2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 Intel Corporation
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
25 * DOC: Wireless regulatory infrastructure
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
48 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 #include <linux/kernel.h>
51 #include <linux/export.h>
52 #include <linux/slab.h>
53 #include <linux/list.h>
54 #include <linux/ctype.h>
55 #include <linux/nl80211.h>
56 #include <linux/platform_device.h>
57 #include <linux/verification.h>
58 #include <linux/moduleparam.h>
59 #include <linux/firmware.h>
60 #include <net/cfg80211.h>
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
70 #define REG_ENFORCE_GRACE_MS 60000
73 * enum reg_request_treatment - regulatory request treatment
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
82 enum reg_request_treatment
{
89 static struct regulatory_request core_request_world
= {
90 .initiator
= NL80211_REGDOM_SET_BY_CORE
,
95 .country_ie_env
= ENVIRON_ANY
,
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
102 static struct regulatory_request __rcu
*last_request
=
103 (void __force __rcu
*)&core_request_world
;
105 /* To trigger userspace events and load firmware */
106 static struct platform_device
*reg_pdev
;
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
114 const struct ieee80211_regdomain __rcu
*cfg80211_regdomain
;
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
121 static int reg_num_devs_support_basehint
;
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
128 static bool reg_is_indoor
;
129 static spinlock_t reg_indoor_lock
;
131 /* Used to track the userspace process controlling the indoor setting */
132 static u32 reg_is_indoor_portid
;
134 static void restore_regulatory_settings(bool reset_user
);
136 static const struct ieee80211_regdomain
*get_cfg80211_regdom(void)
138 return rcu_dereference_rtnl(cfg80211_regdomain
);
141 const struct ieee80211_regdomain
*get_wiphy_regdom(struct wiphy
*wiphy
)
143 return rcu_dereference_rtnl(wiphy
->regd
);
146 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region
)
148 switch (dfs_region
) {
149 case NL80211_DFS_UNSET
:
151 case NL80211_DFS_FCC
:
153 case NL80211_DFS_ETSI
:
161 enum nl80211_dfs_regions
reg_get_dfs_region(struct wiphy
*wiphy
)
163 const struct ieee80211_regdomain
*regd
= NULL
;
164 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
166 regd
= get_cfg80211_regdom();
170 wiphy_regd
= get_wiphy_regdom(wiphy
);
174 if (wiphy_regd
->dfs_region
== regd
->dfs_region
)
177 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
178 dev_name(&wiphy
->dev
),
179 reg_dfs_region_str(wiphy_regd
->dfs_region
),
180 reg_dfs_region_str(regd
->dfs_region
));
183 return regd
->dfs_region
;
186 static void rcu_free_regdom(const struct ieee80211_regdomain
*r
)
190 kfree_rcu((struct ieee80211_regdomain
*)r
, rcu_head
);
193 static struct regulatory_request
*get_last_request(void)
195 return rcu_dereference_rtnl(last_request
);
198 /* Used to queue up regulatory hints */
199 static LIST_HEAD(reg_requests_list
);
200 static spinlock_t reg_requests_lock
;
202 /* Used to queue up beacon hints for review */
203 static LIST_HEAD(reg_pending_beacons
);
204 static spinlock_t reg_pending_beacons_lock
;
206 /* Used to keep track of processed beacon hints */
207 static LIST_HEAD(reg_beacon_list
);
210 struct list_head list
;
211 struct ieee80211_channel chan
;
214 static void reg_check_chans_work(struct work_struct
*work
);
215 static DECLARE_DELAYED_WORK(reg_check_chans
, reg_check_chans_work
);
217 static void reg_todo(struct work_struct
*work
);
218 static DECLARE_WORK(reg_work
, reg_todo
);
220 /* We keep a static world regulatory domain in case of the absence of CRDA */
221 static const struct ieee80211_regdomain world_regdom
= {
225 /* IEEE 802.11b/g, channels 1..11 */
226 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
227 /* IEEE 802.11b/g, channels 12..13. */
228 REG_RULE(2467-10, 2472+10, 20, 6, 20,
229 NL80211_RRF_NO_IR
| NL80211_RRF_AUTO_BW
),
230 /* IEEE 802.11 channel 14 - Only JP enables
231 * this and for 802.11b only */
232 REG_RULE(2484-10, 2484+10, 20, 6, 20,
234 NL80211_RRF_NO_OFDM
),
235 /* IEEE 802.11a, channel 36..48 */
236 REG_RULE(5180-10, 5240+10, 80, 6, 20,
238 NL80211_RRF_AUTO_BW
),
240 /* IEEE 802.11a, channel 52..64 - DFS required */
241 REG_RULE(5260-10, 5320+10, 80, 6, 20,
243 NL80211_RRF_AUTO_BW
|
246 /* IEEE 802.11a, channel 100..144 - DFS required */
247 REG_RULE(5500-10, 5720+10, 160, 6, 20,
251 /* IEEE 802.11a, channel 149..165 */
252 REG_RULE(5745-10, 5825+10, 80, 6, 20,
255 /* IEEE 802.11ad (60GHz), channels 1..3 */
256 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
260 /* protected by RTNL */
261 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
264 static char *ieee80211_regdom
= "00";
265 static char user_alpha2
[2];
267 module_param(ieee80211_regdom
, charp
, 0444);
268 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
270 static void reg_free_request(struct regulatory_request
*request
)
272 if (request
== &core_request_world
)
275 if (request
!= get_last_request())
279 static void reg_free_last_request(void)
281 struct regulatory_request
*lr
= get_last_request();
283 if (lr
!= &core_request_world
&& lr
)
284 kfree_rcu(lr
, rcu_head
);
287 static void reg_update_last_request(struct regulatory_request
*request
)
289 struct regulatory_request
*lr
;
291 lr
= get_last_request();
295 reg_free_last_request();
296 rcu_assign_pointer(last_request
, request
);
299 static void reset_regdomains(bool full_reset
,
300 const struct ieee80211_regdomain
*new_regdom
)
302 const struct ieee80211_regdomain
*r
;
306 r
= get_cfg80211_regdom();
308 /* avoid freeing static information or freeing something twice */
309 if (r
== cfg80211_world_regdom
)
311 if (cfg80211_world_regdom
== &world_regdom
)
312 cfg80211_world_regdom
= NULL
;
313 if (r
== &world_regdom
)
317 rcu_free_regdom(cfg80211_world_regdom
);
319 cfg80211_world_regdom
= &world_regdom
;
320 rcu_assign_pointer(cfg80211_regdomain
, new_regdom
);
325 reg_update_last_request(&core_request_world
);
329 * Dynamic world regulatory domain requested by the wireless
330 * core upon initialization
332 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
334 struct regulatory_request
*lr
;
336 lr
= get_last_request();
340 reset_regdomains(false, rd
);
342 cfg80211_world_regdom
= rd
;
345 bool is_world_regdom(const char *alpha2
)
349 return alpha2
[0] == '0' && alpha2
[1] == '0';
352 static bool is_alpha2_set(const char *alpha2
)
356 return alpha2
[0] && alpha2
[1];
359 static bool is_unknown_alpha2(const char *alpha2
)
364 * Special case where regulatory domain was built by driver
365 * but a specific alpha2 cannot be determined
367 return alpha2
[0] == '9' && alpha2
[1] == '9';
370 static bool is_intersected_alpha2(const char *alpha2
)
375 * Special case where regulatory domain is the
376 * result of an intersection between two regulatory domain
379 return alpha2
[0] == '9' && alpha2
[1] == '8';
382 static bool is_an_alpha2(const char *alpha2
)
386 return isalpha(alpha2
[0]) && isalpha(alpha2
[1]);
389 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
391 if (!alpha2_x
|| !alpha2_y
)
393 return alpha2_x
[0] == alpha2_y
[0] && alpha2_x
[1] == alpha2_y
[1];
396 static bool regdom_changes(const char *alpha2
)
398 const struct ieee80211_regdomain
*r
= get_cfg80211_regdom();
402 return !alpha2_equal(r
->alpha2
, alpha2
);
406 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
407 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
408 * has ever been issued.
410 static bool is_user_regdom_saved(void)
412 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
415 /* This would indicate a mistake on the design */
416 if (WARN(!is_world_regdom(user_alpha2
) && !is_an_alpha2(user_alpha2
),
417 "Unexpected user alpha2: %c%c\n",
418 user_alpha2
[0], user_alpha2
[1]))
424 static const struct ieee80211_regdomain
*
425 reg_copy_regd(const struct ieee80211_regdomain
*src_regd
)
427 struct ieee80211_regdomain
*regd
;
432 sizeof(struct ieee80211_regdomain
) +
433 src_regd
->n_reg_rules
* sizeof(struct ieee80211_reg_rule
);
435 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
437 return ERR_PTR(-ENOMEM
);
439 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
441 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
442 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
443 sizeof(struct ieee80211_reg_rule
));
448 struct reg_regdb_apply_request
{
449 struct list_head list
;
450 const struct ieee80211_regdomain
*regdom
;
453 static LIST_HEAD(reg_regdb_apply_list
);
454 static DEFINE_MUTEX(reg_regdb_apply_mutex
);
456 static void reg_regdb_apply(struct work_struct
*work
)
458 struct reg_regdb_apply_request
*request
;
462 mutex_lock(®_regdb_apply_mutex
);
463 while (!list_empty(®_regdb_apply_list
)) {
464 request
= list_first_entry(®_regdb_apply_list
,
465 struct reg_regdb_apply_request
,
467 list_del(&request
->list
);
469 set_regdom(request
->regdom
, REGD_SOURCE_INTERNAL_DB
);
472 mutex_unlock(®_regdb_apply_mutex
);
477 static DECLARE_WORK(reg_regdb_work
, reg_regdb_apply
);
479 static int reg_schedule_apply(const struct ieee80211_regdomain
*regdom
)
481 struct reg_regdb_apply_request
*request
;
483 request
= kzalloc(sizeof(struct reg_regdb_apply_request
), GFP_KERNEL
);
489 request
->regdom
= regdom
;
491 mutex_lock(®_regdb_apply_mutex
);
492 list_add_tail(&request
->list
, ®_regdb_apply_list
);
493 mutex_unlock(®_regdb_apply_mutex
);
495 schedule_work(®_regdb_work
);
499 #ifdef CONFIG_CFG80211_CRDA_SUPPORT
500 /* Max number of consecutive attempts to communicate with CRDA */
501 #define REG_MAX_CRDA_TIMEOUTS 10
503 static u32 reg_crda_timeouts
;
505 static void crda_timeout_work(struct work_struct
*work
);
506 static DECLARE_DELAYED_WORK(crda_timeout
, crda_timeout_work
);
508 static void crda_timeout_work(struct work_struct
*work
)
510 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
513 restore_regulatory_settings(true);
517 static void cancel_crda_timeout(void)
519 cancel_delayed_work(&crda_timeout
);
522 static void cancel_crda_timeout_sync(void)
524 cancel_delayed_work_sync(&crda_timeout
);
527 static void reset_crda_timeouts(void)
529 reg_crda_timeouts
= 0;
533 * This lets us keep regulatory code which is updated on a regulatory
534 * basis in userspace.
