udl-kms: avoid prefetch
[linux/fpc-iii.git] / drivers / net / ethernet / sun / cassini.c
blob9020b084b953880466cdf9c0354ee8208b987873
1 // SPDX-License-Identifier: GPL-2.0
2 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
4 * Copyright (C) 2004 Sun Microsystems Inc.
5 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 of the
10 * License, or (at your option) any later version.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, see <http://www.gnu.org/licenses/>.
20 * This driver uses the sungem driver (c) David Miller
21 * (davem@redhat.com) as its basis.
23 * The cassini chip has a number of features that distinguish it from
24 * the gem chip:
25 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
26 * load balancing (non-VLAN mode)
27 * batching of multiple packets
28 * multiple CPU dispatching
29 * page-based RX descriptor engine with separate completion rings
30 * Gigabit support (GMII and PCS interface)
31 * MIF link up/down detection works
33 * RX is handled by page sized buffers that are attached as fragments to
34 * the skb. here's what's done:
35 * -- driver allocates pages at a time and keeps reference counts
36 * on them.
37 * -- the upper protocol layers assume that the header is in the skb
38 * itself. as a result, cassini will copy a small amount (64 bytes)
39 * to make them happy.
40 * -- driver appends the rest of the data pages as frags to skbuffs
41 * and increments the reference count
42 * -- on page reclamation, the driver swaps the page with a spare page.
43 * if that page is still in use, it frees its reference to that page,
44 * and allocates a new page for use. otherwise, it just recycles the
45 * the page.
47 * NOTE: cassini can parse the header. however, it's not worth it
48 * as long as the network stack requires a header copy.
50 * TX has 4 queues. currently these queues are used in a round-robin
51 * fashion for load balancing. They can also be used for QoS. for that
52 * to work, however, QoS information needs to be exposed down to the driver
53 * level so that subqueues get targeted to particular transmit rings.
54 * alternatively, the queues can be configured via use of the all-purpose
55 * ioctl.
57 * RX DATA: the rx completion ring has all the info, but the rx desc
58 * ring has all of the data. RX can conceivably come in under multiple
59 * interrupts, but the INT# assignment needs to be set up properly by
60 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
61 * that. also, the two descriptor rings are designed to distinguish between
62 * encrypted and non-encrypted packets, but we use them for buffering
63 * instead.
65 * by default, the selective clear mask is set up to process rx packets.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/types.h>
73 #include <linux/compiler.h>
74 #include <linux/slab.h>
75 #include <linux/delay.h>
76 #include <linux/init.h>
77 #include <linux/interrupt.h>
78 #include <linux/vmalloc.h>
79 #include <linux/ioport.h>
80 #include <linux/pci.h>
81 #include <linux/mm.h>
82 #include <linux/highmem.h>
83 #include <linux/list.h>
84 #include <linux/dma-mapping.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
89 #include <linux/ethtool.h>
90 #include <linux/crc32.h>
91 #include <linux/random.h>
92 #include <linux/mii.h>
93 #include <linux/ip.h>
94 #include <linux/tcp.h>
95 #include <linux/mutex.h>
96 #include <linux/firmware.h>
98 #include <net/checksum.h>
100 #include <linux/atomic.h>
101 #include <asm/io.h>
102 #include <asm/byteorder.h>
103 #include <linux/uaccess.h>
105 #define cas_page_map(x) kmap_atomic((x))
106 #define cas_page_unmap(x) kunmap_atomic((x))
107 #define CAS_NCPUS num_online_cpus()
109 #define cas_skb_release(x) netif_rx(x)
111 /* select which firmware to use */
112 #define USE_HP_WORKAROUND
113 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
114 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
116 #include "cassini.h"
118 #define USE_TX_COMPWB /* use completion writeback registers */
119 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
120 #define USE_RX_BLANK /* hw interrupt mitigation */
121 #undef USE_ENTROPY_DEV /* don't test for entropy device */
123 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
124 * also, we need to make cp->lock finer-grained.
126 #undef USE_PCI_INTB
127 #undef USE_PCI_INTC
128 #undef USE_PCI_INTD
129 #undef USE_QOS
131 #undef USE_VPD_DEBUG /* debug vpd information if defined */
133 /* rx processing options */
134 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
135 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
136 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
137 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
138 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
140 #define DRV_MODULE_NAME "cassini"
141 #define DRV_MODULE_VERSION "1.6"
142 #define DRV_MODULE_RELDATE "21 May 2008"
144 #define CAS_DEF_MSG_ENABLE \
145 (NETIF_MSG_DRV | \
146 NETIF_MSG_PROBE | \
147 NETIF_MSG_LINK | \
148 NETIF_MSG_TIMER | \
149 NETIF_MSG_IFDOWN | \
150 NETIF_MSG_IFUP | \
151 NETIF_MSG_RX_ERR | \
152 NETIF_MSG_TX_ERR)
154 /* length of time before we decide the hardware is borked,
155 * and dev->tx_timeout() should be called to fix the problem
157 #define CAS_TX_TIMEOUT (HZ)
158 #define CAS_LINK_TIMEOUT (22*HZ/10)
159 #define CAS_LINK_FAST_TIMEOUT (1)
161 /* timeout values for state changing. these specify the number
162 * of 10us delays to be used before giving up.
164 #define STOP_TRIES_PHY 1000
165 #define STOP_TRIES 5000
167 /* specify a minimum frame size to deal with some fifo issues
168 * max mtu == 2 * page size - ethernet header - 64 - swivel =
169 * 2 * page_size - 0x50
171 #define CAS_MIN_FRAME 97
172 #define CAS_1000MB_MIN_FRAME 255
173 #define CAS_MIN_MTU 60
174 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
176 #if 1
178 * Eliminate these and use separate atomic counters for each, to
179 * avoid a race condition.
181 #else
182 #define CAS_RESET_MTU 1
183 #define CAS_RESET_ALL 2
184 #define CAS_RESET_SPARE 3
185 #endif
187 static char version[] =
188 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")\n";
190 static int cassini_debug = -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
191 static int link_mode;
193 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
194 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
195 MODULE_LICENSE("GPL");
196 MODULE_FIRMWARE("sun/cassini.bin");
197 module_param(cassini_debug, int, 0);
198 MODULE_PARM_DESC(cassini_debug, "Cassini bitmapped debugging message enable value");
199 module_param(link_mode, int, 0);
200 MODULE_PARM_DESC(link_mode, "default link mode");
203 * Work around for a PCS bug in which the link goes down due to the chip
204 * being confused and never showing a link status of "up."
206 #define DEFAULT_LINKDOWN_TIMEOUT 5
208 * Value in seconds, for user input.
210 static int linkdown_timeout = DEFAULT_LINKDOWN_TIMEOUT;
211 module_param(linkdown_timeout, int, 0);
212 MODULE_PARM_DESC(linkdown_timeout,
213 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
216 * value in 'ticks' (units used by jiffies). Set when we init the
217 * module because 'HZ' in actually a function call on some flavors of
218 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
220 static int link_transition_timeout;
224 static u16 link_modes[] = {
225 BMCR_ANENABLE, /* 0 : autoneg */
226 0, /* 1 : 10bt half duplex */
227 BMCR_SPEED100, /* 2 : 100bt half duplex */
228 BMCR_FULLDPLX, /* 3 : 10bt full duplex */
229 BMCR_SPEED100|BMCR_FULLDPLX, /* 4 : 100bt full duplex */
230 CAS_BMCR_SPEED1000|BMCR_FULLDPLX /* 5 : 1000bt full duplex */
233 static const struct pci_device_id cas_pci_tbl[] = {
234 { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_CASSINI,
235 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
236 { PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_SATURN,
237 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL },
238 { 0, }
241 MODULE_DEVICE_TABLE(pci, cas_pci_tbl);
243 static void cas_set_link_modes(struct cas *cp);
245 static inline void cas_lock_tx(struct cas *cp)
247 int i;
249 for (i = 0; i < N_TX_RINGS; i++)
250 spin_lock_nested(&cp->tx_lock[i], i);
253 static inline void cas_lock_all(struct cas *cp)
255 spin_lock_irq(&cp->lock);
256 cas_lock_tx(cp);
259 /* WTZ: QA was finding deadlock problems with the previous
260 * versions after long test runs with multiple cards per machine.
261 * See if replacing cas_lock_all with safer versions helps. The
262 * symptoms QA is reporting match those we'd expect if interrupts
263 * aren't being properly restored, and we fixed a previous deadlock
264 * with similar symptoms by using save/restore versions in other
265 * places.
267 #define cas_lock_all_save(cp, flags) \
268 do { \
269 struct cas *xxxcp = (cp); \
270 spin_lock_irqsave(&xxxcp->lock, flags); \
271 cas_lock_tx(xxxcp); \
272 } while (0)
274 static inline void cas_unlock_tx(struct cas *cp)
276 int i;
278 for (i = N_TX_RINGS; i > 0; i--)
279 spin_unlock(&cp->tx_lock[i - 1]);
282 static inline void cas_unlock_all(struct cas *cp)
284 cas_unlock_tx(cp);
285 spin_unlock_irq(&cp->lock);
288 #define cas_unlock_all_restore(cp, flags) \
289 do { \
290 struct cas *xxxcp = (cp); \
291 cas_unlock_tx(xxxcp); \
292 spin_unlock_irqrestore(&xxxcp->lock, flags); \
293 } while (0)
295 static void cas_disable_irq(struct cas *cp, const int ring)
297 /* Make sure we won't get any more interrupts */
298 if (ring == 0) {
299 writel(0xFFFFFFFF, cp->regs + REG_INTR_MASK);
300 return;
303 /* disable completion interrupts and selectively mask */
304 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
305 switch (ring) {
306 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
307 #ifdef USE_PCI_INTB
308 case 1:
309 #endif
310 #ifdef USE_PCI_INTC
311 case 2:
312 #endif
313 #ifdef USE_PCI_INTD
314 case 3:
315 #endif
316 writel(INTRN_MASK_CLEAR_ALL | INTRN_MASK_RX_EN,
317 cp->regs + REG_PLUS_INTRN_MASK(ring));
318 break;
319 #endif
320 default:
321 writel(INTRN_MASK_CLEAR_ALL, cp->regs +
322 REG_PLUS_INTRN_MASK(ring));
323 break;
328 static inline void cas_mask_intr(struct cas *cp)
330 int i;
332 for (i = 0; i < N_RX_COMP_RINGS; i++)
333 cas_disable_irq(cp, i);
336 static void cas_enable_irq(struct cas *cp, const int ring)
338 if (ring == 0) { /* all but TX_DONE */
339 writel(INTR_TX_DONE, cp->regs + REG_INTR_MASK);
340 return;
343 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
344 switch (ring) {
345 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
346 #ifdef USE_PCI_INTB
347 case 1:
348 #endif
349 #ifdef USE_PCI_INTC
350 case 2:
351 #endif
352 #ifdef USE_PCI_INTD
353 case 3:
354 #endif
355 writel(INTRN_MASK_RX_EN, cp->regs +
356 REG_PLUS_INTRN_MASK(ring));
357 break;
358 #endif
359 default:
360 break;
365 static inline void cas_unmask_intr(struct cas *cp)
367 int i;
369 for (i = 0; i < N_RX_COMP_RINGS; i++)
370 cas_enable_irq(cp, i);
373 static inline void cas_entropy_gather(struct cas *cp)
375 #ifdef USE_ENTROPY_DEV
376 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
377 return;
379 batch_entropy_store(readl(cp->regs + REG_ENTROPY_IV),
380 readl(cp->regs + REG_ENTROPY_IV),
381 sizeof(uint64_t)*8);
382 #endif
385 static inline void cas_entropy_reset(struct cas *cp)
387 #ifdef USE_ENTROPY_DEV
388 if ((cp->cas_flags & CAS_FLAG_ENTROPY_DEV) == 0)
389 return;
391 writel(BIM_LOCAL_DEV_PAD | BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_EXT,
392 cp->regs + REG_BIM_LOCAL_DEV_EN);
393 writeb(ENTROPY_RESET_STC_MODE, cp->regs + REG_ENTROPY_RESET);
394 writeb(0x55, cp->regs + REG_ENTROPY_RAND_REG);
396 /* if we read back 0x0, we don't have an entropy device */
397 if (readb(cp->regs + REG_ENTROPY_RAND_REG) == 0)
398 cp->cas_flags &= ~CAS_FLAG_ENTROPY_DEV;
399 #endif
402 /* access to the phy. the following assumes that we've initialized the MIF to
403 * be in frame rather than bit-bang mode
405 static u16 cas_phy_read(struct cas *cp, int reg)
407 u32 cmd;
408 int limit = STOP_TRIES_PHY;
410 cmd = MIF_FRAME_ST | MIF_FRAME_OP_READ;
411 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
412 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
413 cmd |= MIF_FRAME_TURN_AROUND_MSB;
414 writel(cmd, cp->regs + REG_MIF_FRAME);
416 /* poll for completion */
417 while (limit-- > 0) {
418 udelay(10);
419 cmd = readl(cp->regs + REG_MIF_FRAME);
420 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
421 return cmd & MIF_FRAME_DATA_MASK;
423 return 0xFFFF; /* -1 */
426 static int cas_phy_write(struct cas *cp, int reg, u16 val)
428 int limit = STOP_TRIES_PHY;
429 u32 cmd;
431 cmd = MIF_FRAME_ST | MIF_FRAME_OP_WRITE;
432 cmd |= CAS_BASE(MIF_FRAME_PHY_ADDR, cp->phy_addr);
433 cmd |= CAS_BASE(MIF_FRAME_REG_ADDR, reg);
434 cmd |= MIF_FRAME_TURN_AROUND_MSB;
435 cmd |= val & MIF_FRAME_DATA_MASK;
436 writel(cmd, cp->regs + REG_MIF_FRAME);
438 /* poll for completion */
439 while (limit-- > 0) {
440 udelay(10);
441 cmd = readl(cp->regs + REG_MIF_FRAME);
442 if (cmd & MIF_FRAME_TURN_AROUND_LSB)
443 return 0;
445 return -1;
448 static void cas_phy_powerup(struct cas *cp)
450 u16 ctl = cas_phy_read(cp, MII_BMCR);
452 if ((ctl & BMCR_PDOWN) == 0)
453 return;
454 ctl &= ~BMCR_PDOWN;
455 cas_phy_write(cp, MII_BMCR, ctl);
458 static void cas_phy_powerdown(struct cas *cp)
460 u16 ctl = cas_phy_read(cp, MII_BMCR);
462 if (ctl & BMCR_PDOWN)
463 return;
464 ctl |= BMCR_PDOWN;
465 cas_phy_write(cp, MII_BMCR, ctl);
468 /* cp->lock held. note: the last put_page will free the buffer */
469 static int cas_page_free(struct cas *cp, cas_page_t *page)
471 pci_unmap_page(cp->pdev, page->dma_addr, cp->page_size,
472 PCI_DMA_FROMDEVICE);
473 __free_pages(page->buffer, cp->page_order);
474 kfree(page);
475 return 0;
478 #ifdef RX_COUNT_BUFFERS
479 #define RX_USED_ADD(x, y) ((x)->used += (y))
480 #define RX_USED_SET(x, y) ((x)->used = (y))
481 #else
482 #define RX_USED_ADD(x, y)
483 #define RX_USED_SET(x, y)
484 #endif
486 /* local page allocation routines for the receive buffers. jumbo pages
487 * require at least 8K contiguous and 8K aligned buffers.
489 static cas_page_t *cas_page_alloc(struct cas *cp, const gfp_t flags)
491 cas_page_t *page;
493 page = kmalloc(sizeof(cas_page_t), flags);
494 if (!page)
495 return NULL;
497 INIT_LIST_HEAD(&page->list);
498 RX_USED_SET(page, 0);
499 page->buffer = alloc_pages(flags, cp->page_order);
500 if (!page->buffer)
501 goto page_err;
502 page->dma_addr = pci_map_page(cp->pdev, page->buffer, 0,
503 cp->page_size, PCI_DMA_FROMDEVICE);
504 return page;
506 page_err:
507 kfree(page);
508 return NULL;
511 /* initialize spare pool of rx buffers, but allocate during the open */
512 static void cas_spare_init(struct cas *cp)
514 spin_lock(&cp->rx_inuse_lock);
515 INIT_LIST_HEAD(&cp->rx_inuse_list);
516 spin_unlock(&cp->rx_inuse_lock);
518 spin_lock(&cp->rx_spare_lock);
519 INIT_LIST_HEAD(&cp->rx_spare_list);
520 cp->rx_spares_needed = RX_SPARE_COUNT;
521 spin_unlock(&cp->rx_spare_lock);
524 /* used on close. free all the spare buffers. */
525 static void cas_spare_free(struct cas *cp)
527 struct list_head list, *elem, *tmp;
529 /* free spare buffers */
530 INIT_LIST_HEAD(&list);
531 spin_lock(&cp->rx_spare_lock);
532 list_splice_init(&cp->rx_spare_list, &list);
533 spin_unlock(&cp->rx_spare_lock);
534 list_for_each_safe(elem, tmp, &list) {
535 cas_page_free(cp, list_entry(elem, cas_page_t, list));
538 INIT_LIST_HEAD(&list);
539 #if 1
541 * Looks like Adrian had protected this with a different
542 * lock than used everywhere else to manipulate this list.
544 spin_lock(&cp->rx_inuse_lock);
545 list_splice_init(&cp->rx_inuse_list, &list);
546 spin_unlock(&cp->rx_inuse_lock);
547 #else
548 spin_lock(&cp->rx_spare_lock);
549 list_splice_init(&cp->rx_inuse_list, &list);
550 spin_unlock(&cp->rx_spare_lock);
551 #endif
552 list_for_each_safe(elem, tmp, &list) {
553 cas_page_free(cp, list_entry(elem, cas_page_t, list));
557 /* replenish spares if needed */
558 static void cas_spare_recover(struct cas *cp, const gfp_t flags)
560 struct list_head list, *elem, *tmp;
561 int needed, i;
563 /* check inuse list. if we don't need any more free buffers,
564 * just free it
567 /* make a local copy of the list */
568 INIT_LIST_HEAD(&list);
569 spin_lock(&cp->rx_inuse_lock);
570 list_splice_init(&cp->rx_inuse_list, &list);
571 spin_unlock(&cp->rx_inuse_lock);
573 list_for_each_safe(elem, tmp, &list) {
574 cas_page_t *page = list_entry(elem, cas_page_t, list);
577 * With the lockless pagecache, cassini buffering scheme gets
578 * slightly less accurate: we might find that a page has an
579 * elevated reference count here, due to a speculative ref,
580 * and skip it as in-use. Ideally we would be able to reclaim
581 * it. However this would be such a rare case, it doesn't
582 * matter too much as we should pick it up the next time round.
584 * Importantly, if we find that the page has a refcount of 1
585 * here (our refcount), then we know it is definitely not inuse
586 * so we can reuse it.
588 if (page_count(page->buffer) > 1)
589 continue;
591 list_del(elem);
592 spin_lock(&cp->rx_spare_lock);
593 if (cp->rx_spares_needed > 0) {
594 list_add(elem, &cp->rx_spare_list);
595 cp->rx_spares_needed--;
596 spin_unlock(&cp->rx_spare_lock);
597 } else {
598 spin_unlock(&cp->rx_spare_lock);
599 cas_page_free(cp, page);
603 /* put any inuse buffers back on the list */
604 if (!list_empty(&list)) {
605 spin_lock(&cp->rx_inuse_lock);
606 list_splice(&list, &cp->rx_inuse_list);
607 spin_unlock(&cp->rx_inuse_lock);
610 spin_lock(&cp->rx_spare_lock);
611 needed = cp->rx_spares_needed;
612 spin_unlock(&cp->rx_spare_lock);
613 if (!needed)
614 return;
616 /* we still need spares, so try to allocate some */
617 INIT_LIST_HEAD(&list);
618 i = 0;
619 while (i < needed) {
620 cas_page_t *spare = cas_page_alloc(cp, flags);
621 if (!spare)
622 break;
623 list_add(&spare->list, &list);
624 i++;
627 spin_lock(&cp->rx_spare_lock);
628 list_splice(&list, &cp->rx_spare_list);
629 cp->rx_spares_needed -= i;
630 spin_unlock(&cp->rx_spare_lock);
633 /* pull a page from the list. */
634 static cas_page_t *cas_page_dequeue(struct cas *cp)
636 struct list_head *entry;
637 int recover;
639 spin_lock(&cp->rx_spare_lock);
640 if (list_empty(&cp->rx_spare_list)) {
641 /* try to do a quick recovery */
642 spin_unlock(&cp->rx_spare_lock);
643 cas_spare_recover(cp, GFP_ATOMIC);
644 spin_lock(&cp->rx_spare_lock);
645 if (list_empty(&cp->rx_spare_list)) {
646 netif_err(cp, rx_err, cp->dev,
647 "no spare buffers available\n");
648 spin_unlock(&cp->rx_spare_lock);
649 return NULL;
653 entry = cp->rx_spare_list.next;
654 list_del(entry);
655 recover = ++cp->rx_spares_needed;
656 spin_unlock(&cp->rx_spare_lock);
658 /* trigger the timer to do the recovery */
659 if ((recover & (RX_SPARE_RECOVER_VAL - 1)) == 0) {
660 #if 1
661 atomic_inc(&cp->reset_task_pending);
662 atomic_inc(&cp->reset_task_pending_spare);
663 schedule_work(&cp->reset_task);
664 #else
665 atomic_set(&cp->reset_task_pending, CAS_RESET_SPARE);
666 schedule_work(&cp->reset_task);
667 #endif
669 return list_entry(entry, cas_page_t, list);
673 static void cas_mif_poll(struct cas *cp, const int enable)
675 u32 cfg;
677 cfg = readl(cp->regs + REG_MIF_CFG);
678 cfg &= (MIF_CFG_MDIO_0 | MIF_CFG_MDIO_1);
680 if (cp->phy_type & CAS_PHY_MII_MDIO1)
681 cfg |= MIF_CFG_PHY_SELECT;
683 /* poll and interrupt on link status change. */
684 if (enable) {
685 cfg |= MIF_CFG_POLL_EN;
686 cfg |= CAS_BASE(MIF_CFG_POLL_REG, MII_BMSR);
687 cfg |= CAS_BASE(MIF_CFG_POLL_PHY, cp->phy_addr);
689 writel((enable) ? ~(BMSR_LSTATUS | BMSR_ANEGCOMPLETE) : 0xFFFF,
690 cp->regs + REG_MIF_MASK);
691 writel(cfg, cp->regs + REG_MIF_CFG);
694 /* Must be invoked under cp->lock */
695 static void cas_begin_auto_negotiation(struct cas *cp,
696 const struct ethtool_link_ksettings *ep)
698 u16 ctl;
699 #if 1
700 int lcntl;
701 int changed = 0;
702 int oldstate = cp->lstate;
703 int link_was_not_down = !(oldstate == link_down);
704 #endif
705 /* Setup link parameters */
706 if (!ep)
707 goto start_aneg;
708 lcntl = cp->link_cntl;
709 if (ep->base.autoneg == AUTONEG_ENABLE) {
710 cp->link_cntl = BMCR_ANENABLE;
711 } else {
712 u32 speed = ep->base.speed;
713 cp->link_cntl = 0;
714 if (speed == SPEED_100)
715 cp->link_cntl |= BMCR_SPEED100;
716 else if (speed == SPEED_1000)
717 cp->link_cntl |= CAS_BMCR_SPEED1000;
718 if (ep->base.duplex == DUPLEX_FULL)
719 cp->link_cntl |= BMCR_FULLDPLX;
721 #if 1
722 changed = (lcntl != cp->link_cntl);
723 #endif
724 start_aneg:
725 if (cp->lstate == link_up) {
726 netdev_info(cp->dev, "PCS link down\n");
727 } else {
728 if (changed) {
729 netdev_info(cp->dev, "link configuration changed\n");
732 cp->lstate = link_down;
733 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
734 if (!cp->hw_running)
735 return;
736 #if 1
738 * WTZ: If the old state was link_up, we turn off the carrier
739 * to replicate everything we do elsewhere on a link-down
740 * event when we were already in a link-up state..
