name
= cache_device_name(cache
);
1016 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
1019 if (dm_cache_metadata_set_needs_check(cache
->cmd
)) {
1020 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name
);
1021 set_cache_mode(cache
, CM_FAIL
);
1024 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name
);
1025 if (dm_cache_metadata_abort(cache
->cmd
)) {
1026 DMERR("%s: failed to abort metadata transaction", dev_name
);
1027 set_cache_mode(cache
, CM_FAIL
);
1031 static void metadata_operation_failed(struct cache
*cache
, const char *op
, int r
)
1033 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1034 cache_device_name(cache
), op
, r
);
1035 abort_transaction(cache
);
1036 set_cache_mode(cache
, CM_READ_ONLY
);
1039 /*----------------------------------------------------------------*/
1041 static void load_stats(struct cache
*cache
)
1043 struct dm_cache_statistics stats
;
1045 dm_cache_metadata_get_stats(cache
->cmd
, &stats
);
1046 atomic_set(&cache
->stats
.read_hit
, stats
.read_hits
);
1047 atomic_set(&cache
->stats
.read_miss
, stats
.read_misses
);
1048 atomic_set(&cache
->stats
.write_hit
, stats
.write_hits
);
1049 atomic_set(&cache
->stats
.write_miss
, stats
.write_misses
);
1052 static void save_stats(struct cache
*cache
)
1054 struct dm_cache_statistics stats
;
1056 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
1059 stats
.read_hits
= atomic_read(&cache
->stats
.read_hit
);
1060 stats
.read_misses
= atomic_read(&cache
->stats
.read_miss
);
1061 stats
.write_hits
= atomic_read(&cache
->stats
.write_hit
);
1062 stats
.write_misses
= atomic_read(&cache
->stats
.write_miss
);
1064 dm_cache_metadata_set_stats(cache
->cmd
, &stats
);
1067 static void update_stats(struct cache_stats
*stats
, enum policy_operation op
)
1070 case POLICY_PROMOTE
:
1071 atomic_inc(&stats
->promotion
);
1075 atomic_inc(&stats
->demotion
);
1078 case POLICY_WRITEBACK
:
1079 atomic_inc(&stats
->writeback
);
1084 /*----------------------------------------------------------------
1085 * Migration processing
1087 * Migration covers moving data from the origin device to the cache, or
1089 *--------------------------------------------------------------*/
1091 static void inc_io_migrations(struct cache
*cache
)
1093 atomic_inc(&cache
->nr_io_migrations
);
1096 static void dec_io_migrations(struct cache
*cache
)
1098 atomic_dec(&cache
->nr_io_migrations
);
1101 static bool discard_or_flush(struct bio
*bio
)
1103 return bio_op(bio
) == REQ_OP_DISCARD
|| op_is_flush(bio
->bi_opf
);
1106 static void calc_discard_block_range(struct cache
*cache
, struct bio
*bio
,
1107 dm_dblock_t
*b
, dm_dblock_t
*e
)
1109 sector_t sb
= bio
->bi_iter
.bi_sector
;
1110 sector_t se
= bio_end_sector(bio
);
1112 *b
= to_dblock(dm_sector_div_up(sb
, cache
->discard_block_size
));
1114 if (se
- sb
< cache
->discard_block_size
)
1117 *e
= to_dblock(block_div(se
, cache
->discard_block_size
));
1120 /*----------------------------------------------------------------*/
1122 static void prevent_background_work(struct cache
*cache
)
1125 down_write(&cache
->background_work_lock
);
1129 static void allow_background_work(struct cache
*cache
)
1132 up_write(&cache
->background_work_lock
);
1136 static bool background_work_begin(struct cache
*cache
)
1141 r
= down_read_trylock(&cache
->background_work_lock
);
1147 static void background_work_end(struct cache
*cache
)
1150 up_read(&cache
->background_work_lock
);
1154 /*----------------------------------------------------------------*/
1156 static bool bio_writes_complete_block(struct cache
*cache
, struct bio
*bio
)
1158 return (bio_data_dir(bio
) == WRITE
) &&
1159 (bio
->bi_iter
.bi_size
== (cache
->sectors_per_block
<< SECTOR_SHIFT
));
1162 static bool optimisable_bio(struct cache
*cache
, struct bio
*bio
, dm_oblock_t block
)
1164 return writeback_mode(cache
) &&
1165 (is_discarded_oblock(cache
, block
) || bio_writes_complete_block(cache
, bio
));
1168 static void quiesce(struct dm_cache_migration
*mg
,
1169 void (*continuation
)(struct work_struct
*))
1171 init_continuation(&mg
->k
, continuation
);
1172 dm_cell_quiesce_v2(mg
->cache
->prison
, mg
->cell
, &mg
->k
.ws
);
1175 static struct dm_cache_migration
*ws_to_mg(struct work_struct
*ws
)
1177 struct continuation
*k
= container_of(ws
, struct continuation
, ws
);
1178 return container_of(k
, struct dm_cache_migration
, k
);
1181 static void copy_complete(int read_err
, unsigned long write_err
, void *context
)
1183 struct dm_cache_migration
*mg
= container_of(context
, struct dm_cache_migration
, k
);
1185 if (read_err
|| write_err
)
1186 mg
->k
.input
= BLK_STS_IOERR
;
1188 queue_continuation(mg
->cache
->wq
, &mg
->k
);
1191 static int copy(struct dm_cache_migration
*mg
, bool promote
)
1194 struct dm_io_region o_region
, c_region
;
1195 struct cache
*cache
= mg
->cache
;
1197 o_region
.bdev
= cache
->origin_dev
->bdev
;
1198 o_region
.sector
= from_oblock(mg
->op
->oblock
) * cache
->sectors_per_block
;
1199 o_region
.count
= cache
->sectors_per_block
;
1201 c_region
.bdev
= cache
->cache_dev
->bdev
;
1202 c_region
.sector
= from_cblock(mg
->op
->cblock
) * cache
->sectors_per_block
;
1203 c_region
.count
= cache
->sectors_per_block
;
1206 r
= dm_kcopyd_copy(cache
->copier
, &o_region
, 1, &c_region
, 0, copy_complete
, &mg
->k
);
1208 r
= dm_kcopyd_copy(cache
->copier
, &c_region
, 1, &o_region
, 0, copy_complete
, &mg
->k
);
1213 static void bio_drop_shared_lock(struct cache
*cache
, struct bio
*bio
)
1215 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1217 if (pb
->cell
&& dm_cell_put_v2(cache
->prison
, pb
->cell
))
1218 free_prison_cell(cache
, pb
->cell
);
1222 static void overwrite_endio(struct bio
*bio
)
1224 struct dm_cache_migration
*mg
= bio
->bi_private
;
1225 struct cache
*cache
= mg
->cache
;
1226 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1228 dm_unhook_bio(&pb
->hook_info
, bio
);
1231 mg
->k
.input
= bio
->bi_status
;
1233 queue_continuation(cache
->wq
, &mg
->k
);
1236 static void overwrite(struct dm_cache_migration
*mg
,
1237 void (*continuation
)(struct work_struct
*))
1239 struct bio
*bio
= mg
->overwrite_bio
;
1240 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1242 dm_hook_bio(&pb
->hook_info
, bio
, overwrite_endio
, mg
);
1245 * The overwrite bio is part of the copy operation, as such it does
1246 * not set/clear discard or dirty flags.
1248 if (mg
->op
->op
== POLICY_PROMOTE
)
1249 remap_to_cache(mg
->cache
, bio
, mg
->op
->cblock
);
1251 remap_to_origin(mg
->cache
, bio
);
1253 init_continuation(&mg
->k
, continuation
);
1254 accounted_request(mg
->cache
, bio
);
1260 * 1) exclusive lock preventing WRITEs
1262 * 3) copy or issue overwrite bio
1263 * 4) upgrade to exclusive lock preventing READs and WRITEs
1265 * 6) update metadata and commit
1268 static void mg_complete(struct dm_cache_migration
*mg
, bool success
)
1270 struct bio_list bios
;
1271 struct cache
*cache
= mg
->cache
;
1272 struct policy_work
*op
= mg
->op
;
1273 dm_cblock_t cblock
= op
->cblock
;
1276 update_stats(&cache
->stats
, op
->op
);
1279 case POLICY_PROMOTE
:
1280 clear_discard(cache
, oblock_to_dblock(cache
, op
->oblock
));
1281 policy_complete_background_work(cache
->policy
, op
, success
);
1283 if (mg
->overwrite_bio
) {
1285 force_set_dirty(cache
, cblock
);
1286 else if (mg
->k
.input
)
1287 mg
->overwrite_bio
->bi_status
= mg
->k
.input
;
1289 mg
->overwrite_bio
->bi_status
= BLK_STS_IOERR
;
1290 bio_endio(mg
->overwrite_bio
);
1293 force_clear_dirty(cache
, cblock
);
1294 dec_io_migrations(cache
);
1300 * We clear dirty here to update the nr_dirty counter.
