arm: Add devicetree fixup machine function
[linux/fpc-iii.git] / drivers / base / power / main.c
blobbf412961a9349a0d9c9f687c66c3984dac12b08f
1 /*
2 * drivers/base/power/main.c - Where the driver meets power management.
4 * Copyright (c) 2003 Patrick Mochel
5 * Copyright (c) 2003 Open Source Development Lab
7 * This file is released under the GPLv2
10 * The driver model core calls device_pm_add() when a device is registered.
11 * This will initialize the embedded device_pm_info object in the device
12 * and add it to the list of power-controlled devices. sysfs entries for
13 * controlling device power management will also be added.
15 * A separate list is used for keeping track of power info, because the power
16 * domain dependencies may differ from the ancestral dependencies that the
17 * subsystem list maintains.
20 #include <linux/device.h>
21 #include <linux/kallsyms.h>
22 #include <linux/export.h>
23 #include <linux/mutex.h>
24 #include <linux/pm.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/resume-trace.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/async.h>
30 #include <linux/suspend.h>
31 #include <trace/events/power.h>
32 #include <linux/cpufreq.h>
33 #include <linux/cpuidle.h>
34 #include <linux/timer.h>
36 #include "../base.h"
37 #include "power.h"
39 typedef int (*pm_callback_t)(struct device *);
42 * The entries in the dpm_list list are in a depth first order, simply
43 * because children are guaranteed to be discovered after parents, and
44 * are inserted at the back of the list on discovery.
46 * Since device_pm_add() may be called with a device lock held,
47 * we must never try to acquire a device lock while holding
48 * dpm_list_mutex.
51 LIST_HEAD(dpm_list);
52 static LIST_HEAD(dpm_prepared_list);
53 static LIST_HEAD(dpm_suspended_list);
54 static LIST_HEAD(dpm_late_early_list);
55 static LIST_HEAD(dpm_noirq_list);
57 struct suspend_stats suspend_stats;
58 static DEFINE_MUTEX(dpm_list_mtx);
59 static pm_message_t pm_transition;
61 static int async_error;
63 static char *pm_verb(int event)
65 switch (event) {
66 case PM_EVENT_SUSPEND:
67 return "suspend";
68 case PM_EVENT_RESUME:
69 return "resume";
70 case PM_EVENT_FREEZE:
71 return "freeze";
72 case PM_EVENT_QUIESCE:
73 return "quiesce";
74 case PM_EVENT_HIBERNATE:
75 return "hibernate";
76 case PM_EVENT_THAW:
77 return "thaw";
78 case PM_EVENT_RESTORE:
79 return "restore";
80 case PM_EVENT_RECOVER:
81 return "recover";
82 default:
83 return "(unknown PM event)";
87 /**
88 * device_pm_sleep_init - Initialize system suspend-related device fields.
89 * @dev: Device object being initialized.
91 void device_pm_sleep_init(struct device *dev)
93 dev->power.is_prepared = false;
94 dev->power.is_suspended = false;
95 dev->power.is_noirq_suspended = false;
96 dev->power.is_late_suspended = false;
97 init_completion(&dev->power.completion);
98 complete_all(&dev->power.completion);
99 dev->power.wakeup = NULL;
100 INIT_LIST_HEAD(&dev->power.entry);
104 * device_pm_lock - Lock the list of active devices used by the PM core.
106 void device_pm_lock(void)
108 mutex_lock(&dpm_list_mtx);
112 * device_pm_unlock - Unlock the list of active devices used by the PM core.
114 void device_pm_unlock(void)
116 mutex_unlock(&dpm_list_mtx);
120 * device_pm_add - Add a device to the PM core's list of active devices.
121 * @dev: Device to add to the list.
123 void device_pm_add(struct device *dev)
125 pr_debug("PM: Adding info for %s:%s\n",
126 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
127 mutex_lock(&dpm_list_mtx);
128 if (dev->parent && dev->parent->power.is_prepared)
129 dev_warn(dev, "parent %s should not be sleeping\n",
130 dev_name(dev->parent));
131 list_add_tail(&dev->power.entry, &dpm_list);
132 mutex_unlock(&dpm_list_mtx);
136 * device_pm_remove - Remove a device from the PM core's list of active devices.
137 * @dev: Device to be removed from the list.
139 void device_pm_remove(struct device *dev)
141 pr_debug("PM: Removing info for %s:%s\n",
142 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
143 complete_all(&dev->power.completion);
144 mutex_lock(&dpm_list_mtx);
145 list_del_init(&dev->power.entry);
146 mutex_unlock(&dpm_list_mtx);
147 device_wakeup_disable(dev);
148 pm_runtime_remove(dev);
152 * device_pm_move_before - Move device in the PM core's list of active devices.
153 * @deva: Device to move in dpm_list.
154 * @devb: Device @deva should come before.
156 void device_pm_move_before(struct device *deva, struct device *devb)
158 pr_debug("PM: Moving %s:%s before %s:%s\n",
159 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
160 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
161 /* Delete deva from dpm_list and reinsert before devb. */
162 list_move_tail(&deva->power.entry, &devb->power.entry);
166 * device_pm_move_after - Move device in the PM core's list of active devices.
167 * @deva: Device to move in dpm_list.
168 * @devb: Device @deva should come after.
170 void device_pm_move_after(struct device *deva, struct device *devb)
172 pr_debug("PM: Moving %s:%s after %s:%s\n",
173 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
174 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
175 /* Delete deva from dpm_list and reinsert after devb. */
176 list_move(&deva->power.entry, &devb->power.entry);
180 * device_pm_move_last - Move device to end of the PM core's list of devices.
181 * @dev: Device to move in dpm_list.
