2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements VFS file and inode operations for regular files, device
25 * nodes and symlinks as well as address space operations.
27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28 * the page is dirty and is used for optimization purposes - dirty pages are
29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30 * the budget for this page. The @PG_checked flag is set if full budgeting is
31 * required for the page e.g., when it corresponds to a file hole or it is
32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33 * it is OK to fail in this function, and the budget is released in
34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35 * information about how the page was budgeted, to make it possible to release
36 * the budget properly.
38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39 * implement. However, this is not true for 'ubifs_writepage()', which may be
40 * called with @i_mutex unlocked. For example, when flusher thread is doing
41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49 * set as well. However, UBIFS disables readahead.
53 #include <linux/mount.h>
54 #include <linux/slab.h>
55 #include <linux/migrate.h>
57 static int read_block(struct inode
*inode
, void *addr
, unsigned int block
,
58 struct ubifs_data_node
*dn
)
60 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
61 int err
, len
, out_len
;
65 data_key_init(c
, &key
, inode
->i_ino
, block
);
66 err
= ubifs_tnc_lookup(c
, &key
, dn
);
69 /* Not found, so it must be a hole */
70 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
74 ubifs_assert(c
, le64_to_cpu(dn
->ch
.sqnum
) >
75 ubifs_inode(inode
)->creat_sqnum
);
76 len
= le32_to_cpu(dn
->size
);
77 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
80 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
82 if (ubifs_crypt_is_encrypted(inode
)) {
83 err
= ubifs_decrypt(inode
, dn
, &dlen
, block
);
88 out_len
= UBIFS_BLOCK_SIZE
;
89 err
= ubifs_decompress(c
, &dn
->data
, dlen
, addr
, &out_len
,
90 le16_to_cpu(dn
->compr_type
));
91 if (err
|| len
!= out_len
)
95 * Data length can be less than a full block, even for blocks that are
96 * not the last in the file (e.g., as a result of making a hole and
97 * appending data). Ensure that the remainder is zeroed out.
99 if (len
< UBIFS_BLOCK_SIZE
)
100 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
105 ubifs_err(c
, "bad data node (block %u, inode %lu)",
106 block
, inode
->i_ino
);
107 ubifs_dump_node(c
, dn
);
111 static int do_readpage(struct page
*page
)
115 unsigned int block
, beyond
;
116 struct ubifs_data_node
*dn
;
117 struct inode
*inode
= page
->mapping
->host
;
118 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
119 loff_t i_size
= i_size_read(inode
);
121 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
122 inode
->i_ino
, page
->index
, i_size
, page
->flags
);
123 ubifs_assert(c
, !PageChecked(page
));
124 ubifs_assert(c
, !PagePrivate(page
));
128 block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
129 beyond
= (i_size
+ UBIFS_BLOCK_SIZE
- 1) >> UBIFS_BLOCK_SHIFT
;
130 if (block
>= beyond
) {
131 /* Reading beyond inode */
132 SetPageChecked(page
);
133 memset(addr
, 0, PAGE_SIZE
);
137 dn
= kmalloc(UBIFS_MAX_DATA_NODE_SZ
, GFP_NOFS
);
147 if (block
>= beyond
) {
148 /* Reading beyond inode */
150 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
152 ret
= read_block(inode
, addr
, block
, dn
);
157 } else if (block
+ 1 == beyond
) {
158 int dlen
= le32_to_cpu(dn
->size
);
159 int ilen
= i_size
& (UBIFS_BLOCK_SIZE
- 1);
161 if (ilen
&& ilen
< dlen
)
162 memset(addr
+ ilen
, 0, dlen
- ilen
);
165 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
168 addr
+= UBIFS_BLOCK_SIZE
;
171 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
172 if (err
== -ENOENT
) {
173 /* Not found, so it must be a hole */
174 SetPageChecked(page
);
178 ubifs_err(c
, "cannot read page %lu of inode %lu, error %d",
179 page
->index
, inode
->i_ino
, err
);
186 SetPageUptodate(page
);
187 ClearPageError(page
);
188 flush_dcache_page(page
);
194 ClearPageUptodate(page
);
196 flush_dcache_page(page
);
202 * release_new_page_budget - release budget of a new page.
203 * @c: UBIFS file-system description object
205 * This is a helper function which releases budget corresponding to the budget
206 * of one new page of data.
208 static void release_new_page_budget(struct ubifs_info
*c
)
210 struct ubifs_budget_req req
= { .recalculate
= 1, .new_page
= 1 };
212 ubifs_release_budget(c
, &req
);
216 * release_existing_page_budget - release budget of an existing page.
217 * @c: UBIFS file-system description object
219 * This is a helper function which releases budget corresponding to the budget
220 * of changing one one page of data which already exists on the flash media.
222 static void release_existing_page_budget(struct ubifs_info
*c
)
224 struct ubifs_budget_req req
= { .dd_growth
= c
->bi
.page_budget
};
226 ubifs_release_budget(c
, &req
);
229 static int write_begin_slow(struct address_space
*mapping
,
230 loff_t pos
, unsigned len
, struct page
**pagep
,
233 struct inode
*inode
= mapping
->host
;
234 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
235 pgoff_t index
= pos
>> PAGE_SHIFT
;
236 struct ubifs_budget_req req
= { .new_page
= 1 };
237 int uninitialized_var(err
), appending
= !!(pos
+ len
> inode
->i_size
);
240 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
241 inode
->i_ino
, pos
, len
, inode
->i_size
);
244 * At the slow path we have to budget before locking the page, because
245 * budgeting may force write-back, which would wait on locked pages and
246 * deadlock if we had the page locked. At this point we do not know
247 * anything about the page, so assume that this is a new page which is
248 * written to a hole. This corresponds to largest budget. Later the
249 * budget will be amended if this is not true.