1303 force_clear_dirty(cache
, cblock
);
1304 policy_complete_background_work(cache
->policy
, op
, success
);
1305 dec_io_migrations(cache
);
1308 case POLICY_WRITEBACK
:
1310 force_clear_dirty(cache
, cblock
);
1311 policy_complete_background_work(cache
->policy
, op
, success
);
1312 dec_io_migrations(cache
);
1316 bio_list_init(&bios
);
1318 if (dm_cell_unlock_v2(cache
->prison
, mg
->cell
, &bios
))
1319 free_prison_cell(cache
, mg
->cell
);
1323 defer_bios(cache
, &bios
);
1324 wake_migration_worker(cache
);
1326 background_work_end(cache
);
1329 static void mg_success(struct work_struct
*ws
)
1331 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1332 mg_complete(mg
, mg
->k
.input
== 0);
1335 static void mg_update_metadata(struct work_struct
*ws
)
1338 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1339 struct cache
*cache
= mg
->cache
;
1340 struct policy_work
*op
= mg
->op
;
1343 case POLICY_PROMOTE
:
1344 r
= dm_cache_insert_mapping(cache
->cmd
, op
->cblock
, op
->oblock
);
1346 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1347 cache_device_name(cache
));
1348 metadata_operation_failed(cache
, "dm_cache_insert_mapping", r
);
1350 mg_complete(mg
, false);
1353 mg_complete(mg
, true);
1357 r
= dm_cache_remove_mapping(cache
->cmd
, op
->cblock
);
1359 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1360 cache_device_name(cache
));
1361 metadata_operation_failed(cache
, "dm_cache_remove_mapping", r
);
1363 mg_complete(mg
, false);
1368 * It would be nice if we only had to commit when a REQ_FLUSH
1369 * comes through. But there's one scenario that we have to
1372 * - vblock x in a cache block
1374 * - cache block gets reallocated and over written
1377 * When we recover, because there was no commit the cache will
1378 * rollback to having the data for vblock x in the cache block.
1379 * But the cache block has since been overwritten, so it'll end
1380 * up pointing to data that was never in 'x' during the history
1383 * To avoid this issue we require a commit as part of the
1384 * demotion operation.
1386 init_continuation(&mg
->k
, mg_success
);
1387 continue_after_commit(&cache
->committer
, &mg
->k
);
1388 schedule_commit(&cache
->committer
);
1391 case POLICY_WRITEBACK
:
1392 mg_complete(mg
, true);
1397 static void mg_update_metadata_after_copy(struct work_struct
*ws
)
1399 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1402 * Did the copy succeed?
1405 mg_complete(mg
, false);
1407 mg_update_metadata(ws
);
1410 static void mg_upgrade_lock(struct work_struct
*ws
)
1413 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1416 * Did the copy succeed?
1419 mg_complete(mg
, false);
1423 * Now we want the lock to prevent both reads and writes.
1425 r
= dm_cell_lock_promote_v2(mg
->cache
->prison
, mg
->cell
,
1426 READ_WRITE_LOCK_LEVEL
);
1428 mg_complete(mg
, false);
1431 quiesce(mg
, mg_update_metadata
);
1434 mg_update_metadata(ws
);
1438 static void mg_full_copy(struct work_struct
*ws
)
1440 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1441 struct cache
*cache
= mg
->cache
;
1442 struct policy_work
*op
= mg
->op
;
1443 bool is_policy_promote
= (op
->op
== POLICY_PROMOTE
);
1445 if ((!is_policy_promote
&& !is_dirty(cache
, op
->cblock
)) ||
1446 is_discarded_oblock(cache
, op
->oblock
)) {
1447 mg_upgrade_lock(ws
);
1451 init_continuation(&mg
->k
, mg_upgrade_lock
);
1453 if (copy(mg
, is_policy_promote
)) {
1454 DMERR_LIMIT("%s: migration copy failed", cache_device_name(cache
));
1455 mg
->k
.input
= BLK_STS_IOERR
;
1456 mg_complete(mg
, false);
1460 static void mg_copy(struct work_struct
*ws
)
1462 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1464 if (mg
->overwrite_bio
) {
1466 * No exclusive lock was held when we last checked if the bio
1467 * was optimisable. So we have to check again in case things
1468 * have changed (eg, the block may no longer be discarded).
1470 if (!optimisable_bio(mg
->cache
, mg
->overwrite_bio
, mg
->op
->oblock
)) {
1472 * Fallback to a real full copy after doing some tidying up.
1474 bool rb
= bio_detain_shared(mg
->cache
, mg
->op
->oblock
, mg
->overwrite_bio
);
1475 BUG_ON(rb
); /* An exclussive lock must _not_ be held for this block */
1476 mg
->overwrite_bio
= NULL
;
1477 inc_io_migrations(mg
->cache
);
1483 * It's safe to do this here, even though it's new data
1484 * because all IO has been locked out of the block.
1486 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1487 * so _not_ using mg_upgrade_lock() as continutation.
1489 overwrite(mg
, mg_update_metadata_after_copy
);
1495 static int mg_lock_writes(struct dm_cache_migration
*mg
)
1498 struct dm_cell_key_v2 key
;
1499 struct cache
*cache
= mg
->cache
;
1500 struct dm_bio_prison_cell_v2
*prealloc
;
1502 prealloc
= alloc_prison_cell(cache
);
1504 DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache
));
1505 mg_complete(mg
, false);
1510 * Prevent writes to the block, but allow reads to continue.
1511 * Unless we're using an overwrite bio, in which case we lock
1514 build_key(mg
->op
->oblock
, oblock_succ(mg
->op
->oblock
), &key
);
1515 r
= dm_cell_lock_v2(cache
->prison
, &key
,
1516 mg
->overwrite_bio
? READ_WRITE_LOCK_LEVEL
: WRITE_LOCK_LEVEL
,
1517 prealloc
, &mg
->cell
);
1519 free_prison_cell(cache
, prealloc
);
1520 mg_complete(mg
, false);
1524 if (mg
->cell
!= prealloc
)
1525 free_prison_cell(cache
, prealloc
);
1530 quiesce(mg
, mg_copy
);
1535 static int mg_start(struct cache
*cache
, struct policy_work
*op
, struct bio
*bio
)
1537 struct dm_cache_migration
*mg
;
1539 if (!background_work_begin(cache
)) {
1540 policy_complete_background_work(cache
->policy
, op
, false);
1544 mg
= alloc_migration(cache
);
1546 policy_complete_background_work(cache
->policy
, op
, false);
1547 background_work_end(cache
);
1552 mg
->overwrite_bio
= bio
;
1555 inc_io_migrations(cache
);
1557 return mg_lock_writes(mg
);
1560 /*----------------------------------------------------------------
1561 * invalidation processing
1562 *--------------------------------------------------------------*/
1564 static void invalidate_complete(struct dm_cache_migration
*mg
, bool success
)
1566 struct bio_list bios
;
1567 struct cache
*cache
= mg
->cache
;
1569 bio_list_init(&bios
);
1570 if (dm_cell_unlock_v2(cache
->prison
, mg
->cell
, &bios
))
1571 free_prison_cell(cache
, mg
->cell
);
1573 if (!success
&& mg
->overwrite_bio
)
1574 bio_io_error(mg
->overwrite_bio
);
1577 defer_bios(cache
, &bios
);
1579 background_work_end(cache
);
1582 static void invalidate_completed(struct work_struct
*ws
)
1584 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1585 invalidate_complete(mg
, !mg
->k
.input
);
1588 static int invalidate_cblock(struct cache
*cache
, dm_cblock_t cblock
)
1590 int r
= policy_invalidate_mapping(cache
->policy
, cblock
);
1592 r
= dm_cache_remove_mapping(cache
->cmd
, cblock
);
1594 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1595 cache_device_name(cache
));
1596 metadata_operation_failed(cache
, "dm_cache_remove_mapping", r
);
1599 } else if (r
== -ENODATA
) {
1601 * Harmless, already unmapped.
