2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 #include <linux/interrupt.h>
20 #include <linux/delay.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/module.h>
30 MODULE_LICENSE("GPL");
32 /* We define a module parameter that allows the user to override
33 * the hardware and decide what timing mode should be used.
35 #define NAND_DEFAULT_TIMINGS -1
37 static int onfi_timing_mode
= NAND_DEFAULT_TIMINGS
;
38 module_param(onfi_timing_mode
, int, S_IRUGO
);
39 MODULE_PARM_DESC(onfi_timing_mode
, "Overrides default ONFI setting."
40 " -1 indicates use default timings");
42 #define DENALI_NAND_NAME "denali-nand"
44 /* We define a macro here that combines all interrupts this driver uses into
45 * a single constant value, for convenience. */
46 #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
47 INTR_STATUS__ECC_TRANSACTION_DONE | \
48 INTR_STATUS__ECC_ERR | \
49 INTR_STATUS__PROGRAM_FAIL | \
50 INTR_STATUS__LOAD_COMP | \
51 INTR_STATUS__PROGRAM_COMP | \
52 INTR_STATUS__TIME_OUT | \
53 INTR_STATUS__ERASE_FAIL | \
54 INTR_STATUS__RST_COMP | \
55 INTR_STATUS__ERASE_COMP)
57 /* indicates whether or not the internal value for the flash bank is
59 #define CHIP_SELECT_INVALID -1
61 #define SUPPORT_8BITECC 1
63 /* This macro divides two integers and rounds fractional values up
64 * to the nearest integer value. */
65 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
67 /* this macro allows us to convert from an MTD structure to our own
68 * device context (denali) structure.
70 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
72 /* These constants are defined by the driver to enable common driver
73 * configuration options. */
74 #define SPARE_ACCESS 0x41
75 #define MAIN_ACCESS 0x42
76 #define MAIN_SPARE_ACCESS 0x43
79 #define DENALI_WRITE 0x100
81 /* types of device accesses. We can issue commands and get status */
82 #define COMMAND_CYCLE 0
84 #define STATUS_CYCLE 2
86 /* this is a helper macro that allows us to
87 * format the bank into the proper bits for the controller */
88 #define BANK(x) ((x) << 24)
90 /* forward declarations */
91 static void clear_interrupts(struct denali_nand_info
*denali
);
92 static uint32_t wait_for_irq(struct denali_nand_info
*denali
,
94 static void denali_irq_enable(struct denali_nand_info
*denali
,
96 static uint32_t read_interrupt_status(struct denali_nand_info
*denali
);
98 /* Certain operations for the denali NAND controller use
99 * an indexed mode to read/write data. The operation is
100 * performed by writing the address value of the command
101 * to the device memory followed by the data. This function
102 * abstracts this common operation.
104 static void index_addr(struct denali_nand_info
*denali
,
105 uint32_t address
, uint32_t data
)
107 iowrite32(address
, denali
->flash_mem
);
108 iowrite32(data
, denali
->flash_mem
+ 0x10);
111 /* Perform an indexed read of the device */
112 static void index_addr_read_data(struct denali_nand_info
*denali
,
113 uint32_t address
, uint32_t *pdata
)
115 iowrite32(address
, denali
->flash_mem
);
116 *pdata
= ioread32(denali
->flash_mem
+ 0x10);
119 /* We need to buffer some data for some of the NAND core routines.
120 * The operations manage buffering that data. */
121 static void reset_buf(struct denali_nand_info
*denali
)
123 denali
->buf
.head
= denali
->buf
.tail
= 0;
126 static void write_byte_to_buf(struct denali_nand_info
*denali
, uint8_t byte
)
128 denali
->buf
.buf
[denali
->buf
.tail
++] = byte
;
131 /* reads the status of the device */
132 static void read_status(struct denali_nand_info
*denali
)
136 /* initialize the data buffer to store status */
139 cmd
= ioread32(denali
->flash_reg
+ WRITE_PROTECT
);
141 write_byte_to_buf(denali
, NAND_STATUS_WP
);
143 write_byte_to_buf(denali
, 0);
146 /* resets a specific device connected to the core */
147 static void reset_bank(struct denali_nand_info
*denali
)
149 uint32_t irq_status
= 0;
150 uint32_t irq_mask
= INTR_STATUS__RST_COMP
|
151 INTR_STATUS__TIME_OUT
;
153 clear_interrupts(denali
);
155 iowrite32(1 << denali
->flash_bank
, denali
->flash_reg
+ DEVICE_RESET
);
157 irq_status
= wait_for_irq(denali
, irq_mask
);
159 if (irq_status
& INTR_STATUS__TIME_OUT
)
160 dev_err(denali
->dev
, "reset bank failed.\n");
163 /* Reset the flash controller */
164 static uint16_t denali_nand_reset(struct denali_nand_info
*denali
)
168 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
169 __FILE__
, __LINE__
, __func__
);
171 for (i
= 0 ; i
< denali
->max_banks
; i
++)
172 iowrite32(INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
,
173 denali
->flash_reg
+ INTR_STATUS(i
));
175 for (i
= 0 ; i
< denali
->max_banks
; i
++) {
176 iowrite32(1 << i
, denali
->flash_reg
+ DEVICE_RESET
);
177 while (!(ioread32(denali
->flash_reg
+
179 (INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
)))
181 if (ioread32(denali
->flash_reg
+ INTR_STATUS(i
)) &
182 INTR_STATUS__TIME_OUT
)
184 "NAND Reset operation timed out on bank %d\n", i
);
187 for (i
= 0; i
< denali
->max_banks
; i
++)
188 iowrite32(INTR_STATUS__RST_COMP
| INTR_STATUS__TIME_OUT
,
189 denali
->flash_reg
+ INTR_STATUS(i
));
194 /* this routine calculates the ONFI timing values for a given mode and
195 * programs the clocking register accordingly. The mode is determined by
196 * the get_onfi_nand_para routine.