252 /* We are appending data, budget for inode change */
255 err
= ubifs_budget_space(c
, &req
);
259 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
260 if (unlikely(!page
)) {
261 ubifs_release_budget(c
, &req
);
265 if (!PageUptodate(page
)) {
266 if (!(pos
& ~PAGE_MASK
) && len
== PAGE_SIZE
)
267 SetPageChecked(page
);
269 err
= do_readpage(page
);
273 ubifs_release_budget(c
, &req
);
278 SetPageUptodate(page
);
279 ClearPageError(page
);
282 if (PagePrivate(page
))
284 * The page is dirty, which means it was budgeted twice:
285 * o first time the budget was allocated by the task which
286 * made the page dirty and set the PG_private flag;
287 * o and then we budgeted for it for the second time at the
288 * very beginning of this function.
290 * So what we have to do is to release the page budget we
293 release_new_page_budget(c
);
294 else if (!PageChecked(page
))
296 * We are changing a page which already exists on the media.
297 * This means that changing the page does not make the amount
298 * of indexing information larger, and this part of the budget
299 * which we have already acquired may be released.
301 ubifs_convert_page_budget(c
);
304 struct ubifs_inode
*ui
= ubifs_inode(inode
);
307 * 'ubifs_write_end()' is optimized from the fast-path part of
308 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
309 * if data is appended.
311 mutex_lock(&ui
->ui_mutex
);
314 * The inode is dirty already, so we may free the
315 * budget we allocated.
317 ubifs_release_dirty_inode_budget(c
, ui
);
325 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
326 * @c: UBIFS file-system description object
327 * @page: page to allocate budget for
328 * @ui: UBIFS inode object the page belongs to
329 * @appending: non-zero if the page is appended
331 * This is a helper function for 'ubifs_write_begin()' which allocates budget
332 * for the operation. The budget is allocated differently depending on whether
333 * this is appending, whether the page is dirty or not, and so on. This
334 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
335 * in case of success and %-ENOSPC in case of failure.
337 static int allocate_budget(struct ubifs_info
*c
, struct page
*page
,
338 struct ubifs_inode
*ui
, int appending
)
340 struct ubifs_budget_req req
= { .fast
= 1 };
342 if (PagePrivate(page
)) {
345 * The page is dirty and we are not appending, which
346 * means no budget is needed at all.
350 mutex_lock(&ui
->ui_mutex
);
353 * The page is dirty and we are appending, so the inode
354 * has to be marked as dirty. However, it is already
355 * dirty, so we do not need any budget. We may return,
356 * but @ui->ui_mutex hast to be left locked because we
357 * should prevent write-back from flushing the inode
358 * and freeing the budget. The lock will be released in
359 * 'ubifs_write_end()'.
364 * The page is dirty, we are appending, the inode is clean, so
365 * we need to budget the inode change.
369 if (PageChecked(page
))
371 * The page corresponds to a hole and does not
372 * exist on the media. So changing it makes
373 * make the amount of indexing information
374 * larger, and we have to budget for a new
380 * Not a hole, the change will not add any new
381 * indexing information, budget for page
384 req
.dirtied_page
= 1;
387 mutex_lock(&ui
->ui_mutex
);
390 * The inode is clean but we will have to mark
391 * it as dirty because we are appending. This
398 return ubifs_budget_space(c
, &req
);
402 * This function is called when a page of data is going to be written. Since
403 * the page of data will not necessarily go to the flash straight away, UBIFS
404 * has to reserve space on the media for it, which is done by means of
407 * This is the hot-path of the file-system and we are trying to optimize it as
408 * much as possible. For this reasons it is split on 2 parts - slow and fast.
410 * There many budgeting cases:
411 * o a new page is appended - we have to budget for a new page and for
412 * changing the inode; however, if the inode is already dirty, there is
413 * no need to budget for it;
414 * o an existing clean page is changed - we have budget for it; if the page
415 * does not exist on the media (a hole), we have to budget for a new
416 * page; otherwise, we may budget for changing an existing page; the
417 * difference between these cases is that changing an existing page does
418 * not introduce anything new to the FS indexing information, so it does
419 * not grow, and smaller budget is acquired in this case;
420 * o an existing dirty page is changed - no need to budget at all, because
421 * the page budget has been acquired by earlier, when the page has been
424 * UBIFS budgeting sub-system may force write-back if it thinks there is no
425 * space to reserve. This imposes some locking restrictions and makes it
426 * impossible to take into account the above cases, and makes it impossible to
427 * optimize budgeting.
429 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
430 * there is a plenty of flash space and the budget will be acquired quickly,
431 * without forcing write-back. The slow path does not make this assumption.
433 static int ubifs_write_begin(struct file
*file
, struct address_space
*mapping
,
434 loff_t pos
, unsigned len
, unsigned flags
,
435 struct page
**pagep
, void **fsdata
)
437 struct inode
*inode
= mapping
->host
;
438 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
439 struct ubifs_inode
*ui
= ubifs_inode(inode
);
440 pgoff_t index
= pos
>> PAGE_SHIFT
;
441 int uninitialized_var(err
), appending
= !!(pos
+ len
> inode
->i_size
);
442 int skipped_read
= 0;
445 ubifs_assert(c
, ubifs_inode(inode
)->ui_size
== inode
->i_size
);
446 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
448 if (unlikely(c
->ro_error
))
451 /* Try out the fast-path part first */
452 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
456 if (!PageUptodate(page
)) {
457 /* The page is not loaded from the flash */
458 if (!(pos
& ~PAGE_MASK
) && len
== PAGE_SIZE
) {
460 * We change whole page so no need to load it. But we
461 * do not know whether this page exists on the media or
462 * not, so we assume the latter because it requires
463 * larger budget. The assumption is that it is better
464 * to budget a bit more than to read the page from the
465 * media. Thus, we are setting the @PG_checked flag
468 SetPageChecked(page
);
471 err
= do_readpage(page
);
479 SetPageUptodate(page
);
480 ClearPageError(page
);
483 err
= allocate_budget(c
, page
, ui
, appending
);
485 ubifs_assert(c
, err
== -ENOSPC
);
487 * If we skipped reading the page because we were going to
488 * write all of it, then it is not up to date.
