drm/msm: dpu: Remove 'inline' from several functions
[linux/fpc-iii.git] / fs / ubifs / file.c
blob1b78f2e09218bd3fcf44f2772c47af54347a1bc1
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements VFS file and inode operations for regular files, device
25 * nodes and symlinks as well as address space operations.
27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28 * the page is dirty and is used for optimization purposes - dirty pages are
29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30 * the budget for this page. The @PG_checked flag is set if full budgeting is
31 * required for the page e.g., when it corresponds to a file hole or it is
32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33 * it is OK to fail in this function, and the budget is released in
34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35 * information about how the page was budgeted, to make it possible to release
36 * the budget properly.
38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39 * implement. However, this is not true for 'ubifs_writepage()', which may be
40 * called with @i_mutex unlocked. For example, when flusher thread is doing
41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49 * set as well. However, UBIFS disables readahead.
52 #include "ubifs.h"
53 #include <linux/mount.h>
54 #include <linux/slab.h>
55 #include <linux/migrate.h>
57 static int read_block(struct inode *inode, void *addr, unsigned int block,
58 struct ubifs_data_node *dn)
60 struct ubifs_info *c = inode->i_sb->s_fs_info;
61 int err, len, out_len;
62 union ubifs_key key;
63 unsigned int dlen;
65 data_key_init(c, &key, inode->i_ino, block);
66 err = ubifs_tnc_lookup(c, &key, dn);
67 if (err) {
68 if (err == -ENOENT)
69 /* Not found, so it must be a hole */
70 memset(addr, 0, UBIFS_BLOCK_SIZE);
71 return err;
74 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
75 ubifs_inode(inode)->creat_sqnum);
76 len = le32_to_cpu(dn->size);
77 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
78 goto dump;
80 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
82 if (ubifs_crypt_is_encrypted(inode)) {
83 err = ubifs_decrypt(inode, dn, &dlen, block);
84 if (err)
85 goto dump;
88 out_len = UBIFS_BLOCK_SIZE;
89 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
90 le16_to_cpu(dn->compr_type));
91 if (err || len != out_len)
92 goto dump;
95 * Data length can be less than a full block, even for blocks that are
96 * not the last in the file (e.g., as a result of making a hole and
97 * appending data). Ensure that the remainder is zeroed out.
99 if (len < UBIFS_BLOCK_SIZE)
100 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
102 return 0;
104 dump:
105 ubifs_err(c, "bad data node (block %u, inode %lu)",
106 block, inode->i_ino);
107 ubifs_dump_node(c, dn);
108 return -EINVAL;
111 static int do_readpage(struct page *page)
113 void *addr;
114 int err = 0, i;
115 unsigned int block, beyond;
116 struct ubifs_data_node *dn;
117 struct inode *inode = page->mapping->host;
118 struct ubifs_info *c = inode->i_sb->s_fs_info;
119 loff_t i_size = i_size_read(inode);
121 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
122 inode->i_ino, page->index, i_size, page->flags);
123 ubifs_assert(c, !PageChecked(page));
124 ubifs_assert(c, !PagePrivate(page));
126 addr = kmap(page);
128 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
129 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
130 if (block >= beyond) {
131 /* Reading beyond inode */
132 SetPageChecked(page);
133 memset(addr, 0, PAGE_SIZE);
134 goto out;
137 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
138 if (!dn) {
139 err = -ENOMEM;
140 goto error;
143 i = 0;
144 while (1) {
145 int ret;
147 if (block >= beyond) {
148 /* Reading beyond inode */
149 err = -ENOENT;
150 memset(addr, 0, UBIFS_BLOCK_SIZE);
151 } else {
152 ret = read_block(inode, addr, block, dn);
153 if (ret) {
154 err = ret;
155 if (err != -ENOENT)
156 break;
157 } else if (block + 1 == beyond) {
158 int dlen = le32_to_cpu(dn->size);
159 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
161 if (ilen && ilen < dlen)
162 memset(addr + ilen, 0, dlen - ilen);
165 if (++i >= UBIFS_BLOCKS_PER_PAGE)
166 break;
167 block += 1;
168 addr += UBIFS_BLOCK_SIZE;
170 if (err) {
171 struct ubifs_info *c = inode->i_sb->s_fs_info;
172 if (err == -ENOENT) {
173 /* Not found, so it must be a hole */
174 SetPageChecked(page);
175 dbg_gen("hole");
176 goto out_free;
178 ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
179 page->index, inode->i_ino, err);
180 goto error;
183 out_free:
184 kfree(dn);
185 out:
186 SetPageUptodate(page);
187 ClearPageError(page);
188 flush_dcache_page(page);
189 kunmap(page);
190 return 0;
192 error:
193 kfree(dn);
194 ClearPageUptodate(page);
195 SetPageError(page);
196 flush_dcache_page(page);
197 kunmap(page);
198 return err;
202 * release_new_page_budget - release budget of a new page.
203 * @c: UBIFS file-system description object
205 * This is a helper function which releases budget corresponding to the budget
206 * of one new page of data.
208 static void release_new_page_budget(struct ubifs_info *c)
210 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
212 ubifs_release_budget(c, &req);
216 * release_existing_page_budget - release budget of an existing page.
217 * @c: UBIFS file-system description object
219 * This is a helper function which releases budget corresponding to the budget
220 * of changing one one page of data which already exists on the flash media.
222 static void release_existing_page_budget(struct ubifs_info *c)
224 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
226 ubifs_release_budget(c, &req);
229 static int write_begin_slow(struct address_space *mapping,
230 loff_t pos, unsigned len, struct page **pagep,
231 unsigned flags)
233 struct inode *inode = mapping->host;
234 struct ubifs_info *c = inode->i_sb->s_fs_info;
235 pgoff_t index = pos >> PAGE_SHIFT;
236 struct ubifs_budget_req req = { .new_page = 1 };
237 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
238 struct page *page;
240 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
241 inode->i_ino, pos, len, inode->i_size);
244 * At the slow path we have to budget before locking the page, because
245 * budgeting may force write-back, which would wait on locked pages and
246 * deadlock if we had the page locked. At this point we do not know
247 * anything about the page, so assume that this is a new page which is
248 * written to a hole. This corresponds to largest budget. Later the
249 * budget will be amended if this is not true.