198 static void nand_onfi_timing_set(struct denali_nand_info
*denali
,
201 uint16_t Trea
[6] = {40, 30, 25, 20, 20, 16};
202 uint16_t Trp
[6] = {50, 25, 17, 15, 12, 10};
203 uint16_t Treh
[6] = {30, 15, 15, 10, 10, 7};
204 uint16_t Trc
[6] = {100, 50, 35, 30, 25, 20};
205 uint16_t Trhoh
[6] = {0, 15, 15, 15, 15, 15};
206 uint16_t Trloh
[6] = {0, 0, 0, 0, 5, 5};
207 uint16_t Tcea
[6] = {100, 45, 30, 25, 25, 25};
208 uint16_t Tadl
[6] = {200, 100, 100, 100, 70, 70};
209 uint16_t Trhw
[6] = {200, 100, 100, 100, 100, 100};
210 uint16_t Trhz
[6] = {200, 100, 100, 100, 100, 100};
211 uint16_t Twhr
[6] = {120, 80, 80, 60, 60, 60};
212 uint16_t Tcs
[6] = {70, 35, 25, 25, 20, 15};
214 uint16_t TclsRising
= 1;
215 uint16_t data_invalid_rhoh
, data_invalid_rloh
, data_invalid
;
216 uint16_t dv_window
= 0;
217 uint16_t en_lo
, en_hi
;
219 uint16_t addr_2_data
, re_2_we
, re_2_re
, we_2_re
, cs_cnt
;
221 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
222 __FILE__
, __LINE__
, __func__
);
224 en_lo
= CEIL_DIV(Trp
[mode
], CLK_X
);
225 en_hi
= CEIL_DIV(Treh
[mode
], CLK_X
);
227 if ((en_hi
* CLK_X
) < (Treh
[mode
] + 2))
231 if ((en_lo
+ en_hi
) * CLK_X
< Trc
[mode
])
232 en_lo
+= CEIL_DIV((Trc
[mode
] - (en_lo
+ en_hi
) * CLK_X
), CLK_X
);
234 if ((en_lo
+ en_hi
) < CLK_MULTI
)
235 en_lo
+= CLK_MULTI
- en_lo
- en_hi
;
237 while (dv_window
< 8) {
238 data_invalid_rhoh
= en_lo
* CLK_X
+ Trhoh
[mode
];
240 data_invalid_rloh
= (en_lo
+ en_hi
) * CLK_X
+ Trloh
[mode
];
244 data_invalid_rloh
? data_invalid_rhoh
: data_invalid_rloh
;
246 dv_window
= data_invalid
- Trea
[mode
];
252 acc_clks
= CEIL_DIV(Trea
[mode
], CLK_X
);
254 while (((acc_clks
* CLK_X
) - Trea
[mode
]) < 3)
257 if ((data_invalid
- acc_clks
* CLK_X
) < 2)
258 dev_warn(denali
->dev
, "%s, Line %d: Warning!\n",
261 addr_2_data
= CEIL_DIV(Tadl
[mode
], CLK_X
);
262 re_2_we
= CEIL_DIV(Trhw
[mode
], CLK_X
);
263 re_2_re
= CEIL_DIV(Trhz
[mode
], CLK_X
);
264 we_2_re
= CEIL_DIV(Twhr
[mode
], CLK_X
);
265 cs_cnt
= CEIL_DIV((Tcs
[mode
] - Trp
[mode
]), CLK_X
);
267 cs_cnt
= CEIL_DIV(Tcs
[mode
], CLK_X
);
272 while (((cs_cnt
* CLK_X
) + Trea
[mode
]) < Tcea
[mode
])
281 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
282 if ((ioread32(denali
->flash_reg
+ MANUFACTURER_ID
) == 0) &&
283 (ioread32(denali
->flash_reg
+ DEVICE_ID
) == 0x88))
286 iowrite32(acc_clks
, denali
->flash_reg
+ ACC_CLKS
);
287 iowrite32(re_2_we
, denali
->flash_reg
+ RE_2_WE
);
288 iowrite32(re_2_re
, denali
->flash_reg
+ RE_2_RE
);
289 iowrite32(we_2_re
, denali
->flash_reg
+ WE_2_RE
);
290 iowrite32(addr_2_data
, denali
->flash_reg
+ ADDR_2_DATA
);
291 iowrite32(en_lo
, denali
->flash_reg
+ RDWR_EN_LO_CNT
);
292 iowrite32(en_hi
, denali
->flash_reg
+ RDWR_EN_HI_CNT
);
293 iowrite32(cs_cnt
, denali
->flash_reg
+ CS_SETUP_CNT
);
296 /* queries the NAND device to see what ONFI modes it supports. */
297 static uint16_t get_onfi_nand_para(struct denali_nand_info
*denali
)
300 /* we needn't to do a reset here because driver has already
301 * reset all the banks before
303 if (!(ioread32(denali
->flash_reg
+ ONFI_TIMING_MODE
) &
304 ONFI_TIMING_MODE__VALUE
))
307 for (i
= 5; i
> 0; i
--) {
308 if (ioread32(denali
->flash_reg
+ ONFI_TIMING_MODE
) &
313 nand_onfi_timing_set(denali
, i
);
315 /* By now, all the ONFI devices we know support the page cache */
316 /* rw feature. So here we enable the pipeline_rw_ahead feature */
317 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
318 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
323 static void get_samsung_nand_para(struct denali_nand_info
*denali
,
326 if (device_id
== 0xd3) { /* Samsung K9WAG08U1A */
327 /* Set timing register values according to datasheet */
328 iowrite32(5, denali
->flash_reg
+ ACC_CLKS
);
329 iowrite32(20, denali
->flash_reg
+ RE_2_WE
);
330 iowrite32(12, denali
->flash_reg
+ WE_2_RE
);
331 iowrite32(14, denali
->flash_reg
+ ADDR_2_DATA
);
332 iowrite32(3, denali
->flash_reg
+ RDWR_EN_LO_CNT
);
333 iowrite32(2, denali
->flash_reg
+ RDWR_EN_HI_CNT
);
334 iowrite32(2, denali
->flash_reg
+ CS_SETUP_CNT
);
338 static void get_toshiba_nand_para(struct denali_nand_info
*denali
)
342 /* Workaround to fix a controller bug which reports a wrong */
343 /* spare area size for some kind of Toshiba NAND device */
344 if ((ioread32(denali
->flash_reg
+ DEVICE_MAIN_AREA_SIZE
) == 4096) &&
345 (ioread32(denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
) == 64)) {
346 iowrite32(216, denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
347 tmp
= ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
) *
348 ioread32(denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
350 denali
->flash_reg
+ LOGICAL_PAGE_SPARE_SIZE
);
352 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
353 #elif SUPPORT_8BITECC
354 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
359 static void get_hynix_nand_para(struct denali_nand_info
*denali
,
362 uint32_t main_size
, spare_size
;
365 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
366 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
367 iowrite32(128, denali
->flash_reg
+ PAGES_PER_BLOCK
);
368 iowrite32(4096, denali
->flash_reg
+ DEVICE_MAIN_AREA_SIZE
);
369 iowrite32(224, denali
->flash_reg
+ DEVICE_SPARE_AREA_SIZE
);
371 ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
373 ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
375 denali
->flash_reg
+ LOGICAL_PAGE_DATA_SIZE
);
376 iowrite32(spare_size
,
377 denali
->flash_reg
+ LOGICAL_PAGE_SPARE_SIZE
);
378 iowrite32(0, denali
->flash_reg
+ DEVICE_WIDTH
);
380 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
381 #elif SUPPORT_8BITECC
382 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
386 dev_warn(denali
->dev
,
387 "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
388 "Will use default parameter values instead.\n",
393 /* determines how many NAND chips are connected to the controller. Note for
394 * Intel CE4100 devices we don't support more than one device.
