udl-kms: avoid prefetch
[linux/fpc-iii.git] / drivers / net / ethernet / freescale / fs_enet / fs_enet-main.c
blob2c2976a2dda6b9f1055af98c19cbc9d17bf8279b
1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/string.h>
22 #include <linux/ptrace.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/slab.h>
26 #include <linux/interrupt.h>
27 #include <linux/delay.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/spinlock.h>
32 #include <linux/mii.h>
33 #include <linux/ethtool.h>
34 #include <linux/bitops.h>
35 #include <linux/fs.h>
36 #include <linux/platform_device.h>
37 #include <linux/phy.h>
38 #include <linux/of.h>
39 #include <linux/of_mdio.h>
40 #include <linux/of_platform.h>
41 #include <linux/of_gpio.h>
42 #include <linux/of_net.h>
44 #include <linux/vmalloc.h>
45 #include <asm/pgtable.h>
46 #include <asm/irq.h>
47 #include <linux/uaccess.h>
49 #include "fs_enet.h"
51 /*************************************************/
53 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
54 MODULE_DESCRIPTION("Freescale Ethernet Driver");
55 MODULE_LICENSE("GPL");
56 MODULE_VERSION(DRV_MODULE_VERSION);
58 static int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
59 module_param(fs_enet_debug, int, 0);
60 MODULE_PARM_DESC(fs_enet_debug,
61 "Freescale bitmapped debugging message enable value");
63 #define RX_RING_SIZE 32
64 #define TX_RING_SIZE 64
66 #ifdef CONFIG_NET_POLL_CONTROLLER
67 static void fs_enet_netpoll(struct net_device *dev);
68 #endif
70 static void fs_set_multicast_list(struct net_device *dev)
72 struct fs_enet_private *fep = netdev_priv(dev);
74 (*fep->ops->set_multicast_list)(dev);
77 static void skb_align(struct sk_buff *skb, int align)
79 int off = ((unsigned long)skb->data) & (align - 1);
81 if (off)
82 skb_reserve(skb, align - off);
85 /* NAPI function */
86 static int fs_enet_napi(struct napi_struct *napi, int budget)
88 struct fs_enet_private *fep = container_of(napi, struct fs_enet_private, napi);
89 struct net_device *dev = fep->ndev;
90 const struct fs_platform_info *fpi = fep->fpi;
91 cbd_t __iomem *bdp;
92 struct sk_buff *skb, *skbn;
93 int received = 0;
94 u16 pkt_len, sc;
95 int curidx;
96 int dirtyidx, do_wake, do_restart;
97 int tx_left = TX_RING_SIZE;
99 spin_lock(&fep->tx_lock);
100 bdp = fep->dirty_tx;
102 /* clear status bits for napi*/
103 (*fep->ops->napi_clear_event)(dev);
105 do_wake = do_restart = 0;
106 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0 && tx_left) {
107 dirtyidx = bdp - fep->tx_bd_base;
109 if (fep->tx_free == fep->tx_ring)
110 break;
112 skb = fep->tx_skbuff[dirtyidx];
115 * Check for errors.
117 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
118 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
120 if (sc & BD_ENET_TX_HB) /* No heartbeat */
121 dev->stats.tx_heartbeat_errors++;
122 if (sc & BD_ENET_TX_LC) /* Late collision */
123 dev->stats.tx_window_errors++;
124 if (sc & BD_ENET_TX_RL) /* Retrans limit */
125 dev->stats.tx_aborted_errors++;
126 if (sc & BD_ENET_TX_UN) /* Underrun */
127 dev->stats.tx_fifo_errors++;
128 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
129 dev->stats.tx_carrier_errors++;
131 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
132 dev->stats.tx_errors++;
133 do_restart = 1;
135 } else
136 dev->stats.tx_packets++;
138 if (sc & BD_ENET_TX_READY) {
139 dev_warn(fep->dev,
140 "HEY! Enet xmit interrupt and TX_READY.\n");
144 * Deferred means some collisions occurred during transmit,
145 * but we eventually sent the packet OK.