251 if (appending)
252 /* We are appending data, budget for inode change */
253 req.dirtied_ino = 1;
255 err = ubifs_budget_space(c, &req);
256 if (unlikely(err))
257 return err;
259 page = grab_cache_page_write_begin(mapping, index, flags);
260 if (unlikely(!page)) {
261 ubifs_release_budget(c, &req);
262 return -ENOMEM;
265 if (!PageUptodate(page)) {
266 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
267 SetPageChecked(page);
268 else {
269 err = do_readpage(page);
270 if (err) {
271 unlock_page(page);
272 put_page(page);
273 ubifs_release_budget(c, &req);
274 return err;
278 SetPageUptodate(page);
279 ClearPageError(page);
282 if (PagePrivate(page))
284 * The page is dirty, which means it was budgeted twice:
285 * o first time the budget was allocated by the task which
286 * made the page dirty and set the PG_private flag;
287 * o and then we budgeted for it for the second time at the
288 * very beginning of this function.
290 * So what we have to do is to release the page budget we
291 * allocated.
293 release_new_page_budget(c);
294 else if (!PageChecked(page))
296 * We are changing a page which already exists on the media.
297 * This means that changing the page does not make the amount
298 * of indexing information larger, and this part of the budget
299 * which we have already acquired may be released.
301 ubifs_convert_page_budget(c);
303 if (appending) {
304 struct ubifs_inode *ui = ubifs_inode(inode);
307 * 'ubifs_write_end()' is optimized from the fast-path part of
308 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
309 * if data is appended.
311 mutex_lock(&ui->ui_mutex);
312 if (ui->dirty)
314 * The inode is dirty already, so we may free the
315 * budget we allocated.
317 ubifs_release_dirty_inode_budget(c, ui);
320 *pagep = page;
321 return 0;
325 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
326 * @c: UBIFS file-system description object
327 * @page: page to allocate budget for
328 * @ui: UBIFS inode object the page belongs to
329 * @appending: non-zero if the page is appended
331 * This is a helper function for 'ubifs_write_begin()' which allocates budget
332 * for the operation. The budget is allocated differently depending on whether
333 * this is appending, whether the page is dirty or not, and so on. This
334 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
335 * in case of success and %-ENOSPC in case of failure.
337 static int allocate_budget(struct ubifs_info *c, struct page *page,
338 struct ubifs_inode *ui, int appending)
340 struct ubifs_budget_req req = { .fast = 1 };
342 if (PagePrivate(page)) {
343 if (!appending)
345 * The page is dirty and we are not appending, which
346 * means no budget is needed at all.
348 return 0;
350 mutex_lock(&ui->ui_mutex);
351 if (ui->dirty)
353 * The page is dirty and we are appending, so the inode
354 * has to be marked as dirty. However, it is already
355 * dirty, so we do not need any budget. We may return,
356 * but @ui->ui_mutex hast to be left locked because we
357 * should prevent write-back from flushing the inode
358 * and freeing the budget. The lock will be released in
359 * 'ubifs_write_end()'.
361 return 0;
364 * The page is dirty, we are appending, the inode is clean, so
365 * we need to budget the inode change.
367 req.dirtied_ino = 1;
368 } else {
369 if (PageChecked(page))
371 * The page corresponds to a hole and does not
372 * exist on the media. So changing it makes
373 * make the amount of indexing information
374 * larger, and we have to budget for a new
375 * page.
377 req.new_page = 1;
378 else
380 * Not a hole, the change will not add any new
381 * indexing information, budget for page
382 * change.
384 req.dirtied_page = 1;
386 if (appending) {
387 mutex_lock(&ui->ui_mutex);
388 if (!ui->dirty)
390 * The inode is clean but we will have to mark
391 * it as dirty because we are appending. This
392 * needs a budget.
394 req.dirtied_ino = 1;
398 return ubifs_budget_space(c, &req);
402 * This function is called when a page of data is going to be written. Since
403 * the page of data will not necessarily go to the flash straight away, UBIFS
404 * has to reserve space on the media for it, which is done by means of
405 * budgeting.
407 * This is the hot-path of the file-system and we are trying to optimize it as
408 * much as possible. For this reasons it is split on 2 parts - slow and fast.
410 * There many budgeting cases:
411 * o a new page is appended - we have to budget for a new page and for
412 * changing the inode; however, if the inode is already dirty, there is
413 * no need to budget for it;
414 * o an existing clean page is changed - we have budget for it; if the page
415 * does not exist on the media (a hole), we have to budget for a new
416 * page; otherwise, we may budget for changing an existing page; the
417 * difference between these cases is that changing an existing page does
418 * not introduce anything new to the FS indexing information, so it does
419 * not grow, and smaller budget is acquired in this case;
420 * o an existing dirty page is changed - no need to budget at all, because
421 * the page budget has been acquired by earlier, when the page has been
422 * marked dirty.
424 * UBIFS budgeting sub-system may force write-back if it thinks there is no
425 * space to reserve. This imposes some locking restrictions and makes it
426 * impossible to take into account the above cases, and makes it impossible to
427 * optimize budgeting.
429 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
430 * there is a plenty of flash space and the budget will be acquired quickly,
431 * without forcing write-back. The slow path does not make this assumption.
433 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
434 loff_t pos, unsigned len, unsigned flags,
435 struct page **pagep, void **fsdata)
437 struct inode *inode = mapping->host;
438 struct ubifs_info *c = inode->i_sb->s_fs_info;
439 struct ubifs_inode *ui = ubifs_inode(inode);
440 pgoff_t index = pos >> PAGE_SHIFT;
441 int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
442 int skipped_read = 0;
443 struct page *page;
445 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
446 ubifs_assert(c, !c->ro_media && !c->ro_mount);
448 if (unlikely(c->ro_error))
449 return -EROFS;
451 /* Try out the fast-path part first */
452 page = grab_cache_page_write_begin(mapping, index, flags);
453 if (unlikely(!page))
454 return -ENOMEM;
456 if (!PageUptodate(page)) {
457 /* The page is not loaded from the flash */
458 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
460 * We change whole page so no need to load it. But we
461 * do not know whether this page exists on the media or
462 * not, so we assume the latter because it requires
463 * larger budget. The assumption is that it is better
464 * to budget a bit more than to read the page from the
465 * media. Thus, we are setting the @PG_checked flag
466 * here.
