2 * Register map access API
4 * Copyright 2011 Wolfson Microelectronics plc
6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/export.h>
16 #include <linux/mutex.h>
17 #include <linux/err.h>
18 #include <linux/rbtree.h>
19 #include <linux/sched.h>
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/regmap.h>
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
34 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
35 unsigned int mask
, unsigned int val
,
38 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
40 static int _regmap_bus_read(void *context
, unsigned int reg
,
42 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
44 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
46 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
49 bool regmap_reg_in_ranges(unsigned int reg
,
50 const struct regmap_range
*ranges
,
53 const struct regmap_range
*r
;
56 for (i
= 0, r
= ranges
; i
< nranges
; i
++, r
++)
57 if (regmap_reg_in_range(reg
, r
))
61 EXPORT_SYMBOL_GPL(regmap_reg_in_ranges
);
63 bool regmap_check_range_table(struct regmap
*map
, unsigned int reg
,
64 const struct regmap_access_table
*table
)
66 /* Check "no ranges" first */
67 if (regmap_reg_in_ranges(reg
, table
->no_ranges
, table
->n_no_ranges
))
70 /* In case zero "yes ranges" are supplied, any reg is OK */
71 if (!table
->n_yes_ranges
)
74 return regmap_reg_in_ranges(reg
, table
->yes_ranges
,
77 EXPORT_SYMBOL_GPL(regmap_check_range_table
);
79 bool regmap_writeable(struct regmap
*map
, unsigned int reg
)
81 if (map
->max_register
&& reg
> map
->max_register
)
84 if (map
->writeable_reg
)
85 return map
->writeable_reg(map
->dev
, reg
);
88 return regmap_check_range_table(map
, reg
, map
->wr_table
);
93 bool regmap_readable(struct regmap
*map
, unsigned int reg
)
95 if (map
->max_register
&& reg
> map
->max_register
)
98 if (map
->format
.format_write
)
101 if (map
->readable_reg
)
102 return map
->readable_reg(map
->dev
, reg
);
105 return regmap_check_range_table(map
, reg
, map
->rd_table
);
110 bool regmap_volatile(struct regmap
*map
, unsigned int reg
)
112 if (!regmap_readable(map
, reg
))
115 if (map
->volatile_reg
)
116 return map
->volatile_reg(map
->dev
, reg
);
118 if (map
->volatile_table
)
119 return regmap_check_range_table(map
, reg
, map
->volatile_table
);
127 bool regmap_precious(struct regmap
*map
, unsigned int reg
)
129 if (!regmap_readable(map
, reg
))
132 if (map
->precious_reg
)
133 return map
->precious_reg(map
->dev
, reg
);
135 if (map
->precious_table
)
136 return regmap_check_range_table(map
, reg
, map
->precious_table
);
141 static bool regmap_volatile_range(struct regmap
*map
, unsigned int reg
,
146 for (i
= 0; i
< num
; i
++)
147 if (!regmap_volatile(map
, reg
+ i
))
153 static void regmap_format_2_6_write(struct regmap
*map
,
154 unsigned int reg
, unsigned int val
)
156 u8
*out
= map
->work_buf
;
158 *out
= (reg
<< 6) | val
;
161 static void regmap_format_4_12_write(struct regmap
*map
,
162 unsigned int reg
, unsigned int val
)
164 __be16
*out
= map
->work_buf
;
165 *out
= cpu_to_be16((reg
<< 12) | val
);
168 static void regmap_format_7_9_write(struct regmap
*map
,
169 unsigned int reg
, unsigned int val
)
171 __be16
*out
= map
->work_buf
;
172 *out
= cpu_to_be16((reg
<< 9) | val
);
175 static void regmap_format_10_14_write(struct regmap
*map
,
176 unsigned int reg
, unsigned int val
)
178 u8
*out
= map
->work_buf
;
181 out
[1] = (val
>> 8) | (reg
<< 6);
185 static void regmap_format_8(void *buf
, unsigned int val
, unsigned int shift
)
192 static void regmap_format_16_be(void *buf
, unsigned int val
, unsigned int shift
)
196 b
[0] = cpu_to_be16(val
<< shift
);
199 static void regmap_format_16_le(void *buf
, unsigned int val
, unsigned int shift
)
203 b
[0] = cpu_to_le16(val
<< shift
);
206 static void regmap_format_16_native(void *buf
, unsigned int val
,
209 *(u16
*)buf
= val
<< shift
;
212 static void regmap_format_24(void *buf
, unsigned int val
, unsigned int shift
)
223 static void regmap_format_32_be(void *buf
, unsigned int val
, unsigned int shift
)
227 b
[0] = cpu_to_be32(val
<< shift
);
230 static void regmap_format_32_le(void *buf
, unsigned int val
, unsigned int shift
)
234 b
[0] = cpu_to_le32(val
<< shift
);
237 static void regmap_format_32_native(void *buf
, unsigned int val
,
240 *(u32
*)buf
= val
<< shift
;
243 static void regmap_parse_inplace_noop(void *buf
)
247 static unsigned int regmap_parse_8(const void *buf
)
254 static unsigned int regmap_parse_16_be(const void *buf
)
256 const __be16
*b
= buf
;
258 return be16_to_cpu(b
[0]);
261 static unsigned int regmap_parse_16_le(const void *buf
)
263 const __le16
*b
= buf
;
265 return le16_to_cpu(b
[0]);
268 static void regmap_parse_16_be_inplace(void *buf
)
272 b
[0] = be16_to_cpu(b
[0]);
275 static void regmap_parse_16_le_inplace(void *buf
)
279 b
[0] = le16_to_cpu(b
[0]);
282 static unsigned int regmap_parse_16_native(const void *buf
)
287 static unsigned int regmap_parse_24(const void *buf
)
290 unsigned int ret
= b
[2];
291 ret
|= ((unsigned int)b
[1]) << 8;
292 ret
|= ((unsigned int)b
[0]) << 16;
297 static unsigned int regmap_parse_32_be(const void *buf
)
299 const __be32
*b
= buf
;
301 return be32_to_cpu(b
[0]);
304 static unsigned int regmap_parse_32_le(const void *buf
)
306 const __le32
*b
= buf
;
308 return le32_to_cpu(b
[0]);
311 static void regmap_parse_32_be_inplace(void *buf
)
315 b
[0] = be32_to_cpu(b
[0]);
318 static void regmap_parse_32_le_inplace(void *buf
)
322 b
[0] = le32_to_cpu(b
[0]);
325 static unsigned int regmap_parse_32_native(const void *buf
)
330 static void regmap_lock_mutex(void *__map
)
332 struct regmap
*map
= __map
;
333 mutex_lock(&map
->mutex
);
336 static void regmap_unlock_mutex(void *__map
)
338 struct regmap
*map
= __map
;
339 mutex_unlock(&map
->mutex
);
342 static void regmap_lock_spinlock(void *__map
)
343 __acquires(&map
->spinlock
)
345 struct regmap
*map
= __map
;
348 spin_lock_irqsave(&map
->spinlock
, flags
);
349 map
->spinlock_flags
= flags
;
352 static void regmap_unlock_spinlock(void *__map
)
353 __releases(&map
->spinlock
)
355 struct regmap
*map
= __map
;
356 spin_unlock_irqrestore(&map
->spinlock
, map
->spinlock_flags
);
359 static void dev_get_regmap_release(struct device
*dev
, void *res
)
362 * We don't actually have anything to do here; the goal here
363 * is not to manage the regmap but to provide a simple way to
364 * get the regmap back given a struct device.
