4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/backing-dev.h>
15 #include <linux/writeback.h>
20 #include <trace/events/f2fs.h>
22 void f2fs_mark_inode_dirty_sync(struct inode
*inode
)
24 if (f2fs_inode_dirtied(inode
))
26 mark_inode_dirty_sync(inode
);
29 void f2fs_set_inode_flags(struct inode
*inode
)
31 unsigned int flags
= F2FS_I(inode
)->i_flags
;
32 unsigned int new_fl
= 0;
34 if (flags
& FS_SYNC_FL
)
36 if (flags
& FS_APPEND_FL
)
38 if (flags
& FS_IMMUTABLE_FL
)
39 new_fl
|= S_IMMUTABLE
;
40 if (flags
& FS_NOATIME_FL
)
42 if (flags
& FS_DIRSYNC_FL
)
44 inode_set_flags(inode
, new_fl
,
45 S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
46 f2fs_mark_inode_dirty_sync(inode
);
49 static void __get_inode_rdev(struct inode
*inode
, struct f2fs_inode
*ri
)
51 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
52 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
55 old_decode_dev(le32_to_cpu(ri
->i_addr
[0]));
58 new_decode_dev(le32_to_cpu(ri
->i_addr
[1]));
62 static bool __written_first_block(struct f2fs_inode
*ri
)
64 block_t addr
= le32_to_cpu(ri
->i_addr
[0]);
66 if (addr
!= NEW_ADDR
&& addr
!= NULL_ADDR
)
71 static void __set_inode_rdev(struct inode
*inode
, struct f2fs_inode
*ri
)
73 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
74 if (old_valid_dev(inode
->i_rdev
)) {
76 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
81 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
87 static void __recover_inline_status(struct inode
*inode
, struct page
*ipage
)
89 void *inline_data
= inline_data_addr(ipage
);
90 __le32
*start
= inline_data
;
91 __le32
*end
= start
+ MAX_INLINE_DATA
/ sizeof(__le32
);
95 f2fs_wait_on_page_writeback(ipage
, NODE
, true);
97 set_inode_flag(inode
, FI_DATA_EXIST
);
98 set_raw_inline(inode
, F2FS_INODE(ipage
));
99 set_page_dirty(ipage
);
106 static int do_read_inode(struct inode
*inode
)
108 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
109 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
110 struct page
*node_page
;
111 struct f2fs_inode
*ri
;
113 /* Check if ino is within scope */
114 if (check_nid_range(sbi
, inode
->i_ino
)) {
115 f2fs_msg(inode
->i_sb
, KERN_ERR
, "bad inode number: %lu",
116 (unsigned long) inode
->i_ino
);
121 node_page
= get_node_page(sbi
, inode
->i_ino
);
122 if (IS_ERR(node_page
))
123 return PTR_ERR(node_page
);
125 ri
= F2FS_INODE(node_page
);
127 inode
->i_mode
= le16_to_cpu(ri
->i_mode
);
128 i_uid_write(inode
, le32_to_cpu(ri
->i_uid
));
129 i_gid_write(inode
, le32_to_cpu(ri
->i_gid
));
130 set_nlink(inode
, le32_to_cpu(ri
->i_links
));
131 inode
->i_size
= le64_to_cpu(ri
->i_size
);
132 inode
->i_blocks
= le64_to_cpu(ri
->i_blocks
);
134 inode
->i_atime
.tv_sec
= le64_to_cpu(ri
->i_atime
);
135 inode
->i_ctime
.tv_sec
= le64_to_cpu(ri
->i_ctime
);
136 inode
->i_mtime
.tv_sec
= le64_to_cpu(ri
->i_mtime
);
137 inode
->i_atime
.tv_nsec
= le32_to_cpu(ri
->i_atime_nsec
);
138 inode
->i_ctime
.tv_nsec
= le32_to_cpu(ri
->i_ctime_nsec
);
139 inode
->i_mtime
.tv_nsec
= le32_to_cpu(ri
->i_mtime_nsec
);
140 inode
->i_generation
= le32_to_cpu(ri
->i_generation
);
142 fi
->i_current_depth
= le32_to_cpu(ri
->i_current_depth
);
143 fi
->i_xattr_nid
= le32_to_cpu(ri
->i_xattr_nid
);
144 fi
->i_flags
= le32_to_cpu(ri
->i_flags
);
146 fi
->i_advise
= ri
->i_advise
;
147 fi
->i_pino
= le32_to_cpu(ri
->i_pino
);
148 fi
->i_dir_level
= ri
->i_dir_level
;
150 if (f2fs_init_extent_tree(inode
, &ri
->i_ext
))
151 set_page_dirty(node_page
);
153 get_inline_info(inode
, ri
);
155 /* check data exist */
156 if (f2fs_has_inline_data(inode
) && !f2fs_exist_data(inode
))
157 __recover_inline_status(inode
, node_page
);
159 /* get rdev by using inline_info */
160 __get_inode_rdev(inode
, ri
);
162 if (__written_first_block(ri
))
163 set_inode_flag(inode
, FI_FIRST_BLOCK_WRITTEN
);
165 if (!need_inode_block_update(sbi
, inode
->i_ino
))
166 fi
->last_disk_size
= inode
->i_size
;
168 f2fs_put_page(node_page
, 1);
170 stat_inc_inline_xattr(inode
);
171 stat_inc_inline_inode(inode
);
172 stat_inc_inline_dir(inode
);
177 struct inode
*f2fs_iget(struct super_block
*sb
, unsigned long ino
)
179 struct f2fs_sb_info
*sbi
= F2FS_SB(sb
);
183 inode
= iget_locked(sb
, ino
);
185 return ERR_PTR(-ENOMEM
);
187 if (!(inode