183 void device_pm_move_last(struct device *dev)
185 pr_debug("PM: Moving %s:%s to end of list\n",
186 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
187 list_move_tail(&dev->power.entry, &dpm_list);
190 static ktime_t initcall_debug_start(struct device *dev)
192 ktime_t calltime = ktime_set(0, 0);
194 if (pm_print_times_enabled) {
195 pr_info("calling %s+ @ %i, parent: %s\n",
196 dev_name(dev), task_pid_nr(current),
197 dev->parent ? dev_name(dev->parent) : "none");
198 calltime = ktime_get();
201 return calltime;
204 static void initcall_debug_report(struct device *dev, ktime_t calltime,
205 int error, pm_message_t state, char *info)
207 ktime_t rettime;
208 s64 nsecs;
210 rettime = ktime_get();
211 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
213 if (pm_print_times_enabled) {
214 pr_info("call %s+ returned %d after %Ld usecs\n", dev_name(dev),
215 error, (unsigned long long)nsecs >> 10);
220 * dpm_wait - Wait for a PM operation to complete.
221 * @dev: Device to wait for.
222 * @async: If unset, wait only if the device's power.async_suspend flag is set.
224 static void dpm_wait(struct device *dev, bool async)
226 if (!dev)
227 return;
229 if (async || (pm_async_enabled && dev->power.async_suspend))
230 wait_for_completion(&dev->power.completion);
233 static int dpm_wait_fn(struct device *dev, void *async_ptr)
235 dpm_wait(dev, *((bool *)async_ptr));
236 return 0;
239 static void dpm_wait_for_children(struct device *dev, bool async)
241 device_for_each_child(dev, &async, dpm_wait_fn);
245 * pm_op - Return the PM operation appropriate for given PM event.
246 * @ops: PM operations to choose from.
247 * @state: PM transition of the system being carried out.
249 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
251 switch (state.event) {
252 #ifdef CONFIG_SUSPEND
253 case PM_EVENT_SUSPEND:
254 return ops->suspend;
255 case PM_EVENT_RESUME:
256 return ops->resume;
257 #endif /* CONFIG_SUSPEND */
258 #ifdef CONFIG_HIBERNATE_CALLBACKS
259 case PM_EVENT_FREEZE:
260 case PM_EVENT_QUIESCE:
261 return ops->freeze;
262 case PM_EVENT_HIBERNATE:
263 return ops->poweroff;
264 case PM_EVENT_THAW:
265 case PM_EVENT_RECOVER:
266 return ops->thaw;
267 break;
268 case PM_EVENT_RESTORE:
269 return ops->restore;
270 #endif /* CONFIG_HIBERNATE_CALLBACKS */
273 return NULL;
277 * pm_late_early_op - Return the PM operation appropriate for given PM event.
278 * @ops: PM operations to choose from.
279 * @state: PM transition of the system being carried out.
281 * Runtime PM is disabled for @dev while this function is being executed.
283 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
284 pm_message_t state)
286 switch (state.event) {
287 #ifdef CONFIG_SUSPEND
288 case PM_EVENT_SUSPEND:
289 return ops->suspend_late;
290 case PM_EVENT_RESUME:
291 return ops->resume_early;
292 #endif /* CONFIG_SUSPEND */
293 #ifdef CONFIG_HIBERNATE_CALLBACKS
294 case PM_EVENT_FREEZE:
295 case PM_EVENT_QUIESCE:
296 return ops->freeze_late;
297 case PM_EVENT_HIBERNATE:
298 return ops->poweroff_late;
299 case PM_EVENT_THAW:
300 case PM_EVENT_RECOVER:
301 return ops->thaw_early;
302 case PM_EVENT_RESTORE:
303 return ops->restore_early;
304 #endif /* CONFIG_HIBERNATE_CALLBACKS */
307 return NULL;
311 * pm_noirq_op - Return the PM operation appropriate for given PM event.
312 * @ops: PM operations to choose from.
313 * @state: PM transition of the system being carried out.
315 * The driver of @dev will not receive interrupts while this function is being
316 * executed.
318 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
320 switch (state.event) {
321 #ifdef CONFIG_SUSPEND
322 case PM_EVENT_SUSPEND:
323 return ops->suspend_noirq;
324 case PM_EVENT_RESUME:
325 return ops->resume_noirq;
326 #endif /* CONFIG_SUSPEND */
327 #ifdef CONFIG_HIBERNATE_CALLBACKS
328 case PM_EVENT_FREEZE:
329 case PM_EVENT_QUIESCE:
330 return ops->freeze_noirq;
331 case PM_EVENT_HIBERNATE:
332 return ops->poweroff_noirq;
333 case PM_EVENT_THAW:
334 case PM_EVENT_RECOVER:
335 return ops->thaw_noirq;
336 case PM_EVENT_RESTORE:
337 return ops->restore_noirq;
338 #endif /* CONFIG_HIBERNATE_CALLBACKS */
341 return NULL;
344 static void pm_dev_dbg(struct device *dev, pm_message_t state, char *info)
346 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
347 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
348 ", may wakeup" : "");
351 static void pm_dev_err(struct device *dev, pm_message_t state, char *info,
352 int error)
354 printk(KERN_ERR "PM: Device %s failed to %s%s: error %d\n",
355 dev_name(dev), pm_verb(state.event), info, error);
358 static void dpm_show_time(ktime_t starttime, pm_message_t state, char *info)
360 ktime_t calltime;
361 u64 usecs64;
362 int usecs;
364 calltime = ktime_get();
365 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
366 do_div(usecs64, NSEC_PER_USEC);
367 usecs = usecs64;
368 if (usecs == 0)
369 usecs = 1;
370 pr_info("PM: %s%s%s of devices complete after %ld.%03ld msecs\n",
371 info ?: "", info ? " " : "", pm_verb(state.event),
372 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
375 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
376 pm_message_t state, char *info)
378 ktime_t calltime;
379 int error;
381 if (!cb)
382 return 0;
384 calltime = initcall_debug_start(dev);
386 pm_dev_dbg(dev, state, info);
387 trace_device_pm_callback_start(dev, info, state.event);
388 error = cb(dev);
389 trace_device_pm_callback_end(dev, error);
390 suspend_report_result(cb, error);
392 initcall_debug_report(dev, calltime, error, state, info);
394 return error;
397 #ifdef CONFIG_DPM_WATCHDOG
398 struct dpm_watchdog {
399 struct device *dev;
400 struct task_struct *tsk;
401 struct timer_list timer;
404 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
405 struct dpm_watchdog wd
408 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
409 * @data: Watchdog object address.
