xfs: Don't clear SGID when inheriting ACLs
[linux/fpc-iii.git] / fs / block_dev.c
blob07e46b786500b5e3a5974fa2d468b5ea32131ee3
1 /*
2 * linux/fs/block_dev.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
6 */
8 #include <linux/init.h>
9 #include <linux/mm.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <linux/badblocks.h>
33 #include <linux/falloc.h>
34 #include <asm/uaccess.h>
35 #include "internal.h"
37 struct bdev_inode {
38 struct block_device bdev;
39 struct inode vfs_inode;
42 static const struct address_space_operations def_blk_aops;
44 static inline struct bdev_inode *BDEV_I(struct inode *inode)
46 return container_of(inode, struct bdev_inode, vfs_inode);
49 struct block_device *I_BDEV(struct inode *inode)
51 return &BDEV_I(inode)->bdev;
53 EXPORT_SYMBOL(I_BDEV);
55 void __vfs_msg(struct super_block *sb, const char *prefix, const char *fmt, ...)
57 struct va_format vaf;
58 va_list args;
60 va_start(args, fmt);
61 vaf.fmt = fmt;
62 vaf.va = &args;
63 printk_ratelimited("%sVFS (%s): %pV\n", prefix, sb->s_id, &vaf);
64 va_end(args);
67 static void bdev_write_inode(struct block_device *bdev)
69 struct inode *inode = bdev->bd_inode;
70 int ret;
72 spin_lock(&inode->i_lock);
73 while (inode->i_state & I_DIRTY) {
74 spin_unlock(&inode->i_lock);
75 ret = write_inode_now(inode, true);
76 if (ret) {
77 char name[BDEVNAME_SIZE];
78 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
79 "for block device %s (err=%d).\n",
80 bdevname(bdev, name), ret);
82 spin_lock(&inode->i_lock);
84 spin_unlock(&inode->i_lock);
87 /* Kill _all_ buffers and pagecache , dirty or not.. */
88 void kill_bdev(struct block_device *bdev)
90 struct address_space *mapping = bdev->bd_inode->i_mapping;
92 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
93 return;
95 invalidate_bh_lrus();
96 truncate_inode_pages(mapping, 0);
98 EXPORT_SYMBOL(kill_bdev);
100 /* Invalidate clean unused buffers and pagecache. */
101 void invalidate_bdev(struct block_device *bdev)
103 struct address_space *mapping = bdev->bd_inode->i_mapping;
105 if (mapping->nrpages) {
106 invalidate_bh_lrus();
107 lru_add_drain_all(); /* make sure all lru add caches are flushed */
108 invalidate_mapping_pages(mapping, 0, -1);
110 /* 99% of the time, we don't need to flush the cleancache on the bdev.
111 * But, for the strange corners, lets be cautious
113 cleancache_invalidate_inode(mapping);
115 EXPORT_SYMBOL(invalidate_bdev);
117 int set_blocksize(struct block_device *bdev, int size)
119 /* Size must be a power of two, and between 512 and PAGE_SIZE */
120 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
121 return -EINVAL;
123 /* Size cannot be smaller than the size supported by the device */
124 if (size < bdev_logical_block_size(bdev))
125 return -EINVAL;
127 /* Don't change the size if it is same as current */
128 if (bdev->bd_block_size != size) {
129 sync_blockdev(bdev);
130 bdev->bd_block_size = size;
131 bdev->bd_inode->i_blkbits = blksize_bits(size);
132 kill_bdev(bdev);
134 return 0;
137 EXPORT_SYMBOL(set_blocksize);
139 int sb_set_blocksize(struct super_block *sb, int size)
141 if (set_blocksize(sb->s_bdev, size))
142 return 0;
143 /* If we get here, we know size is power of two
144 * and it's value is between 512 and PAGE_SIZE */
145 sb->s_blocksize = size;
146 sb->s_blocksize_bits = blksize_bits(size);
147 return sb->s_blocksize;
150 EXPORT_SYMBOL(sb_set_blocksize);
152 int sb_min_blocksize(struct super_block *sb, int size)
154 int minsize = bdev_logical_block_size(sb->s_bdev);
155 if (size < minsize)
156 size = minsize;
157 return sb_set_blocksize(sb, size);
160 EXPORT_SYMBOL(sb_min_blocksize);
162 static int
163 blkdev_get_block(struct inode *inode, sector_t iblock,
164 struct buffer_head *bh, int create)
166 bh->b_bdev = I_BDEV(inode);
167 bh->b_blocknr = iblock;
168 set_buffer_mapped(bh);
169 return 0;
172 static struct inode *bdev_file_inode(struct file *file)
174 return file->f_mapping->host;
177 static ssize_t
178 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
180 struct file *file = iocb->ki_filp;
181 struct inode *inode = bdev_file_inode(file);
183 return __blockdev_direct_IO(iocb, inode, I_BDEV(inode), iter,
184 blkdev_get_block, NULL, NULL,
185 DIO_SKIP_DIO_COUNT);
188 int __sync_blockdev(struct block_device *bdev, int wait)
190 if (!bdev)
191 return 0;
192 if (!wait)
193 return filemap_flush(bdev->bd_inode->i_mapping);
194 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
198 * Write out and wait upon all the dirty data associated with a block
199 * device via its mapping. Does not take the superblock lock.
201 int sync_blockdev(struct block_device *bdev)
203 return __sync_blockdev(bdev, 1);
205 EXPORT_SYMBOL(sync_blockdev);
208 * Write out and wait upon all dirty data associated with this
209 * device. Filesystem data as well as the underlying block
210 * device. Takes the superblock lock.
212 int fsync_bdev(struct block_device *bdev)
214 struct super_block *sb = get_super(bdev);
215 if (sb) {
216 int res = sync_filesystem(sb);
217 drop_super(sb);
218 return res;
220 return sync_blockdev(bdev);
222 EXPORT_SYMBOL(fsync_bdev);
225 * freeze_bdev -- lock a filesystem and force it into a consistent state
226 * @bdev: blockdevice to lock
228 * If a superblock is found on this device, we take the s_umount semaphore
229 * on it to make sure nobody unmounts until the snapshot creation is done.
230 * The reference counter (bd_fsfreeze_count) guarantees that only the last
231 * unfreeze process can unfreeze the frozen filesystem actually when multiple
232 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
233 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
234 * actually.
236 struct super_block *freeze_bdev(struct block_device *bdev)
238 struct super_block *sb;
239 int error = 0;
241 mutex_lock(&bdev->bd_fsfreeze_mutex);
242 if (++bdev->bd_fsfreeze_count > 1) {
244 * We don't even need to grab a reference - the first call
245 * to freeze_bdev grab an active reference and only the last
246 * thaw_bdev drops it.