742 if (oldstate == link_up)
743 netif_carrier_off(cp->dev);
744 if (changed && link_was_not_down) {
746 * WTZ: This branch will simply schedule a full reset after
747 * we explicitly changed link modes in an ioctl. See if this
748 * fixes the link-problems we were having for forced mode.
750 atomic_inc(&cp->reset_task_pending);
751 atomic_inc(&cp->reset_task_pending_all);
752 schedule_work(&cp->reset_task);
753 cp->timer_ticks = 0;
754 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
755 return;
757 #endif
758 if (cp->phy_type & CAS_PHY_SERDES) {
759 u32 val = readl(cp->regs + REG_PCS_MII_CTRL);
761 if (cp->link_cntl & BMCR_ANENABLE) {
762 val |= (PCS_MII_RESTART_AUTONEG | PCS_MII_AUTONEG_EN);
763 cp->lstate = link_aneg;
764 } else {
765 if (cp->link_cntl & BMCR_FULLDPLX)
766 val |= PCS_MII_CTRL_DUPLEX;
767 val &= ~PCS_MII_AUTONEG_EN;
768 cp->lstate = link_force_ok;
770 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
771 writel(val, cp->regs + REG_PCS_MII_CTRL);
773 } else {
774 cas_mif_poll(cp, 0);
775 ctl = cas_phy_read(cp, MII_BMCR);
776 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 |
777 CAS_BMCR_SPEED1000 | BMCR_ANENABLE);
778 ctl |= cp->link_cntl;
779 if (ctl & BMCR_ANENABLE) {
780 ctl |= BMCR_ANRESTART;
781 cp->lstate = link_aneg;
782 } else {
783 cp->lstate = link_force_ok;
785 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
786 cas_phy_write(cp, MII_BMCR, ctl);
787 cas_mif_poll(cp, 1);
790 cp->timer_ticks = 0;
791 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
794 /* Must be invoked under cp->lock. */
795 static int cas_reset_mii_phy(struct cas *cp)
797 int limit = STOP_TRIES_PHY;
798 u16 val;
800 cas_phy_write(cp, MII_BMCR, BMCR_RESET);
801 udelay(100);
802 while (--limit) {
803 val = cas_phy_read(cp, MII_BMCR);
804 if ((val & BMCR_RESET) == 0)
805 break;
806 udelay(10);
808 return limit <= 0;
811 static void cas_saturn_firmware_init(struct cas *cp)
813 const struct firmware *fw;
814 const char fw_name[] = "sun/cassini.bin";
815 int err;
817 if (PHY_NS_DP83065 != cp->phy_id)
818 return;
820 err = request_firmware(&fw, fw_name, &cp->pdev->dev);
821 if (err) {
822 pr_err("Failed to load firmware \"%s\"\n",
823 fw_name);
824 return;
826 if (fw->size < 2) {
827 pr_err("bogus length %zu in \"%s\"\n",
828 fw->size, fw_name);
829 goto out;
831 cp->fw_load_addr= fw->data[1] << 8 | fw->data[0];
832 cp->fw_size = fw->size - 2;
833 cp->fw_data = vmalloc(cp->fw_size);
834 if (!cp->fw_data)
835 goto out;
836 memcpy(cp->fw_data, &fw->data[2], cp->fw_size);
837 out:
838 release_firmware(fw);
841 static void cas_saturn_firmware_load(struct cas *cp)
843 int i;
845 if (!cp->fw_data)
846 return;
848 cas_phy_powerdown(cp);
850 /* expanded memory access mode */
851 cas_phy_write(cp, DP83065_MII_MEM, 0x0);
853 /* pointer configuration for new firmware */
854 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff9);
855 cas_phy_write(cp, DP83065_MII_REGD, 0xbd);
856 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffa);
857 cas_phy_write(cp, DP83065_MII_REGD, 0x82);
858 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffb);
859 cas_phy_write(cp, DP83065_MII_REGD, 0x0);
860 cas_phy_write(cp, DP83065_MII_REGE, 0x8ffc);
861 cas_phy_write(cp, DP83065_MII_REGD, 0x39);
863 /* download new firmware */
864 cas_phy_write(cp, DP83065_MII_MEM, 0x1);
865 cas_phy_write(cp, DP83065_MII_REGE, cp->fw_load_addr);
866 for (i = 0; i < cp->fw_size; i++)
867 cas_phy_write(cp, DP83065_MII_REGD, cp->fw_data[i]);
869 /* enable firmware */
870 cas_phy_write(cp, DP83065_MII_REGE, 0x8ff8);
871 cas_phy_write(cp, DP83065_MII_REGD, 0x1);
875 /* phy initialization */
876 static void cas_phy_init(struct cas *cp)
878 u16 val;
880 /* if we're in MII/GMII mode, set up phy */
881 if (CAS_PHY_MII(cp->phy_type)) {
882 writel(PCS_DATAPATH_MODE_MII,
883 cp->regs + REG_PCS_DATAPATH_MODE);
885 cas_mif_poll(cp, 0);
886 cas_reset_mii_phy(cp); /* take out of isolate mode */
888 if (PHY_LUCENT_B0 == cp->phy_id) {
889 /* workaround link up/down issue with lucent */
890 cas_phy_write(cp, LUCENT_MII_REG, 0x8000);
891 cas_phy_write(cp, MII_BMCR, 0x00f1);
892 cas_phy_write(cp, LUCENT_MII_REG, 0x0);
894 } else if (PHY_BROADCOM_B0 == (cp->phy_id & 0xFFFFFFFC)) {
895 /* workarounds for broadcom phy */
896 cas_phy_write(cp, BROADCOM_MII_REG8, 0x0C20);
897 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0012);
898 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1804);
899 cas_phy_write(cp, BROADCOM_MII_REG7, 0x0013);
900 cas_phy_write(cp, BROADCOM_MII_REG5, 0x1204);
901 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
902 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0132);
903 cas_phy_write(cp, BROADCOM_MII_REG7, 0x8006);
904 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0232);
905 cas_phy_write(cp, BROADCOM_MII_REG7, 0x201F);
906 cas_phy_write(cp, BROADCOM_MII_REG5, 0x0A20);
908 } else if (PHY_BROADCOM_5411 == cp->phy_id) {
909 val = cas_phy_read(cp, BROADCOM_MII_REG4);
910 val = cas_phy_read(cp, BROADCOM_MII_REG4);
911 if (val & 0x0080) {
912 /* link workaround */
913 cas_phy_write(cp, BROADCOM_MII_REG4,
914 val & ~0x0080);
917 } else if (cp->cas_flags & CAS_FLAG_SATURN) {
918 writel((cp->phy_type & CAS_PHY_MII_MDIO0) ?
919 SATURN_PCFG_FSI : 0x0,
920 cp->regs + REG_SATURN_PCFG);
922 /* load firmware to address 10Mbps auto-negotiation
923 * issue. NOTE: this will need to be changed if the
924 * default firmware gets fixed.
926 if (PHY_NS_DP83065 == cp->phy_id) {
927 cas_saturn_firmware_load(cp);
929 cas_phy_powerup(cp);
932 /* advertise capabilities */
933 val = cas_phy_read(cp, MII_BMCR);
934 val &= ~BMCR_ANENABLE;
935 cas_phy_write(cp, MII_BMCR, val);
936 udelay(10);
938 cas_phy_write(cp, MII_ADVERTISE,
939 cas_phy_read(cp, MII_ADVERTISE) |
940 (ADVERTISE_10HALF | ADVERTISE_10FULL |
941 ADVERTISE_100HALF | ADVERTISE_100FULL |
942 CAS_ADVERTISE_PAUSE |
943 CAS_ADVERTISE_ASYM_PAUSE));
945 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
946 /* make sure that we don't advertise half
947 * duplex to avoid a chip issue
949 val = cas_phy_read(cp, CAS_MII_1000_CTRL);
950 val &= ~CAS_ADVERTISE_1000HALF;
951 val |= CAS_ADVERTISE_1000FULL;
952 cas_phy_write(cp, CAS_MII_1000_CTRL, val);
955 } else {
956 /* reset pcs for serdes */
957 u32 val;
958 int limit;
960 writel(PCS_DATAPATH_MODE_SERDES,
961 cp->regs + REG_PCS_DATAPATH_MODE);
963 /* enable serdes pins on saturn */
964 if (cp->cas_flags & CAS_FLAG_SATURN)
965 writel(0, cp->regs + REG_SATURN_PCFG);
967 /* Reset PCS unit. */
968 val = readl(cp->regs + REG_PCS_MII_CTRL);
969 val |= PCS_MII_RESET;
970 writel(val, cp->regs + REG_PCS_MII_CTRL);
972 limit = STOP_TRIES;
973 while (--limit > 0) {
974 udelay(10);
975 if ((readl(cp->regs + REG_PCS_MII_CTRL) &
976 PCS_MII_RESET) == 0)
977 break;
979 if (limit <= 0)
980 netdev_warn(cp->dev, "PCS reset bit would not clear [%08x]\n",
981 readl(cp->regs + REG_PCS_STATE_MACHINE));
983 /* Make sure PCS is disabled while changing advertisement
984 * configuration.
986 writel(0x0, cp->regs + REG_PCS_CFG);
988 /* Advertise all capabilities except half-duplex. */
989 val = readl(cp->regs + REG_PCS_MII_ADVERT);
990 val &= ~PCS_MII_ADVERT_HD;
991 val |= (PCS_MII_ADVERT_FD | PCS_MII_ADVERT_SYM_PAUSE |
992 PCS_MII_ADVERT_ASYM_PAUSE);
993 writel(val, cp->regs + REG_PCS_MII_ADVERT);
995 /* enable PCS */
996 writel(PCS_CFG_EN, cp->regs + REG_PCS_CFG);
998 /* pcs workaround: enable sync detect */
999 writel(PCS_SERDES_CTRL_SYNCD_EN,
1000 cp->regs + REG_PCS_SERDES_CTRL);
1005 static int cas_pcs_link_check(struct cas *cp)
1007 u32 stat, state_machine;
1008 int retval = 0;
1010 /* The link status bit latches on zero, so you must
1011 * read it twice in such a case to see a transition
1012 * to the link being up.
1014 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1015 if ((stat & PCS_MII_STATUS_LINK_STATUS) == 0)
1016 stat = readl(cp->regs + REG_PCS_MII_STATUS);
1018 /* The remote-fault indication is only valid
1019 * when autoneg has completed.
1021 if ((stat & (PCS_MII_STATUS_AUTONEG_COMP |
1022 PCS_MII_STATUS_REMOTE_FAULT)) ==
1023 (PCS_MII_STATUS_AUTONEG_COMP | PCS_MII_STATUS_REMOTE_FAULT))
1024 netif_info(cp, link, cp->dev, "PCS RemoteFault\n");
1026 /* work around link detection issue by querying the PCS state
1027 * machine directly.
1029 state_machine = readl(cp->regs + REG_PCS_STATE_MACHINE);
1030 if ((state_machine & PCS_SM_LINK_STATE_MASK) != SM_LINK_STATE_UP) {
1031 stat &= ~PCS_MII_STATUS_LINK_STATUS;
1032 } else if (state_machine & PCS_SM_WORD_SYNC_STATE_MASK) {
1033 stat |= PCS_MII_STATUS_LINK_STATUS;
1036 if (stat & PCS_MII_STATUS_LINK_STATUS) {
1037 if (cp->lstate != link_up) {
1038 if (cp->opened) {
1039 cp->lstate = link_up;
1040 cp->link_transition = LINK_TRANSITION_LINK_UP;
1042 cas_set_link_modes(cp);
1043 netif_carrier_on(cp->dev);
1046 } else if (cp->lstate == link_up) {
1047 cp->lstate = link_down;
1048 if (link_transition_timeout != 0 &&
1049 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1050 !cp->link_transition_jiffies_valid) {
1052 * force a reset, as a workaround for the
1053 * link-failure problem. May want to move this to a
1054 * point a bit earlier in the sequence. If we had
1055 * generated a reset a short time ago, we'll wait for
1056 * the link timer to check the status until a
1057 * timer expires (link_transistion_jiffies_valid is
1058 * true when the timer is running.) Instead of using
1059 * a system timer, we just do a check whenever the
1060 * link timer is running - this clears the flag after
1061 * a suitable delay.
1063 retval = 1;
1064 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1065 cp->link_transition_jiffies = jiffies;
1066 cp->link_transition_jiffies_valid = 1;
1067 } else {
1068 cp->link_transition = LINK_TRANSITION_ON_FAILURE;
1070 netif_carrier_off(cp->dev);
1071 if (cp->opened)
1072 netif_info(cp, link, cp->dev, "PCS link down\n");
1074 /* Cassini only: if you force a mode, there can be
1075 * sync problems on link down. to fix that, the following
1076 * things need to be checked:
1077 * 1) read serialink state register
1078 * 2) read pcs status register to verify link down.
1079 * 3) if link down and serial link == 0x03, then you need
1080 * to global reset the chip.
1082 if ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0) {
1083 /* should check to see if we're in a forced mode */
1084 stat = readl(cp->regs + REG_PCS_SERDES_STATE);
1085 if (stat == 0x03)
1086 return 1;
1088 } else if (cp->lstate == link_down) {
1089 if (link_transition_timeout != 0 &&
1090 cp->link_transition != LINK_TRANSITION_REQUESTED_RESET &&
1091 !cp->link_transition_jiffies_valid) {
1092 /* force a reset, as a workaround for the
1093 * link-failure problem. May want to move
1094 * this to a point a bit earlier in the
1095 * sequence.
1097 retval = 1;
1098 cp->link_transition = LINK_TRANSITION_REQUESTED_RESET;
1099 cp->link_transition_jiffies = jiffies;
1100 cp->link_transition_jiffies_valid = 1;
1101 } else {
1102 cp->link_transition = LINK_TRANSITION_STILL_FAILED;
1106 return retval;
1109 static int cas_pcs_interrupt(struct net_device *dev,
1110 struct cas *cp, u32 status)
1112 u32 stat = readl(cp->regs + REG_PCS_INTR_STATUS);
1114 if ((stat & PCS_INTR_STATUS_LINK_CHANGE) == 0)
1115 return 0;
1116 return cas_pcs_link_check(cp);
1119 static int cas_txmac_interrupt(struct net_device *dev,
1120 struct cas *cp, u32 status)
1122 u32 txmac_stat = readl(cp->regs + REG_MAC_TX_STATUS);
1124 if (!txmac_stat)
1125 return 0;
1127 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1128 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat);
1130 /* Defer timer expiration is quite normal,
1131 * don't even log the event.
1133 if ((txmac_stat & MAC_TX_DEFER_TIMER) &&
1134 !(txmac_stat & ~MAC_TX_DEFER_TIMER))
1135 return 0;
1137 spin_lock(&cp->stat_lock[0]);
1138 if (txmac_stat & MAC_TX_UNDERRUN) {
1139 netdev_err(dev, "TX MAC xmit underrun\n");
1140 cp->net_stats[0].tx_fifo_errors++;
1143 if (txmac_stat & MAC_TX_MAX_PACKET_ERR) {
1144 netdev_err(dev, "TX MAC max packet size error\n");
1145 cp->net_stats[0].tx_errors++;
1148 /* The rest are all cases of one of the 16-bit TX
1149 * counters expiring.
1151 if (txmac_stat & MAC_TX_COLL_NORMAL)
1152 cp->net_stats[0].collisions += 0x10000;
1154 if (txmac_stat & MAC_TX_COLL_EXCESS) {
1155 cp->net_stats[0].tx_aborted_errors += 0x10000;
1156 cp->net_stats[0].collisions += 0x10000;
1159 if (txmac_stat & MAC_TX_COLL_LATE) {
1160 cp->net_stats[0].tx_aborted_errors += 0x10000;
1161 cp->net_stats[0].collisions += 0x10000;
1163 spin_unlock(&cp->stat_lock[0]);
1165 /* We do not keep track of MAC_TX_COLL_FIRST and
1166 * MAC_TX_PEAK_ATTEMPTS events.
1168 return 0;
1171 static void cas_load_firmware(struct cas *cp, cas_hp_inst_t *firmware)
1173 cas_hp_inst_t *inst;
1174 u32 val;
1175 int i;
1177 i = 0;
1178 while ((inst = firmware) && inst->note) {
1179 writel(i, cp->regs + REG_HP_INSTR_RAM_ADDR);
1181 val = CAS_BASE(HP_INSTR_RAM_HI_VAL, inst->val);
1182 val |= CAS_BASE(HP_INSTR_RAM_HI_MASK, inst->mask);
1183 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_HI);
1185 val = CAS_BASE(HP_INSTR_RAM_MID_OUTARG, inst->outarg >> 10);
1186 val |= CAS_BASE(HP_INSTR_RAM_MID_OUTOP, inst->outop);
1187 val |= CAS_BASE(HP_INSTR_RAM_MID_FNEXT, inst->fnext);
1188 val |= CAS_BASE(HP_INSTR_RAM_MID_FOFF, inst->foff);
1189 val |= CAS_BASE(HP_INSTR_RAM_MID_SNEXT, inst->snext);
1190 val |= CAS_BASE(HP_INSTR_RAM_MID_SOFF, inst->soff);
1191 val |= CAS_BASE(HP_INSTR_RAM_MID_OP, inst->op);
1192 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_MID);
1194 val = CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK, inst->outmask);
1195 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT, inst->outshift);
1196 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN, inst->outenab);
1197 val |= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG, inst->outarg);
1198 writel(val, cp->regs + REG_HP_INSTR_RAM_DATA_LOW);
1199 ++firmware;
1200 ++i;
1204 static void cas_init_rx_dma(struct cas *cp)
1206 u64 desc_dma = cp->block_dvma;
1207 u32 val;
1208 int i, size;
1210 /* rx free descriptors */
1211 val = CAS_BASE(RX_CFG_SWIVEL, RX_SWIVEL_OFF_VAL);
1212 val |= CAS_BASE(RX_CFG_DESC_RING, RX_DESC_RINGN_INDEX(0));
1213 val |= CAS_BASE(RX_CFG_COMP_RING, RX_COMP_RINGN_INDEX(0));
1214 if ((N_RX_DESC_RINGS > 1) &&
1215 (cp->cas_flags & CAS_FLAG_REG_PLUS)) /* do desc 2 */
1216 val |= CAS_BASE(RX_CFG_DESC_RING1, RX_DESC_RINGN_INDEX(1));
1217 writel(val, cp->regs + REG_RX_CFG);
1219 val = (unsigned long) cp->init_rxds[0] -
1220 (unsigned long) cp->init_block;
1221 writel((desc_dma + val) >> 32, cp->regs + REG_RX_DB_HI);
1222 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_DB_LOW);
1223 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
1225 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1226 /* rx desc 2 is for IPSEC packets. however,
1227 * we don't it that for that purpose.
1229 val = (unsigned long) cp->init_rxds[1] -
1230 (unsigned long) cp->init_block;
1231 writel((desc_dma + val) >> 32, cp->regs + REG_PLUS_RX_DB1_HI);
1232 writel((desc_dma + val) & 0xffffffff, cp->regs +
1233 REG_PLUS_RX_DB1_LOW);
1234 writel(RX_DESC_RINGN_SIZE(1) - 4, cp->regs +
1235 REG_PLUS_RX_KICK1);
1238 /* rx completion registers */
1239 val = (unsigned long) cp->init_rxcs[0] -
1240 (unsigned long) cp->init_block;
1241 writel((desc_dma + val) >> 32, cp->regs + REG_RX_CB_HI);
1242 writel((desc_dma + val) & 0xffffffff, cp->regs + REG_RX_CB_LOW);
1244 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1245 /* rx comp 2-4 */
1246 for (i = 1; i < MAX_RX_COMP_RINGS; i++) {
1247 val = (unsigned long) cp->init_rxcs[i] -
1248 (unsigned long) cp->init_block;
1249 writel((desc_dma + val) >> 32, cp->regs +
1250 REG_PLUS_RX_CBN_HI(i));
1251 writel((desc_dma + val) & 0xffffffff, cp->regs +
1252 REG_PLUS_RX_CBN_LOW(i));
1256 /* read selective clear regs to prevent spurious interrupts
1257 * on reset because complete == kick.
1258 * selective clear set up to prevent interrupts on resets
1260 readl(cp->regs + REG_INTR_STATUS_ALIAS);
1261 writel(INTR_RX_DONE | INTR_RX_BUF_UNAVAIL, cp->regs + REG_ALIAS_CLEAR);
1262 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1263 for (i = 1; i < N_RX_COMP_RINGS; i++)
1264 readl(cp->regs + REG_PLUS_INTRN_STATUS_ALIAS(i));
1266 /* 2 is different from 3 and 4 */
1267 if (N_RX_COMP_RINGS > 1)
1268 writel(INTR_RX_DONE_ALT | INTR_RX_BUF_UNAVAIL_1,
1269 cp->regs + REG_PLUS_ALIASN_CLEAR(1));
1271 for (i = 2; i < N_RX_COMP_RINGS; i++)
1272 writel(INTR_RX_DONE_ALT,
1273 cp->regs + REG_PLUS_ALIASN_CLEAR(i));
1276 /* set up pause thresholds */
1277 val = CAS_BASE(RX_PAUSE_THRESH_OFF,
1278 cp->rx_pause_off / RX_PAUSE_THRESH_QUANTUM);
1279 val |= CAS_BASE(RX_PAUSE_THRESH_ON,
1280 cp->rx_pause_on / RX_PAUSE_THRESH_QUANTUM);
1281 writel(val, cp->regs + REG_RX_PAUSE_THRESH);
1283 /* zero out dma reassembly buffers */
1284 for (i = 0; i < 64; i++) {
1285 writel(i, cp->regs + REG_RX_TABLE_ADDR);
1286 writel(0x0, cp->regs + REG_RX_TABLE_DATA_LOW);
1287 writel(0x0, cp->regs + REG_RX_TABLE_DATA_MID);
1288 writel(0x0, cp->regs + REG_RX_TABLE_DATA_HI);
1291 /* make sure address register is 0 for normal operation */
1292 writel(0x0, cp->regs + REG_RX_CTRL_FIFO_ADDR);
1293 writel(0x0, cp->regs + REG_RX_IPP_FIFO_ADDR);
1295 /* interrupt mitigation */
1296 #ifdef USE_RX_BLANK
1297 val = CAS_BASE(RX_BLANK_INTR_TIME, RX_BLANK_INTR_TIME_VAL);
1298 val |= CAS_BASE(RX_BLANK_INTR_PKT, RX_BLANK_INTR_PKT_VAL);
1299 writel(val, cp->regs + REG_RX_BLANK);
1300 #else
1301 writel(0x0, cp->regs + REG_RX_BLANK);
1302 #endif
1304 /* interrupt generation as a function of low water marks for
1305 * free desc and completion entries. these are used to trigger
1306 * housekeeping for rx descs. we don't use the free interrupt
1307 * as it's not very useful
1309 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1310 val = CAS_BASE(RX_AE_THRESH_COMP, RX_AE_COMP_VAL);
1311 writel(val, cp->regs + REG_RX_AE_THRESH);
1312 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
1313 val = CAS_BASE(RX_AE1_THRESH_FREE, RX_AE_FREEN_VAL(1));
1314 writel(val, cp->regs + REG_PLUS_RX_AE1_THRESH);
1317 /* Random early detect registers. useful for congestion avoidance.
1318 * this should be tunable.