1606 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache
));
1611 static void invalidate_remove(struct work_struct
*ws
)
1614 struct dm_cache_migration
*mg
= ws_to_mg(ws
);
1615 struct cache
*cache
= mg
->cache
;
1617 r
= invalidate_cblock(cache
, mg
->invalidate_cblock
);
1619 invalidate_complete(mg
, false);
1623 init_continuation(&mg
->k
, invalidate_completed
);
1624 continue_after_commit(&cache
->committer
, &mg
->k
);
1625 remap_to_origin_clear_discard(cache
, mg
->overwrite_bio
, mg
->invalidate_oblock
);
1626 mg
->overwrite_bio
= NULL
;
1627 schedule_commit(&cache
->committer
);
1630 static int invalidate_lock(struct dm_cache_migration
*mg
)
1633 struct dm_cell_key_v2 key
;
1634 struct cache
*cache
= mg
->cache
;
1635 struct dm_bio_prison_cell_v2
*prealloc
;
1637 prealloc
= alloc_prison_cell(cache
);
1639 invalidate_complete(mg
, false);
1643 build_key(mg
->invalidate_oblock
, oblock_succ(mg
->invalidate_oblock
), &key
);
1644 r
= dm_cell_lock_v2(cache
->prison
, &key
,
1645 READ_WRITE_LOCK_LEVEL
, prealloc
, &mg
->cell
);
1647 free_prison_cell(cache
, prealloc
);
1648 invalidate_complete(mg
, false);
1652 if (mg
->cell
!= prealloc
)
1653 free_prison_cell(cache
, prealloc
);
1656 quiesce(mg
, invalidate_remove
);
1660 * We can't call invalidate_remove() directly here because we
1661 * might still be in request context.
1663 init_continuation(&mg
->k
, invalidate_remove
);
1664 queue_work(cache
->wq
, &mg
->k
.ws
);
1670 static int invalidate_start(struct cache
*cache
, dm_cblock_t cblock
,
1671 dm_oblock_t oblock
, struct bio
*bio
)
1673 struct dm_cache_migration
*mg
;
1675 if (!background_work_begin(cache
))
1678 mg
= alloc_migration(cache
);
1680 background_work_end(cache
);
1684 mg
->overwrite_bio
= bio
;
1685 mg
->invalidate_cblock
= cblock
;
1686 mg
->invalidate_oblock
= oblock
;
1688 return invalidate_lock(mg
);
1691 /*----------------------------------------------------------------
1693 *--------------------------------------------------------------*/
1700 static enum busy
spare_migration_bandwidth(struct cache
*cache
)
1702 bool idle
= iot_idle_for(&cache
->tracker
, HZ
);
1703 sector_t current_volume
= (atomic_read(&cache
->nr_io_migrations
) + 1) *
1704 cache
->sectors_per_block
;
1706 if (idle
&& current_volume
<= cache
->migration_threshold
)
1712 static void inc_hit_counter(struct cache
*cache
, struct bio
*bio
)
1714 atomic_inc(bio_data_dir(bio
) == READ
?
1715 &cache
->stats
.read_hit
: &cache
->stats
.write_hit
);
1718 static void inc_miss_counter(struct cache
*cache
, struct bio
*bio
)
1720 atomic_inc(bio_data_dir(bio
) == READ
?
1721 &cache
->stats
.read_miss
: &cache
->stats
.write_miss
);
1724 /*----------------------------------------------------------------*/
1726 static int map_bio(struct cache
*cache
, struct bio
*bio
, dm_oblock_t block
,
1727 bool *commit_needed
)
1730 bool rb
, background_queued
;
1733 *commit_needed
= false;
1735 rb
= bio_detain_shared(cache
, block
, bio
);
1738 * An exclusive lock is held for this block, so we have to
1739 * wait. We set the commit_needed flag so the current
1740 * transaction will be committed asap, allowing this lock
1743 *commit_needed
= true;
1744 return DM_MAPIO_SUBMITTED
;
1747 data_dir
= bio_data_dir(bio
);
1749 if (optimisable_bio(cache
, bio
, block
)) {
1750 struct policy_work
*op
= NULL
;
1752 r
= policy_lookup_with_work(cache
->policy
, block
, &cblock
, data_dir
, true, &op
);
1753 if (unlikely(r
&& r
!= -ENOENT
)) {
1754 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1755 cache_device_name(cache
), r
);
1757 return DM_MAPIO_SUBMITTED
;
1760 if (r
== -ENOENT
&& op
) {
1761 bio_drop_shared_lock(cache
, bio
);
1762 BUG_ON(op
->op
!= POLICY_PROMOTE
);
1763 mg_start(cache
, op
, bio
);
1764 return DM_MAPIO_SUBMITTED
;
1767 r
= policy_lookup(cache
->policy
, block
, &cblock
, data_dir
, false, &background_queued
);
1768 if (unlikely(r
&& r
!= -ENOENT
)) {
1769 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1770 cache_device_name(cache
), r
);
1772 return DM_MAPIO_SUBMITTED
;
1775 if (background_queued
)
1776 wake_migration_worker(cache
);
1780 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1785 inc_miss_counter(cache
, bio
);
1786 if (pb
->req_nr
== 0) {
1787 accounted_begin(cache
, bio
);
1788 remap_to_origin_clear_discard(cache
, bio
, block
);
1791 * This is a duplicate writethrough io that is no
1792 * longer needed because the block has been demoted.
1795 return DM_MAPIO_SUBMITTED
;
1801 inc_hit_counter(cache
, bio
);
1804 * Passthrough always maps to the origin, invalidating any
1805 * cache blocks that are written to.
1807 if (passthrough_mode(cache
)) {
1808 if (bio_data_dir(bio
) == WRITE
) {
1809 bio_drop_shared_lock(cache
, bio
);
1810 atomic_inc(&cache
->stats
.demotion
);
1811 invalidate_start(cache
, cblock
, block
, bio
);
1813 remap_to_origin_clear_discard(cache
, bio
, block
);
1815 if (bio_data_dir(bio
) == WRITE
&& writethrough_mode(cache
) &&
1816 !is_dirty(cache
, cblock
)) {
1817 remap_to_origin_and_cache(cache
, bio
, block
, cblock
);
1818 accounted_begin(cache
, bio
);
1820 remap_to_cache_dirty(cache
, bio
, block
, cblock
);
1825 * dm core turns FUA requests into a separate payload and FLUSH req.
1827 if (bio
->bi_opf
& REQ_FUA
) {
1829 * issue_after_commit will call accounted_begin a second time. So
1830 * we call accounted_complete() to avoid double accounting.
1832 accounted_complete(cache
, bio
);
1833 issue_after_commit(&cache
->committer
, bio
);
1834 *commit_needed
= true;
1835 return DM_MAPIO_SUBMITTED
;
1838 return DM_MAPIO_REMAPPED
;
1841 static bool process_bio(struct cache
*cache
, struct bio
*bio
)
1845 if (map_bio(cache
, bio
, get_bio_block(cache
, bio
), &commit_needed
) == DM_MAPIO_REMAPPED
)
1846 generic_make_request(bio
);
1848 return commit_needed
;
1852 * A non-zero return indicates read_only or fail_io mode.
1854 static int commit(struct cache
*cache
, bool clean_shutdown
)
1858 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
1861 atomic_inc(&cache
->stats
.commit_count
);
1862 r
= dm_cache_commit(cache
->cmd
, clean_shutdown
);
1864 metadata_operation_failed(cache
, "dm_cache_commit", r
);
1870 * Used by the batcher.