368 static bool _regmap_range_add(struct regmap
*map
,
369 struct regmap_range_node
*data
)
371 struct rb_root
*root
= &map
->range_tree
;
372 struct rb_node
**new = &(root
->rb_node
), *parent
= NULL
;
375 struct regmap_range_node
*this =
376 container_of(*new, struct regmap_range_node
, node
);
379 if (data
->range_max
< this->range_min
)
380 new = &((*new)->rb_left
);
381 else if (data
->range_min
> this->range_max
)
382 new = &((*new)->rb_right
);
387 rb_link_node(&data
->node
, parent
, new);
388 rb_insert_color(&data
->node
, root
);
393 static struct regmap_range_node
*_regmap_range_lookup(struct regmap
*map
,
396 struct rb_node
*node
= map
->range_tree
.rb_node
;
399 struct regmap_range_node
*this =
400 container_of(node
, struct regmap_range_node
, node
);
402 if (reg
< this->range_min
)
403 node
= node
->rb_left
;
404 else if (reg
> this->range_max
)
405 node
= node
->rb_right
;
413 static void regmap_range_exit(struct regmap
*map
)
415 struct rb_node
*next
;
416 struct regmap_range_node
*range_node
;
418 next
= rb_first(&map
->range_tree
);
420 range_node
= rb_entry(next
, struct regmap_range_node
, node
);
421 next
= rb_next(&range_node
->node
);
422 rb_erase(&range_node
->node
, &map
->range_tree
);
426 kfree(map
->selector_work_buf
);
429 int regmap_attach_dev(struct device
*dev
, struct regmap
*map
,
430 const struct regmap_config
*config
)
436 regmap_debugfs_init(map
, config
->name
);
438 /* Add a devres resource for dev_get_regmap() */
439 m
= devres_alloc(dev_get_regmap_release
, sizeof(*m
), GFP_KERNEL
);
441 regmap_debugfs_exit(map
);
449 EXPORT_SYMBOL_GPL(regmap_attach_dev
);
452 * regmap_init(): Initialise register map
454 * @dev: Device that will be interacted with
455 * @bus: Bus-specific callbacks to use with device
456 * @bus_context: Data passed to bus-specific callbacks
457 * @config: Configuration for register map
459 * The return value will be an ERR_PTR() on error or a valid pointer to
460 * a struct regmap. This function should generally not be called
461 * directly, it should be called by bus-specific init functions.
463 struct regmap
*regmap_init(struct device
*dev
,
464 const struct regmap_bus
*bus
,
466 const struct regmap_config
*config
)
470 enum regmap_endian reg_endian
, val_endian
;
476 map
= kzalloc(sizeof(*map
), GFP_KERNEL
);
482 if (config
->lock
&& config
->unlock
) {
483 map
->lock
= config
->lock
;
484 map
->unlock
= config
->unlock
;
485 map
->lock_arg
= config
->lock_arg
;
487 if ((bus
&& bus
->fast_io
) ||
489 spin_lock_init(&map
->spinlock
);
490 map
->lock
= regmap_lock_spinlock
;
491 map
->unlock
= regmap_unlock_spinlock
;
493 mutex_init(&map
->mutex
);
494 map
->lock
= regmap_lock_mutex
;
495 map
->unlock
= regmap_unlock_mutex
;
499 map
->format
.reg_bytes
= DIV_ROUND_UP(config
->reg_bits
, 8);
500 map
->format
.pad_bytes
= config
->pad_bits
/ 8;
501 map
->format
.val_bytes
= DIV_ROUND_UP(config
->val_bits
, 8);
502 map
->format
.buf_size
= DIV_ROUND_UP(config
->reg_bits
+
503 config
->val_bits
+ config
->pad_bits
, 8);
504 map
->reg_shift
= config
->pad_bits
% 8;
505 if (config
->reg_stride
)
506 map
->reg_stride
= config
->reg_stride
;
509 map
->use_single_rw
= config
->use_single_rw
;
510 map
->can_multi_write
= config
->can_multi_write
;
513 map
->bus_context
= bus_context
;
514 map
->max_register
= config
->max_register
;
515 map
->wr_table
= config
->wr_table
;
516 map
->rd_table
= config
->rd_table
;
517 map
->volatile_table
= config
->volatile_table
;
518 map
->precious_table
= config
->precious_table
;
519 map
->writeable_reg
= config
->writeable_reg
;
520 map
->readable_reg
= config
->readable_reg
;
521 map
->volatile_reg
= config
->volatile_reg
;
522 map
->precious_reg
= config
->precious_reg
;
523 map
->cache_type
= config
->cache_type
;
524 map
->name
= config
->name
;
526 spin_lock_init(&map
->async_lock
);
527 INIT_LIST_HEAD(&map
->async_list
);
528 INIT_LIST_HEAD(&map
->async_free
);
529 init_waitqueue_head(&map
->async_waitq
);
531 if (config
->read_flag_mask
|| config
->write_flag_mask
) {
532 map
->read_flag_mask
= config
->read_flag_mask
;
533 map
->write_flag_mask
= config
->write_flag_mask
;
535 map
->read_flag_mask
= bus
->read_flag_mask
;
539 map
->reg_read
= config
->reg_read
;
540 map
->reg_write
= config
->reg_write
;
542 map
->defer_caching
= false;
543 goto skip_format_initialization
;
544 } else if (!bus
->read
|| !bus
->write
) {
545 map
->reg_read
= _regmap_bus_reg_read
;
546 map
->reg_write
= _regmap_bus_reg_write
;
548 map
->defer_caching
= false;
549 goto skip_format_initialization
;
551 map
->reg_read
= _regmap_bus_read
;
554 reg_endian
= config
->reg_format_endian
;
555 if (reg_endian
== REGMAP_ENDIAN_DEFAULT
)
556 reg_endian
= bus
->reg_format_endian_default
;
557 if (reg_endian
== REGMAP_ENDIAN_DEFAULT
)
558 reg_endian
= REGMAP_ENDIAN_BIG
;
560 val_endian
= config
->val_format_endian
;
561 if (val_endian
== REGMAP_ENDIAN_DEFAULT
)
562 val_endian
= bus
->val_format_endian_default
;
563 if (val_endian
== REGMAP_ENDIAN_DEFAULT
)
564 val_endian
= REGMAP_ENDIAN_BIG
;
566 switch (config
->reg_bits
+ map
->reg_shift
) {
568 switch (config
->val_bits
) {
570 map
->format
.format_write
= regmap_format_2_6_write
;
578 switch (config
->val_bits
) {
580 map
->format
.format_write
= regmap_format_4_12_write
;
588 switch (config
->val_bits
) {
590 map
->format
.format_write
= regmap_format_7_9_write
;
598 switch (config
->val_bits
) {
600 map
->format
.format_write
= regmap_format_10_14_write
;
608 map
->format
.format_reg
= regmap_format_8
;
612 switch (reg_endian
) {
613 case REGMAP_ENDIAN_BIG
:
614 map
->format
.format_reg
= regmap_format_16_be
;
616 case REGMAP_ENDIAN_NATIVE
:
617 map
->format
.format_reg
= regmap_format_16_native
;
625 if (reg_endian
!= REGMAP_ENDIAN_BIG
)
627 map
->format
.format_reg
= regmap_format_24
;
631 switch (reg_endian
) {
632 case REGMAP_ENDIAN_BIG
:
633 map
->format
.format_reg
= regmap_format_32_be
;
635 case REGMAP_ENDIAN_NATIVE
:
636 map
->format
.format_reg
= regmap_format_32_native
;
647 if (val_endian
== REGMAP_ENDIAN_NATIVE
)
648 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
650 switch (config
->val_bits
) {
652 map
->format
.format_val
= regmap_format_8
;
653 map
->format
.parse_val
= regmap_parse_8
;
654 map
->format
.parse_inplace
= regmap_parse_inplace_noop
;
657 switch (val_endian
) {
658 case REGMAP_ENDIAN_BIG
:
659 map
->format
.format_val
= regmap_format_16_be
;
660 map
->format
.parse_val
= regmap_parse_16_be
;
661 map
->format
.parse_inplace
= regmap_parse_16_be_inplace
;
663 case REGMAP_ENDIAN_LITTLE
:
664 map
->format
.format_val
= regmap_format_16_le
;
665 map
->format
.parse_val
= regmap_parse_16_le
;
666 map
->format
.parse_inplace
= regmap_parse_16_le_inplace
;
668 case REGMAP_ENDIAN_NATIVE
:
669 map
->format
.format_val
= regmap_format_16_native
;
670 map
->format
.parse_val
= regmap_parse_16_native
;
677 if (val_endian
!= REGMAP_ENDIAN_BIG
)
679 map
->format
.format_val
= regmap_format_24
;
680 map
->format
.parse_val
= regmap_parse_24
;
683 switch (val_endian
) {
684 case REGMAP_ENDIAN_BIG
:
685 map
->format
.format_val
= regmap_format_32_be
;
686 map
->format
.parse_val
= regmap_parse_32_be
;
687 map
->format
.parse_inplace
= regmap_parse_32_be_inplace
;
689 case REGMAP_ENDIAN_LITTLE
:
690 map
->format
.format_val
= regmap_format_32_le
;
691 map
->format
.parse_val
= regmap_parse_32_le
;
692 map
->format
.parse_inplace
= regmap_parse_32_le_inplace
;
694 case REGMAP_ENDIAN_NATIVE
:
695 map
->format
.format_val
= regmap_format_32_native
;
696 map
->format
.parse_val
= regmap_parse_32_native
;
704 if (map
->format
.format_write
) {
705 if ((reg_endian
!= REGMAP_ENDIAN_BIG
) ||
706 (val_endian
!= REGMAP_ENDIAN_BIG
))
708 map
->use_single_rw
= true;
711 if (!map
->format
.format_write
&&
712 !(map
->format
.format_reg
&& map
->format
.format_val
))
715 map
->work_buf
= kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
716 if (map
->work_buf
== NULL
) {
721 if (map
->format
.format_write
) {
722 map
->defer_caching
= false;
723 map
->reg_write
= _regmap_bus_formatted_write
;
724 } else if (map
->format
.format_val
) {
725 map
->defer_caching
= true;
726 map
->reg_write
= _regmap_bus_raw_write
;
729 skip_format_initialization
:
731 map
->range_tree
= RB_ROOT
;
732 for (i
= 0; i
< config
->num_ranges
; i
++) {
733 const struct regmap_range_cfg
*range_cfg
= &config
->ranges
[i
];
734 struct regmap_range_node
*new;
737 if (range_cfg
->range_max
< range_cfg
->range_min
) {
738 dev_err(map
->dev
, "Invalid range %d: %d < %d\n", i
,
739 range_cfg
->range_max
, range_cfg
->range_min
);
743 if (range_cfg
->range_max
> map
->max_register
) {
744 dev_err(map
->dev
, "Invalid range %d: %d > %d\n", i
,
745 range_cfg
->range_max
, map
->max_register
);
749 if (range_cfg
->selector_reg
> map
->max_register
) {
751 "Invalid range %d: selector out of map\n", i
);
755 if (range_cfg
->window_len
== 0) {
756 dev_err(map
->dev
, "Invalid range %d: window_len 0\n",
761 /* Make sure, that this register range has no selector
762 or data window within its boundary */
763 for (j
= 0; j
< config
->num_ranges
; j
++) {
764 unsigned sel_reg
= config
->ranges
[j
].selector_reg
;
765 unsigned win_min
= config
->ranges
[j
].window_start
;
766 unsigned win_max
= win_min
+
767 config
->ranges
[j
].window_len
- 1;
769 /* Allow data window inside its own virtual range */
773 if (range_cfg
->range_min
<= sel_reg
&&
774 sel_reg
<= range_cfg
->range_max
) {
776 "Range %d: selector for %d in window\n",
781 if (!(win_max
< range_cfg
->range_min
||
782 win_min
> range_cfg
->range_max
)) {
784 "Range %d: window for %d in window\n",
790 new = kzalloc(sizeof(*new), GFP_KERNEL
);
797 new->name
= range_cfg
->name
;
798 new->range_min
= range_cfg
->range_min
;
799 new->range_max
= range_cfg
->range_max
;
800 new->selector_reg
= range_cfg
->selector_reg
;
801 new->selector_mask
= range_cfg
->selector_mask
;
802 new->selector_shift
= range_cfg
->selector_shift
;
803 new->window_start
= range_cfg
->window_start
;
804 new->window_len
= range_cfg
->window_len
;
806 if (!_regmap_range_add(map
, new)) {
807 dev_err(map
->dev
, "Failed to add range %d\n", i
);
812 if (map
->selector_work_buf
== NULL
) {
813 map
->selector_work_buf
=
814 kzalloc(map
->format
.buf_size
, GFP_KERNEL
);
815 if (map
->selector_work_buf
== NULL
) {
822 ret
= regcache_init(map
, config
);
827 ret
= regmap_attach_dev(dev
, map
, config
);
837 regmap_range_exit(map
);
838 kfree(map
->work_buf
);
844 EXPORT_SYMBOL_GPL(regmap_init
);
846 static void devm_regmap_release(struct device
*dev
, void *res
)
848 regmap_exit(*(struct regmap
**)res
);
852 * devm_regmap_init(): Initialise managed register map
854 * @dev: Device that will be interacted with
855 * @bus: Bus-specific callbacks to use with device
856 * @bus_context: Data passed to bus-specific callbacks
857 * @config: Configuration for register map
859 * The return value will be an ERR_PTR() on error or a valid pointer
860 * to a struct regmap. This function should generally not be called
861 * directly, it should be called by bus-specific init functions. The
862 * map will be automatically freed by the device management code.
864 struct regmap
*devm_regmap_init(struct device
*dev
,
865 const struct regmap_bus
*bus
,
867 const struct regmap_config
*config
)
869 struct regmap
**ptr
, *regmap
;
871 ptr
= devres_alloc(devm_regmap_release
, sizeof(*ptr
), GFP_KERNEL
);
873 return ERR_PTR(-ENOMEM
);
875 regmap
= regmap_init(dev
, bus
, bus_context
, config
);
876 if (!IS_ERR(regmap
)) {
878 devres_add(dev
, ptr
);
885 EXPORT_SYMBOL_GPL(devm_regmap_init
);
887 static void regmap_field_init(struct regmap_field
*rm_field
,
888 struct regmap
*regmap
, struct reg_field reg_field
)
890 int field_bits
= reg_field
.msb
- reg_field
.lsb
+ 1;
891 rm_field
->regmap
= regmap
;
892 rm_field
->reg
= reg_field
.reg
;
893 rm_field
->shift
= reg_field
.lsb
;
894 rm_field
->mask
= ((BIT(field_bits
) - 1) << reg_field
.lsb
);
895 rm_field
->id_size
= reg_field
.id_size
;
896 rm_field
->id_offset
= reg_field
.id_offset
;
900 * devm_regmap_field_alloc(): Allocate and initialise a register field
903 * @dev: Device that will be interacted with
904 * @regmap: regmap bank in which this register field is located.
905 * @reg_field: Register field with in the bank.
907 * The return value will be an ERR_PTR() on error or a valid pointer
908 * to a struct regmap_field. The regmap_field will be automatically freed
909 * by the device management code.
911 struct regmap_field
*devm_regmap_field_alloc(struct device
*dev
,
912 struct regmap
*regmap
, struct reg_field reg_field
)
914 struct regmap_field
*rm_field
= devm_kzalloc(dev
,
915 sizeof(*rm_field
), GFP_KERNEL
);
917 return ERR_PTR(-ENOMEM
);
919 regmap_field_init(rm_field
, regmap
, reg_field
);
924 EXPORT_SYMBOL_GPL(devm_regmap_field_alloc
);
927 * devm_regmap_field_free(): Free register field allocated using
928 * devm_regmap_field_alloc. Usally drivers need not call this function,
929 * as the memory allocated via devm will be freed as per device-driver
932 * @dev: Device that will be interacted with
933 * @field: regmap field which should be freed.
935 void devm_regmap_field_free(struct device
*dev
,
936 struct regmap_field
*field
)
938 devm_kfree(dev
, field
);
940 EXPORT_SYMBOL_GPL(devm_regmap_field_free
);
943 * regmap_field_alloc(): Allocate and initialise a register field
946 * @regmap: regmap bank in which this register field is located.
947 * @reg_field: Register field with in the bank.
949 * The return value will be an ERR_PTR() on error or a valid pointer
950 * to a struct regmap_field. The regmap_field should be freed by the
951 * user once its finished working with it using regmap_field_free().
953 struct regmap_field
*regmap_field_alloc(struct regmap
*regmap
,
954 struct reg_field reg_field
)
956 struct regmap_field
*rm_field
= kzalloc(sizeof(*rm_field
), GFP_KERNEL
);
959 return ERR_PTR(-ENOMEM
);
961 regmap_field_init(rm_field
, regmap
, reg_field
);
965 EXPORT_SYMBOL_GPL(regmap_field_alloc
);
968 * regmap_field_free(): Free register field allocated using regmap_field_alloc
970 * @field: regmap field which should be freed.