468 SetPageChecked(page);
469 skipped_read = 1;
470 } else {
471 err = do_readpage(page);
472 if (err) {
473 unlock_page(page);
474 put_page(page);
475 return err;
479 SetPageUptodate(page);
480 ClearPageError(page);
483 err = allocate_budget(c, page, ui, appending);
484 if (unlikely(err)) {
485 ubifs_assert(c, err == -ENOSPC);
487 * If we skipped reading the page because we were going to
488 * write all of it, then it is not up to date.
490 if (skipped_read) {
491 ClearPageChecked(page);
492 ClearPageUptodate(page);
495 * Budgeting failed which means it would have to force
496 * write-back but didn't, because we set the @fast flag in the
497 * request. Write-back cannot be done now, while we have the
498 * page locked, because it would deadlock. Unlock and free
499 * everything and fall-back to slow-path.
501 if (appending) {
502 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
503 mutex_unlock(&ui->ui_mutex);
505 unlock_page(page);
506 put_page(page);
508 return write_begin_slow(mapping, pos, len, pagep, flags);
512 * Whee, we acquired budgeting quickly - without involving
513 * garbage-collection, committing or forcing write-back. We return
514 * with @ui->ui_mutex locked if we are appending pages, and unlocked
515 * otherwise. This is an optimization (slightly hacky though).
517 *pagep = page;
518 return 0;
523 * cancel_budget - cancel budget.
524 * @c: UBIFS file-system description object
525 * @page: page to cancel budget for
526 * @ui: UBIFS inode object the page belongs to
527 * @appending: non-zero if the page is appended
529 * This is a helper function for a page write operation. It unlocks the
530 * @ui->ui_mutex in case of appending.
532 static void cancel_budget(struct ubifs_info *c, struct page *page,
533 struct ubifs_inode *ui, int appending)
535 if (appending) {
536 if (!ui->dirty)
537 ubifs_release_dirty_inode_budget(c, ui);
538 mutex_unlock(&ui->ui_mutex);
540 if (!PagePrivate(page)) {
541 if (PageChecked(page))
542 release_new_page_budget(c);
543 else
544 release_existing_page_budget(c);
548 static int ubifs_write_end(struct file *file, struct address_space *mapping,
549 loff_t pos, unsigned len, unsigned copied,
550 struct page *page, void *fsdata)
552 struct inode *inode = mapping->host;
553 struct ubifs_inode *ui = ubifs_inode(inode);
554 struct ubifs_info *c = inode->i_sb->s_fs_info;
555 loff_t end_pos = pos + len;
556 int appending = !!(end_pos > inode->i_size);
558 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
559 inode->i_ino, pos, page->index, len, copied, inode->i_size);
561 if (unlikely(copied < len && len == PAGE_SIZE)) {
563 * VFS copied less data to the page that it intended and
564 * declared in its '->write_begin()' call via the @len
565 * argument. If the page was not up-to-date, and @len was
566 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
567 * not load it from the media (for optimization reasons). This
568 * means that part of the page contains garbage. So read the
569 * page now.
571 dbg_gen("copied %d instead of %d, read page and repeat",
572 copied, len);
573 cancel_budget(c, page, ui, appending);
574 ClearPageChecked(page);
577 * Return 0 to force VFS to repeat the whole operation, or the
578 * error code if 'do_readpage()' fails.
580 copied = do_readpage(page);
581 goto out;
584 if (!PagePrivate(page)) {
585 SetPagePrivate(page);
586 atomic_long_inc(&c->dirty_pg_cnt);
587 __set_page_dirty_nobuffers(page);
590 if (appending) {
591 i_size_write(inode, end_pos);
592 ui->ui_size = end_pos;
594 * Note, we do not set @I_DIRTY_PAGES (which means that the
595 * inode has dirty pages), this has been done in
596 * '__set_page_dirty_nobuffers()'.
598 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
599 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
600 mutex_unlock(&ui->ui_mutex);
603 out:
604 unlock_page(page);
605 put_page(page);
606 return copied;
610 * populate_page - copy data nodes into a page for bulk-read.
611 * @c: UBIFS file-system description object
612 * @page: page
613 * @bu: bulk-read information
614 * @n: next zbranch slot
616 * This function returns %0 on success and a negative error code on failure.
618 static int populate_page(struct ubifs_info *c, struct page *page,
619 struct bu_info *bu, int *n)
621 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
622 struct inode *inode = page->mapping->host;
623 loff_t i_size = i_size_read(inode);
624 unsigned int page_block;
625 void *addr, *zaddr;
626 pgoff_t end_index;
628 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
629 inode->i_ino, page->index, i_size, page->flags);
631 addr = zaddr = kmap(page);
633 end_index = (i_size - 1) >> PAGE_SHIFT;
634 if (!i_size || page->index > end_index) {
635 hole = 1;
636 memset(addr, 0, PAGE_SIZE);
637 goto out_hole;
640 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
641 while (1) {
642 int err, len, out_len, dlen;
644 if (nn >= bu->cnt) {
645 hole = 1;
646 memset(addr, 0, UBIFS_BLOCK_SIZE);
647 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
648 struct ubifs_data_node *dn;
650 dn = bu->buf + (bu->zbranch[nn].offs - offs);
652 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
653 ubifs_inode(inode)->creat_sqnum);
655 len = le32_to_cpu(dn->size);
656 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
657 goto out_err;
659 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
660 out_len = UBIFS_BLOCK_SIZE;
662 if (ubifs_crypt_is_encrypted(inode)) {
663 err = ubifs_decrypt(inode, dn, &dlen, page_block);
664 if (err)
665 goto out_err;
668 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
669 le16_to_cpu(dn->compr_type));
670 if (err || len != out_len)
671 goto out_err;
673 if (len < UBIFS_BLOCK_SIZE)
674 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
676 nn += 1;
677 read = (i << UBIFS_BLOCK_SHIFT) + len;
678 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
679 nn += 1;
680 continue;
681 } else {
682 hole = 1;
683 memset(addr, 0, UBIFS_BLOCK_SIZE);
685 if (++i >= UBIFS_BLOCKS_PER_PAGE)
686 break;
687 addr += UBIFS_BLOCK_SIZE;
688 page_block += 1;
691 if (end_index == page->index) {
692 int len = i_size & (PAGE_SIZE - 1);
694 if (len && len < read)
695 memset(zaddr + len, 0, read - len);
698 out_hole:
699 if (hole) {
700 SetPageChecked(page);
701 dbg_gen("hole");
704 SetPageUptodate(page);
705 ClearPageError(page);
706 flush_dcache_page(page);
707 kunmap(page);
708 *n = nn;
709 return 0;
711 out_err:
712 ClearPageUptodate(page);
713 SetPageError(page);
714 flush_dcache_page(page);
715 kunmap(page);
716 ubifs_err(c, "bad data node (block %u, inode %lu)",
717 page_block, inode->i_ino);
718 return -EINVAL;
722 * ubifs_do_bulk_read - do bulk-read.