248 sb = get_super(bdev);
249 if (sb)
250 drop_super(sb);
251 mutex_unlock(&bdev->bd_fsfreeze_mutex);
252 return sb;
255 sb = get_active_super(bdev);
256 if (!sb)
257 goto out;
258 if (sb->s_op->freeze_super)
259 error = sb->s_op->freeze_super(sb);
260 else
261 error = freeze_super(sb);
262 if (error) {
263 deactivate_super(sb);
264 bdev->bd_fsfreeze_count--;
265 mutex_unlock(&bdev->bd_fsfreeze_mutex);
266 return ERR_PTR(error);
268 deactivate_super(sb);
269 out:
270 sync_blockdev(bdev);
271 mutex_unlock(&bdev->bd_fsfreeze_mutex);
272 return sb; /* thaw_bdev releases s->s_umount */
274 EXPORT_SYMBOL(freeze_bdev);
277 * thaw_bdev -- unlock filesystem
278 * @bdev: blockdevice to unlock
279 * @sb: associated superblock
281 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
283 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
285 int error = -EINVAL;
287 mutex_lock(&bdev->bd_fsfreeze_mutex);
288 if (!bdev->bd_fsfreeze_count)
289 goto out;
291 error = 0;
292 if (--bdev->bd_fsfreeze_count > 0)
293 goto out;
295 if (!sb)
296 goto out;
298 if (sb->s_op->thaw_super)
299 error = sb->s_op->thaw_super(sb);
300 else
301 error = thaw_super(sb);
302 if (error)
303 bdev->bd_fsfreeze_count++;
304 out:
305 mutex_unlock(&bdev->bd_fsfreeze_mutex);
306 return error;
308 EXPORT_SYMBOL(thaw_bdev);
310 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
312 return block_write_full_page(page, blkdev_get_block, wbc);
315 static int blkdev_readpage(struct file * file, struct page * page)
317 return block_read_full_page(page, blkdev_get_block);
320 static int blkdev_readpages(struct file *file, struct address_space *mapping,
321 struct list_head *pages, unsigned nr_pages)
323 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
326 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
327 loff_t pos, unsigned len, unsigned flags,
328 struct page **pagep, void **fsdata)
330 return block_write_begin(mapping, pos, len, flags, pagep,
331 blkdev_get_block);
334 static int blkdev_write_end(struct file *file, struct address_space *mapping,
335 loff_t pos, unsigned len, unsigned copied,
336 struct page *page, void *fsdata)
338 int ret;
339 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
341 unlock_page(page);
342 put_page(page);
344 return ret;
348 * private llseek:
349 * for a block special file file_inode(file)->i_size is zero
350 * so we compute the size by hand (just as in block_read/write above)
352 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
354 struct inode *bd_inode = bdev_file_inode(file);
355 loff_t retval;
357 inode_lock(bd_inode);
358 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
359 inode_unlock(bd_inode);
360 return retval;
363 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
365 struct inode *bd_inode = bdev_file_inode(filp);
366 struct block_device *bdev = I_BDEV(bd_inode);
367 int error;
369 error = filemap_write_and_wait_range(filp->f_mapping, start, end);
370 if (error)
371 return error;
374 * There is no need to serialise calls to blkdev_issue_flush with
375 * i_mutex and doing so causes performance issues with concurrent
376 * O_SYNC writers to a block device.
378 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
379 if (error == -EOPNOTSUPP)
380 error = 0;
382 return error;
384 EXPORT_SYMBOL(blkdev_fsync);
387 * bdev_read_page() - Start reading a page from a block device
388 * @bdev: The device to read the page from
389 * @sector: The offset on the device to read the page to (need not be aligned)
390 * @page: The page to read
392 * On entry, the page should be locked. It will be unlocked when the page
393 * has been read. If the block driver implements rw_page synchronously,
394 * that will be true on exit from this function, but it need not be.
396 * Errors returned by this function are usually "soft", eg out of memory, or
397 * queue full; callers should try a different route to read this page rather
398 * than propagate an error back up the stack.
400 * Return: negative errno if an error occurs, 0 if submission was successful.
402 int bdev_read_page(struct block_device *bdev, sector_t sector,
403 struct page *page)
405 const struct block_device_operations *ops = bdev->bd_disk->fops;
406 int result = -EOPNOTSUPP;
408 if (!ops->rw_page || bdev_get_integrity(bdev))
409 return result;
411 result = blk_queue_enter(bdev->bd_queue, false);
412 if (result)
413 return result;
414 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, false);
415 blk_queue_exit(bdev->bd_queue);
416 return result;
418 EXPORT_SYMBOL_GPL(bdev_read_page);
421 * bdev_write_page() - Start writing a page to a block device
422 * @bdev: The device to write the page to
423 * @sector: The offset on the device to write the page to (need not be aligned)
424 * @page: The page to write
425 * @wbc: The writeback_control for the write
427 * On entry, the page should be locked and not currently under writeback.
428 * On exit, if the write started successfully, the page will be unlocked and
429 * under writeback. If the write failed already (eg the driver failed to
430 * queue the page to the device), the page will still be locked. If the
431 * caller is a ->writepage implementation, it will need to unlock the page.
433 * Errors returned by this function are usually "soft", eg out of memory, or
434 * queue full; callers should try a different route to write this page rather
435 * than propagate an error back up the stack.
437 * Return: negative errno if an error occurs, 0 if submission was successful.
439 int bdev_write_page(struct block_device *bdev, sector_t sector,
440 struct page *page, struct writeback_control *wbc)
442 int result;
443 const struct block_device_operations *ops = bdev->bd_disk->fops;
445 if (!ops->rw_page || bdev_get_integrity(bdev))
446 return -EOPNOTSUPP;
447 result = blk_queue_enter(bdev->bd_queue, false);
448 if (result)
449 return result;
451 set_page_writeback(page);
452 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page, true);
453 if (result)
454 end_page_writeback(page);
455 else
456 unlock_page(page);
457 blk_queue_exit(bdev->bd_queue);
458 return result;
460 EXPORT_SYMBOL_GPL(bdev_write_page);
463 * bdev_direct_access() - Get the address for directly-accessibly memory
464 * @bdev: The device containing the memory
465 * @dax: control and output parameters for ->direct_access
467 * If a block device is made up of directly addressable memory, this function
468 * will tell the caller the PFN and the address of the memory. The address
469 * may be directly dereferenced within the kernel without the need to call
470 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
471 * page tables.
473 * Return: negative errno if an error occurs, otherwise the number of bytes
474 * accessible at this address.
476 long bdev_direct_access(struct block_device *bdev, struct blk_dax_ctl *dax)
478 sector_t sector = dax->sector;
479 long avail, size = dax->size;
480 const struct block_device_operations *ops = bdev->bd_disk->fops;
483 * The device driver is allowed to sleep, in order to make the
484 * memory directly accessible.
486 might_sleep();
488 if (size < 0)
489 return size;
490 if (!blk_queue_dax(bdev_get_queue(bdev)) || !ops->direct_access)
491 return -EOPNOTSUPP;
492 if ((sector + DIV_ROUND_UP(size, 512)) >
493 part_nr_sects_read(bdev->bd_part))
494 return -ERANGE;
495 sector += get_start_sect(bdev);
496 if (sector % (PAGE_SIZE / 512))
497 return -EINVAL;
498 avail = ops->direct_access(bdev, sector, &dax->addr, &dax->pfn, size);
499 if (!avail)
500 return -ERANGE;
501 if (avail > 0 && avail & ~PAGE_MASK)
502 return -ENXIO;
503 return min(avail, size);
505 EXPORT_SYMBOL_GPL(bdev_direct_access);
508 * bdev_dax_supported() - Check if the device supports dax for filesystem
509 * @sb: The superblock of the device
510 * @blocksize: The block size of the device
512 * This is a library function for filesystems to check if the block device
513 * can be mounted with dax option.