972 void regmap_field_free(struct regmap_field
*field
)
976 EXPORT_SYMBOL_GPL(regmap_field_free
);
979 * regmap_reinit_cache(): Reinitialise the current register cache
981 * @map: Register map to operate on.
982 * @config: New configuration. Only the cache data will be used.
984 * Discard any existing register cache for the map and initialize a
985 * new cache. This can be used to restore the cache to defaults or to
986 * update the cache configuration to reflect runtime discovery of the
989 * No explicit locking is done here, the user needs to ensure that
990 * this function will not race with other calls to regmap.
992 int regmap_reinit_cache(struct regmap
*map
, const struct regmap_config
*config
)
995 regmap_debugfs_exit(map
);
997 map
->max_register
= config
->max_register
;
998 map
->writeable_reg
= config
->writeable_reg
;
999 map
->readable_reg
= config
->readable_reg
;
1000 map
->volatile_reg
= config
->volatile_reg
;
1001 map
->precious_reg
= config
->precious_reg
;
1002 map
->cache_type
= config
->cache_type
;
1004 regmap_debugfs_init(map
, config
->name
);
1006 map
->cache_bypass
= false;
1007 map
->cache_only
= false;
1009 return regcache_init(map
, config
);
1011 EXPORT_SYMBOL_GPL(regmap_reinit_cache
);
1014 * regmap_exit(): Free a previously allocated register map
1016 void regmap_exit(struct regmap
*map
)
1018 struct regmap_async
*async
;
1021 regmap_debugfs_exit(map
);
1022 regmap_range_exit(map
);
1023 if (map
->bus
&& map
->bus
->free_context
)
1024 map
->bus
->free_context(map
->bus_context
);
1025 kfree(map
->work_buf
);
1026 while (!list_empty(&map
->async_free
)) {
1027 async
= list_first_entry_or_null(&map
->async_free
,
1028 struct regmap_async
,
1030 list_del(&async
->list
);
1031 kfree(async
->work_buf
);
1036 EXPORT_SYMBOL_GPL(regmap_exit
);
1038 static int dev_get_regmap_match(struct device
*dev
, void *res
, void *data
)
1040 struct regmap
**r
= res
;
1046 /* If the user didn't specify a name match any */
1048 return (*r
)->name
== data
;
1054 * dev_get_regmap(): Obtain the regmap (if any) for a device
1056 * @dev: Device to retrieve the map for
1057 * @name: Optional name for the register map, usually NULL.
1059 * Returns the regmap for the device if one is present, or NULL. If
1060 * name is specified then it must match the name specified when
1061 * registering the device, if it is NULL then the first regmap found
1062 * will be used. Devices with multiple register maps are very rare,
1063 * generic code should normally not need to specify a name.
1065 struct regmap
*dev_get_regmap(struct device
*dev
, const char *name
)
1067 struct regmap
**r
= devres_find(dev
, dev_get_regmap_release
,
1068 dev_get_regmap_match
, (void *)name
);
1074 EXPORT_SYMBOL_GPL(dev_get_regmap
);
1076 static int _regmap_select_page(struct regmap
*map
, unsigned int *reg
,
1077 struct regmap_range_node
*range
,
1078 unsigned int val_num
)
1080 void *orig_work_buf
;
1081 unsigned int win_offset
;
1082 unsigned int win_page
;
1086 win_offset
= (*reg
- range
->range_min
) % range
->window_len
;
1087 win_page
= (*reg
- range
->range_min
) / range
->window_len
;
1090 /* Bulk write shouldn't cross range boundary */
1091 if (*reg
+ val_num
- 1 > range
->range_max
)
1094 /* ... or single page boundary */
1095 if (val_num
> range
->window_len
- win_offset
)
1099 /* It is possible to have selector register inside data window.
1100 In that case, selector register is located on every page and
1101 it needs no page switching, when accessed alone. */
1103 range
->window_start
+ win_offset
!= range
->selector_reg
) {
1104 /* Use separate work_buf during page switching */
1105 orig_work_buf
= map
->work_buf
;
1106 map
->work_buf
= map
->selector_work_buf
;
1108 ret
= _regmap_update_bits(map
, range
->selector_reg
,
1109 range
->selector_mask
,
1110 win_page
<< range
->selector_shift
,
1113 map
->work_buf
= orig_work_buf
;
1119 *reg
= range
->window_start
+ win_offset
;
1124 int _regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1125 const void *val
, size_t val_len
)
1127 struct regmap_range_node
*range
;
1128 unsigned long flags
;
1129 u8
*u8
= map
->work_buf
;
1130 void *work_val
= map
->work_buf
+ map
->format
.reg_bytes
+
1131 map
->format
.pad_bytes
;
1133 int ret
= -ENOTSUPP
;
1139 /* Check for unwritable registers before we start */
1140 if (map
->writeable_reg
)
1141 for (i
= 0; i
< val_len
/ map
->format
.val_bytes
; i
++)
1142 if (!map
->writeable_reg(map
->dev
,
1143 reg
+ (i
* map
->reg_stride
)))
1146 if (!map
->cache_bypass
&& map
->format
.parse_val
) {
1148 int val_bytes
= map
->format
.val_bytes
;
1149 for (i
= 0; i
< val_len
/ val_bytes
; i
++) {
1150 ival
= map
->format
.parse_val(val
+ (i
* val_bytes
));
1151 ret
= regcache_write(map
, reg
+ (i
* map
->reg_stride
),
1155 "Error in caching of register: %x ret: %d\n",
1160 if (map
->cache_only
) {
1161 map
->cache_dirty
= true;
1166 range
= _regmap_range_lookup(map
, reg
);
1168 int val_num
= val_len
/ map
->format
.val_bytes
;
1169 int win_offset
= (reg
- range
->range_min
) % range
->window_len
;
1170 int win_residue
= range
->window_len
- win_offset
;
1172 /* If the write goes beyond the end of the window split it */
1173 while (val_num
> win_residue
) {
1174 dev_dbg(map
->dev
, "Writing window %d/%zu\n",
1175 win_residue
, val_len
/ map
->format
.val_bytes
);
1176 ret
= _regmap_raw_write(map
, reg
, val
, win_residue
*
1177 map
->format
.val_bytes
);
1182 val_num
-= win_residue
;
1183 val
+= win_residue
* map
->format
.val_bytes
;
1184 val_len
-= win_residue
* map
->format
.val_bytes
;
1186 win_offset
= (reg
- range
->range_min
) %
1188 win_residue
= range
->window_len
- win_offset
;
1191 ret
= _regmap_select_page(map
, ®
, range
, val_num
);
1196 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
1198 u8
[0] |= map
->write_flag_mask
;
1201 * Essentially all I/O mechanisms will be faster with a single
1202 * buffer to write. Since register syncs often generate raw
1203 * writes of single registers optimise that case.