147 if (sc & BD_ENET_TX_DEF)
148 dev->stats.collisions++;
150 /* unmap */
151 if (fep->mapped_as_page[dirtyidx])
152 dma_unmap_page(fep->dev, CBDR_BUFADDR(bdp),
153 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
154 else
155 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
156 CBDR_DATLEN(bdp), DMA_TO_DEVICE);
159 * Free the sk buffer associated with this last transmit.
161 if (skb) {
162 dev_kfree_skb(skb);
163 fep->tx_skbuff[dirtyidx] = NULL;
167 * Update pointer to next buffer descriptor to be transmitted.
169 if ((sc & BD_ENET_TX_WRAP) == 0)
170 bdp++;
171 else
172 bdp = fep->tx_bd_base;
175 * Since we have freed up a buffer, the ring is no longer
176 * full.
178 if (++fep->tx_free == MAX_SKB_FRAGS)
179 do_wake = 1;
180 tx_left--;
183 fep->dirty_tx = bdp;
185 if (do_restart)
186 (*fep->ops->tx_restart)(dev);
188 spin_unlock(&fep->tx_lock);
190 if (do_wake)
191 netif_wake_queue(dev);
194 * First, grab all of the stats for the incoming packet.
195 * These get messed up if we get called due to a busy condition.
197 bdp = fep->cur_rx;
199 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0 &&
200 received < budget) {
201 curidx = bdp - fep->rx_bd_base;
204 * Since we have allocated space to hold a complete frame,
205 * the last indicator should be set.
207 if ((sc & BD_ENET_RX_LAST) == 0)
208 dev_warn(fep->dev, "rcv is not +last\n");
211 * Check for errors.
213 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
214 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
215 dev->stats.rx_errors++;
216 /* Frame too long or too short. */
217 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
218 dev->stats.rx_length_errors++;
219 /* Frame alignment */
220 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
221 dev->stats.rx_frame_errors++;
222 /* CRC Error */
223 if (sc & BD_ENET_RX_CR)
224 dev->stats.rx_crc_errors++;
225 /* FIFO overrun */
226 if (sc & BD_ENET_RX_OV)
227 dev->stats.rx_crc_errors++;
229 skbn = fep->rx_skbuff[curidx];
230 } else {
231 skb = fep->rx_skbuff[curidx];
234 * Process the incoming frame.
236 dev->stats.rx_packets++;
237 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
238 dev->stats.rx_bytes += pkt_len + 4;
240 if (pkt_len <= fpi->rx_copybreak) {
241 /* +2 to make IP header L1 cache aligned */
242 skbn = netdev_alloc_skb(dev, pkt_len + 2);
243 if (skbn != NULL) {
244 skb_reserve(skbn, 2); /* align IP header */
245 skb_copy_from_linear_data(skb,
246 skbn->data, pkt_len);
247 swap(skb, skbn);
248 dma_sync_single_for_cpu(fep->dev,
249 CBDR_BUFADDR(bdp),
250 L1_CACHE_ALIGN(pkt_len),
251 DMA_FROM_DEVICE);
253 } else {
254 skbn = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
256 if (skbn) {
257 dma_addr_t dma;
259 skb_align(skbn, ENET_RX_ALIGN);
261 dma_unmap_single(fep->dev,
262 CBDR_BUFADDR(bdp),
263 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
264 DMA_FROM_DEVICE);
266 dma = dma_map_single(fep->dev,
267 skbn->data,
268 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
269 DMA_FROM_DEVICE);
270 CBDW_BUFADDR(bdp, dma);
274 if (skbn != NULL) {
275 skb_put(skb, pkt_len); /* Make room */
276 skb->protocol = eth_type_trans(skb, dev);
277 received++;
278 netif_receive_skb(skb);
279 } else {
280 dev->stats.rx_dropped++;
281 skbn = skb;
285 fep->rx_skbuff[curidx] = skbn;
286 CBDW_DATLEN(bdp, 0);
287 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
290 * Update BD pointer to next entry.
292 if ((sc & BD_ENET_RX_WRAP) == 0)
293 bdp++;
294 else
295 bdp = fep->rx_bd_base;
297 (*fep->ops->rx_bd_done)(dev);
300 fep->cur_rx = bdp;
302 if (received < budget && tx_left) {
303 /* done */
304 napi_complete_done(napi, received);
305 (*fep->ops->napi_enable)(dev);
307 return received;
310 return budget;
314 * The interrupt handler.
