drm/msm: dpu: Remove 'inline' from several functions
[linux/fpc-iii.git] / fs / ubifs / journal.c
blob729dc76c83dffb850354521f96f7cdfabf860051
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements UBIFS journal.
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
43 * only data nodes.
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
49 * journal.
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
58 * all the nodes.
61 #include "ubifs.h"
63 /**
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
69 memset(ino->padding1, 0, 4);
70 memset(ino->padding2, 0, 26);
73 /**
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
75 * entry node.
76 * @dent: the directory entry to zero out
78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
80 dent->padding1 = 0;
83 /**
84 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
85 * node.
86 * @trun: the truncation node to zero out
88 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
90 memset(trun->padding, 0, 12);
93 static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
95 if (ubifs_authenticated(c))
96 ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
99 /**
100 * reserve_space - reserve space in the journal.
101 * @c: UBIFS file-system description object
102 * @jhead: journal head number
103 * @len: node length
105 * This function reserves space in journal head @head. If the reservation
106 * succeeded, the journal head stays locked and later has to be unlocked using
107 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
108 * be done, and other negative error codes in case of other failures.
110 static int reserve_space(struct ubifs_info *c, int jhead, int len)
112 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
113 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
116 * Typically, the base head has smaller nodes written to it, so it is
117 * better to try to allocate space at the ends of eraseblocks. This is
118 * what the squeeze parameter does.
120 ubifs_assert(c, !c->ro_media && !c->ro_mount);
121 squeeze = (jhead == BASEHD);
122 again:
123 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
125 if (c->ro_error) {
126 err = -EROFS;
127 goto out_unlock;
130 avail = c->leb_size - wbuf->offs - wbuf->used;
131 if (wbuf->lnum != -1 && avail >= len)
132 return 0;
135 * Write buffer wasn't seek'ed or there is no enough space - look for an
136 * LEB with some empty space.
138 lnum = ubifs_find_free_space(c, len, &offs, squeeze);
139 if (lnum >= 0)
140 goto out;
142 err = lnum;
143 if (err != -ENOSPC)
144 goto out_unlock;
147 * No free space, we have to run garbage collector to make
148 * some. But the write-buffer mutex has to be unlocked because
149 * GC also takes it.
151 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
152 mutex_unlock(&wbuf->io_mutex);
154 lnum = ubifs_garbage_collect(c, 0);
155 if (lnum < 0) {
156 err = lnum;
157 if (err != -ENOSPC)
158 return err;
161 * GC could not make a free LEB. But someone else may
162 * have allocated new bud for this journal head,
163 * because we dropped @wbuf->io_mutex, so try once
164 * again.
166 dbg_jnl("GC couldn't make a free LEB for jhead %s",
167 dbg_jhead(jhead));
168 if (retries++ < 2) {
169 dbg_jnl("retry (%d)", retries);
170 goto again;
173 dbg_jnl("return -ENOSPC");
174 return err;
177 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
178 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
179 avail = c->leb_size - wbuf->offs - wbuf->used;
181 if (wbuf->lnum != -1 && avail >= len) {
183 * Someone else has switched the journal head and we have
184 * enough space now. This happens when more than one process is
185 * trying to write to the same journal head at the same time.
187 dbg_jnl("return LEB %d back, already have LEB %d:%d",
188 lnum, wbuf->lnum, wbuf->offs + wbuf->used);
189 err = ubifs_return_leb(c, lnum);
190 if (err)
191 goto out_unlock;
192 return 0;
195 offs = 0;
197 out:
199 * Make sure we synchronize the write-buffer before we add the new bud
200 * to the log. Otherwise we may have a power cut after the log
201 * reference node for the last bud (@lnum) is written but before the
202 * write-buffer data are written to the next-to-last bud
203 * (@wbuf->lnum). And the effect would be that the recovery would see
204 * that there is corruption in the next-to-last bud.
206 err = ubifs_wbuf_sync_nolock(wbuf);
207 if (err)
208 goto out_return;
209 err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
210 if (err)
211 goto out_return;
212 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
213 if (err)
214 goto out_unlock;
216 return 0;
218 out_unlock:
219 mutex_unlock(&wbuf->io_mutex);
220 return err;
222 out_return:
223 /* An error occurred and the LEB has to be returned to lprops */
224 ubifs_assert(c, err < 0);
225 err1 = ubifs_return_leb(c, lnum);
226 if (err1 && err == -EAGAIN)
228 * Return original error code only if it is not %-EAGAIN,
229 * which is not really an error. Otherwise, return the error
230 * code of 'ubifs_return_leb()'.
232 err = err1;
233 mutex_unlock(&wbuf->io_mutex);
234 return err;
237 static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
238 int len, struct shash_desc *hash)
240 int auth_node_size = ubifs_auth_node_sz(c);
241 int err;
243 while (1) {
244 const struct ubifs_ch *ch = node;
245 int nodelen = le32_to_cpu(ch->len);
247 ubifs_assert(c, len >= auth_node_size);
249 if (len == auth_node_size)
250 break;
252 ubifs_assert(c, len > nodelen);
253 ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
255 err = ubifs_shash_update(c, hash, (void *)node, nodelen);
256 if (err)
257 return err;
259 node += ALIGN(nodelen, 8);
260 len -= ALIGN(nodelen, 8);
263 return ubifs_prepare_auth_node(c, node, hash);
267 * write_head - write data to a journal head.
268 * @c: UBIFS file-system description object
269 * @jhead: journal head
270 * @buf: buffer to write
271 * @len: length to write
272 * @lnum: LEB number written is returned here
273 * @offs: offset written is returned here
274 * @sync: non-zero if the write-buffer has to by synchronized
276 * This function writes data to the reserved space of journal head @jhead.
277 * Returns zero in case of success and a negative error code in case of
278 * failure.
280 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
281 int *lnum, int *offs, int sync)
283 int err;
284 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
286 ubifs_assert(c, jhead != GCHD);
288 *lnum = c->jheads[jhead].wbuf.lnum;
289 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
290 dbg_jnl("jhead %s, LEB %d:%d, len %d",
291 dbg_jhead(jhead), *lnum, *offs, len);
293 if (ubifs_authenticated(c)) {
294 err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
295 if (err)
296 return err;
299 err = ubifs_wbuf_write_nolock(wbuf, buf, len);
300 if (err)
301 return err;
302 if (sync)
303 err = ubifs_wbuf_sync_nolock(wbuf);
304 return err;
308 * make_reservation - reserve journal space.