411 * Called when a driver has timed out suspending or resuming.
412 * There's not much we can do here to recover so panic() to
413 * capture a crash-dump in pstore.
415 static void dpm_watchdog_handler(unsigned long data)
417 struct dpm_watchdog *wd = (void *)data;
419 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
420 show_stack(wd->tsk, NULL);
421 panic("%s %s: unrecoverable failure\n",
422 dev_driver_string(wd->dev), dev_name(wd->dev));
426 * dpm_watchdog_set - Enable pm watchdog for given device.
427 * @wd: Watchdog. Must be allocated on the stack.
428 * @dev: Device to handle.
430 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
432 struct timer_list *timer = &wd->timer;
434 wd->dev = dev;
435 wd->tsk = current;
437 init_timer_on_stack(timer);
438 /* use same timeout value for both suspend and resume */
439 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
440 timer->function = dpm_watchdog_handler;
441 timer->data = (unsigned long)wd;
442 add_timer(timer);
446 * dpm_watchdog_clear - Disable suspend/resume watchdog.
447 * @wd: Watchdog to disable.
449 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
451 struct timer_list *timer = &wd->timer;
453 del_timer_sync(timer);
454 destroy_timer_on_stack(timer);
456 #else
457 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
458 #define dpm_watchdog_set(x, y)
459 #define dpm_watchdog_clear(x)
460 #endif
462 /*------------------------- Resume routines -------------------------*/
465 * device_resume_noirq - Execute an "early resume" callback for given device.
466 * @dev: Device to handle.
467 * @state: PM transition of the system being carried out.
469 * The driver of @dev will not receive interrupts while this function is being
470 * executed.
472 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
474 pm_callback_t callback = NULL;
475 char *info = NULL;
476 int error = 0;
478 TRACE_DEVICE(dev);
479 TRACE_RESUME(0);
481 if (dev->power.syscore || dev->power.direct_complete)
482 goto Out;
484 if (!dev->power.is_noirq_suspended)
485 goto Out;
487 dpm_wait(dev->parent, async);
489 if (dev->pm_domain) {
490 info = "noirq power domain ";
491 callback = pm_noirq_op(&dev->pm_domain->ops, state);
492 } else if (dev->type && dev->type->pm) {
493 info = "noirq type ";
494 callback = pm_noirq_op(dev->type->pm, state);
495 } else if (dev->class && dev->class->pm) {
496 info = "noirq class ";
497 callback = pm_noirq_op(dev->class->pm, state);
498 } else if (dev->bus && dev->bus->pm) {
499 info = "noirq bus ";
500 callback = pm_noirq_op(dev->bus->pm, state);
503 if (!callback && dev->driver && dev->driver->pm) {
504 info = "noirq driver ";
505 callback = pm_noirq_op(dev->driver->pm, state);
508 error = dpm_run_callback(callback, dev, state, info);
509 dev->power.is_noirq_suspended = false;
511 Out:
512 complete_all(&dev->power.completion);
513 TRACE_RESUME(error);
514 return error;
517 static bool is_async(struct device *dev)
519 return dev->power.async_suspend && pm_async_enabled
520 && !pm_trace_is_enabled();
523 static void async_resume_noirq(void *data, async_cookie_t cookie)
525 struct device *dev = (struct device *)data;
526 int error;
528 error = device_resume_noirq(dev, pm_transition, true);
529 if (error)
530 pm_dev_err(dev, pm_transition, " async", error);
532 put_device(dev);
536 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
537 * @state: PM transition of the system being carried out.
539 * Call the "noirq" resume handlers for all devices in dpm_noirq_list and
540 * enable device drivers to receive interrupts.
542 static void dpm_resume_noirq(pm_message_t state)
544 struct device *dev;
545 ktime_t starttime = ktime_get();
547 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
548 mutex_lock(&dpm_list_mtx);
549 pm_transition = state;
552 * Advanced the async threads upfront,
553 * in case the starting of async threads is
554 * delayed by non-async resuming devices.
556 list_for_each_entry(dev, &dpm_noirq_list, power.entry) {
557 reinit_completion(&dev->power.completion);
558 if (is_async(dev)) {
559 get_device(dev);
560 async_schedule(async_resume_noirq, dev);
564 while (!list_empty(&dpm_noirq_list)) {
565 dev = to_device(dpm_noirq_list.next);
566 get_device(dev);
567 list_move_tail(&dev->power.entry, &dpm_late_early_list);
568 mutex_unlock(&dpm_list_mtx);
570 if (!is_async(dev)) {
571 int error;
573 error = device_resume_noirq(dev, state, false);
574 if (error) {
575 suspend_stats.failed_resume_noirq++;
576 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
577 dpm_save_failed_dev(dev_name(dev));
578 pm_dev_err(dev, state, " noirq", error);
582 mutex_lock(&dpm_list_mtx);
583 put_device(dev);
585 mutex_unlock(&dpm_list_mtx);
586 async_synchronize_full();
587 dpm_show_time(starttime, state, "noirq");
588 resume_device_irqs();
589 cpuidle_resume();
590 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
594 * device_resume_early - Execute an "early resume" callback for given device.
595 * @dev: Device to handle.
596 * @state: PM transition of the system being carried out.
598 * Runtime PM is disabled for @dev while this function is being executed.