315 * This is called from the MPC core interrupt.
317 static irqreturn_t
318 fs_enet_interrupt(int irq, void *dev_id)
320 struct net_device *dev = dev_id;
321 struct fs_enet_private *fep;
322 const struct fs_platform_info *fpi;
323 u32 int_events;
324 u32 int_clr_events;
325 int nr, napi_ok;
326 int handled;
328 fep = netdev_priv(dev);
329 fpi = fep->fpi;
331 nr = 0;
332 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
333 nr++;
335 int_clr_events = int_events;
336 int_clr_events &= ~fep->ev_napi;
338 (*fep->ops->clear_int_events)(dev, int_clr_events);
340 if (int_events & fep->ev_err)
341 (*fep->ops->ev_error)(dev, int_events);
343 if (int_events & fep->ev) {
344 napi_ok = napi_schedule_prep(&fep->napi);
346 (*fep->ops->napi_disable)(dev);
347 (*fep->ops->clear_int_events)(dev, fep->ev_napi);
349 /* NOTE: it is possible for FCCs in NAPI mode */
350 /* to submit a spurious interrupt while in poll */
351 if (napi_ok)
352 __napi_schedule(&fep->napi);
357 handled = nr > 0;
358 return IRQ_RETVAL(handled);
361 void fs_init_bds(struct net_device *dev)
363 struct fs_enet_private *fep = netdev_priv(dev);
364 cbd_t __iomem *bdp;
365 struct sk_buff *skb;
366 int i;
368 fs_cleanup_bds(dev);
370 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
371 fep->tx_free = fep->tx_ring;
372 fep->cur_rx = fep->rx_bd_base;
375 * Initialize the receive buffer descriptors.
377 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
378 skb = netdev_alloc_skb(dev, ENET_RX_FRSIZE);
379 if (skb == NULL)
380 break;
382 skb_align(skb, ENET_RX_ALIGN);
383 fep->rx_skbuff[i] = skb;
384 CBDW_BUFADDR(bdp,
385 dma_map_single(fep->dev, skb->data,
386 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
387 DMA_FROM_DEVICE));
388 CBDW_DATLEN(bdp, 0); /* zero */
389 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
390 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
393 * if we failed, fillup remainder
395 for (; i < fep->rx_ring; i++, bdp++) {
396 fep->rx_skbuff[i] = NULL;
397 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
401 * ...and the same for transmit.
403 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
404 fep->tx_skbuff[i] = NULL;
405 CBDW_BUFADDR(bdp, 0);
406 CBDW_DATLEN(bdp, 0);
407 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
411 void fs_cleanup_bds(struct net_device *dev)
413 struct fs_enet_private *fep = netdev_priv(dev);
414 struct sk_buff *skb;
415 cbd_t __iomem *bdp;
416 int i;
419 * Reset SKB transmit buffers.
421 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
422 if ((skb = fep->tx_skbuff[i]) == NULL)
423 continue;
425 /* unmap */
426 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
427 skb->len, DMA_TO_DEVICE);
429 fep->tx_skbuff[i] = NULL;
430 dev_kfree_skb(skb);
434 * Reset SKB receive buffers
436 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
437 if ((skb = fep->rx_skbuff[i]) == NULL)
438 continue;
440 /* unmap */
441 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
442 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
443 DMA_FROM_DEVICE);
445 fep->rx_skbuff[i] = NULL;
447 dev_kfree_skb(skb);
451 /**********************************************************************************/
453 #ifdef CONFIG_FS_ENET_MPC5121_FEC
455 * MPC5121 FEC requeries 4-byte alignment for TX data buffer!