1320 writel(0x0, cp->regs + REG_RX_RED);
1322 /* receive page sizes. default == 2K (0x800) */
1323 val = 0;
1324 if (cp->page_size == 0x1000)
1325 val = 0x1;
1326 else if (cp->page_size == 0x2000)
1327 val = 0x2;
1328 else if (cp->page_size == 0x4000)
1329 val = 0x3;
1331 /* round mtu + offset. constrain to page size. */
1332 size = cp->dev->mtu + 64;
1333 if (size > cp->page_size)
1334 size = cp->page_size;
1336 if (size <= 0x400)
1337 i = 0x0;
1338 else if (size <= 0x800)
1339 i = 0x1;
1340 else if (size <= 0x1000)
1341 i = 0x2;
1342 else
1343 i = 0x3;
1345 cp->mtu_stride = 1 << (i + 10);
1346 val = CAS_BASE(RX_PAGE_SIZE, val);
1347 val |= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE, i);
1348 val |= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT, cp->page_size >> (i + 10));
1349 val |= CAS_BASE(RX_PAGE_SIZE_MTU_OFF, 0x1);
1350 writel(val, cp->regs + REG_RX_PAGE_SIZE);
1352 /* enable the header parser if desired */
1353 if (CAS_HP_FIRMWARE == cas_prog_null)
1354 return;
1356 val = CAS_BASE(HP_CFG_NUM_CPU, CAS_NCPUS > 63 ? 0 : CAS_NCPUS);
1357 val |= HP_CFG_PARSE_EN | HP_CFG_SYN_INC_MASK;
1358 val |= CAS_BASE(HP_CFG_TCP_THRESH, HP_TCP_THRESH_VAL);
1359 writel(val, cp->regs + REG_HP_CFG);
1362 static inline void cas_rxc_init(struct cas_rx_comp *rxc)
1364 memset(rxc, 0, sizeof(*rxc));
1365 rxc->word4 = cpu_to_le64(RX_COMP4_ZERO);
1368 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1369 * flipping is protected by the fact that the chip will not
1370 * hand back the same page index while it's being processed.
1372 static inline cas_page_t *cas_page_spare(struct cas *cp, const int index)
1374 cas_page_t *page = cp->rx_pages[1][index];
1375 cas_page_t *new;
1377 if (page_count(page->buffer) == 1)
1378 return page;
1380 new = cas_page_dequeue(cp);
1381 if (new) {
1382 spin_lock(&cp->rx_inuse_lock);
1383 list_add(&page->list, &cp->rx_inuse_list);
1384 spin_unlock(&cp->rx_inuse_lock);
1386 return new;
1389 /* this needs to be changed if we actually use the ENC RX DESC ring */
1390 static cas_page_t *cas_page_swap(struct cas *cp, const int ring,
1391 const int index)
1393 cas_page_t **page0 = cp->rx_pages[0];
1394 cas_page_t **page1 = cp->rx_pages[1];
1396 /* swap if buffer is in use */
1397 if (page_count(page0[index]->buffer) > 1) {
1398 cas_page_t *new = cas_page_spare(cp, index);
1399 if (new) {
1400 page1[index] = page0[index];
1401 page0[index] = new;
1404 RX_USED_SET(page0[index], 0);
1405 return page0[index];
1408 static void cas_clean_rxds(struct cas *cp)
1410 /* only clean ring 0 as ring 1 is used for spare buffers */
1411 struct cas_rx_desc *rxd = cp->init_rxds[0];
1412 int i, size;
1414 /* release all rx flows */
1415 for (i = 0; i < N_RX_FLOWS; i++) {
1416 struct sk_buff *skb;
1417 while ((skb = __skb_dequeue(&cp->rx_flows[i]))) {
1418 cas_skb_release(skb);
1422 /* initialize descriptors */
1423 size = RX_DESC_RINGN_SIZE(0);
1424 for (i = 0; i < size; i++) {
1425 cas_page_t *page = cas_page_swap(cp, 0, i);
1426 rxd[i].buffer = cpu_to_le64(page->dma_addr);
1427 rxd[i].index = cpu_to_le64(CAS_BASE(RX_INDEX_NUM, i) |
1428 CAS_BASE(RX_INDEX_RING, 0));
1431 cp->rx_old[0] = RX_DESC_RINGN_SIZE(0) - 4;
1432 cp->rx_last[0] = 0;
1433 cp->cas_flags &= ~CAS_FLAG_RXD_POST(0);
1436 static void cas_clean_rxcs(struct cas *cp)
1438 int i, j;
1440 /* take ownership of rx comp descriptors */
1441 memset(cp->rx_cur, 0, sizeof(*cp->rx_cur)*N_RX_COMP_RINGS);
1442 memset(cp->rx_new, 0, sizeof(*cp->rx_new)*N_RX_COMP_RINGS);
1443 for (i = 0; i < N_RX_COMP_RINGS; i++) {
1444 struct cas_rx_comp *rxc = cp->init_rxcs[i];
1445 for (j = 0; j < RX_COMP_RINGN_SIZE(i); j++) {
1446 cas_rxc_init(rxc + j);
1451 #if 0
1452 /* When we get a RX fifo overflow, the RX unit is probably hung
1453 * so we do the following.
1455 * If any part of the reset goes wrong, we return 1 and that causes the
1456 * whole chip to be reset.
1458 static int cas_rxmac_reset(struct cas *cp)
1460 struct net_device *dev = cp->dev;
1461 int limit;
1462 u32 val;
1464 /* First, reset MAC RX. */
1465 writel(cp->mac_rx_cfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1466 for (limit = 0; limit < STOP_TRIES; limit++) {
1467 if (!(readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN))
1468 break;
1469 udelay(10);
1471 if (limit == STOP_TRIES) {
1472 netdev_err(dev, "RX MAC will not disable, resetting whole chip\n");
1473 return 1;
1476 /* Second, disable RX DMA. */
1477 writel(0, cp->regs + REG_RX_CFG);
1478 for (limit = 0; limit < STOP_TRIES; limit++) {
1479 if (!(readl(cp->regs + REG_RX_CFG) & RX_CFG_DMA_EN))
1480 break;
1481 udelay(10);
1483 if (limit == STOP_TRIES) {
1484 netdev_err(dev, "RX DMA will not disable, resetting whole chip\n");
1485 return 1;
1488 mdelay(5);
1490 /* Execute RX reset command. */
1491 writel(SW_RESET_RX, cp->regs + REG_SW_RESET);
1492 for (limit = 0; limit < STOP_TRIES; limit++) {
1493 if (!(readl(cp->regs + REG_SW_RESET) & SW_RESET_RX))
1494 break;
1495 udelay(10);
1497 if (limit == STOP_TRIES) {
1498 netdev_err(dev, "RX reset command will not execute, resetting whole chip\n");
1499 return 1;
1502 /* reset driver rx state */
1503 cas_clean_rxds(cp);
1504 cas_clean_rxcs(cp);
1506 /* Now, reprogram the rest of RX unit. */
1507 cas_init_rx_dma(cp);
1509 /* re-enable */
1510 val = readl(cp->regs + REG_RX_CFG);
1511 writel(val | RX_CFG_DMA_EN, cp->regs + REG_RX_CFG);
1512 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
1513 val = readl(cp->regs + REG_MAC_RX_CFG);
1514 writel(val | MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
1515 return 0;
1517 #endif
1519 static int cas_rxmac_interrupt(struct net_device *dev, struct cas *cp,
1520 u32 status)
1522 u32 stat = readl(cp->regs + REG_MAC_RX_STATUS);
1524 if (!stat)
1525 return 0;
1527 netif_dbg(cp, intr, cp->dev, "rxmac interrupt, stat: 0x%x\n", stat);
1529 /* these are all rollovers */
1530 spin_lock(&cp->stat_lock[0]);
1531 if (stat & MAC_RX_ALIGN_ERR)
1532 cp->net_stats[0].rx_frame_errors += 0x10000;
1534 if (stat & MAC_RX_CRC_ERR)
1535 cp->net_stats[0].rx_crc_errors += 0x10000;
1537 if (stat & MAC_RX_LEN_ERR)
1538 cp->net_stats[0].rx_length_errors += 0x10000;
1540 if (stat & MAC_RX_OVERFLOW) {
1541 cp->net_stats[0].rx_over_errors++;
1542 cp->net_stats[0].rx_fifo_errors++;
1545 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1546 * events.
1548 spin_unlock(&cp->stat_lock[0]);
1549 return 0;
1552 static int cas_mac_interrupt(struct net_device *dev, struct cas *cp,
1553 u32 status)
1555 u32 stat = readl(cp->regs + REG_MAC_CTRL_STATUS);
1557 if (!stat)
1558 return 0;
1560 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1561 "mac interrupt, stat: 0x%x\n", stat);
1563 /* This interrupt is just for pause frame and pause
1564 * tracking. It is useful for diagnostics and debug
1565 * but probably by default we will mask these events.
1567 if (stat & MAC_CTRL_PAUSE_STATE)
1568 cp->pause_entered++;
1570 if (stat & MAC_CTRL_PAUSE_RECEIVED)
1571 cp->pause_last_time_recvd = (stat >> 16);
1573 return 0;
1577 /* Must be invoked under cp->lock. */
1578 static inline int cas_mdio_link_not_up(struct cas *cp)
1580 u16 val;
1582 switch (cp->lstate) {
1583 case link_force_ret:
1584 netif_info(cp, link, cp->dev, "Autoneg failed again, keeping forced mode\n");
1585 cas_phy_write(cp, MII_BMCR, cp->link_fcntl);
1586 cp->timer_ticks = 5;
1587 cp->lstate = link_force_ok;
1588 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1589 break;
1591 case link_aneg:
1592 val = cas_phy_read(cp, MII_BMCR);
1594 /* Try forced modes. we try things in the following order:
1595 * 1000 full -> 100 full/half -> 10 half
1597 val &= ~(BMCR_ANRESTART | BMCR_ANENABLE);
1598 val |= BMCR_FULLDPLX;
1599 val |= (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
1600 CAS_BMCR_SPEED1000 : BMCR_SPEED100;
1601 cas_phy_write(cp, MII_BMCR, val);
1602 cp->timer_ticks = 5;
1603 cp->lstate = link_force_try;
1604 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1605 break;
1607 case link_force_try:
1608 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1609 val = cas_phy_read(cp, MII_BMCR);
1610 cp->timer_ticks = 5;
1611 if (val & CAS_BMCR_SPEED1000) { /* gigabit */
1612 val &= ~CAS_BMCR_SPEED1000;
1613 val |= (BMCR_SPEED100 | BMCR_FULLDPLX);
1614 cas_phy_write(cp, MII_BMCR, val);
1615 break;
1618 if (val & BMCR_SPEED100) {
1619 if (val & BMCR_FULLDPLX) /* fd failed */
1620 val &= ~BMCR_FULLDPLX;
1621 else { /* 100Mbps failed */
1622 val &= ~BMCR_SPEED100;
1624 cas_phy_write(cp, MII_BMCR, val);
1625 break;
1627 default:
1628 break;
1630 return 0;
1634 /* must be invoked with cp->lock held */
1635 static int cas_mii_link_check(struct cas *cp, const u16 bmsr)
1637 int restart;
1639 if (bmsr & BMSR_LSTATUS) {
1640 /* Ok, here we got a link. If we had it due to a forced
1641 * fallback, and we were configured for autoneg, we
1642 * retry a short autoneg pass. If you know your hub is
1643 * broken, use ethtool ;)
1645 if ((cp->lstate == link_force_try) &&
1646 (cp->link_cntl & BMCR_ANENABLE)) {
1647 cp->lstate = link_force_ret;
1648 cp->link_transition = LINK_TRANSITION_LINK_CONFIG;
1649 cas_mif_poll(cp, 0);
1650 cp->link_fcntl = cas_phy_read(cp, MII_BMCR);
1651 cp->timer_ticks = 5;
1652 if (cp->opened)
1653 netif_info(cp, link, cp->dev,
1654 "Got link after fallback, retrying autoneg once...\n");
1655 cas_phy_write(cp, MII_BMCR,
1656 cp->link_fcntl | BMCR_ANENABLE |
1657 BMCR_ANRESTART);
1658 cas_mif_poll(cp, 1);
1660 } else if (cp->lstate != link_up) {
1661 cp->lstate = link_up;
1662 cp->link_transition = LINK_TRANSITION_LINK_UP;
1664 if (cp->opened) {
1665 cas_set_link_modes(cp);
1666 netif_carrier_on(cp->dev);
1669 return 0;
1672 /* link not up. if the link was previously up, we restart the
1673 * whole process
1675 restart = 0;
1676 if (cp->lstate == link_up) {
1677 cp->lstate = link_down;
1678 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
1680 netif_carrier_off(cp->dev);
1681 if (cp->opened)
1682 netif_info(cp, link, cp->dev, "Link down\n");
1683 restart = 1;
1685 } else if (++cp->timer_ticks > 10)
1686 cas_mdio_link_not_up(cp);
1688 return restart;
1691 static int cas_mif_interrupt(struct net_device *dev, struct cas *cp,
1692 u32 status)
1694 u32 stat = readl(cp->regs + REG_MIF_STATUS);
1695 u16 bmsr;
1697 /* check for a link change */
1698 if (CAS_VAL(MIF_STATUS_POLL_STATUS, stat) == 0)
1699 return 0;
1701 bmsr = CAS_VAL(MIF_STATUS_POLL_DATA, stat);
1702 return cas_mii_link_check(cp, bmsr);
1705 static int cas_pci_interrupt(struct net_device *dev, struct cas *cp,
1706 u32 status)
1708 u32 stat = readl(cp->regs + REG_PCI_ERR_STATUS);
1710 if (!stat)
1711 return 0;
1713 netdev_err(dev, "PCI error [%04x:%04x]",
1714 stat, readl(cp->regs + REG_BIM_DIAG));
1716 /* cassini+ has this reserved */
1717 if ((stat & PCI_ERR_BADACK) &&
1718 ((cp->cas_flags & CAS_FLAG_REG_PLUS) == 0))
1719 pr_cont(" <No ACK64# during ABS64 cycle>");
1721 if (stat & PCI_ERR_DTRTO)
1722 pr_cont(" <Delayed transaction timeout>");
1723 if (stat & PCI_ERR_OTHER)
1724 pr_cont(" <other>");
1725 if (stat & PCI_ERR_BIM_DMA_WRITE)
1726 pr_cont(" <BIM DMA 0 write req>");
1727 if (stat & PCI_ERR_BIM_DMA_READ)
1728 pr_cont(" <BIM DMA 0 read req>");
1729 pr_cont("\n");
1731 if (stat & PCI_ERR_OTHER) {
1732 u16 cfg;
1734 /* Interrogate PCI config space for the
1735 * true cause.
1737 pci_read_config_word(cp->pdev, PCI_STATUS, &cfg);
1738 netdev_err(dev, "Read PCI cfg space status [%04x]\n", cfg);
1739 if (cfg & PCI_STATUS_PARITY)
1740 netdev_err(dev, "PCI parity error detected\n");
1741 if (cfg & PCI_STATUS_SIG_TARGET_ABORT)
1742 netdev_err(dev, "PCI target abort\n");
1743 if (cfg & PCI_STATUS_REC_TARGET_ABORT)
1744 netdev_err(dev, "PCI master acks target abort\n");
1745 if (cfg & PCI_STATUS_REC_MASTER_ABORT)
1746 netdev_err(dev, "PCI master abort\n");
1747 if (cfg & PCI_STATUS_SIG_SYSTEM_ERROR)
1748 netdev_err(dev, "PCI system error SERR#\n");
1749 if (cfg & PCI_STATUS_DETECTED_PARITY)
1750 netdev_err(dev, "PCI parity error\n");
1752 /* Write the error bits back to clear them. */
1753 cfg &= (PCI_STATUS_PARITY |
1754 PCI_STATUS_SIG_TARGET_ABORT |
1755 PCI_STATUS_REC_TARGET_ABORT |
1756 PCI_STATUS_REC_MASTER_ABORT |
1757 PCI_STATUS_SIG_SYSTEM_ERROR |
1758 PCI_STATUS_DETECTED_PARITY);
1759 pci_write_config_word(cp->pdev, PCI_STATUS, cfg);
1762 /* For all PCI errors, we should reset the chip. */
1763 return 1;
1766 /* All non-normal interrupt conditions get serviced here.
1767 * Returns non-zero if we should just exit the interrupt
1768 * handler right now (ie. if we reset the card which invalidates
1769 * all of the other original irq status bits).
1771 static int cas_abnormal_irq(struct net_device *dev, struct cas *cp,
1772 u32 status)
1774 if (status & INTR_RX_TAG_ERROR) {
1775 /* corrupt RX tag framing */
1776 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1777 "corrupt rx tag framing\n");
1778 spin_lock(&cp->stat_lock[0]);
1779 cp->net_stats[0].rx_errors++;
1780 spin_unlock(&cp->stat_lock[0]);
1781 goto do_reset;
1784 if (status & INTR_RX_LEN_MISMATCH) {
1785 /* length mismatch. */
1786 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
1787 "length mismatch for rx frame\n");
1788 spin_lock(&cp->stat_lock[0]);
1789 cp->net_stats[0].rx_errors++;
1790 spin_unlock(&cp->stat_lock[0]);
1791 goto do_reset;
1794 if (status & INTR_PCS_STATUS) {
1795 if (cas_pcs_interrupt(dev, cp, status))
1796 goto do_reset;
1799 if (status & INTR_TX_MAC_STATUS) {
1800 if (cas_txmac_interrupt(dev, cp, status))
1801 goto do_reset;
1804 if (status & INTR_RX_MAC_STATUS) {
1805 if (cas_rxmac_interrupt(dev, cp, status))
1806 goto do_reset;
1809 if (status & INTR_MAC_CTRL_STATUS) {
1810 if (cas_mac_interrupt(dev, cp, status))
1811 goto do_reset;
1814 if (status & INTR_MIF_STATUS) {
1815 if (cas_mif_interrupt(dev, cp, status))
1816 goto do_reset;
1819 if (status & INTR_PCI_ERROR_STATUS) {
1820 if (cas_pci_interrupt(dev, cp, status))
1821 goto do_reset;
1823 return 0;
1825 do_reset:
1826 #if 1
1827 atomic_inc(&cp->reset_task_pending);
1828 atomic_inc(&cp->reset_task_pending_all);
1829 netdev_err(dev, "reset called in cas_abnormal_irq [0x%x]\n", status);
1830 schedule_work(&cp->reset_task);
1831 #else
1832 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
1833 netdev_err(dev, "reset called in cas_abnormal_irq\n");
1834 schedule_work(&cp->reset_task);
1835 #endif
1836 return 1;
1839 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1840 * determining whether to do a netif_stop/wakeup
1842 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1843 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1844 static inline int cas_calc_tabort(struct cas *cp, const unsigned long addr,
1845 const int len)
1847 unsigned long off = addr + len;
1849 if (CAS_TABORT(cp) == 1)
1850 return 0;
1851 if ((CAS_ROUND_PAGE(off) - off) > TX_TARGET_ABORT_LEN)
1852 return 0;
1853 return TX_TARGET_ABORT_LEN;
1856 static inline void cas_tx_ringN(struct cas *cp, int ring, int limit)
1858 struct cas_tx_desc *txds;
1859 struct sk_buff **skbs;
1860 struct net_device *dev = cp->dev;
1861 int entry, count;
1863 spin_lock(&cp->tx_lock[ring]);
1864 txds = cp->init_txds[ring];
1865 skbs = cp->tx_skbs[ring];
1866 entry = cp->tx_old[ring];
1868 count = TX_BUFF_COUNT(ring, entry, limit);
1869 while (entry != limit) {
1870 struct sk_buff *skb = skbs[entry];
1871 dma_addr_t daddr;
1872 u32 dlen;
1873 int frag;
1875 if (!skb) {
1876 /* this should never occur */
1877 entry = TX_DESC_NEXT(ring, entry);
1878 continue;
1881 /* however, we might get only a partial skb release. */
1882 count -= skb_shinfo(skb)->nr_frags +
1883 + cp->tx_tiny_use[ring][entry].nbufs + 1;
1884 if (count < 0)
1885 break;
1887 netif_printk(cp, tx_done, KERN_DEBUG, cp->dev,
1888 "tx[%d] done, slot %d\n", ring, entry);
1890 skbs[entry] = NULL;
1891 cp->tx_tiny_use[ring][entry].nbufs = 0;
1893 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
1894 struct cas_tx_desc *txd = txds + entry;
1896 daddr = le64_to_cpu(txd->buffer);
1897 dlen = CAS_VAL(TX_DESC_BUFLEN,
1898 le64_to_cpu(txd->control));
1899 pci_unmap_page(cp->pdev, daddr, dlen,
1900 PCI_DMA_TODEVICE);
1901 entry = TX_DESC_NEXT(ring, entry);
1903 /* tiny buffer may follow */
1904 if (cp->tx_tiny_use[ring][entry].used) {
1905 cp->tx_tiny_use[ring][entry].used = 0;
1906 entry = TX_DESC_NEXT(ring, entry);
1910 spin_lock(&cp->stat_lock[ring]);
1911 cp->net_stats[ring].tx_packets++;
1912 cp->net_stats[ring].tx_bytes += skb->len;
1913 spin_unlock(&cp->stat_lock[ring]);
1914 dev_kfree_skb_irq(skb);
1916 cp->tx_old[ring] = entry;
1918 /* this is wrong for multiple tx rings. the net device needs
1919 * multiple queues for this to do the right thing. we wait
1920 * for 2*packets to be available when using tiny buffers
1922 if (netif_queue_stopped(dev) &&
1923 (TX_BUFFS_AVAIL(cp, ring) > CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1)))
1924 netif_wake_queue(dev);
1925 spin_unlock(&cp->tx_lock[ring]);
1928 static void cas_tx(struct net_device *dev, struct cas *cp,
1929 u32 status)
1931 int limit, ring;
1932 #ifdef USE_TX_COMPWB
1933 u64 compwb = le64_to_cpu(cp->init_block->tx_compwb);
1934 #endif
1935 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
1936 "tx interrupt, status: 0x%x, %llx\n",
1937 status, (unsigned long long)compwb);
1938 /* process all the rings */
1939 for (ring = 0; ring < N_TX_RINGS; ring++) {
1940 #ifdef USE_TX_COMPWB
1941 /* use the completion writeback registers */
1942 limit = (CAS_VAL(TX_COMPWB_MSB, compwb) << 8) |
1943 CAS_VAL(TX_COMPWB_LSB, compwb);
1944 compwb = TX_COMPWB_NEXT(compwb);
1945 #else
1946 limit = readl(cp->regs + REG_TX_COMPN(ring));
1947 #endif
1948 if (cp->tx_old[ring] != limit)
1949 cas_tx_ringN(cp, ring, limit);
1954 static int cas_rx_process_pkt(struct cas *cp, struct cas_rx_comp *rxc,
1955 int entry, const u64 *words,
1956 struct sk_buff **skbref)
1958 int dlen, hlen, len, i, alloclen;
1959 int off, swivel = RX_SWIVEL_OFF_VAL;
1960 struct cas_page *page;
1961 struct sk_buff *skb;
1962 void *addr, *crcaddr;
1963 __sum16 csum;
1964 char *p;
1966 hlen = CAS_VAL(RX_COMP2_HDR_SIZE, words[1]);
1967 dlen = CAS_VAL(RX_COMP1_DATA_SIZE, words[0]);
1968 len = hlen + dlen;
1970 if (RX_COPY_ALWAYS || (words[2] & RX_COMP3_SMALL_PKT))
1971 alloclen = len;
1972 else
1973 alloclen = max(hlen, RX_COPY_MIN);
1975 skb = netdev_alloc_skb(cp->dev, alloclen + swivel + cp->crc_size);
1976 if (skb == NULL)
1977 return -1;
1979 *skbref = skb;
1980 skb_reserve(skb, swivel);
1982 p = skb->data;
1983 addr = crcaddr = NULL;
1984 if (hlen) { /* always copy header pages */
1985 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
1986 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
1987 off = CAS_VAL(RX_COMP2_HDR_OFF, words[1]) * 0x100 +
1988 swivel;
1990 i = hlen;
1991 if (!dlen) /* attach FCS */
1992 i += cp->crc_size;
1993 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
1994 PCI_DMA_FROMDEVICE);
1995 addr = cas_page_map(page->buffer);
1996 memcpy(p, addr + off, i);
1997 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
1998 PCI_DMA_FROMDEVICE);
1999 cas_page_unmap(addr);
2000 RX_USED_ADD(page, 0x100);
2001 p += hlen;
2002 swivel = 0;
2006 if (alloclen < (hlen + dlen)) {
2007 skb_frag_t *frag = skb_shinfo(skb)->frags;
2009 /* normal or jumbo packets. we use frags */
2010 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2011 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2012 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2014 hlen = min(cp->page_size - off, dlen);
2015 if (hlen < 0) {
2016 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2017 "rx page overflow: %d\n", hlen);
2018 dev_kfree_skb_irq(skb);
2019 return -1;
2021 i = hlen;
2022 if (i == dlen) /* attach FCS */
2023 i += cp->crc_size;
2024 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2025 PCI_DMA_FROMDEVICE);
2027 /* make sure we always copy a header */
2028 swivel = 0;
2029 if (p == (char *) skb->data) { /* not split */
2030 addr = cas_page_map(page->buffer);
2031 memcpy(p, addr + off, RX_COPY_MIN);
2032 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2033 PCI_DMA_FROMDEVICE);
2034 cas_page_unmap(addr);
2035 off += RX_COPY_MIN;
2036 swivel = RX_COPY_MIN;
2037 RX_USED_ADD(page, cp->mtu_stride);
2038 } else {
2039 RX_USED_ADD(page, hlen);
2041 skb_put(skb, alloclen);
2043 skb_shinfo(skb)->nr_frags++;
2044 skb->data_len += hlen - swivel;
2045 skb->truesize += hlen - swivel;
2046 skb->len += hlen - swivel;
2048 __skb_frag_set_page(frag, page->buffer);
2049 __skb_frag_ref(frag);
2050 frag->page_offset = off;
2051 skb_frag_size_set(frag, hlen - swivel);
2053 /* any more data? */
2054 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2055 hlen = dlen;
2056 off = 0;
2058 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2059 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2060 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2061 hlen + cp->crc_size,
2062 PCI_DMA_FROMDEVICE);
2063 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2064 hlen + cp->crc_size,
2065 PCI_DMA_FROMDEVICE);
2067 skb_shinfo(skb)->nr_frags++;
2068 skb->data_len += hlen;
2069 skb->len += hlen;
2070 frag++;
2072 __skb_frag_set_page(frag, page->buffer);
2073 __skb_frag_ref(frag);
2074 frag->page_offset = 0;
2075 skb_frag_size_set(frag, hlen);
2076 RX_USED_ADD(page, hlen + cp->crc_size);
2079 if (cp->crc_size) {
2080 addr = cas_page_map(page->buffer);
2081 crcaddr = addr + off + hlen;
2084 } else {
2085 /* copying packet */
2086 if (!dlen)
2087 goto end_copy_pkt;
2089 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2090 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2091 off = CAS_VAL(RX_COMP1_DATA_OFF, words[0]) + swivel;
2092 hlen = min(cp->page_size - off, dlen);
2093 if (hlen < 0) {
2094 netif_printk(cp, rx_err, KERN_DEBUG, cp->dev,
2095 "rx page overflow: %d\n", hlen);
2096 dev_kfree_skb_irq(skb);
2097 return -1;
2099 i = hlen;
2100 if (i == dlen) /* attach FCS */
2101 i += cp->crc_size;
2102 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr + off, i,
2103 PCI_DMA_FROMDEVICE);
2104 addr = cas_page_map(page->buffer);
2105 memcpy(p, addr + off, i);
2106 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr + off, i,
2107 PCI_DMA_FROMDEVICE);
2108 cas_page_unmap(addr);
2109 if (p == (char *) skb->data) /* not split */
2110 RX_USED_ADD(page, cp->mtu_stride);
2111 else
2112 RX_USED_ADD(page, i);
2114 /* any more data? */
2115 if ((words[0] & RX_COMP1_SPLIT_PKT) && ((dlen -= hlen) > 0)) {
2116 p += hlen;
2117 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2118 page = cp->rx_pages[CAS_VAL(RX_INDEX_RING, i)][CAS_VAL(RX_INDEX_NUM, i)];
2119 pci_dma_sync_single_for_cpu(cp->pdev, page->dma_addr,
2120 dlen + cp->crc_size,
2121 PCI_DMA_FROMDEVICE);
2122 addr = cas_page_map(page->buffer);
2123 memcpy(p, addr, dlen + cp->crc_size);
2124 pci_dma_sync_single_for_device(cp->pdev, page->dma_addr,
2125 dlen + cp->crc_size,
2126 PCI_DMA_FROMDEVICE);
2127 cas_page_unmap(addr);
2128 RX_USED_ADD(page, dlen + cp->crc_size);
2130 end_copy_pkt:
2131 if (cp->crc_size) {
2132 addr = NULL;
2133 crcaddr = skb->data + alloclen;
2135 skb_put(skb, alloclen);
2138 csum = (__force __sum16)htons(CAS_VAL(RX_COMP4_TCP_CSUM, words[3]));
2139 if (cp->crc_size) {
2140 /* checksum includes FCS. strip it out. */
2141 csum = csum_fold(csum_partial(crcaddr, cp->crc_size,
2142 csum_unfold(csum)));
2143 if (addr)
2144 cas_page_unmap(addr);
2146 skb->protocol = eth_type_trans(skb, cp->dev);
2147 if (skb->protocol == htons(ETH_P_IP)) {
2148 skb->csum = csum_unfold(~csum);
2149 skb->ip_summed = CHECKSUM_COMPLETE;
2150 } else
2151 skb_checksum_none_assert(skb);
2152 return len;
2156 /* we can handle up to 64 rx flows at a time. we do the same thing
2157 * as nonreassm except that we batch up the buffers.