600 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
602 pm_callback_t callback = NULL;
603 char *info = NULL;
604 int error = 0;
606 TRACE_DEVICE(dev);
607 TRACE_RESUME(0);
609 if (dev->power.syscore || dev->power.direct_complete)
610 goto Out;
612 if (!dev->power.is_late_suspended)
613 goto Out;
615 dpm_wait(dev->parent, async);
617 if (dev->pm_domain) {
618 info = "early power domain ";
619 callback = pm_late_early_op(&dev->pm_domain->ops, state);
620 } else if (dev->type && dev->type->pm) {
621 info = "early type ";
622 callback = pm_late_early_op(dev->type->pm, state);
623 } else if (dev->class && dev->class->pm) {
624 info = "early class ";
625 callback = pm_late_early_op(dev->class->pm, state);
626 } else if (dev->bus && dev->bus->pm) {
627 info = "early bus ";
628 callback = pm_late_early_op(dev->bus->pm, state);
631 if (!callback && dev->driver && dev->driver->pm) {
632 info = "early driver ";
633 callback = pm_late_early_op(dev->driver->pm, state);
636 error = dpm_run_callback(callback, dev, state, info);
637 dev->power.is_late_suspended = false;
639 Out:
640 TRACE_RESUME(error);
642 pm_runtime_enable(dev);
643 complete_all(&dev->power.completion);
644 return error;
647 static void async_resume_early(void *data, async_cookie_t cookie)
649 struct device *dev = (struct device *)data;
650 int error;
652 error = device_resume_early(dev, pm_transition, true);
653 if (error)
654 pm_dev_err(dev, pm_transition, " async", error);
656 put_device(dev);
660 * dpm_resume_early - Execute "early resume" callbacks for all devices.
661 * @state: PM transition of the system being carried out.
663 static void dpm_resume_early(pm_message_t state)
665 struct device *dev;
666 ktime_t starttime = ktime_get();
668 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
669 mutex_lock(&dpm_list_mtx);
670 pm_transition = state;
673 * Advanced the async threads upfront,
674 * in case the starting of async threads is
675 * delayed by non-async resuming devices.
677 list_for_each_entry(dev, &dpm_late_early_list, power.entry) {
678 reinit_completion(&dev->power.completion);
679 if (is_async(dev)) {
680 get_device(dev);
681 async_schedule(async_resume_early, dev);
685 while (!list_empty(&dpm_late_early_list)) {
686 dev = to_device(dpm_late_early_list.next);
687 get_device(dev);
688 list_move_tail(&dev->power.entry, &dpm_suspended_list);
689 mutex_unlock(&dpm_list_mtx);
691 if (!is_async(dev)) {
692 int error;
694 error = device_resume_early(dev, state, false);
695 if (error) {
696 suspend_stats.failed_resume_early++;
697 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
698 dpm_save_failed_dev(dev_name(dev));
699 pm_dev_err(dev, state, " early", error);
702 mutex_lock(&dpm_list_mtx);
703 put_device(dev);
705 mutex_unlock(&dpm_list_mtx);
706 async_synchronize_full();
707 dpm_show_time(starttime, state, "early");
708 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
712 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
713 * @state: PM transition of the system being carried out.
715 void dpm_resume_start(pm_message_t state)
717 dpm_resume_noirq(state);
718 dpm_resume_early(state);
720 EXPORT_SYMBOL_GPL(dpm_resume_start);
723 * device_resume - Execute "resume" callbacks for given device.
724 * @dev: Device to handle.
725 * @state: PM transition of the system being carried out.
726 * @async: If true, the device is being resumed asynchronously.
728 static int device_resume(struct device *dev, pm_message_t state, bool async)
730 pm_callback_t callback = NULL;
731 char *info = NULL;
732 int error = 0;
733 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
735 TRACE_DEVICE(dev);
736 TRACE_RESUME(0);
738 if (dev->power.syscore)
739 goto Complete;
741 if (dev->power.direct_complete) {
742 /* Match the pm_runtime_disable() in __device_suspend(). */
743 pm_runtime_enable(dev);
744 goto Complete;
747 dpm_wait(dev->parent, async);
748 dpm_watchdog_set(&wd, dev);
749 device_lock(dev);
752 * This is a fib. But we'll allow new children to be added below
753 * a resumed device, even if the device hasn't been completed yet.
755 dev->power.is_prepared = false;
757 if (!dev->power.is_suspended)
758 goto Unlock;
760 if (dev->pm_domain) {
761 info = "power domain ";
762 callback = pm_op(&dev->pm_domain->ops, state);
763 goto Driver;
766 if (dev->type && dev->type->pm) {
767 info = "type ";
768 callback = pm_op(dev->type->pm, state);
769 goto Driver;
772 if (dev->class) {
773 if (dev->class->pm) {
774 info = "class ";
775 callback = pm_op(dev->class->pm, state);
776 goto Driver;
777 } else if (dev->class->resume) {
778 info = "legacy class ";
779 callback = dev->class->resume;
780 goto End;
784 if (dev->bus) {
785 if (dev->bus->pm) {
786 info = "bus ";
787 callback = pm_op(dev->bus->pm, state);
788 } else if (dev->bus->resume) {
789 info = "legacy bus ";
790 callback = dev->bus->resume;
791 goto End;
795 Driver:
796 if (!callback && dev->driver && dev->driver->pm) {
797 info = "driver ";
798 callback = pm_op(dev->driver->pm, state);
801 End:
802 error = dpm_run_callback(callback, dev, state, info);
803 dev->power.is_suspended = false;
805 Unlock:
806 device_unlock(dev);
807 dpm_watchdog_clear(&wd);
809 Complete:
810 complete_all(&dev->power.completion);
812 TRACE_RESUME(error);
814 return error;
817 static void async_resume(void *data, async_cookie_t cookie)
819 struct device *dev = (struct device *)data;
820 int error;
822 error = device_resume(dev, pm_transition, true);
823 if (error)
824 pm_dev_err(dev, pm_transition, " async", error);
825 put_device(dev);
829 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
830 * @state: PM transition of the system being carried out.
832 * Execute the appropriate "resume" callback for all devices whose status
833 * indicates that they are suspended.