457 static struct sk_buff *tx_skb_align_workaround(struct net_device *dev,
458 struct sk_buff *skb)
460 struct sk_buff *new_skb;
462 if (skb_linearize(skb))
463 return NULL;
465 /* Alloc new skb */
466 new_skb = netdev_alloc_skb(dev, skb->len + 4);
467 if (!new_skb)
468 return NULL;
470 /* Make sure new skb is properly aligned */
471 skb_align(new_skb, 4);
473 /* Copy data to new skb ... */
474 skb_copy_from_linear_data(skb, new_skb->data, skb->len);
475 skb_put(new_skb, skb->len);
477 /* ... and free an old one */
478 dev_kfree_skb_any(skb);
480 return new_skb;
482 #endif
484 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
486 struct fs_enet_private *fep = netdev_priv(dev);
487 cbd_t __iomem *bdp;
488 int curidx;
489 u16 sc;
490 int nr_frags;
491 skb_frag_t *frag;
492 int len;
493 #ifdef CONFIG_FS_ENET_MPC5121_FEC
494 int is_aligned = 1;
495 int i;
497 if (!IS_ALIGNED((unsigned long)skb->data, 4)) {
498 is_aligned = 0;
499 } else {
500 nr_frags = skb_shinfo(skb)->nr_frags;
501 frag = skb_shinfo(skb)->frags;
502 for (i = 0; i < nr_frags; i++, frag++) {
503 if (!IS_ALIGNED(frag->page_offset, 4)) {
504 is_aligned = 0;
505 break;
510 if (!is_aligned) {
511 skb = tx_skb_align_workaround(dev, skb);
512 if (!skb) {
514 * We have lost packet due to memory allocation error
515 * in tx_skb_align_workaround(). Hopefully original
516 * skb is still valid, so try transmit it later.
518 return NETDEV_TX_BUSY;
521 #endif
523 spin_lock(&fep->tx_lock);
526 * Fill in a Tx ring entry
528 bdp = fep->cur_tx;
530 nr_frags = skb_shinfo(skb)->nr_frags;
531 if (fep->tx_free <= nr_frags || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
532 netif_stop_queue(dev);
533 spin_unlock(&fep->tx_lock);
536 * Ooops. All transmit buffers are full. Bail out.
537 * This should not happen, since the tx queue should be stopped.
539 dev_warn(fep->dev, "tx queue full!.\n");
540 return NETDEV_TX_BUSY;
543 curidx = bdp - fep->tx_bd_base;
545 len = skb->len;
546 dev->stats.tx_bytes += len;
547 if (nr_frags)
548 len -= skb->data_len;
549 fep->tx_free -= nr_frags + 1;
551 * Push the data cache so the CPM does not get stale memory data.
553 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
554 skb->data, len, DMA_TO_DEVICE));
555 CBDW_DATLEN(bdp, len);
557 fep->mapped_as_page[curidx] = 0;
558 frag = skb_shinfo(skb)->frags;
559 while (nr_frags) {
560 CBDC_SC(bdp,
561 BD_ENET_TX_STATS | BD_ENET_TX_INTR | BD_ENET_TX_LAST |
562 BD_ENET_TX_TC);
563 CBDS_SC(bdp, BD_ENET_TX_READY);
565 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
566 bdp++, curidx++;
567 else
568 bdp = fep->tx_bd_base, curidx = 0;
570 len = skb_frag_size(frag);
571 CBDW_BUFADDR(bdp, skb_frag_dma_map(fep->dev, frag, 0, len,
572 DMA_TO_DEVICE));
573 CBDW_DATLEN(bdp, len);
575 fep->tx_skbuff[curidx] = NULL;
576 fep->mapped_as_page[curidx] = 1;
578 frag++;
579 nr_frags--;
582 /* Trigger transmission start */
583 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
584 BD_ENET_TX_LAST | BD_ENET_TX_TC;
586 /* note that while FEC does not have this bit
587 * it marks it as available for software use
588 * yay for hw reuse :) */
589 if (skb->len <= 60)
590 sc |= BD_ENET_TX_PAD;
591 CBDC_SC(bdp, BD_ENET_TX_STATS);
592 CBDS_SC(bdp, sc);
594 /* Save skb pointer. */
595 fep->tx_skbuff[curidx] = skb;
597 /* If this was the last BD in the ring, start at the beginning again. */