309 * @c: UBIFS file-system description object
310 * @jhead: journal head
311 * @len: how many bytes to reserve
313 * This function makes space reservation in journal head @jhead. The function
314 * takes the commit lock and locks the journal head, and the caller has to
315 * unlock the head and finish the reservation with 'finish_reservation()'.
316 * Returns zero in case of success and a negative error code in case of
317 * failure.
319 * Note, the journal head may be unlocked as soon as the data is written, while
320 * the commit lock has to be released after the data has been added to the
321 * TNC.
323 static int make_reservation(struct ubifs_info *c, int jhead, int len)
325 int err, cmt_retries = 0, nospc_retries = 0;
327 again:
328 down_read(&c->commit_sem);
329 err = reserve_space(c, jhead, len);
330 if (!err)
331 /* c->commit_sem will get released via finish_reservation(). */
332 return 0;
333 up_read(&c->commit_sem);
335 if (err == -ENOSPC) {
337 * GC could not make any progress. We should try to commit
338 * once because it could make some dirty space and GC would
339 * make progress, so make the error -EAGAIN so that the below
340 * will commit and re-try.
342 if (nospc_retries++ < 2) {
343 dbg_jnl("no space, retry");
344 err = -EAGAIN;
348 * This means that the budgeting is incorrect. We always have
349 * to be able to write to the media, because all operations are
350 * budgeted. Deletions are not budgeted, though, but we reserve
351 * an extra LEB for them.
355 if (err != -EAGAIN)
356 goto out;
359 * -EAGAIN means that the journal is full or too large, or the above
360 * code wants to do one commit. Do this and re-try.
362 if (cmt_retries > 128) {
364 * This should not happen unless the journal size limitations
365 * are too tough.
367 ubifs_err(c, "stuck in space allocation");
368 err = -ENOSPC;
369 goto out;
370 } else if (cmt_retries > 32)
371 ubifs_warn(c, "too many space allocation re-tries (%d)",
372 cmt_retries);
374 dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
375 cmt_retries);
376 cmt_retries += 1;
378 err = ubifs_run_commit(c);
379 if (err)
380 return err;
381 goto again;
383 out:
384 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
385 len, jhead, err);
386 if (err == -ENOSPC) {
387 /* This are some budgeting problems, print useful information */
388 down_write(&c->commit_sem);
389 dump_stack();
390 ubifs_dump_budg(c, &c->bi);
391 ubifs_dump_lprops(c);
392 cmt_retries = dbg_check_lprops(c);
393 up_write(&c->commit_sem);
395 return err;
399 * release_head - release a journal head.
400 * @c: UBIFS file-system description object
401 * @jhead: journal head
403 * This function releases journal head @jhead which was locked by
404 * the 'make_reservation()' function. It has to be called after each successful
405 * 'make_reservation()' invocation.
407 static inline void release_head(struct ubifs_info *c, int jhead)
409 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
413 * finish_reservation - finish a reservation.
414 * @c: UBIFS file-system description object
416 * This function finishes journal space reservation. It must be called after
417 * 'make_reservation()'.
419 static void finish_reservation(struct ubifs_info *c)
421 up_read(&c->commit_sem);
425 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
426 * @mode: inode mode
428 static int get_dent_type(int mode)
430 switch (mode & S_IFMT) {
431 case S_IFREG:
432 return UBIFS_ITYPE_REG;
433 case S_IFDIR:
434 return UBIFS_ITYPE_DIR;
435 case S_IFLNK:
436 return UBIFS_ITYPE_LNK;
437 case S_IFBLK:
438 return UBIFS_ITYPE_BLK;
439 case S_IFCHR:
440 return UBIFS_ITYPE_CHR;
441 case S_IFIFO:
442 return UBIFS_ITYPE_FIFO;
443 case S_IFSOCK:
444 return UBIFS_ITYPE_SOCK;
445 default:
446 BUG();
448 return 0;
452 * pack_inode - pack an inode node.
453 * @c: UBIFS file-system description object
454 * @ino: buffer in which to pack inode node
455 * @inode: inode to pack
456 * @last: indicates the last node of the group
458 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
459 const struct inode *inode, int last)
461 int data_len = 0, last_reference = !inode->i_nlink;
462 struct ubifs_inode *ui = ubifs_inode(inode);
464 ino->ch.node_type = UBIFS_INO_NODE;
465 ino_key_init_flash(c, &ino->key, inode->i_ino);
466 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
467 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec);
468 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
469 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec);
470 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
471 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec);
472 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
473 ino->uid = cpu_to_le32(i_uid_read(inode));
474 ino->gid = cpu_to_le32(i_gid_read(inode));
475 ino->mode = cpu_to_le32(inode->i_mode);
476 ino->flags = cpu_to_le32(ui->flags);
477 ino->size = cpu_to_le64(ui->ui_size);
478 ino->nlink = cpu_to_le32(inode->i_nlink);
479 ino->compr_type = cpu_to_le16(ui->compr_type);
480 ino->data_len = cpu_to_le32(ui->data_len);
481 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt);
482 ino->xattr_size = cpu_to_le32(ui->xattr_size);
483 ino->xattr_names = cpu_to_le32(ui->xattr_names);
484 zero_ino_node_unused(ino);
487 * Drop the attached data if this is a deletion inode, the data is not
488 * needed anymore.
490 if (!last_reference) {
491 memcpy(ino->data, ui->data, ui->data_len);
492 data_len = ui->data_len;
495 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
499 * mark_inode_clean - mark UBIFS inode as clean.
500 * @c: UBIFS file-system description object
501 * @ui: UBIFS inode to mark as clean
503 * This helper function marks UBIFS inode @ui as clean by cleaning the
504 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
505 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
506 * just do nothing.
508 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
510 if (ui->dirty)
511 ubifs_release_dirty_inode_budget(c, ui);
512 ui->dirty = 0;
515 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
517 if (c->double_hash)
518 dent->cookie = prandom_u32();
519 else
520 dent->cookie = 0;
524 * ubifs_jnl_update - update inode.
525 * @c: UBIFS file-system description object
526 * @dir: parent inode or host inode in case of extended attributes
527 * @nm: directory entry name
528 * @inode: inode to update
529 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
530 * @xent: non-zero if the directory entry is an extended attribute entry
532 * This function updates an inode by writing a directory entry (or extended
533 * attribute entry), the inode itself, and the parent directory inode (or the
534 * host inode) to the journal.