1872 static blk_status_t
commit_op(void *context
)
1874 struct cache
*cache
= context
;
1876 if (dm_cache_changed_this_transaction(cache
->cmd
))
1877 return errno_to_blk_status(commit(cache
, false));
1882 /*----------------------------------------------------------------*/
1884 static bool process_flush_bio(struct cache
*cache
, struct bio
*bio
)
1886 struct per_bio_data
*pb
= get_per_bio_data(bio
);
1889 remap_to_origin(cache
, bio
);
1891 remap_to_cache(cache
, bio
, 0);
1893 issue_after_commit(&cache
->committer
, bio
);
1897 static bool process_discard_bio(struct cache
*cache
, struct bio
*bio
)
1901 // FIXME: do we need to lock the region? Or can we just assume the
1902 // user wont be so foolish as to issue discard concurrently with
1904 calc_discard_block_range(cache
, bio
, &b
, &e
);
1906 set_discard(cache
, b
);
1907 b
= to_dblock(from_dblock(b
) + 1);
1915 static void process_deferred_bios(struct work_struct
*ws
)
1917 struct cache
*cache
= container_of(ws
, struct cache
, deferred_bio_worker
);
1919 unsigned long flags
;
1920 bool commit_needed
= false;
1921 struct bio_list bios
;
1924 bio_list_init(&bios
);
1926 spin_lock_irqsave(&cache
->lock
, flags
);
1927 bio_list_merge(&bios
, &cache
->deferred_bios
);
1928 bio_list_init(&cache
->deferred_bios
);
1929 spin_unlock_irqrestore(&cache
->lock
, flags
);
1931 while ((bio
= bio_list_pop(&bios
))) {
1932 if (bio
->bi_opf
& REQ_PREFLUSH
)
1933 commit_needed
= process_flush_bio(cache
, bio
) || commit_needed
;
1935 else if (bio_op(bio
) == REQ_OP_DISCARD
)
1936 commit_needed
= process_discard_bio(cache
, bio
) || commit_needed
;
1939 commit_needed
= process_bio(cache
, bio
) || commit_needed
;
1943 schedule_commit(&cache
->committer
);
1946 /*----------------------------------------------------------------
1948 *--------------------------------------------------------------*/
1950 static void requeue_deferred_bios(struct cache
*cache
)
1953 struct bio_list bios
;
1955 bio_list_init(&bios
);
1956 bio_list_merge(&bios
, &cache
->deferred_bios
);
1957 bio_list_init(&cache
->deferred_bios
);
1959 while ((bio
= bio_list_pop(&bios
))) {
1960 bio
->bi_status
= BLK_STS_DM_REQUEUE
;
1966 * We want to commit periodically so that not too much
1967 * unwritten metadata builds up.
1969 static void do_waker(struct work_struct
*ws
)
1971 struct cache
*cache
= container_of(to_delayed_work(ws
), struct cache
, waker
);
1973 policy_tick(cache
->policy
, true);
1974 wake_migration_worker(cache
);
1975 schedule_commit(&cache
->committer
);
1976 queue_delayed_work(cache
->wq
, &cache
->waker
, COMMIT_PERIOD
);
1979 static void check_migrations(struct work_struct
*ws
)
1982 struct policy_work
*op
;
1983 struct cache
*cache
= container_of(ws
, struct cache
, migration_worker
);
1987 b
= spare_migration_bandwidth(cache
);
1989 r
= policy_get_background_work(cache
->policy
, b
== IDLE
, &op
);
1994 DMERR_LIMIT("%s: policy_background_work failed",
1995 cache_device_name(cache
));
1999 r
= mg_start(cache
, op
, NULL
);
2005 /*----------------------------------------------------------------
2007 *--------------------------------------------------------------*/
2010 * This function gets called on the error paths of the constructor, so we
2011 * have to cope with a partially initialised struct.
2013 static void destroy(struct cache
*cache
)
2017 mempool_exit(&cache
->migration_pool
);
2020 dm_bio_prison_destroy_v2(cache
->prison
);
2023 destroy_workqueue(cache
->wq
);
2025 if (cache
->dirty_bitset
)
2026 free_bitset(cache
->dirty_bitset
);
2028 if (cache
->discard_bitset
)
2029 free_bitset(cache
->discard_bitset
);
2032 dm_kcopyd_client_destroy(cache
->copier
);
2035 dm_cache_metadata_close(cache
->cmd
);
2037 if (cache
->metadata_dev
)
2038 dm_put_device(cache
->ti
, cache
->metadata_dev
);
2040 if (cache
->origin_dev
)
2041 dm_put_device(cache
->ti
, cache
->origin_dev
);
2043 if (cache
->cache_dev
)
2044 dm_put_device(cache
->ti
, cache
->cache_dev
);
2047 dm_cache_policy_destroy(cache
->policy
);
2049 for (i
= 0; i
< cache
->nr_ctr_args
; i
++)
2050 kfree(cache
->ctr_args
[i
]);
2051 kfree(cache
->ctr_args
);
2053 bioset_exit(&cache
->bs
);
2058 static void cache_dtr(struct dm_target
*ti
)
2060 struct cache
*cache
= ti
->private;
2065 static sector_t
get_dev_size(struct dm_dev
*dev
)
2067 return i_size_read(dev
->bdev
->bd_inode
) >> SECTOR_SHIFT
;
2070 /*----------------------------------------------------------------*/
2073 * Construct a cache device mapping.
2075 * cache <metadata dev> <cache dev> <origin dev> <block size>
2076 * <#feature args> [<feature arg>]*
2077 * <policy> <#policy args> [<policy arg>]*
2079 * metadata dev : fast device holding the persistent metadata
2080 * cache dev : fast device holding cached data blocks
2081 * origin dev : slow device holding original data blocks
2082 * block size : cache unit size in sectors
2084 * #feature args : number of feature arguments passed
2085 * feature args : writethrough. (The default is writeback.)
2087 * policy : the replacement policy to use
2088 * #policy args : an even number of policy arguments corresponding
2089 * to key/value pairs passed to the policy
2090 * policy args : key/value pairs passed to the policy
2091 * E.g. 'sequential_threshold 1024'
2092 * See cache-policies.txt for details.
2094 * Optional feature arguments are:
2095 * writethrough : write through caching that prohibits cache block
2096 * content from being different from origin block content.
2097 * Without this argument, the default behaviour is to write
2098 * back cache block contents later for performance reasons,
2099 * so they may differ from the corresponding origin blocks.
2102 struct dm_target
*ti
;
2104 struct dm_dev
*metadata_dev
;
2106 struct dm_dev
*cache_dev
;
2107 sector_t cache_sectors
;
2109 struct dm_dev
*origin_dev
;
2110 sector_t origin_sectors
;
2112 uint32_t block_size
;
2114 const char *policy_name
;
2116 const char **policy_argv
;
2118 struct cache_features features
;
2121 static void destroy_cache_args(struct cache_args
*ca
)
2123 if (ca
->metadata_dev
)
2124 dm_put_device(ca
->ti
, ca
->metadata_dev
);
2127 dm_put_device(ca
->ti
, ca
->cache_dev
);
2130 dm_put_device(ca
->ti
, ca
->origin_dev
);
2135 static bool at_least_one_arg(struct dm_arg_set
*as
, char **error
)
2138 *error
= "Insufficient args";
2145 static int parse_metadata_dev(struct cache_args
*ca
, struct dm_arg_set
*as
,
2149 sector_t metadata_dev_size
;
2150 char b
[BDEVNAME_SIZE
];
2152 if (!at_least_one_arg(as
, error
))
2155 r
= dm_get_device(ca
->ti
, dm_shift_arg(as
), FMODE_READ
| FMODE_WRITE
,
2158 *error
= "Error opening metadata device";
2162 metadata_dev_size
= get_dev_size(ca
->metadata_dev
);
2163 if (metadata_dev_size
> DM_CACHE_METADATA_MAX_SECTORS_WARNING
)
2164 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2165 bdevname(ca
->metadata_dev
->bdev
, b
), THIN_METADATA_MAX_SECTORS
);
2170 static int parse_cache_dev(struct cache_args
*ca
, struct dm_arg_set
*as
,
2175 if (!at_least_one_arg(as
, error
))
2178 r
= dm_get_device(ca
->ti
, dm_shift_arg(as
), FMODE_READ
| FMODE_WRITE
,
2181 *error
= "Error opening cache device";
2184 ca
->cache_sectors
= get_dev_size(ca
->cache_dev
);
2189 static int parse_origin_dev(struct cache_args
*ca
, struct dm_arg_set
*as
,
2194 if (!at_least_one_arg(as
, error
))
2197 r
= dm_get_device(ca
->ti
, dm_shift_arg(as