598 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
599 bdp++;
600 else
601 bdp = fep->tx_bd_base;
602 fep->cur_tx = bdp;
604 if (fep->tx_free < MAX_SKB_FRAGS)
605 netif_stop_queue(dev);
607 skb_tx_timestamp(skb);
609 (*fep->ops->tx_kickstart)(dev);
611 spin_unlock(&fep->tx_lock);
613 return NETDEV_TX_OK;
616 static void fs_timeout_work(struct work_struct *work)
618 struct fs_enet_private *fep = container_of(work, struct fs_enet_private,
619 timeout_work);
620 struct net_device *dev = fep->ndev;
621 unsigned long flags;
622 int wake = 0;
624 dev->stats.tx_errors++;
626 spin_lock_irqsave(&fep->lock, flags);
628 if (dev->flags & IFF_UP) {
629 phy_stop(dev->phydev);
630 (*fep->ops->stop)(dev);
631 (*fep->ops->restart)(dev);
634 phy_start(dev->phydev);
635 wake = fep->tx_free >= MAX_SKB_FRAGS &&
636 !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
637 spin_unlock_irqrestore(&fep->lock, flags);
639 if (wake)
640 netif_wake_queue(dev);
643 static void fs_timeout(struct net_device *dev)
645 struct fs_enet_private *fep = netdev_priv(dev);
647 schedule_work(&fep->timeout_work);
650 /*-----------------------------------------------------------------------------
651 * generic link-change handler - should be sufficient for most cases
652 *-----------------------------------------------------------------------------*/
653 static void generic_adjust_link(struct net_device *dev)
655 struct fs_enet_private *fep = netdev_priv(dev);
656 struct phy_device *phydev = dev->phydev;
657 int new_state = 0;
659 if (phydev->link) {
660 /* adjust to duplex mode */
661 if (phydev->duplex != fep->oldduplex) {
662 new_state = 1;
663 fep->oldduplex = phydev->duplex;
666 if (phydev->speed != fep->oldspeed) {
667 new_state = 1;
668 fep->oldspeed = phydev->speed;
671 if (!fep->oldlink) {
672 new_state = 1;
673 fep->oldlink = 1;
676 if (new_state)
677 fep->ops->restart(dev);
678 } else if (fep->oldlink) {
679 new_state = 1;
680 fep->oldlink = 0;
681 fep->oldspeed = 0;
682 fep->oldduplex = -1;
685 if (new_state && netif_msg_link(fep))
686 phy_print_status(phydev);
690 static void fs_adjust_link(struct net_device *dev)
692 struct fs_enet_private *fep = netdev_priv(dev);
693 unsigned long flags;
695 spin_lock_irqsave(&fep->lock, flags);
697 if(fep->ops->adjust_link)
698 fep->ops->adjust_link(dev);
699 else
700 generic_adjust_link(dev);
702 spin_unlock_irqrestore(&fep->lock, flags);
705 static int fs_init_phy(struct net_device *dev)
707 struct fs_enet_private *fep = netdev_priv(dev);
708 struct phy_device *phydev;
709 phy_interface_t iface;
711 fep->oldlink = 0;
712 fep->oldspeed = 0;
713 fep->oldduplex = -1;
715 iface = fep->fpi->use_rmii ?
716 PHY_INTERFACE_MODE_RMII : PHY_INTERFACE_MODE_MII;
718 phydev = of_phy_connect(dev, fep->fpi->phy_node, &fs_adjust_link, 0,
719 iface);
720 if (!phydev) {
721 dev_err(&dev->dev, "Could not attach to PHY\n");
722 return -ENODEV;
725 return 0;
728 static int fs_enet_open(struct net_device *dev)
730 struct fs_enet_private *fep = netdev_priv(dev);
731 int r;
732 int err;
734 /* to initialize the fep->cur_rx,... */
735 /* not doing this, will cause a crash in fs_enet_napi */
736 fs_init_bds(fep->ndev);
738 napi_enable(&fep->napi);
740 /* Install our interrupt handler. */
741 r = request_irq(fep->interrupt, fs_enet_interrupt, IRQF_SHARED,