536 * The function writes the host inode @dir last, which is important in case of
537 * extended attributes. Indeed, then we guarantee that if the host inode gets
538 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
539 * the extended attribute inode gets flushed too. And this is exactly what the
540 * user expects - synchronizing the host inode synchronizes its extended
541 * attributes. Similarly, this guarantees that if @dir is synchronized, its
542 * directory entry corresponding to @nm gets synchronized too.
544 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
545 * function synchronizes the write-buffer.
547 * This function marks the @dir and @inode inodes as clean and returns zero on
548 * success. In case of failure, a negative error code is returned.
550 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
551 const struct fscrypt_name *nm, const struct inode *inode,
552 int deletion, int xent)
554 int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
555 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
556 int last_reference = !!(deletion && inode->i_nlink == 0);
557 struct ubifs_inode *ui = ubifs_inode(inode);
558 struct ubifs_inode *host_ui = ubifs_inode(dir);
559 struct ubifs_dent_node *dent;
560 struct ubifs_ino_node *ino;
561 union ubifs_key dent_key, ino_key;
562 u8 hash_dent[UBIFS_HASH_ARR_SZ];
563 u8 hash_ino[UBIFS_HASH_ARR_SZ];
564 u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
566 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
568 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
569 ilen = UBIFS_INO_NODE_SZ;
572 * If the last reference to the inode is being deleted, then there is
573 * no need to attach and write inode data, it is being deleted anyway.
574 * And if the inode is being deleted, no need to synchronize
575 * write-buffer even if the inode is synchronous.
577 if (!last_reference) {
578 ilen += ui->data_len;
579 sync |= IS_SYNC(inode);
582 aligned_dlen = ALIGN(dlen, 8);
583 aligned_ilen = ALIGN(ilen, 8);
585 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
586 /* Make sure to also account for extended attributes */
587 if (ubifs_authenticated(c))
588 len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
589 else
590 len += host_ui->data_len;
592 dent = kzalloc(len, GFP_NOFS);
593 if (!dent)
594 return -ENOMEM;
596 /* Make reservation before allocating sequence numbers */
597 err = make_reservation(c, BASEHD, len);
598 if (err)
599 goto out_free;
601 if (!xent) {
602 dent->ch.node_type = UBIFS_DENT_NODE;
603 if (nm->hash)
604 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
605 else
606 dent_key_init(c, &dent_key, dir->i_ino, nm);
607 } else {
608 dent->ch.node_type = UBIFS_XENT_NODE;
609 xent_key_init(c, &dent_key, dir->i_ino, nm);
612 key_write(c, &dent_key, dent->key);
613 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
614 dent->type = get_dent_type(inode->i_mode);
615 dent->nlen = cpu_to_le16(fname_len(nm));
616 memcpy(dent->name, fname_name(nm), fname_len(nm));
617 dent->name[fname_len(nm)] = '\0';
618 set_dent_cookie(c, dent);
620 zero_dent_node_unused(dent);
621 ubifs_prep_grp_node(c, dent, dlen, 0);
622 err = ubifs_node_calc_hash(c, dent, hash_dent);
623 if (err)
624 goto out_release;
626 ino = (void *)dent + aligned_dlen;
627 pack_inode(c, ino, inode, 0);
628 err = ubifs_node_calc_hash(c, ino, hash_ino);
629 if (err)
630 goto out_release;
632 ino = (void *)ino + aligned_ilen;
633 pack_inode(c, ino, dir, 1);
634 err = ubifs_node_calc_hash(c, ino, hash_ino_host);
635 if (err)
636 goto out_release;
638 if (last_reference) {
639 err = ubifs_add_orphan(c, inode->i_ino);
640 if (err) {
641 release_head(c, BASEHD);
642 goto out_finish;
644 ui->del_cmtno = c->cmt_no;
647 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
648 if (err)
649 goto out_release;
650 if (!sync) {
651 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
653 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
654 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
656 release_head(c, BASEHD);
657 kfree(dent);
658 ubifs_add_auth_dirt(c, lnum);
660 if (deletion) {
661 if (nm->hash)
662 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
663 else
664 err = ubifs_tnc_remove_nm(c, &dent_key, nm);
665 if (err)
666 goto out_ro;
667 err = ubifs_add_dirt(c, lnum, dlen);
668 } else
669 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
670 hash_dent, nm);
671 if (err)
672 goto out_ro;
675 * Note, we do not remove the inode from TNC even if the last reference
676 * to it has just been deleted, because the inode may still be opened.
677 * Instead, the inode has been added to orphan lists and the orphan
678 * subsystem will take further care about it.
680 ino_key_init(c, &ino_key, inode->i_ino);
681 ino_offs = dent_offs + aligned_dlen;
682 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
683 if (err)
684 goto out_ro;
686 ino_key_init(c, &ino_key, dir->i_ino);
687 ino_offs += aligned_ilen;
688 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
689 UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
690 if (err)
691 goto out_ro;
693 finish_reservation(c);
694 spin_lock(&ui->ui_lock);
695 ui->synced_i_size = ui->ui_size;
696 spin_unlock(&ui->ui_lock);
697 if (xent) {
698 spin_lock(&host_ui->ui_lock);
699 host_ui->synced_i_size = host_ui->ui_size;
700 spin_unlock(&host_ui->ui_lock);
702 mark_inode_clean(c, ui);
703 mark_inode_clean(c, host_ui);
704 return 0;
706 out_finish:
707 finish_reservation(c);
708 out_free:
709 kfree(dent);
710 return err;
712 out_release:
713 release_head(c, BASEHD);
714 kfree(dent);
715 out_ro:
716 ubifs_ro_mode(c, err);
717 if (last_reference)
718 ubifs_delete_orphan(c, inode->i_ino);
719 finish_reservation(c);
720 return err;
724 * ubifs_jnl_write_data - write a data node to the journal.
725 * @c: UBIFS file-system description object
726 * @inode: inode the data node belongs to
727 * @key: node key
728 * @buf: buffer to write
729 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
731 * This function writes a data node to the journal. Returns %0 if the data node
732 * was successfully written, and a negative error code in case of failure.