723 * @c: UBIFS file-system description object
724 * @bu: bulk-read information
725 * @page1: first page to read
727 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
729 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
730 struct page *page1)
732 pgoff_t offset = page1->index, end_index;
733 struct address_space *mapping = page1->mapping;
734 struct inode *inode = mapping->host;
735 struct ubifs_inode *ui = ubifs_inode(inode);
736 int err, page_idx, page_cnt, ret = 0, n = 0;
737 int allocate = bu->buf ? 0 : 1;
738 loff_t isize;
739 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
741 err = ubifs_tnc_get_bu_keys(c, bu);
742 if (err)
743 goto out_warn;
745 if (bu->eof) {
746 /* Turn off bulk-read at the end of the file */
747 ui->read_in_a_row = 1;
748 ui->bulk_read = 0;
751 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
752 if (!page_cnt) {
754 * This happens when there are multiple blocks per page and the
755 * blocks for the first page we are looking for, are not
756 * together. If all the pages were like this, bulk-read would
757 * reduce performance, so we turn it off for a while.
759 goto out_bu_off;
762 if (bu->cnt) {
763 if (allocate) {
765 * Allocate bulk-read buffer depending on how many data
766 * nodes we are going to read.
768 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
769 bu->zbranch[bu->cnt - 1].len -
770 bu->zbranch[0].offs;
771 ubifs_assert(c, bu->buf_len > 0);
772 ubifs_assert(c, bu->buf_len <= c->leb_size);
773 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
774 if (!bu->buf)
775 goto out_bu_off;
778 err = ubifs_tnc_bulk_read(c, bu);
779 if (err)
780 goto out_warn;
783 err = populate_page(c, page1, bu, &n);
784 if (err)
785 goto out_warn;
787 unlock_page(page1);
788 ret = 1;
790 isize = i_size_read(inode);
791 if (isize == 0)
792 goto out_free;
793 end_index = ((isize - 1) >> PAGE_SHIFT);
795 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
796 pgoff_t page_offset = offset + page_idx;
797 struct page *page;
799 if (page_offset > end_index)
800 break;
801 page = find_or_create_page(mapping, page_offset, ra_gfp_mask);
802 if (!page)
803 break;
804 if (!PageUptodate(page))
805 err = populate_page(c, page, bu, &n);
806 unlock_page(page);
807 put_page(page);
808 if (err)
809 break;
812 ui->last_page_read = offset + page_idx - 1;
814 out_free:
815 if (allocate)
816 kfree(bu->buf);
817 return ret;
819 out_warn:
820 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
821 goto out_free;
823 out_bu_off:
824 ui->read_in_a_row = ui->bulk_read = 0;
825 goto out_free;
829 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
830 * @page: page from which to start bulk-read.
832 * Some flash media are capable of reading sequentially at faster rates. UBIFS
833 * bulk-read facility is designed to take advantage of that, by reading in one
834 * go consecutive data nodes that are also located consecutively in the same
835 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
837 static int ubifs_bulk_read(struct page *page)
839 struct inode *inode = page->mapping->host;
840 struct ubifs_info *c = inode->i_sb->s_fs_info;
841 struct ubifs_inode *ui = ubifs_inode(inode);
842 pgoff_t index = page->index, last_page_read = ui->last_page_read;
843 struct bu_info *bu;
844 int err = 0, allocated = 0;
846 ui->last_page_read = index;
847 if (!c->bulk_read)
848 return 0;
851 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
852 * so don't bother if we cannot lock the mutex.
854 if (!mutex_trylock(&ui->ui_mutex))
855 return 0;
857 if (index != last_page_read + 1) {
858 /* Turn off bulk-read if we stop reading sequentially */
859 ui->read_in_a_row = 1;
860 if (ui->bulk_read)
861 ui->bulk_read = 0;
862 goto out_unlock;
865 if (!ui->bulk_read) {
866 ui->read_in_a_row += 1;
867 if (ui->read_in_a_row < 3)
868 goto out_unlock;
869 /* Three reads in a row, so switch on bulk-read */
870 ui->bulk_read = 1;
874 * If possible, try to use pre-allocated bulk-read information, which
875 * is protected by @c->bu_mutex.