536 static int call_crda(const char *alpha2
)
539 char *env
[] = { country
, NULL
};
542 snprintf(country
, sizeof(country
), "COUNTRY=%c%c",
543 alpha2
[0], alpha2
[1]);
545 if (reg_crda_timeouts
> REG_MAX_CRDA_TIMEOUTS
) {
546 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
550 if (!is_world_regdom((char *) alpha2
))
551 pr_debug("Calling CRDA for country: %c%c\n",
552 alpha2
[0], alpha2
[1]);
554 pr_debug("Calling CRDA to update world regulatory domain\n");
556 ret
= kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, env
);
560 queue_delayed_work(system_power_efficient_wq
,
561 &crda_timeout
, msecs_to_jiffies(3142));
565 static inline void cancel_crda_timeout(void) {}
566 static inline void cancel_crda_timeout_sync(void) {}
567 static inline void reset_crda_timeouts(void) {}
568 static inline int call_crda(const char *alpha2
)
572 #endif /* CONFIG_CFG80211_CRDA_SUPPORT */
574 /* code to directly load a firmware database through request_firmware */
575 static const struct fwdb_header
*regdb
;
577 struct fwdb_country
{
580 /* this struct cannot be extended */
581 } __packed
__aligned(4);
583 struct fwdb_collection
{
587 /* no optional data yet */
588 /* aligned to 2, then followed by __be16 array of rule pointers */
589 } __packed
__aligned(4);
592 FWDB_FLAG_NO_OFDM
= BIT(0),
593 FWDB_FLAG_NO_OUTDOOR
= BIT(1),
594 FWDB_FLAG_DFS
= BIT(2),
595 FWDB_FLAG_NO_IR
= BIT(3),
596 FWDB_FLAG_AUTO_BW
= BIT(4),
605 struct fwdb_wmm_rule
{
606 struct fwdb_wmm_ac client
[IEEE80211_NUM_ACS
];
607 struct fwdb_wmm_ac ap
[IEEE80211_NUM_ACS
];
614 __be32 start
, end
, max_bw
;
615 /* start of optional data */
618 } __packed
__aligned(4);
620 #define FWDB_MAGIC 0x52474442
621 #define FWDB_VERSION 20
626 struct fwdb_country country
[];
627 } __packed
__aligned(4);
629 static int ecw2cw(int ecw
)
631 return (1 << ecw
) - 1;
634 static bool valid_wmm(struct fwdb_wmm_rule
*rule
)
636 struct fwdb_wmm_ac
*ac
= (struct fwdb_wmm_ac
*)rule
;
639 for (i
= 0; i
< IEEE80211_NUM_ACS
* 2; i
++) {
640 u16 cw_min
= ecw2cw((ac
[i
].ecw
& 0xf0) >> 4);
641 u16 cw_max
= ecw2cw(ac
[i
].ecw
& 0x0f);
642 u8 aifsn
= ac
[i
].aifsn
;
644 if (cw_min
>= cw_max
)
654 static bool valid_rule(const u8
*data
, unsigned int size
, u16 rule_ptr
)
656 struct fwdb_rule
*rule
= (void *)(data
+ (rule_ptr
<< 2));
658 if ((u8
*)rule
+ sizeof(rule
->len
) > data
+ size
)
661 /* mandatory fields */
662 if (rule
->len
< offsetofend(struct fwdb_rule
, max_bw
))
664 if (rule
->len
>= offsetofend(struct fwdb_rule
, wmm_ptr
)) {
665 u32 wmm_ptr
= be16_to_cpu(rule
->wmm_ptr
) << 2;
666 struct fwdb_wmm_rule
*wmm
;
668 if (wmm_ptr
+ sizeof(struct fwdb_wmm_rule
) > size
)
671 wmm
= (void *)(data
+ wmm_ptr
);
679 static bool valid_country(const u8
*data
, unsigned int size
,
680 const struct fwdb_country
*country
)
682 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
683 struct fwdb_collection
*coll
= (void *)(data
+ ptr
);
687 /* make sure we can read len/n_rules */
688 if ((u8
*)coll
+ offsetofend(typeof(*coll
), n_rules
) > data
+ size
)
691 /* make sure base struct and all rules fit */
692 if ((u8
*)coll
+ ALIGN(coll
->len
, 2) +
693 (coll
->n_rules
* 2) > data
+ size
)
696 /* mandatory fields must exist */
697 if (coll
->len
< offsetofend(struct fwdb_collection
, dfs_region
))
700 rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
702 for (i
= 0; i
< coll
->n_rules
; i
++) {
703 u16 rule_ptr
= be16_to_cpu(rules_ptr
[i
]);
705 if (!valid_rule(data
, size
, rule_ptr
))
712 #ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
713 static struct key
*builtin_regdb_keys
;
715 static void __init
load_keys_from_buffer(const u8
*p
, unsigned int buflen
)
717 const u8
*end
= p
+ buflen
;
722 /* Each cert begins with an ASN.1 SEQUENCE tag and must be more
723 * than 256 bytes in size.
730 plen
= (p
[2] << 8) | p
[3];
735 key
= key_create_or_update(make_key_ref(builtin_regdb_keys
, 1),
736 "asymmetric", NULL
, p
, plen
,
737 ((KEY_POS_ALL
& ~KEY_POS_SETATTR
) |
738 KEY_USR_VIEW
| KEY_USR_READ
),
739 KEY_ALLOC_NOT_IN_QUOTA
|
741 KEY_ALLOC_BYPASS_RESTRICTION
);
743 pr_err("Problem loading in-kernel X.509 certificate (%ld)\n",
746 pr_notice("Loaded X.509 cert '%s'\n",
747 key_ref_to_ptr(key
)->description
);
756 pr_err("Problem parsing in-kernel X.509 certificate list\n");
759 static int __init
load_builtin_regdb_keys(void)
762 keyring_alloc(".builtin_regdb_keys",
763 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
764 ((KEY_POS_ALL
& ~KEY_POS_SETATTR
) |
765 KEY_USR_VIEW
| KEY_USR_READ
| KEY_USR_SEARCH
),
766 KEY_ALLOC_NOT_IN_QUOTA
, NULL
, NULL
);
767 if (IS_ERR(builtin_regdb_keys
))
768 return PTR_ERR(builtin_regdb_keys
);
770 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
772 #ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
773 load_keys_from_buffer(shipped_regdb_certs
, shipped_regdb_certs_len
);
775 #ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
776 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
[0] != '\0')
777 load_keys_from_buffer(extra_regdb_certs
, extra_regdb_certs_len
);
783 static bool regdb_has_valid_signature(const u8
*data
, unsigned int size
)
785 const struct firmware
*sig
;
788 if (request_firmware(&sig
, "regulatory.db.p7s", ®_pdev
->dev
))
791 result
= verify_pkcs7_signature(data
, size
, sig
->data
, sig
->size
,
793 VERIFYING_UNSPECIFIED_SIGNATURE
,
796 release_firmware(sig
);
801 static void free_regdb_keyring(void)
803 key_put(builtin_regdb_keys
);
806 static int load_builtin_regdb_keys(void)
811 static bool regdb_has_valid_signature(const u8
*data
, unsigned int size
)
816 static void free_regdb_keyring(void)
819 #endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
821 static bool valid_regdb(const u8
*data
, unsigned int size
)
823 const struct fwdb_header
*hdr
= (void *)data
;
824 const struct fwdb_country
*country
;
826 if (size
< sizeof(*hdr
))
829 if (hdr
->magic
!= cpu_to_be32(FWDB_MAGIC
))
832 if (hdr
->version
!= cpu_to_be32(FWDB_VERSION
))
835 if (!regdb_has_valid_signature(data
, size
))
838 country
= &hdr
->country
[0];
839 while ((u8
*)(country
+ 1) <= data
+ size
) {
840 if (!country
->coll_ptr
)
842 if (!valid_country(data
, size
, country
))
850 static void set_wmm_rule(const struct fwdb_header
*db
,
851 const struct fwdb_country
*country
,
852 const struct fwdb_rule
*rule
,
853 struct ieee80211_reg_rule
*rrule
)
855 struct ieee80211_wmm_rule
*wmm_rule
= &rrule
->wmm_rule
;
856 struct fwdb_wmm_rule
*wmm
;
857 unsigned int i
, wmm_ptr
;
859 wmm_ptr
= be16_to_cpu(rule
->wmm_ptr
) << 2;
860 wmm
= (void *)((u8
*)db
+ wmm_ptr
);
862 if (!valid_wmm(wmm
)) {
863 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
864 be32_to_cpu(rule
->start
), be32_to_cpu(rule
->end
),
865 country
->alpha2
[0], country
->alpha2
[1]);
869 for (i
= 0; i
< IEEE80211_NUM_ACS
; i
++) {
870 wmm_rule
->client
[i
].cw_min
=
871 ecw2cw((wmm
->client
[i
].ecw
& 0xf0) >> 4);
872 wmm_rule
->client
[i
].cw_max
= ecw2cw(wmm
->client
[i
].ecw
& 0x0f);
873 wmm_rule
->client
[i
].aifsn
= wmm
->client
[i
].aifsn
;
874 wmm_rule
->client
[i
].cot
=
875 1000 * be16_to_cpu(wmm
->client
[i
].cot
);
876 wmm_rule
->ap
[i
].cw_min
= ecw2cw((wmm
->ap
[i
].ecw
& 0xf0) >> 4);
877 wmm_rule
->ap
[i
].cw_max
= ecw2cw(wmm
->ap
[i
].ecw
& 0x0f);
878 wmm_rule
->ap
[i
].aifsn
= wmm
->ap
[i
].aifsn
;
879 wmm_rule
->ap
[i
].cot
= 1000 * be16_to_cpu(wmm
->ap
[i
].cot
);
882 rrule
->has_wmm
= true;
885 static int __regdb_query_wmm(const struct fwdb_header
*db
,
886 const struct fwdb_country
*country
, int freq
,
887 struct ieee80211_reg_rule
*rrule
)
889 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
890 struct fwdb_collection
*coll
= (void *)((u8
*)db
+ ptr
);
893 for (i
= 0; i
< coll
->n_rules
; i
++) {
894 __be16
*rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
895 unsigned int rule_ptr
= be16_to_cpu(rules_ptr
[i
]) << 2;
896 struct fwdb_rule
*rule
= (void *)((u8
*)db
+ rule_ptr
);
898 if (rule
->len
< offsetofend(struct fwdb_rule
, wmm_ptr
))
901 if (freq
>= KHZ_TO_MHZ(be32_to_cpu(rule
->start
)) &&
902 freq
<= KHZ_TO_MHZ(be32_to_cpu(rule
->end
))) {
903 set_wmm_rule(db
, country
, rule
, rrule
);
911 int reg_query_regdb_wmm(char *alpha2
, int freq
, struct ieee80211_reg_rule
*rule
)
913 const struct fwdb_header
*hdr
= regdb
;
914 const struct fwdb_country
*country
;
920 return PTR_ERR(regdb
);
922 country
= &hdr
->country
[0];
923 while (country
->coll_ptr
) {
924 if (alpha2_equal(alpha2
, country
->alpha2
))
925 return __regdb_query_wmm(regdb
, country
, freq
, rule
);
932 EXPORT_SYMBOL(reg_query_regdb_wmm
);
934 static int regdb_query_country(const struct fwdb_header
*db
,
935 const struct fwdb_country
*country
)
937 unsigned int ptr
= be16_to_cpu(country
->coll_ptr
) << 2;
938 struct fwdb_collection
*coll
= (void *)((u8
*)db
+ ptr
);
939 struct ieee80211_regdomain
*regdom
;
940 unsigned int size_of_regd
, i
;
942 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
943 coll
->n_rules
* sizeof(struct ieee80211_reg_rule
);
945 regdom
= kzalloc(size_of_regd
, GFP_KERNEL
);
949 regdom
->n_reg_rules
= coll
->n_rules
;
950 regdom
->alpha2
[0] = country
->alpha2
[0];
951 regdom
->alpha2
[1] = country
->alpha2
[1];
952 regdom
->dfs_region
= coll
->dfs_region
;
954 for (i
= 0; i
< regdom
->n_reg_rules
; i
++) {
955 __be16
*rules_ptr
= (void *)((u8
*)coll
+ ALIGN(coll
->len
, 2));
956 unsigned int rule_ptr
= be16_to_cpu(rules_ptr
[i
]) << 2;
957 struct fwdb_rule
*rule
= (void *)((u8
*)db
+ rule_ptr
);
958 struct ieee80211_reg_rule
*rrule
= ®dom
->reg_rules
[i
];
960 rrule
->freq_range
.start_freq_khz
= be32_to_cpu(rule
->start
);
961 rrule
->freq_range
.end_freq_khz
= be32_to_cpu(rule
->end
);
962 rrule
->freq_range
.max_bandwidth_khz
= be32_to_cpu(rule
->max_bw
);
964 rrule
->power_rule
.max_antenna_gain
= 0;
965 rrule
->power_rule
.max_eirp
= be16_to_cpu(rule
->max_eirp
);
968 if (rule
->flags
& FWDB_FLAG_NO_OFDM
)
969 rrule
->flags
|= NL80211_RRF_NO_OFDM
;
970 if (rule
->flags
& FWDB_FLAG_NO_OUTDOOR
)
971 rrule
->flags
|= NL80211_RRF_NO_OUTDOOR
;
972 if (rule
->flags
& FWDB_FLAG_DFS
)
973 rrule
->flags
|= NL80211_RRF_DFS
;
974 if (rule
->flags
& FWDB_FLAG_NO_IR
)
975 rrule
->flags
|= NL80211_RRF_NO_IR
;
976 if (rule
->flags
& FWDB_FLAG_AUTO_BW
)
977 rrule
->flags
|= NL80211_RRF_AUTO_BW
;
979 rrule
->dfs_cac_ms
= 0;
981 /* handle optional data */
982 if (rule
->len
>= offsetofend(struct fwdb_rule
, cac_timeout
))
984 1000 * be16_to_cpu(rule
->cac_timeout
);
985 if (rule
->len
>= offsetofend(struct fwdb_rule
, wmm_ptr
))
986 set_wmm_rule(db
, country
, rule
, rrule
);
989 return reg_schedule_apply(regdom
);
992 static int query_regdb(const char *alpha2
)
994 const struct fwdb_header
*hdr
= regdb
;
995 const struct fwdb_country
*country
;
1000 return PTR_ERR(regdb
);
1002 country
= &hdr
->country
[0];
1003 while (country
->coll_ptr
) {
1004 if (alpha2_equal(alpha2
, country
->alpha2
))
1005 return regdb_query_country(regdb
, country
);
1012 static void regdb_fw_cb(const struct firmware
*fw
, void *context
)
1015 bool restore
= true;
1019 pr_info("failed to load regulatory.db\n");
1020 set_error
= -ENODATA
;