2158 * NOTE: we currently just treat each flow as a bunch of packets that
2159 * we pass up. a better way would be to coalesce the packets
2160 * into a jumbo packet. to do that, we need to do the following:
2161 * 1) the first packet will have a clean split between header and
2162 * data. save both.
2163 * 2) each time the next flow packet comes in, extend the
2164 * data length and merge the checksums.
2165 * 3) on flow release, fix up the header.
2166 * 4) make sure the higher layer doesn't care.
2167 * because packets get coalesced, we shouldn't run into fragment count
2168 * issues.
2170 static inline void cas_rx_flow_pkt(struct cas *cp, const u64 *words,
2171 struct sk_buff *skb)
2173 int flowid = CAS_VAL(RX_COMP3_FLOWID, words[2]) & (N_RX_FLOWS - 1);
2174 struct sk_buff_head *flow = &cp->rx_flows[flowid];
2176 /* this is protected at a higher layer, so no need to
2177 * do any additional locking here. stick the buffer
2178 * at the end.
2180 __skb_queue_tail(flow, skb);
2181 if (words[0] & RX_COMP1_RELEASE_FLOW) {
2182 while ((skb = __skb_dequeue(flow))) {
2183 cas_skb_release(skb);
2188 /* put rx descriptor back on ring. if a buffer is in use by a higher
2189 * layer, this will need to put in a replacement.
2191 static void cas_post_page(struct cas *cp, const int ring, const int index)
2193 cas_page_t *new;
2194 int entry;
2196 entry = cp->rx_old[ring];
2198 new = cas_page_swap(cp, ring, index);
2199 cp->init_rxds[ring][entry].buffer = cpu_to_le64(new->dma_addr);
2200 cp->init_rxds[ring][entry].index =
2201 cpu_to_le64(CAS_BASE(RX_INDEX_NUM, index) |
2202 CAS_BASE(RX_INDEX_RING, ring));
2204 entry = RX_DESC_ENTRY(ring, entry + 1);
2205 cp->rx_old[ring] = entry;
2207 if (entry % 4)
2208 return;
2210 if (ring == 0)
2211 writel(entry, cp->regs + REG_RX_KICK);
2212 else if ((N_RX_DESC_RINGS > 1) &&
2213 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2214 writel(entry, cp->regs + REG_PLUS_RX_KICK1);
2218 /* only when things are bad */
2219 static int cas_post_rxds_ringN(struct cas *cp, int ring, int num)
2221 unsigned int entry, last, count, released;
2222 int cluster;
2223 cas_page_t **page = cp->rx_pages[ring];
2225 entry = cp->rx_old[ring];
2227 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2228 "rxd[%d] interrupt, done: %d\n", ring, entry);
2230 cluster = -1;
2231 count = entry & 0x3;
2232 last = RX_DESC_ENTRY(ring, num ? entry + num - 4: entry - 4);
2233 released = 0;
2234 while (entry != last) {
2235 /* make a new buffer if it's still in use */
2236 if (page_count(page[entry]->buffer) > 1) {
2237 cas_page_t *new = cas_page_dequeue(cp);
2238 if (!new) {
2239 /* let the timer know that we need to
2240 * do this again
2242 cp->cas_flags |= CAS_FLAG_RXD_POST(ring);
2243 if (!timer_pending(&cp->link_timer))
2244 mod_timer(&cp->link_timer, jiffies +
2245 CAS_LINK_FAST_TIMEOUT);
2246 cp->rx_old[ring] = entry;
2247 cp->rx_last[ring] = num ? num - released : 0;
2248 return -ENOMEM;
2250 spin_lock(&cp->rx_inuse_lock);
2251 list_add(&page[entry]->list, &cp->rx_inuse_list);
2252 spin_unlock(&cp->rx_inuse_lock);
2253 cp->init_rxds[ring][entry].buffer =
2254 cpu_to_le64(new->dma_addr);
2255 page[entry] = new;
2259 if (++count == 4) {
2260 cluster = entry;
2261 count = 0;
2263 released++;
2264 entry = RX_DESC_ENTRY(ring, entry + 1);
2266 cp->rx_old[ring] = entry;
2268 if (cluster < 0)
2269 return 0;
2271 if (ring == 0)
2272 writel(cluster, cp->regs + REG_RX_KICK);
2273 else if ((N_RX_DESC_RINGS > 1) &&
2274 (cp->cas_flags & CAS_FLAG_REG_PLUS))
2275 writel(cluster, cp->regs + REG_PLUS_RX_KICK1);
2276 return 0;
2280 /* process a completion ring. packets are set up in three basic ways:
2281 * small packets: should be copied header + data in single buffer.
2282 * large packets: header and data in a single buffer.
2283 * split packets: header in a separate buffer from data.
2284 * data may be in multiple pages. data may be > 256
2285 * bytes but in a single page.
2287 * NOTE: RX page posting is done in this routine as well. while there's
2288 * the capability of using multiple RX completion rings, it isn't
2289 * really worthwhile due to the fact that the page posting will
2290 * force serialization on the single descriptor ring.
2292 static int cas_rx_ringN(struct cas *cp, int ring, int budget)
2294 struct cas_rx_comp *rxcs = cp->init_rxcs[ring];
2295 int entry, drops;
2296 int npackets = 0;
2298 netif_printk(cp, intr, KERN_DEBUG, cp->dev,
2299 "rx[%d] interrupt, done: %d/%d\n",
2300 ring,
2301 readl(cp->regs + REG_RX_COMP_HEAD), cp->rx_new[ring]);
2303 entry = cp->rx_new[ring];
2304 drops = 0;
2305 while (1) {
2306 struct cas_rx_comp *rxc = rxcs + entry;
2307 struct sk_buff *uninitialized_var(skb);
2308 int type, len;
2309 u64 words[4];
2310 int i, dring;
2312 words[0] = le64_to_cpu(rxc->word1);
2313 words[1] = le64_to_cpu(rxc->word2);
2314 words[2] = le64_to_cpu(rxc->word3);
2315 words[3] = le64_to_cpu(rxc->word4);
2317 /* don't touch if still owned by hw */
2318 type = CAS_VAL(RX_COMP1_TYPE, words[0]);
2319 if (type == 0)
2320 break;
2322 /* hw hasn't cleared the zero bit yet */
2323 if (words[3] & RX_COMP4_ZERO) {
2324 break;
2327 /* get info on the packet */
2328 if (words[3] & (RX_COMP4_LEN_MISMATCH | RX_COMP4_BAD)) {
2329 spin_lock(&cp->stat_lock[ring]);
2330 cp->net_stats[ring].rx_errors++;
2331 if (words[3] & RX_COMP4_LEN_MISMATCH)
2332 cp->net_stats[ring].rx_length_errors++;
2333 if (words[3] & RX_COMP4_BAD)
2334 cp->net_stats[ring].rx_crc_errors++;
2335 spin_unlock(&cp->stat_lock[ring]);
2337 /* We'll just return it to Cassini. */
2338 drop_it:
2339 spin_lock(&cp->stat_lock[ring]);
2340 ++cp->net_stats[ring].rx_dropped;
2341 spin_unlock(&cp->stat_lock[ring]);
2342 goto next;
2345 len = cas_rx_process_pkt(cp, rxc, entry, words, &skb);
2346 if (len < 0) {
2347 ++drops;
2348 goto drop_it;
2351 /* see if it's a flow re-assembly or not. the driver
2352 * itself handles release back up.
2354 if (RX_DONT_BATCH || (type == 0x2)) {
2355 /* non-reassm: these always get released */
2356 cas_skb_release(skb);
2357 } else {
2358 cas_rx_flow_pkt(cp, words, skb);
2361 spin_lock(&cp->stat_lock[ring]);
2362 cp->net_stats[ring].rx_packets++;
2363 cp->net_stats[ring].rx_bytes += len;
2364 spin_unlock(&cp->stat_lock[ring]);
2366 next:
2367 npackets++;
2369 /* should it be released? */
2370 if (words[0] & RX_COMP1_RELEASE_HDR) {
2371 i = CAS_VAL(RX_COMP2_HDR_INDEX, words[1]);
2372 dring = CAS_VAL(RX_INDEX_RING, i);
2373 i = CAS_VAL(RX_INDEX_NUM, i);
2374 cas_post_page(cp, dring, i);
2377 if (words[0] & RX_COMP1_RELEASE_DATA) {
2378 i = CAS_VAL(RX_COMP1_DATA_INDEX, words[0]);
2379 dring = CAS_VAL(RX_INDEX_RING, i);
2380 i = CAS_VAL(RX_INDEX_NUM, i);
2381 cas_post_page(cp, dring, i);
2384 if (words[0] & RX_COMP1_RELEASE_NEXT) {
2385 i = CAS_VAL(RX_COMP2_NEXT_INDEX, words[1]);
2386 dring = CAS_VAL(RX_INDEX_RING, i);
2387 i = CAS_VAL(RX_INDEX_NUM, i);
2388 cas_post_page(cp, dring, i);
2391 /* skip to the next entry */
2392 entry = RX_COMP_ENTRY(ring, entry + 1 +
2393 CAS_VAL(RX_COMP1_SKIP, words[0]));
2394 #ifdef USE_NAPI
2395 if (budget && (npackets >= budget))
2396 break;
2397 #endif
2399 cp->rx_new[ring] = entry;
2401 if (drops)
2402 netdev_info(cp->dev, "Memory squeeze, deferring packet\n");
2403 return npackets;
2407 /* put completion entries back on the ring */
2408 static void cas_post_rxcs_ringN(struct net_device *dev,
2409 struct cas *cp, int ring)
2411 struct cas_rx_comp *rxc = cp->init_rxcs[ring];
2412 int last, entry;
2414 last = cp->rx_cur[ring];
2415 entry = cp->rx_new[ring];
2416 netif_printk(cp, intr, KERN_DEBUG, dev,
2417 "rxc[%d] interrupt, done: %d/%d\n",
2418 ring, readl(cp->regs + REG_RX_COMP_HEAD), entry);
2420 /* zero and re-mark descriptors */
2421 while (last != entry) {
2422 cas_rxc_init(rxc + last);
2423 last = RX_COMP_ENTRY(ring, last + 1);
2425 cp->rx_cur[ring] = last;
2427 if (ring == 0)
2428 writel(last, cp->regs + REG_RX_COMP_TAIL);
2429 else if (cp->cas_flags & CAS_FLAG_REG_PLUS)
2430 writel(last, cp->regs + REG_PLUS_RX_COMPN_TAIL(ring));
2435 /* cassini can use all four PCI interrupts for the completion ring.
2436 * rings 3 and 4 are identical
2438 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2439 static inline void cas_handle_irqN(struct net_device *dev,
2440 struct cas *cp, const u32 status,
2441 const int ring)
2443 if (status & (INTR_RX_COMP_FULL_ALT | INTR_RX_COMP_AF_ALT))
2444 cas_post_rxcs_ringN(dev, cp, ring);
2447 static irqreturn_t cas_interruptN(int irq, void *dev_id)
2449 struct net_device *dev = dev_id;
2450 struct cas *cp = netdev_priv(dev);
2451 unsigned long flags;
2452 int ring = (irq == cp->pci_irq_INTC) ? 2 : 3;
2453 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(ring));
2455 /* check for shared irq */
2456 if (status == 0)
2457 return IRQ_NONE;
2459 spin_lock_irqsave(&cp->lock, flags);
2460 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2461 #ifdef USE_NAPI
2462 cas_mask_intr(cp);
2463 napi_schedule(&cp->napi);
2464 #else
2465 cas_rx_ringN(cp, ring, 0);
2466 #endif
2467 status &= ~INTR_RX_DONE_ALT;
2470 if (status)
2471 cas_handle_irqN(dev, cp, status, ring);
2472 spin_unlock_irqrestore(&cp->lock, flags);
2473 return IRQ_HANDLED;
2475 #endif
2477 #ifdef USE_PCI_INTB
2478 /* everything but rx packets */
2479 static inline void cas_handle_irq1(struct cas *cp, const u32 status)
2481 if (status & INTR_RX_BUF_UNAVAIL_1) {
2482 /* Frame arrived, no free RX buffers available.
2483 * NOTE: we can get this on a link transition. */
2484 cas_post_rxds_ringN(cp, 1, 0);
2485 spin_lock(&cp->stat_lock[1]);
2486 cp->net_stats[1].rx_dropped++;
2487 spin_unlock(&cp->stat_lock[1]);
2490 if (status & INTR_RX_BUF_AE_1)
2491 cas_post_rxds_ringN(cp, 1, RX_DESC_RINGN_SIZE(1) -
2492 RX_AE_FREEN_VAL(1));
2494 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2495 cas_post_rxcs_ringN(cp, 1);
2498 /* ring 2 handles a few more events than 3 and 4 */
2499 static irqreturn_t cas_interrupt1(int irq, void *dev_id)
2501 struct net_device *dev = dev_id;
2502 struct cas *cp = netdev_priv(dev);
2503 unsigned long flags;
2504 u32 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2506 /* check for shared interrupt */
2507 if (status == 0)
2508 return IRQ_NONE;
2510 spin_lock_irqsave(&cp->lock, flags);
2511 if (status & INTR_RX_DONE_ALT) { /* handle rx separately */
2512 #ifdef USE_NAPI
2513 cas_mask_intr(cp);
2514 napi_schedule(&cp->napi);
2515 #else
2516 cas_rx_ringN(cp, 1, 0);
2517 #endif
2518 status &= ~INTR_RX_DONE_ALT;
2520 if (status)
2521 cas_handle_irq1(cp, status);
2522 spin_unlock_irqrestore(&cp->lock, flags);
2523 return IRQ_HANDLED;
2525 #endif
2527 static inline void cas_handle_irq(struct net_device *dev,
2528 struct cas *cp, const u32 status)
2530 /* housekeeping interrupts */
2531 if (status & INTR_ERROR_MASK)
2532 cas_abnormal_irq(dev, cp, status);
2534 if (status & INTR_RX_BUF_UNAVAIL) {
2535 /* Frame arrived, no free RX buffers available.
2536 * NOTE: we can get this on a link transition.