877 if (mutex_trylock(&c->bu_mutex))
878 bu = &c->bu;
879 else {
880 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
881 if (!bu)
882 goto out_unlock;
884 bu->buf = NULL;
885 allocated = 1;
888 bu->buf_len = c->max_bu_buf_len;
889 data_key_init(c, &bu->key, inode->i_ino,
890 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
891 err = ubifs_do_bulk_read(c, bu, page);
893 if (!allocated)
894 mutex_unlock(&c->bu_mutex);
895 else
896 kfree(bu);
898 out_unlock:
899 mutex_unlock(&ui->ui_mutex);
900 return err;
903 static int ubifs_readpage(struct file *file, struct page *page)
905 if (ubifs_bulk_read(page))
906 return 0;
907 do_readpage(page);
908 unlock_page(page);
909 return 0;
912 static int do_writepage(struct page *page, int len)
914 int err = 0, i, blen;
915 unsigned int block;
916 void *addr;
917 union ubifs_key key;
918 struct inode *inode = page->mapping->host;
919 struct ubifs_info *c = inode->i_sb->s_fs_info;
921 #ifdef UBIFS_DEBUG
922 struct ubifs_inode *ui = ubifs_inode(inode);
923 spin_lock(&ui->ui_lock);
924 ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
925 spin_unlock(&ui->ui_lock);
926 #endif
928 /* Update radix tree tags */
929 set_page_writeback(page);
931 addr = kmap(page);
932 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
933 i = 0;
934 while (len) {
935 blen = min_t(int, len, UBIFS_BLOCK_SIZE);
936 data_key_init(c, &key, inode->i_ino, block);
937 err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
938 if (err)
939 break;
940 if (++i >= UBIFS_BLOCKS_PER_PAGE)
941 break;
942 block += 1;
943 addr += blen;
944 len -= blen;
946 if (err) {
947 SetPageError(page);
948 ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
949 page->index, inode->i_ino, err);
950 ubifs_ro_mode(c, err);
953 ubifs_assert(c, PagePrivate(page));
954 if (PageChecked(page))
955 release_new_page_budget(c);
956 else
957 release_existing_page_budget(c);
959 atomic_long_dec(&c->dirty_pg_cnt);
960 ClearPagePrivate(page);
961 ClearPageChecked(page);
963 kunmap(page);
964 unlock_page(page);
965 end_page_writeback(page);
966 return err;
970 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
971 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
972 * situation when a we have an inode with size 0, then a megabyte of data is
973 * appended to the inode, then write-back starts and flushes some amount of the
974 * dirty pages, the journal becomes full, commit happens and finishes, and then
975 * an unclean reboot happens. When the file system is mounted next time, the
976 * inode size would still be 0, but there would be many pages which are beyond
977 * the inode size, they would be indexed and consume flash space. Because the
978 * journal has been committed, the replay would not be able to detect this
979 * situation and correct the inode size. This means UBIFS would have to scan
980 * whole index and correct all inode sizes, which is long an unacceptable.
982 * To prevent situations like this, UBIFS writes pages back only if they are
983 * within the last synchronized inode size, i.e. the size which has been
984 * written to the flash media last time. Otherwise, UBIFS forces inode
985 * write-back, thus making sure the on-flash inode contains current inode size,
986 * and then keeps writing pages back.
988 * Some locking issues explanation. 'ubifs_writepage()' first is called with
989 * the page locked, and it locks @ui_mutex. However, write-back does take inode
990 * @i_mutex, which means other VFS operations may be run on this inode at the
991 * same time. And the problematic one is truncation to smaller size, from where
992 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
993 * then drops the truncated pages. And while dropping the pages, it takes the
994 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
995 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
996 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
998 * XXX(truncate): with the new truncate sequence this is not true anymore,
999 * and the calls to truncate_setsize can be move around freely. They should
1000 * be moved to the very end of the truncate sequence.
1002 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
1003 * inode size. How do we do this if @inode->i_size may became smaller while we
1004 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
1005 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
1006 * internally and updates it under @ui_mutex.
1008 * Q: why we do not worry that if we race with truncation, we may end up with a
1009 * situation when the inode is truncated while we are in the middle of
1010 * 'do_writepage()', so we do write beyond inode size?
1011 * A: If we are in the middle of 'do_writepage()', truncation would be locked
1012 * on the page lock and it would not write the truncated inode node to the
1013 * journal before we have finished.
1015 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1017 struct inode *inode = page->mapping->host;
1018 struct ubifs_info *c = inode->i_sb->s_fs_info;
1019 struct ubifs_inode *ui = ubifs_inode(inode);
1020 loff_t i_size = i_size_read(inode), synced_i_size;
1021 pgoff_t end_index = i_size >> PAGE_SHIFT;
1022 int err, len = i_size & (PAGE_SIZE - 1);
1023 void *kaddr;
1025 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1026 inode->i_ino, page->index, page->flags);
1027 ubifs_assert(c, PagePrivate(page));
1029 /* Is the page fully outside @i_size? (truncate in progress) */
1030 if (page->index > end_index || (page->index == end_index && !len)) {
1031 err = 0;
1032 goto out_unlock;
1035 spin_lock(&ui->ui_lock);
1036 synced_i_size = ui->synced_i_size;
1037 spin_unlock(&ui->ui_lock);
1039 /* Is the page fully inside @i_size? */
1040 if (page->index < end_index) {
1041 if (page->index >= synced_i_size >> PAGE_SHIFT) {
1042 err = inode->i_sb->s_op->write_inode(inode, NULL);
1043 if (err)
1044 goto out_unlock;
1046 * The inode has been written, but the write-buffer has
1047 * not been synchronized, so in case of an unclean
1048 * reboot we may end up with some pages beyond inode
1049 * size, but they would be in the journal (because
1050 * commit flushes write buffers) and recovery would deal
1051 * with this.
1054 return do_writepage(page, PAGE_SIZE);
1058 * The page straddles @i_size. It must be zeroed out on each and every
1059 * writepage invocation because it may be mmapped. "A file is mapped
1060 * in multiples of the page size. For a file that is not a multiple of
1061 * the page size, the remaining memory is zeroed when mapped, and
1062 * writes to that region are not written out to the file."
1064 kaddr = kmap_atomic(page);
1065 memset(kaddr + len, 0, PAGE_SIZE - len);
1066 flush_dcache_page(page);
1067 kunmap_atomic(kaddr);
1069 if (i_size > synced_i_size) {
1070 err = inode->i_sb->s_op->write_inode(inode, NULL);
1071 if (err)
1072 goto out_unlock;
1075 return do_writepage(page, len);
1077 out_unlock:
1078 unlock_page(page);
1079 return err;
1083 * do_attr_changes - change inode attributes.