515 * Return: negative errno if unsupported, 0 if supported.
517 int bdev_dax_supported(struct super_block *sb, int blocksize)
519 struct blk_dax_ctl dax = {
520 .sector = 0,
521 .size = PAGE_SIZE,
523 int err;
525 if (blocksize != PAGE_SIZE) {
526 vfs_msg(sb, KERN_ERR, "error: unsupported blocksize for dax");
527 return -EINVAL;
530 err = bdev_direct_access(sb->s_bdev, &dax);
531 if (err < 0) {
532 switch (err) {
533 case -EOPNOTSUPP:
534 vfs_msg(sb, KERN_ERR,
535 "error: device does not support dax");
536 break;
537 case -EINVAL:
538 vfs_msg(sb, KERN_ERR,
539 "error: unaligned partition for dax");
540 break;
541 default:
542 vfs_msg(sb, KERN_ERR,
543 "error: dax access failed (%d)", err);
545 return err;
548 return 0;
550 EXPORT_SYMBOL_GPL(bdev_dax_supported);
553 * bdev_dax_capable() - Return if the raw device is capable for dax
554 * @bdev: The device for raw block device access
556 bool bdev_dax_capable(struct block_device *bdev)
558 struct blk_dax_ctl dax = {
559 .size = PAGE_SIZE,
562 if (!IS_ENABLED(CONFIG_FS_DAX))
563 return false;
565 dax.sector = 0;
566 if (bdev_direct_access(bdev, &dax) < 0)
567 return false;
569 dax.sector = bdev->bd_part->nr_sects - (PAGE_SIZE / 512);
570 if (bdev_direct_access(bdev, &dax) < 0)
571 return false;
573 return true;
577 * pseudo-fs
580 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
581 static struct kmem_cache * bdev_cachep __read_mostly;
583 static struct inode *bdev_alloc_inode(struct super_block *sb)
585 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
586 if (!ei)
587 return NULL;
588 return &ei->vfs_inode;
591 static void bdev_i_callback(struct rcu_head *head)
593 struct inode *inode = container_of(head, struct inode, i_rcu);
594 struct bdev_inode *bdi = BDEV_I(inode);
596 kmem_cache_free(bdev_cachep, bdi);
599 static void bdev_destroy_inode(struct inode *inode)
601 call_rcu(&inode->i_rcu, bdev_i_callback);
604 static void init_once(void *foo)
606 struct bdev_inode *ei = (struct bdev_inode *) foo;
607 struct block_device *bdev = &ei->bdev;
609 memset(bdev, 0, sizeof(*bdev));
610 mutex_init(&bdev->bd_mutex);
611 INIT_LIST_HEAD(&bdev->bd_list);
612 #ifdef CONFIG_SYSFS
613 INIT_LIST_HEAD(&bdev->bd_holder_disks);
614 #endif
615 inode_init_once(&ei->vfs_inode);
616 /* Initialize mutex for freeze. */
617 mutex_init(&bdev->bd_fsfreeze_mutex);
620 static void bdev_evict_inode(struct inode *inode)
622 struct block_device *bdev = &BDEV_I(inode)->bdev;
623 truncate_inode_pages_final(&inode->i_data);
624 invalidate_inode_buffers(inode); /* is it needed here? */
625 clear_inode(inode);
626 spin_lock(&bdev_lock);
627 list_del_init(&bdev->bd_list);
628 spin_unlock(&bdev_lock);
631 static const struct super_operations bdev_sops = {
632 .statfs = simple_statfs,
633 .alloc_inode = bdev_alloc_inode,
634 .destroy_inode = bdev_destroy_inode,
635 .drop_inode = generic_delete_inode,
636 .evict_inode = bdev_evict_inode,
639 static struct dentry *bd_mount(struct file_system_type *fs_type,
640 int flags, const char *dev_name, void *data)
642 struct dentry *dent;
643 dent = mount_pseudo(fs_type, "bdev:", &bdev_sops, NULL, BDEVFS_MAGIC);
644 if (!IS_ERR(dent))
645 dent->d_sb->s_iflags |= SB_I_CGROUPWB;
646 return dent;
649 static struct file_system_type bd_type = {
650 .name = "bdev",
651 .mount = bd_mount,
652 .kill_sb = kill_anon_super,
655 struct super_block *blockdev_superblock __read_mostly;
656 EXPORT_SYMBOL_GPL(blockdev_superblock);
658 void __init bdev_cache_init(void)
660 int err;
661 static struct vfsmount *bd_mnt;
663 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
664 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
665 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
666 init_once);
667 err = register_filesystem(&bd_type);
668 if (err)
669 panic("Cannot register bdev pseudo-fs");
670 bd_mnt = kern_mount(&bd_type);
671 if (IS_ERR(bd_mnt))
672 panic("Cannot create bdev pseudo-fs");
673 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
677 * Most likely _very_ bad one - but then it's hardly critical for small
678 * /dev and can be fixed when somebody will need really large one.
679 * Keep in mind that it will be fed through icache hash function too.
681 static inline unsigned long hash(dev_t dev)
683 return MAJOR(dev)+MINOR(dev);
686 static int bdev_test(struct inode *inode, void *data)
688 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
691 static int bdev_set(struct inode *inode, void *data)
693 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
694 return 0;
697 static LIST_HEAD(all_bdevs);
699 struct block_device *bdget(dev_t dev)
701 struct block_device *bdev;
702 struct inode *inode;
704 inode = iget5_locked(blockdev_superblock, hash(dev),
705 bdev_test, bdev_set, &dev);
707 if (!inode)
708 return NULL;
710 bdev = &BDEV_I(inode)->bdev;
712 if (inode->i_state & I_NEW) {
713 bdev->bd_contains = NULL;
714 bdev->bd_super = NULL;
715 bdev->bd_inode = inode;
716 bdev->bd_block_size = i_blocksize(inode);
717 bdev->bd_part_count = 0;
718 bdev->bd_invalidated = 0;
719 inode->i_mode = S_IFBLK;
720 inode->i_rdev = dev;
721 inode->i_bdev = bdev;
722 inode->i_data.a_ops = &def_blk_aops;
723 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
724 spin_lock(&bdev_lock);
725 list_add(&bdev->bd_list, &all_bdevs);
726 spin_unlock(&bdev_lock);
727 unlock_new_inode(inode);
729 return bdev;
732 EXPORT_SYMBOL(bdget);
735 * bdgrab -- Grab a reference to an already referenced block device
736 * @bdev: Block device to grab a reference to.