1205 if (val
!= work_val
&& val_len
== map
->format
.val_bytes
) {
1206 memcpy(work_val
, val
, map
->format
.val_bytes
);
1210 if (map
->async
&& map
->bus
->async_write
) {
1211 struct regmap_async
*async
;
1213 trace_regmap_async_write_start(map
->dev
, reg
, val_len
);
1215 spin_lock_irqsave(&map
->async_lock
, flags
);
1216 async
= list_first_entry_or_null(&map
->async_free
,
1217 struct regmap_async
,
1220 list_del(&async
->list
);
1221 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1224 async
= map
->bus
->async_alloc();
1228 async
->work_buf
= kzalloc(map
->format
.buf_size
,
1229 GFP_KERNEL
| GFP_DMA
);
1230 if (!async
->work_buf
) {
1238 /* If the caller supplied the value we can use it safely. */
1239 memcpy(async
->work_buf
, map
->work_buf
, map
->format
.pad_bytes
+
1240 map
->format
.reg_bytes
+ map
->format
.val_bytes
);
1242 spin_lock_irqsave(&map
->async_lock
, flags
);
1243 list_add_tail(&async
->list
, &map
->async_list
);
1244 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1246 if (val
!= work_val
)
1247 ret
= map
->bus
->async_write(map
->bus_context
,
1249 map
->format
.reg_bytes
+
1250 map
->format
.pad_bytes
,
1251 val
, val_len
, async
);
1253 ret
= map
->bus
->async_write(map
->bus_context
,
1255 map
->format
.reg_bytes
+
1256 map
->format
.pad_bytes
+
1257 val_len
, NULL
, 0, async
);
1260 dev_err(map
->dev
, "Failed to schedule write: %d\n",
1263 spin_lock_irqsave(&map
->async_lock
, flags
);
1264 list_move(&async
->list
, &map
->async_free
);
1265 spin_unlock_irqrestore(&map
->async_lock
, flags
);
1271 trace_regmap_hw_write_start(map
->dev
, reg
,
1272 val_len
/ map
->format
.val_bytes
);
1274 /* If we're doing a single register write we can probably just
1275 * send the work_buf directly, otherwise try to do a gather
1278 if (val
== work_val
)
1279 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1280 map
->format
.reg_bytes
+
1281 map
->format
.pad_bytes
+
1283 else if (map
->bus
->gather_write
)
1284 ret
= map
->bus
->gather_write(map
->bus_context
, map
->work_buf
,
1285 map
->format
.reg_bytes
+
1286 map
->format
.pad_bytes
,
1289 /* If that didn't work fall back on linearising by hand. */
1290 if (ret
== -ENOTSUPP
) {
1291 len
= map
->format
.reg_bytes
+ map
->format
.pad_bytes
+ val_len
;
1292 buf
= kzalloc(len
, GFP_KERNEL
);
1296 memcpy(buf
, map
->work_buf
, map
->format
.reg_bytes
);
1297 memcpy(buf
+ map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
1299 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
1304 trace_regmap_hw_write_done(map
->dev
, reg
,
1305 val_len
/ map
->format
.val_bytes
);
1311 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1313 * @map: Map to check.
1315 bool regmap_can_raw_write(struct regmap
*map
)
1317 return map
->bus
&& map
->format
.format_val
&& map
->format
.format_reg
;
1319 EXPORT_SYMBOL_GPL(regmap_can_raw_write
);
1321 static int _regmap_bus_formatted_write(void *context
, unsigned int reg
,
1325 struct regmap_range_node
*range
;
1326 struct regmap
*map
= context
;
1328 WARN_ON(!map
->bus
|| !map
->format
.format_write
);
1330 range
= _regmap_range_lookup(map
, reg
);
1332 ret
= _regmap_select_page(map
, ®
, range
, 1);
1337 map
->format
.format_write(map
, reg
, val
);
1339 trace_regmap_hw_write_start(map
->dev
, reg
, 1);
1341 ret
= map
->bus
->write(map
->bus_context
, map
->work_buf
,
1342 map
->format
.buf_size
);
1344 trace_regmap_hw_write_done(map
->dev
, reg
, 1);
1349 static int _regmap_bus_reg_write(void *context
, unsigned int reg
,
1352 struct regmap
*map
= context
;
1354 return map
->bus
->reg_write(map
->bus_context
, reg
, val
);
1357 static int _regmap_bus_raw_write(void *context
, unsigned int reg
,
1360 struct regmap
*map
= context
;
1362 WARN_ON(!map
->bus
|| !map
->format
.format_val
);
1364 map
->format
.format_val(map
->work_buf
+ map
->format
.reg_bytes
1365 + map
->format
.pad_bytes
, val
, 0);
1366 return _regmap_raw_write(map
, reg
,
1368 map
->format
.reg_bytes
+
1369 map
->format
.pad_bytes
,
1370 map
->format
.val_bytes
);
1373 static inline void *_regmap_map_get_context(struct regmap
*map
)
1375 return (map
->bus
) ? map
: map
->bus_context
;
1378 int _regmap_write(struct regmap
*map
, unsigned int reg
,
1382 void *context
= _regmap_map_get_context(map
);
1384 if (!regmap_writeable(map
, reg
))
1387 if (!map
->cache_bypass
&& !map
->defer_caching
) {
1388 ret
= regcache_write(map
, reg
, val
);
1391 if (map
->cache_only
) {
1392 map
->cache_dirty
= true;
1398 if (strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0)
1399 dev_info(map
->dev
, "%x <= %x\n", reg
, val
);
1402 trace_regmap_reg_write(map
->dev
, reg
, val
);
1404 return map
->reg_write(context
, reg
, val
);
1408 * regmap_write(): Write a value to a single register
1410 * @map: Register map to write to
1411 * @reg: Register to write to
1412 * @val: Value to be written
1414 * A value of zero will be returned on success, a negative errno will
1415 * be returned in error cases.
1417 int regmap_write(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1421 if (reg
% map
->reg_stride
)
1424 map
->lock(map
->lock_arg
);
1426 ret
= _regmap_write(map
, reg
, val
);
1428 map
->unlock(map
->lock_arg
);
1432 EXPORT_SYMBOL_GPL(regmap_write
);
1435 * regmap_write_async(): Write a value to a single register asynchronously
1437 * @map: Register map to write to
1438 * @reg: Register to write to
1439 * @val: Value to be written
1441 * A value of zero will be returned on success, a negative errno will
1442 * be returned in error cases.
1444 int regmap_write_async(struct regmap
*map
, unsigned int reg
, unsigned int val
)
1448 if (reg
% map
->reg_stride
)
1451 map
->lock(map
->lock_arg
);
1455 ret
= _regmap_write(map
, reg
, val
);
1459 map
->unlock(map
->lock_arg
);
1463 EXPORT_SYMBOL_GPL(regmap_write_async
);
1466 * regmap_raw_write(): Write raw values to one or more registers
1468 * @map: Register map to write to
1469 * @reg: Initial register to write to
1470 * @val: Block of data to be written, laid out for direct transmission to the
1472 * @val_len: Length of data pointed to by val.
1474 * This function is intended to be used for things like firmware
1475 * download where a large block of data needs to be transferred to the
1476 * device. No formatting will be done on the data provided.
1478 * A value of zero will be returned on success, a negative errno will
1479 * be returned in error cases.
1481 int regmap_raw_write(struct regmap
*map
, unsigned int reg
,
1482 const void *val
, size_t val_len
)
1486 if (!regmap_can_raw_write(map
))
1488 if (val_len
% map
->format
.val_bytes
)
1491 map
->lock(map
->lock_arg
);
1493 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
1495 map
->unlock(map
->lock_arg
);
1499 EXPORT_SYMBOL_GPL(regmap_raw_write
);
1502 * regmap_field_write(): Write a value to a single register field
1504 * @field: Register field to write to
1505 * @val: Value to be written
1507 * A value of zero will be returned on success, a negative errno will
1508 * be returned in error cases.
1510 int regmap_field_write(struct regmap_field
*field
, unsigned int val
)
1512 return regmap_update_bits(field
->regmap
, field
->reg
,
1513 field
->mask
, val
<< field
->shift
);
1515 EXPORT_SYMBOL_GPL(regmap_field_write
);
1518 * regmap_field_update_bits(): Perform a read/modify/write cycle
1519 * on the register field
1521 * @field: Register field to write to
1522 * @mask: Bitmask to change
1523 * @val: Value to be written
1525 * A value of zero will be returned on success, a negative errno will
1526 * be returned in error cases.
1528 int regmap_field_update_bits(struct regmap_field
*field
, unsigned int mask
, unsigned int val
)
1530 mask
= (mask
<< field
->shift
) & field
->mask
;
1532 return regmap_update_bits(field
->regmap
, field
->reg
,
1533 mask
, val
<< field
->shift
);
1535 EXPORT_SYMBOL_GPL(regmap_field_update_bits
);
1538 * regmap_fields_write(): Write a value to a single register field with port ID
1540 * @field: Register field to write to
1542 * @val: Value to be written
1544 * A value of zero will be returned on success, a negative errno will
1545 * be returned in error cases.
1547 int regmap_fields_write(struct regmap_field
*field
, unsigned int id
,
1550 if (id
>= field
->id_size
)
1553 return regmap_update_bits(field
->regmap
,
1554 field
->reg
+ (field
->id_offset
* id
),
1555 field
->mask
, val
<< field
->shift
);
1557 EXPORT_SYMBOL_GPL(regmap_fields_write
);
1560 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1561 * on the register field
1563 * @field: Register field to write to
1565 * @mask: Bitmask to change
1566 * @val: Value to be written
1568 * A value of zero will be returned on success, a negative errno will
1569 * be returned in error cases.