1084 * @inode: inode to change attributes for
1085 * @attr: describes attributes to change
1087 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1089 if (attr->ia_valid & ATTR_UID)
1090 inode->i_uid = attr->ia_uid;
1091 if (attr->ia_valid & ATTR_GID)
1092 inode->i_gid = attr->ia_gid;
1093 if (attr->ia_valid & ATTR_ATIME)
1094 inode->i_atime = timespec64_trunc(attr->ia_atime,
1095 inode->i_sb->s_time_gran);
1096 if (attr->ia_valid & ATTR_MTIME)
1097 inode->i_mtime = timespec64_trunc(attr->ia_mtime,
1098 inode->i_sb->s_time_gran);
1099 if (attr->ia_valid & ATTR_CTIME)
1100 inode->i_ctime = timespec64_trunc(attr->ia_ctime,
1101 inode->i_sb->s_time_gran);
1102 if (attr->ia_valid & ATTR_MODE) {
1103 umode_t mode = attr->ia_mode;
1105 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1106 mode &= ~S_ISGID;
1107 inode->i_mode = mode;
1112 * do_truncation - truncate an inode.
1113 * @c: UBIFS file-system description object
1114 * @inode: inode to truncate
1115 * @attr: inode attribute changes description
1117 * This function implements VFS '->setattr()' call when the inode is truncated
1118 * to a smaller size. Returns zero in case of success and a negative error code
1119 * in case of failure.
1121 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1122 const struct iattr *attr)
1124 int err;
1125 struct ubifs_budget_req req;
1126 loff_t old_size = inode->i_size, new_size = attr->ia_size;
1127 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1128 struct ubifs_inode *ui = ubifs_inode(inode);
1130 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1131 memset(&req, 0, sizeof(struct ubifs_budget_req));
1134 * If this is truncation to a smaller size, and we do not truncate on a
1135 * block boundary, budget for changing one data block, because the last
1136 * block will be re-written.
1138 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1139 req.dirtied_page = 1;
1141 req.dirtied_ino = 1;
1142 /* A funny way to budget for truncation node */
1143 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1144 err = ubifs_budget_space(c, &req);
1145 if (err) {
1147 * Treat truncations to zero as deletion and always allow them,
1148 * just like we do for '->unlink()'.
1150 if (new_size || err != -ENOSPC)
1151 return err;
1152 budgeted = 0;
1155 truncate_setsize(inode, new_size);
1157 if (offset) {
1158 pgoff_t index = new_size >> PAGE_SHIFT;
1159 struct page *page;
1161 page = find_lock_page(inode->i_mapping, index);
1162 if (page) {
1163 if (PageDirty(page)) {
1165 * 'ubifs_jnl_truncate()' will try to truncate
1166 * the last data node, but it contains
1167 * out-of-date data because the page is dirty.
1168 * Write the page now, so that
1169 * 'ubifs_jnl_truncate()' will see an already
1170 * truncated (and up to date) data node.
1172 ubifs_assert(c, PagePrivate(page));
1174 clear_page_dirty_for_io(page);
1175 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1176 offset = new_size &
1177 (PAGE_SIZE - 1);
1178 err = do_writepage(page, offset);
1179 put_page(page);
1180 if (err)
1181 goto out_budg;
1183 * We could now tell 'ubifs_jnl_truncate()' not
1184 * to read the last block.
1186 } else {
1188 * We could 'kmap()' the page and pass the data
1189 * to 'ubifs_jnl_truncate()' to save it from
1190 * having to read it.
1192 unlock_page(page);
1193 put_page(page);
1198 mutex_lock(&ui->ui_mutex);
1199 ui->ui_size = inode->i_size;
1200 /* Truncation changes inode [mc]time */
1201 inode->i_mtime = inode->i_ctime = current_time(inode);
1202 /* Other attributes may be changed at the same time as well */
1203 do_attr_changes(inode, attr);
1204 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1205 mutex_unlock(&ui->ui_mutex);
1207 out_budg:
1208 if (budgeted)
1209 ubifs_release_budget(c, &req);
1210 else {
1211 c->bi.nospace = c->bi.nospace_rp = 0;
1212 smp_wmb();
1214 return err;
1218 * do_setattr - change inode attributes.
1219 * @c: UBIFS file-system description object
1220 * @inode: inode to change attributes for
1221 * @attr: inode attribute changes description
1223 * This function implements VFS '->setattr()' call for all cases except
1224 * truncations to smaller size. Returns zero in case of success and a negative
1225 * error code in case of failure.
1227 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1228 const struct iattr *attr)
1230 int err, release;
1231 loff_t new_size = attr->ia_size;
1232 struct ubifs_inode *ui = ubifs_inode(inode);
1233 struct ubifs_budget_req req = { .dirtied_ino = 1,
1234 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1236 err = ubifs_budget_space(c, &req);
1237 if (err)
1238 return err;
1240 if (attr->ia_valid & ATTR_SIZE) {
1241 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1242 truncate_setsize(inode, new_size);
1245 mutex_lock(&ui->ui_mutex);
1246 if (attr->ia_valid & ATTR_SIZE) {
1247 /* Truncation changes inode [mc]time */
1248 inode->i_mtime = inode->i_ctime = current_time(inode);
1249 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1250 ui->ui_size = inode->i_size;
1253 do_attr_changes(inode, attr);
1255 release = ui->dirty;
1256 if (attr->ia_valid & ATTR_SIZE)
1258 * Inode length changed, so we have to make sure
1259 * @I_DIRTY_DATASYNC is set.