835 void dpm_resume(pm_message_t state)
837 struct device *dev;
838 ktime_t starttime = ktime_get();
840 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
841 might_sleep();
843 mutex_lock(&dpm_list_mtx);
844 pm_transition = state;
845 async_error = 0;
847 list_for_each_entry(dev, &dpm_suspended_list, power.entry) {
848 reinit_completion(&dev->power.completion);
849 if (is_async(dev)) {
850 get_device(dev);
851 async_schedule(async_resume, dev);
855 while (!list_empty(&dpm_suspended_list)) {
856 dev = to_device(dpm_suspended_list.next);
857 get_device(dev);
858 if (!is_async(dev)) {
859 int error;
861 mutex_unlock(&dpm_list_mtx);
863 error = device_resume(dev, state, false);
864 if (error) {
865 suspend_stats.failed_resume++;
866 dpm_save_failed_step(SUSPEND_RESUME);
867 dpm_save_failed_dev(dev_name(dev));
868 pm_dev_err(dev, state, "", error);
871 mutex_lock(&dpm_list_mtx);
873 if (!list_empty(&dev->power.entry))
874 list_move_tail(&dev->power.entry, &dpm_prepared_list);
875 put_device(dev);
877 mutex_unlock(&dpm_list_mtx);
878 async_synchronize_full();
879 dpm_show_time(starttime, state, NULL);
881 cpufreq_resume();
882 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
886 * device_complete - Complete a PM transition for given device.
887 * @dev: Device to handle.
888 * @state: PM transition of the system being carried out.
890 static void device_complete(struct device *dev, pm_message_t state)
892 void (*callback)(struct device *) = NULL;
893 char *info = NULL;
895 if (dev->power.syscore)
896 return;
898 device_lock(dev);
900 if (dev->pm_domain) {
901 info = "completing power domain ";
902 callback = dev->pm_domain->ops.complete;
903 } else if (dev->type && dev->type->pm) {
904 info = "completing type ";
905 callback = dev->type->pm->complete;
906 } else if (dev->class && dev->class->pm) {
907 info = "completing class ";
908 callback = dev->class->pm->complete;
909 } else if (dev->bus && dev->bus->pm) {
910 info = "completing bus ";
911 callback = dev->bus->pm->complete;
914 if (!callback && dev->driver && dev->driver->pm) {
915 info = "completing driver ";
916 callback = dev->driver->pm->complete;
919 if (callback) {
920 pm_dev_dbg(dev, state, info);
921 trace_device_pm_callback_start(dev, info, state.event);
922 callback(dev);
923 trace_device_pm_callback_end(dev, 0);
926 device_unlock(dev);
928 pm_runtime_put(dev);
932 * dpm_complete - Complete a PM transition for all non-sysdev devices.
933 * @state: PM transition of the system being carried out.
935 * Execute the ->complete() callbacks for all devices whose PM status is not
936 * DPM_ON (this allows new devices to be registered).
938 void dpm_complete(pm_message_t state)
940 struct list_head list;
942 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
943 might_sleep();
945 INIT_LIST_HEAD(&list);
946 mutex_lock(&dpm_list_mtx);
947 while (!list_empty(&dpm_prepared_list)) {
948 struct device *dev = to_device(dpm_prepared_list.prev);
950 get_device(dev);
951 dev->power.is_prepared = false;
952 list_move(&dev->power.entry, &list);
953 mutex_unlock(&dpm_list_mtx);
955 device_complete(dev, state);
957 mutex_lock(&dpm_list_mtx);
958 put_device(dev);
960 list_splice(&list, &dpm_list);
961 mutex_unlock(&dpm_list_mtx);
962 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
966 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
967 * @state: PM transition of the system being carried out.
969 * Execute "resume" callbacks for all devices and complete the PM transition of
970 * the system.
972 void dpm_resume_end(pm_message_t state)
974 dpm_resume(state);
975 dpm_complete(state);
977 EXPORT_SYMBOL_GPL(dpm_resume_end);
980 /*------------------------- Suspend routines -------------------------*/
983 * resume_event - Return a "resume" message for given "suspend" sleep state.
984 * @sleep_state: PM message representing a sleep state.
986 * Return a PM message representing the resume event corresponding to given
987 * sleep state.
989 static pm_message_t resume_event(pm_message_t sleep_state)
991 switch (sleep_state.event) {
992 case PM_EVENT_SUSPEND:
993 return PMSG_RESUME;
994 case PM_EVENT_FREEZE:
995 case PM_EVENT_QUIESCE:
996 return PMSG_RECOVER;
997 case PM_EVENT_HIBERNATE:
998 return PMSG_RESTORE;
1000 return PMSG_ON;
1004 * device_suspend_noirq - Execute a "late suspend" callback for given device.
1005 * @dev: Device to handle.
1006 * @state: PM transition of the system being carried out.
1008 * The driver of @dev will not receive interrupts while this function is being
1009 * executed.