->i_state
& I_NEW
)) {
188 trace_f2fs_iget(inode
);
191 if (ino
== F2FS_NODE_INO(sbi
) || ino
== F2FS_META_INO(sbi
))
194 ret
= do_read_inode(inode
);
198 if (ino
== F2FS_NODE_INO(sbi
)) {
199 inode
->i_mapping
->a_ops
= &f2fs_node_aops
;
200 mapping_set_gfp_mask(inode
->i_mapping
, GFP_F2FS_ZERO
);
201 } else if (ino
== F2FS_META_INO(sbi
)) {
202 inode
->i_mapping
->a_ops
= &f2fs_meta_aops
;
203 mapping_set_gfp_mask(inode
->i_mapping
, GFP_F2FS_ZERO
);
204 } else if (S_ISREG(inode
->i_mode
)) {
205 inode
->i_op
= &f2fs_file_inode_operations
;
206 inode
->i_fop
= &f2fs_file_operations
;
207 inode
->i_mapping
->a_ops
= &f2fs_dblock_aops
;
208 } else if (S_ISDIR(inode
->i_mode
)) {
209 inode
->i_op
= &f2fs_dir_inode_operations
;
210 inode
->i_fop
= &f2fs_dir_operations
;
211 inode
->i_mapping
->a_ops
= &f2fs_dblock_aops
;
212 mapping_set_gfp_mask(inode
->i_mapping
, GFP_F2FS_HIGH_ZERO
);
213 } else if (S_ISLNK(inode
->i_mode
)) {
214 if (f2fs_encrypted_inode(inode
))
215 inode
->i_op
= &f2fs_encrypted_symlink_inode_operations
;
217 inode
->i_op
= &f2fs_symlink_inode_operations
;
218 inode_nohighmem(inode
);
219 inode
->i_mapping
->a_ops
= &f2fs_dblock_aops
;
220 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
221 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
222 inode
->i_op
= &f2fs_special_inode_operations
;
223 init_special_inode(inode
, inode
->i_mode
, inode
->i_rdev
);
228 unlock_new_inode(inode
);
229 trace_f2fs_iget(inode
);
234 trace_f2fs_iget_exit(inode
, ret
);
238 struct inode
*f2fs_iget_retry(struct super_block
*sb
, unsigned long ino
)
242 inode
= f2fs_iget(sb
, ino
);
244 if (PTR_ERR(inode
) == -ENOMEM
) {
245 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
252 int update_inode(struct inode
*inode
, struct page
*node_page
)
254 struct f2fs_inode
*ri
;
256 f2fs_inode_synced(inode
);
258 f2fs_wait_on_page_writeback(node_page
, NODE
, true);
260 ri
= F2FS_INODE(node_page
);
262 ri
->i_mode
= cpu_to_le16(inode
->i_mode
);
263 ri
->i_advise
= F2FS_I(inode
)->i_advise
;
264 ri
->i_uid
= cpu_to_le32(i_uid_read(inode
));
265 ri
->i_gid
= cpu_to_le32(i_gid_read(inode
));
266 ri
->i_links
= cpu_to_le32(inode
->i_nlink
);
267 ri
->i_size
= cpu_to_le64(i_size_read(inode
));
268 ri
->i_blocks
= cpu_to_le64(inode
->i_blocks
);
270 if (F2FS_I(inode
)->extent_tree
)
271 set_raw_extent(&F2FS_I(inode
)->extent_tree
->largest
,
274 memset(&ri
->i_ext
, 0, sizeof(ri
->i_ext
));
275 set_raw_inline(inode
, ri
);
277 ri
->i_atime
= cpu_to_le64(inode
->i_atime
.tv_sec
);
278 ri
->i_ctime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
279 ri
->i_mtime
= cpu_to_le64(inode
->i_mtime
.tv_sec
);
280 ri
->i_atime_nsec
= cpu_to_le32(inode
->i_atime
.tv_nsec
);
281 ri
->i_ctime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
282 ri
->i_mtime_nsec
= cpu_to_le32(inode
->i_mtime
.tv_nsec
);
283 ri
->i_current_depth
= cpu_to_le32(F2FS_I(inode
)->i_current_depth
);
284 ri
->i_xattr_nid
= cpu_to_le32(F2FS_I(inode
)->i_xattr_nid
);
285 ri
->i_flags
= cpu_to_le32(F2FS_I(inode
)->i_flags
);
286 ri
->i_pino
= cpu_to_le32(F2FS_I(inode
)->i_pino
);
287 ri
->i_generation
= cpu_to_le32(inode
->i_generation
);
288 ri
->i_dir_level
= F2FS_I(inode
)->i_dir_level
;
290 __set_inode_rdev(inode
, ri
);
291 set_cold_node(inode
, node_page
);
294 if (inode
->i_nlink
== 0)
295 clear_inline_node(node_page
);
297 return set_page_dirty(node_page
);
300 int update_inode_page(struct inode
*inode
)
302 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
303 struct page
*node_page
;
306 node_page
= get_node_page(sbi
, inode
->i_ino
);
307 if (IS_ERR(node_page
)) {
308 int err
= PTR_ERR(node_page
);
309 if (err
== -ENOMEM
) {
312 } else if (err
!= -ENOENT
) {
313 f2fs_stop_checkpoint(sbi
, false);
315 f2fs_inode_synced(inode
);
318 ret
= update_inode(inode
, node_page
);
319 f2fs_put_page(node_page
, 1);
323 int f2fs_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
325 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
327 if (inode
->i_ino
== F2FS_NODE_INO(sbi
) ||
328 inode
->i_ino
== F2FS_META_INO(sbi
))
331 if (!is_inode_flag_set(inode
, FI_DIRTY_INODE
))
335 * We need to balance fs here to prevent from producing dirty node pages
336 * during the urgent cleaning time when runing out of free sections.