1021 } else if (!valid_regdb(fw
->data
, fw
->size
)) {
1022 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1023 set_error
= -EINVAL
;
1027 if (WARN_ON(regdb
&& !IS_ERR(regdb
))) {
1028 /* just restore and free new db */
1029 } else if (set_error
) {
1030 regdb
= ERR_PTR(set_error
);
1032 db
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
1035 restore
= context
&& query_regdb(context
);
1042 restore_regulatory_settings(true);
1048 release_firmware(fw
);
1051 static int query_regdb_file(const char *alpha2
)
1056 return query_regdb(alpha2
);
1058 alpha2
= kmemdup(alpha2
, 2, GFP_KERNEL
);
1062 return request_firmware_nowait(THIS_MODULE
, true, "regulatory.db",
1063 ®_pdev
->dev
, GFP_KERNEL
,
1064 (void *)alpha2
, regdb_fw_cb
);
1067 int reg_reload_regdb(void)
1069 const struct firmware
*fw
;
1073 err
= request_firmware(&fw
, "regulatory.db", ®_pdev
->dev
);
1077 if (!valid_regdb(fw
->data
, fw
->size
)) {
1082 db
= kmemdup(fw
->data
, fw
->size
, GFP_KERNEL
);
1089 if (!IS_ERR_OR_NULL(regdb
))
1095 release_firmware(fw
);
1099 static bool reg_query_database(struct regulatory_request
*request
)
1101 if (query_regdb_file(request
->alpha2
) == 0)
1104 if (call_crda(request
->alpha2
) == 0)
1110 bool reg_is_valid_request(const char *alpha2
)
1112 struct regulatory_request
*lr
= get_last_request();
1114 if (!lr
|| lr
->processed
)
1117 return alpha2_equal(lr
->alpha2
, alpha2
);
1120 static const struct ieee80211_regdomain
*reg_get_regdomain(struct wiphy
*wiphy
)
1122 struct regulatory_request
*lr
= get_last_request();
1125 * Follow the driver's regulatory domain, if present, unless a country
1126 * IE has been processed or a user wants to help complaince further
1128 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1129 lr
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
1131 return get_wiphy_regdom(wiphy
);
1133 return get_cfg80211_regdom();
1137 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain
*rd
,
1138 const struct ieee80211_reg_rule
*rule
)
1140 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
1141 const struct ieee80211_freq_range
*freq_range_tmp
;
1142 const struct ieee80211_reg_rule
*tmp
;
1143 u32 start_freq
, end_freq
, idx
, no
;
1145 for (idx
= 0; idx
< rd
->n_reg_rules
; idx
++)
1146 if (rule
== &rd
->reg_rules
[idx
])
1149 if (idx
== rd
->n_reg_rules
)
1152 /* get start_freq */
1156 tmp
= &rd
->reg_rules
[--no
];
1157 freq_range_tmp
= &tmp
->freq_range
;
1159 if (freq_range_tmp
->end_freq_khz
< freq_range
->start_freq_khz
)
1162 freq_range
= freq_range_tmp
;
1165 start_freq
= freq_range
->start_freq_khz
;
1168 freq_range
= &rule
->freq_range
;
1171 while (no
< rd
->n_reg_rules
- 1) {
1172 tmp
= &rd
->reg_rules
[++no
];
1173 freq_range_tmp
= &tmp
->freq_range
;
1175 if (freq_range_tmp
->start_freq_khz
> freq_range
->end_freq_khz
)
1178 freq_range
= freq_range_tmp
;
1181 end_freq
= freq_range
->end_freq_khz
;
1183 return end_freq
- start_freq
;
1186 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain
*rd
,
1187 const struct ieee80211_reg_rule
*rule
)
1189 unsigned int bw
= reg_get_max_bandwidth_from_range(rd
, rule
);
1191 if (rule
->flags
& NL80211_RRF_NO_160MHZ
)
1192 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(80));
1193 if (rule
->flags
& NL80211_RRF_NO_80MHZ
)
1194 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(40));
1197 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1200 if (rule
->flags
& NL80211_RRF_NO_HT40MINUS
&&
1201 rule
->flags
& NL80211_RRF_NO_HT40PLUS
)
1202 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(20));
1207 /* Sanity check on a regulatory rule */
1208 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
1210 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
1213 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
1216 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
1219 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
1221 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
1222 freq_range
->max_bandwidth_khz
> freq_diff
)
1228 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
1230 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1233 if (!rd
->n_reg_rules
)
1236 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
1239 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
1240 reg_rule
= &rd
->reg_rules
[i
];
1241 if (!is_valid_reg_rule(reg_rule
))
1249 * freq_in_rule_band - tells us if a frequency is in a frequency band
1250 * @freq_range: frequency rule we want to query
1251 * @freq_khz: frequency we are inquiring about
1253 * This lets us know if a specific frequency rule is or is not relevant to
1254 * a specific frequency's band. Bands are device specific and artificial
1255 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1256 * however it is safe for now to assume that a frequency rule should not be
1257 * part of a frequency's band if the start freq or end freq are off by more
1258 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
1260 * This resolution can be lowered and should be considered as we add
1261 * regulatory rule support for other "bands".
1263 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
1266 #define ONE_GHZ_IN_KHZ 1000000
1268 * From 802.11ad: directional multi-gigabit (DMG):
1269 * Pertaining to operation in a frequency band containing a channel
1270 * with the Channel starting frequency above 45 GHz.
1272 u32 limit
= freq_khz
> 45 * ONE_GHZ_IN_KHZ
?
1273 10 * ONE_GHZ_IN_KHZ
: 2 * ONE_GHZ_IN_KHZ
;
1274 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= limit
)
1276 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= limit
)
1279 #undef ONE_GHZ_IN_KHZ
1283 * Later on we can perhaps use the more restrictive DFS
1284 * region but we don't have information for that yet so
1285 * for now simply disallow conflicts.
1287 static enum nl80211_dfs_regions
1288 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1
,
1289 const enum nl80211_dfs_regions dfs_region2
)
1291 if (dfs_region1
!= dfs_region2
)
1292 return NL80211_DFS_UNSET
;
1297 * Helper for regdom_intersect(), this does the real
1298 * mathematical intersection fun
1300 static int reg_rules_intersect(const struct ieee80211_regdomain
*rd1
,
1301 const struct ieee80211_regdomain
*rd2
,
1302 const struct ieee80211_reg_rule
*rule1
,
1303 const struct ieee80211_reg_rule
*rule2
,
1304 struct ieee80211_reg_rule
*intersected_rule
)
1306 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
1307 struct ieee80211_freq_range
*freq_range
;
1308 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
1309 struct ieee80211_power_rule
*power_rule
;
1310 u32 freq_diff
, max_bandwidth1
, max_bandwidth2
;
1312 freq_range1
= &rule1
->freq_range
;
1313 freq_range2
= &rule2
->freq_range
;
1314 freq_range
= &intersected_rule
->freq_range
;
1316 power_rule1
= &rule1
->power_rule
;
1317 power_rule2
= &rule2
->power_rule
;
1318 power_rule
= &intersected_rule
->power_rule
;
1320 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
1321 freq_range2
->start_freq_khz
);
1322 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
1323 freq_range2
->end_freq_khz
);
1325 max_bandwidth1
= freq_range1
->max_bandwidth_khz
;
1326 max_bandwidth2
= freq_range2
->max_bandwidth_khz
;
1328 if (rule1
->flags
& NL80211_RRF_AUTO_BW
)
1329 max_bandwidth1
= reg_get_max_bandwidth(rd1
, rule1
);
1330 if (rule2
->flags
& NL80211_RRF_AUTO_BW
)
1331 max_bandwidth2
= reg_get_max_bandwidth(rd2
, rule2
);
1333 freq_range
->max_bandwidth_khz
= min(max_bandwidth1
, max_bandwidth2
);
1335 intersected_rule
->flags
= rule1
->flags
| rule2
->flags
;
1338 * In case NL80211_RRF_AUTO_BW requested for both rules
1339 * set AUTO_BW in intersected rule also. Next we will
1340 * calculate BW correctly in handle_channel function.
1341 * In other case remove AUTO_BW flag while we calculate
1342 * maximum bandwidth correctly and auto calculation is
1345 if ((rule1
->flags
& NL80211_RRF_AUTO_BW
) &&
1346 (rule2
->flags
& NL80211_RRF_AUTO_BW
))
1347 intersected_rule
->flags
|= NL80211_RRF_AUTO_BW
;
1349 intersected_rule
->flags
&= ~NL80211_RRF_AUTO_BW
;
1351 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
1352 if (freq_range
->max_bandwidth_khz
> freq_diff
)
1353 freq_range
->max_bandwidth_khz
= freq_diff
;
1355 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
1356 power_rule2
->max_eirp
);
1357 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
1358 power_rule2
->max_antenna_gain
);
1360 intersected_rule
->dfs_cac_ms
= max(rule1
->dfs_cac_ms
,
1363 if (!is_valid_reg_rule(intersected_rule
))
1369 /* check whether old rule contains new rule */
1370 static bool rule_contains(struct ieee80211_reg_rule
*r1
,
1371 struct ieee80211_reg_rule
*r2
)
1373 /* for simplicity, currently consider only same flags */
1374 if (r1
->flags
!= r2
->flags
)
1377 /* verify r1 is more restrictive */
1378 if ((r1
->power_rule
.max_antenna_gain
>
1379 r2
->power_rule
.max_antenna_gain
) ||
1380 r1
->power_rule
.max_eirp
> r2
->power_rule
.max_eirp
)
1383 /* make sure r2's range is contained within r1 */
1384 if (r1
->freq_range
.start_freq_khz
> r2
->freq_range
.start_freq_khz
||
1385 r1
->freq_range
.end_freq_khz
< r2
->freq_range
.end_freq_khz
)
1388 /* and finally verify that r1.max_bw >= r2.max_bw */
1389 if (r1
->freq_range
.max_bandwidth_khz
<
1390 r2
->freq_range
.max_bandwidth_khz
)
1396 /* add or extend current rules. do nothing if rule is already contained */
1397 static void add_rule(struct ieee80211_reg_rule
*rule
,
1398 struct ieee80211_reg_rule
*reg_rules
, u32
*n_rules
)
1400 struct ieee80211_reg_rule
*tmp_rule
;
1403 for (i
= 0; i
< *n_rules
; i
++) {
1404 tmp_rule
= ®_rules
[i
];
1405 /* rule is already contained - do nothing */
1406 if (rule_contains(tmp_rule
, rule
))
1409 /* extend rule if possible */
1410 if (rule_contains(rule
, tmp_rule
)) {
1411 memcpy(tmp_rule
, rule
, sizeof(*rule
));
1416 memcpy(®_rules
[*n_rules
], rule
, sizeof(*rule
));
1421 * regdom_intersect - do the intersection between two regulatory domains
1422 * @rd1: first regulatory domain
1423 * @rd2: second regulatory domain
1425 * Use this function to get the intersection between two regulatory domains.
1426 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1427 * as no one single alpha2 can represent this regulatory domain.
1429 * Returns a pointer to the regulatory domain structure which will hold the
1430 * resulting intersection of rules between rd1 and rd2. We will
1431 * kzalloc() this structure for you.
1433 static struct ieee80211_regdomain
*
1434 regdom_intersect(const struct ieee80211_regdomain
*rd1
,
1435 const struct ieee80211_regdomain
*rd2
)
1437 int r
, size_of_regd
;
1439 unsigned int num_rules
= 0;
1440 const struct ieee80211_reg_rule
*rule1
, *rule2
;
1441 struct ieee80211_reg_rule intersected_rule
;
1442 struct ieee80211_regdomain
*rd
;
1448 * First we get a count of the rules we'll need, then we actually
1449 * build them. This is to so we can malloc() and free() a
1450 * regdomain once. The reason we use reg_rules_intersect() here
1451 * is it will return -EINVAL if the rule computed makes no sense.
1452 * All rules that do check out OK are valid.