742 "fs_enet-mac", dev);
743 if (r != 0) {
744 dev_err(fep->dev, "Could not allocate FS_ENET IRQ!");
745 napi_disable(&fep->napi);
746 return -EINVAL;
749 err = fs_init_phy(dev);
750 if (err) {
751 free_irq(fep->interrupt, dev);
752 napi_disable(&fep->napi);
753 return err;
755 phy_start(dev->phydev);
757 netif_start_queue(dev);
759 return 0;
762 static int fs_enet_close(struct net_device *dev)
764 struct fs_enet_private *fep = netdev_priv(dev);
765 unsigned long flags;
767 netif_stop_queue(dev);
768 netif_carrier_off(dev);
769 napi_disable(&fep->napi);
770 cancel_work_sync(&fep->timeout_work);
771 phy_stop(dev->phydev);
773 spin_lock_irqsave(&fep->lock, flags);
774 spin_lock(&fep->tx_lock);
775 (*fep->ops->stop)(dev);
776 spin_unlock(&fep->tx_lock);
777 spin_unlock_irqrestore(&fep->lock, flags);
779 /* release any irqs */
780 phy_disconnect(dev->phydev);
781 free_irq(fep->interrupt, dev);
783 return 0;
786 /*************************************************************************/
788 static void fs_get_drvinfo(struct net_device *dev,
789 struct ethtool_drvinfo *info)
791 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
792 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
795 static int fs_get_regs_len(struct net_device *dev)
797 struct fs_enet_private *fep = netdev_priv(dev);
799 return (*fep->ops->get_regs_len)(dev);
802 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
803 void *p)
805 struct fs_enet_private *fep = netdev_priv(dev);
806 unsigned long flags;
807 int r, len;
809 len = regs->len;
811 spin_lock_irqsave(&fep->lock, flags);
812 r = (*fep->ops->get_regs)(dev, p, &len);
813 spin_unlock_irqrestore(&fep->lock, flags);
815 if (r == 0)
816 regs->version = 0;
819 static u32 fs_get_msglevel(struct net_device *dev)
821 struct fs_enet_private *fep = netdev_priv(dev);
822 return fep->msg_enable;
825 static void fs_set_msglevel(struct net_device *dev, u32 value)
827 struct fs_enet_private *fep = netdev_priv(dev);
828 fep->msg_enable = value;
831 static int fs_get_tunable(struct net_device *dev,
832 const struct ethtool_tunable *tuna, void *data)
834 struct fs_enet_private *fep = netdev_priv(dev);
835 struct fs_platform_info *fpi = fep->fpi;
836 int ret = 0;
838 switch (tuna->id) {
839 case ETHTOOL_RX_COPYBREAK:
840 *(u32 *)data = fpi->rx_copybreak;
841 break;
842 default:
843 ret = -EINVAL;
844 break;
847 return ret;
850 static int fs_set_tunable(struct net_device *dev,
851 const struct ethtool_tunable *tuna, const void *data)
853 struct fs_enet_private *fep = netdev_priv(dev);
854 struct fs_platform_info *fpi = fep->fpi;
855 int ret = 0;
857 switch (tuna->id) {
858 case ETHTOOL_RX_COPYBREAK:
859 fpi->rx_copybreak = *(u32 *)data;
860 break;
861 default:
862 ret = -EINVAL;
863 break;
866 return ret;
869 static const struct ethtool_ops fs_ethtool_ops = {
870 .get_drvinfo = fs_get_drvinfo,
871 .get_regs_len = fs_get_regs_len,
872 .nway_reset = phy_ethtool_nway_reset,
873 .get_link = ethtool_op_get_link,
874 .get_msglevel = fs_get_msglevel,
875 .set_msglevel = fs_set_msglevel,
876 .get_regs = fs_get_regs,
877 .get_ts_info = ethtool_op_get_ts_info,
878 .get_link_ksettings = phy_ethtool_get_link_ksettings,
879 .set_link_ksettings = phy_ethtool_set_link_ksettings,
880 .get_tunable = fs_get_tunable,
881 .set_tunable = fs_set_tunable,
884 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