1571 int regmap_fields_update_bits(struct regmap_field
*field
, unsigned int id
,
1572 unsigned int mask
, unsigned int val
)
1574 if (id
>= field
->id_size
)
1577 mask
= (mask
<< field
->shift
) & field
->mask
;
1579 return regmap_update_bits(field
->regmap
,
1580 field
->reg
+ (field
->id_offset
* id
),
1581 mask
, val
<< field
->shift
);
1583 EXPORT_SYMBOL_GPL(regmap_fields_update_bits
);
1586 * regmap_bulk_write(): Write multiple registers to the device
1588 * @map: Register map to write to
1589 * @reg: First register to be write from
1590 * @val: Block of data to be written, in native register size for device
1591 * @val_count: Number of registers to write
1593 * This function is intended to be used for writing a large block of
1594 * data to the device either in single transfer or multiple transfer.
1596 * A value of zero will be returned on success, a negative errno will
1597 * be returned in error cases.
1599 int regmap_bulk_write(struct regmap
*map
, unsigned int reg
, const void *val
,
1603 size_t val_bytes
= map
->format
.val_bytes
;
1605 if (map
->bus
&& !map
->format
.parse_inplace
)
1607 if (reg
% map
->reg_stride
)
1611 * Some devices don't support bulk write, for
1612 * them we have a series of single write operations.
1614 if (!map
->bus
|| map
->use_single_rw
) {
1615 map
->lock(map
->lock_arg
);
1616 for (i
= 0; i
< val_count
; i
++) {
1619 switch (val_bytes
) {
1621 ival
= *(u8
*)(val
+ (i
* val_bytes
));
1624 ival
= *(u16
*)(val
+ (i
* val_bytes
));
1627 ival
= *(u32
*)(val
+ (i
* val_bytes
));
1631 ival
= *(u64
*)(val
+ (i
* val_bytes
));
1639 ret
= _regmap_write(map
, reg
+ (i
* map
->reg_stride
),
1645 map
->unlock(map
->lock_arg
);
1649 wval
= kmemdup(val
, val_count
* val_bytes
, GFP_KERNEL
);
1651 dev_err(map
->dev
, "Error in memory allocation\n");
1654 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
1655 map
->format
.parse_inplace(wval
+ i
);
1657 map
->lock(map
->lock_arg
);
1658 ret
= _regmap_raw_write(map
, reg
, wval
, val_bytes
* val_count
);
1659 map
->unlock(map
->lock_arg
);
1665 EXPORT_SYMBOL_GPL(regmap_bulk_write
);
1668 * _regmap_raw_multi_reg_write()
1670 * the (register,newvalue) pairs in regs have not been formatted, but
1671 * they are all in the same page and have been changed to being page
1672 * relative. The page register has been written if that was neccessary.
1674 static int _regmap_raw_multi_reg_write(struct regmap
*map
,
1675 const struct reg_default
*regs
,
1682 size_t val_bytes
= map
->format
.val_bytes
;
1683 size_t reg_bytes
= map
->format
.reg_bytes
;
1684 size_t pad_bytes
= map
->format
.pad_bytes
;
1685 size_t pair_size
= reg_bytes
+ pad_bytes
+ val_bytes
;
1686 size_t len
= pair_size
* num_regs
;
1691 buf
= kzalloc(len
, GFP_KERNEL
);
1695 /* We have to linearise by hand. */
1699 for (i
= 0; i
< num_regs
; i
++) {
1700 int reg
= regs
[i
].reg
;
1701 int val
= regs
[i
].def
;
1702 trace_regmap_hw_write_start(map
->dev
, reg
, 1);
1703 map
->format
.format_reg(u8
, reg
, map
->reg_shift
);
1704 u8
+= reg_bytes
+ pad_bytes
;
1705 map
->format
.format_val(u8
, val
, 0);
1709 *u8
|= map
->write_flag_mask
;
1711 ret
= map
->bus
->write(map
->bus_context
, buf
, len
);
1715 for (i
= 0; i
< num_regs
; i
++) {
1716 int reg
= regs
[i
].reg
;
1717 trace_regmap_hw_write_done(map
->dev
, reg
, 1);
1722 static unsigned int _regmap_register_page(struct regmap
*map
,
1724 struct regmap_range_node
*range
)
1726 unsigned int win_page
= (reg
- range
->range_min
) / range
->window_len
;
1731 static int _regmap_range_multi_paged_reg_write(struct regmap
*map
,
1732 struct reg_default
*regs
,
1737 struct reg_default
*base
;
1738 unsigned int this_page
= 0;
1740 * the set of registers are not neccessarily in order, but
1741 * since the order of write must be preserved this algorithm
1742 * chops the set each time the page changes
1745 for (i
= 0, n
= 0; i
< num_regs
; i
++, n
++) {
1746 unsigned int reg
= regs
[i
].reg
;
1747 struct regmap_range_node
*range
;
1749 range
= _regmap_range_lookup(map
, reg
);
1751 unsigned int win_page
= _regmap_register_page(map
, reg
,
1755 this_page
= win_page
;
1756 if (win_page
!= this_page
) {
1757 this_page
= win_page
;
1758 ret
= _regmap_raw_multi_reg_write(map
, base
, n
);
1764 ret
= _regmap_select_page(map
, &base
[n
].reg
, range
, 1);
1770 return _regmap_raw_multi_reg_write(map
, base
, n
);
1774 static int _regmap_multi_reg_write(struct regmap
*map
,
1775 const struct reg_default
*regs
,
1781 if (!map
->can_multi_write
) {
1782 for (i
= 0; i
< num_regs
; i
++) {
1783 ret
= _regmap_write(map
, regs
[i
].reg
, regs
[i
].def
);
1790 if (!map
->format
.parse_inplace
)
1793 if (map
->writeable_reg
)
1794 for (i
= 0; i
< num_regs
; i
++) {
1795 int reg
= regs
[i
].reg
;
1796 if (!map
->writeable_reg(map
->dev
, reg
))
1798 if (reg
% map
->reg_stride
)
1802 if (!map
->cache_bypass
) {
1803 for (i
= 0; i
< num_regs
; i
++) {
1804 unsigned int val
= regs
[i
].def
;
1805 unsigned int reg
= regs
[i
].reg
;
1806 ret
= regcache_write(map
, reg
, val
);
1809 "Error in caching of register: %x ret: %d\n",
1814 if (map
->cache_only
) {
1815 map
->cache_dirty
= true;
1822 for (i
= 0; i
< num_regs
; i
++) {
1823 unsigned int reg
= regs
[i
].reg
;
1824 struct regmap_range_node
*range
;
1825 range
= _regmap_range_lookup(map
, reg
);
1827 size_t len
= sizeof(struct reg_default
)*num_regs
;
1828 struct reg_default
*base
= kmemdup(regs
, len
,
1832 ret
= _regmap_range_multi_paged_reg_write(map
, base
,
1839 return _regmap_raw_multi_reg_write(map
, regs
, num_regs
);
1843 * regmap_multi_reg_write(): Write multiple registers to the device
1845 * where the set of register,value pairs are supplied in any order,
1846 * possibly not all in a single range.
1848 * @map: Register map to write to
1849 * @regs: Array of structures containing register,value to be written
1850 * @num_regs: Number of registers to write
1852 * The 'normal' block write mode will send ultimately send data on the
1853 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1854 * addressed. However, this alternative block multi write mode will send
1855 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1856 * must of course support the mode.
1858 * A value of zero will be returned on success, a negative errno will be
1859 * returned in error cases.
1861 int regmap_multi_reg_write(struct regmap
*map
, const struct reg_default
*regs
,
1866 map
->lock(map
->lock_arg
);
1868 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
1870 map
->unlock(map
->lock_arg
);
1874 EXPORT_SYMBOL_GPL(regmap_multi_reg_write
);
1877 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1878 * device but not the cache
1880 * where the set of register are supplied in any order
1882 * @map: Register map to write to
1883 * @regs: Array of structures containing register,value to be written
1884 * @num_regs: Number of registers to write
1886 * This function is intended to be used for writing a large block of data
1887 * atomically to the device in single transfer for those I2C client devices
1888 * that implement this alternative block write mode.
1890 * A value of zero will be returned on success, a negative errno will
1891 * be returned in error cases.