1011 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1013 pm_callback_t callback = NULL;
1014 char *info = NULL;
1015 int error = 0;
1017 if (async_error)
1018 goto Complete;
1020 if (pm_wakeup_pending()) {
1021 async_error = -EBUSY;
1022 goto Complete;
1025 if (dev->power.syscore || dev->power.direct_complete)
1026 goto Complete;
1028 dpm_wait_for_children(dev, async);
1030 if (dev->pm_domain) {
1031 info = "noirq power domain ";
1032 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1033 } else if (dev->type && dev->type->pm) {
1034 info = "noirq type ";
1035 callback = pm_noirq_op(dev->type->pm, state);
1036 } else if (dev->class && dev->class->pm) {
1037 info = "noirq class ";
1038 callback = pm_noirq_op(dev->class->pm, state);
1039 } else if (dev->bus && dev->bus->pm) {
1040 info = "noirq bus ";
1041 callback = pm_noirq_op(dev->bus->pm, state);
1044 if (!callback && dev->driver && dev->driver->pm) {
1045 info = "noirq driver ";
1046 callback = pm_noirq_op(dev->driver->pm, state);
1049 error = dpm_run_callback(callback, dev, state, info);
1050 if (!error)
1051 dev->power.is_noirq_suspended = true;
1052 else
1053 async_error = error;
1055 Complete:
1056 complete_all(&dev->power.completion);
1057 return error;
1060 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1062 struct device *dev = (struct device *)data;
1063 int error;
1065 error = __device_suspend_noirq(dev, pm_transition, true);
1066 if (error) {
1067 dpm_save_failed_dev(dev_name(dev));
1068 pm_dev_err(dev, pm_transition, " async", error);
1071 put_device(dev);
1074 static int device_suspend_noirq(struct device *dev)
1076 reinit_completion(&dev->power.completion);
1078 if (pm_async_enabled && dev->power.async_suspend) {
1079 get_device(dev);
1080 async_schedule(async_suspend_noirq, dev);
1081 return 0;
1083 return __device_suspend_noirq(dev, pm_transition, false);
1087 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1088 * @state: PM transition of the system being carried out.
1090 * Prevent device drivers from receiving interrupts and call the "noirq" suspend
1091 * handlers for all non-sysdev devices.
1093 static int dpm_suspend_noirq(pm_message_t state)
1095 ktime_t starttime = ktime_get();
1096 int error = 0;
1098 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1099 cpuidle_pause();
1100 suspend_device_irqs();
1101 mutex_lock(&dpm_list_mtx);
1102 pm_transition = state;
1103 async_error = 0;
1105 while (!list_empty(&dpm_late_early_list)) {
1106 struct device *dev = to_device(dpm_late_early_list.prev);
1108 get_device(dev);
1109 mutex_unlock(&dpm_list_mtx);
1111 error = device_suspend_noirq(dev);
1113 mutex_lock(&dpm_list_mtx);
1114 if (error) {
1115 pm_dev_err(dev, state, " noirq", error);
1116 dpm_save_failed_dev(dev_name(dev));
1117 put_device(dev);
1118 break;
1120 if (!list_empty(&dev->power.entry))
1121 list_move(&dev->power.entry, &dpm_noirq_list);
1122 put_device(dev);
1124 if (async_error)
1125 break;
1127 mutex_unlock(&dpm_list_mtx);
1128 async_synchronize_full();
1129 if (!error)
1130 error = async_error;
1132 if (error) {
1133 suspend_stats.failed_suspend_noirq++;
1134 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1135 dpm_resume_noirq(resume_event(state));
1136 } else {
1137 dpm_show_time(starttime, state, "noirq");
1139 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1140 return error;
1144 * device_suspend_late - Execute a "late suspend" callback for given device.
1145 * @dev: Device to handle.
1146 * @state: PM transition of the system being carried out.
1148 * Runtime PM is disabled for @dev while this function is being executed.
1150 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1152 pm_callback_t callback = NULL;
1153 char *info = NULL;
1154 int error = 0;
1156 __pm_runtime_disable(dev, false);
1158 if (async_error)
1159 goto Complete;
1161 if (pm_wakeup_pending()) {
1162 async_error = -EBUSY;
1163 goto Complete;
1166 if (dev->power.syscore || dev->power.direct_complete)
1167 goto Complete;
1169 dpm_wait_for_children(dev, async);
1171 if (dev->pm_domain) {
1172 info = "late power domain ";
1173 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1174 } else if (dev->type && dev->type->pm) {
1175 info = "late type ";
1176 callback = pm_late_early_op(dev->type->pm, state);
1177 } else if (dev->class && dev->class->pm) {
1178 info = "late class ";
1179 callback = pm_late_early_op(dev->class->pm, state);
1180 } else if (dev->bus && dev->bus->pm) {
1181 info = "late bus ";
1182 callback = pm_late_early_op(dev->bus->pm, state);
1185 if (!callback && dev->driver && dev->driver->pm) {
1186 info = "late driver ";
1187 callback = pm_late_early_op(dev->driver->pm, state);
1190 error = dpm_run_callback(callback, dev, state, info);
1191 if (!error)
1192 dev->power.is_late_suspended = true;
1193 else
1194 async_error = error;
1196 Complete:
1197 complete_all(&dev->power.completion);
1198 return error;
1201 static void async_suspend_late(void *data, async_cookie_t cookie)
1203 struct device *dev = (struct device *)data;
1204 int error;
1206 error = __device_suspend_late(dev, pm_transition, true);
1207 if (error) {
1208 dpm_save_failed_dev(dev_name(dev));
1209 pm_dev_err(dev, pm_transition, " async", error);
1211 put_device(dev);
1214 static int device_suspend_late(struct device *dev)
1216 reinit_completion(&dev->power.completion);
1218 if (pm_async_enabled && dev->power.async_suspend) {
1219 get_device(dev);
1220 async_schedule(async_suspend_late, dev);
1221 return 0;
1224 return __device_suspend_late(dev, pm_transition, false);
1228 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1229 * @state: PM transition of the system being carried out.
1231 static int dpm_suspend_late(pm_message_t state)
1233 ktime_t starttime = ktime_get();
1234 int error = 0;
1236 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1237 mutex_lock(&dpm_list_mtx);
1238 pm_transition = state;
1239 async_error = 0;
1241 while (!list_empty(&dpm_suspended_list)) {
1242 struct device *dev = to_device(dpm_suspended_list.prev);
1244 get_device(dev);
1245 mutex_unlock(&dpm_list_mtx);
1247 error = device_suspend_late(dev);
1249 mutex_lock(&dpm_list_mtx);
1250 if (error) {
1251 pm_dev_err(dev, state, " late", error);
1252 dpm_save_failed_dev(dev_name(dev));
1253 put_device(dev);
1254 break;
1256 if (!list_empty(&dev->power.entry))
1257 list_move(&dev->power.entry, &dpm_late_early_list);
1258 put_device(dev);
1260 if (async_error)
1261 break;
1263 mutex_unlock(&dpm_list_mtx);
1264 async_synchronize_full();
1265 if (error) {
1266 suspend_stats.failed_suspend_late++;
1267 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1268 dpm_resume_early(resume_event(state));
1269 } else {
1270 dpm_show_time(starttime, state, "late");
1272 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1273 return error;
1277 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1278 * @state: PM transition of the system being carried out.