2538 cas_post_rxds_ringN(cp, 0, 0);
2539 spin_lock(&cp->stat_lock[0]);
2540 cp->net_stats[0].rx_dropped++;
2541 spin_unlock(&cp->stat_lock[0]);
2542 } else if (status & INTR_RX_BUF_AE) {
2543 cas_post_rxds_ringN(cp, 0, RX_DESC_RINGN_SIZE(0) -
2544 RX_AE_FREEN_VAL(0));
2547 if (status & (INTR_RX_COMP_AF | INTR_RX_COMP_FULL))
2548 cas_post_rxcs_ringN(dev, cp, 0);
2551 static irqreturn_t cas_interrupt(int irq, void *dev_id)
2553 struct net_device *dev = dev_id;
2554 struct cas *cp = netdev_priv(dev);
2555 unsigned long flags;
2556 u32 status = readl(cp->regs + REG_INTR_STATUS);
2558 if (status == 0)
2559 return IRQ_NONE;
2561 spin_lock_irqsave(&cp->lock, flags);
2562 if (status & (INTR_TX_ALL | INTR_TX_INTME)) {
2563 cas_tx(dev, cp, status);
2564 status &= ~(INTR_TX_ALL | INTR_TX_INTME);
2567 if (status & INTR_RX_DONE) {
2568 #ifdef USE_NAPI
2569 cas_mask_intr(cp);
2570 napi_schedule(&cp->napi);
2571 #else
2572 cas_rx_ringN(cp, 0, 0);
2573 #endif
2574 status &= ~INTR_RX_DONE;
2577 if (status)
2578 cas_handle_irq(dev, cp, status);
2579 spin_unlock_irqrestore(&cp->lock, flags);
2580 return IRQ_HANDLED;
2584 #ifdef USE_NAPI
2585 static int cas_poll(struct napi_struct *napi, int budget)
2587 struct cas *cp = container_of(napi, struct cas, napi);
2588 struct net_device *dev = cp->dev;
2589 int i, enable_intr, credits;
2590 u32 status = readl(cp->regs + REG_INTR_STATUS);
2591 unsigned long flags;
2593 spin_lock_irqsave(&cp->lock, flags);
2594 cas_tx(dev, cp, status);
2595 spin_unlock_irqrestore(&cp->lock, flags);
2597 /* NAPI rx packets. we spread the credits across all of the
2598 * rxc rings
2600 * to make sure we're fair with the work we loop through each
2601 * ring N_RX_COMP_RING times with a request of
2602 * budget / N_RX_COMP_RINGS
2604 enable_intr = 1;
2605 credits = 0;
2606 for (i = 0; i < N_RX_COMP_RINGS; i++) {
2607 int j;
2608 for (j = 0; j < N_RX_COMP_RINGS; j++) {
2609 credits += cas_rx_ringN(cp, j, budget / N_RX_COMP_RINGS);
2610 if (credits >= budget) {
2611 enable_intr = 0;
2612 goto rx_comp;
2617 rx_comp:
2618 /* final rx completion */
2619 spin_lock_irqsave(&cp->lock, flags);
2620 if (status)
2621 cas_handle_irq(dev, cp, status);
2623 #ifdef USE_PCI_INTB
2624 if (N_RX_COMP_RINGS > 1) {
2625 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(1));
2626 if (status)
2627 cas_handle_irq1(dev, cp, status);
2629 #endif
2631 #ifdef USE_PCI_INTC
2632 if (N_RX_COMP_RINGS > 2) {
2633 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(2));
2634 if (status)
2635 cas_handle_irqN(dev, cp, status, 2);
2637 #endif
2639 #ifdef USE_PCI_INTD
2640 if (N_RX_COMP_RINGS > 3) {
2641 status = readl(cp->regs + REG_PLUS_INTRN_STATUS(3));
2642 if (status)
2643 cas_handle_irqN(dev, cp, status, 3);
2645 #endif
2646 spin_unlock_irqrestore(&cp->lock, flags);
2647 if (enable_intr) {
2648 napi_complete(napi);
2649 cas_unmask_intr(cp);
2651 return credits;
2653 #endif
2655 #ifdef CONFIG_NET_POLL_CONTROLLER
2656 static void cas_netpoll(struct net_device *dev)
2658 struct cas *cp = netdev_priv(dev);
2660 cas_disable_irq(cp, 0);
2661 cas_interrupt(cp->pdev->irq, dev);
2662 cas_enable_irq(cp, 0);
2664 #ifdef USE_PCI_INTB
2665 if (N_RX_COMP_RINGS > 1) {
2666 /* cas_interrupt1(); */
2668 #endif
2669 #ifdef USE_PCI_INTC
2670 if (N_RX_COMP_RINGS > 2) {
2671 /* cas_interruptN(); */
2673 #endif
2674 #ifdef USE_PCI_INTD
2675 if (N_RX_COMP_RINGS > 3) {
2676 /* cas_interruptN(); */
2678 #endif
2680 #endif
2682 static void cas_tx_timeout(struct net_device *dev)
2684 struct cas *cp = netdev_priv(dev);
2686 netdev_err(dev, "transmit timed out, resetting\n");
2687 if (!cp->hw_running) {
2688 netdev_err(dev, "hrm.. hw not running!\n");
2689 return;
2692 netdev_err(dev, "MIF_STATE[%08x]\n",
2693 readl(cp->regs + REG_MIF_STATE_MACHINE));
2695 netdev_err(dev, "MAC_STATE[%08x]\n",
2696 readl(cp->regs + REG_MAC_STATE_MACHINE));
2698 netdev_err(dev, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2699 readl(cp->regs + REG_TX_CFG),
2700 readl(cp->regs + REG_MAC_TX_STATUS),
2701 readl(cp->regs + REG_MAC_TX_CFG),
2702 readl(cp->regs + REG_TX_FIFO_PKT_CNT),
2703 readl(cp->regs + REG_TX_FIFO_WRITE_PTR),
2704 readl(cp->regs + REG_TX_FIFO_READ_PTR),
2705 readl(cp->regs + REG_TX_SM_1),
2706 readl(cp->regs + REG_TX_SM_2));
2708 netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n",
2709 readl(cp->regs + REG_RX_CFG),
2710 readl(cp->regs + REG_MAC_RX_STATUS),
2711 readl(cp->regs + REG_MAC_RX_CFG));
2713 netdev_err(dev, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2714 readl(cp->regs + REG_HP_STATE_MACHINE),
2715 readl(cp->regs + REG_HP_STATUS0),
2716 readl(cp->regs + REG_HP_STATUS1),
2717 readl(cp->regs + REG_HP_STATUS2));
2719 #if 1
2720 atomic_inc(&cp->reset_task_pending);
2721 atomic_inc(&cp->reset_task_pending_all);
2722 schedule_work(&cp->reset_task);
2723 #else
2724 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
2725 schedule_work(&cp->reset_task);
2726 #endif
2729 static inline int cas_intme(int ring, int entry)
2731 /* Algorithm: IRQ every 1/2 of descriptors. */
2732 if (!(entry & ((TX_DESC_RINGN_SIZE(ring) >> 1) - 1)))
2733 return 1;
2734 return 0;
2738 static void cas_write_txd(struct cas *cp, int ring, int entry,
2739 dma_addr_t mapping, int len, u64 ctrl, int last)
2741 struct cas_tx_desc *txd = cp->init_txds[ring] + entry;
2743 ctrl |= CAS_BASE(TX_DESC_BUFLEN, len);
2744 if (cas_intme(ring, entry))
2745 ctrl |= TX_DESC_INTME;
2746 if (last)
2747 ctrl |= TX_DESC_EOF;
2748 txd->control = cpu_to_le64(ctrl);
2749 txd->buffer = cpu_to_le64(mapping);
2752 static inline void *tx_tiny_buf(struct cas *cp, const int ring,
2753 const int entry)
2755 return cp->tx_tiny_bufs[ring] + TX_TINY_BUF_LEN*entry;
2758 static inline dma_addr_t tx_tiny_map(struct cas *cp, const int ring,
2759 const int entry, const int tentry)
2761 cp->tx_tiny_use[ring][tentry].nbufs++;
2762 cp->tx_tiny_use[ring][entry].used = 1;
2763 return cp->tx_tiny_dvma[ring] + TX_TINY_BUF_LEN*entry;
2766 static inline int cas_xmit_tx_ringN(struct cas *cp, int ring,
2767 struct sk_buff *skb)
2769 struct net_device *dev = cp->dev;
2770 int entry, nr_frags, frag, tabort, tentry;
2771 dma_addr_t mapping;
2772 unsigned long flags;
2773 u64 ctrl;
2774 u32 len;
2776 spin_lock_irqsave(&cp->tx_lock[ring], flags);
2778 /* This is a hard error, log it. */
2779 if (TX_BUFFS_AVAIL(cp, ring) <=
2780 CAS_TABORT(cp)*(skb_shinfo(skb)->nr_frags + 1)) {
2781 netif_stop_queue(dev);
2782 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2783 netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
2784 return 1;
2787 ctrl = 0;
2788 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2789 const u64 csum_start_off = skb_checksum_start_offset(skb);
2790 const u64 csum_stuff_off = csum_start_off + skb->csum_offset;
2792 ctrl = TX_DESC_CSUM_EN |
2793 CAS_BASE(TX_DESC_CSUM_START, csum_start_off) |
2794 CAS_BASE(TX_DESC_CSUM_STUFF, csum_stuff_off);
2797 entry = cp->tx_new[ring];
2798 cp->tx_skbs[ring][entry] = skb;
2800 nr_frags = skb_shinfo(skb)->nr_frags;
2801 len = skb_headlen(skb);
2802 mapping = pci_map_page(cp->pdev, virt_to_page(skb->data),
2803 offset_in_page(skb->data), len,
2804 PCI_DMA_TODEVICE);
2806 tentry = entry;
2807 tabort = cas_calc_tabort(cp, (unsigned long) skb->data, len);
2808 if (unlikely(tabort)) {
2809 /* NOTE: len is always > tabort */
2810 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2811 ctrl | TX_DESC_SOF, 0);
2812 entry = TX_DESC_NEXT(ring, entry);
2814 skb_copy_from_linear_data_offset(skb, len - tabort,
2815 tx_tiny_buf(cp, ring, entry), tabort);
2816 mapping = tx_tiny_map(cp, ring, entry, tentry);
2817 cas_write_txd(cp, ring, entry, mapping, tabort, ctrl,
2818 (nr_frags == 0));
2819 } else {
2820 cas_write_txd(cp, ring, entry, mapping, len, ctrl |
2821 TX_DESC_SOF, (nr_frags == 0));
2823 entry = TX_DESC_NEXT(ring, entry);
2825 for (frag = 0; frag < nr_frags; frag++) {
2826 const skb_frag_t *fragp = &skb_shinfo(skb)->frags[frag];
2828 len = skb_frag_size(fragp);
2829 mapping = skb_frag_dma_map(&cp->pdev->dev, fragp, 0, len,
2830 DMA_TO_DEVICE);
2832 tabort = cas_calc_tabort(cp, fragp->page_offset, len);
2833 if (unlikely(tabort)) {
2834 void *addr;
2836 /* NOTE: len is always > tabort */
2837 cas_write_txd(cp, ring, entry, mapping, len - tabort,
2838 ctrl, 0);
2839 entry = TX_DESC_NEXT(ring, entry);
2841 addr = cas_page_map(skb_frag_page(fragp));
2842 memcpy(tx_tiny_buf(cp, ring, entry),
2843 addr + fragp->page_offset + len - tabort,
2844 tabort);
2845 cas_page_unmap(addr);
2846 mapping = tx_tiny_map(cp, ring, entry, tentry);
2847 len = tabort;
2850 cas_write_txd(cp, ring, entry, mapping, len, ctrl,
2851 (frag + 1 == nr_frags));
2852 entry = TX_DESC_NEXT(ring, entry);
2855 cp->tx_new[ring] = entry;
2856 if (TX_BUFFS_AVAIL(cp, ring) <= CAS_TABORT(cp)*(MAX_SKB_FRAGS + 1))
2857 netif_stop_queue(dev);
2859 netif_printk(cp, tx_queued, KERN_DEBUG, dev,
2860 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2861 ring, entry, skb->len, TX_BUFFS_AVAIL(cp, ring));
2862 writel(entry, cp->regs + REG_TX_KICKN(ring));
2863 spin_unlock_irqrestore(&cp->tx_lock[ring], flags);
2864 return 0;
2867 static netdev_tx_t cas_start_xmit(struct sk_buff *skb, struct net_device *dev)
2869 struct cas *cp = netdev_priv(dev);
2871 /* this is only used as a load-balancing hint, so it doesn't
2872 * need to be SMP safe
2874 static int ring;
2876 if (skb_padto(skb, cp->min_frame_size))
2877 return NETDEV_TX_OK;
2879 /* XXX: we need some higher-level QoS hooks to steer packets to
2880 * individual queues.
2882 if (cas_xmit_tx_ringN(cp, ring++ & N_TX_RINGS_MASK, skb))
2883 return NETDEV_TX_BUSY;
2884 return NETDEV_TX_OK;
2887 static void cas_init_tx_dma(struct cas *cp)
2889 u64 desc_dma = cp->block_dvma;
2890 unsigned long off;
2891 u32 val;
2892 int i;
2894 /* set up tx completion writeback registers. must be 8-byte aligned */
2895 #ifdef USE_TX_COMPWB
2896 off = offsetof(struct cas_init_block, tx_compwb);
2897 writel((desc_dma + off) >> 32, cp->regs + REG_TX_COMPWB_DB_HI);
2898 writel((desc_dma + off) & 0xffffffff, cp->regs + REG_TX_COMPWB_DB_LOW);
2899 #endif
2901 /* enable completion writebacks, enable paced mode,
2902 * disable read pipe, and disable pre-interrupt compwbs
2904 val = TX_CFG_COMPWB_Q1 | TX_CFG_COMPWB_Q2 |
2905 TX_CFG_COMPWB_Q3 | TX_CFG_COMPWB_Q4 |
2906 TX_CFG_DMA_RDPIPE_DIS | TX_CFG_PACED_MODE |
2907 TX_CFG_INTR_COMPWB_DIS;
2909 /* write out tx ring info and tx desc bases */
2910 for (i = 0; i < MAX_TX_RINGS; i++) {
2911 off = (unsigned long) cp->init_txds[i] -
2912 (unsigned long) cp->init_block;
2914 val |= CAS_TX_RINGN_BASE(i);
2915 writel((desc_dma + off) >> 32, cp->regs + REG_TX_DBN_HI(i));
2916 writel((desc_dma + off) & 0xffffffff, cp->regs +
2917 REG_TX_DBN_LOW(i));
2918 /* don't zero out the kick register here as the system
2919 * will wedge
2922 writel(val, cp->regs + REG_TX_CFG);
2924 /* program max burst sizes. these numbers should be different
2925 * if doing QoS.
2927 #ifdef USE_QOS
2928 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2929 writel(0x1600, cp->regs + REG_TX_MAXBURST_1);
2930 writel(0x2400, cp->regs + REG_TX_MAXBURST_2);
2931 writel(0x4800, cp->regs + REG_TX_MAXBURST_3);
2932 #else
2933 writel(0x800, cp->regs + REG_TX_MAXBURST_0);
2934 writel(0x800, cp->regs + REG_TX_MAXBURST_1);
2935 writel(0x800, cp->regs + REG_TX_MAXBURST_2);
2936 writel(0x800, cp->regs + REG_TX_MAXBURST_3);
2937 #endif
2940 /* Must be invoked under cp->lock. */
2941 static inline void cas_init_dma(struct cas *cp)
2943 cas_init_tx_dma(cp);
2944 cas_init_rx_dma(cp);
2947 static void cas_process_mc_list(struct cas *cp)
2949 u16 hash_table[16];
2950 u32 crc;
2951 struct netdev_hw_addr *ha;
2952 int i = 1;
2954 memset(hash_table, 0, sizeof(hash_table));
2955 netdev_for_each_mc_addr(ha, cp->dev) {
2956 if (i <= CAS_MC_EXACT_MATCH_SIZE) {
2957 /* use the alternate mac address registers for the
2958 * first 15 multicast addresses
2960 writel((ha->addr[4] << 8) | ha->addr[5],
2961 cp->regs + REG_MAC_ADDRN(i*3 + 0));
2962 writel((ha->addr[2] << 8) | ha->addr[3],
2963 cp->regs + REG_MAC_ADDRN(i*3 + 1));
2964 writel((ha->addr[0] << 8) | ha->addr[1],
2965 cp->regs + REG_MAC_ADDRN(i*3 + 2));
2966 i++;
2968 else {
2969 /* use hw hash table for the next series of
2970 * multicast addresses
2972 crc = ether_crc_le(ETH_ALEN, ha->addr);
2973 crc >>= 24;
2974 hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
2977 for (i = 0; i < 16; i++)
2978 writel(hash_table[i], cp->regs + REG_MAC_HASH_TABLEN(i));
2981 /* Must be invoked under cp->lock. */
2982 static u32 cas_setup_multicast(struct cas *cp)
2984 u32 rxcfg = 0;
2985 int i;
2987 if (cp->dev->flags & IFF_PROMISC) {
2988 rxcfg |= MAC_RX_CFG_PROMISC_EN;
2990 } else if (cp->dev->flags & IFF_ALLMULTI) {
2991 for (i=0; i < 16; i++)
2992 writel(0xFFFF, cp->regs + REG_MAC_HASH_TABLEN(i));
2993 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
2995 } else {
2996 cas_process_mc_list(cp);
2997 rxcfg |= MAC_RX_CFG_HASH_FILTER_EN;
3000 return rxcfg;
3003 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3004 static void cas_clear_mac_err(struct cas *cp)
3006 writel(0, cp->regs + REG_MAC_COLL_NORMAL);
3007 writel(0, cp->regs + REG_MAC_COLL_FIRST);
3008 writel(0, cp->regs + REG_MAC_COLL_EXCESS);
3009 writel(0, cp->regs + REG_MAC_COLL_LATE);
3010 writel(0, cp->regs + REG_MAC_TIMER_DEFER);
3011 writel(0, cp->regs + REG_MAC_ATTEMPTS_PEAK);
3012 writel(0, cp->regs + REG_MAC_RECV_FRAME);
3013 writel(0, cp->regs + REG_MAC_LEN_ERR);
3014 writel(0, cp->regs + REG_MAC_ALIGN_ERR);
3015 writel(0, cp->regs + REG_MAC_FCS_ERR);
3016 writel(0, cp->regs + REG_MAC_RX_CODE_ERR);
3020 static void cas_mac_reset(struct cas *cp)
3022 int i;
3024 /* do both TX and RX reset */
3025 writel(0x1, cp->regs + REG_MAC_TX_RESET);
3026 writel(0x1, cp->regs + REG_MAC_RX_RESET);
3028 /* wait for TX */
3029 i = STOP_TRIES;
3030 while (i-- > 0) {
3031 if (readl(cp->regs + REG_MAC_TX_RESET) == 0)
3032 break;
3033 udelay(10);
3036 /* wait for RX */
3037 i = STOP_TRIES;
3038 while (i-- > 0) {
3039 if (readl(cp->regs + REG_MAC_RX_RESET) == 0)
3040 break;
3041 udelay(10);
3044 if (readl(cp->regs + REG_MAC_TX_RESET) |
3045 readl(cp->regs + REG_MAC_RX_RESET))
3046 netdev_err(cp->dev, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3047 readl(cp->regs + REG_MAC_TX_RESET),
3048 readl(cp->regs + REG_MAC_RX_RESET),
3049 readl(cp->regs + REG_MAC_STATE_MACHINE));
3053 /* Must be invoked under cp->lock. */
3054 static void cas_init_mac(struct cas *cp)
3056 unsigned char *e = &cp->dev->dev_addr[0];
3057 int i;
3058 cas_mac_reset(cp);
3060 /* setup core arbitration weight register */
3061 writel(CAWR_RR_DIS, cp->regs + REG_CAWR);
3063 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3064 /* set the infinite burst register for chips that don't have
3065 * pci issues.
3067 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) == 0)
3068 writel(INF_BURST_EN, cp->regs + REG_INF_BURST);
3069 #endif
3071 writel(0x1BF0, cp->regs + REG_MAC_SEND_PAUSE);
3073 writel(0x00, cp->regs + REG_MAC_IPG0);
3074 writel(0x08, cp->regs + REG_MAC_IPG1);
3075 writel(0x04, cp->regs + REG_MAC_IPG2);
3077 /* change later for 802.3z */
3078 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3080 /* min frame + FCS */
3081 writel(ETH_ZLEN + 4, cp->regs + REG_MAC_FRAMESIZE_MIN);
3083 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3084 * specify the maximum frame size to prevent RX tag errors on
3085 * oversized frames.
3087 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST, 0x2000) |
3088 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME,
3089 (CAS_MAX_MTU + ETH_HLEN + 4 + 4)),
3090 cp->regs + REG_MAC_FRAMESIZE_MAX);
3092 /* NOTE: crc_size is used as a surrogate for half-duplex.
3093 * workaround saturn half-duplex issue by increasing preamble
3094 * size to 65 bytes.
3096 if ((cp->cas_flags & CAS_FLAG_SATURN) && cp->crc_size)
3097 writel(0x41, cp->regs + REG_MAC_PA_SIZE);
3098 else
3099 writel(0x07, cp->regs + REG_MAC_PA_SIZE);
3100 writel(0x04, cp->regs + REG_MAC_JAM_SIZE);
3101 writel(0x10, cp->regs + REG_MAC_ATTEMPT_LIMIT);
3102 writel(0x8808, cp->regs + REG_MAC_CTRL_TYPE);
3104 writel((e[5] | (e[4] << 8)) & 0x3ff, cp->regs + REG_MAC_RANDOM_SEED);
3106 writel(0, cp->regs + REG_MAC_ADDR_FILTER0);
3107 writel(0, cp->regs + REG_MAC_ADDR_FILTER1);
3108 writel(0, cp->regs + REG_MAC_ADDR_FILTER2);
3109 writel(0, cp->regs + REG_MAC_ADDR_FILTER2_1_MASK);
3110 writel(0, cp->regs + REG_MAC_ADDR_FILTER0_MASK);
3112 /* setup mac address in perfect filter array */
3113 for (i = 0; i < 45; i++)
3114 writel(0x0, cp->regs + REG_MAC_ADDRN(i));
3116 writel((e[4] << 8) | e[5], cp->regs + REG_MAC_ADDRN(0));
3117 writel((e[2] << 8) | e[3], cp->regs + REG_MAC_ADDRN(1));
3118 writel((e[0] << 8) | e[1], cp->regs + REG_MAC_ADDRN(2));
3120 writel(0x0001, cp->regs + REG_MAC_ADDRN(42));
3121 writel(0xc200, cp->regs + REG_MAC_ADDRN(43));
3122 writel(0x0180, cp->regs + REG_MAC_ADDRN(44));
3124 cp->mac_rx_cfg = cas_setup_multicast(cp);
3126 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3127 cas_clear_mac_err(cp);
3128 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3130 /* Setup MAC interrupts. We want to get all of the interesting
3131 * counter expiration events, but we do not want to hear about
3132 * normal rx/tx as the DMA engine tells us that.
3134 writel(MAC_TX_FRAME_XMIT, cp->regs + REG_MAC_TX_MASK);
3135 writel(MAC_RX_FRAME_RECV, cp->regs + REG_MAC_RX_MASK);
3137 /* Don't enable even the PAUSE interrupts for now, we
3138 * make no use of those events other than to record them.
3140 writel(0xffffffff, cp->regs + REG_MAC_CTRL_MASK);
3143 /* Must be invoked under cp->lock. */
3144 static void cas_init_pause_thresholds(struct cas *cp)
3146 /* Calculate pause thresholds. Setting the OFF threshold to the
3147 * full RX fifo size effectively disables PAUSE generation
3149 if (cp->rx_fifo_size <= (2 * 1024)) {
3150 cp->rx_pause_off = cp->rx_pause_on = cp->rx_fifo_size;
3151 } else {
3152 int max_frame = (cp->dev->mtu + ETH_HLEN + 4 + 4 + 64) & ~63;
3153 if (max_frame * 3 > cp->rx_fifo_size) {
3154 cp->rx_pause_off = 7104;
3155 cp->rx_pause_on = 960;
3156 } else {
3157 int off = (cp->rx_fifo_size - (max_frame * 2));
3158 int on = off - max_frame;
3159 cp->rx_pause_off = off;
3160 cp->rx_pause_on = on;
3165 static int cas_vpd_match(const void __iomem *p, const char *str)
3167 int len = strlen(str) + 1;
3168 int i;
3170 for (i = 0; i < len; i++) {
3171 if (readb(p + i) != str[i])
3172 return 0;
3174 return 1;
3178 /* get the mac address by reading the vpd information in the rom.
3179 * also get the phy type and determine if there's an entropy generator.
3180 * NOTE: this is a bit convoluted for the following reasons:
3181 * 1) vpd info has order-dependent mac addresses for multinic cards
3182 * 2) the only way to determine the nic order is to use the slot
3183 * number.
3184 * 3) fiber cards don't have bridges, so their slot numbers don't
3185 * mean anything.
3186 * 4) we don't actually know we have a fiber card until after
3187 * the mac addresses are parsed.
3189 static int cas_get_vpd_info(struct cas *cp, unsigned char *dev_addr,
3190 const int offset)
3192 void __iomem *p = cp->regs + REG_EXPANSION_ROM_RUN_START;
3193 void __iomem *base, *kstart;
3194 int i, len;
3195 int found = 0;
3196 #define VPD_FOUND_MAC 0x01
3197 #define VPD_FOUND_PHY 0x02
3199 int phy_type = CAS_PHY_MII_MDIO0; /* default phy type */
3200 int mac_off = 0;
3202 #if defined(CONFIG_SPARC)
3203 const unsigned char *addr;
3204 #endif
3206 /* give us access to the PROM */
3207 writel(BIM_LOCAL_DEV_PROM | BIM_LOCAL_DEV_PAD,
3208 cp->regs + REG_BIM_LOCAL_DEV_EN);
3210 /* check for an expansion rom */
3211 if (readb(p) != 0x55 || readb(p + 1) != 0xaa)
3212 goto use_random_mac_addr;
3214 /* search for beginning of vpd */
3215 base = NULL;
3216 for (i = 2; i < EXPANSION_ROM_SIZE; i++) {
3217 /* check for PCIR */
3218 if ((readb(p + i + 0) == 0x50) &&
3219 (readb(p + i + 1) == 0x43) &&
3220 (readb(p + i + 2) == 0x49) &&
3221 (readb(p + i + 3) == 0x52)) {
3222 base = p + (readb(p + i + 8) |
3223 (readb(p + i + 9) << 8));
3224 break;
3228 if (!base || (readb(base) != 0x82))
3229 goto use_random_mac_addr;
3231 i = (readb(base + 1) | (readb(base + 2) << 8)) + 3;
3232 while (i < EXPANSION_ROM_SIZE) {
3233 if (readb(base + i) != 0x90) /* no vpd found */
3234 goto use_random_mac_addr;
3236 /* found a vpd field */
3237 len = readb(base + i + 1) | (readb(base + i + 2) << 8);
3239 /* extract keywords */
3240 kstart = base + i + 3;
3241 p = kstart;
3242 while ((p - kstart) < len) {
3243 int klen = readb(p + 2);
3244 int j;
3245 char type;
3247 p += 3;
3249 /* look for the following things:
3250 * -- correct length == 29
3251 * 3 (type) + 2 (size) +
3252 * 18 (strlen("local-mac-address") + 1) +
3253 * 6 (mac addr)
3254 * -- VPD Instance 'I'
3255 * -- VPD Type Bytes 'B'
3256 * -- VPD data length == 6
3257 * -- property string == local-mac-address
3259 * -- correct length == 24
3260 * 3 (type) + 2 (size) +
3261 * 12 (strlen("entropy-dev") + 1) +
3262 * 7 (strlen("vms110") + 1)
3263 * -- VPD Instance 'I'
3264 * -- VPD Type String 'B'
3265 * -- VPD data length == 7
3266 * -- property string == entropy-dev
3268 * -- correct length == 18
3269 * 3 (type) + 2 (size) +
3270 * 9 (strlen("phy-type") + 1) +
3271 * 4 (strlen("pcs") + 1)
3272 * -- VPD Instance 'I'
3273 * -- VPD Type String 'S'
3274 * -- VPD data length == 4
3275 * -- property string == phy-type
3277 * -- correct length == 23
3278 * 3 (type) + 2 (size) +
3279 * 14 (strlen("phy-interface") + 1) +
3280 * 4 (strlen("pcs") + 1)
3281 * -- VPD Instance 'I'
3282 * -- VPD Type String 'S'
3283 * -- VPD data length == 4
3284 * -- property string == phy-interface
3286 if (readb(p) != 'I')
3287 goto next;
3289 /* finally, check string and length */
3290 type = readb(p + 3);
3291 if (type == 'B') {
3292 if ((klen == 29) && readb(p + 4) == 6 &&
3293 cas_vpd_match(p + 5,
3294 "local-mac-address")) {
3295 if (mac_off++ > offset)
3296 goto next;
3298 /* set mac address */
3299 for (j = 0; j < 6; j++)
3300 dev_addr[j] =
3301 readb(p + 23 + j);
3302 goto found_mac;
3306 if (type != 'S')
3307 goto next;
3309 #ifdef USE_ENTROPY_DEV
3310 if ((klen == 24) &&
3311 cas_vpd_match(p + 5, "entropy-dev") &&
3312 cas_vpd_match(p + 17, "vms110")) {
3313 cp->cas_flags |= CAS_FLAG_ENTROPY_DEV;
3314 goto next;
3316 #endif
3318 if (found & VPD_FOUND_PHY)
3319 goto next;
3321 if ((klen == 18) && readb(p + 4) == 4 &&
3322 cas_vpd_match(p + 5, "phy-type")) {
3323 if (cas_vpd_match(p + 14, "pcs")) {
3324 phy_type = CAS_PHY_SERDES;
3325 goto found_phy;
3329 if ((klen == 23) && readb(p + 4) == 4 &&
3330 cas_vpd_match(p + 5, "phy-interface")) {
3331 if (cas_vpd_match(p + 19, "pcs")) {
3332 phy_type = CAS_PHY_SERDES;
3333 goto found_phy;
3336 found_mac:
3337 found |= VPD_FOUND_MAC;
3338 goto next;
3340 found_phy:
3341 found |= VPD_FOUND_PHY;
3343 next:
3344 p += klen;
3346 i += len + 3;
3349 use_random_mac_addr:
3350 if (found & VPD_FOUND_MAC)
3351 goto done;
3353 #if defined(CONFIG_SPARC)
3354 addr = of_get_property(cp->of_node, "local-mac-address", NULL);
3355 if (addr != NULL) {
3356 memcpy(dev_addr, addr, ETH_ALEN);
3357 goto done;
3359 #endif
3361 /* Sun MAC prefix then 3 random bytes. */
3362 pr_info("MAC address not found in ROM VPD\n");
3363 dev_addr[0] = 0x08;
3364 dev_addr[1] = 0x00;
3365 dev_addr[2] = 0x20;
3366 get_random_bytes(dev_addr + 3, 3);
3368 done:
3369 writel(0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3370 return phy_type;
3373 /* check pci invariants */
3374 static void cas_check_pci_invariants(struct cas *cp)
3376 struct pci_dev *pdev = cp->pdev;
3378 cp->cas_flags = 0;
3379 if ((pdev->vendor == PCI_VENDOR_ID_SUN) &&
3380 (pdev->device == PCI_DEVICE_ID_SUN_CASSINI)) {
3381 if (pdev->revision >= CAS_ID_REVPLUS)
3382 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3383 if (pdev->revision < CAS_ID_REVPLUS02u)
3384 cp->cas_flags |= CAS_FLAG_TARGET_ABORT;
3386 /* Original Cassini supports HW CSUM, but it's not
3387 * enabled by default as it can trigger TX hangs.