491 ClearPageChecked(page
);
492 ClearPageUptodate(page
);
495 * Budgeting failed which means it would have to force
496 * write-back but didn't, because we set the @fast flag in the
497 * request. Write-back cannot be done now, while we have the
498 * page locked, because it would deadlock. Unlock and free
499 * everything and fall-back to slow-path.
502 ubifs_assert(c
, mutex_is_locked(&ui
->ui_mutex
));
503 mutex_unlock(&ui
->ui_mutex
);
508 return write_begin_slow(mapping
, pos
, len
, pagep
, flags
);
512 * Whee, we acquired budgeting quickly - without involving
513 * garbage-collection, committing or forcing write-back. We return
514 * with @ui->ui_mutex locked if we are appending pages, and unlocked
515 * otherwise. This is an optimization (slightly hacky though).
523 * cancel_budget - cancel budget.
524 * @c: UBIFS file-system description object
525 * @page: page to cancel budget for
526 * @ui: UBIFS inode object the page belongs to
527 * @appending: non-zero if the page is appended
529 * This is a helper function for a page write operation. It unlocks the
530 * @ui->ui_mutex in case of appending.
532 static void cancel_budget(struct ubifs_info
*c
, struct page
*page
,
533 struct ubifs_inode
*ui
, int appending
)
537 ubifs_release_dirty_inode_budget(c
, ui
);
538 mutex_unlock(&ui
->ui_mutex
);
540 if (!PagePrivate(page
)) {
541 if (PageChecked(page
))
542 release_new_page_budget(c
);
544 release_existing_page_budget(c
);
548 static int ubifs_write_end(struct file
*file
, struct address_space
*mapping
,
549 loff_t pos
, unsigned len
, unsigned copied
,
550 struct page
*page
, void *fsdata
)
552 struct inode
*inode
= mapping
->host
;
553 struct ubifs_inode
*ui
= ubifs_inode(inode
);
554 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
555 loff_t end_pos
= pos
+ len
;
556 int appending
= !!(end_pos
> inode
->i_size
);
558 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
559 inode
->i_ino
, pos
, page
->index
, len
, copied
, inode
->i_size
);
561 if (unlikely(copied
< len
&& len
== PAGE_SIZE
)) {
563 * VFS copied less data to the page that it intended and
564 * declared in its '->write_begin()' call via the @len
565 * argument. If the page was not up-to-date, and @len was
566 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
567 * not load it from the media (for optimization reasons). This
568 * means that part of the page contains garbage. So read the
571 dbg_gen("copied %d instead of %d, read page and repeat",
573 cancel_budget(c
, page
, ui
, appending
);
574 ClearPageChecked(page
);
577 * Return 0 to force VFS to repeat the whole operation, or the
578 * error code if 'do_readpage()' fails.
580 copied
= do_readpage(page
);
584 if (!PagePrivate(page
)) {
585 SetPagePrivate(page
);
586 atomic_long_inc(&c
->dirty_pg_cnt
);
587 __set_page_dirty_nobuffers(page
);
591 i_size_write(inode
, end_pos
);
592 ui
->ui_size
= end_pos
;
594 * Note, we do not set @I_DIRTY_PAGES (which means that the
595 * inode has dirty pages), this has been done in
596 * '__set_page_dirty_nobuffers()'.
598 __mark_inode_dirty(inode
, I_DIRTY_DATASYNC
);
599 ubifs_assert(c
, mutex_is_locked(&ui
->ui_mutex
));
600 mutex_unlock(&ui
->ui_mutex
);
610 * populate_page - copy data nodes into a page for bulk-read.
611 * @c: UBIFS file-system description object
613 * @bu: bulk-read information
614 * @n: next zbranch slot
616 * This function returns %0 on success and a negative error code on failure.
618 static int populate_page(struct ubifs_info
*c
, struct page
*page
,
619 struct bu_info
*bu
, int *n
)
621 int i
= 0, nn
= *n
, offs
= bu
->zbranch
[0].offs
, hole
= 0, read
= 0;
622 struct inode
*inode
= page
->mapping
->host
;
623 loff_t i_size
= i_size_read(inode
);
624 unsigned int page_block
;
628 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
629 inode
->i_ino
, page
->index
, i_size
, page
->flags
);
631 addr
= zaddr
= kmap(page
);
633 end_index
= (i_size
- 1) >> PAGE_SHIFT
;
634 if (!i_size
|| page
->index
> end_index
) {
636 memset(addr
, 0, PAGE_SIZE
);
640 page_block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
642 int err
, len
, out_len
, dlen
;
646 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
647 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) == page_block
) {
648 struct ubifs_data_node
*dn
;
650 dn
= bu
->buf
+ (bu
->zbranch
[nn
].offs
- offs
);
652 ubifs_assert(c
, le64_to_cpu(dn
->ch
.sqnum
) >
653 ubifs_inode(inode
)->creat_sqnum
);
655 len
= le32_to_cpu(dn
->size
);
656 if (len
<= 0 || len
> UBIFS_BLOCK_SIZE
)
659 dlen
= le32_to_cpu(dn
->ch
.len
) - UBIFS_DATA_NODE_SZ
;
660 out_len
= UBIFS_BLOCK_SIZE
;
662 if (ubifs_crypt_is_encrypted(inode
)) {
663 err
= ubifs_decrypt(inode
, dn
, &dlen
, page_block
);
668 err
= ubifs_decompress(c
, &dn
->data
, dlen
, addr
, &out_len
,
669 le16_to_cpu(dn
->compr_type
));
670 if (err
|| len
!= out_len
)
673 if (len
< UBIFS_BLOCK_SIZE
)
674 memset(addr
+ len
, 0, UBIFS_BLOCK_SIZE
- len
);
677 read
= (i
<< UBIFS_BLOCK_SHIFT
) + len
;
678 } else if (key_block(c
, &bu
->zbranch
[nn
].key
) < page_block
) {
683 memset(addr
, 0, UBIFS_BLOCK_SIZE
);
685 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
687 addr
+= UBIFS_BLOCK_SIZE
;
691 if (end_index
== page
->index
) {
692 int len
= i_size
& (PAGE_SIZE
- 1);
694 if (len
&& len
< read
)
695 memset(zaddr
+ len
, 0, read
- len
);
700 SetPageChecked(page
);
704 SetPageUptodate(page
);
705 ClearPageError(page
);
706 flush_dcache_page(page
);
712 ClearPageUptodate(page
);
714 flush_dcache_page(page
);
716 ubifs_err(c
, "bad data node (block %u, inode %lu)",
717 page_block
, inode
->i_ino
);
722 * ubifs_do_bulk_read - do bulk-read.