734 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
735 const union ubifs_key *key, const void *buf, int len)
737 struct ubifs_data_node *data;
738 int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
739 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
740 int write_len;
741 struct ubifs_inode *ui = ubifs_inode(inode);
742 bool encrypted = ubifs_crypt_is_encrypted(inode);
743 u8 hash[UBIFS_HASH_ARR_SZ];
745 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
746 (unsigned long)key_inum(c, key), key_block(c, key), len);
747 ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
749 if (encrypted)
750 dlen += UBIFS_CIPHER_BLOCK_SIZE;
752 auth_len = ubifs_auth_node_sz(c);
754 data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
755 if (!data) {
757 * Fall-back to the write reserve buffer. Note, we might be
758 * currently on the memory reclaim path, when the kernel is
759 * trying to free some memory by writing out dirty pages. The
760 * write reserve buffer helps us to guarantee that we are
761 * always able to write the data.
763 allocated = 0;
764 mutex_lock(&c->write_reserve_mutex);
765 data = c->write_reserve_buf;
768 data->ch.node_type = UBIFS_DATA_NODE;
769 key_write(c, key, &data->key);
770 data->size = cpu_to_le32(len);
772 if (!(ui->flags & UBIFS_COMPR_FL))
773 /* Compression is disabled for this inode */
774 compr_type = UBIFS_COMPR_NONE;
775 else
776 compr_type = ui->compr_type;
778 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
779 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
780 ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
782 if (encrypted) {
783 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
784 if (err)
785 goto out_free;
787 } else {
788 data->compr_size = 0;
789 out_len = compr_len;
792 dlen = UBIFS_DATA_NODE_SZ + out_len;
793 if (ubifs_authenticated(c))
794 write_len = ALIGN(dlen, 8) + auth_len;
795 else
796 write_len = dlen;
798 data->compr_type = cpu_to_le16(compr_type);
800 /* Make reservation before allocating sequence numbers */
801 err = make_reservation(c, DATAHD, write_len);
802 if (err)
803 goto out_free;
805 ubifs_prepare_node(c, data, dlen, 0);
806 err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
807 if (err)
808 goto out_release;
810 err = ubifs_node_calc_hash(c, data, hash);
811 if (err)
812 goto out_release;
814 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
815 release_head(c, DATAHD);
817 ubifs_add_auth_dirt(c, lnum);
819 err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
820 if (err)
821 goto out_ro;
823 finish_reservation(c);
824 if (!allocated)
825 mutex_unlock(&c->write_reserve_mutex);
826 else
827 kfree(data);
828 return 0;
830 out_release:
831 release_head(c, DATAHD);
832 out_ro:
833 ubifs_ro_mode(c, err);
834 finish_reservation(c);
835 out_free:
836 if (!allocated)
837 mutex_unlock(&c->write_reserve_mutex);
838 else
839 kfree(data);
840 return err;
844 * ubifs_jnl_write_inode - flush inode to the journal.
845 * @c: UBIFS file-system description object
846 * @inode: inode to flush
848 * This function writes inode @inode to the journal. If the inode is
849 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
850 * success and a negative error code in case of failure.
852 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
854 int err, lnum, offs;
855 struct ubifs_ino_node *ino;
856 struct ubifs_inode *ui = ubifs_inode(inode);
857 int sync = 0, write_len, ilen = UBIFS_INO_NODE_SZ;
858 int last_reference = !inode->i_nlink;
859 u8 hash[UBIFS_HASH_ARR_SZ];
861 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
864 * If the inode is being deleted, do not write the attached data. No
865 * need to synchronize the write-buffer either.
867 if (!last_reference) {
868 ilen += ui->data_len;
869 sync = IS_SYNC(inode);
872 if (ubifs_authenticated(c))
873 write_len = ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
874 else
875 write_len = ilen;
877 ino = kmalloc(write_len, GFP_NOFS);
878 if (!ino)
879 return -ENOMEM;
881 /* Make reservation before allocating sequence numbers */
882 err = make_reservation(c, BASEHD, write_len);
883 if (err)
884 goto out_free;
886 pack_inode(c, ino, inode, 1);
887 err = ubifs_node_calc_hash(c, ino, hash);
888 if (err)
889 goto out_release;
891 err = write_head(c, BASEHD, ino, write_len, &lnum, &offs, sync);
892 if (err)
893 goto out_release;
894 if (!sync)
895 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
896 inode->i_ino);
897 release_head(c, BASEHD);
899 ubifs_add_auth_dirt(c, lnum);
901 if (last_reference) {
902 err = ubifs_tnc_remove_ino(c, inode->i_ino);
903 if (err)
904 goto out_ro;
905 ubifs_delete_orphan(c, inode->i_ino);
906 err = ubifs_add_dirt(c, lnum, ilen);
907 } else {
908 union ubifs_key key;
910 ino_key_init(c, &key, inode->i_ino);
911 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
913 if (err)
914 goto out_ro;
916 finish_reservation(c);
917 spin_lock(&ui->ui_lock);
918 ui->synced_i_size = ui->ui_size;
919 spin_unlock(&ui->ui_lock);
920 kfree(ino);
921 return 0;
923 out_release:
924 release_head(c, BASEHD);
925 out_ro:
926 ubifs_ro_mode(c, err);
927 finish_reservation(c);
928 out_free:
929 kfree(ino);
930 return err;
934 * ubifs_jnl_delete_inode - delete an inode.
935 * @c: UBIFS file-system description object
936 * @inode: inode to delete
938 * This function deletes inode @inode which includes removing it from orphans,
939 * deleting it from TNC and, in some cases, writing a deletion inode to the
940 * journal.
942 * When regular file inodes are unlinked or a directory inode is removed, the
943 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
944 * direntry to the media, and adds the inode to orphans. After this, when the
945 * last reference to this inode has been dropped, this function is called. In
946 * general, it has to write one more deletion inode to the media, because if
947 * a commit happened between 'ubifs_jnl_update()' and
948 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
949 * anymore, and in fact it might not be on the flash anymore, because it might
950 * have been garbage-collected already. And for optimization reasons UBIFS does
951 * not read the orphan area if it has been unmounted cleanly, so it would have
952 * no indication in the journal that there is a deleted inode which has to be
953 * removed from TNC.
955 * However, if there was no commit between 'ubifs_jnl_update()' and
956 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
957 * inode to the media for the second time. And this is quite a typical case.
959 * This function returns zero in case of success and a negative error code in
960 * case of failure.
962 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
964 int err;
965 struct ubifs_inode *ui = ubifs_inode(inode);
967 ubifs_assert(c, inode->i_nlink == 0);
969 if (ui->del_cmtno != c->cmt_no)
970 /* A commit happened for sure */
971 return ubifs_jnl_write_inode(c, inode);
973 down_read(&c->commit_sem);
975 * Check commit number again, because the first test has been done
976 * without @c->commit_sem, so a commit might have happened.