), FMODE_READ
| FMODE_WRITE
,
2200 *error
= "Error opening origin device";
2204 ca
->origin_sectors
= get_dev_size(ca
->origin_dev
);
2205 if (ca
->ti
->len
> ca
->origin_sectors
) {
2206 *error
= "Device size larger than cached device";
2213 static int parse_block_size(struct cache_args
*ca
, struct dm_arg_set
*as
,
2216 unsigned long block_size
;
2218 if (!at_least_one_arg(as
, error
))
2221 if (kstrtoul(dm_shift_arg(as
), 10, &block_size
) || !block_size
||
2222 block_size
< DATA_DEV_BLOCK_SIZE_MIN_SECTORS
||
2223 block_size
> DATA_DEV_BLOCK_SIZE_MAX_SECTORS
||
2224 block_size
& (DATA_DEV_BLOCK_SIZE_MIN_SECTORS
- 1)) {
2225 *error
= "Invalid data block size";
2229 if (block_size
> ca
->cache_sectors
) {
2230 *error
= "Data block size is larger than the cache device";
2234 ca
->block_size
= block_size
;
2239 static void init_features(struct cache_features
*cf
)
2241 cf
->mode
= CM_WRITE
;
2242 cf
->io_mode
= CM_IO_WRITEBACK
;
2243 cf
->metadata_version
= 1;
2246 static int parse_features(struct cache_args
*ca
, struct dm_arg_set
*as
,
2249 static const struct dm_arg _args
[] = {
2250 {0, 2, "Invalid number of cache feature arguments"},
2256 struct cache_features
*cf
= &ca
->features
;
2260 r
= dm_read_arg_group(_args
, as
, &argc
, error
);
2265 arg
= dm_shift_arg(as
);
2267 if (!strcasecmp(arg
, "writeback"))
2268 cf
->io_mode
= CM_IO_WRITEBACK
;
2270 else if (!strcasecmp(arg
, "writethrough"))
2271 cf
->io_mode
= CM_IO_WRITETHROUGH
;
2273 else if (!strcasecmp(arg
, "passthrough"))
2274 cf
->io_mode
= CM_IO_PASSTHROUGH
;
2276 else if (!strcasecmp(arg
, "metadata2"))
2277 cf
->metadata_version
= 2;
2280 *error
= "Unrecognised cache feature requested";
2288 static int parse_policy(struct cache_args
*ca
, struct dm_arg_set
*as
,
2291 static const struct dm_arg _args
[] = {
2292 {0, 1024, "Invalid number of policy arguments"},
2297 if (!at_least_one_arg(as
, error
))
2300 ca
->policy_name
= dm_shift_arg(as
);
2302 r
= dm_read_arg_group(_args
, as
, &ca
->policy_argc
, error
);
2306 ca
->policy_argv
= (const char **)as
->argv
;
2307 dm_consume_args(as
, ca
->policy_argc
);
2312 static int parse_cache_args(struct cache_args
*ca
, int argc
, char **argv
,
2316 struct dm_arg_set as
;
2321 r
= parse_metadata_dev(ca
, &as
, error
);
2325 r
= parse_cache_dev(ca
, &as
, error
);
2329 r
= parse_origin_dev(ca
, &as
, error
);
2333 r
= parse_block_size(ca
, &as
, error
);
2337 r
= parse_features(ca
, &as
, error
);
2341 r
= parse_policy(ca
, &as
, error
);
2348 /*----------------------------------------------------------------*/
2350 static struct kmem_cache
*migration_cache
;
2352 #define NOT_CORE_OPTION 1
2354 static int process_config_option(struct cache
*cache
, const char *key
, const char *value
)
2358 if (!strcasecmp(key
, "migration_threshold")) {
2359 if (kstrtoul(value
, 10, &tmp
))
2362 cache
->migration_threshold
= tmp
;
2366 return NOT_CORE_OPTION
;
2369 static int set_config_value(struct cache
*cache
, const char *key
, const char *value
)
2371 int r
= process_config_option(cache
, key
, value
);
2373 if (r
== NOT_CORE_OPTION
)
2374 r
= policy_set_config_value(cache
->policy
, key
, value
);
2377 DMWARN("bad config value for %s: %s", key
, value
);
2382 static int set_config_values(struct cache
*cache
, int argc
, const char **argv
)
2387 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2392 r
= set_config_value(cache
, argv
[0], argv
[1]);
2403 static int create_cache_policy(struct cache
*cache
, struct cache_args
*ca
,
2406 struct dm_cache_policy
*p
= dm_cache_policy_create(ca
->policy_name
,
2408 cache
->origin_sectors
,
2409 cache
->sectors_per_block
);
2411 *error
= "Error creating cache's policy";
2415 BUG_ON(!cache
->policy
);
2421 * We want the discard block size to be at least the size of the cache
2422 * block size and have no more than 2^14 discard blocks across the origin.
2424 #define MAX_DISCARD_BLOCKS (1 << 14)
2426 static bool too_many_discard_blocks(sector_t discard_block_size
,
2427 sector_t origin_size
)
2429 (void) sector_div(origin_size
, discard_block_size
);
2431 return origin_size
> MAX_DISCARD_BLOCKS
;
2434 static sector_t
calculate_discard_block_size(sector_t cache_block_size
,
2435 sector_t origin_size
)
2437 sector_t discard_block_size
= cache_block_size
;
2440 while (too_many_discard_blocks(discard_block_size
, origin_size
))
2441 discard_block_size
*= 2;
2443 return discard_block_size
;
2446 static void set_cache_size(struct cache
*cache
, dm_cblock_t size
)
2448 dm_block_t nr_blocks
= from_cblock(size
);
2450 if (nr_blocks
> (1 << 20) && cache
->cache_size
!= size
)
2451 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2452 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2453 "Please consider increasing the cache block size to reduce the overall cache block count.",
2454 (unsigned long long) nr_blocks
);
2456 cache
->cache_size
= size
;
2459 static int is_congested(struct dm_dev
*dev
, int bdi_bits
)
2461 struct request_queue
*q
= bdev_get_queue(dev
->bdev
);
2462 return bdi_congested(q
->backing_dev_info
, bdi_bits
);
2465 static int cache_is_congested(struct dm_target_callbacks
*cb
, int bdi_bits
)
2467 struct cache
*cache
= container_of(cb
, struct cache
, callbacks
);
2469 return is_congested(cache
->origin_dev
, bdi_bits
) ||
2470 is_congested(cache
->cache_dev
, bdi_bits
);
2473 #define DEFAULT_MIGRATION_THRESHOLD 2048
2475 static int cache_create(struct cache_args
*ca
, struct cache
**result
)
2478 char **error
= &ca
->ti
->error
;
2479 struct cache
*cache
;
2480 struct dm_target
*ti
= ca
->ti
;
2481 dm_block_t origin_blocks
;
2482 struct dm_cache_metadata
*cmd
;
2483 bool may_format
= ca
->features
.mode
== CM_WRITE
;
2485 cache
= kzalloc(sizeof(*cache
), GFP_KERNEL
);
2490 ti
->private = cache
;
2491 ti
->num_flush_bios
= 2;
2492 ti
->flush_supported
= true;
2494 ti
->num_discard_bios
= 1;
2495 ti
->discards_supported
= true;
2496 ti
->split_discard_bios
= false;
2498 ti
->per_io_data_size
= sizeof(struct per_bio_data
);
2500 cache
->features
= ca
->features
;
2501 if (writethrough_mode(cache
)) {
2502 /* Create bioset for writethrough bios issued to origin */
2503 r
= bioset_init(&cache
->bs
, BIO_POOL_SIZE
, 0, 0);
2508 cache
->callbacks
.congested_fn
= cache_is_congested
;
2509 dm_table_add_target_callbacks(ti
->table
, &cache
->callbacks
);
2511 cache
->metadata_dev
= ca
->metadata_dev
;
2512 cache
->origin_dev
= ca
->origin_dev
;
2513 cache
->cache_dev
= ca
->cache_dev
;
2515 ca
->metadata_dev
= ca
->origin_dev
= ca
->cache_dev
= NULL
;
2517 origin_blocks
= cache
->origin_sectors
= ca
->origin_sectors
;
2518 origin_blocks
= block_div(origin_blocks
, ca
->block_size
);
2519 cache
->origin_blocks
= to_oblock(origin_blocks
);
2521 cache
->sectors_per_block
= ca
->block_size
;
2522 if (dm_set_target_max_io_len(ti
, cache
->sectors_per_block
)) {
2527 if (ca
->block_size
& (ca
->block_size
- 1)) {
2528 dm_block_t cache_size
= ca
->cache_sectors
;
2530 cache
->sectors_per_block_shift
= -1;
2531 cache_size
= block_div(cache_size
, ca
->block_size
);
2532 set_cache_size(cache
, to_cblock(cache_size
));
2534 cache
->sectors_per_block_shift
= __ffs(ca
->block_size
);
2535 set_cache_size(cache
, to_cblock(ca
->cache_sectors
>> cache
->sectors_per_block_shift
));
2538 r
= create_cache_policy(cache
, ca
, error
);
2542 cache
->policy_nr_args
= ca
->policy_argc
;
2543 cache