738 struct block_device *bdgrab(struct block_device *bdev)
740 ihold(bdev->bd_inode);
741 return bdev;
743 EXPORT_SYMBOL(bdgrab);
745 long nr_blockdev_pages(void)
747 struct block_device *bdev;
748 long ret = 0;
749 spin_lock(&bdev_lock);
750 list_for_each_entry(bdev, &all_bdevs, bd_list) {
751 ret += bdev->bd_inode->i_mapping->nrpages;
753 spin_unlock(&bdev_lock);
754 return ret;
757 void bdput(struct block_device *bdev)
759 iput(bdev->bd_inode);
762 EXPORT_SYMBOL(bdput);
764 static struct block_device *bd_acquire(struct inode *inode)
766 struct block_device *bdev;
768 spin_lock(&bdev_lock);
769 bdev = inode->i_bdev;
770 if (bdev) {
771 bdgrab(bdev);
772 spin_unlock(&bdev_lock);
773 return bdev;
775 spin_unlock(&bdev_lock);
777 bdev = bdget(inode->i_rdev);
778 if (bdev) {
779 spin_lock(&bdev_lock);
780 if (!inode->i_bdev) {
782 * We take an additional reference to bd_inode,
783 * and it's released in clear_inode() of inode.
784 * So, we can access it via ->i_mapping always
785 * without igrab().
787 bdgrab(bdev);
788 inode->i_bdev = bdev;
789 inode->i_mapping = bdev->bd_inode->i_mapping;
791 spin_unlock(&bdev_lock);
793 return bdev;
796 /* Call when you free inode */
798 void bd_forget(struct inode *inode)
800 struct block_device *bdev = NULL;
802 spin_lock(&bdev_lock);
803 if (!sb_is_blkdev_sb(inode->i_sb))
804 bdev = inode->i_bdev;
805 inode->i_bdev = NULL;
806 inode->i_mapping = &inode->i_data;
807 spin_unlock(&bdev_lock);
809 if (bdev)
810 bdput(bdev);
814 * bd_may_claim - test whether a block device can be claimed
815 * @bdev: block device of interest
816 * @whole: whole block device containing @bdev, may equal @bdev
817 * @holder: holder trying to claim @bdev
819 * Test whether @bdev can be claimed by @holder.
821 * CONTEXT:
822 * spin_lock(&bdev_lock).
824 * RETURNS:
825 * %true if @bdev can be claimed, %false otherwise.
827 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
828 void *holder)
830 if (bdev->bd_holder == holder)
831 return true; /* already a holder */
832 else if (bdev->bd_holder != NULL)
833 return false; /* held by someone else */
834 else if (whole == bdev)
835 return true; /* is a whole device which isn't held */
837 else if (whole->bd_holder == bd_may_claim)
838 return true; /* is a partition of a device that is being partitioned */
839 else if (whole->bd_holder != NULL)
840 return false; /* is a partition of a held device */
841 else
842 return true; /* is a partition of an un-held device */
846 * bd_prepare_to_claim - prepare to claim a block device
847 * @bdev: block device of interest
848 * @whole: the whole device containing @bdev, may equal @bdev
849 * @holder: holder trying to claim @bdev
851 * Prepare to claim @bdev. This function fails if @bdev is already
852 * claimed by another holder and waits if another claiming is in
853 * progress. This function doesn't actually claim. On successful
854 * return, the caller has ownership of bd_claiming and bd_holder[s].
856 * CONTEXT:
857 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
858 * it multiple times.
860 * RETURNS:
861 * 0 if @bdev can be claimed, -EBUSY otherwise.
863 static int bd_prepare_to_claim(struct block_device *bdev,
864 struct block_device *whole, void *holder)
866 retry:
867 /* if someone else claimed, fail */
868 if (!bd_may_claim(bdev, whole, holder))
869 return -EBUSY;
871 /* if claiming is already in progress, wait for it to finish */
872 if (whole->bd_claiming) {
873 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
874 DEFINE_WAIT(wait);
876 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
877 spin_unlock(&bdev_lock);
878 schedule();
879 finish_wait(wq, &wait);
880 spin_lock(&bdev_lock);
881 goto retry;
884 /* yay, all mine */
885 return 0;
889 * bd_start_claiming - start claiming a block device
890 * @bdev: block device of interest
891 * @holder: holder trying to claim @bdev
893 * @bdev is about to be opened exclusively. Check @bdev can be opened
894 * exclusively and mark that an exclusive open is in progress. Each
895 * successful call to this function must be matched with a call to
896 * either bd_finish_claiming() or bd_abort_claiming() (which do not
897 * fail).
899 * This function is used to gain exclusive access to the block device
900 * without actually causing other exclusive open attempts to fail. It
901 * should be used when the open sequence itself requires exclusive
902 * access but may subsequently fail.
904 * CONTEXT:
905 * Might sleep.
907 * RETURNS:
908 * Pointer to the block device containing @bdev on success, ERR_PTR()
909 * value on failure.
911 static struct block_device *bd_start_claiming(struct block_device *bdev,
912 void *holder)
914 struct gendisk *disk;
915 struct block_device *whole;
916 int partno, err;
918 might_sleep();
921 * @bdev might not have been initialized properly yet, look up
922 * and grab the outer block device the hard way.
924 disk = get_gendisk(bdev->bd_dev, &partno);
925 if (!disk)
926 return ERR_PTR(-ENXIO);
929 * Normally, @bdev should equal what's returned from bdget_disk()
930 * if partno is 0; however, some drivers (floppy) use multiple
931 * bdev's for the same physical device and @bdev may be one of the
932 * aliases. Keep @bdev if partno is 0. This means claimer
933 * tracking is broken for those devices but it has always been that
934 * way.
936 if (partno)
937 whole = bdget_disk(disk, 0);
938 else
939 whole = bdgrab(bdev);
941 module_put(disk->fops->owner);
942 put_disk(disk);
943 if (!whole)
944 return ERR_PTR(-ENOMEM);
946 /* prepare to claim, if successful, mark claiming in progress */
947 spin_lock(&bdev_lock);
949 err = bd_prepare_to_claim(bdev, whole, holder);
950 if (err == 0) {
951 whole->bd_claiming = holder;
952 spin_unlock(&bdev_lock);
953 return whole;
954 } else {
955 spin_unlock(&bdev_lock);
956 bdput(whole);
957 return ERR_PTR(err);
961 #ifdef CONFIG_SYSFS
962 struct bd_holder_disk {
963 struct list_head list;
964 struct gendisk *disk;
965 int refcnt;
968 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
969 struct gendisk *disk)
971 struct bd_holder_disk *holder;
973 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
974 if (holder->disk == disk)
975 return holder;
976 return NULL;
979 static int add_symlink(struct kobject *from, struct kobject *to)
981 return sysfs_create_link(from, to, kobject_name(to));
984 static void del_symlink(struct kobject *from, struct kobject *to)
986 sysfs_remove_link(from, kobject_name(to));
990 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
991 * @bdev: the claimed slave bdev
992 * @disk: the holding disk
994 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
996 * This functions creates the following sysfs symlinks.