978 if (ui->del_cmtno != c->cmt_no) {
979 up_read(&c->commit_sem);
980 return ubifs_jnl_write_inode(c, inode);
983 err = ubifs_tnc_remove_ino(c, inode->i_ino);
984 if (err)
985 ubifs_ro_mode(c, err);
986 else
987 ubifs_delete_orphan(c, inode->i_ino);
988 up_read(&c->commit_sem);
989 return err;
993 * ubifs_jnl_xrename - cross rename two directory entries.
994 * @c: UBIFS file-system description object
995 * @fst_dir: parent inode of 1st directory entry to exchange
996 * @fst_inode: 1st inode to exchange
997 * @fst_nm: name of 1st inode to exchange
998 * @snd_dir: parent inode of 2nd directory entry to exchange
999 * @snd_inode: 2nd inode to exchange
1000 * @snd_nm: name of 2nd inode to exchange
1001 * @sync: non-zero if the write-buffer has to be synchronized
1003 * This function implements the cross rename operation which may involve
1004 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1005 * and returns zero on success. In case of failure, a negative error code is
1006 * returned.
1008 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1009 const struct inode *fst_inode,
1010 const struct fscrypt_name *fst_nm,
1011 const struct inode *snd_dir,
1012 const struct inode *snd_inode,
1013 const struct fscrypt_name *snd_nm, int sync)
1015 union ubifs_key key;
1016 struct ubifs_dent_node *dent1, *dent2;
1017 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1018 int aligned_dlen1, aligned_dlen2;
1019 int twoparents = (fst_dir != snd_dir);
1020 void *p;
1021 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1022 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1023 u8 hash_p1[UBIFS_HASH_ARR_SZ];
1024 u8 hash_p2[UBIFS_HASH_ARR_SZ];
1026 ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1027 ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1028 ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1029 ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1031 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1032 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1033 aligned_dlen1 = ALIGN(dlen1, 8);
1034 aligned_dlen2 = ALIGN(dlen2, 8);
1036 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1037 if (twoparents)
1038 len += plen;
1040 len += ubifs_auth_node_sz(c);
1042 dent1 = kzalloc(len, GFP_NOFS);
1043 if (!dent1)
1044 return -ENOMEM;
1046 /* Make reservation before allocating sequence numbers */
1047 err = make_reservation(c, BASEHD, len);
1048 if (err)
1049 goto out_free;
1051 /* Make new dent for 1st entry */
1052 dent1->ch.node_type = UBIFS_DENT_NODE;
1053 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1054 dent1->inum = cpu_to_le64(fst_inode->i_ino);
1055 dent1->type = get_dent_type(fst_inode->i_mode);
1056 dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1057 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1058 dent1->name[fname_len(snd_nm)] = '\0';
1059 set_dent_cookie(c, dent1);
1060 zero_dent_node_unused(dent1);
1061 ubifs_prep_grp_node(c, dent1, dlen1, 0);
1062 err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1063 if (err)
1064 goto out_release;
1066 /* Make new dent for 2nd entry */
1067 dent2 = (void *)dent1 + aligned_dlen1;
1068 dent2->ch.node_type = UBIFS_DENT_NODE;
1069 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1070 dent2->inum = cpu_to_le64(snd_inode->i_ino);
1071 dent2->type = get_dent_type(snd_inode->i_mode);
1072 dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1073 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1074 dent2->name[fname_len(fst_nm)] = '\0';
1075 set_dent_cookie(c, dent2);
1076 zero_dent_node_unused(dent2);
1077 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1078 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1079 if (err)
1080 goto out_release;
1082 p = (void *)dent2 + aligned_dlen2;
1083 if (!twoparents) {
1084 pack_inode(c, p, fst_dir, 1);
1085 err = ubifs_node_calc_hash(c, p, hash_p1);
1086 if (err)
1087 goto out_release;
1088 } else {
1089 pack_inode(c, p, fst_dir, 0);
1090 err = ubifs_node_calc_hash(c, p, hash_p1);
1091 if (err)
1092 goto out_release;
1093 p += ALIGN(plen, 8);
1094 pack_inode(c, p, snd_dir, 1);
1095 err = ubifs_node_calc_hash(c, p, hash_p2);
1096 if (err)
1097 goto out_release;
1100 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1101 if (err)
1102 goto out_release;
1103 if (!sync) {
1104 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1106 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1107 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1109 release_head(c, BASEHD);
1111 ubifs_add_auth_dirt(c, lnum);
1113 dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1114 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1115 if (err)
1116 goto out_ro;
1118 offs += aligned_dlen1;
1119 dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1120 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1121 if (err)
1122 goto out_ro;
1124 offs += aligned_dlen2;
1126 ino_key_init(c, &key, fst_dir->i_ino);
1127 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1128 if (err)
1129 goto out_ro;
1131 if (twoparents) {
1132 offs += ALIGN(plen, 8);
1133 ino_key_init(c, &key, snd_dir->i_ino);
1134 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1135 if (err)
1136 goto out_ro;
1139 finish_reservation(c);
1141 mark_inode_clean(c, ubifs_inode(fst_dir));
1142 if (twoparents)
1143 mark_inode_clean(c, ubifs_inode(snd_dir));
1144 kfree(dent1);
1145 return 0;
1147 out_release:
1148 release_head(c, BASEHD);
1149 out_ro:
1150 ubifs_ro_mode(c, err);
1151 finish_reservation(c);
1152 out_free:
1153 kfree(dent1);
1154 return err;
1158 * ubifs_jnl_rename - rename a directory entry.
1159 * @c: UBIFS file-system description object
1160 * @old_dir: parent inode of directory entry to rename
1161 * @old_dentry: directory entry to rename
1162 * @new_dir: parent inode of directory entry to rename
1163 * @new_dentry: new directory entry (or directory entry to replace)
1164 * @sync: non-zero if the write-buffer has to be synchronized
1166 * This function implements the re-name operation which may involve writing up
1167 * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1168 * and returns zero on success. In case of failure, a negative error code is
1169 * returned.