->migration_threshold
= DEFAULT_MIGRATION_THRESHOLD
;
2545 r
= set_config_values(cache
, ca
->policy_argc
, ca
->policy_argv
);
2547 *error
= "Error setting cache policy's config values";
2551 cmd
= dm_cache_metadata_open(cache
->metadata_dev
->bdev
,
2552 ca
->block_size
, may_format
,
2553 dm_cache_policy_get_hint_size(cache
->policy
),
2554 ca
->features
.metadata_version
);
2556 *error
= "Error creating metadata object";
2561 set_cache_mode(cache
, CM_WRITE
);
2562 if (get_cache_mode(cache
) != CM_WRITE
) {
2563 *error
= "Unable to get write access to metadata, please check/repair metadata.";
2568 if (passthrough_mode(cache
)) {
2571 r
= dm_cache_metadata_all_clean(cache
->cmd
, &all_clean
);
2573 *error
= "dm_cache_metadata_all_clean() failed";
2578 *error
= "Cannot enter passthrough mode unless all blocks are clean";
2583 policy_allow_migrations(cache
->policy
, false);
2586 spin_lock_init(&cache
->lock
);
2587 bio_list_init(&cache
->deferred_bios
);
2588 atomic_set(&cache
->nr_allocated_migrations
, 0);
2589 atomic_set(&cache
->nr_io_migrations
, 0);
2590 init_waitqueue_head(&cache
->migration_wait
);
2593 atomic_set(&cache
->nr_dirty
, 0);
2594 cache
->dirty_bitset
= alloc_bitset(from_cblock(cache
->cache_size
));
2595 if (!cache
->dirty_bitset
) {
2596 *error
= "could not allocate dirty bitset";
2599 clear_bitset(cache
->dirty_bitset
, from_cblock(cache
->cache_size
));
2601 cache
->discard_block_size
=
2602 calculate_discard_block_size(cache
->sectors_per_block
,
2603 cache
->origin_sectors
);
2604 cache
->discard_nr_blocks
= to_dblock(dm_sector_div_up(cache
->origin_sectors
,
2605 cache
->discard_block_size
));
2606 cache
->discard_bitset
= alloc_bitset(from_dblock(cache
->discard_nr_blocks
));
2607 if (!cache
->discard_bitset
) {
2608 *error
= "could not allocate discard bitset";
2611 clear_bitset(cache
->discard_bitset
, from_dblock(cache
->discard_nr_blocks
));
2613 cache
->copier
= dm_kcopyd_client_create(&dm_kcopyd_throttle
);
2614 if (IS_ERR(cache
->copier
)) {
2615 *error
= "could not create kcopyd client";
2616 r
= PTR_ERR(cache
->copier
);
2620 cache
->wq
= alloc_workqueue("dm-" DM_MSG_PREFIX
, WQ_MEM_RECLAIM
, 0);
2622 *error
= "could not create workqueue for metadata object";
2625 INIT_WORK(&cache
->deferred_bio_worker
, process_deferred_bios
);
2626 INIT_WORK(&cache
->migration_worker
, check_migrations
);
2627 INIT_DELAYED_WORK(&cache
->waker
, do_waker
);
2629 cache
->prison
= dm_bio_prison_create_v2(cache
->wq
);
2630 if (!cache
->prison
) {
2631 *error
= "could not create bio prison";
2635 r
= mempool_init_slab_pool(&cache
->migration_pool
, MIGRATION_POOL_SIZE
,
2638 *error
= "Error creating cache's migration mempool";
2642 cache
->need_tick_bio
= true;
2643 cache
->sized
= false;
2644 cache
->invalidate
= false;
2645 cache
->commit_requested
= false;
2646 cache
->loaded_mappings
= false;
2647 cache
->loaded_discards
= false;
2651 atomic_set(&cache
->stats
.demotion
, 0);
2652 atomic_set(&cache
->stats
.promotion
, 0);
2653 atomic_set(&cache
->stats
.copies_avoided
, 0);
2654 atomic_set(&cache
->stats
.cache_cell_clash
, 0);
2655 atomic_set(&cache
->stats
.commit_count
, 0);
2656 atomic_set(&cache
->stats
.discard_count
, 0);
2658 spin_lock_init(&cache
->invalidation_lock
);
2659 INIT_LIST_HEAD(&cache
->invalidation_requests
);
2661 batcher_init(&cache
->committer
, commit_op
, cache
,
2662 issue_op
, cache
, cache
->wq
);
2663 iot_init(&cache
->tracker
);
2665 init_rwsem(&cache
->background_work_lock
);
2666 prevent_background_work(cache
);
2675 static int copy_ctr_args(struct cache
*cache
, int argc
, const char **argv
)
2680 copy
= kcalloc(argc
, sizeof(*copy
), GFP_KERNEL
);
2683 for (i
= 0; i
< argc
; i
++) {
2684 copy
[i
] = kstrdup(argv
[i
], GFP_KERNEL
);
2693 cache
->nr_ctr_args
= argc
;
2694 cache
->ctr_args
= copy
;
2699 static int cache_ctr(struct dm_target
*ti
, unsigned argc
, char **argv
)
2702 struct cache_args
*ca
;
2703 struct cache
*cache
= NULL
;
2705 ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
2707 ti
->error
= "Error allocating memory for cache";
2712 r
= parse_cache_args(ca
, argc
, argv
, &ti
->error
);
2716 r
= cache_create(ca
, &cache
);
2720 r
= copy_ctr_args(cache
, argc
- 3, (const char **)argv
+ 3);
2726 ti
->private = cache
;
2728 destroy_cache_args(ca
);
2732 /*----------------------------------------------------------------*/
2734 static int cache_map(struct dm_target
*ti
, struct bio
*bio
)
2736 struct cache
*cache
= ti
->private;
2740 dm_oblock_t block
= get_bio_block(cache
, bio
);
2742 init_per_bio_data(bio
);
2743 if (unlikely(from_oblock(block
) >= from_oblock(cache
->origin_blocks
))) {
2745 * This can only occur if the io goes to a partial block at
2746 * the end of the origin device. We don't cache these.
2747 * Just remap to the origin and carry on.
2749 remap_to_origin(cache
, bio
);
2750 accounted_begin(cache
, bio
);
2751 return DM_MAPIO_REMAPPED
;
2754 if (discard_or_flush(bio
)) {
2755 defer_bio(cache
, bio
);
2756 return DM_MAPIO_SUBMITTED
;
2759 r
= map_bio(cache
, bio
, block
, &commit_needed
);
2761 schedule_commit(&cache
->committer
);
2766 static int cache_end_io(struct dm_target
*ti
, struct bio
*bio
, blk_status_t
*error
)
2768 struct cache
*cache
= ti
->private;
2769 unsigned long flags
;
2770 struct per_bio_data
*pb
= get_per_bio_data(bio
);
2773 policy_tick(cache
->policy
, false);
2775 spin_lock_irqsave(&cache
->lock
, flags
);
2776 cache
->need_tick_bio
= true;
2777 spin_unlock_irqrestore(&cache
->lock
, flags
);
2780 bio_drop_shared_lock(cache
, bio
);
2781 accounted_complete(cache
, bio
);
2783 return DM_ENDIO_DONE
;
2786 static int write_dirty_bitset(struct cache
*cache
)
2790 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
2793 r
= dm_cache_set_dirty_bits(cache
->cmd
, from_cblock(cache
->cache_size
), cache
->dirty_bitset
);
2795 metadata_operation_failed(cache
, "dm_cache_set_dirty_bits", r
);
2800 static int write_discard_bitset(struct cache
*cache
)
2804 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
2807 r
= dm_cache_discard_bitset_resize(cache
->cmd
, cache
->discard_block_size
,
2808 cache
->discard_nr_blocks
);
2810 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache
));
2811 metadata_operation_failed(cache
, "dm_cache_discard_bitset_resize", r
);
2815 for (i
= 0; i
< from_dblock(cache
->discard_nr_blocks
); i
++) {
2816 r
= dm_cache_set_discard(cache
->cmd
, to_dblock(i
),
2817 is_discarded(cache
, to_dblock(i
)));
2819 metadata_operation_failed(cache
, "dm_cache_set_discard", r
);
2827 static int write_hints(struct cache
*cache
)
2831 if (get_cache_mode(cache
) >= CM_READ_ONLY
)
2834 r
= dm_cache_write_hints(cache
->cmd
, cache
->policy
);
2836 metadata_operation_failed(cache
, "dm_cache_write_hints", r
);
2844 * returns true on success
2846 static bool sync_metadata(struct cache
*cache
)
2850 r1
= write_dirty_bitset(cache
);
2852 DMERR("%s: could not write dirty bitset", cache_device_name(cache
));
2854 r2
= write_discard_bitset(cache
);
2856 DMERR("%s: could not write discard bitset", cache_device_name(cache
));
2860 r3
= write_hints(cache
);
2862 DMERR("%s: could not write hints", cache_device_name(cache
));
2865 * If writing the above metadata failed, we still commit, but don't
2866 * set the clean shutdown flag. This will effectively force every
2867 * dirty bit to be set on reload.