396 static void find_valid_banks(struct denali_nand_info
*denali
)
398 uint32_t id
[denali
->max_banks
];
401 denali
->total_used_banks
= 1;
402 for (i
= 0; i
< denali
->max_banks
; i
++) {
403 index_addr(denali
, (uint32_t)(MODE_11
| (i
<< 24) | 0), 0x90);
404 index_addr(denali
, (uint32_t)(MODE_11
| (i
<< 24) | 1), 0);
405 index_addr_read_data(denali
,
406 (uint32_t)(MODE_11
| (i
<< 24) | 2), &id
[i
]);
409 "Return 1st ID for bank[%d]: %x\n", i
, id
[i
]);
412 if (!(id
[i
] & 0x0ff))
415 if ((id
[i
] & 0x0ff) == (id
[0] & 0x0ff))
416 denali
->total_used_banks
++;
422 if (denali
->platform
== INTEL_CE4100
) {
423 /* Platform limitations of the CE4100 device limit
424 * users to a single chip solution for NAND.
425 * Multichip support is not enabled.
427 if (denali
->total_used_banks
!= 1) {
429 "Sorry, Intel CE4100 only supports "
430 "a single NAND device.\n");
435 "denali->total_used_banks: %d\n", denali
->total_used_banks
);
439 * Use the configuration feature register to determine the maximum number of
440 * banks that the hardware supports.
442 static void detect_max_banks(struct denali_nand_info
*denali
)
444 uint32_t features
= ioread32(denali
->flash_reg
+ FEATURES
);
446 denali
->max_banks
= 2 << (features
& FEATURES__N_BANKS
);
449 static void detect_partition_feature(struct denali_nand_info
*denali
)
451 /* For MRST platform, denali->fwblks represent the
452 * number of blocks firmware is taken,
453 * FW is in protect partition and MTD driver has no
454 * permission to access it. So let driver know how many
455 * blocks it can't touch.
457 if (ioread32(denali
->flash_reg
+ FEATURES
) & FEATURES__PARTITION
) {
458 if ((ioread32(denali
->flash_reg
+ PERM_SRC_ID(1)) &
459 PERM_SRC_ID__SRCID
) == SPECTRA_PARTITION_ID
) {
461 ((ioread32(denali
->flash_reg
+ MIN_MAX_BANK(1)) &
462 MIN_MAX_BANK__MIN_VALUE
) *
465 (ioread32(denali
->flash_reg
+ MIN_BLK_ADDR(1)) &
466 MIN_BLK_ADDR__VALUE
);
468 denali
->fwblks
= SPECTRA_START_BLOCK
;
470 denali
->fwblks
= SPECTRA_START_BLOCK
;
473 static uint16_t denali_nand_timing_set(struct denali_nand_info
*denali
)
475 uint16_t status
= PASS
;
476 uint32_t id_bytes
[5], addr
;
477 uint8_t i
, maf_id
, device_id
;
480 "%s, Line %d, Function: %s\n",
481 __FILE__
, __LINE__
, __func__
);
483 /* Use read id method to get device ID and other
484 * params. For some NAND chips, controller can't
485 * report the correct device ID by reading from
488 addr
= (uint32_t)MODE_11
| BANK(denali
->flash_bank
);
489 index_addr(denali
, (uint32_t)addr
| 0, 0x90);
490 index_addr(denali
, (uint32_t)addr
| 1, 0);
491 for (i
= 0; i
< 5; i
++)
492 index_addr_read_data(denali
, addr
| 2, &id_bytes
[i
]);
493 maf_id
= id_bytes
[0];
494 device_id
= id_bytes
[1];
496 if (ioread32(denali
->flash_reg
+ ONFI_DEVICE_NO_OF_LUNS
) &
497 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE
) { /* ONFI 1.0 NAND */
498 if (FAIL
== get_onfi_nand_para(denali
))
500 } else if (maf_id
== 0xEC) { /* Samsung NAND */
501 get_samsung_nand_para(denali
, device_id
);
502 } else if (maf_id
== 0x98) { /* Toshiba NAND */
503 get_toshiba_nand_para(denali
);
504 } else if (maf_id
== 0xAD) { /* Hynix NAND */
505 get_hynix_nand_para(denali
, device_id
);
508 dev_info(denali
->dev
,
509 "Dump timing register values:"
510 "acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
511 "we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
512 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
513 ioread32(denali
->flash_reg
+ ACC_CLKS
),
514 ioread32(denali
->flash_reg
+ RE_2_WE
),
515 ioread32(denali
->flash_reg
+ RE_2_RE
),
516 ioread32(denali
->flash_reg
+ WE_2_RE
),
517 ioread32(denali
->flash_reg
+ ADDR_2_DATA
),
518 ioread32(denali
->flash_reg
+ RDWR_EN_LO_CNT
),
519 ioread32(denali
->flash_reg
+ RDWR_EN_HI_CNT
),
520 ioread32(denali
->flash_reg
+ CS_SETUP_CNT
));
522 find_valid_banks(denali
);
524 detect_partition_feature(denali
);
526 /* If the user specified to override the default timings
527 * with a specific ONFI mode, we apply those changes here.