1171 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1172 const struct inode *old_inode,
1173 const struct fscrypt_name *old_nm,
1174 const struct inode *new_dir,
1175 const struct inode *new_inode,
1176 const struct fscrypt_name *new_nm,
1177 const struct inode *whiteout, int sync)
1179 void *p;
1180 union ubifs_key key;
1181 struct ubifs_dent_node *dent, *dent2;
1182 int err, dlen1, dlen2, ilen, lnum, offs, len;
1183 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1184 int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1185 int move = (old_dir != new_dir);
1186 struct ubifs_inode *uninitialized_var(new_ui);
1187 u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1188 u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1189 u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1190 u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1191 u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1193 ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1194 ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1195 ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1196 ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1198 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1199 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1200 if (new_inode) {
1201 new_ui = ubifs_inode(new_inode);
1202 ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1203 ilen = UBIFS_INO_NODE_SZ;
1204 if (!last_reference)
1205 ilen += new_ui->data_len;
1206 } else
1207 ilen = 0;
1209 aligned_dlen1 = ALIGN(dlen1, 8);
1210 aligned_dlen2 = ALIGN(dlen2, 8);
1211 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1212 if (move)
1213 len += plen;
1215 len += ubifs_auth_node_sz(c);
1217 dent = kzalloc(len, GFP_NOFS);
1218 if (!dent)
1219 return -ENOMEM;
1221 /* Make reservation before allocating sequence numbers */
1222 err = make_reservation(c, BASEHD, len);
1223 if (err)
1224 goto out_free;
1226 /* Make new dent */
1227 dent->ch.node_type = UBIFS_DENT_NODE;
1228 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1229 dent->inum = cpu_to_le64(old_inode->i_ino);
1230 dent->type = get_dent_type(old_inode->i_mode);
1231 dent->nlen = cpu_to_le16(fname_len(new_nm));
1232 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1233 dent->name[fname_len(new_nm)] = '\0';
1234 set_dent_cookie(c, dent);
1235 zero_dent_node_unused(dent);
1236 ubifs_prep_grp_node(c, dent, dlen1, 0);
1237 err = ubifs_node_calc_hash(c, dent, hash_dent1);
1238 if (err)
1239 goto out_release;
1241 dent2 = (void *)dent + aligned_dlen1;
1242 dent2->ch.node_type = UBIFS_DENT_NODE;
1243 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1245 if (whiteout) {
1246 dent2->inum = cpu_to_le64(whiteout->i_ino);
1247 dent2->type = get_dent_type(whiteout->i_mode);
1248 } else {
1249 /* Make deletion dent */
1250 dent2->inum = 0;
1251 dent2->type = DT_UNKNOWN;
1253 dent2->nlen = cpu_to_le16(fname_len(old_nm));
1254 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1255 dent2->name[fname_len(old_nm)] = '\0';
1256 set_dent_cookie(c, dent2);
1257 zero_dent_node_unused(dent2);
1258 ubifs_prep_grp_node(c, dent2, dlen2, 0);
1259 err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1260 if (err)
1261 goto out_release;
1263 p = (void *)dent2 + aligned_dlen2;
1264 if (new_inode) {
1265 pack_inode(c, p, new_inode, 0);
1266 err = ubifs_node_calc_hash(c, p, hash_new_inode);
1267 if (err)
1268 goto out_release;
1270 p += ALIGN(ilen, 8);
1273 if (!move) {
1274 pack_inode(c, p, old_dir, 1);
1275 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1276 if (err)
1277 goto out_release;
1278 } else {
1279 pack_inode(c, p, old_dir, 0);
1280 err = ubifs_node_calc_hash(c, p, hash_old_dir);
1281 if (err)
1282 goto out_release;
1284 p += ALIGN(plen, 8);
1285 pack_inode(c, p, new_dir, 1);
1286 err = ubifs_node_calc_hash(c, p, hash_new_dir);
1287 if (err)
1288 goto out_release;
1291 if (last_reference) {
1292 err = ubifs_add_orphan(c, new_inode->i_ino);
1293 if (err) {
1294 release_head(c, BASEHD);
1295 goto out_finish;
1297 new_ui->del_cmtno = c->cmt_no;
1300 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1301 if (err)
1302 goto out_release;
1303 if (!sync) {
1304 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1306 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1307 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1308 if (new_inode)
1309 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1310 new_inode->i_ino);
1312 release_head(c, BASEHD);
1314 ubifs_add_auth_dirt(c, lnum);
1316 dent_key_init(c, &key, new_dir->i_ino, new_nm);
1317 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1318 if (err)
1319 goto out_ro;
1321 offs += aligned_dlen1;
1322 if (whiteout) {
1323 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1324 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1325 if (err)
1326 goto out_ro;
1328 ubifs_delete_orphan(c, whiteout->i_ino);
1329 } else {
1330 err = ubifs_add_dirt(c, lnum, dlen2);
1331 if (err)
1332 goto out_ro;
1334 dent_key_init(c, &key, old_dir->i_ino, old_nm);
1335 err = ubifs_tnc_remove_nm(c, &key, old_nm);
1336 if (err)
1337 goto out_ro;
1340 offs += aligned_dlen2;
1341 if (new_inode) {
1342 ino_key_init(c, &key, new_inode->i_ino);
1343 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1344 if (err)
1345 goto out_ro;
1346 offs += ALIGN(ilen, 8);
1349 ino_key_init(c, &key, old_dir->i_ino);
1350 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1351 if (err)
1352 goto out_ro;
1354 if (move) {
1355 offs += ALIGN(plen, 8);
1356 ino_key_init(c, &key, new_dir->i_ino);
1357 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1358 if (err)
1359 goto out_ro;
1362 finish_reservation(c);
1363 if (new_inode) {
1364 mark_inode_clean(c, new_ui);
1365 spin_lock(&new_ui->ui_lock);
1366 new_ui->synced_i_size = new_ui->ui_size;
1367 spin_unlock(&new_ui->ui_lock);
1369 mark_inode_clean(c, ubifs_inode(old_dir));
1370 if (move)
1371 mark_inode_clean(c, ubifs_inode(new_dir));
1372 kfree(dent);
1373 return 0;
1375 out_release:
1376 release_head(c, BASEHD);
1377 out_ro:
1378 ubifs_ro_mode(c, err);
1379 if (last_reference)
1380 ubifs_delete_orphan(c, new_inode->i_ino);
1381 out_finish:
1382 finish_reservation(c);
1383 out_free:
1384 kfree(dent);
1385 return err;
1389 * truncate_data_node - re-compress/encrypt a truncated data node.
1390 * @c: UBIFS file-system description object
1391 * @inode: inode which referes to the data node
1392 * @block: data block number
1393 * @dn: data node to re-compress
1394 * @new_len: new length
1396 * This function is used when an inode is truncated and the last data node of
1397 * the inode has to be re-compressed/encrypted and re-written.