723 * @c: UBIFS file-system description object
724 * @bu: bulk-read information
725 * @page1: first page to read
727 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
729 static int ubifs_do_bulk_read(struct ubifs_info
*c
, struct bu_info
*bu
,
732 pgoff_t offset
= page1
->index
, end_index
;
733 struct address_space
*mapping
= page1
->mapping
;
734 struct inode
*inode
= mapping
->host
;
735 struct ubifs_inode
*ui
= ubifs_inode(inode
);
736 int err
, page_idx
, page_cnt
, ret
= 0, n
= 0;
737 int allocate
= bu
->buf
? 0 : 1;
739 gfp_t ra_gfp_mask
= readahead_gfp_mask(mapping
) & ~__GFP_FS
;
741 err
= ubifs_tnc_get_bu_keys(c
, bu
);
746 /* Turn off bulk-read at the end of the file */
747 ui
->read_in_a_row
= 1;
751 page_cnt
= bu
->blk_cnt
>> UBIFS_BLOCKS_PER_PAGE_SHIFT
;
754 * This happens when there are multiple blocks per page and the
755 * blocks for the first page we are looking for, are not
756 * together. If all the pages were like this, bulk-read would
757 * reduce performance, so we turn it off for a while.
765 * Allocate bulk-read buffer depending on how many data
766 * nodes we are going to read.
768 bu
->buf_len
= bu
->zbranch
[bu
->cnt
- 1].offs
+
769 bu
->zbranch
[bu
->cnt
- 1].len
-
771 ubifs_assert(c
, bu
->buf_len
> 0);
772 ubifs_assert(c
, bu
->buf_len
<= c
->leb_size
);
773 bu
->buf
= kmalloc(bu
->buf_len
, GFP_NOFS
| __GFP_NOWARN
);
778 err
= ubifs_tnc_bulk_read(c
, bu
);
783 err
= populate_page(c
, page1
, bu
, &n
);
790 isize
= i_size_read(inode
);
793 end_index
= ((isize
- 1) >> PAGE_SHIFT
);
795 for (page_idx
= 1; page_idx
< page_cnt
; page_idx
++) {
796 pgoff_t page_offset
= offset
+ page_idx
;
799 if (page_offset
> end_index
)
801 page
= find_or_create_page(mapping
, page_offset
, ra_gfp_mask
);
804 if (!PageUptodate(page
))
805 err
= populate_page(c
, page
, bu
, &n
);
812 ui
->last_page_read
= offset
+ page_idx
- 1;
820 ubifs_warn(c
, "ignoring error %d and skipping bulk-read", err
);
824 ui
->read_in_a_row
= ui
->bulk_read
= 0;
829 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
830 * @page: page from which to start bulk-read.
832 * Some flash media are capable of reading sequentially at faster rates. UBIFS
833 * bulk-read facility is designed to take advantage of that, by reading in one
834 * go consecutive data nodes that are also located consecutively in the same
835 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
837 static int ubifs_bulk_read(struct page
*page
)
839 struct inode
*inode
= page
->mapping
->host
;
840 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
841 struct ubifs_inode
*ui
= ubifs_inode(inode
);
842 pgoff_t index
= page
->index
, last_page_read
= ui
->last_page_read
;
844 int err
= 0, allocated
= 0;
846 ui
->last_page_read
= index
;
851 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
852 * so don't bother if we cannot lock the mutex.
854 if (!mutex_trylock(&ui
->ui_mutex
))
857 if (index
!= last_page_read
+ 1) {
858 /* Turn off bulk-read if we stop reading sequentially */
859 ui
->read_in_a_row
= 1;
865 if (!ui
->bulk_read
) {
866 ui
->read_in_a_row
+= 1;
867 if (ui
->read_in_a_row
< 3)
869 /* Three reads in a row, so switch on bulk-read */
874 * If possible, try to use pre-allocated bulk-read information, which
875 * is protected by @c->bu_mutex.
