5 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
6 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
7 * Many thanks to Oleg Nesterov for comments and help
11 #include <linux/pid.h>
12 #include <linux/pid_namespace.h>
13 #include <linux/user_namespace.h>
14 #include <linux/syscalls.h>
15 #include <linux/cred.h>
16 #include <linux/err.h>
17 #include <linux/acct.h>
18 #include <linux/slab.h>
19 #include <linux/proc_ns.h>
20 #include <linux/reboot.h>
21 #include <linux/export.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/signal.h>
24 #include <linux/idr.h>
26 static DEFINE_MUTEX(pid_caches_mutex
);
27 static struct kmem_cache
*pid_ns_cachep
;
28 /* MAX_PID_NS_LEVEL is needed for limiting size of 'struct pid' */
29 #define MAX_PID_NS_LEVEL 32
30 /* Write once array, filled from the beginning. */
31 static struct kmem_cache
*pid_cache
[MAX_PID_NS_LEVEL
];
34 * creates the kmem cache to allocate pids from.
35 * @level: pid namespace level
38 static struct kmem_cache
*create_pid_cachep(unsigned int level
)
40 /* Level 0 is init_pid_ns.pid_cachep */
41 struct kmem_cache
**pkc
= &pid_cache
[level
- 1];
42 struct kmem_cache
*kc
;
43 char name
[4 + 10 + 1];
50 snprintf(name
, sizeof(name
), "pid_%u", level
+ 1);
51 len
= sizeof(struct pid
) + level
* sizeof(struct upid
);
52 mutex_lock(&pid_caches_mutex
);
53 /* Name collision forces to do allocation under mutex. */
55 *pkc
= kmem_cache_create(name
, len
, 0, SLAB_HWCACHE_ALIGN
, 0);
56 mutex_unlock(&pid_caches_mutex
);
57 /* current can fail, but someone else can succeed. */
58 return READ_ONCE(*pkc
);
61 static void proc_cleanup_work(struct work_struct
*work
)
63 struct pid_namespace
*ns
= container_of(work
, struct pid_namespace
, proc_work
);
64 pid_ns_release_proc(ns
);
67 static struct ucounts
*inc_pid_namespaces(struct user_namespace
*ns
)
69 return inc_ucount(ns
, current_euid(), UCOUNT_PID_NAMESPACES
);
72 static void dec_pid_namespaces(struct ucounts
*ucounts
)
74 dec_ucount(ucounts
, UCOUNT_PID_NAMESPACES
);
77 static struct pid_namespace
*create_pid_namespace(struct user_namespace
*user_ns
,
78 struct pid_namespace
*parent_pid_ns
)
80 struct pid_namespace
*ns
;
81 unsigned int level
= parent_pid_ns
->level
+ 1;
82 struct ucounts
*ucounts
;
86 if (!in_userns(parent_pid_ns
->user_ns
, user_ns
))
90 if (level
> MAX_PID_NS_LEVEL
)
92 ucounts
= inc_pid_namespaces(user_ns
);
97 ns
= kmem_cache_zalloc(pid_ns_cachep
, GFP_KERNEL
);
103 ns
->pid_cachep
= create_pid_cachep(level
);
104 if (ns
->pid_cachep
== NULL
)
107 err
= ns_alloc_inum(&ns
->ns
);
110 ns
->ns
.ops
= &pidns_operations
;
112 kref_init(&ns
->kref
);
114 ns
->parent
= get_pid_ns(parent_pid_ns
);
115 ns
->user_ns
= get_user_ns(user_ns
);
116 ns
->ucounts
= ucounts
;
117 ns
->pid_allocated
= PIDNS_ADDING
;
118 INIT_WORK(&ns
->proc_work
, proc_cleanup_work
);
123 idr_destroy(&ns
->idr
);
124 kmem_cache_free(pid_ns_cachep
, ns
);
126 dec_pid_namespaces(ucounts
);
131 static void delayed_free_pidns(struct rcu_head
*p
)
133 struct pid_namespace
*ns
= container_of(p
, struct pid_namespace
, rcu
);
135 dec_pid_namespaces(ns
->ucounts
);
136 put_user_ns(ns
->user_ns
);
138 kmem_cache_free(pid_ns_cachep
, ns
);
141 static void destroy_pid_namespace(struct pid_namespace
*ns
)
143 ns_free_inum(&ns
->ns
);
145 idr_destroy(&ns
->idr
);
146 call_rcu(&ns
->rcu
, delayed_free_pidns
);
149 struct pid_namespace
*copy_pid_ns(unsigned long flags
,
150 struct user_namespace
*user_ns
, struct pid_namespace
*old_ns
)
152 if (!(flags
& CLONE_NEWPID
))
153 return get_pid_ns(old_ns
);
154 if (task_active_pid_ns(current
) != old_ns
)
155 return ERR_PTR(-EINVAL
);
156 return create_pid_namespace(user_ns
, old_ns
);
159 static void free_pid_ns(struct kref
*kref
)
161 struct pid_namespace
*ns
;
163 ns
= container_of(kref
, struct pid_namespace
, kref
);
164 destroy_pid_namespace(ns
);
167 void put_pid_ns(struct pid_namespace
*ns
)
169 struct pid_namespace
*parent
;
171 while (ns
!= &init_pid_ns
) {
173 if (!kref_put(&ns
->kref
, free_pid_ns
))
178 EXPORT_SYMBOL_GPL(put_pid_ns
);
180 void zap_pid_ns_processes(struct pid_namespace
*pid_ns
)
184 struct task_struct
*task
, *me
= current
;
185 int init_pids
= thread_group_leader(me
) ? 1 : 2;
188 /* Don't allow any more processes into the pid namespace */
189 disable_pid_allocation(pid_ns
);
192 * Ignore SIGCHLD causing any terminated children to autoreap.