3389 if (pdev->revision < CAS_ID_REV2)
3390 cp->cas_flags |= CAS_FLAG_NO_HW_CSUM;
3391 } else {
3392 /* Only sun has original cassini chips. */
3393 cp->cas_flags |= CAS_FLAG_REG_PLUS;
3395 /* We use a flag because the same phy might be externally
3396 * connected.
3398 if ((pdev->vendor == PCI_VENDOR_ID_NS) &&
3399 (pdev->device == PCI_DEVICE_ID_NS_SATURN))
3400 cp->cas_flags |= CAS_FLAG_SATURN;
3405 static int cas_check_invariants(struct cas *cp)
3407 struct pci_dev *pdev = cp->pdev;
3408 u32 cfg;
3409 int i;
3411 /* get page size for rx buffers. */
3412 cp->page_order = 0;
3413 #ifdef USE_PAGE_ORDER
3414 if (PAGE_SHIFT < CAS_JUMBO_PAGE_SHIFT) {
3415 /* see if we can allocate larger pages */
3416 struct page *page = alloc_pages(GFP_ATOMIC,
3417 CAS_JUMBO_PAGE_SHIFT -
3418 PAGE_SHIFT);
3419 if (page) {
3420 __free_pages(page, CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT);
3421 cp->page_order = CAS_JUMBO_PAGE_SHIFT - PAGE_SHIFT;
3422 } else {
3423 printk("MTU limited to %d bytes\n", CAS_MAX_MTU);
3426 #endif
3427 cp->page_size = (PAGE_SIZE << cp->page_order);
3429 /* Fetch the FIFO configurations. */
3430 cp->tx_fifo_size = readl(cp->regs + REG_TX_FIFO_SIZE) * 64;
3431 cp->rx_fifo_size = RX_FIFO_SIZE;
3433 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3434 * they're both connected.
3436 cp->phy_type = cas_get_vpd_info(cp, cp->dev->dev_addr,
3437 PCI_SLOT(pdev->devfn));
3438 if (cp->phy_type & CAS_PHY_SERDES) {
3439 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3440 return 0; /* no more checking needed */
3443 /* MII */
3444 cfg = readl(cp->regs + REG_MIF_CFG);
3445 if (cfg & MIF_CFG_MDIO_1) {
3446 cp->phy_type = CAS_PHY_MII_MDIO1;
3447 } else if (cfg & MIF_CFG_MDIO_0) {
3448 cp->phy_type = CAS_PHY_MII_MDIO0;
3451 cas_mif_poll(cp, 0);
3452 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3454 for (i = 0; i < 32; i++) {
3455 u32 phy_id;
3456 int j;
3458 for (j = 0; j < 3; j++) {
3459 cp->phy_addr = i;
3460 phy_id = cas_phy_read(cp, MII_PHYSID1) << 16;
3461 phy_id |= cas_phy_read(cp, MII_PHYSID2);
3462 if (phy_id && (phy_id != 0xFFFFFFFF)) {
3463 cp->phy_id = phy_id;
3464 goto done;
3468 pr_err("MII phy did not respond [%08x]\n",
3469 readl(cp->regs + REG_MIF_STATE_MACHINE));
3470 return -1;
3472 done:
3473 /* see if we can do gigabit */
3474 cfg = cas_phy_read(cp, MII_BMSR);
3475 if ((cfg & CAS_BMSR_1000_EXTEND) &&
3476 cas_phy_read(cp, CAS_MII_1000_EXTEND))
3477 cp->cas_flags |= CAS_FLAG_1000MB_CAP;
3478 return 0;
3481 /* Must be invoked under cp->lock. */
3482 static inline void cas_start_dma(struct cas *cp)
3484 int i;
3485 u32 val;
3486 int txfailed = 0;
3488 /* enable dma */
3489 val = readl(cp->regs + REG_TX_CFG) | TX_CFG_DMA_EN;
3490 writel(val, cp->regs + REG_TX_CFG);
3491 val = readl(cp->regs + REG_RX_CFG) | RX_CFG_DMA_EN;
3492 writel(val, cp->regs + REG_RX_CFG);
3494 /* enable the mac */
3495 val = readl(cp->regs + REG_MAC_TX_CFG) | MAC_TX_CFG_EN;
3496 writel(val, cp->regs + REG_MAC_TX_CFG);
3497 val = readl(cp->regs + REG_MAC_RX_CFG) | MAC_RX_CFG_EN;
3498 writel(val, cp->regs + REG_MAC_RX_CFG);
3500 i = STOP_TRIES;
3501 while (i-- > 0) {
3502 val = readl(cp->regs + REG_MAC_TX_CFG);
3503 if ((val & MAC_TX_CFG_EN))
3504 break;
3505 udelay(10);
3507 if (i < 0) txfailed = 1;
3508 i = STOP_TRIES;
3509 while (i-- > 0) {
3510 val = readl(cp->regs + REG_MAC_RX_CFG);
3511 if ((val & MAC_RX_CFG_EN)) {
3512 if (txfailed) {
3513 netdev_err(cp->dev,
3514 "enabling mac failed [tx:%08x:%08x]\n",
3515 readl(cp->regs + REG_MIF_STATE_MACHINE),
3516 readl(cp->regs + REG_MAC_STATE_MACHINE));
3518 goto enable_rx_done;
3520 udelay(10);
3522 netdev_err(cp->dev, "enabling mac failed [%s:%08x:%08x]\n",
3523 (txfailed ? "tx,rx" : "rx"),
3524 readl(cp->regs + REG_MIF_STATE_MACHINE),
3525 readl(cp->regs + REG_MAC_STATE_MACHINE));
3527 enable_rx_done:
3528 cas_unmask_intr(cp); /* enable interrupts */
3529 writel(RX_DESC_RINGN_SIZE(0) - 4, cp->regs + REG_RX_KICK);
3530 writel(0, cp->regs + REG_RX_COMP_TAIL);
3532 if (cp->cas_flags & CAS_FLAG_REG_PLUS) {
3533 if (N_RX_DESC_RINGS > 1)
3534 writel(RX_DESC_RINGN_SIZE(1) - 4,
3535 cp->regs + REG_PLUS_RX_KICK1);
3537 for (i = 1; i < N_RX_COMP_RINGS; i++)
3538 writel(0, cp->regs + REG_PLUS_RX_COMPN_TAIL(i));
3542 /* Must be invoked under cp->lock. */
3543 static void cas_read_pcs_link_mode(struct cas *cp, int *fd, int *spd,
3544 int *pause)
3546 u32 val = readl(cp->regs + REG_PCS_MII_LPA);
3547 *fd = (val & PCS_MII_LPA_FD) ? 1 : 0;
3548 *pause = (val & PCS_MII_LPA_SYM_PAUSE) ? 0x01 : 0x00;
3549 if (val & PCS_MII_LPA_ASYM_PAUSE)
3550 *pause |= 0x10;
3551 *spd = 1000;
3554 /* Must be invoked under cp->lock. */
3555 static void cas_read_mii_link_mode(struct cas *cp, int *fd, int *spd,
3556 int *pause)
3558 u32 val;
3560 *fd = 0;
3561 *spd = 10;
3562 *pause = 0;
3564 /* use GMII registers */
3565 val = cas_phy_read(cp, MII_LPA);
3566 if (val & CAS_LPA_PAUSE)
3567 *pause = 0x01;
3569 if (val & CAS_LPA_ASYM_PAUSE)
3570 *pause |= 0x10;
3572 if (val & LPA_DUPLEX)
3573 *fd = 1;
3574 if (val & LPA_100)
3575 *spd = 100;
3577 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
3578 val = cas_phy_read(cp, CAS_MII_1000_STATUS);
3579 if (val & (CAS_LPA_1000FULL | CAS_LPA_1000HALF))
3580 *spd = 1000;
3581 if (val & CAS_LPA_1000FULL)
3582 *fd = 1;
3586 /* A link-up condition has occurred, initialize and enable the
3587 * rest of the chip.
3589 * Must be invoked under cp->lock.
3591 static void cas_set_link_modes(struct cas *cp)
3593 u32 val;
3594 int full_duplex, speed, pause;
3596 full_duplex = 0;
3597 speed = 10;
3598 pause = 0;
3600 if (CAS_PHY_MII(cp->phy_type)) {
3601 cas_mif_poll(cp, 0);
3602 val = cas_phy_read(cp, MII_BMCR);
3603 if (val & BMCR_ANENABLE) {
3604 cas_read_mii_link_mode(cp, &full_duplex, &speed,
3605 &pause);
3606 } else {
3607 if (val & BMCR_FULLDPLX)
3608 full_duplex = 1;
3610 if (val & BMCR_SPEED100)
3611 speed = 100;
3612 else if (val & CAS_BMCR_SPEED1000)
3613 speed = (cp->cas_flags & CAS_FLAG_1000MB_CAP) ?
3614 1000 : 100;
3616 cas_mif_poll(cp, 1);
3618 } else {
3619 val = readl(cp->regs + REG_PCS_MII_CTRL);
3620 cas_read_pcs_link_mode(cp, &full_duplex, &speed, &pause);
3621 if ((val & PCS_MII_AUTONEG_EN) == 0) {
3622 if (val & PCS_MII_CTRL_DUPLEX)
3623 full_duplex = 1;
3627 netif_info(cp, link, cp->dev, "Link up at %d Mbps, %s-duplex\n",
3628 speed, full_duplex ? "full" : "half");
3630 val = MAC_XIF_TX_MII_OUTPUT_EN | MAC_XIF_LINK_LED;
3631 if (CAS_PHY_MII(cp->phy_type)) {
3632 val |= MAC_XIF_MII_BUFFER_OUTPUT_EN;
3633 if (!full_duplex)
3634 val |= MAC_XIF_DISABLE_ECHO;
3636 if (full_duplex)
3637 val |= MAC_XIF_FDPLX_LED;
3638 if (speed == 1000)
3639 val |= MAC_XIF_GMII_MODE;
3640 writel(val, cp->regs + REG_MAC_XIF_CFG);
3642 /* deal with carrier and collision detect. */
3643 val = MAC_TX_CFG_IPG_EN;
3644 if (full_duplex) {
3645 val |= MAC_TX_CFG_IGNORE_CARRIER;
3646 val |= MAC_TX_CFG_IGNORE_COLL;
3647 } else {
3648 #ifndef USE_CSMA_CD_PROTO
3649 val |= MAC_TX_CFG_NEVER_GIVE_UP_EN;
3650 val |= MAC_TX_CFG_NEVER_GIVE_UP_LIM;
3651 #endif
3653 /* val now set up for REG_MAC_TX_CFG */
3655 /* If gigabit and half-duplex, enable carrier extension
3656 * mode. increase slot time to 512 bytes as well.
3657 * else, disable it and make sure slot time is 64 bytes.
3658 * also activate checksum bug workaround
3660 if ((speed == 1000) && !full_duplex) {
3661 writel(val | MAC_TX_CFG_CARRIER_EXTEND,
3662 cp->regs + REG_MAC_TX_CFG);
3664 val = readl(cp->regs + REG_MAC_RX_CFG);
3665 val &= ~MAC_RX_CFG_STRIP_FCS; /* checksum workaround */
3666 writel(val | MAC_RX_CFG_CARRIER_EXTEND,
3667 cp->regs + REG_MAC_RX_CFG);
3669 writel(0x200, cp->regs + REG_MAC_SLOT_TIME);
3671 cp->crc_size = 4;
3672 /* minimum size gigabit frame at half duplex */
3673 cp->min_frame_size = CAS_1000MB_MIN_FRAME;
3675 } else {
3676 writel(val, cp->regs + REG_MAC_TX_CFG);
3678 /* checksum bug workaround. don't strip FCS when in
3679 * half-duplex mode
3681 val = readl(cp->regs + REG_MAC_RX_CFG);
3682 if (full_duplex) {
3683 val |= MAC_RX_CFG_STRIP_FCS;
3684 cp->crc_size = 0;
3685 cp->min_frame_size = CAS_MIN_MTU;
3686 } else {
3687 val &= ~MAC_RX_CFG_STRIP_FCS;
3688 cp->crc_size = 4;
3689 cp->min_frame_size = CAS_MIN_FRAME;
3691 writel(val & ~MAC_RX_CFG_CARRIER_EXTEND,
3692 cp->regs + REG_MAC_RX_CFG);
3693 writel(0x40, cp->regs + REG_MAC_SLOT_TIME);
3696 if (netif_msg_link(cp)) {
3697 if (pause & 0x01) {
3698 netdev_info(cp->dev, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3699 cp->rx_fifo_size,
3700 cp->rx_pause_off,
3701 cp->rx_pause_on);
3702 } else if (pause & 0x10) {
3703 netdev_info(cp->dev, "TX pause enabled\n");
3704 } else {
3705 netdev_info(cp->dev, "Pause is disabled\n");
3709 val = readl(cp->regs + REG_MAC_CTRL_CFG);
3710 val &= ~(MAC_CTRL_CFG_SEND_PAUSE_EN | MAC_CTRL_CFG_RECV_PAUSE_EN);
3711 if (pause) { /* symmetric or asymmetric pause */
3712 val |= MAC_CTRL_CFG_SEND_PAUSE_EN;
3713 if (pause & 0x01) { /* symmetric pause */
3714 val |= MAC_CTRL_CFG_RECV_PAUSE_EN;
3717 writel(val, cp->regs + REG_MAC_CTRL_CFG);
3718 cas_start_dma(cp);
3721 /* Must be invoked under cp->lock. */
3722 static void cas_init_hw(struct cas *cp, int restart_link)
3724 if (restart_link)
3725 cas_phy_init(cp);
3727 cas_init_pause_thresholds(cp);
3728 cas_init_mac(cp);
3729 cas_init_dma(cp);
3731 if (restart_link) {
3732 /* Default aneg parameters */
3733 cp->timer_ticks = 0;
3734 cas_begin_auto_negotiation(cp, NULL);
3735 } else if (cp->lstate == link_up) {
3736 cas_set_link_modes(cp);
3737 netif_carrier_on(cp->dev);
3741 /* Must be invoked under cp->lock. on earlier cassini boards,
3742 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3743 * let it settle out, and then restore pci state.
3745 static void cas_hard_reset(struct cas *cp)
3747 writel(BIM_LOCAL_DEV_SOFT_0, cp->regs + REG_BIM_LOCAL_DEV_EN);
3748 udelay(20);
3749 pci_restore_state(cp->pdev);
3753 static void cas_global_reset(struct cas *cp, int blkflag)
3755 int limit;
3757 /* issue a global reset. don't use RSTOUT. */
3758 if (blkflag && !CAS_PHY_MII(cp->phy_type)) {
3759 /* For PCS, when the blkflag is set, we should set the
3760 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3761 * the last autonegotiation from being cleared. We'll
3762 * need some special handling if the chip is set into a
3763 * loopback mode.
3765 writel((SW_RESET_TX | SW_RESET_RX | SW_RESET_BLOCK_PCS_SLINK),
3766 cp->regs + REG_SW_RESET);
3767 } else {
3768 writel(SW_RESET_TX | SW_RESET_RX, cp->regs + REG_SW_RESET);
3771 /* need to wait at least 3ms before polling register */
3772 mdelay(3);
3774 limit = STOP_TRIES;
3775 while (limit-- > 0) {
3776 u32 val = readl(cp->regs + REG_SW_RESET);
3777 if ((val & (SW_RESET_TX | SW_RESET_RX)) == 0)
3778 goto done;
3779 udelay(10);
3781 netdev_err(cp->dev, "sw reset failed\n");
3783 done:
3784 /* enable various BIM interrupts */
3785 writel(BIM_CFG_DPAR_INTR_ENABLE | BIM_CFG_RMA_INTR_ENABLE |
3786 BIM_CFG_RTA_INTR_ENABLE, cp->regs + REG_BIM_CFG);
3788 /* clear out pci error status mask for handled errors.
3789 * we don't deal with DMA counter overflows as they happen
3790 * all the time.
3792 writel(0xFFFFFFFFU & ~(PCI_ERR_BADACK | PCI_ERR_DTRTO |
3793 PCI_ERR_OTHER | PCI_ERR_BIM_DMA_WRITE |
3794 PCI_ERR_BIM_DMA_READ), cp->regs +
3795 REG_PCI_ERR_STATUS_MASK);
3797 /* set up for MII by default to address mac rx reset timeout
3798 * issue
3800 writel(PCS_DATAPATH_MODE_MII, cp->regs + REG_PCS_DATAPATH_MODE);
3803 static void cas_reset(struct cas *cp, int blkflag)
3805 u32 val;
3807 cas_mask_intr(cp);
3808 cas_global_reset(cp, blkflag);
3809 cas_mac_reset(cp);
3810 cas_entropy_reset(cp);
3812 /* disable dma engines. */
3813 val = readl(cp->regs + REG_TX_CFG);
3814 val &= ~TX_CFG_DMA_EN;
3815 writel(val, cp->regs + REG_TX_CFG);
3817 val = readl(cp->regs + REG_RX_CFG);
3818 val &= ~RX_CFG_DMA_EN;
3819 writel(val, cp->regs + REG_RX_CFG);
3821 /* program header parser */
3822 if ((cp->cas_flags & CAS_FLAG_TARGET_ABORT) ||
3823 (CAS_HP_ALT_FIRMWARE == cas_prog_null)) {
3824 cas_load_firmware(cp, CAS_HP_FIRMWARE);
3825 } else {
3826 cas_load_firmware(cp, CAS_HP_ALT_FIRMWARE);
3829 /* clear out error registers */
3830 spin_lock(&cp->stat_lock[N_TX_RINGS]);
3831 cas_clear_mac_err(cp);
3832 spin_unlock(&cp->stat_lock[N_TX_RINGS]);
3835 /* Shut down the chip, must be called with pm_mutex held. */
3836 static void cas_shutdown(struct cas *cp)
3838 unsigned long flags;
3840 /* Make us not-running to avoid timers respawning */
3841 cp->hw_running = 0;
3843 del_timer_sync(&cp->link_timer);
3845 /* Stop the reset task */
3846 #if 0
3847 while (atomic_read(&cp->reset_task_pending_mtu) ||
3848 atomic_read(&cp->reset_task_pending_spare) ||
3849 atomic_read(&cp->reset_task_pending_all))
3850 schedule();
3852 #else
3853 while (atomic_read(&cp->reset_task_pending))
3854 schedule();
3855 #endif
3856 /* Actually stop the chip */
3857 cas_lock_all_save(cp, flags);
3858 cas_reset(cp, 0);
3859 if (cp->cas_flags & CAS_FLAG_SATURN)
3860 cas_phy_powerdown(cp);
3861 cas_unlock_all_restore(cp, flags);
3864 static int cas_change_mtu(struct net_device *dev, int new_mtu)
3866 struct cas *cp = netdev_priv(dev);
3868 dev->mtu = new_mtu;
3869 if (!netif_running(dev) || !netif_device_present(dev))
3870 return 0;
3872 /* let the reset task handle it */
3873 #if 1
3874 atomic_inc(&cp->reset_task_pending);
3875 if ((cp->phy_type & CAS_PHY_SERDES)) {
3876 atomic_inc(&cp->reset_task_pending_all);
3877 } else {
3878 atomic_inc(&cp->reset_task_pending_mtu);
3880 schedule_work(&cp->reset_task);
3881 #else
3882 atomic_set(&cp->reset_task_pending, (cp->phy_type & CAS_PHY_SERDES) ?
3883 CAS_RESET_ALL : CAS_RESET_MTU);
3884 pr_err("reset called in cas_change_mtu\n");
3885 schedule_work(&cp->reset_task);
3886 #endif
3888 flush_work(&cp->reset_task);
3889 return 0;
3892 static void cas_clean_txd(struct cas *cp, int ring)
3894 struct cas_tx_desc *txd = cp->init_txds[ring];
3895 struct sk_buff *skb, **skbs = cp->tx_skbs[ring];
3896 u64 daddr, dlen;
3897 int i, size;
3899 size = TX_DESC_RINGN_SIZE(ring);
3900 for (i = 0; i < size; i++) {
3901 int frag;
3903 if (skbs[i] == NULL)
3904 continue;
3906 skb = skbs[i];
3907 skbs[i] = NULL;
3909 for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) {
3910 int ent = i & (size - 1);
3912 /* first buffer is never a tiny buffer and so
3913 * needs to be unmapped.
3915 daddr = le64_to_cpu(txd[ent].buffer);
3916 dlen = CAS_VAL(TX_DESC_BUFLEN,
3917 le64_to_cpu(txd[ent].control));
3918 pci_unmap_page(cp->pdev, daddr, dlen,
3919 PCI_DMA_TODEVICE);
3921 if (frag != skb_shinfo(skb)->nr_frags) {
3922 i++;
3924 /* next buffer might by a tiny buffer.
3925 * skip past it.