886 if (!netif_running(dev))
887 return -EINVAL;
889 return phy_mii_ioctl(dev->phydev, rq, cmd);
892 extern int fs_mii_connect(struct net_device *dev);
893 extern void fs_mii_disconnect(struct net_device *dev);
895 /**************************************************************************************/
897 #ifdef CONFIG_FS_ENET_HAS_FEC
898 #define IS_FEC(match) ((match)->data == &fs_fec_ops)
899 #else
900 #define IS_FEC(match) 0
901 #endif
903 static const struct net_device_ops fs_enet_netdev_ops = {
904 .ndo_open = fs_enet_open,
905 .ndo_stop = fs_enet_close,
906 .ndo_start_xmit = fs_enet_start_xmit,
907 .ndo_tx_timeout = fs_timeout,
908 .ndo_set_rx_mode = fs_set_multicast_list,
909 .ndo_do_ioctl = fs_ioctl,
910 .ndo_validate_addr = eth_validate_addr,
911 .ndo_set_mac_address = eth_mac_addr,
912 #ifdef CONFIG_NET_POLL_CONTROLLER
913 .ndo_poll_controller = fs_enet_netpoll,
914 #endif
917 static const struct of_device_id fs_enet_match[];
918 static int fs_enet_probe(struct platform_device *ofdev)
920 const struct of_device_id *match;
921 struct net_device *ndev;
922 struct fs_enet_private *fep;
923 struct fs_platform_info *fpi;
924 const u32 *data;
925 struct clk *clk;
926 int err;
927 const u8 *mac_addr;
928 const char *phy_connection_type;
929 int privsize, len, ret = -ENODEV;
931 match = of_match_device(fs_enet_match, &ofdev->dev);
932 if (!match)
933 return -EINVAL;
935 fpi = kzalloc(sizeof(*fpi), GFP_KERNEL);
936 if (!fpi)
937 return -ENOMEM;
939 if (!IS_FEC(match)) {
940 data = of_get_property(ofdev->dev.of_node, "fsl,cpm-command", &len);
941 if (!data || len != 4)
942 goto out_free_fpi;
944 fpi->cp_command = *data;
947 fpi->rx_ring = RX_RING_SIZE;
948 fpi->tx_ring = TX_RING_SIZE;
949 fpi->rx_copybreak = 240;
950 fpi->napi_weight = 17;
951 fpi->phy_node = of_parse_phandle(ofdev->dev.of_node, "phy-handle", 0);
952 if (!fpi->phy_node && of_phy_is_fixed_link(ofdev->dev.of_node)) {
953 err = of_phy_register_fixed_link(ofdev->dev.of_node);
954 if (err)
955 goto out_free_fpi;
957 /* In the case of a fixed PHY, the DT node associated
958 * to the PHY is the Ethernet MAC DT node.
960 fpi->phy_node = of_node_get(ofdev->dev.of_node);
963 if (of_device_is_compatible(ofdev->dev.of_node, "fsl,mpc5125-fec")) {
964 phy_connection_type = of_get_property(ofdev->dev.of_node,
965 "phy-connection-type", NULL);
966 if (phy_connection_type && !strcmp("rmii", phy_connection_type))
967 fpi->use_rmii = 1;
970 /* make clock lookup non-fatal (the driver is shared among platforms),
971 * but require enable to succeed when a clock was specified/found,
972 * keep a reference to the clock upon successful acquisition
974 clk = devm_clk_get(&ofdev->dev, "per");
975 if (!IS_ERR(clk)) {
976 ret = clk_prepare_enable(clk);
977 if (ret)
978 goto out_deregister_fixed_link;
980 fpi->clk_per = clk;
983 privsize = sizeof(*fep) +
984 sizeof(struct sk_buff **) *
985 (fpi->rx_ring + fpi->tx_ring) +
986 sizeof(char) * fpi->tx_ring;
988 ndev = alloc_etherdev(privsize);
989 if (!ndev) {
990 ret = -ENOMEM;
991 goto out_put;
994 SET_NETDEV_DEV(ndev, &ofdev->dev);
995 platform_set_drvdata(ofdev, ndev);
997 fep = netdev_priv(ndev);
998 fep->dev = &ofdev->dev;
999 fep->ndev = ndev;
1000 fep->fpi = fpi;
1001 fep->ops = match->data;
1003 ret = fep->ops->setup_data(ndev);
1004 if (ret)