2869 r4
= commit(cache
, !r1
&& !r2
&& !r3
);
2871 DMERR("%s: could not write cache metadata", cache_device_name(cache
));
2873 return !r1
&& !r2
&& !r3
&& !r4
;
2876 static void cache_postsuspend(struct dm_target
*ti
)
2878 struct cache
*cache
= ti
->private;
2880 prevent_background_work(cache
);
2881 BUG_ON(atomic_read(&cache
->nr_io_migrations
));
2883 cancel_delayed_work(&cache
->waker
);
2884 flush_workqueue(cache
->wq
);
2885 WARN_ON(cache
->tracker
.in_flight
);
2888 * If it's a flush suspend there won't be any deferred bios, so this
2891 requeue_deferred_bios(cache
);
2893 if (get_cache_mode(cache
) == CM_WRITE
)
2894 (void) sync_metadata(cache
);
2897 static int load_mapping(void *context
, dm_oblock_t oblock
, dm_cblock_t cblock
,
2898 bool dirty
, uint32_t hint
, bool hint_valid
)
2901 struct cache
*cache
= context
;
2904 set_bit(from_cblock(cblock
), cache
->dirty_bitset
);
2905 atomic_inc(&cache
->nr_dirty
);
2907 clear_bit(from_cblock(cblock
), cache
->dirty_bitset
);
2909 r
= policy_load_mapping(cache
->policy
, oblock
, cblock
, dirty
, hint
, hint_valid
);
2917 * The discard block size in the on disk metadata is not
2918 * neccessarily the same as we're currently using. So we have to
2919 * be careful to only set the discarded attribute if we know it
2920 * covers a complete block of the new size.
2922 struct discard_load_info
{
2923 struct cache
*cache
;
2926 * These blocks are sized using the on disk dblock size, rather
2927 * than the current one.
2929 dm_block_t block_size
;
2930 dm_block_t discard_begin
, discard_end
;
2933 static void discard_load_info_init(struct cache
*cache
,
2934 struct discard_load_info
*li
)
2937 li
->discard_begin
= li
->discard_end
= 0;
2940 static void set_discard_range(struct discard_load_info
*li
)
2944 if (li
->discard_begin
== li
->discard_end
)
2948 * Convert to sectors.
2950 b
= li
->discard_begin
* li
->block_size
;
2951 e
= li
->discard_end
* li
->block_size
;
2954 * Then convert back to the current dblock size.
2956 b
= dm_sector_div_up(b
, li
->cache
->discard_block_size
);
2957 sector_div(e
, li
->cache
->discard_block_size
);
2960 * The origin may have shrunk, so we need to check we're still in
2963 if (e
> from_dblock(li
->cache
->discard_nr_blocks
))
2964 e
= from_dblock(li
->cache
->discard_nr_blocks
);
2967 set_discard(li
->cache
, to_dblock(b
));
2970 static int load_discard(void *context
, sector_t discard_block_size
,
2971 dm_dblock_t dblock
, bool discard
)
2973 struct discard_load_info
*li
= context
;
2975 li
->block_size
= discard_block_size
;
2978 if (from_dblock(dblock
) == li
->discard_end
)
2980 * We're already in a discard range, just extend it.
2982 li
->discard_end
= li
->discard_end
+ 1ULL;
2986 * Emit the old range and start a new one.
2988 set_discard_range(li
);
2989 li
->discard_begin
= from_dblock(dblock
);
2990 li
->discard_end
= li
->discard_begin
+ 1ULL;
2993 set_discard_range(li
);
2994 li
->discard_begin
= li
->discard_end
= 0;
3000 static dm_cblock_t
get_cache_dev_size(struct cache
*cache
)
3002 sector_t size
= get_dev_size(cache
->cache_dev
);
3003 (void) sector_div(size
, cache
->sectors_per_block
);
3004 return to_cblock(size
);
3007 static bool can_resize(struct cache
*cache
, dm_cblock_t new_size
)
3009 if (from_cblock(new_size
) > from_cblock(cache
->cache_size
))
3013 * We can't drop a dirty block when shrinking the cache.
3015 while (from_cblock(new_size
) < from_cblock(cache
->cache_size
)) {
3016 new_size
= to_cblock(from_cblock(new_size
) + 1);
3017 if (is_dirty(cache
, new_size
)) {
3018 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3019 cache_device_name(cache
),
3020 (unsigned long long) from_cblock(new_size
));
3028 static int resize_cache_dev(struct cache
*cache
, dm_cblock_t new_size
)
3032 r
= dm_cache_resize(cache
->cmd
, new_size
);
3034 DMERR("%s: could not resize cache metadata", cache_device_name(cache
));
3035 metadata_operation_failed(cache
, "dm_cache_resize", r
);
3039 set_cache_size(cache
, new_size
);
3044 static int cache_preresume(struct dm_target
*ti
)
3047 struct cache
*cache
= ti
->private;
3048 dm_cblock_t csize
= get_cache_dev_size(cache
);
3051 * Check to see if the cache has resized.
3053 if (!cache
->sized
) {
3054 r
= resize_cache_dev(cache
, csize
);
3058 cache
->sized
= true;
3060 } else if (csize
!= cache
->cache_size
) {
3061 if (!can_resize(cache
, csize
))
3064 r
= resize_cache_dev(cache
, csize
);
3069 if (!cache
->loaded_mappings
) {
3070 r
= dm_cache_load_mappings(cache
->cmd
, cache
->policy
,
3071 load_mapping
, cache
);
3073 DMERR("%s: could not load cache mappings", cache_device_name(cache
));
3074 metadata_operation_failed(cache
, "dm_cache_load_mappings", r
);
3078 cache
->loaded_mappings
= true;
3081 if (!cache
->loaded_discards
) {
3082 struct discard_load_info li
;
3085 * The discard bitset could have been resized, or the
3086 * discard block size changed. To be safe we start by
3087 * setting every dblock to not discarded.
3089 clear_bitset(cache
->discard_bitset
, from_dblock(cache
->discard_nr_blocks
));
3091 discard_load_info_init(cache
, &li
);
3092 r
= dm_cache_load_discards(cache
->cmd
, load_discard
, &li
);
3094 DMERR("%s: could not load origin discards", cache_device_name(cache
));
3095 metadata_operation_failed(cache
, "dm_cache_load_discards", r
);
3098 set_discard_range(&li
);
3100 cache
->loaded_discards
= true;
3106 static void cache_resume(struct dm_target
*ti
)
3108 struct cache
*cache
= ti
->private;
3110 cache
->need_tick_bio
= true;
3111 allow_background_work(cache
);
3112 do_waker(&cache
->waker
.work
);
3118 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3119 * <cache block size> <#used cache blocks>/<#total cache blocks>
3120 * <#read hits> <#read misses> <#write hits> <#write misses>
3121 * <#demotions> <#promotions> <#dirty>
3122 * <#features> <features>*
3123 * <#core args> <core args>
3124 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3126 static void cache_status(struct dm_target
*ti
, status_type_t type
,
3127 unsigned status_flags
, char *result
, unsigned maxlen
)
3132 dm_block_t nr_free_blocks_metadata
= 0;
3133 dm_block_t nr_blocks_metadata
= 0;
3134 char buf
[BDEVNAME_SIZE
];
3135 struct cache
*cache
= ti
->private;
3136 dm_cblock_t residency
;
3140 case STATUSTYPE_INFO
:
3141 if (get_cache_mode(cache
) == CM_FAIL
) {
3146 /* Commit to ensure statistics aren't out-of-date */
3147 if (!(status_flags
& DM_STATUS_NOFLUSH_FLAG
) && !dm_suspended(ti
))
3148 (void) commit(cache
, false);
3150 r
= dm_cache_get_free_metadata_block_count(cache
->cmd
, &nr_free_blocks_metadata
);
3152 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3153 cache_device_name(cache
), r
);
3157 r
= dm_cache_get_metadata_dev_size(cache
->cmd
, &nr_blocks_metadata
);
3159 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3160 cache_device_name(cache
), r
);
3164 residency
= policy_residency(cache
->policy
);
3166 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3167 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE
,
3168 (unsigned long long)(nr_blocks_metadata
- nr_free_blocks_metadata
),
3169 (unsigned long long)nr_blocks_metadata
,
3170 (unsigned long long)cache
->sectors_per_block
,
3171 (unsigned long long) from_cblock(residency
),
3172 (unsigned long long) from_cblock(cache
->cache_size
),
3173 (unsigned) atomic_read(&cache
->stats
.read_hit
),
3174 (unsigned) atomic_read(&cache
->stats
.read_miss
),
3175 (unsigned) atomic_read(&cache
->stats
.write_hit
),
3176 (unsigned) atomic_read(&cache
->stats
.write_miss
),
3177 (unsigned) atomic_read(&cache
->stats
.demotion
),
3178 (unsigned) atomic_read(&cache
->stats
.promotion
),
3179 (unsigned long) atomic_read(&cache
->nr_dirty
));
3181 if (cache
->features
.metadata_version
== 2)
3182 DMEMIT("2 metadata2 ");
3186 if (writethrough_mode(cache
))
3187 DMEMIT("writethrough ");
3189 else if (passthrough_mode(cache
))
3190 DMEMIT("passthrough ");
3192 else if (writeback_mode(cache
))
3193 DMEMIT("writeback ");
3196 DMERR("%s: internal error: unknown io mode: %d",
3197 cache_device_name(cache
), (int) cache
->features
.io_mode
);
3201 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache
->migration_threshold
);
3203 DMEMIT("%s ", dm_cache_policy_get_name(cache
->policy
));
3205 r
= policy_emit_config_values(cache
->policy
, result
, maxlen
, &sz
);
3207 DMERR("%s: policy_emit_config_values returned %d",
3208 cache_device_name(cache
), r
);
3211 if (get_cache_mode(cache
) == CM_READ_ONLY
)
3216 r
= dm_cache_metadata_needs_check(cache
->cmd
, &needs_check
);
3218 if (r
|| needs_check
)
3219 DMEMIT("needs_check ");
3225 case STATUSTYPE_TABLE
:
3226 format_dev_t(buf
, cache
->metadata_dev
->bdev
->bd_dev
);
3228 format_dev_t(buf
, cache
->cache_dev
->bdev
->bd_dev
);
3230 format_dev_t(buf
, cache
->origin_dev
->bdev
->bd_dev
);
3233 for (i
= 0; i
< cache
->nr_ctr_args
- 1; i
++)
3234 DMEMIT(" %s", cache
->ctr_args
[i
]);
3235 if (cache
->nr_ctr_args
)
3236 DMEMIT(" %s", cache
->ctr_args
[cache
->nr_ctr_args
- 1]);
3246 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3247 * the one-past-the-end value.