3927 ent = i & (size - 1);
3928 if (cp->tx_tiny_use[ring][ent].used)
3929 i++;
3932 dev_kfree_skb_any(skb);
3935 /* zero out tiny buf usage */
3936 memset(cp->tx_tiny_use[ring], 0, size*sizeof(*cp->tx_tiny_use[ring]));
3939 /* freed on close */
3940 static inline void cas_free_rx_desc(struct cas *cp, int ring)
3942 cas_page_t **page = cp->rx_pages[ring];
3943 int i, size;
3945 size = RX_DESC_RINGN_SIZE(ring);
3946 for (i = 0; i < size; i++) {
3947 if (page[i]) {
3948 cas_page_free(cp, page[i]);
3949 page[i] = NULL;
3954 static void cas_free_rxds(struct cas *cp)
3956 int i;
3958 for (i = 0; i < N_RX_DESC_RINGS; i++)
3959 cas_free_rx_desc(cp, i);
3962 /* Must be invoked under cp->lock. */
3963 static void cas_clean_rings(struct cas *cp)
3965 int i;
3967 /* need to clean all tx rings */
3968 memset(cp->tx_old, 0, sizeof(*cp->tx_old)*N_TX_RINGS);
3969 memset(cp->tx_new, 0, sizeof(*cp->tx_new)*N_TX_RINGS);
3970 for (i = 0; i < N_TX_RINGS; i++)
3971 cas_clean_txd(cp, i);
3973 /* zero out init block */
3974 memset(cp->init_block, 0, sizeof(struct cas_init_block));
3975 cas_clean_rxds(cp);
3976 cas_clean_rxcs(cp);
3979 /* allocated on open */
3980 static inline int cas_alloc_rx_desc(struct cas *cp, int ring)
3982 cas_page_t **page = cp->rx_pages[ring];
3983 int size, i = 0;
3985 size = RX_DESC_RINGN_SIZE(ring);
3986 for (i = 0; i < size; i++) {
3987 if ((page[i] = cas_page_alloc(cp, GFP_KERNEL)) == NULL)
3988 return -1;
3990 return 0;
3993 static int cas_alloc_rxds(struct cas *cp)
3995 int i;
3997 for (i = 0; i < N_RX_DESC_RINGS; i++) {
3998 if (cas_alloc_rx_desc(cp, i) < 0) {
3999 cas_free_rxds(cp);
4000 return -1;
4003 return 0;
4006 static void cas_reset_task(struct work_struct *work)
4008 struct cas *cp = container_of(work, struct cas, reset_task);
4009 #if 0
4010 int pending = atomic_read(&cp->reset_task_pending);
4011 #else
4012 int pending_all = atomic_read(&cp->reset_task_pending_all);
4013 int pending_spare = atomic_read(&cp->reset_task_pending_spare);
4014 int pending_mtu = atomic_read(&cp->reset_task_pending_mtu);
4016 if (pending_all == 0 && pending_spare == 0 && pending_mtu == 0) {
4017 /* We can have more tasks scheduled than actually
4018 * needed.
4020 atomic_dec(&cp->reset_task_pending);
4021 return;
4023 #endif
4024 /* The link went down, we reset the ring, but keep
4025 * DMA stopped. Use this function for reset
4026 * on error as well.
4028 if (cp->hw_running) {
4029 unsigned long flags;
4031 /* Make sure we don't get interrupts or tx packets */
4032 netif_device_detach(cp->dev);
4033 cas_lock_all_save(cp, flags);
4035 if (cp->opened) {
4036 /* We call cas_spare_recover when we call cas_open.
4037 * but we do not initialize the lists cas_spare_recover
4038 * uses until cas_open is called.
4040 cas_spare_recover(cp, GFP_ATOMIC);
4042 #if 1
4043 /* test => only pending_spare set */
4044 if (!pending_all && !pending_mtu)
4045 goto done;
4046 #else
4047 if (pending == CAS_RESET_SPARE)
4048 goto done;
4049 #endif
4050 /* when pending == CAS_RESET_ALL, the following
4051 * call to cas_init_hw will restart auto negotiation.
4052 * Setting the second argument of cas_reset to
4053 * !(pending == CAS_RESET_ALL) will set this argument
4054 * to 1 (avoiding reinitializing the PHY for the normal
4055 * PCS case) when auto negotiation is not restarted.
4057 #if 1
4058 cas_reset(cp, !(pending_all > 0));
4059 if (cp->opened)
4060 cas_clean_rings(cp);
4061 cas_init_hw(cp, (pending_all > 0));
4062 #else
4063 cas_reset(cp, !(pending == CAS_RESET_ALL));
4064 if (cp->opened)
4065 cas_clean_rings(cp);
4066 cas_init_hw(cp, pending == CAS_RESET_ALL);
4067 #endif
4069 done:
4070 cas_unlock_all_restore(cp, flags);
4071 netif_device_attach(cp->dev);
4073 #if 1
4074 atomic_sub(pending_all, &cp->reset_task_pending_all);
4075 atomic_sub(pending_spare, &cp->reset_task_pending_spare);
4076 atomic_sub(pending_mtu, &cp->reset_task_pending_mtu);
4077 atomic_dec(&cp->reset_task_pending);
4078 #else
4079 atomic_set(&cp->reset_task_pending, 0);
4080 #endif
4083 static void cas_link_timer(struct timer_list *t)
4085 struct cas *cp = from_timer(cp, t, link_timer);
4086 int mask, pending = 0, reset = 0;
4087 unsigned long flags;
4089 if (link_transition_timeout != 0 &&
4090 cp->link_transition_jiffies_valid &&
4091 ((jiffies - cp->link_transition_jiffies) >
4092 (link_transition_timeout))) {
4093 /* One-second counter so link-down workaround doesn't
4094 * cause resets to occur so fast as to fool the switch
4095 * into thinking the link is down.
4097 cp->link_transition_jiffies_valid = 0;
4100 if (!cp->hw_running)
4101 return;
4103 spin_lock_irqsave(&cp->lock, flags);
4104 cas_lock_tx(cp);
4105 cas_entropy_gather(cp);
4107 /* If the link task is still pending, we just
4108 * reschedule the link timer
4110 #if 1
4111 if (atomic_read(&cp->reset_task_pending_all) ||
4112 atomic_read(&cp->reset_task_pending_spare) ||
4113 atomic_read(&cp->reset_task_pending_mtu))
4114 goto done;
4115 #else
4116 if (atomic_read(&cp->reset_task_pending))
4117 goto done;
4118 #endif
4120 /* check for rx cleaning */
4121 if ((mask = (cp->cas_flags & CAS_FLAG_RXD_POST_MASK))) {
4122 int i, rmask;
4124 for (i = 0; i < MAX_RX_DESC_RINGS; i++) {
4125 rmask = CAS_FLAG_RXD_POST(i);
4126 if ((mask & rmask) == 0)
4127 continue;
4129 /* post_rxds will do a mod_timer */
4130 if (cas_post_rxds_ringN(cp, i, cp->rx_last[i]) < 0) {
4131 pending = 1;
4132 continue;
4134 cp->cas_flags &= ~rmask;
4138 if (CAS_PHY_MII(cp->phy_type)) {
4139 u16 bmsr;
4140 cas_mif_poll(cp, 0);
4141 bmsr = cas_phy_read(cp, MII_BMSR);
4142 /* WTZ: Solaris driver reads this twice, but that
4143 * may be due to the PCS case and the use of a
4144 * common implementation. Read it twice here to be
4145 * safe.
4147 bmsr = cas_phy_read(cp, MII_BMSR);
4148 cas_mif_poll(cp, 1);
4149 readl(cp->regs + REG_MIF_STATUS); /* avoid dups */
4150 reset = cas_mii_link_check(cp, bmsr);
4151 } else {
4152 reset = cas_pcs_link_check(cp);
4155 if (reset)
4156 goto done;
4158 /* check for tx state machine confusion */
4159 if ((readl(cp->regs + REG_MAC_TX_STATUS) & MAC_TX_FRAME_XMIT) == 0) {
4160 u32 val = readl(cp->regs + REG_MAC_STATE_MACHINE);
4161 u32 wptr, rptr;
4162 int tlm = CAS_VAL(MAC_SM_TLM, val);
4164 if (((tlm == 0x5) || (tlm == 0x3)) &&
4165 (CAS_VAL(MAC_SM_ENCAP_SM, val) == 0)) {
4166 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4167 "tx err: MAC_STATE[%08x]\n", val);
4168 reset = 1;
4169 goto done;
4172 val = readl(cp->regs + REG_TX_FIFO_PKT_CNT);
4173 wptr = readl(cp->regs + REG_TX_FIFO_WRITE_PTR);
4174 rptr = readl(cp->regs + REG_TX_FIFO_READ_PTR);
4175 if ((val == 0) && (wptr != rptr)) {
4176 netif_printk(cp, tx_err, KERN_DEBUG, cp->dev,
4177 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4178 val, wptr, rptr);
4179 reset = 1;
4182 if (reset)
4183 cas_hard_reset(cp);
4186 done:
4187 if (reset) {
4188 #if 1
4189 atomic_inc(&cp->reset_task_pending);
4190 atomic_inc(&cp->reset_task_pending_all);
4191 schedule_work(&cp->reset_task);
4192 #else
4193 atomic_set(&cp->reset_task_pending, CAS_RESET_ALL);
4194 pr_err("reset called in cas_link_timer\n");
4195 schedule_work(&cp->reset_task);
4196 #endif
4199 if (!pending)
4200 mod_timer(&cp->link_timer, jiffies + CAS_LINK_TIMEOUT);
4201 cas_unlock_tx(cp);
4202 spin_unlock_irqrestore(&cp->lock, flags);
4205 /* tiny buffers are used to avoid target abort issues with
4206 * older cassini's
4208 static void cas_tx_tiny_free(struct cas *cp)
4210 struct pci_dev *pdev = cp->pdev;
4211 int i;
4213 for (i = 0; i < N_TX_RINGS; i++) {
4214 if (!cp->tx_tiny_bufs[i])
4215 continue;
4217 pci_free_consistent(pdev, TX_TINY_BUF_BLOCK,
4218 cp->tx_tiny_bufs[i],
4219 cp->tx_tiny_dvma[i]);
4220 cp->tx_tiny_bufs[i] = NULL;
4224 static int cas_tx_tiny_alloc(struct cas *cp)
4226 struct pci_dev *pdev = cp->pdev;
4227 int i;
4229 for (i = 0; i < N_TX_RINGS; i++) {
4230 cp->tx_tiny_bufs[i] =
4231 pci_alloc_consistent(pdev, TX_TINY_BUF_BLOCK,
4232 &cp->tx_tiny_dvma[i]);
4233 if (!cp->tx_tiny_bufs[i]) {
4234 cas_tx_tiny_free(cp);
4235 return -1;
4238 return 0;
4242 static int cas_open(struct net_device *dev)
4244 struct cas *cp = netdev_priv(dev);
4245 int hw_was_up, err;
4246 unsigned long flags;
4248 mutex_lock(&cp->pm_mutex);
4250 hw_was_up = cp->hw_running;
4252 /* The power-management mutex protects the hw_running
4253 * etc. state so it is safe to do this bit without cp->lock
4255 if (!cp->hw_running) {
4256 /* Reset the chip */
4257 cas_lock_all_save(cp, flags);
4258 /* We set the second arg to cas_reset to zero
4259 * because cas_init_hw below will have its second
4260 * argument set to non-zero, which will force
4261 * autonegotiation to start.
4263 cas_reset(cp, 0);
4264 cp->hw_running = 1;
4265 cas_unlock_all_restore(cp, flags);
4268 err = -ENOMEM;
4269 if (cas_tx_tiny_alloc(cp) < 0)
4270 goto err_unlock;
4272 /* alloc rx descriptors */
4273 if (cas_alloc_rxds(cp) < 0)
4274 goto err_tx_tiny;
4276 /* allocate spares */
4277 cas_spare_init(cp);
4278 cas_spare_recover(cp, GFP_KERNEL);
4280 /* We can now request the interrupt as we know it's masked
4281 * on the controller. cassini+ has up to 4 interrupts
4282 * that can be used, but you need to do explicit pci interrupt
4283 * mapping to expose them
4285 if (request_irq(cp->pdev->irq, cas_interrupt,
4286 IRQF_SHARED, dev->name, (void *) dev)) {
4287 netdev_err(cp->dev, "failed to request irq !\n");
4288 err = -EAGAIN;
4289 goto err_spare;
4292 #ifdef USE_NAPI
4293 napi_enable(&cp->napi);
4294 #endif
4295 /* init hw */
4296 cas_lock_all_save(cp, flags);
4297 cas_clean_rings(cp);
4298 cas_init_hw(cp, !hw_was_up);
4299 cp->opened = 1;
4300 cas_unlock_all_restore(cp, flags);
4302 netif_start_queue(dev);
4303 mutex_unlock(&cp->pm_mutex);
4304 return 0;
4306 err_spare:
4307 cas_spare_free(cp);
4308 cas_free_rxds(cp);
4309 err_tx_tiny:
4310 cas_tx_tiny_free(cp);
4311 err_unlock:
4312 mutex_unlock(&cp->pm_mutex);
4313 return err;
4316 static int cas_close(struct net_device *dev)
4318 unsigned long flags;
4319 struct cas *cp = netdev_priv(dev);
4321 #ifdef USE_NAPI
4322 napi_disable(&cp->napi);
4323 #endif
4324 /* Make sure we don't get distracted by suspend/resume */
4325 mutex_lock(&cp->pm_mutex);
4327 netif_stop_queue(dev);
4329 /* Stop traffic, mark us closed */
4330 cas_lock_all_save(cp, flags);
4331 cp->opened = 0;
4332 cas_reset(cp, 0);
4333 cas_phy_init(cp);
4334 cas_begin_auto_negotiation(cp, NULL);
4335 cas_clean_rings(cp);
4336 cas_unlock_all_restore(cp, flags);
4338 free_irq(cp->pdev->irq, (void *) dev);
4339 cas_spare_free(cp);
4340 cas_free_rxds(cp);
4341 cas_tx_tiny_free(cp);
4342 mutex_unlock(&cp->pm_mutex);
4343 return 0;
4346 static struct {
4347 const char name[ETH_GSTRING_LEN];
4348 } ethtool_cassini_statnames[] = {
4349 {"collisions"},
4350 {"rx_bytes"},
4351 {"rx_crc_errors"},
4352 {"rx_dropped"},
4353 {"rx_errors"},
4354 {"rx_fifo_errors"},
4355 {"rx_frame_errors"},
4356 {"rx_length_errors"},
4357 {"rx_over_errors"},
4358 {"rx_packets"},
4359 {"tx_aborted_errors"},
4360 {"tx_bytes"},
4361 {"tx_dropped"},
4362 {"tx_errors"},
4363 {"tx_fifo_errors"},
4364 {"tx_packets"}
4366 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4368 static struct {
4369 const int offsets; /* neg. values for 2nd arg to cas_read_phy */
4370 } ethtool_register_table[] = {
4371 {-MII_BMSR},
4372 {-MII_BMCR},
4373 {REG_CAWR},
4374 {REG_INF_BURST},
4375 {REG_BIM_CFG},
4376 {REG_RX_CFG},
4377 {REG_HP_CFG},
4378 {REG_MAC_TX_CFG},
4379 {REG_MAC_RX_CFG},
4380 {REG_MAC_CTRL_CFG},
4381 {REG_MAC_XIF_CFG},
4382 {REG_MIF_CFG},
4383 {REG_PCS_CFG},
4384 {REG_SATURN_PCFG},
4385 {REG_PCS_MII_STATUS},
4386 {REG_PCS_STATE_MACHINE},
4387 {REG_MAC_COLL_EXCESS},
4388 {REG_MAC_COLL_LATE}
4390 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4391 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4393 static void cas_read_regs(struct cas *cp, u8 *ptr, int len)
4395 u8 *p;
4396 int i;
4397 unsigned long flags;
4399 spin_lock_irqsave(&cp->lock, flags);
4400 for (i = 0, p = ptr; i < len ; i ++, p += sizeof(u32)) {
4401 u16 hval;
4402 u32 val;
4403 if (ethtool_register_table[i].offsets < 0) {
4404 hval = cas_phy_read(cp,
4405 -ethtool_register_table[i].offsets);
4406 val = hval;
4407 } else {
4408 val= readl(cp->regs+ethtool_register_table[i].offsets);
4410 memcpy(p, (u8 *)&val, sizeof(u32));
4412 spin_unlock_irqrestore(&cp->lock, flags);
4415 static struct net_device_stats *cas_get_stats(struct net_device *dev)
4417 struct cas *cp = netdev_priv(dev);
4418 struct net_device_stats *stats = cp->net_stats;
4419 unsigned long flags;
4420 int i;
4421 unsigned long tmp;
4423 /* we collate all of the stats into net_stats[N_TX_RING] */
4424 if (!cp->hw_running)
4425 return stats + N_TX_RINGS;
4427 /* collect outstanding stats */
4428 /* WTZ: the Cassini spec gives these as 16 bit counters but
4429 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4430 * in case the chip somehow puts any garbage in the other bits.
4431 * Also, counter usage didn't seem to mach what Adrian did
4432 * in the parts of the code that set these quantities. Made
4433 * that consistent.
4435 spin_lock_irqsave(&cp->stat_lock[N_TX_RINGS], flags);
4436 stats[N_TX_RINGS].rx_crc_errors +=
4437 readl(cp->regs + REG_MAC_FCS_ERR) & 0xffff;
4438 stats[N_TX_RINGS].rx_frame_errors +=
4439 readl(cp->regs + REG_MAC_ALIGN_ERR) &0xffff;
4440 stats[N_TX_RINGS].rx_length_errors +=
4441 readl(cp->regs + REG_MAC_LEN_ERR) & 0xffff;
4442 #if 1
4443 tmp = (readl(cp->regs + REG_MAC_COLL_EXCESS) & 0xffff) +
4444 (readl(cp->regs + REG_MAC_COLL_LATE) & 0xffff);
4445 stats[N_TX_RINGS].tx_aborted_errors += tmp;
4446 stats[N_TX_RINGS].collisions +=
4447 tmp + (readl(cp->regs + REG_MAC_COLL_NORMAL) & 0xffff);
4448 #else
4449 stats[N_TX_RINGS].tx_aborted_errors +=
4450 readl(cp->regs + REG_MAC_COLL_EXCESS);
4451 stats[N_TX_RINGS].collisions += readl(cp->regs + REG_MAC_COLL_EXCESS) +
4452 readl(cp->regs + REG_MAC_COLL_LATE);
4453 #endif
4454 cas_clear_mac_err(cp);
4456 /* saved bits that are unique to ring 0 */
4457 spin_lock(&cp->stat_lock[0]);
4458 stats[N_TX_RINGS].collisions += stats[0].collisions;
4459 stats[N_TX_RINGS].rx_over_errors += stats[0].rx_over_errors;
4460 stats[N_TX_RINGS].rx_frame_errors += stats[0].rx_frame_errors;
4461 stats[N_TX_RINGS].rx_fifo_errors += stats[0].rx_fifo_errors;
4462 stats[N_TX_RINGS].tx_aborted_errors += stats[0].tx_aborted_errors;
4463 stats[N_TX_RINGS].tx_fifo_errors += stats[0].tx_fifo_errors;
4464 spin_unlock(&cp->stat_lock[0]);
4466 for (i = 0; i < N_TX_RINGS; i++) {
4467 spin_lock(&cp->stat_lock[i]);
4468 stats[N_TX_RINGS].rx_length_errors +=
4469 stats[i].rx_length_errors;
4470 stats[N_TX_RINGS].rx_crc_errors += stats[i].rx_crc_errors;
4471 stats[N_TX_RINGS].rx_packets += stats[i].rx_packets;
4472 stats[N_TX_RINGS].tx_packets += stats[i].tx_packets;
4473 stats[N_TX_RINGS].rx_bytes += stats[i].rx_bytes;
4474 stats[N_TX_RINGS].tx_bytes += stats[i].tx_bytes;
4475 stats[N_TX_RINGS].rx_errors += stats[i].rx_errors;
4476 stats[N_TX_RINGS].tx_errors += stats[i].tx_errors;
4477 stats[N_TX_RINGS].rx_dropped += stats[i].rx_dropped;
4478 stats[N_TX_RINGS].tx_dropped += stats[i].tx_dropped;
4479 memset(stats + i, 0, sizeof(struct net_device_stats));
4480 spin_unlock(&cp->stat_lock[i]);
4482 spin_unlock_irqrestore(&cp->stat_lock[N_TX_RINGS], flags);
4483 return stats + N_TX_RINGS;
4487 static void cas_set_multicast(struct net_device *dev)
4489 struct cas *cp = netdev_priv(dev);
4490 u32 rxcfg, rxcfg_new;
4491 unsigned long flags;
4492 int limit = STOP_TRIES;
4494 if (!cp->hw_running)
4495 return;
4497 spin_lock_irqsave(&cp->lock, flags);
4498 rxcfg = readl(cp->regs + REG_MAC_RX_CFG);
4500 /* disable RX MAC and wait for completion */
4501 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4502 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_EN) {
4503 if (!limit--)
4504 break;
4505 udelay(10);
4508 /* disable hash filter and wait for completion */
4509 limit = STOP_TRIES;
4510 rxcfg &= ~(MAC_RX_CFG_PROMISC_EN | MAC_RX_CFG_HASH_FILTER_EN);
4511 writel(rxcfg & ~MAC_RX_CFG_EN, cp->regs + REG_MAC_RX_CFG);
4512 while (readl(cp->regs + REG_MAC_RX_CFG) & MAC_RX_CFG_HASH_FILTER_EN) {
4513 if (!limit--)
4514 break;
4515 udelay(10);
4518 /* program hash filters */
4519 cp->mac_rx_cfg = rxcfg_new = cas_setup_multicast(cp);
4520 rxcfg |= rxcfg_new;
4521 writel(rxcfg, cp->regs + REG_MAC_RX_CFG);
4522 spin_unlock_irqrestore(&cp->lock, flags);
4525 static void cas_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
4527 struct cas *cp = netdev_priv(dev);
4528 strlcpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver));
4529 strlcpy(info->version, DRV_MODULE_VERSION, sizeof(info->version));
4530 strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
4533 static int cas_get_link_ksettings(struct net_device *dev,
4534 struct ethtool_link_ksettings *cmd)
4536 struct cas *cp = netdev_priv(dev);
4537 u16 bmcr;
4538 int full_duplex, speed, pause;
4539 unsigned long flags;
4540 enum link_state linkstate = link_up;
4541 u32 supported, advertising;
4543 advertising = 0;
4544 supported = SUPPORTED_Autoneg;
4545 if (cp->cas_flags & CAS_FLAG_1000MB_CAP) {
4546 supported |= SUPPORTED_1000baseT_Full;
4547 advertising |= ADVERTISED_1000baseT_Full;
4550 /* Record PHY settings if HW is on. */
4551 spin_lock_irqsave(&cp->lock, flags);
4552 bmcr = 0;
4553 linkstate = cp->lstate;
4554 if (CAS_PHY_MII(cp->phy_type)) {
4555 cmd->base.port = PORT_MII;
4556 cmd->base.phy_address = cp->phy_addr;
4557 advertising |= ADVERTISED_TP | ADVERTISED_MII |
4558 ADVERTISED_10baseT_Half |
4559 ADVERTISED_10baseT_Full |
4560 ADVERTISED_100baseT_Half |
4561 ADVERTISED_100baseT_Full;
4563 supported |=
4564 (SUPPORTED_10baseT_Half |
4565 SUPPORTED_10baseT_Full |
4566 SUPPORTED_100baseT_Half |
4567 SUPPORTED_100baseT_Full |
4568 SUPPORTED_TP | SUPPORTED_MII);
4570 if (cp->hw_running) {
4571 cas_mif_poll(cp, 0);
4572 bmcr = cas_phy_read(cp, MII_BMCR);
4573 cas_read_mii_link_mode(cp, &full_duplex,
4574 &speed, &pause);
4575 cas_mif_poll(cp, 1);
4578 } else {
4579 cmd->base.port = PORT_FIBRE;
4580 cmd->base.phy_address = 0;
4581 supported |= SUPPORTED_FIBRE;
4582 advertising |= ADVERTISED_FIBRE;
4584 if (cp->hw_running) {
4585 /* pcs uses the same bits as mii */
4586 bmcr = readl(cp->regs + REG_PCS_MII_CTRL);
4587 cas_read_pcs_link_mode(cp, &full_duplex,
4588 &speed, &pause);
4591 spin_unlock_irqrestore(&cp->lock, flags);
4593 if (bmcr & BMCR_ANENABLE) {
4594 advertising |= ADVERTISED_Autoneg;
4595 cmd->base.autoneg = AUTONEG_ENABLE;
4596 cmd->base.speed = ((speed == 10) ?
4597 SPEED_10 :
4598 ((speed == 1000) ?
4599 SPEED_1000 : SPEED_100));
4600 cmd->base.duplex = full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
4601 } else {
4602 cmd->base.autoneg = AUTONEG_DISABLE;
4603 cmd->base.speed = ((bmcr & CAS_BMCR_SPEED1000) ?
4604 SPEED_1000 :
4605 ((bmcr & BMCR_SPEED100) ?
4606 SPEED_100 : SPEED_10));
4607 cmd->base.duplex = (bmcr & BMCR_FULLDPLX) ?