1893 int regmap_multi_reg_write_bypassed(struct regmap
*map
,
1894 const struct reg_default
*regs
,
1900 map
->lock(map
->lock_arg
);
1902 bypass
= map
->cache_bypass
;
1903 map
->cache_bypass
= true;
1905 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
1907 map
->cache_bypass
= bypass
;
1909 map
->unlock(map
->lock_arg
);
1913 EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed
);
1916 * regmap_raw_write_async(): Write raw values to one or more registers
1919 * @map: Register map to write to
1920 * @reg: Initial register to write to
1921 * @val: Block of data to be written, laid out for direct transmission to the
1922 * device. Must be valid until regmap_async_complete() is called.
1923 * @val_len: Length of data pointed to by val.
1925 * This function is intended to be used for things like firmware
1926 * download where a large block of data needs to be transferred to the
1927 * device. No formatting will be done on the data provided.
1929 * If supported by the underlying bus the write will be scheduled
1930 * asynchronously, helping maximise I/O speed on higher speed buses
1931 * like SPI. regmap_async_complete() can be called to ensure that all
1932 * asynchrnous writes have been completed.
1934 * A value of zero will be returned on success, a negative errno will
1935 * be returned in error cases.
1937 int regmap_raw_write_async(struct regmap
*map
, unsigned int reg
,
1938 const void *val
, size_t val_len
)
1942 if (val_len
% map
->format
.val_bytes
)
1944 if (reg
% map
->reg_stride
)
1947 map
->lock(map
->lock_arg
);
1951 ret
= _regmap_raw_write(map
, reg
, val
, val_len
);
1955 map
->unlock(map
->lock_arg
);
1959 EXPORT_SYMBOL_GPL(regmap_raw_write_async
);
1961 static int _regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
1962 unsigned int val_len
)
1964 struct regmap_range_node
*range
;
1965 u8
*u8
= map
->work_buf
;
1970 range
= _regmap_range_lookup(map
, reg
);
1972 ret
= _regmap_select_page(map
, ®
, range
,
1973 val_len
/ map
->format
.val_bytes
);
1978 map
->format
.format_reg(map
->work_buf
, reg
, map
->reg_shift
);
1981 * Some buses or devices flag reads by setting the high bits in the
1982 * register addresss; since it's always the high bits for all
1983 * current formats we can do this here rather than in
1984 * formatting. This may break if we get interesting formats.
1986 u8
[0] |= map
->read_flag_mask
;
1988 trace_regmap_hw_read_start(map
->dev
, reg
,
1989 val_len
/ map
->format
.val_bytes
);
1991 ret
= map
->bus
->read(map
->bus_context
, map
->work_buf
,
1992 map
->format
.reg_bytes
+ map
->format
.pad_bytes
,
1995 trace_regmap_hw_read_done(map
->dev
, reg
,
1996 val_len
/ map
->format
.val_bytes
);
2001 static int _regmap_bus_reg_read(void *context
, unsigned int reg
,
2004 struct regmap
*map
= context
;
2006 return map
->bus
->reg_read(map
->bus_context
, reg
, val
);
2009 static int _regmap_bus_read(void *context
, unsigned int reg
,
2013 struct regmap
*map
= context
;
2015 if (!map
->format
.parse_val
)
2018 ret
= _regmap_raw_read(map
, reg
, map
->work_buf
, map
->format
.val_bytes
);
2020 *val
= map
->format
.parse_val(map
->work_buf
);
2025 static int _regmap_read(struct regmap
*map
, unsigned int reg
,
2029 void *context
= _regmap_map_get_context(map
);
2031 WARN_ON(!map
->reg_read
);
2033 if (!map
->cache_bypass
) {
2034 ret
= regcache_read(map
, reg
, val
);
2039 if (map
->cache_only
)
2042 if (!regmap_readable(map
, reg
))
2045 ret
= map
->reg_read(context
, reg
, val
);
2048 if (strcmp(dev_name(map
->dev
), LOG_DEVICE
) == 0)
2049 dev_info(map
->dev
, "%x => %x\n", reg
, *val
);
2052 trace_regmap_reg_read(map
->dev
, reg
, *val
);
2054 if (!map
->cache_bypass
)
2055 regcache_write(map
, reg
, *val
);
2062 * regmap_read(): Read a value from a single register
2064 * @map: Register map to read from
2065 * @reg: Register to be read from
2066 * @val: Pointer to store read value
2068 * A value of zero will be returned on success, a negative errno will
2069 * be returned in error cases.
2071 int regmap_read(struct regmap
*map
, unsigned int reg
, unsigned int *val
)
2075 if (reg
% map
->reg_stride
)
2078 map
->lock(map
->lock_arg
);
2080 ret
= _regmap_read(map
, reg
, val
);
2082 map
->unlock(map
->lock_arg
);
2086 EXPORT_SYMBOL_GPL(regmap_read
);
2089 * regmap_raw_read(): Read raw data from the device
2091 * @map: Register map to read from
2092 * @reg: First register to be read from
2093 * @val: Pointer to store read value
2094 * @val_len: Size of data to read
2096 * A value of zero will be returned on success, a negative errno will
2097 * be returned in error cases.
2099 int regmap_raw_read(struct regmap
*map
, unsigned int reg
, void *val
,
2102 size_t val_bytes
= map
->format
.val_bytes
;
2103 size_t val_count
= val_len
/ val_bytes
;
2109 if (val_len
% map
->format
.val_bytes
)
2111 if (reg
% map
->reg_stride
)
2114 map
->lock(map
->lock_arg
);
2116 if (regmap_volatile_range(map
, reg
, val_count
) || map
->cache_bypass
||
2117 map
->cache_type
== REGCACHE_NONE
) {
2118 /* Physical block read if there's no cache involved */
2119 ret
= _regmap_raw_read(map
, reg
, val
, val_len
);
2122 /* Otherwise go word by word for the cache; should be low
2123 * cost as we expect to hit the cache.
2125 for (i
= 0; i
< val_count
; i
++) {
2126 ret
= _regmap_read(map
, reg
+ (i
* map
->reg_stride
),
2131 map
->format
.format_val(val
+ (i
* val_bytes
), v
, 0);
2136 map
->unlock(map
->lock_arg
);
2140 EXPORT_SYMBOL_GPL(regmap_raw_read
);
2143 * regmap_field_read(): Read a value to a single register field
2145 * @field: Register field to read from
2146 * @val: Pointer to store read value
2148 * A value of zero will be returned on success, a negative errno will
2149 * be returned in error cases.
2151 int regmap_field_read(struct regmap_field
*field
, unsigned int *val
)
2154 unsigned int reg_val
;
2155 ret
= regmap_read(field
->regmap
, field
->reg
, ®_val
);
2159 reg_val
&= field
->mask
;
2160 reg_val
>>= field
->shift
;
2165 EXPORT_SYMBOL_GPL(regmap_field_read
);
2168 * regmap_fields_read(): Read a value to a single register field with port ID
2170 * @field: Register field to read from
2172 * @val: Pointer to store read value
2174 * A value of zero will be returned on success, a negative errno will
2175 * be returned in error cases.
2177 int regmap_fields_read(struct regmap_field
*field
, unsigned int id
,
2181 unsigned int reg_val
;
2183 if (id
>= field
->id_size
)
2186 ret
= regmap_read(field
->regmap
,
2187 field
->reg
+ (field
->id_offset
* id
),
2192 reg_val
&= field
->mask
;
2193 reg_val
>>= field
->shift
;
2198 EXPORT_SYMBOL_GPL(regmap_fields_read
);
2201 * regmap_bulk_read(): Read multiple registers from the device
2203 * @map: Register map to read from
2204 * @reg: First register to be read from
2205 * @val: Pointer to store read value, in native register size for device
2206 * @val_count: Number of registers to read
2208 * A value of zero will be returned on success, a negative errno will
2209 * be returned in error cases.
2211 int regmap_bulk_read(struct regmap
*map
, unsigned int reg
, void *val
,
2215 size_t val_bytes
= map
->format
.val_bytes
;
2216 bool vol
= regmap_volatile_range(map
, reg
, val_count
);
2218 if (reg
% map
->reg_stride
)
2221 if (map
->bus
&& map
->format
.parse_inplace
&& (vol
|| map
->cache_type
== REGCACHE_NONE
)) {
2223 * Some devices does not support bulk read, for
2224 * them we have a series of single read operations.