529 if (onfi_timing_mode
!= NAND_DEFAULT_TIMINGS
)
530 nand_onfi_timing_set(denali
, onfi_timing_mode
);
535 static void denali_set_intr_modes(struct denali_nand_info
*denali
,
538 dev_dbg(denali
->dev
, "%s, Line %d, Function: %s\n",
539 __FILE__
, __LINE__
, __func__
);
542 iowrite32(1, denali
->flash_reg
+ GLOBAL_INT_ENABLE
);
544 iowrite32(0, denali
->flash_reg
+ GLOBAL_INT_ENABLE
);
547 /* validation function to verify that the controlling software is making
550 static inline bool is_flash_bank_valid(int flash_bank
)
552 return (flash_bank
>= 0 && flash_bank
< 4);
555 static void denali_irq_init(struct denali_nand_info
*denali
)
557 uint32_t int_mask
= 0;
560 /* Disable global interrupts */
561 denali_set_intr_modes(denali
, false);
563 int_mask
= DENALI_IRQ_ALL
;
565 /* Clear all status bits */
566 for (i
= 0; i
< denali
->max_banks
; ++i
)
567 iowrite32(0xFFFF, denali
->flash_reg
+ INTR_STATUS(i
));
569 denali_irq_enable(denali
, int_mask
);
572 static void denali_irq_cleanup(int irqnum
, struct denali_nand_info
*denali
)
574 denali_set_intr_modes(denali
, false);
575 free_irq(irqnum
, denali
);
578 static void denali_irq_enable(struct denali_nand_info
*denali
,
583 for (i
= 0; i
< denali
->max_banks
; ++i
)
584 iowrite32(int_mask
, denali
->flash_reg
+ INTR_EN(i
));
587 /* This function only returns when an interrupt that this driver cares about
588 * occurs. This is to reduce the overhead of servicing interrupts
590 static inline uint32_t denali_irq_detected(struct denali_nand_info
*denali
)
592 return read_interrupt_status(denali
) & DENALI_IRQ_ALL
;
595 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
596 static inline void clear_interrupt(struct denali_nand_info
*denali
,
599 uint32_t intr_status_reg
= 0;
601 intr_status_reg
= INTR_STATUS(denali
->flash_bank
);
603 iowrite32(irq_mask
, denali
->flash_reg
+ intr_status_reg
);
606 static void clear_interrupts(struct denali_nand_info
*denali
)
608 uint32_t status
= 0x0;
609 spin_lock_irq(&denali
->irq_lock
);
611 status
= read_interrupt_status(denali
);
612 clear_interrupt(denali
, status
);
614 denali
->irq_status
= 0x0;
615 spin_unlock_irq(&denali
->irq_lock
);
618 static uint32_t read_interrupt_status(struct denali_nand_info
*denali
)
620 uint32_t intr_status_reg
= 0;
622 intr_status_reg
= INTR_STATUS(denali
->flash_bank
);
624 return ioread32(denali
->flash_reg
+ intr_status_reg
);
627 /* This is the interrupt service routine. It handles all interrupts
628 * sent to this device. Note that on CE4100, this is a shared
631 static irqreturn_t
denali_isr(int irq
, void *dev_id
)
633 struct denali_nand_info
*denali
= dev_id
;
634 uint32_t irq_status
= 0x0;
635 irqreturn_t result
= IRQ_NONE
;
637 spin_lock(&denali
->irq_lock
);
639 /* check to see if a valid NAND chip has
642 if (is_flash_bank_valid(denali
->flash_bank
)) {
643 /* check to see if controller generated
644 * the interrupt, since this is a shared interrupt */
645 irq_status
= denali_irq_detected(denali
);
646 if (irq_status
!= 0) {
647 /* handle interrupt */
648 /* first acknowledge it */
649 clear_interrupt(denali
, irq_status
);
650 /* store the status in the device context for someone
652 denali
->irq_status
|= irq_status
;
653 /* notify anyone who cares that it happened */
654 complete(&denali
->complete
);
655 /* tell the OS that we've handled this */
656 result
= IRQ_HANDLED
;
659 spin_unlock(&denali
->irq_lock
);
662 #define BANK(x) ((x) << 24)
664 static uint32_t wait_for_irq(struct denali_nand_info
*denali
, uint32_t irq_mask
)
666 unsigned long comp_res
= 0;
667 uint32_t intr_status
= 0;
669 unsigned long timeout
= msecs_to_jiffies(1000);
673 wait_for_completion_timeout(&denali
->complete
, timeout
);
674 spin_lock_irq(&denali
->irq_lock
);
675 intr_status
= denali
->irq_status
;
677 if (intr_status
& irq_mask
) {
678 denali
->irq_status
&= ~irq_mask
;
679 spin_unlock_irq(&denali
->irq_lock
);
680 /* our interrupt was detected */
683 /* these are not the interrupts you are looking for -
684 * need to wait again */
685 spin_unlock_irq(&denali
->irq_lock
);
688 } while (comp_res
!= 0);
692 pr_err("timeout occurred, status = 0x%x, mask = 0x%x\n",
693 intr_status
, irq_mask
);
700 /* This helper function setups the registers for ECC and whether or not
701 * the spare area will be transferred. */
702 static void setup_ecc_for_xfer(struct denali_nand_info
*denali
, bool ecc_en
,
705 int ecc_en_flag
= 0, transfer_spare_flag
= 0;
707 /* set ECC, transfer spare bits if needed */
708 ecc_en_flag
= ecc_en
? ECC_ENABLE__FLAG
: 0;
709 transfer_spare_flag
= transfer_spare
? TRANSFER_SPARE_REG__FLAG
: 0;
711 /* Enable spare area/ECC per user's request. */
712 iowrite32(ecc_en_flag
, denali
->flash_reg
+ ECC_ENABLE
);
713 iowrite32(transfer_spare_flag
,
714 denali
->flash_reg
+ TRANSFER_SPARE_REG
);
717 /* sends a pipeline command operation to the controller. See the Denali NAND
718 * controller's user guide for more information (section 4.2.3.6).
720 static int denali_send_pipeline_cmd(struct denali_nand_info
*denali
,
727 uint32_t addr
= 0x0, cmd
= 0x0, page_count
= 1, irq_status
= 0,
730 if (op
== DENALI_READ
)
731 irq_mask
= INTR_STATUS__LOAD_COMP
;
732 else if (op
== DENALI_WRITE
)
737 setup_ecc_for_xfer(denali
, ecc_en
, transfer_spare
);
739 /* clear interrupts */
740 clear_interrupts(denali
);
742 addr
= BANK(denali
->flash_bank
) | denali
->page
;
744 if (op
== DENALI_WRITE
&& access_type
!= SPARE_ACCESS
) {
745 cmd
= MODE_01
| addr
;
746 iowrite32(cmd
, denali
->flash_mem
);
747 } else if (op
== DENALI_WRITE
&& access_type
== SPARE_ACCESS
) {
748 /* read spare area */
749 cmd
= MODE_10
| addr
;
750 index_addr(denali
, (uint32_t)cmd
, access_type
);
752 cmd
= MODE_01
| addr
;
753 iowrite32(cmd
, denali
->flash_mem
);
754 } else if (op
== DENALI_READ
) {
755 /* setup page read request for access type */
756 cmd
= MODE_10
| addr
;
757 index_addr(denali
, (uint32_t)cmd
, access_type
);
759 /* page 33 of the NAND controller spec indicates we should not
760 use the pipeline commands in Spare area only mode. So we
763 if (access_type
== SPARE_ACCESS
) {
764 cmd
= MODE_01
| addr
;
765 iowrite32(cmd
, denali
->flash_mem
);
767 index_addr(denali
, (uint32_t)cmd
,
768 0x2000 | op
| page_count
);
770 /* wait for command to be accepted
771 * can always use status0 bit as the
772 * mask is identical for each
774 irq_status
= wait_for_irq(denali
, irq_mask
);
776 if (irq_status
== 0) {
778 "cmd, page, addr on timeout "
779 "(0x%x, 0x%x, 0x%x)\n",
780 cmd
, denali
->page
, addr
);
783 cmd
= MODE_01
| addr
;
784 iowrite32(cmd
, denali
->flash_mem
);
791 /* helper function that simply writes a buffer to the flash */
792 static int write_data_to_flash_mem(struct denali_nand_info
*denali
,
796 uint32_t i
= 0, *buf32
;
798 /* verify that the len is a multiple of 4. see comment in
799 * read_data_from_flash_mem() */
800 BUG_ON((len
% 4) != 0);
802 /* write the data to the flash memory */
803 buf32
= (uint32_t *)buf
;
804 for (i
= 0; i
< len
/ 4; i
++)
805 iowrite32(*buf32
++, denali
->flash_mem
+ 0x10);
806 return i
*4; /* intent is to return the number of bytes read */
809 /* helper function that simply reads a buffer from the flash */
810 static int read_data_from_flash_mem(struct denali_nand_info
*denali
,
814 uint32_t i
= 0, *buf32
;
816 /* we assume that len will be a multiple of 4, if not
817 * it would be nice to know about it ASAP rather than
818 * have random failures...