3249 struct cblock_range
{
3255 * A cache block range can take two forms:
3257 * i) A single cblock, eg. '3456'
3258 * ii) A begin and end cblock with a dash between, eg. 123-234
3260 static int parse_cblock_range(struct cache
*cache
, const char *str
,
3261 struct cblock_range
*result
)
3268 * Try and parse form (ii) first.
3270 r
= sscanf(str
, "%llu-%llu%c", &b
, &e
, &dummy
);
3275 result
->begin
= to_cblock(b
);
3276 result
->end
= to_cblock(e
);
3281 * That didn't work, try form (i).
3283 r
= sscanf(str
, "%llu%c", &b
, &dummy
);
3288 result
->begin
= to_cblock(b
);
3289 result
->end
= to_cblock(from_cblock(result
->begin
) + 1u);
3293 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache
), str
);
3297 static int validate_cblock_range(struct cache
*cache
, struct cblock_range
*range
)
3299 uint64_t b
= from_cblock(range
->begin
);
3300 uint64_t e
= from_cblock(range
->end
);
3301 uint64_t n
= from_cblock(cache
->cache_size
);
3304 DMERR("%s: begin cblock out of range: %llu >= %llu",
3305 cache_device_name(cache
), b
, n
);
3310 DMERR("%s: end cblock out of range: %llu > %llu",
3311 cache_device_name(cache
), e
, n
);
3316 DMERR("%s: invalid cblock range: %llu >= %llu",
3317 cache_device_name(cache
), b
, e
);
3324 static inline dm_cblock_t
cblock_succ(dm_cblock_t b
)
3326 return to_cblock(from_cblock(b
) + 1);
3329 static int request_invalidation(struct cache
*cache
, struct cblock_range
*range
)
3334 * We don't need to do any locking here because we know we're in
3335 * passthrough mode. There's is potential for a race between an
3336 * invalidation triggered by an io and an invalidation message. This
3337 * is harmless, we must not worry if the policy call fails.
3339 while (range
->begin
!= range
->end
) {
3340 r
= invalidate_cblock(cache
, range
->begin
);
3344 range
->begin
= cblock_succ(range
->begin
);
3347 cache
->commit_requested
= true;
3351 static int process_invalidate_cblocks_message(struct cache
*cache
, unsigned count
,
3352 const char **cblock_ranges
)
3356 struct cblock_range range
;
3358 if (!passthrough_mode(cache
)) {
3359 DMERR("%s: cache has to be in passthrough mode for invalidation",
3360 cache_device_name(cache
));
3364 for (i
= 0; i
< count
; i
++) {
3365 r
= parse_cblock_range(cache
, cblock_ranges
[i
], &range
);
3369 r
= validate_cblock_range(cache
, &range
);
3374 * Pass begin and end origin blocks to the worker and wake it.
3376 r
= request_invalidation(cache
, &range
);
3388 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3390 * The key migration_threshold is supported by the cache target core.
3392 static int cache_message(struct dm_target
*ti
, unsigned argc
, char **argv
,
3393 char *result
, unsigned maxlen
)
3395 struct cache
*cache
= ti
->private;
3400 if (get_cache_mode(cache
) >= CM_READ_ONLY
) {
3401 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3402 cache_device_name(cache
));
3406 if (!strcasecmp(argv
[0], "invalidate_cblocks"))
3407 return process_invalidate_cblocks_message(cache
, argc
- 1, (const char **) argv
+ 1);
3412 return set_config_value(cache
, argv
[0], argv
[1]);
3415 static int cache_iterate_devices(struct dm_target
*ti
,
3416 iterate_devices_callout_fn fn
, void *data
)
3419 struct cache
*cache
= ti
->private;
3421 r
= fn(ti
, cache
->cache_dev
, 0, get_dev_size(cache
->cache_dev
), data
);
3423 r
= fn(ti
, cache
->origin_dev
, 0, ti
->len
, data
);
3428 static void set_discard_limits(struct cache
*cache
, struct queue_limits
*limits
)
3431 * FIXME: these limits may be incompatible with the cache device
3433 limits
->max_discard_sectors
= min_t(sector_t
, cache
->discard_block_size
* 1024,
3434 cache
->origin_sectors
);
3435 limits
->discard_granularity
= cache
->discard_block_size
<< SECTOR_SHIFT
;
3438 static void cache_io_hints(struct dm_target
*ti
, struct queue_limits
*limits
)
3440 struct cache
*cache
= ti
->private;
3441 uint64_t io_opt_sectors
= limits
->io_opt
>> SECTOR_SHIFT
;
3444 * If the system-determined stacked limits are compatible with the
3445 * cache's blocksize (io_opt is a factor) do not override them.
3447 if (io_opt_sectors
< cache
->sectors_per_block
||
3448 do_div(io_opt_sectors
, cache
->sectors_per_block
)) {
3449 blk_limits_io_min(limits
, cache
->sectors_per_block
<< SECTOR_SHIFT
);
3450 blk_limits_io_opt(limits
, cache
->sectors_per_block
<< SECTOR_SHIFT
);
3452 set_discard_limits(cache
, limits
);
3455 /*----------------------------------------------------------------*/
3457 static struct target_type cache_target
= {
3459 .version
= {2, 0, 0},
3460 .module
= THIS_MODULE
,
3464 .end_io
= cache_end_io
,
3465 .postsuspend
= cache_postsuspend
,
3466 .preresume
= cache_preresume
,
3467 .resume
= cache_resume
,
3468 .status
= cache_status
,
3469 .message
= cache_message
,
3470 .iterate_devices
= cache_iterate_devices
,
3471 .io_hints
= cache_io_hints
,
3474 static int __init
dm_cache_init(void)
3478 migration_cache
= KMEM_CACHE(dm_cache_migration
, 0);
3479 if (!migration_cache
) {
3480 dm_unregister_target(&cache_target
);
3484 r
= dm_register_target(&cache_target
);
3486 DMERR("cache target registration failed: %d", r
);
3493 static void __exit
dm_cache_exit(void)
3495 dm_unregister_target(&cache_target
);
3496 kmem_cache_destroy(migration_cache
);
3499 module_init(dm_cache_init
);
3500 module_exit(dm_cache_exit
);
3502 MODULE_DESCRIPTION(DM_NAME
" cache target");
3503 MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3504 MODULE_LICENSE("GPL");