1005 goto out_free_dev;
1007 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1008 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1009 fep->mapped_as_page = (char *)(fep->rx_skbuff + fpi->rx_ring +
1010 fpi->tx_ring);
1012 spin_lock_init(&fep->lock);
1013 spin_lock_init(&fep->tx_lock);
1015 mac_addr = of_get_mac_address(ofdev->dev.of_node);
1016 if (mac_addr)
1017 memcpy(ndev->dev_addr, mac_addr, ETH_ALEN);
1019 ret = fep->ops->allocate_bd(ndev);
1020 if (ret)
1021 goto out_cleanup_data;
1023 fep->rx_bd_base = fep->ring_base;
1024 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1026 fep->tx_ring = fpi->tx_ring;
1027 fep->rx_ring = fpi->rx_ring;
1029 ndev->netdev_ops = &fs_enet_netdev_ops;
1030 ndev->watchdog_timeo = 2 * HZ;
1031 INIT_WORK(&fep->timeout_work, fs_timeout_work);
1032 netif_napi_add(ndev, &fep->napi, fs_enet_napi, fpi->napi_weight);
1034 ndev->ethtool_ops = &fs_ethtool_ops;
1036 netif_carrier_off(ndev);
1038 ndev->features |= NETIF_F_SG;
1040 ret = register_netdev(ndev);
1041 if (ret)
1042 goto out_free_bd;
1044 pr_info("%s: fs_enet: %pM\n", ndev->name, ndev->dev_addr);
1046 return 0;
1048 out_free_bd:
1049 fep->ops->free_bd(ndev);
1050 out_cleanup_data:
1051 fep->ops->cleanup_data(ndev);
1052 out_free_dev:
1053 free_netdev(ndev);
1054 out_put:
1055 if (fpi->clk_per)
1056 clk_disable_unprepare(fpi->clk_per);
1057 out_deregister_fixed_link:
1058 of_node_put(fpi->phy_node);
1059 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1060 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1061 out_free_fpi:
1062 kfree(fpi);
1063 return ret;
1066 static int fs_enet_remove(struct platform_device *ofdev)
1068 struct net_device *ndev = platform_get_drvdata(ofdev);
1069 struct fs_enet_private *fep = netdev_priv(ndev);
1071 unregister_netdev(ndev);
1073 fep->ops->free_bd(ndev);
1074 fep->ops->cleanup_data(ndev);
1075 dev_set_drvdata(fep->dev, NULL);
1076 of_node_put(fep->fpi->phy_node);
1077 if (fep->fpi->clk_per)
1078 clk_disable_unprepare(fep->fpi->clk_per);
1079 if (of_phy_is_fixed_link(ofdev->dev.of_node))
1080 of_phy_deregister_fixed_link(ofdev->dev.of_node);
1081 free_netdev(ndev);
1082 return 0;
1085 static const struct of_device_id fs_enet_match[] = {
1086 #ifdef CONFIG_FS_ENET_HAS_SCC
1088 .compatible = "fsl,cpm1-scc-enet",
1089 .data = (void *)&fs_scc_ops,
1092 .compatible = "fsl,cpm2-scc-enet",
1093 .data = (void *)&fs_scc_ops,
1095 #endif
1096 #ifdef CONFIG_FS_ENET_HAS_FCC
1098 .compatible = "fsl,cpm2-fcc-enet",
1099 .data = (void *)&fs_fcc_ops,
1101 #endif
1102 #ifdef CONFIG_FS_ENET_HAS_FEC
1103 #ifdef CONFIG_FS_ENET_MPC5121_FEC
1105 .compatible = "fsl,mpc5121-fec",
1106 .data = (void *)&fs_fec_ops,
1109 .compatible = "fsl,mpc5125-fec",
1110 .data = (void *)&fs_fec_ops,
1112 #else
1114 .compatible = "fsl,pq1-fec-enet",
1115 .data = (void *)&fs_fec_ops,
1117 #endif
1118 #endif
1121 MODULE_DEVICE_TABLE(of, fs_enet_match);
1123 static struct platform_driver fs_enet_driver = {
1124 .driver = {
1125 .name = "fs_enet",
1126 .of_match_table = fs_enet_match,
1128 .probe = fs_enet_probe,
1129 .remove = fs_enet_remove,
1132 #ifdef CONFIG_NET_POLL_CONTROLLER
1133 static void fs_enet_netpoll(struct net_device *dev)
1135 disable_irq(dev->irq);
1136 fs_enet_interrupt(dev->irq, dev);
1137 enable_irq(dev->irq);
1139 #endif
1141 module_platform_driver(fs_enet_driver);