1261 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1262 else
1263 mark_inode_dirty_sync(inode);
1264 mutex_unlock(&ui->ui_mutex);
1266 if (release)
1267 ubifs_release_budget(c, &req);
1268 if (IS_SYNC(inode))
1269 err = inode->i_sb->s_op->write_inode(inode, NULL);
1270 return err;
1273 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1275 int err;
1276 struct inode *inode = d_inode(dentry);
1277 struct ubifs_info *c = inode->i_sb->s_fs_info;
1279 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1280 inode->i_ino, inode->i_mode, attr->ia_valid);
1281 err = setattr_prepare(dentry, attr);
1282 if (err)
1283 return err;
1285 err = dbg_check_synced_i_size(c, inode);
1286 if (err)
1287 return err;
1289 err = fscrypt_prepare_setattr(dentry, attr);
1290 if (err)
1291 return err;
1293 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1294 /* Truncation to a smaller size */
1295 err = do_truncation(c, inode, attr);
1296 else
1297 err = do_setattr(c, inode, attr);
1299 return err;
1302 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1303 unsigned int length)
1305 struct inode *inode = page->mapping->host;
1306 struct ubifs_info *c = inode->i_sb->s_fs_info;
1308 ubifs_assert(c, PagePrivate(page));
1309 if (offset || length < PAGE_SIZE)
1310 /* Partial page remains dirty */
1311 return;
1313 if (PageChecked(page))
1314 release_new_page_budget(c);
1315 else
1316 release_existing_page_budget(c);
1318 atomic_long_dec(&c->dirty_pg_cnt);
1319 ClearPagePrivate(page);
1320 ClearPageChecked(page);
1323 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1325 struct inode *inode = file->f_mapping->host;
1326 struct ubifs_info *c = inode->i_sb->s_fs_info;
1327 int err;
1329 dbg_gen("syncing inode %lu", inode->i_ino);
1331 if (c->ro_mount)
1333 * For some really strange reasons VFS does not filter out
1334 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1336 return 0;
1338 err = file_write_and_wait_range(file, start, end);
1339 if (err)
1340 return err;
1341 inode_lock(inode);
1343 /* Synchronize the inode unless this is a 'datasync()' call. */
1344 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1345 err = inode->i_sb->s_op->write_inode(inode, NULL);
1346 if (err)
1347 goto out;
1351 * Nodes related to this inode may still sit in a write-buffer. Flush
1352 * them.
1354 err = ubifs_sync_wbufs_by_inode(c, inode);
1355 out:
1356 inode_unlock(inode);
1357 return err;
1361 * mctime_update_needed - check if mtime or ctime update is needed.
1362 * @inode: the inode to do the check for
1363 * @now: current time
1365 * This helper function checks if the inode mtime/ctime should be updated or
1366 * not. If current values of the time-stamps are within the UBIFS inode time
1367 * granularity, they are not updated. This is an optimization.
1369 static inline int mctime_update_needed(const struct inode *inode,
1370 const struct timespec64 *now)
1372 if (!timespec64_equal(&inode->i_mtime, now) ||
1373 !timespec64_equal(&inode->i_ctime, now))
1374 return 1;
1375 return 0;
1378 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1380 * ubifs_update_time - update time of inode.
1381 * @inode: inode to update
1383 * This function updates time of the inode.
1385 int ubifs_update_time(struct inode *inode, struct timespec64 *time,
1386 int flags)
1388 struct ubifs_inode *ui = ubifs_inode(inode);
1389 struct ubifs_info *c = inode->i_sb->s_fs_info;
1390 struct ubifs_budget_req req = { .dirtied_ino = 1,
1391 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1392 int iflags = I_DIRTY_TIME;
1393 int err, release;
1395 err = ubifs_budget_space(c, &req);
1396 if (err)
1397 return err;
1399 mutex_lock(&ui->ui_mutex);
1400 if (flags & S_ATIME)
1401 inode->i_atime = *time;
1402 if (flags & S_CTIME)
1403 inode->i_ctime = *time;
1404 if (flags & S_MTIME)
1405 inode->i_mtime = *time;
1407 if (!(inode->i_sb->s_flags & SB_LAZYTIME))
1408 iflags |= I_DIRTY_SYNC;
1410 release = ui->dirty;
1411 __mark_inode_dirty(inode, iflags);
1412 mutex_unlock(&ui->ui_mutex);
1413 if (release)
1414 ubifs_release_budget(c, &req);
1415 return 0;
1417 #endif
1420 * update_mctime - update mtime and ctime of an inode.
1421 * @inode: inode to update
1423 * This function updates mtime and ctime of the inode if it is not equivalent to
1424 * current time. Returns zero in case of success and a negative error code in
1425 * case of failure.
1427 static int update_mctime(struct inode *inode)
1429 struct timespec64 now = current_time(inode);
1430 struct ubifs_inode *ui = ubifs_inode(inode);
1431 struct ubifs_info *c = inode->i_sb->s_fs_info;
1433 if (mctime_update_needed(inode, &now)) {
1434 int err, release;
1435 struct ubifs_budget_req req = { .dirtied_ino = 1,
1436 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1438 err = ubifs_budget_space(c, &req);
1439 if (err)
1440 return err;
1442 mutex_lock(&ui->ui_mutex);
1443 inode->i_mtime = inode->i_ctime = current_time(inode);
1444 release = ui->dirty;
1445 mark_inode_dirty_sync(inode);
1446 mutex_unlock(&ui->ui_mutex);
1447 if (release)
1448 ubifs_release_budget(c, &req);
1451 return 0;
1454 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1456 int err = update_mctime(file_inode(iocb->ki_filp));
1457 if (err)
1458 return err;
1460 return generic_file_write_iter(iocb, from);
1463 static int ubifs_set_page_dirty(struct page *page)
1465 int ret;
1466 struct inode *inode = page->mapping->host;
1467 struct ubifs_info *c = inode->i_sb->s_fs_info;
1469 ret = __set_page_dirty_nobuffers(page);
1471 * An attempt to dirty a page without budgeting for it - should not
1472 * happen.
1474 ubifs_assert(c, ret == 0);
1475 return ret;
1478 #ifdef CONFIG_MIGRATION
1479 static int ubifs_migrate_page(struct address_space *mapping,
1480 struct page *newpage, struct page *page, enum migrate_mode mode)
1482 int rc;
1484 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
1485 if (rc != MIGRATEPAGE_SUCCESS)
1486 return rc;
1488 if (PagePrivate(page)) {
1489 ClearPagePrivate(page);
1490 SetPagePrivate(newpage);
1493 if (mode != MIGRATE_SYNC_NO_COPY)
1494 migrate_page_copy(newpage, page);
1495 else
1496 migrate_page_states(newpage, page);
1497 return MIGRATEPAGE_SUCCESS;
1499 #endif
1501 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1503 struct inode *inode = page->mapping->host;
1504 struct ubifs_info *c = inode->i_sb->s_fs_info;
1507 * An attempt to release a dirty page without budgeting for it - should
1508 * not happen.