193 * This speeds up the namespace shutdown, plus see the comment
196 spin_lock_irq(&me
->sighand
->siglock
);
197 me
->sighand
->action
[SIGCHLD
- 1].sa
.sa_handler
= SIG_IGN
;
198 spin_unlock_irq(&me
->sighand
->siglock
);
201 * The last thread in the cgroup-init thread group is terminating.
202 * Find remaining pid_ts in the namespace, signal and wait for them
205 * Note: This signals each threads in the namespace - even those that
206 * belong to the same thread group, To avoid this, we would have
207 * to walk the entire tasklist looking a processes in this
208 * namespace, but that could be unnecessarily expensive if the
209 * pid namespace has just a few processes. Or we need to
210 * maintain a tasklist for each pid namespace.
214 read_lock(&tasklist_lock
);
216 idr_for_each_entry_continue(&pid_ns
->idr
, pid
, nr
) {
217 task
= pid_task(pid
, PIDTYPE_PID
);
218 if (task
&& !__fatal_signal_pending(task
))
219 group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, task
, PIDTYPE_MAX
);
221 read_unlock(&tasklist_lock
);
225 * Reap the EXIT_ZOMBIE children we had before we ignored SIGCHLD.
226 * kernel_wait4() will also block until our children traced from the
227 * parent namespace are detached and become EXIT_DEAD.
230 clear_thread_flag(TIF_SIGPENDING
);
231 rc
= kernel_wait4(-1, NULL
, __WALL
, NULL
);
232 } while (rc
!= -ECHILD
);
235 * kernel_wait4() above can't reap the EXIT_DEAD children but we do not
236 * really care, we could reparent them to the global init. We could
237 * exit and reap ->child_reaper even if it is not the last thread in
238 * this pid_ns, free_pid(pid_allocated == 0) calls proc_cleanup_work(),
239 * pid_ns can not go away until proc_kill_sb() drops the reference.
241 * But this ns can also have other tasks injected by setns()+fork().
242 * Again, ignoring the user visible semantics we do not really need
243 * to wait until they are all reaped, but they can be reparented to
244 * us and thus we need to ensure that pid->child_reaper stays valid
245 * until they all go away. See free_pid()->wake_up_process().
247 * We rely on ignored SIGCHLD, an injected zombie must be autoreaped
251 set_current_state(TASK_INTERRUPTIBLE
);
252 if (pid_ns
->pid_allocated
== init_pids
)
256 __set_current_state(TASK_RUNNING
);
259 current
->signal
->group_exit_code
= pid_ns
->reboot
;
261 acct_exit_ns(pid_ns
);
265 #ifdef CONFIG_CHECKPOINT_RESTORE
266 static int pid_ns_ctl_handler(struct ctl_table
*table
, int write
,
267 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
269 struct pid_namespace
*pid_ns
= task_active_pid_ns(current
);
270 struct ctl_table tmp
= *table
;
273 if (write
&& !ns_capable(pid_ns
->user_ns
, CAP_SYS_ADMIN
))
277 * Writing directly to ns' last_pid field is OK, since this field
278 * is volatile in a living namespace anyway and a code writing to
279 * it should synchronize its usage with external means.