877 if (mutex_trylock(&c
->bu_mutex
))
880 bu
= kmalloc(sizeof(struct bu_info
), GFP_NOFS
| __GFP_NOWARN
);
888 bu
->buf_len
= c
->max_bu_buf_len
;
889 data_key_init(c
, &bu
->key
, inode
->i_ino
,
890 page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
);
891 err
= ubifs_do_bulk_read(c
, bu
, page
);
894 mutex_unlock(&c
->bu_mutex
);
899 mutex_unlock(&ui
->ui_mutex
);
903 static int ubifs_readpage(struct file
*file
, struct page
*page
)
905 if (ubifs_bulk_read(page
))
912 static int do_writepage(struct page
*page
, int len
)
914 int err
= 0, i
, blen
;
918 struct inode
*inode
= page
->mapping
->host
;
919 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
922 struct ubifs_inode
*ui
= ubifs_inode(inode
);
923 spin_lock(&ui
->ui_lock
);
924 ubifs_assert(c
, page
->index
<= ui
->synced_i_size
>> PAGE_SHIFT
);
925 spin_unlock(&ui
->ui_lock
);
928 /* Update radix tree tags */
929 set_page_writeback(page
);
932 block
= page
->index
<< UBIFS_BLOCKS_PER_PAGE_SHIFT
;
935 blen
= min_t(int, len
, UBIFS_BLOCK_SIZE
);
936 data_key_init(c
, &key
, inode
->i_ino
, block
);
937 err
= ubifs_jnl_write_data(c
, inode
, &key
, addr
, blen
);
940 if (++i
>= UBIFS_BLOCKS_PER_PAGE
)
948 ubifs_err(c
, "cannot write page %lu of inode %lu, error %d",
949 page
->index
, inode
->i_ino
, err
);
950 ubifs_ro_mode(c
, err
);
953 ubifs_assert(c
, PagePrivate(page
));
954 if (PageChecked(page
))
955 release_new_page_budget(c
);
957 release_existing_page_budget(c
);
959 atomic_long_dec(&c
->dirty_pg_cnt
);
960 ClearPagePrivate(page
);
961 ClearPageChecked(page
);
965 end_page_writeback(page
);
970 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
971 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
972 * situation when a we have an inode with size 0, then a megabyte of data is
973 * appended to the inode, then write-back starts and flushes some amount of the
974 * dirty pages, the journal becomes full, commit happens and finishes, and then
975 * an unclean reboot happens. When the file system is mounted next time, the
976 * inode size would still be 0, but there would be many pages which are beyond
977 * the inode size, they would be indexed and consume flash space. Because the
978 * journal has been committed, the replay would not be able to detect this
979 * situation and correct the inode size. This means UBIFS would have to scan
980 * whole index and correct all inode sizes, which is long an unacceptable.
982 * To prevent situations like this, UBIFS writes pages back only if they are
983 * within the last synchronized inode size, i.e. the size which has been
984 * written to the flash media last time. Otherwise, UBIFS forces inode
985 * write-back, thus making sure the on-flash inode contains current inode size,
986 * and then keeps writing pages back.
988 * Some locking issues explanation. 'ubifs_writepage()' first is called with
989 * the page locked, and it locks @ui_mutex. However, write-back does take inode
990 * @i_mutex, which means other VFS operations may be run on this inode at the
991 * same time. And the problematic one is truncation to smaller size, from where
992 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
993 * then drops the truncated pages. And while dropping the pages, it takes the
994 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
995 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
996 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
998 * XXX(truncate): with the new truncate sequence this is not true anymore,
999 * and the calls to truncate_setsize can be move around freely. They should
1000 * be moved to the very end of the truncate sequence.
1002 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
1003 * inode size. How do we do this if @inode->i_size may became smaller while we
1004 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
1005 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
1006 * internally and updates it under @ui_mutex.
1008 * Q: why we do not worry that if we race with truncation, we may end up with a
1009 * situation when the inode is truncated while we are in the middle of
1010 * 'do_writepage()', so we do write beyond inode size?
1011 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1012 * on the page lock and it would not write the truncated inode node to the
1013 * journal before we have finished.
1015 static int ubifs_writepage(struct page
*page
, struct writeback_control
*wbc
)
1017 struct inode
*inode
= page
->mapping
->host
;
1018 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1019 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1020 loff_t i_size
= i_size_read(inode
), synced_i_size
;
1021 pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
1022 int err
, len
= i_size
& (PAGE_SIZE
- 1);
1025 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1026 inode
->i_ino
, page
->index
, page
->flags
);
1027 ubifs_assert(c
, PagePrivate(page
));
1029 /* Is the page fully outside @i_size? (truncate in progress) */
1030 if (page
->index
> end_index
|| (page
->index
== end_index
&& !len
)) {
1035 spin_lock(&ui
->ui_lock
);
1036 synced_i_size
= ui
->synced_i_size
;
1037 spin_unlock(&ui
->ui_lock
);
1039 /* Is the page fully inside @i_size? */
1040 if (page
->index
< end_index
) {
1041 if (page
->index
>= synced_i_size
>> PAGE_SHIFT
) {
1042 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1046 * The inode has been written, but the write-buffer has
1047 * not been synchronized, so in case of an unclean
1048 * reboot we may end up with some pages beyond inode
1049 * size, but they would be in the journal (because
1050 * commit flushes write buffers) and recovery would deal
1054 return do_writepage(page
, PAGE_SIZE
);
1058 * The page straddles @i_size. It must be zeroed out on each and every
1059 * writepage invocation because it may be mmapped. "A file is mapped
1060 * in multiples of the page size. For a file that is not a multiple of
1061 * the page size, the remaining memory is zeroed when mapped, and
1062 * writes to that region are not written out to the file."
1064 kaddr
= kmap_atomic(page
);
1065 memset(kaddr
+ len
, 0, PAGE_SIZE
- len
);
1066 flush_dcache_page(page
);
1067 kunmap_atomic(kaddr
);
1069 if (i_size
> synced_i_size
) {
1070 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1075 return do_writepage(page
, len
);
1083 * do_attr_changes - change inode attributes.
1084 * @inode: inode to change attributes for
1085 * @attr: describes attributes to change
1087 static void do_attr_changes(struct inode
*inode
, const struct iattr
*attr
)
1089 if (attr
->ia_valid
& ATTR_UID
)
1090 inode
->i_uid
= attr
->ia_uid
;
1091 if (attr
->ia_valid
& ATTR_GID
)
1092 inode
->i_gid
= attr
->ia_gid
;
1093 if (attr
->ia_valid
& ATTR_ATIME
)
1094 inode
->i_atime
= timespec64_trunc(attr
->ia_atime
,
1095 inode
->i_sb
->s_time_gran
);
1096 if (attr
->ia_valid
& ATTR_MTIME
)
1097 inode
->i_mtime
= timespec64_trunc(attr
->ia_mtime
,
1098 inode
->i_sb
->s_time_gran
);
1099 if (attr
->ia_valid
& ATTR_CTIME
)
1100 inode
->i_ctime
= timespec64_trunc(attr
->ia_ctime
,
1101 inode
->i_sb
->s_time_gran
);
1102 if (attr
->ia_valid
& ATTR_MODE
) {
1103 umode_t mode
= attr
->ia_mode
;
1105 if (!in_group_p(inode
->i_gid
) && !capable(CAP_FSETID
))
1107 inode
->i_mode
= mode
;
1112 * do_truncation - truncate an inode.