1455 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1456 rule1
= &rd1
->reg_rules
[x
];
1457 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1458 rule2
= &rd2
->reg_rules
[y
];
1459 if (!reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
1468 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
1469 num_rules
* sizeof(struct ieee80211_reg_rule
);
1471 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
1475 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
1476 rule1
= &rd1
->reg_rules
[x
];
1477 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
1478 rule2
= &rd2
->reg_rules
[y
];
1479 r
= reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
1482 * No need to memset here the intersected rule here as
1483 * we're not using the stack anymore
1488 add_rule(&intersected_rule
, rd
->reg_rules
,
1493 rd
->alpha2
[0] = '9';
1494 rd
->alpha2
[1] = '8';
1495 rd
->dfs_region
= reg_intersect_dfs_region(rd1
->dfs_region
,
1502 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1503 * want to just have the channel structure use these
1505 static u32
map_regdom_flags(u32 rd_flags
)
1507 u32 channel_flags
= 0;
1508 if (rd_flags
& NL80211_RRF_NO_IR_ALL
)
1509 channel_flags
|= IEEE80211_CHAN_NO_IR
;
1510 if (rd_flags
& NL80211_RRF_DFS
)
1511 channel_flags
|= IEEE80211_CHAN_RADAR
;
1512 if (rd_flags
& NL80211_RRF_NO_OFDM
)
1513 channel_flags
|= IEEE80211_CHAN_NO_OFDM
;
1514 if (rd_flags
& NL80211_RRF_NO_OUTDOOR
)
1515 channel_flags
|= IEEE80211_CHAN_INDOOR_ONLY
;
1516 if (rd_flags
& NL80211_RRF_IR_CONCURRENT
)
1517 channel_flags
|= IEEE80211_CHAN_IR_CONCURRENT
;
1518 if (rd_flags
& NL80211_RRF_NO_HT40MINUS
)
1519 channel_flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1520 if (rd_flags
& NL80211_RRF_NO_HT40PLUS
)
1521 channel_flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1522 if (rd_flags
& NL80211_RRF_NO_80MHZ
)
1523 channel_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1524 if (rd_flags
& NL80211_RRF_NO_160MHZ
)
1525 channel_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1526 return channel_flags
;
1529 static const struct ieee80211_reg_rule
*
1530 freq_reg_info_regd(u32 center_freq
,
1531 const struct ieee80211_regdomain
*regd
, u32 bw
)
1534 bool band_rule_found
= false;
1535 bool bw_fits
= false;
1538 return ERR_PTR(-EINVAL
);
1540 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
1541 const struct ieee80211_reg_rule
*rr
;
1542 const struct ieee80211_freq_range
*fr
= NULL
;
1544 rr
= ®d
->reg_rules
[i
];
1545 fr
= &rr
->freq_range
;
1548 * We only need to know if one frequency rule was
1549 * was in center_freq's band, that's enough, so lets
1550 * not overwrite it once found
1552 if (!band_rule_found
)
1553 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
1555 bw_fits
= cfg80211_does_bw_fit_range(fr
, center_freq
, bw
);
1557 if (band_rule_found
&& bw_fits
)
1561 if (!band_rule_found
)
1562 return ERR_PTR(-ERANGE
);
1564 return ERR_PTR(-EINVAL
);
1567 static const struct ieee80211_reg_rule
*
1568 __freq_reg_info(struct wiphy
*wiphy
, u32 center_freq
, u32 min_bw
)
1570 const struct ieee80211_regdomain
*regd
= reg_get_regdomain(wiphy
);
1571 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1574 for (bw
= MHZ_TO_KHZ(20); bw
>= min_bw
; bw
= bw
/ 2) {
1575 reg_rule
= freq_reg_info_regd(center_freq
, regd
, bw
);
1576 if (!IS_ERR(reg_rule
))
1583 const struct ieee80211_reg_rule
*freq_reg_info(struct wiphy
*wiphy
,
1586 return __freq_reg_info(wiphy
, center_freq
, MHZ_TO_KHZ(20));
1588 EXPORT_SYMBOL(freq_reg_info
);
1590 const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
1592 switch (initiator
) {
1593 case NL80211_REGDOM_SET_BY_CORE
:
1595 case NL80211_REGDOM_SET_BY_USER
:
1597 case NL80211_REGDOM_SET_BY_DRIVER
:
1599 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1600 return "country element";
1606 EXPORT_SYMBOL(reg_initiator_name
);
1608 static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain
*regd
,
1609 const struct ieee80211_reg_rule
*reg_rule
,
1610 const struct ieee80211_channel
*chan
)
1612 const struct ieee80211_freq_range
*freq_range
= NULL
;
1613 u32 max_bandwidth_khz
, bw_flags
= 0;
1615 freq_range
= ®_rule
->freq_range
;
1617 max_bandwidth_khz
= freq_range
->max_bandwidth_khz
;
1618 /* Check if auto calculation requested */
1619 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
1620 max_bandwidth_khz
= reg_get_max_bandwidth(regd
, reg_rule
);
1622 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1623 if (!cfg80211_does_bw_fit_range(freq_range
,
1624 MHZ_TO_KHZ(chan
->center_freq
),
1626 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1627 if (!cfg80211_does_bw_fit_range(freq_range
,
1628 MHZ_TO_KHZ(chan
->center_freq
),
1630 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1632 if (max_bandwidth_khz
< MHZ_TO_KHZ(10))
1633 bw_flags
|= IEEE80211_CHAN_NO_10MHZ
;
1634 if (max_bandwidth_khz
< MHZ_TO_KHZ(20))
1635 bw_flags
|= IEEE80211_CHAN_NO_20MHZ
;
1636 if (max_bandwidth_khz
< MHZ_TO_KHZ(40))
1637 bw_flags
|= IEEE80211_CHAN_NO_HT40
;
1638 if (max_bandwidth_khz
< MHZ_TO_KHZ(80))
1639 bw_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1640 if (max_bandwidth_khz
< MHZ_TO_KHZ(160))
1641 bw_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1646 * Note that right now we assume the desired channel bandwidth
1647 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1648 * per channel, the primary and the extension channel).
1650 static void handle_channel(struct wiphy
*wiphy
,
1651 enum nl80211_reg_initiator initiator
,
1652 struct ieee80211_channel
*chan
)
1654 u32 flags
, bw_flags
= 0;
1655 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1656 const struct ieee80211_power_rule
*power_rule
= NULL
;
1657 struct wiphy
*request_wiphy
= NULL
;
1658 struct regulatory_request
*lr
= get_last_request();
1659 const struct ieee80211_regdomain
*regd
;
1661 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
1663 flags
= chan
->orig_flags
;
1665 reg_rule
= freq_reg_info(wiphy
, MHZ_TO_KHZ(chan
->center_freq
));
1666 if (IS_ERR(reg_rule
)) {
1668 * We will disable all channels that do not match our
1669 * received regulatory rule unless the hint is coming
1670 * from a Country IE and the Country IE had no information
1671 * about a band. The IEEE 802.11 spec allows for an AP
1672 * to send only a subset of the regulatory rules allowed,
1673 * so an AP in the US that only supports 2.4 GHz may only send
1674 * a country IE with information for the 2.4 GHz band
1675 * while 5 GHz is still supported.
1677 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1678 PTR_ERR(reg_rule
) == -ERANGE
)
1681 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1682 request_wiphy
&& request_wiphy
== wiphy
&&
1683 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1684 pr_debug("Disabling freq %d MHz for good\n",
1686 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
1687 chan
->flags
= chan
->orig_flags
;
1689 pr_debug("Disabling freq %d MHz\n",
1691 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
1696 regd
= reg_get_regdomain(wiphy
);
1698 power_rule
= ®_rule
->power_rule
;
1699 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
1701 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1702 request_wiphy
&& request_wiphy
== wiphy
&&
1703 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1705 * This guarantees the driver's requested regulatory domain
1706 * will always be used as a base for further regulatory
1709 chan
->flags
= chan
->orig_flags
=
1710 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1711 chan
->max_antenna_gain
= chan
->orig_mag
=
1712 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1713 chan
->max_reg_power
= chan
->max_power
= chan
->orig_mpwr
=
1714 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1716 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1717 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1718 if (reg_rule
->dfs_cac_ms
)
1719 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1725 chan
->dfs_state
= NL80211_DFS_USABLE
;
1726 chan
->dfs_state_entered
= jiffies
;
1728 chan
->beacon_found
= false;
1729 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
1730 chan
->max_antenna_gain
=
1731 min_t(int, chan
->orig_mag
,
1732 MBI_TO_DBI(power_rule
->max_antenna_gain
));
1733 chan
->max_reg_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1735 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1736 if (reg_rule
->dfs_cac_ms
)
1737 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1739 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1742 if (chan
->orig_mpwr
) {
1744 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1745 * will always follow the passed country IE power settings.
1747 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1748 wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_FOLLOW_POWER
)
1749 chan
->max_power
= chan
->max_reg_power
;
1751 chan
->max_power
= min(chan
->orig_mpwr
,
1752 chan
->max_reg_power
);
1754 chan
->max_power
= chan
->max_reg_power
;
1757 static void handle_band(struct wiphy
*wiphy
,
1758 enum nl80211_reg_initiator initiator
,
1759 struct ieee80211_supported_band
*sband
)
1766 for (i
= 0; i
< sband
->n_channels
; i
++)
1767 handle_channel(wiphy
, initiator
, &sband
->channels
[i
]);
1770 static bool reg_request_cell_base(struct regulatory_request
*request
)
1772 if (request
->initiator
!= NL80211_REGDOM_SET_BY_USER
)
1774 return request
->user_reg_hint_type
== NL80211_USER_REG_HINT_CELL_BASE
;
1777 bool reg_last_request_cell_base(void)
1779 return reg_request_cell_base(get_last_request());
1782 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1783 /* Core specific check */
1784 static enum reg_request_treatment
1785 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1787 struct regulatory_request
*lr
= get_last_request();
1789 if (!reg_num_devs_support_basehint
)
1790 return REG_REQ_IGNORE
;
1792 if (reg_request_cell_base(lr
) &&
1793 !regdom_changes(pending_request
->alpha2
))
1794 return REG_REQ_ALREADY_SET
;
1799 /* Device specific check */
1800 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1802 return !(wiphy
->features
& NL80211_FEATURE_CELL_BASE_REG_HINTS
);
1805 static enum reg_request_treatment
1806 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1808 return REG_REQ_IGNORE
;
1811 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1817 static bool wiphy_strict_alpha2_regd(struct wiphy
*wiphy
)
1819 if (wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
&&
1820 !(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
))
1825 static bool ignore_reg_update(struct wiphy
*wiphy
,
1826 enum nl80211_reg_initiator initiator
)
1828 struct regulatory_request
*lr
= get_last_request();
1830 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
1834 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
1835 reg_initiator_name(initiator
));
1839 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1840 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
) {
1841 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
1842 reg_initiator_name(initiator
));
1847 * wiphy->regd will be set once the device has its own
1848 * desired regulatory domain set
1850 if (wiphy_strict_alpha2_regd(wiphy
) && !wiphy
->regd
&&
1851 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1852 !is_world_regdom(lr
->alpha2
)) {
1853 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
1854 reg_initiator_name(initiator
));
1858 if (reg_request_cell_base(lr
))
1859 return reg_dev_ignore_cell_hint(wiphy
);
1864 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1866 const struct ieee80211_regdomain
*cr
= get_cfg80211_regdom();
1867 const struct ieee80211_regdomain
*wr
= get_wiphy_regdom(wiphy
);
1868 struct regulatory_request
*lr
= get_last_request();
1870 if (is_world_regdom(cr
->alpha2
) || (wr
&& is_world_regdom(wr
->alpha2
)))
1873 if (lr
&& lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1874 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
1880 static void handle_reg_beacon(struct wiphy
*wiphy
, unsigned int chan_idx
,
1881 struct reg_beacon
*reg_beacon
)
1883 struct ieee80211_supported_band
*sband
;
1884 struct ieee80211_channel
*chan
;
1885 bool channel_changed
= false;
1886 struct ieee80211_channel chan_before
;
1888 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1889 chan
= &sband
->channels
[chan_idx
];
1891 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
1894 if (chan
->beacon_found
)
1897 chan
->beacon_found
= true;
1899 if (!reg_is_world_roaming(wiphy
))
1902 if (wiphy
->regulatory_flags
& REGULATORY_DISABLE_BEACON_HINTS
)
1905 chan_before
= *chan
;
1907 if (chan
->flags
& IEEE80211_CHAN_NO_IR
) {
1908 chan
->flags
&= ~IEEE80211_CHAN_NO_IR
;
1909 channel_changed
= true;
1912 if (channel_changed
)
1913 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
1917 * Called when a scan on a wiphy finds a beacon on
1920 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
1921 struct reg_beacon
*reg_beacon
)
1924 struct ieee80211_supported_band
*sband
;
1926 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1929 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1931 for (i
= 0; i
< sband
->n_channels
; i
++)
1932 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1936 * Called upon reg changes or a new wiphy is added
1938 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
1941 struct ieee80211_supported_band
*sband
;
1942 struct reg_beacon
*reg_beacon
;
1944 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
1945 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1947 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1948 for (i
= 0; i
< sband
->n_channels
; i
++)
1949 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1953 /* Reap the advantages of previously found beacons */
1954 static void reg_process_beacons(struct wiphy
*wiphy
)
1957 * Means we are just firing up cfg80211, so no beacons would
1958 * have been processed yet.
1962 wiphy_update_beacon_reg(wiphy
);
1965 static bool is_ht40_allowed(struct ieee80211_channel
*chan
)
1969 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
1971 /* This would happen when regulatory rules disallow HT40 completely */
1972 if ((chan
->flags
& IEEE80211_CHAN_NO_HT40
) == IEEE80211_CHAN_NO_HT40
)
1977 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
1978 struct ieee80211_channel
*channel
)
1980 struct ieee80211_supported_band
*sband
= wiphy
->bands
[channel
->band
];
1981 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
1982 const struct ieee80211_regdomain
*regd
;
1986 if (!is_ht40_allowed(channel
)) {
1987 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
1992 * We need to ensure the extension channels exist to
1993 * be able to use HT40- or HT40+, this finds them (or not)
1995 for (i
= 0; i
< sband
->n_channels
; i
++) {
1996 struct ieee80211_channel
*c
= &sband
->channels
[i
];
1998 if (c
->center_freq
== (channel
->center_freq
- 20))
2000 if (c
->center_freq
== (channel
->center_freq
+ 20))
2005 regd
= get_wiphy_regdom(wiphy
);
2007 const struct ieee80211_reg_rule
*reg_rule
=
2008 freq_reg_info_regd(MHZ_TO_KHZ(channel
->center_freq
),
2009 regd
, MHZ_TO_KHZ(20));
2011 if (!IS_ERR(reg_rule
))
2012 flags
= reg_rule
->flags
;
2016 * Please note that this assumes target bandwidth is 20 MHz,
2017 * if that ever changes we also need to change the below logic
2018 * to include that as well.