282 next
= idr_get_cursor(&pid_ns
->idr
) - 1;
285 ret
= proc_dointvec_minmax(&tmp
, write
, buffer
, lenp
, ppos
);
287 idr_set_cursor(&pid_ns
->idr
, next
+ 1);
294 static struct ctl_table pid_ns_ctl_table
[] = {
296 .procname
= "ns_last_pid",
297 .maxlen
= sizeof(int),
298 .mode
= 0666, /* permissions are checked in the handler */
299 .proc_handler
= pid_ns_ctl_handler
,
305 static struct ctl_path kern_path
[] = { { .procname
= "kernel", }, { } };
306 #endif /* CONFIG_CHECKPOINT_RESTORE */
308 int reboot_pid_ns(struct pid_namespace
*pid_ns
, int cmd
)
310 if (pid_ns
== &init_pid_ns
)
314 case LINUX_REBOOT_CMD_RESTART2
:
315 case LINUX_REBOOT_CMD_RESTART
:
316 pid_ns
->reboot
= SIGHUP
;
319 case LINUX_REBOOT_CMD_POWER_OFF
:
320 case LINUX_REBOOT_CMD_HALT
:
321 pid_ns
->reboot
= SIGINT
;
327 read_lock(&tasklist_lock
);
328 force_sig(SIGKILL
, pid_ns
->child_reaper
);
329 read_unlock(&tasklist_lock
);
337 static inline struct pid_namespace
*to_pid_ns(struct ns_common
*ns
)
339 return container_of(ns
, struct pid_namespace
, ns
);
342 static struct ns_common
*pidns_get(struct task_struct
*task
)
344 struct pid_namespace
*ns
;
347 ns
= task_active_pid_ns(task
);
352 return ns
? &ns
->ns
: NULL
;
355 static struct ns_common
*pidns_for_children_get(struct task_struct
*task
)
357 struct pid_namespace
*ns
= NULL
;
361 ns
= task
->nsproxy
->pid_ns_for_children
;
367 read_lock(&tasklist_lock
);
368 if (!ns
->child_reaper
) {
372 read_unlock(&tasklist_lock
);
375 return ns
? &ns
->ns
: NULL
;
378 static void pidns_put(struct ns_common
*ns
)
380 put_pid_ns(to_pid_ns(ns
));
383 static int pidns_install(struct nsproxy
*nsproxy
, struct ns_common
*ns
)
385 struct pid_namespace
*active
= task_active_pid_ns(current
);
386 struct pid_namespace
*ancestor
, *new = to_pid_ns(ns
);
388 if (!ns_capable(new->user_ns
, CAP_SYS_ADMIN
) ||
389 !ns_capable(current_user_ns(), CAP_SYS_ADMIN
))
393 * Only allow entering the current active pid namespace
394 * or a child of the current active pid namespace.
396 * This is required for fork to return a usable pid value and
397 * this maintains the property that processes and their
398 * children can not escape their current pid namespace.
400 if (new->level
< active
->level
)
404 while (ancestor
->level
> active
->level
)
405 ancestor
= ancestor
->parent
;
406 if (ancestor
!= active
)
409 put_pid_ns(nsproxy
->pid_ns_for_children
);
410 nsproxy
->pid_ns_for_children
= get_pid_ns(new);
414 static struct ns_common
*pidns_get_parent(struct ns_common
*ns
)
416 struct pid_namespace
*active
= task_active_pid_ns(current
);
417 struct pid_namespace
*pid_ns
, *p
;
419 /* See if the parent is in the current namespace */
420 pid_ns
= p
= to_pid_ns(ns
)->parent
;
423 return ERR_PTR(-EPERM
);
429 return &get_pid_ns(pid_ns
)->ns
;
432 static struct user_namespace
*pidns_owner(struct ns_common
*ns
)
434 return to_pid_ns(ns
)->user_ns
;
437 const struct proc_ns_operations pidns_operations
= {
439 .type
= CLONE_NEWPID
,
442 .install
= pidns_install
,
443 .owner
= pidns_owner
,
444 .get_parent
= pidns_get_parent
,
447 const struct proc_ns_operations pidns_for_children_operations
= {
448 .name
= "pid_for_children",
449 .real_ns_name
= "pid",
450 .type
= CLONE_NEWPID
,
451 .get
= pidns_for_children_get
,
453 .install
= pidns_install
,
454 .owner
= pidns_owner
,
455 .get_parent
= pidns_get_parent
,
458 static __init
int pid_namespaces_init(void)
460 pid_ns_cachep
= KMEM_CACHE(pid_namespace
, SLAB_PANIC
);
462 #ifdef CONFIG_CHECKPOINT_RESTORE
463 register_sysctl_paths(kern_path
, pid_ns_ctl_table
);
468 __initcall(pid_namespaces_init
);