1113 * @c: UBIFS file-system description object
1114 * @inode: inode to truncate
1115 * @attr: inode attribute changes description
1117 * This function implements VFS '->setattr()' call when the inode is truncated
1118 * to a smaller size. Returns zero in case of success and a negative error code
1119 * in case of failure.
1121 static int do_truncation(struct ubifs_info
*c
, struct inode
*inode
,
1122 const struct iattr
*attr
)
1125 struct ubifs_budget_req req
;
1126 loff_t old_size
= inode
->i_size
, new_size
= attr
->ia_size
;
1127 int offset
= new_size
& (UBIFS_BLOCK_SIZE
- 1), budgeted
= 1;
1128 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1130 dbg_gen("ino %lu, size %lld -> %lld", inode
->i_ino
, old_size
, new_size
);
1131 memset(&req
, 0, sizeof(struct ubifs_budget_req
));
1134 * If this is truncation to a smaller size, and we do not truncate on a
1135 * block boundary, budget for changing one data block, because the last
1136 * block will be re-written.
1138 if (new_size
& (UBIFS_BLOCK_SIZE
- 1))
1139 req
.dirtied_page
= 1;
1141 req
.dirtied_ino
= 1;
1142 /* A funny way to budget for truncation node */
1143 req
.dirtied_ino_d
= UBIFS_TRUN_NODE_SZ
;
1144 err
= ubifs_budget_space(c
, &req
);
1147 * Treat truncations to zero as deletion and always allow them,
1148 * just like we do for '->unlink()'.
1150 if (new_size
|| err
!= -ENOSPC
)
1155 truncate_setsize(inode
, new_size
);
1158 pgoff_t index
= new_size
>> PAGE_SHIFT
;
1161 page
= find_lock_page(inode
->i_mapping
, index
);
1163 if (PageDirty(page
)) {
1165 * 'ubifs_jnl_truncate()' will try to truncate
1166 * the last data node, but it contains
1167 * out-of-date data because the page is dirty.
1168 * Write the page now, so that
1169 * 'ubifs_jnl_truncate()' will see an already
1170 * truncated (and up to date) data node.
1172 ubifs_assert(c
, PagePrivate(page
));
1174 clear_page_dirty_for_io(page
);
1175 if (UBIFS_BLOCKS_PER_PAGE_SHIFT
)
1178 err
= do_writepage(page
, offset
);
1183 * We could now tell 'ubifs_jnl_truncate()' not
1184 * to read the last block.
1188 * We could 'kmap()' the page and pass the data
1189 * to 'ubifs_jnl_truncate()' to save it from
1190 * having to read it.
1198 mutex_lock(&ui
->ui_mutex
);
1199 ui
->ui_size
= inode
->i_size
;
1200 /* Truncation changes inode [mc]time */
1201 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1202 /* Other attributes may be changed at the same time as well */
1203 do_attr_changes(inode
, attr
);
1204 err
= ubifs_jnl_truncate(c
, inode
, old_size
, new_size
);
1205 mutex_unlock(&ui
->ui_mutex
);
1209 ubifs_release_budget(c
, &req
);
1211 c
->bi
.nospace
= c
->bi
.nospace_rp
= 0;
1218 * do_setattr - change inode attributes.
1219 * @c: UBIFS file-system description object
1220 * @inode: inode to change attributes for
1221 * @attr: inode attribute changes description
1223 * This function implements VFS '->setattr()' call for all cases except
1224 * truncations to smaller size. Returns zero in case of success and a negative
1225 * error code in case of failure.
1227 static int do_setattr(struct ubifs_info
*c
, struct inode
*inode
,
1228 const struct iattr
*attr
)
1231 loff_t new_size
= attr
->ia_size
;
1232 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1233 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1234 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1236 err
= ubifs_budget_space(c
, &req
);
1240 if (attr
->ia_valid
& ATTR_SIZE
) {
1241 dbg_gen("size %lld -> %lld", inode
->i_size
, new_size
);
1242 truncate_setsize(inode
, new_size
);
1245 mutex_lock(&ui
->ui_mutex
);
1246 if (attr
->ia_valid
& ATTR_SIZE
) {
1247 /* Truncation changes inode [mc]time */
1248 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1249 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1250 ui
->ui_size
= inode
->i_size
;
1253 do_attr_changes(inode
, attr
);
1255 release
= ui
->dirty
;
1256 if (attr
->ia_valid
& ATTR_SIZE
)
1258 * Inode length changed, so we have to make sure
1259 * @I_DIRTY_DATASYNC is set.