1399 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1400 unsigned int block, struct ubifs_data_node *dn,
1401 int *new_len)
1403 void *buf;
1404 int err, dlen, compr_type, out_len, old_dlen;
1406 out_len = le32_to_cpu(dn->size);
1407 buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1408 if (!buf)
1409 return -ENOMEM;
1411 dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1412 compr_type = le16_to_cpu(dn->compr_type);
1414 if (ubifs_crypt_is_encrypted(inode)) {
1415 err = ubifs_decrypt(inode, dn, &dlen, block);
1416 if (err)
1417 goto out;
1420 if (compr_type == UBIFS_COMPR_NONE) {
1421 out_len = *new_len;
1422 } else {
1423 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1424 if (err)
1425 goto out;
1427 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1430 if (ubifs_crypt_is_encrypted(inode)) {
1431 err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1432 if (err)
1433 goto out;
1435 out_len = old_dlen;
1436 } else {
1437 dn->compr_size = 0;
1440 ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1441 dn->compr_type = cpu_to_le16(compr_type);
1442 dn->size = cpu_to_le32(*new_len);
1443 *new_len = UBIFS_DATA_NODE_SZ + out_len;
1444 err = 0;
1445 out:
1446 kfree(buf);
1447 return err;
1451 * ubifs_jnl_truncate - update the journal for a truncation.
1452 * @c: UBIFS file-system description object
1453 * @inode: inode to truncate
1454 * @old_size: old size
1455 * @new_size: new size
1457 * When the size of a file decreases due to truncation, a truncation node is
1458 * written, the journal tree is updated, and the last data block is re-written
1459 * if it has been affected. The inode is also updated in order to synchronize
1460 * the new inode size.
1462 * This function marks the inode as clean and returns zero on success. In case
1463 * of failure, a negative error code is returned.
1465 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1466 loff_t old_size, loff_t new_size)
1468 union ubifs_key key, to_key;
1469 struct ubifs_ino_node *ino;
1470 struct ubifs_trun_node *trun;
1471 struct ubifs_data_node *uninitialized_var(dn);
1472 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1473 struct ubifs_inode *ui = ubifs_inode(inode);
1474 ino_t inum = inode->i_ino;
1475 unsigned int blk;
1476 u8 hash_ino[UBIFS_HASH_ARR_SZ];
1477 u8 hash_dn[UBIFS_HASH_ARR_SZ];
1479 dbg_jnl("ino %lu, size %lld -> %lld",
1480 (unsigned long)inum, old_size, new_size);
1481 ubifs_assert(c, !ui->data_len);
1482 ubifs_assert(c, S_ISREG(inode->i_mode));
1483 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1485 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1486 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1488 sz += ubifs_auth_node_sz(c);
1490 ino = kmalloc(sz, GFP_NOFS);
1491 if (!ino)
1492 return -ENOMEM;
1494 trun = (void *)ino + UBIFS_INO_NODE_SZ;
1495 trun->ch.node_type = UBIFS_TRUN_NODE;
1496 trun->inum = cpu_to_le32(inum);
1497 trun->old_size = cpu_to_le64(old_size);
1498 trun->new_size = cpu_to_le64(new_size);
1499 zero_trun_node_unused(trun);
1501 dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1502 if (dlen) {
1503 /* Get last data block so it can be truncated */
1504 dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1505 blk = new_size >> UBIFS_BLOCK_SHIFT;
1506 data_key_init(c, &key, inum, blk);
1507 dbg_jnlk(&key, "last block key ");
1508 err = ubifs_tnc_lookup(c, &key, dn);
1509 if (err == -ENOENT)
1510 dlen = 0; /* Not found (so it is a hole) */
1511 else if (err)
1512 goto out_free;
1513 else {
1514 int dn_len = le32_to_cpu(dn->size);
1516 if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1517 ubifs_err(c, "bad data node (block %u, inode %lu)",
1518 blk, inode->i_ino);
1519 ubifs_dump_node(c, dn);
1520 goto out_free;
1523 if (dn_len <= dlen)
1524 dlen = 0; /* Nothing to do */
1525 else {
1526 err = truncate_data_node(c, inode, blk, dn, &dlen);
1527 if (err)
1528 goto out_free;
1533 /* Must make reservation before allocating sequence numbers */
1534 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1536 if (ubifs_authenticated(c))
1537 len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1538 else
1539 len += dlen;
1541 err = make_reservation(c, BASEHD, len);
1542 if (err)
1543 goto out_free;
1545 pack_inode(c, ino, inode, 0);
1546 err = ubifs_node_calc_hash(c, ino, hash_ino);
1547 if (err)
1548 goto out_release;
1550 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1551 if (dlen) {
1552 ubifs_prep_grp_node(c, dn, dlen, 1);
1553 err = ubifs_node_calc_hash(c, dn, hash_dn);
1554 if (err)
1555 goto out_release;
1558 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1559 if (err)
1560 goto out_release;
1561 if (!sync)
1562 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1563 release_head(c, BASEHD);
1565 ubifs_add_auth_dirt(c, lnum);
1567 if (dlen) {
1568 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1569 err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1570 if (err)
1571 goto out_ro;
1574 ino_key_init(c, &key, inum);
1575 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1576 if (err)
1577 goto out_ro;
1579 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1580 if (err)
1581 goto out_ro;
1583 bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1584 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1585 data_key_init(c, &key, inum, blk);
1587 bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1588 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1589 data_key_init(c, &to_key, inum, blk);
1591 err = ubifs_tnc_remove_range(c, &key, &to_key);
1592 if (err)
1593 goto out_ro;
1595 finish_reservation(c);
1596 spin_lock(&ui->ui_lock);
1597 ui->synced_i_size = ui->ui_size;
1598 spin_unlock(&ui->ui_lock);
1599 mark_inode_clean(c, ui);
1600 kfree(ino);
1601 return 0;
1603 out_release:
1604 release_head(c, BASEHD);
1605 out_ro:
1606 ubifs_ro_mode(c, err);
1607 finish_reservation(c);
1608 out_free:
1609 kfree(ino);
1610 return err;
1615 * ubifs_jnl_delete_xattr - delete an extended attribute.
1616 * @c: UBIFS file-system description object
1617 * @host: host inode
1618 * @inode: extended attribute inode
1619 * @nm: extended attribute entry name
1621 * This function delete an extended attribute which is very similar to
1622 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1623 * updates the target inode. Returns zero in case of success and a negative
1624 * error code in case of failure.