819 * This assumption is based on the fact that this
820 * function is designed to be used to read flash pages,
821 * which are typically multiples of 4...
824 BUG_ON((len
% 4) != 0);
826 /* transfer the data from the flash */
827 buf32
= (uint32_t *)buf
;
828 for (i
= 0; i
< len
/ 4; i
++)
829 *buf32
++ = ioread32(denali
->flash_mem
+ 0x10);
830 return i
*4; /* intent is to return the number of bytes read */
833 /* writes OOB data to the device */
834 static int write_oob_data(struct mtd_info
*mtd
, uint8_t *buf
, int page
)
836 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
837 uint32_t irq_status
= 0;
838 uint32_t irq_mask
= INTR_STATUS__PROGRAM_COMP
|
839 INTR_STATUS__PROGRAM_FAIL
;
844 if (denali_send_pipeline_cmd(denali
, false, false, SPARE_ACCESS
,
845 DENALI_WRITE
) == PASS
) {
846 write_data_to_flash_mem(denali
, buf
, mtd
->oobsize
);
848 /* wait for operation to complete */
849 irq_status
= wait_for_irq(denali
, irq_mask
);
851 if (irq_status
== 0) {
852 dev_err(denali
->dev
, "OOB write failed\n");
856 dev_err(denali
->dev
, "unable to send pipeline command\n");
862 /* reads OOB data from the device */
863 static void read_oob_data(struct mtd_info
*mtd
, uint8_t *buf
, int page
)
865 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
866 uint32_t irq_mask
= INTR_STATUS__LOAD_COMP
,
867 irq_status
= 0, addr
= 0x0, cmd
= 0x0;
871 if (denali_send_pipeline_cmd(denali
, false, true, SPARE_ACCESS
,
872 DENALI_READ
) == PASS
) {
873 read_data_from_flash_mem(denali
, buf
, mtd
->oobsize
);
875 /* wait for command to be accepted
876 * can always use status0 bit as the mask is identical for each
878 irq_status
= wait_for_irq(denali
, irq_mask
);
881 dev_err(denali
->dev
, "page on OOB timeout %d\n",
884 /* We set the device back to MAIN_ACCESS here as I observed
885 * instability with the controller if you do a block erase
886 * and the last transaction was a SPARE_ACCESS. Block erase
887 * is reliable (according to the MTD test infrastructure)
888 * if you are in MAIN_ACCESS.
890 addr
= BANK(denali
->flash_bank
) | denali
->page
;
891 cmd
= MODE_10
| addr
;
892 index_addr(denali
, (uint32_t)cmd
, MAIN_ACCESS
);
896 /* this function examines buffers to see if they contain data that
897 * indicate that the buffer is part of an erased region of flash.
899 static bool is_erased(uint8_t *buf
, int len
)
902 for (i
= 0; i
< len
; i
++)
907 #define ECC_SECTOR_SIZE 512
909 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
910 #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
911 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
912 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
913 #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
914 #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
916 static bool handle_ecc(struct denali_nand_info
*denali
, uint8_t *buf
,
917 uint32_t irq_status
, unsigned int *max_bitflips
)
919 bool check_erased_page
= false;
920 unsigned int bitflips
= 0;
922 if (irq_status
& INTR_STATUS__ECC_ERR
) {
923 /* read the ECC errors. we'll ignore them for now */
924 uint32_t err_address
= 0, err_correction_info
= 0;
925 uint32_t err_byte
= 0, err_sector
= 0, err_device
= 0;
926 uint32_t err_correction_value
= 0;
927 denali_set_intr_modes(denali
, false);
930 err_address
= ioread32(denali
->flash_reg
+
932 err_sector
= ECC_SECTOR(err_address
);
933 err_byte
= ECC_BYTE(err_address
);
935 err_correction_info
= ioread32(denali
->flash_reg
+
936 ERR_CORRECTION_INFO
);
937 err_correction_value
=
938 ECC_CORRECTION_VALUE(err_correction_info
);
939 err_device
= ECC_ERR_DEVICE(err_correction_info
);
941 if (ECC_ERROR_CORRECTABLE(err_correction_info
)) {
942 /* If err_byte is larger than ECC_SECTOR_SIZE,
943 * means error happened in OOB, so we ignore
944 * it. It's no need for us to correct it
945 * err_device is represented the NAND error
946 * bits are happened in if there are more
947 * than one NAND connected.
949 if (err_byte
< ECC_SECTOR_SIZE
) {
951 offset
= (err_sector
*
956 /* correct the ECC error */
957 buf
[offset
] ^= err_correction_value
;
958 denali
->mtd
.ecc_stats
.corrected
++;
962 /* if the error is not correctable, need to
963 * look at the page to see if it is an erased
964 * page. if so, then it's not a real ECC error
966 check_erased_page
= true;
968 } while (!ECC_LAST_ERR(err_correction_info
));
969 /* Once handle all ecc errors, controller will triger
970 * a ECC_TRANSACTION_DONE interrupt, so here just wait
971 * for a while for this interrupt
973 while (!(read_interrupt_status(denali
) &
974 INTR_STATUS__ECC_TRANSACTION_DONE
))
976 clear_interrupts(denali
);
977 denali_set_intr_modes(denali
, true);
979 *max_bitflips
= bitflips
;
980 return check_erased_page
;
983 /* programs the controller to either enable/disable DMA transfers */
984 static void denali_enable_dma(struct denali_nand_info
*denali
, bool en
)
986 uint32_t reg_val
= 0x0;
989 reg_val
= DMA_ENABLE__FLAG
;
991 iowrite32(reg_val
, denali
->flash_reg
+ DMA_ENABLE
);
992 ioread32(denali
->flash_reg
+ DMA_ENABLE
);
995 /* setups the HW to perform the data DMA */
996 static void denali_setup_dma(struct denali_nand_info
*denali
, int op
)
999 const int page_count
= 1;
1000 dma_addr_t addr
= denali
->buf
.dma_buf
;
1002 mode
= MODE_10
| BANK(denali
->flash_bank
);
1004 /* DMA is a four step process */
1006 /* 1. setup transfer type and # of pages */
1007 index_addr(denali
, mode
| denali
->page
, 0x2000 | op
| page_count
);
1009 /* 2. set memory high address bits 23:8 */
1010 index_addr(denali
, mode
| ((uint16_t)(addr
>> 16) << 8), 0x2200);
1012 /* 3. set memory low address bits 23:8 */
1013 index_addr(denali
, mode
| ((uint16_t)addr
<< 8), 0x2300);
1015 /* 4. interrupt when complete, burst len = 64 bytes*/
1016 index_addr(denali
, mode
| 0x14000, 0x2400);
1019 /* writes a page. user specifies type, and this function handles the
1020 * configuration details. */
1021 static int write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1022 const uint8_t *buf
, bool raw_xfer
)
1024 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1026 dma_addr_t addr
= denali
->buf
.dma_buf
;
1027 size_t size
= denali
->mtd
.writesize
+ denali
->mtd
.oobsize
;
1029 uint32_t irq_status
= 0;
1030 uint32_t irq_mask
= INTR_STATUS__DMA_CMD_COMP
|
1031 INTR_STATUS__PROGRAM_FAIL
;
1033 /* if it is a raw xfer, we want to disable ecc, and send
1035 * !raw_xfer - enable ecc
1036 * raw_xfer - transfer spare
1038 setup_ecc_for_xfer(denali
, !raw_xfer
, raw_xfer
);
1040 /* copy buffer into DMA buffer */
1041 memcpy(denali
->buf
.buf
, buf
, mtd
->writesize
);
1044 /* transfer the data to the spare area */
1045 memcpy(denali
->buf
.buf
+ mtd
->writesize
,
1050 dma_sync_single_for_device(denali
->dev
, addr
, size
, DMA_TO_DEVICE
);
1052 clear_interrupts(denali
);
1053 denali_enable_dma(denali
, true);
1055 denali_setup_dma(denali
, DENALI_WRITE
);
1057 /* wait for operation to complete */
1058 irq_status
= wait_for_irq(denali
, irq_mask
);
1060 if (irq_status
== 0) {
1061 dev_err(denali
->dev
,
1062 "timeout on write_page (type = %d)\n",
1065 (irq_status
& INTR_STATUS__PROGRAM_FAIL
) ?