1261 __mark_inode_dirty(inode
, I_DIRTY_DATASYNC
);
1263 mark_inode_dirty_sync(inode
);
1264 mutex_unlock(&ui
->ui_mutex
);
1267 ubifs_release_budget(c
, &req
);
1269 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1273 int ubifs_setattr(struct dentry
*dentry
, struct iattr
*attr
)
1276 struct inode
*inode
= d_inode(dentry
);
1277 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1279 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1280 inode
->i_ino
, inode
->i_mode
, attr
->ia_valid
);
1281 err
= setattr_prepare(dentry
, attr
);
1285 err
= dbg_check_synced_i_size(c
, inode
);
1289 err
= fscrypt_prepare_setattr(dentry
, attr
);
1293 if ((attr
->ia_valid
& ATTR_SIZE
) && attr
->ia_size
< inode
->i_size
)
1294 /* Truncation to a smaller size */
1295 err
= do_truncation(c
, inode
, attr
);
1297 err
= do_setattr(c
, inode
, attr
);
1302 static void ubifs_invalidatepage(struct page
*page
, unsigned int offset
,
1303 unsigned int length
)
1305 struct inode
*inode
= page
->mapping
->host
;
1306 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1308 ubifs_assert(c
, PagePrivate(page
));
1309 if (offset
|| length
< PAGE_SIZE
)
1310 /* Partial page remains dirty */
1313 if (PageChecked(page
))
1314 release_new_page_budget(c
);
1316 release_existing_page_budget(c
);
1318 atomic_long_dec(&c
->dirty_pg_cnt
);
1319 ClearPagePrivate(page
);
1320 ClearPageChecked(page
);
1323 int ubifs_fsync(struct file
*file
, loff_t start
, loff_t end
, int datasync
)
1325 struct inode
*inode
= file
->f_mapping
->host
;
1326 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1329 dbg_gen("syncing inode %lu", inode
->i_ino
);
1333 * For some really strange reasons VFS does not filter out
1334 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1338 err
= file_write_and_wait_range(file
, start
, end
);
1343 /* Synchronize the inode unless this is a 'datasync()' call. */
1344 if (!datasync
|| (inode
->i_state
& I_DIRTY_DATASYNC
)) {
1345 err
= inode
->i_sb
->s_op
->write_inode(inode
, NULL
);
1351 * Nodes related to this inode may still sit in a write-buffer. Flush
1354 err
= ubifs_sync_wbufs_by_inode(c
, inode
);
1356 inode_unlock(inode
);
1361 * mctime_update_needed - check if mtime or ctime update is needed.
1362 * @inode: the inode to do the check for
1363 * @now: current time
1365 * This helper function checks if the inode mtime/ctime should be updated or
1366 * not. If current values of the time-stamps are within the UBIFS inode time
1367 * granularity, they are not updated. This is an optimization.
1369 static inline int mctime_update_needed(const struct inode
*inode
,
1370 const struct timespec64
*now
)
1372 if (!timespec64_equal(&inode
->i_mtime
, now
) ||
1373 !timespec64_equal(&inode
->i_ctime
, now
))
1378 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1380 * ubifs_update_time - update time of inode.
1381 * @inode: inode to update
1383 * This function updates time of the inode.
1385 int ubifs_update_time(struct inode
*inode
, struct timespec64
*time
,
1388 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1389 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1390 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1391 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1392 int iflags
= I_DIRTY_TIME
;
1395 err
= ubifs_budget_space(c
, &req
);
1399 mutex_lock(&ui
->ui_mutex
);
1400 if (flags
& S_ATIME
)
1401 inode
->i_atime
= *time
;
1402 if (flags
& S_CTIME
)
1403 inode
->i_ctime
= *time
;
1404 if (flags
& S_MTIME
)
1405 inode
->i_mtime
= *time
;
1407 if (!(inode
->i_sb
->s_flags
& SB_LAZYTIME
))
1408 iflags
|= I_DIRTY_SYNC
;
1410 release
= ui
->dirty
;
1411 __mark_inode_dirty(inode
, iflags
);
1412 mutex_unlock(&ui
->ui_mutex
);
1414 ubifs_release_budget(c
, &req
);
1420 * update_mctime - update mtime and ctime of an inode.
1421 * @inode: inode to update
1423 * This function updates mtime and ctime of the inode if it is not equivalent to
1424 * current time. Returns zero in case of success and a negative error code in
1427 static int update_mctime(struct inode
*inode
)
1429 struct timespec64 now
= current_time(inode
);
1430 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1431 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1433 if (mctime_update_needed(inode
, &now
)) {
1435 struct ubifs_budget_req req
= { .dirtied_ino
= 1,
1436 .dirtied_ino_d
= ALIGN(ui
->data_len
, 8) };
1438 err
= ubifs_budget_space(c
, &req
);
1442 mutex_lock(&ui
->ui_mutex
);
1443 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1444 release
= ui
->dirty
;
1445 mark_inode_dirty_sync(inode
);
1446 mutex_unlock(&ui
->ui_mutex
);
1448 ubifs_release_budget(c
, &req
);
1454 static ssize_t
ubifs_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
1456 int err
= update_mctime(file_inode(iocb
->ki_filp
));
1460 return generic_file_write_iter(iocb
, from
);
1463 static int ubifs_set_page_dirty(struct page
*page
)
1466 struct inode
*inode
= page
->mapping
->host
;
1467 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1469 ret
= __set_page_dirty_nobuffers(page
);
1471 * An attempt to dirty a page without budgeting for it - should not
1474 ubifs_assert(c
, ret
== 0);
1478 #ifdef CONFIG_MIGRATION
1479 static int ubifs_migrate_page(struct address_space
*mapping
,
1480 struct page
*newpage
, struct page
*page
, enum migrate_mode mode
)
1484 rc
= migrate_page_move_mapping(mapping
, newpage
, page
, NULL
, mode
, 0);
1485 if (rc
!= MIGRATEPAGE_SUCCESS
)
1488 if (PagePrivate(page
)) {
1489 ClearPagePrivate(page
);
1490 SetPagePrivate(newpage
);
1493 if (mode
!= MIGRATE_SYNC_NO_COPY
)
1494 migrate_page_copy(newpage
, page
);
1496 migrate_page_states(newpage
, page
);
1497 return MIGRATEPAGE_SUCCESS
;
1501 static int ubifs_releasepage(struct page
*page
, gfp_t unused_gfp_flags
)
1503 struct inode
*inode
= page
->mapping
->host
;
1504 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1507 * An attempt to release a dirty page without budgeting for it - should
1510 if (PageWriteback(page
))
1512 ubifs_assert(c
, PagePrivate(page
));
1514 ClearPagePrivate(page
);
1515 ClearPageChecked(page
);
1520 * mmap()d file has taken write protection fault and is being made writable.