2020 if (!is_ht40_allowed(channel_before
) ||
2021 flags
& NL80211_RRF_NO_HT40MINUS
)
2022 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
2024 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
2026 if (!is_ht40_allowed(channel_after
) ||
2027 flags
& NL80211_RRF_NO_HT40PLUS
)
2028 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
2030 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
2033 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
2034 struct ieee80211_supported_band
*sband
)
2041 for (i
= 0; i
< sband
->n_channels
; i
++)
2042 reg_process_ht_flags_channel(wiphy
, &sband
->channels
[i
]);
2045 static void reg_process_ht_flags(struct wiphy
*wiphy
)
2047 enum nl80211_band band
;
2052 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2053 reg_process_ht_flags_band(wiphy
, wiphy
->bands
[band
]);
2056 static void reg_call_notifier(struct wiphy
*wiphy
,
2057 struct regulatory_request
*request
)
2059 if (wiphy
->reg_notifier
)
2060 wiphy
->reg_notifier(wiphy
, request
);
2063 static bool reg_wdev_chan_valid(struct wiphy
*wiphy
, struct wireless_dev
*wdev
)
2065 struct cfg80211_chan_def chandef
;
2066 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
2067 enum nl80211_iftype iftype
;
2070 iftype
= wdev
->iftype
;
2072 /* make sure the interface is active */
2073 if (!wdev
->netdev
|| !netif_running(wdev
->netdev
))
2074 goto wdev_inactive_unlock
;
2077 case NL80211_IFTYPE_AP
:
2078 case NL80211_IFTYPE_P2P_GO
:
2079 if (!wdev
->beacon_interval
)
2080 goto wdev_inactive_unlock
;
2081 chandef
= wdev
->chandef
;
2083 case NL80211_IFTYPE_ADHOC
:
2084 if (!wdev
->ssid_len
)
2085 goto wdev_inactive_unlock
;
2086 chandef
= wdev
->chandef
;
2088 case NL80211_IFTYPE_STATION
:
2089 case NL80211_IFTYPE_P2P_CLIENT
:
2090 if (!wdev
->current_bss
||
2091 !wdev
->current_bss
->pub
.channel
)
2092 goto wdev_inactive_unlock
;
2094 if (!rdev
->ops
->get_channel
||
2095 rdev_get_channel(rdev
, wdev
, &chandef
))
2096 cfg80211_chandef_create(&chandef
,
2097 wdev
->current_bss
->pub
.channel
,
2098 NL80211_CHAN_NO_HT
);
2100 case NL80211_IFTYPE_MONITOR
:
2101 case NL80211_IFTYPE_AP_VLAN
:
2102 case NL80211_IFTYPE_P2P_DEVICE
:
2103 /* no enforcement required */
2106 /* others not implemented for now */
2114 case NL80211_IFTYPE_AP
:
2115 case NL80211_IFTYPE_P2P_GO
:
2116 case NL80211_IFTYPE_ADHOC
:
2117 return cfg80211_reg_can_beacon_relax(wiphy
, &chandef
, iftype
);
2118 case NL80211_IFTYPE_STATION
:
2119 case NL80211_IFTYPE_P2P_CLIENT
:
2120 return cfg80211_chandef_usable(wiphy
, &chandef
,
2121 IEEE80211_CHAN_DISABLED
);
2128 wdev_inactive_unlock
:
2133 static void reg_leave_invalid_chans(struct wiphy
*wiphy
)
2135 struct wireless_dev
*wdev
;
2136 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
2140 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
)
2141 if (!reg_wdev_chan_valid(wiphy
, wdev
))
2142 cfg80211_leave(rdev
, wdev
);
2145 static void reg_check_chans_work(struct work_struct
*work
)
2147 struct cfg80211_registered_device
*rdev
;
2149 pr_debug("Verifying active interfaces after reg change\n");
2152 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
2153 if (!(rdev
->wiphy
.regulatory_flags
&
2154 REGULATORY_IGNORE_STALE_KICKOFF
))
2155 reg_leave_invalid_chans(&rdev
->wiphy
);
2160 static void reg_check_channels(void)
2163 * Give usermode a chance to do something nicer (move to another
2164 * channel, orderly disconnection), before forcing a disconnection.
2166 mod_delayed_work(system_power_efficient_wq
,
2168 msecs_to_jiffies(REG_ENFORCE_GRACE_MS
));
2171 static void wiphy_update_regulatory(struct wiphy
*wiphy
,
2172 enum nl80211_reg_initiator initiator
)
2174 enum nl80211_band band
;
2175 struct regulatory_request
*lr
= get_last_request();
2177 if (ignore_reg_update(wiphy
, initiator
)) {
2179 * Regulatory updates set by CORE are ignored for custom
2180 * regulatory cards. Let us notify the changes to the driver,
2181 * as some drivers used this to restore its orig_* reg domain.
2183 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
2184 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
&&
2185 !(wiphy
->regulatory_flags
&
2186 REGULATORY_WIPHY_SELF_MANAGED
))
2187 reg_call_notifier(wiphy
, lr
);
2191 lr
->dfs_region
= get_cfg80211_regdom()->dfs_region
;
2193 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2194 handle_band(wiphy
, initiator
, wiphy
->bands
[band
]);
2196 reg_process_beacons(wiphy
);
2197 reg_process_ht_flags(wiphy
);
2198 reg_call_notifier(wiphy
, lr
);
2201 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
2203 struct cfg80211_registered_device
*rdev
;
2204 struct wiphy
*wiphy
;
2208 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2209 wiphy
= &rdev
->wiphy
;
2210 wiphy_update_regulatory(wiphy
, initiator
);
2213 reg_check_channels();
2216 static void handle_channel_custom(struct wiphy
*wiphy
,
2217 struct ieee80211_channel
*chan
,
2218 const struct ieee80211_regdomain
*regd
)
2221 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
2222 const struct ieee80211_power_rule
*power_rule
= NULL
;
2225 for (bw
= MHZ_TO_KHZ(20); bw
>= MHZ_TO_KHZ(5); bw
= bw
/ 2) {
2226 reg_rule
= freq_reg_info_regd(MHZ_TO_KHZ(chan
->center_freq
),
2228 if (!IS_ERR(reg_rule
))
2232 if (IS_ERR(reg_rule
)) {
2233 pr_debug("Disabling freq %d MHz as custom regd has no rule that fits it\n",
2235 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
2236 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
2238 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
2239 chan
->flags
= chan
->orig_flags
;
2244 power_rule
= ®_rule
->power_rule
;
2245 bw_flags
= reg_rule_to_chan_bw_flags(regd
, reg_rule
, chan
);
2247 chan
->dfs_state_entered
= jiffies
;
2248 chan
->dfs_state
= NL80211_DFS_USABLE
;
2250 chan
->beacon_found
= false;
2252 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2253 chan
->flags
= chan
->orig_flags
| bw_flags
|
2254 map_regdom_flags(reg_rule
->flags
);
2256 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
2258 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
2259 chan
->max_reg_power
= chan
->max_power
=
2260 (int) MBM_TO_DBM(power_rule
->max_eirp
);
2262 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
2263 if (reg_rule
->dfs_cac_ms
)
2264 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
2266 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
2269 chan
->max_power
= chan
->max_reg_power
;
2272 static void handle_band_custom(struct wiphy
*wiphy
,
2273 struct ieee80211_supported_band
*sband
,
2274 const struct ieee80211_regdomain
*regd
)
2281 for (i
= 0; i
< sband
->n_channels
; i
++)
2282 handle_channel_custom(wiphy
, &sband
->channels
[i
], regd
);
2285 /* Used by drivers prior to wiphy registration */
2286 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
2287 const struct ieee80211_regdomain
*regd
)
2289 enum nl80211_band band
;
2290 unsigned int bands_set
= 0;
2292 WARN(!(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
),
2293 "wiphy should have REGULATORY_CUSTOM_REG\n");
2294 wiphy
->regulatory_flags
|= REGULATORY_CUSTOM_REG
;
2296 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2297 if (!wiphy
->bands
[band
])
2299 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
2304 * no point in calling this if it won't have any effect
2305 * on your device's supported bands.
2307 WARN_ON(!bands_set
);
2309 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
2311 static void reg_set_request_processed(void)
2313 bool need_more_processing
= false;
2314 struct regulatory_request
*lr
= get_last_request();
2316 lr
->processed
= true;
2318 spin_lock(®_requests_lock
);
2319 if (!list_empty(®_requests_list
))
2320 need_more_processing
= true;
2321 spin_unlock(®_requests_lock
);
2323 cancel_crda_timeout();
2325 if (need_more_processing
)
2326 schedule_work(®_work
);
2330 * reg_process_hint_core - process core regulatory requests
2331 * @pending_request: a pending core regulatory request
2333 * The wireless subsystem can use this function to process
2334 * a regulatory request issued by the regulatory core.
2336 static enum reg_request_treatment
2337 reg_process_hint_core(struct regulatory_request
*core_request
)
2339 if (reg_query_database(core_request
)) {
2340 core_request
->intersect
= false;
2341 core_request
->processed
= false;
2342 reg_update_last_request(core_request
);
2346 return REG_REQ_IGNORE
;
2349 static enum reg_request_treatment
2350 __reg_process_hint_user(struct regulatory_request
*user_request
)
2352 struct regulatory_request
*lr
= get_last_request();
2354 if (reg_request_cell_base(user_request
))
2355 return reg_ignore_cell_hint(user_request
);
2357 if (reg_request_cell_base(lr
))
2358 return REG_REQ_IGNORE
;
2360 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2361 return REG_REQ_INTERSECT
;
2363 * If the user knows better the user should set the regdom
2364 * to their country before the IE is picked up
2366 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
2368 return REG_REQ_IGNORE
;
2370 * Process user requests only after previous user/driver/core
2371 * requests have been processed
2373 if ((lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
2374 lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
2375 lr
->initiator
== NL80211_REGDOM_SET_BY_USER
) &&
2376 regdom_changes(lr
->alpha2
))
2377 return REG_REQ_IGNORE
;
2379 if (!regdom_changes(user_request
->alpha2
))
2380 return REG_REQ_ALREADY_SET
;
2386 * reg_process_hint_user - process user regulatory requests
2387 * @user_request: a pending user regulatory request
2389 * The wireless subsystem can use this function to process
2390 * a regulatory request initiated by userspace.
2392 static enum reg_request_treatment
2393 reg_process_hint_user(struct regulatory_request
*user_request
)
2395 enum reg_request_treatment treatment
;
2397 treatment
= __reg_process_hint_user(user_request
);
2398 if (treatment
== REG_REQ_IGNORE
||
2399 treatment
== REG_REQ_ALREADY_SET
)
2400 return REG_REQ_IGNORE
;
2402 user_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
2403 user_request
->processed
= false;
2405 if (reg_query_database(user_request
)) {
2406 reg_update_last_request(user_request
);
2407 user_alpha2
[0] = user_request
->alpha2
[0];
2408 user_alpha2
[1] = user_request
->alpha2
[1];
2412 return REG_REQ_IGNORE
;
2415 static enum reg_request_treatment
2416 __reg_process_hint_driver(struct regulatory_request
*driver_request
)
2418 struct regulatory_request
*lr
= get_last_request();
2420 if (lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
2421 if (regdom_changes(driver_request
->alpha2
))
2423 return REG_REQ_ALREADY_SET
;
2427 * This would happen if you unplug and plug your card
2428 * back in or if you add a new device for which the previously
2429 * loaded card also agrees on the regulatory domain.
2431 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
2432 !regdom_changes(driver_request
->alpha2
))
2433 return REG_REQ_ALREADY_SET
;
2435 return REG_REQ_INTERSECT
;
2439 * reg_process_hint_driver - process driver regulatory requests
2440 * @driver_request: a pending driver regulatory request
2442 * The wireless subsystem can use this function to process
2443 * a regulatory request issued by an 802.11 driver.
2445 * Returns one of the different reg request treatment values.