338 if (update_inode_page(inode
))
339 f2fs_balance_fs(sbi
, true);
344 * Called at the last iput() if i_nlink is zero
346 void f2fs_evict_inode(struct inode
*inode
)
348 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
349 nid_t xnid
= F2FS_I(inode
)->i_xattr_nid
;
352 /* some remained atomic pages should discarded */
353 if (f2fs_is_atomic_file(inode
))
354 drop_inmem_pages(inode
);
356 trace_f2fs_evict_inode(inode
);
357 truncate_inode_pages_final(&inode
->i_data
);
359 if (inode
->i_ino
== F2FS_NODE_INO(sbi
) ||
360 inode
->i_ino
== F2FS_META_INO(sbi
))
363 f2fs_bug_on(sbi
, get_dirty_pages(inode
));
364 remove_dirty_inode(inode
);
366 f2fs_destroy_extent_tree(inode
);
368 if (inode
->i_nlink
|| is_bad_inode(inode
))
371 #ifdef CONFIG_F2FS_FAULT_INJECTION
372 if (time_to_inject(sbi
, FAULT_EVICT_INODE
))
376 sb_start_intwrite(inode
->i_sb
);
377 set_inode_flag(inode
, FI_NO_ALLOC
);
378 i_size_write(inode
, 0);
380 if (F2FS_HAS_BLOCKS(inode
))
381 err
= f2fs_truncate(inode
);
385 err
= remove_inode_page(inode
);
389 /* give more chances, if ENOMEM case */
390 if (err
== -ENOMEM
) {
396 update_inode_page(inode
);
397 sb_end_intwrite(inode
->i_sb
);
399 stat_dec_inline_xattr(inode
);
400 stat_dec_inline_dir(inode
);
401 stat_dec_inline_inode(inode
);
403 invalidate_mapping_pages(NODE_MAPPING(sbi
), inode
->i_ino
, inode
->i_ino
);
405 invalidate_mapping_pages(NODE_MAPPING(sbi
), xnid
, xnid
);
406 if (is_inode_flag_set(inode
, FI_APPEND_WRITE
))
407 add_ino_entry(sbi
, inode
->i_ino
, APPEND_INO
);
408 if (is_inode_flag_set(inode
, FI_UPDATE_WRITE
))
409 add_ino_entry(sbi
, inode
->i_ino
, UPDATE_INO
);
410 if (is_inode_flag_set(inode
, FI_FREE_NID
)) {
411 alloc_nid_failed(sbi
, inode
->i_ino
);
412 clear_inode_flag(inode
, FI_FREE_NID
);
414 f2fs_bug_on(sbi
, err
&&
415 !exist_written_data(sbi
, inode
->i_ino
, ORPHAN_INO
));
417 fscrypt_put_encryption_info(inode
, NULL
);
421 /* caller should call f2fs_lock_op() */
422 void handle_failed_inode(struct inode
*inode
)
424 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
427 /* don't make bad inode, since it becomes a regular file. */
428 unlock_new_inode(inode
);
431 * Note: we should add inode to orphan list before f2fs_unlock_op()
432 * so we can prevent losing this orphan when encoutering checkpoint
433 * and following suddenly power-off.
435 get_node_info(sbi
, inode
->i_ino
, &ni
);
437 if (ni
.blk_addr
!= NULL_ADDR
) {
438 int err
= acquire_orphan_inode(sbi
);
440 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
441 f2fs_msg(sbi
->sb
, KERN_WARNING
,
442 "Too many orphan inodes, run fsck to fix.");
444 add_orphan_inode(inode
);
446 alloc_nid_done(sbi
, inode
->i_ino
);
448 set_inode_flag(inode
, FI_FREE_NID
);
453 /* iput will drop the inode object */