1626 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1627 const struct inode *inode,
1628 const struct fscrypt_name *nm)
1630 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1631 struct ubifs_dent_node *xent;
1632 struct ubifs_ino_node *ino;
1633 union ubifs_key xent_key, key1, key2;
1634 int sync = IS_DIRSYNC(host);
1635 struct ubifs_inode *host_ui = ubifs_inode(host);
1636 u8 hash[UBIFS_HASH_ARR_SZ];
1638 ubifs_assert(c, inode->i_nlink == 0);
1639 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1642 * Since we are deleting the inode, we do not bother to attach any data
1643 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1645 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1646 aligned_xlen = ALIGN(xlen, 8);
1647 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1648 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1650 write_len = len + ubifs_auth_node_sz(c);
1652 xent = kzalloc(write_len, GFP_NOFS);
1653 if (!xent)
1654 return -ENOMEM;
1656 /* Make reservation before allocating sequence numbers */
1657 err = make_reservation(c, BASEHD, write_len);
1658 if (err) {
1659 kfree(xent);
1660 return err;
1663 xent->ch.node_type = UBIFS_XENT_NODE;
1664 xent_key_init(c, &xent_key, host->i_ino, nm);
1665 key_write(c, &xent_key, xent->key);
1666 xent->inum = 0;
1667 xent->type = get_dent_type(inode->i_mode);
1668 xent->nlen = cpu_to_le16(fname_len(nm));
1669 memcpy(xent->name, fname_name(nm), fname_len(nm));
1670 xent->name[fname_len(nm)] = '\0';
1671 zero_dent_node_unused(xent);
1672 ubifs_prep_grp_node(c, xent, xlen, 0);
1674 ino = (void *)xent + aligned_xlen;
1675 pack_inode(c, ino, inode, 0);
1676 ino = (void *)ino + UBIFS_INO_NODE_SZ;
1677 pack_inode(c, ino, host, 1);
1678 err = ubifs_node_calc_hash(c, ino, hash);
1679 if (err)
1680 goto out_release;
1682 err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1683 if (!sync && !err)
1684 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1685 release_head(c, BASEHD);
1687 ubifs_add_auth_dirt(c, lnum);
1688 kfree(xent);
1689 if (err)
1690 goto out_ro;
1692 /* Remove the extended attribute entry from TNC */
1693 err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1694 if (err)
1695 goto out_ro;
1696 err = ubifs_add_dirt(c, lnum, xlen);
1697 if (err)
1698 goto out_ro;
1701 * Remove all nodes belonging to the extended attribute inode from TNC.
1702 * Well, there actually must be only one node - the inode itself.
1704 lowest_ino_key(c, &key1, inode->i_ino);
1705 highest_ino_key(c, &key2, inode->i_ino);
1706 err = ubifs_tnc_remove_range(c, &key1, &key2);
1707 if (err)
1708 goto out_ro;
1709 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1710 if (err)
1711 goto out_ro;
1713 /* And update TNC with the new host inode position */
1714 ino_key_init(c, &key1, host->i_ino);
1715 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1716 if (err)
1717 goto out_ro;
1719 finish_reservation(c);
1720 spin_lock(&host_ui->ui_lock);
1721 host_ui->synced_i_size = host_ui->ui_size;
1722 spin_unlock(&host_ui->ui_lock);
1723 mark_inode_clean(c, host_ui);
1724 return 0;
1726 out_release:
1727 kfree(xent);
1728 release_head(c, BASEHD);
1729 out_ro:
1730 ubifs_ro_mode(c, err);
1731 finish_reservation(c);
1732 return err;
1736 * ubifs_jnl_change_xattr - change an extended attribute.
1737 * @c: UBIFS file-system description object
1738 * @inode: extended attribute inode
1739 * @host: host inode
1741 * This function writes the updated version of an extended attribute inode and
1742 * the host inode to the journal (to the base head). The host inode is written
1743 * after the extended attribute inode in order to guarantee that the extended
1744 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1745 * consequently, the write-buffer is synchronized. This function returns zero
1746 * in case of success and a negative error code in case of failure.
1748 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1749 const struct inode *host)
1751 int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1752 struct ubifs_inode *host_ui = ubifs_inode(host);
1753 struct ubifs_ino_node *ino;
1754 union ubifs_key key;
1755 int sync = IS_DIRSYNC(host);
1756 u8 hash_host[UBIFS_HASH_ARR_SZ];
1757 u8 hash[UBIFS_HASH_ARR_SZ];
1759 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1760 ubifs_assert(c, host->i_nlink > 0);
1761 ubifs_assert(c, inode->i_nlink > 0);
1762 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1764 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1765 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1766 aligned_len1 = ALIGN(len1, 8);
1767 aligned_len = aligned_len1 + ALIGN(len2, 8);
1769 aligned_len += ubifs_auth_node_sz(c);
1771 ino = kzalloc(aligned_len, GFP_NOFS);
1772 if (!ino)
1773 return -ENOMEM;
1775 /* Make reservation before allocating sequence numbers */
1776 err = make_reservation(c, BASEHD, aligned_len);
1777 if (err)
1778 goto out_free;
1780 pack_inode(c, ino, host, 0);
1781 err = ubifs_node_calc_hash(c, ino, hash_host);
1782 if (err)
1783 goto out_release;
1784 pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1785 err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
1786 if (err)
1787 goto out_release;
1789 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1790 if (!sync && !err) {
1791 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1793 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1794 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1796 release_head(c, BASEHD);
1797 if (err)
1798 goto out_ro;
1800 ubifs_add_auth_dirt(c, lnum);
1802 ino_key_init(c, &key, host->i_ino);
1803 err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
1804 if (err)
1805 goto out_ro;
1807 ino_key_init(c, &key, inode->i_ino);
1808 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
1809 if (err)
1810 goto out_ro;
1812 finish_reservation(c);
1813 spin_lock(&host_ui->ui_lock);
1814 host_ui->synced_i_size = host_ui->ui_size;
1815 spin_unlock(&host_ui->ui_lock);
1816 mark_inode_clean(c, host_ui);
1817 kfree(ino);
1818 return 0;
1820 out_release:
1821 release_head(c, BASEHD);
1822 out_ro:
1823 ubifs_ro_mode(c, err);
1824 finish_reservation(c);
1825 out_free:
1826 kfree(ino);
1827 return err;