2447 static enum reg_request_treatment
2448 reg_process_hint_driver(struct wiphy
*wiphy
,
2449 struct regulatory_request
*driver_request
)
2451 const struct ieee80211_regdomain
*regd
, *tmp
;
2452 enum reg_request_treatment treatment
;
2454 treatment
= __reg_process_hint_driver(driver_request
);
2456 switch (treatment
) {
2459 case REG_REQ_IGNORE
:
2460 return REG_REQ_IGNORE
;
2461 case REG_REQ_INTERSECT
:
2462 case REG_REQ_ALREADY_SET
:
2463 regd
= reg_copy_regd(get_cfg80211_regdom());
2465 return REG_REQ_IGNORE
;
2467 tmp
= get_wiphy_regdom(wiphy
);
2468 rcu_assign_pointer(wiphy
->regd
, regd
);
2469 rcu_free_regdom(tmp
);
2473 driver_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
2474 driver_request
->processed
= false;
2477 * Since CRDA will not be called in this case as we already
2478 * have applied the requested regulatory domain before we just
2479 * inform userspace we have processed the request
2481 if (treatment
== REG_REQ_ALREADY_SET
) {
2482 nl80211_send_reg_change_event(driver_request
);
2483 reg_update_last_request(driver_request
);
2484 reg_set_request_processed();
2485 return REG_REQ_ALREADY_SET
;
2488 if (reg_query_database(driver_request
)) {
2489 reg_update_last_request(driver_request
);
2493 return REG_REQ_IGNORE
;
2496 static enum reg_request_treatment
2497 __reg_process_hint_country_ie(struct wiphy
*wiphy
,
2498 struct regulatory_request
*country_ie_request
)
2500 struct wiphy
*last_wiphy
= NULL
;
2501 struct regulatory_request
*lr
= get_last_request();
2503 if (reg_request_cell_base(lr
)) {
2504 /* Trust a Cell base station over the AP's country IE */
2505 if (regdom_changes(country_ie_request
->alpha2
))
2506 return REG_REQ_IGNORE
;
2507 return REG_REQ_ALREADY_SET
;
2509 if (wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_IGNORE
)
2510 return REG_REQ_IGNORE
;
2513 if (unlikely(!is_an_alpha2(country_ie_request
->alpha2
)))
2516 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2519 last_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
2521 if (last_wiphy
!= wiphy
) {
2523 * Two cards with two APs claiming different
2524 * Country IE alpha2s. We could
2525 * intersect them, but that seems unlikely
2526 * to be correct. Reject second one for now.
2528 if (regdom_changes(country_ie_request
->alpha2
))
2529 return REG_REQ_IGNORE
;
2530 return REG_REQ_ALREADY_SET
;
2533 if (regdom_changes(country_ie_request
->alpha2
))
2535 return REG_REQ_ALREADY_SET
;
2539 * reg_process_hint_country_ie - process regulatory requests from country IEs
2540 * @country_ie_request: a regulatory request from a country IE
2542 * The wireless subsystem can use this function to process
2543 * a regulatory request issued by a country Information Element.
2545 * Returns one of the different reg request treatment values.
2547 static enum reg_request_treatment
2548 reg_process_hint_country_ie(struct wiphy
*wiphy
,
2549 struct regulatory_request
*country_ie_request
)
2551 enum reg_request_treatment treatment
;
2553 treatment
= __reg_process_hint_country_ie(wiphy
, country_ie_request
);
2555 switch (treatment
) {
2558 case REG_REQ_IGNORE
:
2559 return REG_REQ_IGNORE
;
2560 case REG_REQ_ALREADY_SET
:
2561 reg_free_request(country_ie_request
);
2562 return REG_REQ_ALREADY_SET
;
2563 case REG_REQ_INTERSECT
:
2565 * This doesn't happen yet, not sure we
2566 * ever want to support it for this case.
2568 WARN_ONCE(1, "Unexpected intersection for country elements");
2569 return REG_REQ_IGNORE
;
2572 country_ie_request
->intersect
= false;
2573 country_ie_request
->processed
= false;
2575 if (reg_query_database(country_ie_request
)) {
2576 reg_update_last_request(country_ie_request
);
2580 return REG_REQ_IGNORE
;
2583 bool reg_dfs_domain_same(struct wiphy
*wiphy1
, struct wiphy
*wiphy2
)
2585 const struct ieee80211_regdomain
*wiphy1_regd
= NULL
;
2586 const struct ieee80211_regdomain
*wiphy2_regd
= NULL
;
2587 const struct ieee80211_regdomain
*cfg80211_regd
= NULL
;
2588 bool dfs_domain_same
;
2592 cfg80211_regd
= rcu_dereference(cfg80211_regdomain
);
2593 wiphy1_regd
= rcu_dereference(wiphy1
->regd
);
2595 wiphy1_regd
= cfg80211_regd
;
2597 wiphy2_regd
= rcu_dereference(wiphy2
->regd
);
2599 wiphy2_regd
= cfg80211_regd
;
2601 dfs_domain_same
= wiphy1_regd
->dfs_region
== wiphy2_regd
->dfs_region
;
2605 return dfs_domain_same
;
2608 static void reg_copy_dfs_chan_state(struct ieee80211_channel
*dst_chan
,
2609 struct ieee80211_channel
*src_chan
)
2611 if (!(dst_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
2612 !(src_chan
->flags
& IEEE80211_CHAN_RADAR
))
2615 if (dst_chan
->flags
& IEEE80211_CHAN_DISABLED
||
2616 src_chan
->flags
& IEEE80211_CHAN_DISABLED
)
2619 if (src_chan
->center_freq
== dst_chan
->center_freq
&&
2620 dst_chan
->dfs_state
== NL80211_DFS_USABLE
) {
2621 dst_chan
->dfs_state
= src_chan
->dfs_state
;
2622 dst_chan
->dfs_state_entered
= src_chan
->dfs_state_entered
;
2626 static void wiphy_share_dfs_chan_state(struct wiphy
*dst_wiphy
,
2627 struct wiphy
*src_wiphy
)
2629 struct ieee80211_supported_band
*src_sband
, *dst_sband
;
2630 struct ieee80211_channel
*src_chan
, *dst_chan
;
2633 if (!reg_dfs_domain_same(dst_wiphy
, src_wiphy
))
2636 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
2637 dst_sband
= dst_wiphy
->bands
[band
];
2638 src_sband
= src_wiphy
->bands
[band
];
2639 if (!dst_sband
|| !src_sband
)
2642 for (i
= 0; i
< dst_sband
->n_channels
; i
++) {
2643 dst_chan
= &dst_sband
->channels
[i
];
2644 for (j
= 0; j
< src_sband
->n_channels
; j
++) {
2645 src_chan
= &src_sband
->channels
[j
];
2646 reg_copy_dfs_chan_state(dst_chan
, src_chan
);
2652 static void wiphy_all_share_dfs_chan_state(struct wiphy
*wiphy
)
2654 struct cfg80211_registered_device
*rdev
;
2658 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2659 if (wiphy
== &rdev
->wiphy
)
2661 wiphy_share_dfs_chan_state(wiphy
, &rdev
->wiphy
);
2665 /* This processes *all* regulatory hints */
2666 static void reg_process_hint(struct regulatory_request
*reg_request
)
2668 struct wiphy
*wiphy
= NULL
;
2669 enum reg_request_treatment treatment
;
2670 enum nl80211_reg_initiator initiator
= reg_request
->initiator
;
2672 if (reg_request
->wiphy_idx
!= WIPHY_IDX_INVALID
)
2673 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
2675 switch (initiator
) {
2676 case NL80211_REGDOM_SET_BY_CORE
:
2677 treatment
= reg_process_hint_core(reg_request
);
2679 case NL80211_REGDOM_SET_BY_USER
:
2680 treatment
= reg_process_hint_user(reg_request
);
2682 case NL80211_REGDOM_SET_BY_DRIVER
:
2685 treatment
= reg_process_hint_driver(wiphy
, reg_request
);
2687 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
2690 treatment
= reg_process_hint_country_ie(wiphy
, reg_request
);
2693 WARN(1, "invalid initiator %d\n", initiator
);
2697 if (treatment
== REG_REQ_IGNORE
)
2700 WARN(treatment
!= REG_REQ_OK
&& treatment
!= REG_REQ_ALREADY_SET
,
2701 "unexpected treatment value %d\n", treatment
);
2703 /* This is required so that the orig_* parameters are saved.
2704 * NOTE: treatment must be set for any case that reaches here!
2706 if (treatment
== REG_REQ_ALREADY_SET
&& wiphy
&&
2707 wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
2708 wiphy_update_regulatory(wiphy
, initiator
);
2709 wiphy_all_share_dfs_chan_state(wiphy
);
2710 reg_check_channels();
2716 reg_free_request(reg_request
);
2719 static void notify_self_managed_wiphys(struct regulatory_request
*request
)
2721 struct cfg80211_registered_device
*rdev
;
2722 struct wiphy
*wiphy
;
2724 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2725 wiphy
= &rdev
->wiphy
;
2726 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
&&
2727 request
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
2728 request
->user_reg_hint_type
==
2729 NL80211_USER_REG_HINT_CELL_BASE
)
2730 reg_call_notifier(wiphy
, request
);
2735 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2736 * Regulatory hints come on a first come first serve basis and we
2737 * must process each one atomically.
2739 static void reg_process_pending_hints(void)
2741 struct regulatory_request
*reg_request
, *lr
;
2743 lr
= get_last_request();
2745 /* When last_request->processed becomes true this will be rescheduled */
2746 if (lr
&& !lr
->processed
) {
2747 reg_process_hint(lr
);
2751 spin_lock(®_requests_lock
);
2753 if (list_empty(®_requests_list
)) {
2754 spin_unlock(®_requests_lock
);
2758 reg_request
= list_first_entry(®_requests_list
,
2759 struct regulatory_request
,
2761 list_del_init(®_request
->list
);
2763 spin_unlock(®_requests_lock
);
2765 notify_self_managed_wiphys(reg_request
);
2767 reg_process_hint(reg_request
);
2769 lr
= get_last_request();
2771 spin_lock(®_requests_lock
);
2772 if (!list_empty(®_requests_list
) && lr
&& lr
->processed
)
2773 schedule_work(®_work
);
2774 spin_unlock(®_requests_lock
);
2777 /* Processes beacon hints -- this has nothing to do with country IEs */
2778 static void reg_process_pending_beacon_hints(void)
2780 struct cfg80211_registered_device
*rdev
;
2781 struct reg_beacon
*pending_beacon
, *tmp
;
2783 /* This goes through the _pending_ beacon list */
2784 spin_lock_bh(®_pending_beacons_lock
);
2786 list_for_each_entry_safe(pending_beacon
, tmp
,
2787 ®_pending_beacons
, list
) {
2788 list_del_init(&pending_beacon
->list
);
2790 /* Applies the beacon hint to current wiphys */
2791 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
2792 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
2794 /* Remembers the beacon hint for new wiphys or reg changes */
2795 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
2798 spin_unlock_bh(®_pending_beacons_lock
);
2801 static void reg_process_self_managed_hints(void)
2803 struct cfg80211_registered_device
*rdev
;
2804 struct wiphy
*wiphy
;
2805 const struct ieee80211_regdomain
*tmp
;
2806 const struct ieee80211_regdomain
*regd
;
2807 enum nl80211_band band
;
2808 struct regulatory_request request
= {};
2810 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2811 wiphy
= &rdev
->wiphy
;
2813 spin_lock(®_requests_lock
);
2814 regd
= rdev
->requested_regd
;
2815 rdev
->requested_regd
= NULL
;
2816 spin_unlock(®_requests_lock
);
2821 tmp
= get_wiphy_regdom(wiphy
);
2822 rcu_assign_pointer(wiphy
->regd
, regd
);
2823 rcu_free_regdom(tmp
);
2825 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++)
2826 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
2828 reg_process_ht_flags(wiphy
);
2830 request
.wiphy_idx
= get_wiphy_idx(wiphy
);
2831 request
.alpha2
[0] = regd
->alpha2
[0];
2832 request
.alpha2
[1] = regd
->alpha2
[1];
2833 request
.initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
2835 nl80211_send_wiphy_reg_change_event(&request
);
2838 reg_check_channels();
2841 static void reg_todo(struct work_struct
*work
)
2844 reg_process_pending_hints();
2845 reg_process_pending_beacon_hints();
2846 reg_process_self_managed_hints();
2850 static void queue_regulatory_request(struct regulatory_request
*request
)
2852 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
2853 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
2855 spin_lock(®_requests_lock
);
2856 list_add_tail(&request
->list
, ®_requests_list
);
2857 spin_unlock(®_requests_lock
);
2859 schedule_work(®_work
);
2863 * Core regulatory hint -- happens during cfg80211_init()
2864 * and when we restore regulatory settings.
2866 static int regulatory_hint_core(const char *alpha2
)
2868 struct regulatory_request
*request
;
2870 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2874 request
->alpha2
[0] = alpha2
[0];
2875 request
->alpha2
[1] = alpha2
[1];
2876 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
2877 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
2879 queue_regulatory_request(request
);
2885 int regulatory_hint_user(const char *alpha2
,
2886 enum nl80211_user_reg_hint_type user_reg_hint_type
)
2888 struct regulatory_request
*request
;
2890 if (WARN_ON(!alpha2
))
2893 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2897 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
2898 request
->alpha2
[0] = alpha2
[0];
2899 request
->alpha2
[1] = alpha2
[1];
2900 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
2901 request
->user_reg_hint_type
= user_reg_hint_type
;
2903 /* Allow calling CRDA again */
2904 reset_crda_timeouts();
2906 queue_regulatory_request(request
);
2911 int regulatory_hint_indoor(bool is_indoor
, u32 portid
)
2913 spin_lock(®_indoor_lock
);
2915 /* It is possible that more than one user space process is trying to
2916 * configure the indoor setting. To handle such cases, clear the indoor
2917 * setting in case that some process does not think that the device
2918 * is operating in an indoor environment. In addition, if a user space
2919 * process indicates that it is controlling the indoor setting, save its
2920 * portid, i.e., make it the owner.