4608 DUPLEX_FULL : DUPLEX_HALF;
4610 if (linkstate != link_up) {
4611 /* Force these to "unknown" if the link is not up and
4612 * autonogotiation in enabled. We can set the link
4613 * speed to 0, but not cmd->duplex,
4614 * because its legal values are 0 and 1. Ethtool will
4615 * print the value reported in parentheses after the
4616 * word "Unknown" for unrecognized values.
4618 * If in forced mode, we report the speed and duplex
4619 * settings that we configured.
4621 if (cp->link_cntl & BMCR_ANENABLE) {
4622 cmd->base.speed = 0;
4623 cmd->base.duplex = 0xff;
4624 } else {
4625 cmd->base.speed = SPEED_10;
4626 if (cp->link_cntl & BMCR_SPEED100) {
4627 cmd->base.speed = SPEED_100;
4628 } else if (cp->link_cntl & CAS_BMCR_SPEED1000) {
4629 cmd->base.speed = SPEED_1000;
4631 cmd->base.duplex = (cp->link_cntl & BMCR_FULLDPLX) ?
4632 DUPLEX_FULL : DUPLEX_HALF;
4636 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
4637 supported);
4638 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
4639 advertising);
4641 return 0;
4644 static int cas_set_link_ksettings(struct net_device *dev,
4645 const struct ethtool_link_ksettings *cmd)
4647 struct cas *cp = netdev_priv(dev);
4648 unsigned long flags;
4649 u32 speed = cmd->base.speed;
4651 /* Verify the settings we care about. */
4652 if (cmd->base.autoneg != AUTONEG_ENABLE &&
4653 cmd->base.autoneg != AUTONEG_DISABLE)
4654 return -EINVAL;
4656 if (cmd->base.autoneg == AUTONEG_DISABLE &&
4657 ((speed != SPEED_1000 &&
4658 speed != SPEED_100 &&
4659 speed != SPEED_10) ||
4660 (cmd->base.duplex != DUPLEX_HALF &&
4661 cmd->base.duplex != DUPLEX_FULL)))
4662 return -EINVAL;
4664 /* Apply settings and restart link process. */
4665 spin_lock_irqsave(&cp->lock, flags);
4666 cas_begin_auto_negotiation(cp, cmd);
4667 spin_unlock_irqrestore(&cp->lock, flags);
4668 return 0;
4671 static int cas_nway_reset(struct net_device *dev)
4673 struct cas *cp = netdev_priv(dev);
4674 unsigned long flags;
4676 if ((cp->link_cntl & BMCR_ANENABLE) == 0)
4677 return -EINVAL;
4679 /* Restart link process. */
4680 spin_lock_irqsave(&cp->lock, flags);
4681 cas_begin_auto_negotiation(cp, NULL);
4682 spin_unlock_irqrestore(&cp->lock, flags);
4684 return 0;
4687 static u32 cas_get_link(struct net_device *dev)
4689 struct cas *cp = netdev_priv(dev);
4690 return cp->lstate == link_up;
4693 static u32 cas_get_msglevel(struct net_device *dev)
4695 struct cas *cp = netdev_priv(dev);
4696 return cp->msg_enable;
4699 static void cas_set_msglevel(struct net_device *dev, u32 value)
4701 struct cas *cp = netdev_priv(dev);
4702 cp->msg_enable = value;
4705 static int cas_get_regs_len(struct net_device *dev)
4707 struct cas *cp = netdev_priv(dev);
4708 return cp->casreg_len < CAS_MAX_REGS ? cp->casreg_len: CAS_MAX_REGS;
4711 static void cas_get_regs(struct net_device *dev, struct ethtool_regs *regs,
4712 void *p)
4714 struct cas *cp = netdev_priv(dev);
4715 regs->version = 0;
4716 /* cas_read_regs handles locks (cp->lock). */
4717 cas_read_regs(cp, p, regs->len / sizeof(u32));
4720 static int cas_get_sset_count(struct net_device *dev, int sset)
4722 switch (sset) {
4723 case ETH_SS_STATS:
4724 return CAS_NUM_STAT_KEYS;
4725 default:
4726 return -EOPNOTSUPP;
4730 static void cas_get_strings(struct net_device *dev, u32 stringset, u8 *data)
4732 memcpy(data, &ethtool_cassini_statnames,
4733 CAS_NUM_STAT_KEYS * ETH_GSTRING_LEN);
4736 static void cas_get_ethtool_stats(struct net_device *dev,
4737 struct ethtool_stats *estats, u64 *data)
4739 struct cas *cp = netdev_priv(dev);
4740 struct net_device_stats *stats = cas_get_stats(cp->dev);
4741 int i = 0;
4742 data[i++] = stats->collisions;
4743 data[i++] = stats->rx_bytes;
4744 data[i++] = stats->rx_crc_errors;
4745 data[i++] = stats->rx_dropped;
4746 data[i++] = stats->rx_errors;
4747 data[i++] = stats->rx_fifo_errors;
4748 data[i++] = stats->rx_frame_errors;
4749 data[i++] = stats->rx_length_errors;
4750 data[i++] = stats->rx_over_errors;
4751 data[i++] = stats->rx_packets;
4752 data[i++] = stats->tx_aborted_errors;
4753 data[i++] = stats->tx_bytes;
4754 data[i++] = stats->tx_dropped;
4755 data[i++] = stats->tx_errors;
4756 data[i++] = stats->tx_fifo_errors;
4757 data[i++] = stats->tx_packets;
4758 BUG_ON(i != CAS_NUM_STAT_KEYS);
4761 static const struct ethtool_ops cas_ethtool_ops = {
4762 .get_drvinfo = cas_get_drvinfo,
4763 .nway_reset = cas_nway_reset,
4764 .get_link = cas_get_link,
4765 .get_msglevel = cas_get_msglevel,
4766 .set_msglevel = cas_set_msglevel,
4767 .get_regs_len = cas_get_regs_len,
4768 .get_regs = cas_get_regs,
4769 .get_sset_count = cas_get_sset_count,
4770 .get_strings = cas_get_strings,
4771 .get_ethtool_stats = cas_get_ethtool_stats,
4772 .get_link_ksettings = cas_get_link_ksettings,
4773 .set_link_ksettings = cas_set_link_ksettings,
4776 static int cas_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
4778 struct cas *cp = netdev_priv(dev);
4779 struct mii_ioctl_data *data = if_mii(ifr);
4780 unsigned long flags;
4781 int rc = -EOPNOTSUPP;
4783 /* Hold the PM mutex while doing ioctl's or we may collide
4784 * with open/close and power management and oops.
4786 mutex_lock(&cp->pm_mutex);
4787 switch (cmd) {
4788 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
4789 data->phy_id = cp->phy_addr;
4790 /* Fallthrough... */
4792 case SIOCGMIIREG: /* Read MII PHY register. */
4793 spin_lock_irqsave(&cp->lock, flags);
4794 cas_mif_poll(cp, 0);
4795 data->val_out = cas_phy_read(cp, data->reg_num & 0x1f);
4796 cas_mif_poll(cp, 1);
4797 spin_unlock_irqrestore(&cp->lock, flags);
4798 rc = 0;
4799 break;
4801 case SIOCSMIIREG: /* Write MII PHY register. */
4802 spin_lock_irqsave(&cp->lock, flags);
4803 cas_mif_poll(cp, 0);
4804 rc = cas_phy_write(cp, data->reg_num & 0x1f, data->val_in);
4805 cas_mif_poll(cp, 1);
4806 spin_unlock_irqrestore(&cp->lock, flags);
4807 break;
4808 default:
4809 break;
4812 mutex_unlock(&cp->pm_mutex);
4813 return rc;
4816 /* When this chip sits underneath an Intel 31154 bridge, it is the
4817 * only subordinate device and we can tweak the bridge settings to
4818 * reflect that fact.
4820 static void cas_program_bridge(struct pci_dev *cas_pdev)
4822 struct pci_dev *pdev = cas_pdev->bus->self;
4823 u32 val;
4825 if (!pdev)
4826 return;
4828 if (pdev->vendor != 0x8086 || pdev->device != 0x537c)
4829 return;
4831 /* Clear bit 10 (Bus Parking Control) in the Secondary
4832 * Arbiter Control/Status Register which lives at offset
4833 * 0x41. Using a 32-bit word read/modify/write at 0x40
4834 * is much simpler so that's how we do this.
4836 pci_read_config_dword(pdev, 0x40, &val);
4837 val &= ~0x00040000;
4838 pci_write_config_dword(pdev, 0x40, val);
4840 /* Max out the Multi-Transaction Timer settings since
4841 * Cassini is the only device present.
4843 * The register is 16-bit and lives at 0x50. When the
4844 * settings are enabled, it extends the GRANT# signal
4845 * for a requestor after a transaction is complete. This
4846 * allows the next request to run without first needing
4847 * to negotiate the GRANT# signal back.
4849 * Bits 12:10 define the grant duration:
4851 * 1 -- 16 clocks
4852 * 2 -- 32 clocks
4853 * 3 -- 64 clocks
4854 * 4 -- 128 clocks
4855 * 5 -- 256 clocks
4857 * All other values are illegal.
4859 * Bits 09:00 define which REQ/GNT signal pairs get the
4860 * GRANT# signal treatment. We set them all.
4862 pci_write_config_word(pdev, 0x50, (5 << 10) | 0x3ff);
4864 /* The Read Prefecth Policy register is 16-bit and sits at
4865 * offset 0x52. It enables a "smart" pre-fetch policy. We
4866 * enable it and max out all of the settings since only one
4867 * device is sitting underneath and thus bandwidth sharing is
4868 * not an issue.
4870 * The register has several 3 bit fields, which indicates a
4871 * multiplier applied to the base amount of prefetching the
4872 * chip would do. These fields are at:
4874 * 15:13 --- ReRead Primary Bus
4875 * 12:10 --- FirstRead Primary Bus
4876 * 09:07 --- ReRead Secondary Bus
4877 * 06:04 --- FirstRead Secondary Bus
4879 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4880 * get enabled on. Bit 3 is a grouped enabler which controls
4881 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4882 * the individual REQ/GNT pairs [2:0].
4884 pci_write_config_word(pdev, 0x52,
4885 (0x7 << 13) |
4886 (0x7 << 10) |
4887 (0x7 << 7) |
4888 (0x7 << 4) |
4889 (0xf << 0));
4891 /* Force cacheline size to 0x8 */
4892 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 0x08);
4894 /* Force latency timer to maximum setting so Cassini can
4895 * sit on the bus as long as it likes.
4897 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0xff);
4900 static const struct net_device_ops cas_netdev_ops = {
4901 .ndo_open = cas_open,
4902 .ndo_stop = cas_close,
4903 .ndo_start_xmit = cas_start_xmit,
4904 .ndo_get_stats = cas_get_stats,
4905 .ndo_set_rx_mode = cas_set_multicast,
4906 .ndo_do_ioctl = cas_ioctl,
4907 .ndo_tx_timeout = cas_tx_timeout,
4908 .ndo_change_mtu = cas_change_mtu,
4909 .ndo_set_mac_address = eth_mac_addr,
4910 .ndo_validate_addr = eth_validate_addr,
4911 #ifdef CONFIG_NET_POLL_CONTROLLER
4912 .ndo_poll_controller = cas_netpoll,
4913 #endif
4916 static int cas_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
4918 static int cas_version_printed = 0;
4919 unsigned long casreg_len;
4920 struct net_device *dev;
4921 struct cas *cp;
4922 int i, err, pci_using_dac;
4923 u16 pci_cmd;
4924 u8 orig_cacheline_size = 0, cas_cacheline_size = 0;
4926 if (cas_version_printed++ == 0)
4927 pr_info("%s", version);
4929 err = pci_enable_device(pdev);
4930 if (err) {
4931 dev_err(&pdev->dev, "Cannot enable PCI device, aborting\n");
4932 return err;
4935 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
4936 dev_err(&pdev->dev, "Cannot find proper PCI device "
4937 "base address, aborting\n");
4938 err = -ENODEV;
4939 goto err_out_disable_pdev;
4942 dev = alloc_etherdev(sizeof(*cp));
4943 if (!dev) {
4944 err = -ENOMEM;
4945 goto err_out_disable_pdev;
4947 SET_NETDEV_DEV(dev, &pdev->dev);
4949 err = pci_request_regions(pdev, dev->name);
4950 if (err) {
4951 dev_err(&pdev->dev, "Cannot obtain PCI resources, aborting\n");
4952 goto err_out_free_netdev;
4954 pci_set_master(pdev);
4956 /* we must always turn on parity response or else parity
4957 * doesn't get generated properly. disable SERR/PERR as well.
4958 * in addition, we want to turn MWI on.
4960 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
4961 pci_cmd &= ~PCI_COMMAND_SERR;
4962 pci_cmd |= PCI_COMMAND_PARITY;
4963 pci_write_config_word(pdev, PCI_COMMAND, pci_cmd);
4964 if (pci_try_set_mwi(pdev))
4965 pr_warn("Could not enable MWI for %s\n", pci_name(pdev));
4967 cas_program_bridge(pdev);
4970 * On some architectures, the default cache line size set
4971 * by pci_try_set_mwi reduces perforamnce. We have to increase
4972 * it for this case. To start, we'll print some configuration
4973 * data.
4975 #if 1
4976 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE,
4977 &orig_cacheline_size);
4978 if (orig_cacheline_size < CAS_PREF_CACHELINE_SIZE) {
4979 cas_cacheline_size =
4980 (CAS_PREF_CACHELINE_SIZE < SMP_CACHE_BYTES) ?
4981 CAS_PREF_CACHELINE_SIZE : SMP_CACHE_BYTES;
4982 if (pci_write_config_byte(pdev,
4983 PCI_CACHE_LINE_SIZE,
4984 cas_cacheline_size)) {
4985 dev_err(&pdev->dev, "Could not set PCI cache "
4986 "line size\n");
4987 goto err_write_cacheline;
4990 #endif
4993 /* Configure DMA attributes. */
4994 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
4995 pci_using_dac = 1;
4996 err = pci_set_consistent_dma_mask(pdev,
4997 DMA_BIT_MASK(64));
4998 if (err < 0) {
4999 dev_err(&pdev->dev, "Unable to obtain 64-bit DMA "
5000 "for consistent allocations\n");
5001 goto err_out_free_res;
5004 } else {
5005 err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
5006 if (err) {
5007 dev_err(&pdev->dev, "No usable DMA configuration, "
5008 "aborting\n");
5009 goto err_out_free_res;
5011 pci_using_dac = 0;
5014 casreg_len = pci_resource_len(pdev, 0);
5016 cp = netdev_priv(dev);
5017 cp->pdev = pdev;
5018 #if 1
5019 /* A value of 0 indicates we never explicitly set it */
5020 cp->orig_cacheline_size = cas_cacheline_size ? orig_cacheline_size: 0;
5021 #endif
5022 cp->dev = dev;
5023 cp->msg_enable = (cassini_debug < 0) ? CAS_DEF_MSG_ENABLE :
5024 cassini_debug;
5026 #if defined(CONFIG_SPARC)
5027 cp->of_node = pci_device_to_OF_node(pdev);
5028 #endif
5030 cp->link_transition = LINK_TRANSITION_UNKNOWN;
5031 cp->link_transition_jiffies_valid = 0;
5033 spin_lock_init(&cp->lock);
5034 spin_lock_init(&cp->rx_inuse_lock);
5035 spin_lock_init(&cp->rx_spare_lock);
5036 for (i = 0; i < N_TX_RINGS; i++) {
5037 spin_lock_init(&cp->stat_lock[i]);
5038 spin_lock_init(&cp->tx_lock[i]);
5040 spin_lock_init(&cp->stat_lock[N_TX_RINGS]);
5041 mutex_init(&cp->pm_mutex);
5043 timer_setup(&cp->link_timer, cas_link_timer, 0);
5045 #if 1
5046 /* Just in case the implementation of atomic operations
5047 * change so that an explicit initialization is necessary.
5049 atomic_set(&cp->reset_task_pending, 0);
5050 atomic_set(&cp->reset_task_pending_all, 0);
5051 atomic_set(&cp->reset_task_pending_spare, 0);
5052 atomic_set(&cp->reset_task_pending_mtu, 0);
5053 #endif
5054 INIT_WORK(&cp->reset_task, cas_reset_task);
5056 /* Default link parameters */
5057 if (link_mode >= 0 && link_mode < 6)
5058 cp->link_cntl = link_modes[link_mode];
5059 else
5060 cp->link_cntl = BMCR_ANENABLE;
5061 cp->lstate = link_down;
5062 cp->link_transition = LINK_TRANSITION_LINK_DOWN;
5063 netif_carrier_off(cp->dev);
5064 cp->timer_ticks = 0;
5066 /* give us access to cassini registers */
5067 cp->regs = pci_iomap(pdev, 0, casreg_len);
5068 if (!cp->regs) {
5069 dev_err(&pdev->dev, "Cannot map device registers, aborting\n");
5070 goto err_out_free_res;
5072 cp->casreg_len = casreg_len;
5074 pci_save_state(pdev);
5075 cas_check_pci_invariants(cp);
5076 cas_hard_reset(cp);
5077 cas_reset(cp, 0);
5078 if (cas_check_invariants(cp))
5079 goto err_out_iounmap;
5080 if (cp->cas_flags & CAS_FLAG_SATURN)
5081 cas_saturn_firmware_init(cp);
5083 cp->init_block = (struct cas_init_block *)
5084 pci_alloc_consistent(pdev, sizeof(struct cas_init_block),
5085 &cp->block_dvma);
5086 if (!cp->init_block) {
5087 dev_err(&pdev->dev, "Cannot allocate init block, aborting\n");
5088 goto err_out_iounmap;
5091 for (i = 0; i < N_TX_RINGS; i++)
5092 cp->init_txds[i] = cp->init_block->txds[i];
5094 for (i = 0; i < N_RX_DESC_RINGS; i++)
5095 cp->init_rxds[i] = cp->init_block->rxds[i];
5097 for (i = 0; i < N_RX_COMP_RINGS; i++)
5098 cp->init_rxcs[i] = cp->init_block->rxcs[i];
5100 for (i = 0; i < N_RX_FLOWS; i++)
5101 skb_queue_head_init(&cp->rx_flows[i]);
5103 dev->netdev_ops = &cas_netdev_ops;
5104 dev->ethtool_ops = &cas_ethtool_ops;
5105 dev->watchdog_timeo = CAS_TX_TIMEOUT;
5107 #ifdef USE_NAPI
5108 netif_napi_add(dev, &cp->napi, cas_poll, 64);
5109 #endif
5110 dev->irq = pdev->irq;
5111 dev->dma = 0;
5113 /* Cassini features. */
5114 if ((cp->cas_flags & CAS_FLAG_NO_HW_CSUM) == 0)
5115 dev->features |= NETIF_F_HW_CSUM | NETIF_F_SG;
5117 if (pci_using_dac)
5118 dev->features |= NETIF_F_HIGHDMA;
5120 /* MTU range: 60 - varies or 9000 */
5121 dev->min_mtu = CAS_MIN_MTU;
5122 dev->max_mtu = CAS_MAX_MTU;
5124 if (register_netdev(dev)) {
5125 dev_err(&pdev->dev, "Cannot register net device, aborting\n");
5126 goto err_out_free_consistent;
5129 i = readl(cp->regs + REG_BIM_CFG);
5130 netdev_info(dev, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5131 (cp->cas_flags & CAS_FLAG_REG_PLUS) ? "+" : "",
5132 (i & BIM_CFG_32BIT) ? "32" : "64",
5133 (i & BIM_CFG_66MHZ) ? "66" : "33",
5134 (cp->phy_type == CAS_PHY_SERDES) ? "Fi" : "Cu", pdev->irq,
5135 dev->dev_addr);
5137 pci_set_drvdata(pdev, dev);
5138 cp->hw_running = 1;
5139 cas_entropy_reset(cp);
5140 cas_phy_init(cp);
5141 cas_begin_auto_negotiation(cp, NULL);
5142 return 0;
5144 err_out_free_consistent:
5145 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5146 cp->init_block, cp->block_dvma);
5148 err_out_iounmap:
5149 mutex_lock(&cp->pm_mutex);
5150 if (cp->hw_running)
5151 cas_shutdown(cp);
5152 mutex_unlock(&cp->pm_mutex);
5154 pci_iounmap(pdev, cp->regs);
5157 err_out_free_res:
5158 pci_release_regions(pdev);
5160 err_write_cacheline:
5161 /* Try to restore it in case the error occurred after we
5162 * set it.
5164 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, orig_cacheline_size);
5166 err_out_free_netdev:
5167 free_netdev(dev);
5169 err_out_disable_pdev:
5170 pci_disable_device(pdev);
5171 return -ENODEV;
5174 static void cas_remove_one(struct pci_dev *pdev)
5176 struct net_device *dev = pci_get_drvdata(pdev);
5177 struct cas *cp;
5178 if (!dev)
5179 return;
5181 cp = netdev_priv(dev);
5182 unregister_netdev(dev);
5184 vfree(cp->fw_data);
5186 mutex_lock(&cp->pm_mutex);
5187 cancel_work_sync(&cp->reset_task);
5188 if (cp->hw_running)
5189 cas_shutdown(cp);
5190 mutex_unlock(&cp->pm_mutex);
5192 #if 1
5193 if (cp->orig_cacheline_size) {
5194 /* Restore the cache line size if we had modified
5195 * it.
5197 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
5198 cp->orig_cacheline_size);
5200 #endif
5201 pci_free_consistent(pdev, sizeof(struct cas_init_block),
5202 cp->init_block, cp->block_dvma);
5203 pci_iounmap(pdev, cp->regs);
5204 free_netdev(dev);
5205 pci_release_regions(pdev);
5206 pci_disable_device(pdev);
5209 #ifdef CONFIG_PM
5210 static int cas_suspend(struct pci_dev *pdev, pm_message_t state)
5212 struct net_device *dev = pci_get_drvdata(pdev);
5213 struct cas *cp = netdev_priv(dev);
5214 unsigned long flags;
5216 mutex_lock(&cp->pm_mutex);
5218 /* If the driver is opened, we stop the DMA */
5219 if (cp->opened) {
5220 netif_device_detach(dev);
5222 cas_lock_all_save(cp, flags);
5224 /* We can set the second arg of cas_reset to 0
5225 * because on resume, we'll call cas_init_hw with
5226 * its second arg set so that autonegotiation is
5227 * restarted.
5229 cas_reset(cp, 0);
5230 cas_clean_rings(cp);
5231 cas_unlock_all_restore(cp, flags);
5234 if (cp->hw_running)
5235 cas_shutdown(cp);
5236 mutex_unlock(&cp->pm_mutex);
5238 return 0;
5241 static int cas_resume(struct pci_dev *pdev)
5243 struct net_device *dev = pci_get_drvdata(pdev);
5244 struct cas *cp = netdev_priv(dev);
5246 netdev_info(dev, "resuming\n");
5248 mutex_lock(&cp->pm_mutex);
5249 cas_hard_reset(cp);
5250 if (cp->opened) {
5251 unsigned long flags;
5252 cas_lock_all_save(cp, flags);
5253 cas_reset(cp, 0);
5254 cp->hw_running = 1;
5255 cas_clean_rings(cp);
5256 cas_init_hw(cp, 1);
5257 cas_unlock_all_restore(cp, flags);
5259 netif_device_attach(dev);
5261 mutex_unlock(&cp->pm_mutex);
5262 return 0;
5264 #endif /* CONFIG_PM */
5266 static struct pci_driver cas_driver = {
5267 .name = DRV_MODULE_NAME,
5268 .id_table = cas_pci_tbl,
5269 .probe = cas_init_one,
5270 .remove = cas_remove_one,
5271 #ifdef CONFIG_PM
5272 .suspend = cas_suspend,
5273 .resume = cas_resume
5274 #endif
5277 static int __init cas_init(void)
5279 if (linkdown_timeout > 0)
5280 link_transition_timeout = linkdown_timeout * HZ;
5281 else
5282 link_transition_timeout = 0;
5284 return pci_register_driver(&cas_driver);
5287 static void __exit cas_cleanup(void)
5289 pci_unregister_driver(&cas_driver);
5292 module_init(cas_init);
5293 module_exit(cas_cleanup);