1066 NAND_STATUS_FAIL
: PASS
;
1069 denali_enable_dma(denali
, false);
1070 dma_sync_single_for_cpu(denali
->dev
, addr
, size
, DMA_TO_DEVICE
);
1075 /* NAND core entry points */
1077 /* this is the callback that the NAND core calls to write a page. Since
1078 * writing a page with ECC or without is similar, all the work is done
1079 * by write_page above.
1081 static int denali_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1082 const uint8_t *buf
, int oob_required
)
1084 /* for regular page writes, we let HW handle all the ECC
1085 * data written to the device. */
1086 return write_page(mtd
, chip
, buf
, false);
1089 /* This is the callback that the NAND core calls to write a page without ECC.
1090 * raw access is similar to ECC page writes, so all the work is done in the
1091 * write_page() function above.
1093 static int denali_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1094 const uint8_t *buf
, int oob_required
)
1096 /* for raw page writes, we want to disable ECC and simply write
1097 whatever data is in the buffer. */
1098 return write_page(mtd
, chip
, buf
, true);
1101 static int denali_write_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1104 return write_oob_data(mtd
, chip
->oob_poi
, page
);
1107 static int denali_read_oob(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1110 read_oob_data(mtd
, chip
->oob_poi
, page
);
1115 static int denali_read_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1116 uint8_t *buf
, int oob_required
, int page
)
1118 unsigned int max_bitflips
;
1119 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1121 dma_addr_t addr
= denali
->buf
.dma_buf
;
1122 size_t size
= denali
->mtd
.writesize
+ denali
->mtd
.oobsize
;
1124 uint32_t irq_status
= 0;
1125 uint32_t irq_mask
= INTR_STATUS__ECC_TRANSACTION_DONE
|
1126 INTR_STATUS__ECC_ERR
;
1127 bool check_erased_page
= false;
1129 if (page
!= denali
->page
) {
1130 dev_err(denali
->dev
, "IN %s: page %d is not"
1131 " equal to denali->page %d, investigate!!",
1132 __func__
, page
, denali
->page
);
1136 setup_ecc_for_xfer(denali
, true, false);
1138 denali_enable_dma(denali
, true);
1139 dma_sync_single_for_device(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1141 clear_interrupts(denali
);
1142 denali_setup_dma(denali
, DENALI_READ
);
1144 /* wait for operation to complete */
1145 irq_status
= wait_for_irq(denali
, irq_mask
);
1147 dma_sync_single_for_cpu(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1149 memcpy(buf
, denali
->buf
.buf
, mtd
->writesize
);
1151 check_erased_page
= handle_ecc(denali
, buf
, irq_status
, &max_bitflips
);
1152 denali_enable_dma(denali
, false);
1154 if (check_erased_page
) {
1155 read_oob_data(&denali
->mtd
, chip
->oob_poi
, denali
->page
);
1157 /* check ECC failures that may have occurred on erased pages */
1158 if (check_erased_page
) {
1159 if (!is_erased(buf
, denali
->mtd
.writesize
))
1160 denali
->mtd
.ecc_stats
.failed
++;
1161 if (!is_erased(buf
, denali
->mtd
.oobsize
))
1162 denali
->mtd
.ecc_stats
.failed
++;
1165 return max_bitflips
;
1168 static int denali_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1169 uint8_t *buf
, int oob_required
, int page
)
1171 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1173 dma_addr_t addr
= denali
->buf
.dma_buf
;
1174 size_t size
= denali
->mtd
.writesize
+ denali
->mtd
.oobsize
;
1176 uint32_t irq_status
= 0;
1177 uint32_t irq_mask
= INTR_STATUS__DMA_CMD_COMP
;
1179 if (page
!= denali
->page
) {
1180 dev_err(denali
->dev
, "IN %s: page %d is not"
1181 " equal to denali->page %d, investigate!!",
1182 __func__
, page
, denali
->page
);
1186 setup_ecc_for_xfer(denali
, false, true);
1187 denali_enable_dma(denali
, true);
1189 dma_sync_single_for_device(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1191 clear_interrupts(denali
);
1192 denali_setup_dma(denali
, DENALI_READ
);
1194 /* wait for operation to complete */
1195 irq_status
= wait_for_irq(denali
, irq_mask
);
1197 dma_sync_single_for_cpu(denali
->dev
, addr
, size
, DMA_FROM_DEVICE
);
1199 denali_enable_dma(denali
, false);
1201 memcpy(buf
, denali
->buf
.buf
, mtd
->writesize
);
1202 memcpy(chip
->oob_poi
, denali
->buf
.buf
+ mtd
->writesize
, mtd
->oobsize
);
1207 static uint8_t denali_read_byte(struct mtd_info
*mtd
)
1209 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1210 uint8_t result
= 0xff;
1212 if (denali
->buf
.head
< denali
->buf
.tail
)
1213 result
= denali
->buf
.buf
[denali
->buf
.head
++];
1218 static void denali_select_chip(struct mtd_info
*mtd
, int chip
)
1220 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1222 spin_lock_irq(&denali
->irq_lock
);
1223 denali
->flash_bank
= chip
;
1224 spin_unlock_irq(&denali
->irq_lock
);
1227 static int denali_waitfunc(struct mtd_info
*mtd
, struct nand_chip
*chip
)
1229 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1230 int status
= denali
->status
;
1236 static int denali_erase(struct mtd_info
*mtd
, int page