2922 reg_is_indoor
= is_indoor
;
2923 if (reg_is_indoor
) {
2924 if (!reg_is_indoor_portid
)
2925 reg_is_indoor_portid
= portid
;
2927 reg_is_indoor_portid
= 0;
2930 spin_unlock(®_indoor_lock
);
2933 reg_check_channels();
2938 void regulatory_netlink_notify(u32 portid
)
2940 spin_lock(®_indoor_lock
);
2942 if (reg_is_indoor_portid
!= portid
) {
2943 spin_unlock(®_indoor_lock
);
2947 reg_is_indoor
= false;
2948 reg_is_indoor_portid
= 0;
2950 spin_unlock(®_indoor_lock
);
2952 reg_check_channels();
2956 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
2958 struct regulatory_request
*request
;
2960 if (WARN_ON(!alpha2
|| !wiphy
))
2963 wiphy
->regulatory_flags
&= ~REGULATORY_CUSTOM_REG
;
2965 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2969 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
2971 request
->alpha2
[0] = alpha2
[0];
2972 request
->alpha2
[1] = alpha2
[1];
2973 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
2975 /* Allow calling CRDA again */
2976 reset_crda_timeouts();
2978 queue_regulatory_request(request
);
2982 EXPORT_SYMBOL(regulatory_hint
);
2984 void regulatory_hint_country_ie(struct wiphy
*wiphy
, enum nl80211_band band
,
2985 const u8
*country_ie
, u8 country_ie_len
)
2988 enum environment_cap env
= ENVIRON_ANY
;
2989 struct regulatory_request
*request
= NULL
, *lr
;
2991 /* IE len must be evenly divisible by 2 */
2992 if (country_ie_len
& 0x01)
2995 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
2998 request
= kzalloc(sizeof(*request
), GFP_KERNEL
);
3002 alpha2
[0] = country_ie
[0];
3003 alpha2
[1] = country_ie
[1];
3005 if (country_ie
[2] == 'I')
3006 env
= ENVIRON_INDOOR
;
3007 else if (country_ie
[2] == 'O')
3008 env
= ENVIRON_OUTDOOR
;
3011 lr
= get_last_request();
3017 * We will run this only upon a successful connection on cfg80211.
3018 * We leave conflict resolution to the workqueue, where can hold
3021 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
3022 lr
->wiphy_idx
!= WIPHY_IDX_INVALID
)
3025 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
3026 request
->alpha2
[0] = alpha2
[0];
3027 request
->alpha2
[1] = alpha2
[1];
3028 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
3029 request
->country_ie_env
= env
;
3031 /* Allow calling CRDA again */
3032 reset_crda_timeouts();
3034 queue_regulatory_request(request
);
3041 static void restore_alpha2(char *alpha2
, bool reset_user
)
3043 /* indicates there is no alpha2 to consider for restoration */
3047 /* The user setting has precedence over the module parameter */
3048 if (is_user_regdom_saved()) {
3049 /* Unless we're asked to ignore it and reset it */
3051 pr_debug("Restoring regulatory settings including user preference\n");
3052 user_alpha2
[0] = '9';
3053 user_alpha2
[1] = '7';
3056 * If we're ignoring user settings, we still need to
3057 * check the module parameter to ensure we put things
3058 * back as they were for a full restore.
3060 if (!is_world_regdom(ieee80211_regdom
)) {
3061 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3062 ieee80211_regdom
[0], ieee80211_regdom
[1]);
3063 alpha2
[0] = ieee80211_regdom
[0];
3064 alpha2
[1] = ieee80211_regdom
[1];
3067 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3068 user_alpha2
[0], user_alpha2
[1]);
3069 alpha2
[0] = user_alpha2
[0];
3070 alpha2
[1] = user_alpha2
[1];
3072 } else if (!is_world_regdom(ieee80211_regdom
)) {
3073 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3074 ieee80211_regdom
[0], ieee80211_regdom
[1]);
3075 alpha2
[0] = ieee80211_regdom
[0];
3076 alpha2
[1] = ieee80211_regdom
[1];
3078 pr_debug("Restoring regulatory settings\n");
3081 static void restore_custom_reg_settings(struct wiphy
*wiphy
)
3083 struct ieee80211_supported_band
*sband
;
3084 enum nl80211_band band
;
3085 struct ieee80211_channel
*chan
;
3088 for (band
= 0; band
< NUM_NL80211_BANDS
; band
++) {
3089 sband
= wiphy
->bands
[band
];
3092 for (i
= 0; i
< sband
->n_channels
; i
++) {
3093 chan
= &sband
->channels
[i
];
3094 chan
->flags
= chan
->orig_flags
;
3095 chan
->max_antenna_gain
= chan
->orig_mag
;
3096 chan
->max_power
= chan
->orig_mpwr
;
3097 chan
->beacon_found
= false;
3103 * Restoring regulatory settings involves ingoring any
3104 * possibly stale country IE information and user regulatory
3105 * settings if so desired, this includes any beacon hints
3106 * learned as we could have traveled outside to another country
3107 * after disconnection. To restore regulatory settings we do
3108 * exactly what we did at bootup:
3110 * - send a core regulatory hint
3111 * - send a user regulatory hint if applicable
3113 * Device drivers that send a regulatory hint for a specific country
3114 * keep their own regulatory domain on wiphy->regd so that does does
3115 * not need to be remembered.
3117 static void restore_regulatory_settings(bool reset_user
)
3120 char world_alpha2
[2];
3121 struct reg_beacon
*reg_beacon
, *btmp
;
3122 LIST_HEAD(tmp_reg_req_list
);
3123 struct cfg80211_registered_device
*rdev
;
3128 * Clear the indoor setting in case that it is not controlled by user
3129 * space, as otherwise there is no guarantee that the device is still
3130 * operating in an indoor environment.
3132 spin_lock(®_indoor_lock
);
3133 if (reg_is_indoor
&& !reg_is_indoor_portid
) {
3134 reg_is_indoor
= false;
3135 reg_check_channels();
3137 spin_unlock(®_indoor_lock
);
3139 reset_regdomains(true, &world_regdom
);
3140 restore_alpha2(alpha2
, reset_user
);
3143 * If there's any pending requests we simply
3144 * stash them to a temporary pending queue and
3145 * add then after we've restored regulatory
3148 spin_lock(®_requests_lock
);
3149 list_splice_tail_init(®_requests_list
, &tmp_reg_req_list
);
3150 spin_unlock(®_requests_lock
);
3152 /* Clear beacon hints */
3153 spin_lock_bh(®_pending_beacons_lock
);
3154 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
3155 list_del(®_beacon
->list
);
3158 spin_unlock_bh(®_pending_beacons_lock
);
3160 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
3161 list_del(®_beacon
->list
);
3165 /* First restore to the basic regulatory settings */
3166 world_alpha2
[0] = cfg80211_world_regdom
->alpha2
[0];
3167 world_alpha2
[1] = cfg80211_world_regdom
->alpha2
[1];
3169 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3170 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
3172 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_CUSTOM_REG
)
3173 restore_custom_reg_settings(&rdev
->wiphy
);
3176 regulatory_hint_core(world_alpha2
);
3179 * This restores the ieee80211_regdom module parameter
3180 * preference or the last user requested regulatory
3181 * settings, user regulatory settings takes precedence.
3183 if (is_an_alpha2(alpha2
))
3184 regulatory_hint_user(alpha2
, NL80211_USER_REG_HINT_USER
);
3186 spin_lock(®_requests_lock
);
3187 list_splice_tail_init(&tmp_reg_req_list
, ®_requests_list
);
3188 spin_unlock(®_requests_lock
);
3190 pr_debug("Kicking the queue\n");
3192 schedule_work(®_work
);
3195 static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag
)
3197 struct cfg80211_registered_device
*rdev
;
3198 struct wireless_dev
*wdev
;
3200 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3201 list_for_each_entry(wdev
, &rdev
->wiphy
.wdev_list
, list
) {
3203 if (!(wdev
->wiphy
->regulatory_flags
& flag
)) {
3214 void regulatory_hint_disconnect(void)
3216 /* Restore of regulatory settings is not required when wiphy(s)
3217 * ignore IE from connected access point but clearance of beacon hints
3218 * is required when wiphy(s) supports beacon hints.
3220 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE
)) {
3221 struct reg_beacon
*reg_beacon
, *btmp
;
3223 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS
))
3226 spin_lock_bh(®_pending_beacons_lock
);
3227 list_for_each_entry_safe(reg_beacon
, btmp
,
3228 ®_pending_beacons
, list
) {
3229 list_del(®_beacon
->list
);
3232 spin_unlock_bh(®_pending_beacons_lock
);
3234 list_for_each_entry_safe(reg_beacon
, btmp
,
3235 ®_beacon_list
, list
) {
3236 list_del(®_beacon
->list
);
3243 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3244 restore_regulatory_settings(false);
3247 static bool freq_is_chan_12_13_14(u32 freq
)
3249 if (freq
== ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ
) ||
3250 freq
== ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ
) ||
3251 freq
== ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ
))
3256 static bool pending_reg_beacon(struct ieee80211_channel
*beacon_chan
)
3258 struct reg_beacon
*pending_beacon
;
3260 list_for_each_entry(pending_beacon
, ®_pending_beacons
, list
)
3261 if (beacon_chan
->center_freq
==
3262 pending_beacon
->chan
.center_freq
)
3267 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
3268 struct ieee80211_channel
*beacon_chan
,
3271 struct reg_beacon
*reg_beacon
;
3274 if (beacon_chan
->beacon_found
||
3275 beacon_chan
->flags
& IEEE80211_CHAN_RADAR
||
3276 (beacon_chan
->band
== NL80211_BAND_2GHZ
&&
3277 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))
3280 spin_lock_bh(®_pending_beacons_lock
);
3281 processing
= pending_reg_beacon(beacon_chan
);
3282 spin_unlock_bh(®_pending_beacons_lock
);
3287 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
3291 pr_debug("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
3292 beacon_chan
->center_freq
,
3293 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
3296 memcpy(®_beacon
->chan
, beacon_chan
,
3297 sizeof(struct ieee80211_channel
));
3300 * Since we can be called from BH or and non-BH context
3301 * we must use spin_lock_bh()
3303 spin_lock_bh(®_pending_beacons_lock
);
3304 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
3305 spin_unlock_bh(®_pending_beacons_lock
);
3307 schedule_work(®_work
);
3312 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
3315 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
3316 const struct ieee80211_freq_range
*freq_range
= NULL
;
3317 const struct ieee80211_power_rule
*power_rule
= NULL
;
3318 char bw
[32], cac_time
[32];
3320 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3322 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
3323 reg_rule
= &rd
->reg_rules
[i
];
3324 freq_range
= ®_rule
->freq_range
;
3325 power_rule
= ®_rule
->power_rule
;
3327 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
3328 snprintf(bw
, sizeof(bw
), "%d KHz, %d KHz AUTO",
3329 freq_range
->max_bandwidth_khz
,
3330 reg_get_max_bandwidth(rd
, reg_rule
));
3332 snprintf(bw
, sizeof(bw
), "%d KHz",
3333 freq_range
->max_bandwidth_khz
);
3335 if (reg_rule
->flags
& NL80211_RRF_DFS
)
3336 scnprintf(cac_time
, sizeof(cac_time
), "%u s",
3337 reg_rule
->dfs_cac_ms
/1000);
3339 scnprintf(cac_time
, sizeof(cac_time
), "N/A");
3343 * There may not be documentation for max antenna gain
3344 * in certain regions
3346 if (power_rule
->max_antenna_gain
)
3347 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3348 freq_range
->start_freq_khz
,
3349 freq_range
->end_freq_khz
,
3351 power_rule
->max_antenna_gain
,
3352 power_rule
->max_eirp
,
3355 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3356 freq_range
->start_freq_khz
,
3357 freq_range
->end_freq_khz
,
3359 power_rule
->max_eirp
,
3364 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region
)
3366 switch (dfs_region
) {
3367 case NL80211_DFS_UNSET
:
3368 case NL80211_DFS_FCC
:
3369 case NL80211_DFS_ETSI
:
3370 case NL80211_DFS_JP
:
3373 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region
);
3378 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
3380 struct regulatory_request
*lr
= get_last_request();
3382 if (is_intersected_alpha2(rd
->alpha2
)) {
3383 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
3384 struct cfg80211_registered_device
*rdev
;
3385 rdev
= cfg80211_rdev_by_wiphy_idx(lr
->wiphy_idx
);
3387 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3388 rdev
->country_ie_alpha2
[0],
3389 rdev
->country_ie_alpha2
[1]);
3391 pr_debug("Current regulatory domain intersected:\n");
3393 pr_debug("Current regulatory domain intersected:\n");
3394 } else if (is_world_regdom(rd
->alpha2
)) {
3395 pr_debug("World regulatory domain updated:\n");
3397 if (is_unknown_alpha2(rd
->alpha2
))
3398 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3400 if (reg_request_cell_base(lr
))
3401 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3402 rd
->alpha2
[0], rd
->alpha2
[1]);
3404 pr_debug("Regulatory domain changed to country: %c%c\n",
3405 rd
->alpha2
[0], rd
->alpha2
[1]);
3409 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd
->dfs_region
));
3413 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
3415 pr_debug("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
3419 static int reg_set_rd_core(const struct ieee80211_regdomain
*rd
)
3421 if (!is_world_regdom(rd
->alpha2
))
3423 update_world_regdomain(rd
);
3427 static int reg_set_rd_user(const struct ieee80211_regdomain
*rd
,
3428 struct regulatory_request
*user_request
)
3430 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
3432 if (!regdom_changes(rd
->alpha2
))
3435 if (!is_valid_rd(rd
)) {
3436 pr_err("Invalid regulatory domain detected: %c%c\n",
3437 rd
->alpha2
[0], rd
->alpha2
[1]);
3438 print_regdomain_info(rd
);
3442 if (!user_request
->intersect
) {
3443 reset_regdomains(false, rd
);
3447 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
3448 if (!intersected_rd
)
3453 reset_regdomains(false, intersected_rd
);
3458 static int reg_set_rd_driver(const struct ieee80211_regdomain
*rd
,
3459 struct regulatory_request
*driver_request
)
3461 const struct ieee80211_regdomain
*regd
;
3462 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
3463 const struct ieee80211_regdomain
*tmp
;
3464 struct wiphy
*request_wiphy
;
3466 if (is_world_regdom(rd
->alpha2
))
3469 if (!regdom_changes(rd
->alpha2
))
3472 if (!is_valid_rd(rd
)) {
3473 pr_err("Invalid regulatory domain detected: %c%c\n",
3474 rd
->alpha2
[0], rd
->alpha2
[1]);
3475 print_regdomain_info(rd
);
3479 request_wiphy
= wiphy_idx_to_wiphy(driver_request
->wiphy_idx
);
3483 if (!driver_request
->intersect
) {
3484 if (request_wiphy
->regd
)
3487 regd
= reg_copy_regd(rd
);
3489 return PTR_ERR(regd
);
3491 rcu_assign_pointer(request_wiphy
->regd
, regd
);
3492 reset_regdomains(false, rd
);
3496 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
3497 if (!intersected_rd
)
3501 * We can trash what CRDA provided now.