1280 int dpm_suspend_end(pm_message_t state)
1282 int error = dpm_suspend_late(state);
1283 if (error)
1284 return error;
1286 error = dpm_suspend_noirq(state);
1287 if (error) {
1288 dpm_resume_early(resume_event(state));
1289 return error;
1292 return 0;
1294 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1297 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1298 * @dev: Device to suspend.
1299 * @state: PM transition of the system being carried out.
1300 * @cb: Suspend callback to execute.
1302 static int legacy_suspend(struct device *dev, pm_message_t state,
1303 int (*cb)(struct device *dev, pm_message_t state),
1304 char *info)
1306 int error;
1307 ktime_t calltime;
1309 calltime = initcall_debug_start(dev);
1311 trace_device_pm_callback_start(dev, info, state.event);
1312 error = cb(dev, state);
1313 trace_device_pm_callback_end(dev, error);
1314 suspend_report_result(cb, error);
1316 initcall_debug_report(dev, calltime, error, state, info);
1318 return error;
1322 * device_suspend - Execute "suspend" callbacks for given device.
1323 * @dev: Device to handle.
1324 * @state: PM transition of the system being carried out.
1325 * @async: If true, the device is being suspended asynchronously.
1327 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1329 pm_callback_t callback = NULL;
1330 char *info = NULL;
1331 int error = 0;
1332 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1334 dpm_wait_for_children(dev, async);
1336 if (async_error)
1337 goto Complete;
1340 * If a device configured to wake up the system from sleep states
1341 * has been suspended at run time and there's a resume request pending
1342 * for it, this is equivalent to the device signaling wakeup, so the
1343 * system suspend operation should be aborted.
1345 if (pm_runtime_barrier(dev) && device_may_wakeup(dev))
1346 pm_wakeup_event(dev, 0);
1348 if (pm_wakeup_pending()) {
1349 async_error = -EBUSY;
1350 goto Complete;
1353 if (dev->power.syscore)
1354 goto Complete;
1356 if (dev->power.direct_complete) {
1357 if (pm_runtime_status_suspended(dev)) {
1358 pm_runtime_disable(dev);
1359 if (pm_runtime_suspended_if_enabled(dev))
1360 goto Complete;
1362 pm_runtime_enable(dev);
1364 dev->power.direct_complete = false;
1367 dpm_watchdog_set(&wd, dev);
1368 device_lock(dev);
1370 if (dev->pm_domain) {
1371 info = "power domain ";
1372 callback = pm_op(&dev->pm_domain->ops, state);
1373 goto Run;
1376 if (dev->type && dev->type->pm) {
1377 info = "type ";
1378 callback = pm_op(dev->type->pm, state);
1379 goto Run;
1382 if (dev->class) {
1383 if (dev->class->pm) {
1384 info = "class ";
1385 callback = pm_op(dev->class->pm, state);
1386 goto Run;
1387 } else if (dev->class->suspend) {
1388 pm_dev_dbg(dev, state, "legacy class ");
1389 error = legacy_suspend(dev, state, dev->class->suspend,
1390 "legacy class ");
1391 goto End;
1395 if (dev->bus) {
1396 if (dev->bus->pm) {
1397 info = "bus ";
1398 callback = pm_op(dev->bus->pm, state);
1399 } else if (dev->bus->suspend) {
1400 pm_dev_dbg(dev, state, "legacy bus ");
1401 error = legacy_suspend(dev, state, dev->bus->suspend,
1402 "legacy bus ");
1403 goto End;
1407 Run:
1408 if (!callback && dev->driver && dev->driver->pm) {
1409 info = "driver ";
1410 callback = pm_op(dev->driver->pm, state);
1413 error = dpm_run_callback(callback, dev, state, info);
1415 End:
1416 if (!error) {
1417 struct device *parent = dev->parent;
1419 dev->power.is_suspended = true;
1420 if (parent) {
1421 spin_lock_irq(&parent->power.lock);
1423 dev->parent->power.direct_complete = false;
1424 if (dev->power.wakeup_path
1425 && !dev->parent->power.ignore_children)
1426 dev->parent->power.wakeup_path = true;
1428 spin_unlock_irq(&parent->power.lock);
1432 device_unlock(dev);
1433 dpm_watchdog_clear(&wd);
1435 Complete:
1436 complete_all(&dev->power.completion);
1437 if (error)
1438 async_error = error;
1440 return error;
1443 static void async_suspend(void *data, async_cookie_t cookie)
1445 struct device *dev = (struct device *)data;
1446 int error;
1448 error = __device_suspend(dev, pm_transition, true);
1449 if (error) {
1450 dpm_save_failed_dev(dev_name(dev));
1451 pm_dev_err(dev, pm_transition, " async", error);
1454 put_device(dev);
1457 static int device_suspend(struct device *dev)
1459 reinit_completion(&dev->power.completion);
1461 if (pm_async_enabled && dev->power.async_suspend) {
1462 get_device(dev);
1463 async_schedule(async_suspend, dev);
1464 return 0;
1467 return __device_suspend(dev, pm_transition, false);
1471 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1472 * @state: PM transition of the system being carried out.