1521 * UBIFS must ensure page is budgeted for.
1523 static vm_fault_t
ubifs_vm_page_mkwrite(struct vm_fault
*vmf
)
1525 struct page
*page
= vmf
->page
;
1526 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
1527 struct ubifs_info
*c
= inode
->i_sb
->s_fs_info
;
1528 struct timespec64 now
= current_time(inode
);
1529 struct ubifs_budget_req req
= { .new_page
= 1 };
1530 int err
, update_time
;
1532 dbg_gen("ino %lu, pg %lu, i_size %lld", inode
->i_ino
, page
->index
,
1533 i_size_read(inode
));
1534 ubifs_assert(c
, !c
->ro_media
&& !c
->ro_mount
);
1536 if (unlikely(c
->ro_error
))
1537 return VM_FAULT_SIGBUS
; /* -EROFS */
1540 * We have not locked @page so far so we may budget for changing the
1541 * page. Note, we cannot do this after we locked the page, because
1542 * budgeting may cause write-back which would cause deadlock.
1544 * At the moment we do not know whether the page is dirty or not, so we
1545 * assume that it is not and budget for a new page. We could look at
1546 * the @PG_private flag and figure this out, but we may race with write
1547 * back and the page state may change by the time we lock it, so this
1548 * would need additional care. We do not bother with this at the
1549 * moment, although it might be good idea to do. Instead, we allocate
1550 * budget for a new page and amend it later on if the page was in fact
1553 * The budgeting-related logic of this function is similar to what we
1554 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1555 * for more comments.
1557 update_time
= mctime_update_needed(inode
, &now
);
1560 * We have to change inode time stamp which requires extra
1563 req
.dirtied_ino
= 1;
1565 err
= ubifs_budget_space(c
, &req
);
1566 if (unlikely(err
)) {
1568 ubifs_warn(c
, "out of space for mmapped file (inode number %lu)",
1570 return VM_FAULT_SIGBUS
;
1574 if (unlikely(page
->mapping
!= inode
->i_mapping
||
1575 page_offset(page
) > i_size_read(inode
))) {
1576 /* Page got truncated out from underneath us */
1580 if (PagePrivate(page
))
1581 release_new_page_budget(c
);
1583 if (!PageChecked(page
))
1584 ubifs_convert_page_budget(c
);
1585 SetPagePrivate(page
);
1586 atomic_long_inc(&c
->dirty_pg_cnt
);
1587 __set_page_dirty_nobuffers(page
);
1592 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1594 mutex_lock(&ui
->ui_mutex
);
1595 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
1596 release
= ui
->dirty
;
1597 mark_inode_dirty_sync(inode
);
1598 mutex_unlock(&ui
->ui_mutex
);
1600 ubifs_release_dirty_inode_budget(c
, ui
);
1603 wait_for_stable_page(page
);
1604 return VM_FAULT_LOCKED
;
1608 ubifs_release_budget(c
, &req
);
1609 return VM_FAULT_SIGBUS
;
1612 static const struct vm_operations_struct ubifs_file_vm_ops
= {
1613 .fault
= filemap_fault
,
1614 .map_pages
= filemap_map_pages
,
1615 .page_mkwrite
= ubifs_vm_page_mkwrite
,
1618 static int ubifs_file_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1622 err
= generic_file_mmap(file
, vma
);
1625 vma
->vm_ops
= &ubifs_file_vm_ops
;
1626 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1627 file_accessed(file
);
1632 static const char *ubifs_get_link(struct dentry
*dentry
,
1633 struct inode
*inode
,
1634 struct delayed_call
*done
)
1636 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1638 if (!IS_ENCRYPTED(inode
))
1642 return ERR_PTR(-ECHILD
);
1644 return fscrypt_get_symlink(inode
, ui
->data
, ui
->data_len
, done
);
1647 const struct address_space_operations ubifs_file_address_operations
= {
1648 .readpage
= ubifs_readpage
,
1649 .writepage
= ubifs_writepage
,
1650 .write_begin
= ubifs_write_begin
,
1651 .write_end
= ubifs_write_end
,
1652 .invalidatepage
= ubifs_invalidatepage
,
1653 .set_page_dirty
= ubifs_set_page_dirty
,
1654 #ifdef CONFIG_MIGRATION
1655 .migratepage
= ubifs_migrate_page
,
1657 .releasepage
= ubifs_releasepage
,
1660 const struct inode_operations ubifs_file_inode_operations
= {
1661 .setattr
= ubifs_setattr
,
1662 .getattr
= ubifs_getattr
,
1663 #ifdef CONFIG_UBIFS_FS_XATTR
1664 .listxattr
= ubifs_listxattr
,
1666 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1667 .update_time
= ubifs_update_time
,
1671 const struct inode_operations ubifs_symlink_inode_operations
= {
1672 .get_link
= ubifs_get_link
,
1673 .setattr
= ubifs_setattr
,
1674 .getattr
= ubifs_getattr
,
1675 #ifdef CONFIG_UBIFS_FS_XATTR
1676 .listxattr
= ubifs_listxattr
,
1678 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1679 .update_time
= ubifs_update_time
,
1683 const struct file_operations ubifs_file_operations
= {
1684 .llseek
= generic_file_llseek
,
1685 .read_iter
= generic_file_read_iter
,
1686 .write_iter
= ubifs_write_iter
,
1687 .mmap
= ubifs_file_mmap
,
1688 .fsync
= ubifs_fsync
,
1689 .unlocked_ioctl
= ubifs_ioctl
,
1690 .splice_read
= generic_file_splice_read
,
1691 .splice_write
= iter_file_splice_write
,
1692 .open
= fscrypt_file_open
,
1693 #ifdef CONFIG_COMPAT
1694 .compat_ioctl
= ubifs_compat_ioctl
,