998 * - from "slaves" directory of the holder @disk to the claimed @bdev
999 * - from "holders" directory of the @bdev to the holder @disk
1001 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1002 * passed to bd_link_disk_holder(), then:
1004 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1005 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1007 * The caller must have claimed @bdev before calling this function and
1008 * ensure that both @bdev and @disk are valid during the creation and
1009 * lifetime of these symlinks.
1011 * CONTEXT:
1012 * Might sleep.
1014 * RETURNS:
1015 * 0 on success, -errno on failure.
1017 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1019 struct bd_holder_disk *holder;
1020 int ret = 0;
1022 mutex_lock(&bdev->bd_mutex);
1024 WARN_ON_ONCE(!bdev->bd_holder);
1026 /* FIXME: remove the following once add_disk() handles errors */
1027 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1028 goto out_unlock;
1030 holder = bd_find_holder_disk(bdev, disk);
1031 if (holder) {
1032 holder->refcnt++;
1033 goto out_unlock;
1036 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1037 if (!holder) {
1038 ret = -ENOMEM;
1039 goto out_unlock;
1042 INIT_LIST_HEAD(&holder->list);
1043 holder->disk = disk;
1044 holder->refcnt = 1;
1046 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1047 if (ret)
1048 goto out_free;
1050 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1051 if (ret)
1052 goto out_del;
1054 * bdev could be deleted beneath us which would implicitly destroy
1055 * the holder directory. Hold on to it.
1057 kobject_get(bdev->bd_part->holder_dir);
1059 list_add(&holder->list, &bdev->bd_holder_disks);
1060 goto out_unlock;
1062 out_del:
1063 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1064 out_free:
1065 kfree(holder);
1066 out_unlock:
1067 mutex_unlock(&bdev->bd_mutex);
1068 return ret;
1070 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1073 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1074 * @bdev: the calimed slave bdev
1075 * @disk: the holding disk
1077 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1079 * CONTEXT:
1080 * Might sleep.
1082 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1084 struct bd_holder_disk *holder;
1086 mutex_lock(&bdev->bd_mutex);
1088 holder = bd_find_holder_disk(bdev, disk);
1090 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1091 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1092 del_symlink(bdev->bd_part->holder_dir,
1093 &disk_to_dev(disk)->kobj);
1094 kobject_put(bdev->bd_part->holder_dir);
1095 list_del_init(&holder->list);
1096 kfree(holder);
1099 mutex_unlock(&bdev->bd_mutex);
1101 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1102 #endif
1105 * flush_disk - invalidates all buffer-cache entries on a disk
1107 * @bdev: struct block device to be flushed
1108 * @kill_dirty: flag to guide handling of dirty inodes
1110 * Invalidates all buffer-cache entries on a disk. It should be called
1111 * when a disk has been changed -- either by a media change or online
1112 * resize.
1114 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1116 if (__invalidate_device(bdev, kill_dirty)) {
1117 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1118 "resized disk %s\n",
1119 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1122 if (!bdev->bd_disk)
1123 return;
1124 if (disk_part_scan_enabled(bdev->bd_disk))
1125 bdev->bd_invalidated = 1;
1129 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1130 * @disk: struct gendisk to check
1131 * @bdev: struct bdev to adjust.
1133 * This routine checks to see if the bdev size does not match the disk size
1134 * and adjusts it if it differs.
1136 void check_disk_size_change(struct gendisk *disk, struct block_device *bdev)
1138 loff_t disk_size, bdev_size;
1140 disk_size = (loff_t)get_capacity(disk) << 9;
1141 bdev_size = i_size_read(bdev->bd_inode);
1142 if (disk_size != bdev_size) {
1143 printk(KERN_INFO
1144 "%s: detected capacity change from %lld to %lld\n",
1145 disk->disk_name, bdev_size, disk_size);
1146 i_size_write(bdev->bd_inode, disk_size);
1147 flush_disk(bdev, false);
1150 EXPORT_SYMBOL(check_disk_size_change);
1153 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1154 * @disk: struct gendisk to be revalidated
1156 * This routine is a wrapper for lower-level driver's revalidate_disk
1157 * call-backs. It is used to do common pre and post operations needed
1158 * for all revalidate_disk operations.
1160 int revalidate_disk(struct gendisk *disk)
1162 struct block_device *bdev;
1163 int ret = 0;
1165 if (disk->fops->revalidate_disk)
1166 ret = disk->fops->revalidate_disk(disk);
1167 bdev = bdget_disk(disk, 0);
1168 if (!bdev)
1169 return ret;
1171 mutex_lock(&bdev->bd_mutex);
1172 check_disk_size_change(disk, bdev);
1173 bdev->bd_invalidated = 0;
1174 mutex_unlock(&bdev->bd_mutex);
1175 bdput(bdev);
1176 return ret;
1178 EXPORT_SYMBOL(revalidate_disk);
1181 * This routine checks whether a removable media has been changed,
1182 * and invalidates all buffer-cache-entries in that case. This
1183 * is a relatively slow routine, so we have to try to minimize using
1184 * it. Thus it is called only upon a 'mount' or 'open'. This
1185 * is the best way of combining speed and utility, I think.
1186 * People changing diskettes in the middle of an operation deserve
1187 * to lose :-)
1189 int check_disk_change(struct block_device *bdev)
1191 struct gendisk *disk = bdev->bd_disk;
1192 const struct block_device_operations *bdops = disk->fops;
1193 unsigned int events;
1195 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1196 DISK_EVENT_EJECT_REQUEST);
1197 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1198 return 0;
1200 flush_disk(bdev, true);
1201 if (bdops->revalidate_disk)
1202 bdops->revalidate_disk(bdev->bd_disk);
1203 return 1;
1206 EXPORT_SYMBOL(check_disk_change);
1208 void bd_set_size(struct block_device *bdev, loff_t size)
1210 unsigned bsize = bdev_logical_block_size(bdev);
1212 inode_lock(bdev->bd_inode);
1213 i_size_write(bdev->bd_inode, size);
1214 inode_unlock(bdev->bd_inode);
1215 while (bsize < PAGE_SIZE) {
1216 if (size & bsize)
1217 break;
1218 bsize <<= 1;
1220 bdev->bd_block_size = bsize;
1221 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
1223 EXPORT_SYMBOL(bd_set_size);
1225 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1228 * bd_mutex locking:
1230 * mutex_lock(part->bd_mutex)
1231 * mutex_lock_nested(whole->bd_mutex, 1)
1234 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1236 struct gendisk *disk;
1237 struct module *owner;
1238 int ret;
1239 int partno;
1240 int perm = 0;
1242 if (mode & FMODE_READ)
1243 perm |= MAY_READ;
1244 if (mode & FMODE_WRITE)
1245 perm |= MAY_WRITE;
1247 * hooks: /n/, see "layering violations".