1474 int dpm_suspend(pm_message_t state)
1476 ktime_t starttime = ktime_get();
1477 int error = 0;
1479 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1480 might_sleep();
1482 cpufreq_suspend();
1484 mutex_lock(&dpm_list_mtx);
1485 pm_transition = state;
1486 async_error = 0;
1487 while (!list_empty(&dpm_prepared_list)) {
1488 struct device *dev = to_device(dpm_prepared_list.prev);
1490 get_device(dev);
1491 mutex_unlock(&dpm_list_mtx);
1493 error = device_suspend(dev);
1495 mutex_lock(&dpm_list_mtx);
1496 if (error) {
1497 pm_dev_err(dev, state, "", error);
1498 dpm_save_failed_dev(dev_name(dev));
1499 put_device(dev);
1500 break;
1502 if (!list_empty(&dev->power.entry))
1503 list_move(&dev->power.entry, &dpm_suspended_list);
1504 put_device(dev);
1505 if (async_error)
1506 break;
1508 mutex_unlock(&dpm_list_mtx);
1509 async_synchronize_full();
1510 if (!error)
1511 error = async_error;
1512 if (error) {
1513 suspend_stats.failed_suspend++;
1514 dpm_save_failed_step(SUSPEND_SUSPEND);
1515 } else
1516 dpm_show_time(starttime, state, NULL);
1517 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1518 return error;
1522 * device_prepare - Prepare a device for system power transition.
1523 * @dev: Device to handle.
1524 * @state: PM transition of the system being carried out.
1526 * Execute the ->prepare() callback(s) for given device. No new children of the
1527 * device may be registered after this function has returned.
1529 static int device_prepare(struct device *dev, pm_message_t state)
1531 int (*callback)(struct device *) = NULL;
1532 char *info = NULL;
1533 int ret = 0;
1535 if (dev->power.syscore)
1536 return 0;
1539 * If a device's parent goes into runtime suspend at the wrong time,
1540 * it won't be possible to resume the device. To prevent this we
1541 * block runtime suspend here, during the prepare phase, and allow
1542 * it again during the complete phase.
1544 pm_runtime_get_noresume(dev);
1546 device_lock(dev);
1548 dev->power.wakeup_path = device_may_wakeup(dev);
1550 if (dev->pm_domain) {
1551 info = "preparing power domain ";
1552 callback = dev->pm_domain->ops.prepare;
1553 } else if (dev->type && dev->type->pm) {
1554 info = "preparing type ";
1555 callback = dev->type->pm->prepare;
1556 } else if (dev->class && dev->class->pm) {
1557 info = "preparing class ";
1558 callback = dev->class->pm->prepare;
1559 } else if (dev->bus && dev->bus->pm) {
1560 info = "preparing bus ";
1561 callback = dev->bus->pm->prepare;
1564 if (!callback && dev->driver && dev->driver->pm) {
1565 info = "preparing driver ";
1566 callback = dev->driver->pm->prepare;
1569 if (callback) {
1570 trace_device_pm_callback_start(dev, info, state.event);
1571 ret = callback(dev);
1572 trace_device_pm_callback_end(dev, ret);
1575 device_unlock(dev);
1577 if (ret < 0) {
1578 suspend_report_result(callback, ret);
1579 pm_runtime_put(dev);
1580 return ret;
1583 * A positive return value from ->prepare() means "this device appears
1584 * to be runtime-suspended and its state is fine, so if it really is
1585 * runtime-suspended, you can leave it in that state provided that you
1586 * will do the same thing with all of its descendants". This only
1587 * applies to suspend transitions, however.
1589 spin_lock_irq(&dev->power.lock);
1590 dev->power.direct_complete = ret > 0 && state.event == PM_EVENT_SUSPEND;
1591 spin_unlock_irq(&dev->power.lock);
1592 return 0;
1596 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1597 * @state: PM transition of the system being carried out.
1599 * Execute the ->prepare() callback(s) for all devices.
1601 int dpm_prepare(pm_message_t state)
1603 int error = 0;
1605 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1606 might_sleep();
1608 mutex_lock(&dpm_list_mtx);
1609 while (!list_empty(&dpm_list)) {
1610 struct device *dev = to_device(dpm_list.next);
1612 get_device(dev);
1613 mutex_unlock(&dpm_list_mtx);
1615 error = device_prepare(dev, state);
1617 mutex_lock(&dpm_list_mtx);
1618 if (error) {
1619 if (error == -EAGAIN) {
1620 put_device(dev);
1621 error = 0;
1622 continue;
1624 printk(KERN_INFO "PM: Device %s not prepared "
1625 "for power transition: code %d\n",
1626 dev_name(dev), error);
1627 put_device(dev);
1628 break;
1630 dev->power.is_prepared = true;
1631 if (!list_empty(&dev->power.entry))
1632 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1633 put_device(dev);
1635 mutex_unlock(&dpm_list_mtx);
1636 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1637 return error;
1641 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1642 * @state: PM transition of the system being carried out.
1644 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1645 * callbacks for them.
1647 int dpm_suspend_start(pm_message_t state)
1649 int error;
1651 error = dpm_prepare(state);
1652 if (error) {
1653 suspend_stats.failed_prepare++;
1654 dpm_save_failed_step(SUSPEND_PREPARE);
1655 } else
1656 error = dpm_suspend(state);
1657 return error;
1659 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1661 void __suspend_report_result(const char *function, void *fn, int ret)
1663 if (ret)
1664 printk(KERN_ERR "%s(): %pF returns %d\n", function, fn, ret);
1666 EXPORT_SYMBOL_GPL(__suspend_report_result);
1669 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1670 * @dev: Device to wait for.
1671 * @subordinate: Device that needs to wait for @dev.
1673 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1675 dpm_wait(dev, subordinate->power.async_suspend);
1676 return async_error;
1678 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1681 * dpm_for_each_dev - device iterator.
1682 * @data: data for the callback.
1683 * @fn: function to be called for each device.
1685 * Iterate over devices in dpm_list, and call @fn for each device,
1686 * passing it @data.
1688 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1690 struct device *dev;
1692 if (!fn)
1693 return;
1695 device_pm_lock();
1696 list_for_each_entry(dev, &dpm_list, power.entry)
1697 fn(dev, data);
1698 device_pm_unlock();
1700 EXPORT_SYMBOL_GPL(dpm_for_each_dev);