2226 if (map
->use_single_rw
) {
2227 for (i
= 0; i
< val_count
; i
++) {
2228 ret
= regmap_raw_read(map
,
2229 reg
+ (i
* map
->reg_stride
),
2230 val
+ (i
* val_bytes
),
2236 ret
= regmap_raw_read(map
, reg
, val
,
2237 val_bytes
* val_count
);
2242 for (i
= 0; i
< val_count
* val_bytes
; i
+= val_bytes
)
2243 map
->format
.parse_inplace(val
+ i
);
2245 for (i
= 0; i
< val_count
; i
++) {
2247 ret
= regmap_read(map
, reg
+ (i
* map
->reg_stride
),
2251 memcpy(val
+ (i
* val_bytes
), &ival
, val_bytes
);
2257 EXPORT_SYMBOL_GPL(regmap_bulk_read
);
2259 static int _regmap_update_bits(struct regmap
*map
, unsigned int reg
,
2260 unsigned int mask
, unsigned int val
,
2264 unsigned int tmp
, orig
;
2266 ret
= _regmap_read(map
, reg
, &orig
);
2274 ret
= _regmap_write(map
, reg
, tmp
);
2286 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2288 * @map: Register map to update
2289 * @reg: Register to update
2290 * @mask: Bitmask to change
2291 * @val: New value for bitmask
2293 * Returns zero for success, a negative number on error.
2295 int regmap_update_bits(struct regmap
*map
, unsigned int reg
,
2296 unsigned int mask
, unsigned int val
)
2300 map
->lock(map
->lock_arg
);
2301 ret
= _regmap_update_bits(map
, reg
, mask
, val
, NULL
);
2302 map
->unlock(map
->lock_arg
);
2306 EXPORT_SYMBOL_GPL(regmap_update_bits
);
2309 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2310 * map asynchronously
2312 * @map: Register map to update
2313 * @reg: Register to update
2314 * @mask: Bitmask to change
2315 * @val: New value for bitmask
2317 * With most buses the read must be done synchronously so this is most
2318 * useful for devices with a cache which do not need to interact with
2319 * the hardware to determine the current register value.
2321 * Returns zero for success, a negative number on error.
2323 int regmap_update_bits_async(struct regmap
*map
, unsigned int reg
,
2324 unsigned int mask
, unsigned int val
)
2328 map
->lock(map
->lock_arg
);
2332 ret
= _regmap_update_bits(map
, reg
, mask
, val
, NULL
);
2336 map
->unlock(map
->lock_arg
);
2340 EXPORT_SYMBOL_GPL(regmap_update_bits_async
);
2343 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2344 * register map and report if updated
2346 * @map: Register map to update
2347 * @reg: Register to update
2348 * @mask: Bitmask to change
2349 * @val: New value for bitmask
2350 * @change: Boolean indicating if a write was done
2352 * Returns zero for success, a negative number on error.
2354 int regmap_update_bits_check(struct regmap
*map
, unsigned int reg
,
2355 unsigned int mask
, unsigned int val
,
2360 map
->lock(map
->lock_arg
);
2361 ret
= _regmap_update_bits(map
, reg
, mask
, val
, change
);
2362 map
->unlock(map
->lock_arg
);
2365 EXPORT_SYMBOL_GPL(regmap_update_bits_check
);
2368 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2369 * register map asynchronously and report if
2372 * @map: Register map to update
2373 * @reg: Register to update
2374 * @mask: Bitmask to change
2375 * @val: New value for bitmask
2376 * @change: Boolean indicating if a write was done
2378 * With most buses the read must be done synchronously so this is most
2379 * useful for devices with a cache which do not need to interact with
2380 * the hardware to determine the current register value.
2382 * Returns zero for success, a negative number on error.
2384 int regmap_update_bits_check_async(struct regmap
*map
, unsigned int reg
,
2385 unsigned int mask
, unsigned int val
,
2390 map
->lock(map
->lock_arg
);
2394 ret
= _regmap_update_bits(map
, reg
, mask
, val
, change
);
2398 map
->unlock(map
->lock_arg
);
2402 EXPORT_SYMBOL_GPL(regmap_update_bits_check_async
);
2404 void regmap_async_complete_cb(struct regmap_async
*async
, int ret
)
2406 struct regmap
*map
= async
->map
;
2409 trace_regmap_async_io_complete(map
->dev
);
2411 spin_lock(&map
->async_lock
);
2412 list_move(&async
->list
, &map
->async_free
);
2413 wake
= list_empty(&map
->async_list
);
2416 map
->async_ret
= ret
;
2418 spin_unlock(&map
->async_lock
);
2421 wake_up(&map
->async_waitq
);
2423 EXPORT_SYMBOL_GPL(regmap_async_complete_cb
);
2425 static int regmap_async_is_done(struct regmap
*map
)
2427 unsigned long flags
;
2430 spin_lock_irqsave(&map
->async_lock
, flags
);
2431 ret
= list_empty(&map
->async_list
);
2432 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2438 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2440 * @map: Map to operate on.
2442 * Blocks until any pending asynchronous I/O has completed. Returns
2443 * an error code for any failed I/O operations.
2445 int regmap_async_complete(struct regmap
*map
)
2447 unsigned long flags
;
2450 /* Nothing to do with no async support */
2451 if (!map
->bus
|| !map
->bus
->async_write
)
2454 trace_regmap_async_complete_start(map
->dev
);
2456 wait_event(map
->async_waitq
, regmap_async_is_done(map
));
2458 spin_lock_irqsave(&map
->async_lock
, flags
);
2459 ret
= map
->async_ret
;
2461 spin_unlock_irqrestore(&map
->async_lock
, flags
);
2463 trace_regmap_async_complete_done(map
->dev
);
2467 EXPORT_SYMBOL_GPL(regmap_async_complete
);
2470 * regmap_register_patch: Register and apply register updates to be applied
2471 * on device initialistion
2473 * @map: Register map to apply updates to.
2474 * @regs: Values to update.
2475 * @num_regs: Number of entries in regs.
2477 * Register a set of register updates to be applied to the device
2478 * whenever the device registers are synchronised with the cache and
2479 * apply them immediately. Typically this is used to apply
2480 * corrections to be applied to the device defaults on startup, such
2481 * as the updates some vendors provide to undocumented registers.
2483 * The caller must ensure that this function cannot be called
2484 * concurrently with either itself or regcache_sync().
2486 int regmap_register_patch(struct regmap
*map
, const struct reg_default
*regs
,
2489 struct reg_default
*p
;
2493 if (WARN_ONCE(num_regs
<= 0, "invalid registers number (%d)\n",
2497 p
= krealloc(map
->patch
,
2498 sizeof(struct reg_default
) * (map
->patch_regs
+ num_regs
),
2501 memcpy(p
+ map
->patch_regs
, regs
, num_regs
* sizeof(*regs
));
2503 map
->patch_regs
+= num_regs
;
2508 map
->lock(map
->lock_arg
);
2510 bypass
= map
->cache_bypass
;
2512 map
->cache_bypass
= true;
2515 ret
= _regmap_multi_reg_write(map
, regs
, num_regs
);
2521 map
->cache_bypass
= bypass
;
2523 map
->unlock(map
->lock_arg
);
2525 regmap_async_complete(map
);
2529 EXPORT_SYMBOL_GPL(regmap_register_patch
);
2532 * regmap_get_val_bytes(): Report the size of a register value
2534 * Report the size of a register value, mainly intended to for use by
2535 * generic infrastructure built on top of regmap.
2537 int regmap_get_val_bytes(struct regmap
*map
)
2539 if (map
->format
.format_write
)
2542 return map
->format
.val_bytes
;
2544 EXPORT_SYMBOL_GPL(regmap_get_val_bytes
);
2546 int regmap_parse_val(struct regmap
*map
, const void *buf
,
2549 if (!map
->format
.parse_val
)
2552 *val
= map
->format
.parse_val(buf
);
2556 EXPORT_SYMBOL_GPL(regmap_parse_val
);
2558 static int __init
regmap_initcall(void)
2560 regmap_debugfs_initcall();
2564 postcore_initcall(regmap_initcall
);