)
1238 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1240 uint32_t cmd
= 0x0, irq_status
= 0;
1242 /* clear interrupts */
1243 clear_interrupts(denali
);
1245 /* setup page read request for access type */
1246 cmd
= MODE_10
| BANK(denali
->flash_bank
) | page
;
1247 index_addr(denali
, (uint32_t)cmd
, 0x1);
1249 /* wait for erase to complete or failure to occur */
1250 irq_status
= wait_for_irq(denali
, INTR_STATUS__ERASE_COMP
|
1251 INTR_STATUS__ERASE_FAIL
);
1253 return (irq_status
& INTR_STATUS__ERASE_FAIL
) ? NAND_STATUS_FAIL
: PASS
;
1256 static void denali_cmdfunc(struct mtd_info
*mtd
, unsigned int cmd
, int col
,
1259 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1264 case NAND_CMD_PAGEPROG
:
1266 case NAND_CMD_STATUS
:
1267 read_status(denali
);
1269 case NAND_CMD_READID
:
1270 case NAND_CMD_PARAM
:
1272 /*sometimes ManufactureId read from register is not right
1273 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1274 * So here we send READID cmd to NAND insteand
1276 addr
= (uint32_t)MODE_11
| BANK(denali
->flash_bank
);
1277 index_addr(denali
, (uint32_t)addr
| 0, 0x90);
1278 index_addr(denali
, (uint32_t)addr
| 1, 0);
1279 for (i
= 0; i
< 5; i
++) {
1280 index_addr_read_data(denali
,
1283 write_byte_to_buf(denali
, id
);
1286 case NAND_CMD_READ0
:
1287 case NAND_CMD_SEQIN
:
1288 denali
->page
= page
;
1290 case NAND_CMD_RESET
:
1293 case NAND_CMD_READOOB
:
1294 /* TODO: Read OOB data */
1297 pr_err(": unsupported command received 0x%x\n", cmd
);
1302 /* stubs for ECC functions not used by the NAND core */
1303 static int denali_ecc_calculate(struct mtd_info
*mtd
, const uint8_t *data
,
1306 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1307 dev_err(denali
->dev
,
1308 "denali_ecc_calculate called unexpectedly\n");
1313 static int denali_ecc_correct(struct mtd_info
*mtd
, uint8_t *data
,
1314 uint8_t *read_ecc
, uint8_t *calc_ecc
)
1316 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1317 dev_err(denali
->dev
,
1318 "denali_ecc_correct called unexpectedly\n");
1323 static void denali_ecc_hwctl(struct mtd_info
*mtd
, int mode
)
1325 struct denali_nand_info
*denali
= mtd_to_denali(mtd
);
1326 dev_err(denali
->dev
,
1327 "denali_ecc_hwctl called unexpectedly\n");
1330 /* end NAND core entry points */
1332 /* Initialization code to bring the device up to a known good state */
1333 static void denali_hw_init(struct denali_nand_info
*denali
)
1335 /* tell driver how many bit controller will skip before
1336 * writing ECC code in OOB, this register may be already
1337 * set by firmware. So we read this value out.
1338 * if this value is 0, just let it be.
1340 denali
->bbtskipbytes
= ioread32(denali
->flash_reg
+
1341 SPARE_AREA_SKIP_BYTES
);
1342 detect_max_banks(denali
);
1343 denali_nand_reset(denali
);
1344 iowrite32(0x0F, denali
->flash_reg
+ RB_PIN_ENABLED
);
1345 iowrite32(CHIP_EN_DONT_CARE__FLAG
,
1346 denali
->flash_reg
+ CHIP_ENABLE_DONT_CARE
);
1348 iowrite32(0xffff, denali
->flash_reg
+ SPARE_AREA_MARKER
);
1350 /* Should set value for these registers when init */
1351 iowrite32(0, denali
->flash_reg
+ TWO_ROW_ADDR_CYCLES
);
1352 iowrite32(1, denali
->flash_reg
+ ECC_ENABLE
);
1353 denali_nand_timing_set(denali
);
1354 denali_irq_init(denali
);
1357 /* Althogh controller spec said SLC ECC is forceb to be 4bit,
1358 * but denali controller in MRST only support 15bit and 8bit ECC
1361 #define ECC_8BITS 14
1362 static struct nand_ecclayout nand_8bit_oob
= {
1366 #define ECC_15BITS 26
1367 static struct nand_ecclayout nand_15bit_oob
= {
1371 static uint8_t bbt_pattern
[] = {'B', 'b', 't', '0' };
1372 static uint8_t mirror_pattern
[] = {'1', 't', 'b', 'B' };
1374 static struct nand_bbt_descr bbt_main_descr
= {
1375 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
1376 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
1381 .pattern
= bbt_pattern
,
1384 static struct nand_bbt_descr bbt_mirror_descr
= {
1385 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
1386 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
1391 .pattern
= mirror_pattern
,
1394 /* initialize driver data structures */
1395 static void denali_drv_init(struct denali_nand_info
*denali
)
1399 /* setup interrupt handler */
1400 /* the completion object will be used to notify
1401 * the callee that the interrupt is done */
1402 init_completion(&denali
->complete
);
1404 /* the spinlock will be used to synchronize the ISR
1405 * with any element that might be access shared
1406 * data (interrupt status) */
1407 spin_lock_init(&denali
->irq_lock
);
1409 /* indicate that MTD has not selected a valid bank yet */
1410 denali
->flash_bank
= CHIP_SELECT_INVALID
;
1412 /* initialize our irq_status variable to indicate no interrupts */
1413 denali
->irq_status
= 0;
1416 int denali_init(struct denali_nand_info
*denali
)
1420 if (denali
->platform
== INTEL_CE4100
) {
1421 /* Due to a silicon limitation, we can only support
1422 * ONFI timing mode 1 and below.