1249 if (!for_part) {
1250 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1251 if (ret != 0) {
1252 bdput(bdev);
1253 return ret;
1257 restart:
1259 ret = -ENXIO;
1260 disk = get_gendisk(bdev->bd_dev, &partno);
1261 if (!disk)
1262 goto out;
1263 owner = disk->fops->owner;
1265 disk_block_events(disk);
1266 mutex_lock_nested(&bdev->bd_mutex, for_part);
1267 if (!bdev->bd_openers) {
1268 bdev->bd_disk = disk;
1269 bdev->bd_queue = disk->queue;
1270 bdev->bd_contains = bdev;
1272 if (!partno) {
1273 ret = -ENXIO;
1274 bdev->bd_part = disk_get_part(disk, partno);
1275 if (!bdev->bd_part)
1276 goto out_clear;
1278 ret = 0;
1279 if (disk->fops->open) {
1280 ret = disk->fops->open(bdev, mode);
1281 if (ret == -ERESTARTSYS) {
1282 /* Lost a race with 'disk' being
1283 * deleted, try again.
1284 * See md.c
1286 disk_put_part(bdev->bd_part);
1287 bdev->bd_part = NULL;
1288 bdev->bd_disk = NULL;
1289 bdev->bd_queue = NULL;
1290 mutex_unlock(&bdev->bd_mutex);
1291 disk_unblock_events(disk);
1292 put_disk(disk);
1293 module_put(owner);
1294 goto restart;
1298 if (!ret)
1299 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1302 * If the device is invalidated, rescan partition
1303 * if open succeeded or failed with -ENOMEDIUM.
1304 * The latter is necessary to prevent ghost
1305 * partitions on a removed medium.
1307 if (bdev->bd_invalidated) {
1308 if (!ret)
1309 rescan_partitions(disk, bdev);
1310 else if (ret == -ENOMEDIUM)
1311 invalidate_partitions(disk, bdev);
1314 if (ret)
1315 goto out_clear;
1316 } else {
1317 struct block_device *whole;
1318 whole = bdget_disk(disk, 0);
1319 ret = -ENOMEM;
1320 if (!whole)
1321 goto out_clear;
1322 BUG_ON(for_part);
1323 ret = __blkdev_get(whole, mode, 1);
1324 if (ret)
1325 goto out_clear;
1326 bdev->bd_contains = whole;
1327 bdev->bd_part = disk_get_part(disk, partno);
1328 if (!(disk->flags & GENHD_FL_UP) ||
1329 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1330 ret = -ENXIO;
1331 goto out_clear;
1333 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1335 } else {
1336 if (bdev->bd_contains == bdev) {
1337 ret = 0;
1338 if (bdev->bd_disk->fops->open)
1339 ret = bdev->bd_disk->fops->open(bdev, mode);
1340 /* the same as first opener case, read comment there */
1341 if (bdev->bd_invalidated) {
1342 if (!ret)
1343 rescan_partitions(bdev->bd_disk, bdev);
1344 else if (ret == -ENOMEDIUM)
1345 invalidate_partitions(bdev->bd_disk, bdev);
1347 if (ret)
1348 goto out_unlock_bdev;
1350 /* only one opener holds refs to the module and disk */
1351 put_disk(disk);
1352 module_put(owner);
1354 bdev->bd_openers++;
1355 if (for_part)
1356 bdev->bd_part_count++;
1357 mutex_unlock(&bdev->bd_mutex);
1358 disk_unblock_events(disk);
1359 return 0;
1361 out_clear:
1362 disk_put_part(bdev->bd_part);
1363 bdev->bd_disk = NULL;
1364 bdev->bd_part = NULL;
1365 bdev->bd_queue = NULL;
1366 if (bdev != bdev->bd_contains)
1367 __blkdev_put(bdev->bd_contains, mode, 1);
1368 bdev->bd_contains = NULL;
1369 out_unlock_bdev:
1370 mutex_unlock(&bdev->bd_mutex);
1371 disk_unblock_events(disk);
1372 put_disk(disk);
1373 module_put(owner);
1374 out:
1375 bdput(bdev);
1377 return ret;
1381 * blkdev_get - open a block device
1382 * @bdev: block_device to open
1383 * @mode: FMODE_* mask
1384 * @holder: exclusive holder identifier
1386 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1387 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1388 * @holder is invalid. Exclusive opens may nest for the same @holder.
1390 * On success, the reference count of @bdev is unchanged. On failure,
1391 * @bdev is put.
1393 * CONTEXT:
1394 * Might sleep.
1396 * RETURNS:
1397 * 0 on success, -errno on failure.
1399 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1401 struct block_device *whole = NULL;
1402 int res;
1404 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1406 if ((mode & FMODE_EXCL) && holder) {
1407 whole = bd_start_claiming(bdev, holder);
1408 if (IS_ERR(whole)) {
1409 bdput(bdev);
1410 return PTR_ERR(whole);
1414 res = __blkdev_get(bdev, mode, 0);
1416 if (whole) {
1417 struct gendisk *disk = whole->bd_disk;
1419 /* finish claiming */
1420 mutex_lock(&bdev->bd_mutex);
1421 spin_lock(&bdev_lock);
1423 if (!res) {
1424 BUG_ON(!bd_may_claim(bdev, whole, holder));
1426 * Note that for a whole device bd_holders
1427 * will be incremented twice, and bd_holder
1428 * will be set to bd_may_claim before being
1429 * set to holder
1431 whole->bd_holders++;
1432 whole->bd_holder = bd_may_claim;
1433 bdev->bd_holders++;
1434 bdev->bd_holder = holder;
1437 /* tell others that we're done */
1438 BUG_ON(whole->bd_claiming != holder);
1439 whole->bd_claiming = NULL;
1440 wake_up_bit(&whole->bd_claiming, 0);
1442 spin_unlock(&bdev_lock);
1445 * Block event polling for write claims if requested. Any
1446 * write holder makes the write_holder state stick until
1447 * all are released. This is good enough and tracking
1448 * individual writeable reference is too fragile given the
1449 * way @mode is used in blkdev_get/put().
1451 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1452 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1453 bdev->bd_write_holder = true;
1454 disk_block_events(disk);
1457 mutex_unlock(&bdev->bd_mutex);
1458 bdput(whole);
1461 return res;
1463 EXPORT_SYMBOL(blkdev_get);
1466 * blkdev_get_by_path - open a block device by name
1467 * @path: path to the block device to open
1468 * @mode: FMODE_* mask
1469 * @holder: exclusive holder identifier
1471 * Open the blockdevice described by the device file at @path. @mode
1472 * and @holder are identical to blkdev_get().
1474 * On success, the returned block_device has reference count of one.
1476 * CONTEXT:
1477 * Might sleep.
1479 * RETURNS:
1480 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1482 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1483 void *holder)
1485 struct block_device *bdev;
1486 int err;
1488 bdev = lookup_bdev(path);
1489 if (IS_ERR(bdev))
1490 return bdev;
1492 err = blkdev_get(bdev, mode, holder);
1493 if (err)
1494 return ERR_PTR(err);
1496 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1497 blkdev_put(bdev, mode);
1498 return ERR_PTR(-EACCES);
1501 return bdev;
1503 EXPORT_SYMBOL(blkdev_get_by_path);
1506 * blkdev_get_by_dev - open a block device by device number
1507 * @dev: device number of block device to open
1508 * @mode: FMODE_* mask
1509 * @holder: exclusive holder identifier
1511 * Open the blockdevice described by device number @dev. @mode and
1512 * @holder are identical to blkdev_get().