1510 if (PageWriteback(page))
1511 return 0;
1512 ubifs_assert(c, PagePrivate(page));
1513 ubifs_assert(c, 0);
1514 ClearPagePrivate(page);
1515 ClearPageChecked(page);
1516 return 1;
1520 * mmap()d file has taken write protection fault and is being made writable.
1521 * UBIFS must ensure page is budgeted for.
1523 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1525 struct page *page = vmf->page;
1526 struct inode *inode = file_inode(vmf->vma->vm_file);
1527 struct ubifs_info *c = inode->i_sb->s_fs_info;
1528 struct timespec64 now = current_time(inode);
1529 struct ubifs_budget_req req = { .new_page = 1 };
1530 int err, update_time;
1532 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index,
1533 i_size_read(inode));
1534 ubifs_assert(c, !c->ro_media && !c->ro_mount);
1536 if (unlikely(c->ro_error))
1537 return VM_FAULT_SIGBUS; /* -EROFS */
1540 * We have not locked @page so far so we may budget for changing the
1541 * page. Note, we cannot do this after we locked the page, because
1542 * budgeting may cause write-back which would cause deadlock.
1544 * At the moment we do not know whether the page is dirty or not, so we
1545 * assume that it is not and budget for a new page. We could look at
1546 * the @PG_private flag and figure this out, but we may race with write
1547 * back and the page state may change by the time we lock it, so this
1548 * would need additional care. We do not bother with this at the
1549 * moment, although it might be good idea to do. Instead, we allocate
1550 * budget for a new page and amend it later on if the page was in fact
1551 * dirty.
1553 * The budgeting-related logic of this function is similar to what we
1554 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1555 * for more comments.
1557 update_time = mctime_update_needed(inode, &now);
1558 if (update_time)
1560 * We have to change inode time stamp which requires extra
1561 * budgeting.
1563 req.dirtied_ino = 1;
1565 err = ubifs_budget_space(c, &req);
1566 if (unlikely(err)) {
1567 if (err == -ENOSPC)
1568 ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1569 inode->i_ino);
1570 return VM_FAULT_SIGBUS;
1573 lock_page(page);
1574 if (unlikely(page->mapping != inode->i_mapping ||
1575 page_offset(page) > i_size_read(inode))) {
1576 /* Page got truncated out from underneath us */
1577 goto sigbus;
1580 if (PagePrivate(page))
1581 release_new_page_budget(c);
1582 else {
1583 if (!PageChecked(page))
1584 ubifs_convert_page_budget(c);
1585 SetPagePrivate(page);
1586 atomic_long_inc(&c->dirty_pg_cnt);
1587 __set_page_dirty_nobuffers(page);
1590 if (update_time) {
1591 int release;
1592 struct ubifs_inode *ui = ubifs_inode(inode);
1594 mutex_lock(&ui->ui_mutex);
1595 inode->i_mtime = inode->i_ctime = current_time(inode);
1596 release = ui->dirty;
1597 mark_inode_dirty_sync(inode);
1598 mutex_unlock(&ui->ui_mutex);
1599 if (release)
1600 ubifs_release_dirty_inode_budget(c, ui);
1603 wait_for_stable_page(page);
1604 return VM_FAULT_LOCKED;
1606 sigbus:
1607 unlock_page(page);
1608 ubifs_release_budget(c, &req);
1609 return VM_FAULT_SIGBUS;
1612 static const struct vm_operations_struct ubifs_file_vm_ops = {
1613 .fault = filemap_fault,
1614 .map_pages = filemap_map_pages,
1615 .page_mkwrite = ubifs_vm_page_mkwrite,
1618 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1620 int err;
1622 err = generic_file_mmap(file, vma);
1623 if (err)
1624 return err;
1625 vma->vm_ops = &ubifs_file_vm_ops;
1626 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1627 file_accessed(file);
1628 #endif
1629 return 0;
1632 static const char *ubifs_get_link(struct dentry *dentry,
1633 struct inode *inode,
1634 struct delayed_call *done)
1636 struct ubifs_inode *ui = ubifs_inode(inode);
1638 if (!IS_ENCRYPTED(inode))
1639 return ui->data;
1641 if (!dentry)
1642 return ERR_PTR(-ECHILD);
1644 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1647 const struct address_space_operations ubifs_file_address_operations = {
1648 .readpage = ubifs_readpage,
1649 .writepage = ubifs_writepage,
1650 .write_begin = ubifs_write_begin,
1651 .write_end = ubifs_write_end,
1652 .invalidatepage = ubifs_invalidatepage,
1653 .set_page_dirty = ubifs_set_page_dirty,
1654 #ifdef CONFIG_MIGRATION
1655 .migratepage = ubifs_migrate_page,
1656 #endif
1657 .releasepage = ubifs_releasepage,
1660 const struct inode_operations ubifs_file_inode_operations = {
1661 .setattr = ubifs_setattr,
1662 .getattr = ubifs_getattr,
1663 #ifdef CONFIG_UBIFS_FS_XATTR
1664 .listxattr = ubifs_listxattr,
1665 #endif
1666 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1667 .update_time = ubifs_update_time,
1668 #endif
1671 const struct inode_operations ubifs_symlink_inode_operations = {
1672 .get_link = ubifs_get_link,
1673 .setattr = ubifs_setattr,
1674 .getattr = ubifs_getattr,
1675 #ifdef CONFIG_UBIFS_FS_XATTR
1676 .listxattr = ubifs_listxattr,
1677 #endif
1678 #ifdef CONFIG_UBIFS_ATIME_SUPPORT
1679 .update_time = ubifs_update_time,
1680 #endif
1683 const struct file_operations ubifs_file_operations = {
1684 .llseek = generic_file_llseek,
1685 .read_iter = generic_file_read_iter,
1686 .write_iter = ubifs_write_iter,
1687 .mmap = ubifs_file_mmap,
1688 .fsync = ubifs_fsync,
1689 .unlocked_ioctl = ubifs_ioctl,
1690 .splice_read = generic_file_splice_read,
1691 .splice_write = iter_file_splice_write,
1692 .open = fscrypt_file_open,
1693 #ifdef CONFIG_COMPAT
1694 .compat_ioctl = ubifs_compat_ioctl,
1695 #endif