3502 * However if a driver requested this specific regulatory
3503 * domain we keep it for its private use
3505 tmp
= get_wiphy_regdom(request_wiphy
);
3506 rcu_assign_pointer(request_wiphy
->regd
, rd
);
3507 rcu_free_regdom(tmp
);
3511 reset_regdomains(false, intersected_rd
);
3516 static int reg_set_rd_country_ie(const struct ieee80211_regdomain
*rd
,
3517 struct regulatory_request
*country_ie_request
)
3519 struct wiphy
*request_wiphy
;
3521 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
3522 !is_unknown_alpha2(rd
->alpha2
))
3526 * Lets only bother proceeding on the same alpha2 if the current
3527 * rd is non static (it means CRDA was present and was used last)
3528 * and the pending request came in from a country IE
3531 if (!is_valid_rd(rd
)) {
3532 pr_err("Invalid regulatory domain detected: %c%c\n",
3533 rd
->alpha2
[0], rd
->alpha2
[1]);
3534 print_regdomain_info(rd
);
3538 request_wiphy
= wiphy_idx_to_wiphy(country_ie_request
->wiphy_idx
);
3542 if (country_ie_request
->intersect
)
3545 reset_regdomains(false, rd
);
3550 * Use this call to set the current regulatory domain. Conflicts with
3551 * multiple drivers can be ironed out later. Caller must've already
3552 * kmalloc'd the rd structure.
3554 int set_regdom(const struct ieee80211_regdomain
*rd
,
3555 enum ieee80211_regd_source regd_src
)
3557 struct regulatory_request
*lr
;
3558 bool user_reset
= false;
3561 if (!reg_is_valid_request(rd
->alpha2
)) {
3566 if (regd_src
== REGD_SOURCE_CRDA
)
3567 reset_crda_timeouts();
3569 lr
= get_last_request();
3571 /* Note that this doesn't update the wiphys, this is done below */
3572 switch (lr
->initiator
) {
3573 case NL80211_REGDOM_SET_BY_CORE
:
3574 r
= reg_set_rd_core(rd
);
3576 case NL80211_REGDOM_SET_BY_USER
:
3577 r
= reg_set_rd_user(rd
, lr
);
3580 case NL80211_REGDOM_SET_BY_DRIVER
:
3581 r
= reg_set_rd_driver(rd
, lr
);
3583 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
3584 r
= reg_set_rd_country_ie(rd
, lr
);
3587 WARN(1, "invalid initiator %d\n", lr
->initiator
);
3595 reg_set_request_processed();
3598 /* Back to world regulatory in case of errors */
3599 restore_regulatory_settings(user_reset
);
3606 /* This would make this whole thing pointless */
3607 if (WARN_ON(!lr
->intersect
&& rd
!= get_cfg80211_regdom()))
3610 /* update all wiphys now with the new established regulatory domain */
3611 update_all_wiphy_regulatory(lr
->initiator
);
3613 print_regdomain(get_cfg80211_regdom());
3615 nl80211_send_reg_change_event(lr
);
3617 reg_set_request_processed();
3622 static int __regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3623 struct ieee80211_regdomain
*rd
)
3625 const struct ieee80211_regdomain
*regd
;
3626 const struct ieee80211_regdomain
*prev_regd
;
3627 struct cfg80211_registered_device
*rdev
;
3629 if (WARN_ON(!wiphy
|| !rd
))
3632 if (WARN(!(wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
),
3633 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
3636 if (WARN(!is_valid_rd(rd
), "Invalid regulatory domain detected\n")) {
3637 print_regdomain_info(rd
);
3641 regd
= reg_copy_regd(rd
);
3643 return PTR_ERR(regd
);
3645 rdev
= wiphy_to_rdev(wiphy
);
3647 spin_lock(®_requests_lock
);
3648 prev_regd
= rdev
->requested_regd
;
3649 rdev
->requested_regd
= regd
;
3650 spin_unlock(®_requests_lock
);
3656 int regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3657 struct ieee80211_regdomain
*rd
)
3659 int ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3664 schedule_work(®_work
);
3667 EXPORT_SYMBOL(regulatory_set_wiphy_regd
);
3669 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy
*wiphy
,
3670 struct ieee80211_regdomain
*rd
)
3676 ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3680 /* process the request immediately */
3681 reg_process_self_managed_hints();
3684 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl
);
3686 void wiphy_regulatory_register(struct wiphy
*wiphy
)
3688 struct regulatory_request
*lr
= get_last_request();
3690 /* self-managed devices ignore beacon hints and country IE */
3691 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
3692 wiphy
->regulatory_flags
|= REGULATORY_DISABLE_BEACON_HINTS
|
3693 REGULATORY_COUNTRY_IE_IGNORE
;
3696 * The last request may have been received before this
3697 * registration call. Call the driver notifier if
3698 * initiator is USER and user type is CELL_BASE.
3700 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
3701 lr
->user_reg_hint_type
== NL80211_USER_REG_HINT_CELL_BASE
)
3702 reg_call_notifier(wiphy
, lr
);
3705 if (!reg_dev_ignore_cell_hint(wiphy
))
3706 reg_num_devs_support_basehint
++;
3708 wiphy_update_regulatory(wiphy
, lr
->initiator
);
3709 wiphy_all_share_dfs_chan_state(wiphy
);
3712 void wiphy_regulatory_deregister(struct wiphy
*wiphy
)
3714 struct wiphy
*request_wiphy
= NULL
;
3715 struct regulatory_request
*lr
;
3717 lr
= get_last_request();
3719 if (!reg_dev_ignore_cell_hint(wiphy
))
3720 reg_num_devs_support_basehint
--;
3722 rcu_free_regdom(get_wiphy_regdom(wiphy
));
3723 RCU_INIT_POINTER(wiphy
->regd
, NULL
);
3726 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
3728 if (!request_wiphy
|| request_wiphy
!= wiphy
)
3731 lr
->wiphy_idx
= WIPHY_IDX_INVALID
;
3732 lr
->country_ie_env
= ENVIRON_ANY
;
3736 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3737 * UNII band definitions
3739 int cfg80211_get_unii(int freq
)
3742 if (freq
>= 5150 && freq
<= 5250)
3746 if (freq
> 5250 && freq
<= 5350)
3750 if (freq
> 5350 && freq
<= 5470)
3754 if (freq
> 5470 && freq
<= 5725)
3758 if (freq
> 5725 && freq
<= 5825)
3764 bool regulatory_indoor_allowed(void)
3766 return reg_is_indoor
;
3769 bool regulatory_pre_cac_allowed(struct wiphy
*wiphy
)
3771 const struct ieee80211_regdomain
*regd
= NULL
;
3772 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
3773 bool pre_cac_allowed
= false;
3777 regd
= rcu_dereference(cfg80211_regdomain
);
3778 wiphy_regd
= rcu_dereference(wiphy
->regd
);
3780 if (regd
->dfs_region
== NL80211_DFS_ETSI
)
3781 pre_cac_allowed
= true;
3785 return pre_cac_allowed
;
3788 if (regd
->dfs_region
== wiphy_regd
->dfs_region
&&
3789 wiphy_regd
->dfs_region
== NL80211_DFS_ETSI
)
3790 pre_cac_allowed
= true;
3794 return pre_cac_allowed
;
3797 void regulatory_propagate_dfs_state(struct wiphy
*wiphy
,
3798 struct cfg80211_chan_def
*chandef
,
3799 enum nl80211_dfs_state dfs_state
,
3800 enum nl80211_radar_event event
)
3802 struct cfg80211_registered_device
*rdev
;
3806 if (WARN_ON(!cfg80211_chandef_valid(chandef
)))
3809 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
3810 if (wiphy
== &rdev
->wiphy
)
3813 if (!reg_dfs_domain_same(wiphy
, &rdev
->wiphy
))
3816 if (!ieee80211_get_channel(&rdev
->wiphy
,
3817 chandef
->chan
->center_freq
))
3820 cfg80211_set_dfs_state(&rdev
->wiphy
, chandef
, dfs_state
);
3822 if (event
== NL80211_RADAR_DETECTED
||
3823 event
== NL80211_RADAR_CAC_FINISHED
)
3824 cfg80211_sched_dfs_chan_update(rdev
);
3826 nl80211_radar_notify(rdev
, chandef
, event
, NULL
, GFP_KERNEL
);
3830 static int __init
regulatory_init_db(void)
3835 * It's possible that - due to other bugs/issues - cfg80211
3836 * never called regulatory_init() below, or that it failed;
3837 * in that case, don't try to do any further work here as
3838 * it's doomed to lead to crashes.
3840 if (IS_ERR_OR_NULL(reg_pdev
))
3843 err
= load_builtin_regdb_keys();
3847 /* We always try to get an update for the static regdomain */
3848 err
= regulatory_hint_core(cfg80211_world_regdom
->alpha2
);
3850 if (err
== -ENOMEM
) {
3851 platform_device_unregister(reg_pdev
);
3855 * N.B. kobject_uevent_env() can fail mainly for when we're out
3856 * memory which is handled and propagated appropriately above
3857 * but it can also fail during a netlink_broadcast() or during
3858 * early boot for call_usermodehelper(). For now treat these
3859 * errors as non-fatal.
3861 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3865 * Finally, if the user set the module parameter treat it
3868 if (!is_world_regdom(ieee80211_regdom
))
3869 regulatory_hint_user(ieee80211_regdom
,
3870 NL80211_USER_REG_HINT_USER
);
3875 late_initcall(regulatory_init_db
);
3878 int __init
regulatory_init(void)
3880 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
3881 if (IS_ERR(reg_pdev
))
3882 return PTR_ERR(reg_pdev
);
3884 spin_lock_init(®_requests_lock
);
3885 spin_lock_init(®_pending_beacons_lock
);
3886 spin_lock_init(®_indoor_lock
);
3888 rcu_assign_pointer(cfg80211_regdomain
, cfg80211_world_regdom
);
3890 user_alpha2
[0] = '9';
3891 user_alpha2
[1] = '7';
3894 return regulatory_init_db();
3900 void regulatory_exit(void)
3902 struct regulatory_request
*reg_request
, *tmp
;
3903 struct reg_beacon
*reg_beacon
, *btmp
;
3905 cancel_work_sync(®_work
);
3906 cancel_crda_timeout_sync();
3907 cancel_delayed_work_sync(®_check_chans
);
3909 /* Lock to suppress warnings */
3911 reset_regdomains(true, NULL
);
3914 dev_set_uevent_suppress(®_pdev
->dev
, true);
3916 platform_device_unregister(reg_pdev
);
3918 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
3919 list_del(®_beacon
->list
);
3923 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
3924 list_del(®_beacon
->list
);
3928 list_for_each_entry_safe(reg_request
, tmp
, ®_requests_list
, list
) {
3929 list_del(®_request
->list
);
3933 if (!IS_ERR_OR_NULL(regdb
))
3936 free_regdb_keyring();