1514 * Use it ONLY if you really do not have anything better - i.e. when
1515 * you are behind a truly sucky interface and all you are given is a
1516 * device number. _Never_ to be used for internal purposes. If you
1517 * ever need it - reconsider your API.
1519 * On success, the returned block_device has reference count of one.
1521 * CONTEXT:
1522 * Might sleep.
1524 * RETURNS:
1525 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1527 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1529 struct block_device *bdev;
1530 int err;
1532 bdev = bdget(dev);
1533 if (!bdev)
1534 return ERR_PTR(-ENOMEM);
1536 err = blkdev_get(bdev, mode, holder);
1537 if (err)
1538 return ERR_PTR(err);
1540 return bdev;
1542 EXPORT_SYMBOL(blkdev_get_by_dev);
1544 static int blkdev_open(struct inode * inode, struct file * filp)
1546 struct block_device *bdev;
1549 * Preserve backwards compatibility and allow large file access
1550 * even if userspace doesn't ask for it explicitly. Some mkfs
1551 * binary needs it. We might want to drop this workaround
1552 * during an unstable branch.
1554 filp->f_flags |= O_LARGEFILE;
1556 if (filp->f_flags & O_NDELAY)
1557 filp->f_mode |= FMODE_NDELAY;
1558 if (filp->f_flags & O_EXCL)
1559 filp->f_mode |= FMODE_EXCL;
1560 if ((filp->f_flags & O_ACCMODE) == 3)
1561 filp->f_mode |= FMODE_WRITE_IOCTL;
1563 bdev = bd_acquire(inode);
1564 if (bdev == NULL)
1565 return -ENOMEM;
1567 filp->f_mapping = bdev->bd_inode->i_mapping;
1569 return blkdev_get(bdev, filp->f_mode, filp);
1572 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1574 struct gendisk *disk = bdev->bd_disk;
1575 struct block_device *victim = NULL;
1577 mutex_lock_nested(&bdev->bd_mutex, for_part);
1578 if (for_part)
1579 bdev->bd_part_count--;
1581 if (!--bdev->bd_openers) {
1582 WARN_ON_ONCE(bdev->bd_holders);
1583 sync_blockdev(bdev);
1584 kill_bdev(bdev);
1586 bdev_write_inode(bdev);
1588 * Detaching bdev inode from its wb in __destroy_inode()
1589 * is too late: the queue which embeds its bdi (along with
1590 * root wb) can be gone as soon as we put_disk() below.
1592 inode_detach_wb(bdev->bd_inode);
1594 if (bdev->bd_contains == bdev) {
1595 if (disk->fops->release)
1596 disk->fops->release(disk, mode);
1598 if (!bdev->bd_openers) {
1599 struct module *owner = disk->fops->owner;
1601 disk_put_part(bdev->bd_part);
1602 bdev->bd_part = NULL;
1603 bdev->bd_disk = NULL;
1604 if (bdev != bdev->bd_contains)
1605 victim = bdev->bd_contains;
1606 bdev->bd_contains = NULL;
1608 put_disk(disk);
1609 module_put(owner);
1611 mutex_unlock(&bdev->bd_mutex);
1612 bdput(bdev);
1613 if (victim)
1614 __blkdev_put(victim, mode, 1);
1617 void blkdev_put(struct block_device *bdev, fmode_t mode)
1619 mutex_lock(&bdev->bd_mutex);
1621 if (mode & FMODE_EXCL) {
1622 bool bdev_free;
1625 * Release a claim on the device. The holder fields
1626 * are protected with bdev_lock. bd_mutex is to
1627 * synchronize disk_holder unlinking.
1629 spin_lock(&bdev_lock);
1631 WARN_ON_ONCE(--bdev->bd_holders < 0);
1632 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1634 /* bd_contains might point to self, check in a separate step */
1635 if ((bdev_free = !bdev->bd_holders))
1636 bdev->bd_holder = NULL;
1637 if (!bdev->bd_contains->bd_holders)
1638 bdev->bd_contains->bd_holder = NULL;
1640 spin_unlock(&bdev_lock);
1643 * If this was the last claim, remove holder link and
1644 * unblock evpoll if it was a write holder.
1646 if (bdev_free && bdev->bd_write_holder) {
1647 disk_unblock_events(bdev->bd_disk);
1648 bdev->bd_write_holder = false;
1653 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1654 * event. This is to ensure detection of media removal commanded
1655 * from userland - e.g. eject(1).
1657 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1659 mutex_unlock(&bdev->bd_mutex);
1661 __blkdev_put(bdev, mode, 0);
1663 EXPORT_SYMBOL(blkdev_put);
1665 static int blkdev_close(struct inode * inode, struct file * filp)
1667 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1668 blkdev_put(bdev, filp->f_mode);
1669 return 0;
1672 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1674 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1675 fmode_t mode = file->f_mode;
1678 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1679 * to updated it before every ioctl.
1681 if (file->f_flags & O_NDELAY)
1682 mode |= FMODE_NDELAY;
1683 else
1684 mode &= ~FMODE_NDELAY;
1686 return blkdev_ioctl(bdev, mode, cmd, arg);
1690 * Write data to the block device. Only intended for the block device itself
1691 * and the raw driver which basically is a fake block device.
1693 * Does not take i_mutex for the write and thus is not for general purpose
1694 * use.
1696 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1698 struct file *file = iocb->ki_filp;
1699 struct inode *bd_inode = bdev_file_inode(file);
1700 loff_t size = i_size_read(bd_inode);
1701 struct blk_plug plug;
1702 ssize_t ret;
1704 if (bdev_read_only(I_BDEV(bd_inode)))
1705 return -EPERM;
1707 if (!iov_iter_count(from))
1708 return 0;
1710 if (iocb->ki_pos >= size)
1711 return -ENOSPC;
1713 iov_iter_truncate(from, size - iocb->ki_pos);
1715 blk_start_plug(&plug);
1716 ret = __generic_file_write_iter(iocb, from);
1717 if (ret > 0)
1718 ret = generic_write_sync(iocb, ret);
1719 blk_finish_plug(&plug);
1720 return ret;
1722 EXPORT_SYMBOL_GPL(blkdev_write_iter);
1724 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
1726 struct file *file = iocb->ki_filp;
1727 struct inode *bd_inode = bdev_file_inode(file);
1728 loff_t size = i_size_read(bd_inode);
1729 loff_t pos = iocb->ki_pos;
1731 if (pos >= size)
1732 return 0;
1734 size -= pos;
1735 iov_iter_truncate(to, size);
1736 return generic_file_read_iter(iocb, to);
1738 EXPORT_SYMBOL_GPL(blkdev_read_iter);
1741 * Try to release a page associated with block device when the system
1742 * is under memory pressure.
1744 static int blkdev_releasepage(struct page *page, gfp_t wait)
1746 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
1748 if (super && super->s_op->bdev_try_to_free_page)
1749 return super->s_op->bdev_try_to_free_page(super, page, wait);
1751 return try_to_free_buffers(page);
1754 static int blkdev_writepages(struct address_space *mapping,
1755 struct writeback_control *wbc)
1757 if (dax_mapping(mapping)) {
1758 struct block_device *bdev = I_BDEV(mapping->host);
1760 return dax_writeback_mapping_range(mapping, bdev, wbc);
1762 return generic_writepages(mapping, wbc);
1765 static const struct address_space_operations def_blk_aops = {
1766 .readpage = blkdev_readpage,
1767 .readpages = blkdev_readpages,
1768 .writepage = blkdev_writepage,
1769 .write_begin = blkdev_write_begin,
1770 .write_end = blkdev_write_end,
1771 .writepages = blkdev_writepages,
1772 .releasepage = blkdev_releasepage,
1773 .direct_IO = blkdev_direct_IO,
1774 .is_dirty_writeback = buffer_check_dirty_writeback,
1777 #define BLKDEV_FALLOC_FL_SUPPORTED \
1778 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
1779 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
1781 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
1782 loff_t len)
1784 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1785 struct request_queue *q = bdev_get_queue(bdev);
1786 struct address_space *mapping;
1787 loff_t end = start + len - 1;
1788 loff_t isize;
1789 int error;
1791 /* Fail if we don't recognize the flags. */
1792 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
1793 return -EOPNOTSUPP;
1795 /* Don't go off the end of the device. */
1796 isize = i_size_read(bdev->bd_inode);
1797 if (start >= isize)
1798 return -EINVAL;
1799 if (end >= isize) {
1800 if (mode & FALLOC_FL_KEEP_SIZE) {
1801 len = isize - start;
1802 end = start + len - 1;
1803 } else
1804 return -EINVAL;
1808 * Don't allow IO that isn't aligned to logical block size.
1810 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
1811 return -EINVAL;
1813 /* Invalidate the page cache, including dirty pages. */
1814 mapping = bdev->bd_inode->i_mapping;
1815 truncate_inode_pages_range(mapping, start, end);
1817 switch (mode) {
1818 case FALLOC_FL_ZERO_RANGE:
1819 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
1820 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
1821 GFP_KERNEL, false);
1822 break;
1823 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
1824 /* Only punch if the device can do zeroing discard. */
1825 if (!blk_queue_discard(q) || !q->limits.discard_zeroes_data)
1826 return -EOPNOTSUPP;
1827 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
1828 GFP_KERNEL, 0);
1829 break;
1830 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
1831 if (!blk_queue_discard(q))
1832 return -EOPNOTSUPP;
1833 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
1834 GFP_KERNEL, 0);
1835 break;
1836 default:
1837 return -EOPNOTSUPP;
1839 if (error)
1840 return error;
1843 * Invalidate again; if someone wandered in and dirtied a page,
1844 * the caller will be given -EBUSY. The third argument is
1845 * inclusive, so the rounding here is safe.
1847 return invalidate_inode_pages2_range(mapping,
1848 start >> PAGE_SHIFT,
1849 end >> PAGE_SHIFT);
1852 const struct file_operations def_blk_fops = {
1853 .open = blkdev_open,
1854 .release = blkdev_close,
1855 .llseek = block_llseek,
1856 .read_iter = blkdev_read_iter,
1857 .write_iter = blkdev_write_iter,
1858 .mmap = generic_file_mmap,
1859 .fsync = blkdev_fsync,
1860 .unlocked_ioctl = block_ioctl,
1861 #ifdef CONFIG_COMPAT
1862 .compat_ioctl = compat_blkdev_ioctl,
1863 #endif
1864 .splice_read = generic_file_splice_read,
1865 .splice_write = iter_file_splice_write,
1866 .fallocate = blkdev_fallocate,
1869 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
1871 int res;
1872 mm_segment_t old_fs = get_fs();
1873 set_fs(KERNEL_DS);
1874 res = blkdev_ioctl(bdev, 0, cmd, arg);
1875 set_fs(old_fs);
1876 return res;
1879 EXPORT_SYMBOL(ioctl_by_bdev);
1882 * lookup_bdev - lookup a struct block_device by name
1883 * @pathname: special file representing the block device
1885 * Get a reference to the blockdevice at @pathname in the current
1886 * namespace if possible and return it. Return ERR_PTR(error)
1887 * otherwise.
1889 struct block_device *lookup_bdev(const char *pathname)
1891 struct block_device *bdev;
1892 struct inode *inode;
1893 struct path path;
1894 int error;
1896 if (!pathname || !*pathname)
1897 return ERR_PTR(-EINVAL);
1899 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
1900 if (error)
1901 return ERR_PTR(error);
1903 inode = d_backing_inode(path.dentry);
1904 error = -ENOTBLK;
1905 if (!S_ISBLK(inode->i_mode))
1906 goto fail;
1907 error = -EACCES;
1908 if (!may_open_dev(&path))
1909 goto fail;
1910 error = -ENOMEM;
1911 bdev = bd_acquire(inode);
1912 if (!bdev)
1913 goto fail;
1914 out:
1915 path_put(&path);
1916 return bdev;
1917 fail:
1918 bdev = ERR_PTR(error);
1919 goto out;
1921 EXPORT_SYMBOL(lookup_bdev);
1923 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
1925 struct super_block *sb = get_super(bdev);
1926 int res = 0;
1928 if (sb) {
1930 * no need to lock the super, get_super holds the
1931 * read mutex so the filesystem cannot go away
1932 * under us (->put_super runs with the write lock
1933 * hold).
1935 shrink_dcache_sb(sb);
1936 res = invalidate_inodes(sb, kill_dirty);
1937 drop_super(sb);
1939 invalidate_bdev(bdev);
1940 return res;
1942 EXPORT_SYMBOL(__invalidate_device);
1944 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
1946 struct inode *inode, *old_inode = NULL;
1948 spin_lock(&blockdev_superblock->s_inode_list_lock);
1949 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
1950 struct address_space *mapping = inode->i_mapping;
1951 struct block_device *bdev;
1953 spin_lock(&inode->i_lock);
1954 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
1955 mapping->nrpages == 0) {
1956 spin_unlock(&inode->i_lock);
1957 continue;
1959 __iget(inode);
1960 spin_unlock(&inode->i_lock);
1961 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1963 * We hold a reference to 'inode' so it couldn't have been
1964 * removed from s_inodes list while we dropped the
1965 * s_inode_list_lock We cannot iput the inode now as we can
1966 * be holding the last reference and we cannot iput it under
1967 * s_inode_list_lock. So we keep the reference and iput it
1968 * later.
1970 iput(old_inode);
1971 old_inode = inode;
1972 bdev = I_BDEV(inode);
1974 mutex_lock(&bdev->bd_mutex);
1975 if (bdev->bd_openers)
1976 func(bdev, arg);
1977 mutex_unlock(&bdev->bd_mutex);
1979 spin_lock(&blockdev_superblock->s_inode_list_lock);
1981 spin_unlock(&blockdev_superblock->s_inode_list_lock);
1982 iput(old_inode);