1424 if (onfi_timing_mode
< -1 || onfi_timing_mode
> 1) {
1425 pr_err("Intel CE4100 only supports ONFI timing mode 1 or below\n");
1430 /* allocate a temporary buffer for nand_scan_ident() */
1431 denali
->buf
.buf
= devm_kzalloc(denali
->dev
, PAGE_SIZE
,
1432 GFP_DMA
| GFP_KERNEL
);
1433 if (!denali
->buf
.buf
)
1436 denali
->mtd
.dev
.parent
= denali
->dev
;
1437 denali_hw_init(denali
);
1438 denali_drv_init(denali
);
1440 /* denali_isr register is done after all the hardware
1441 * initilization is finished*/
1442 if (request_irq(denali
->irq
, denali_isr
, IRQF_SHARED
,
1443 DENALI_NAND_NAME
, denali
)) {
1444 pr_err("Spectra: Unable to allocate IRQ\n");
1448 /* now that our ISR is registered, we can enable interrupts */
1449 denali_set_intr_modes(denali
, true);
1450 denali
->mtd
.name
= "denali-nand";
1451 denali
->mtd
.owner
= THIS_MODULE
;
1452 denali
->mtd
.priv
= &denali
->nand
;
1454 /* register the driver with the NAND core subsystem */
1455 denali
->nand
.select_chip
= denali_select_chip
;
1456 denali
->nand
.cmdfunc
= denali_cmdfunc
;
1457 denali
->nand
.read_byte
= denali_read_byte
;
1458 denali
->nand
.waitfunc
= denali_waitfunc
;
1460 /* scan for NAND devices attached to the controller
1461 * this is the first stage in a two step process to register
1462 * with the nand subsystem */
1463 if (nand_scan_ident(&denali
->mtd
, denali
->max_banks
, NULL
)) {
1465 goto failed_req_irq
;
1468 /* allocate the right size buffer now */
1469 devm_kfree(denali
->dev
, denali
->buf
.buf
);
1470 denali
->buf
.buf
= devm_kzalloc(denali
->dev
,
1471 denali
->mtd
.writesize
+ denali
->mtd
.oobsize
,
1473 if (!denali
->buf
.buf
) {
1475 goto failed_req_irq
;
1478 /* Is 32-bit DMA supported? */
1479 ret
= dma_set_mask(denali
->dev
, DMA_BIT_MASK(32));
1481 pr_err("Spectra: no usable DMA configuration\n");
1482 goto failed_req_irq
;
1485 denali
->buf
.dma_buf
= dma_map_single(denali
->dev
, denali
->buf
.buf
,
1486 denali
->mtd
.writesize
+ denali
->mtd
.oobsize
,
1488 if (dma_mapping_error(denali
->dev
, denali
->buf
.dma_buf
)) {
1489 dev_err(denali
->dev
, "Spectra: failed to map DMA buffer\n");
1491 goto failed_req_irq
;
1494 /* support for multi nand
1495 * MTD known nothing about multi nand,
1496 * so we should tell it the real pagesize
1497 * and anything necessery
1499 denali
->devnum
= ioread32(denali
->flash_reg
+ DEVICES_CONNECTED
);
1500 denali
->nand
.chipsize
<<= (denali
->devnum
- 1);
1501 denali
->nand
.page_shift
+= (denali
->devnum
- 1);
1502 denali
->nand
.pagemask
= (denali
->nand
.chipsize
>>
1503 denali
->nand
.page_shift
) - 1;
1504 denali
->nand
.bbt_erase_shift
+= (denali
->devnum
- 1);
1505 denali
->nand
.phys_erase_shift
= denali
->nand
.bbt_erase_shift
;
1506 denali
->nand
.chip_shift
+= (denali
->devnum
- 1);
1507 denali
->mtd
.writesize
<<= (denali
->devnum
- 1);
1508 denali
->mtd
.oobsize
<<= (denali
->devnum
- 1);
1509 denali
->mtd
.erasesize
<<= (denali
->devnum
- 1);
1510 denali
->mtd
.size
= denali
->nand
.numchips
* denali
->nand
.chipsize
;
1511 denali
->bbtskipbytes
*= denali
->devnum
;
1513 /* second stage of the NAND scan
1514 * this stage requires information regarding ECC and
1515 * bad block management. */
1517 /* Bad block management */
1518 denali
->nand
.bbt_td
= &bbt_main_descr
;
1519 denali
->nand
.bbt_md
= &bbt_mirror_descr
;
1521 /* skip the scan for now until we have OOB read and write support */
1522 denali
->nand
.bbt_options
|= NAND_BBT_USE_FLASH
;
1523 denali
->nand
.options
|= NAND_SKIP_BBTSCAN
;
1524 denali
->nand
.ecc
.mode
= NAND_ECC_HW_SYNDROME
;
1526 /* Denali Controller only support 15bit and 8bit ECC in MRST,
1527 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1530 if (!nand_is_slc(&denali
->nand
) &&
1531 (denali
->mtd
.oobsize
> (denali
->bbtskipbytes
+
1532 ECC_15BITS
* (denali
->mtd
.writesize
/
1533 ECC_SECTOR_SIZE
)))) {
1534 /* if MLC OOB size is large enough, use 15bit ECC*/
1535 denali
->nand
.ecc
.strength
= 15;
1536 denali
->nand
.ecc
.layout
= &nand_15bit_oob
;
1537 denali
->nand
.ecc
.bytes
= ECC_15BITS
;
1538 iowrite32(15, denali
->flash_reg
+ ECC_CORRECTION
);
1539 } else if (denali
->mtd
.oobsize
< (denali
->bbtskipbytes
+
1540 ECC_8BITS
* (denali
->mtd
.writesize
/
1541 ECC_SECTOR_SIZE
))) {
1542 pr_err("Your NAND chip OOB is not large enough to \
1543 contain 8bit ECC correction codes");
1544 goto failed_req_irq
;
1546 denali
->nand
.ecc
.strength
= 8;
1547 denali
->nand
.ecc
.layout
= &nand_8bit_oob
;
1548 denali
->nand
.ecc
.bytes
= ECC_8BITS
;
1549 iowrite32(8, denali
->flash_reg
+ ECC_CORRECTION
);
1552 denali
->nand
.ecc
.bytes
*= denali
->devnum
;
1553 denali
->nand
.ecc
.strength
*= denali
->devnum
;
1554 denali
->nand
.ecc
.layout
->eccbytes
*=
1555 denali
->mtd
.writesize
/ ECC_SECTOR_SIZE
;
1556 denali
->nand
.ecc
.layout
->oobfree
[0].offset
=
1557 denali
->bbtskipbytes
+ denali
->nand
.ecc
.layout
->eccbytes
;
1558 denali
->nand
.ecc
.layout
->oobfree
[0].length
=
1559 denali
->mtd
.oobsize
- denali
->nand
.ecc
.layout
->eccbytes
-
1560 denali
->bbtskipbytes
;
1562 /* Let driver know the total blocks number and
1563 * how many blocks contained by each nand chip.
1564 * blksperchip will help driver to know how many
1565 * blocks is taken by FW.
1567 denali
->totalblks
= denali
->mtd
.size
>>
1568 denali
->nand
.phys_erase_shift
;
1569 denali
->blksperchip
= denali
->totalblks
/ denali
->nand
.numchips
;
1571 /* These functions are required by the NAND core framework, otherwise,
1572 * the NAND core will assert. However, we don't need them, so we'll stub
1574 denali
->nand
.ecc
.calculate
= denali_ecc_calculate
;
1575 denali
->nand
.ecc
.correct
= denali_ecc_correct
;
1576 denali
->nand
.ecc
.hwctl
= denali_ecc_hwctl
;
1578 /* override the default read operations */
1579 denali
->nand
.ecc
.size
= ECC_SECTOR_SIZE
* denali
->devnum
;
1580 denali
->nand
.ecc
.read_page
= denali_read_page
;
1581 denali
->nand
.ecc
.read_page_raw
= denali_read_page_raw
;
1582 denali
->nand
.ecc
.write_page
= denali_write_page
;
1583 denali
->nand
.ecc
.write_page_raw
= denali_write_page_raw
;
1584 denali
->nand
.ecc
.read_oob
= denali_read_oob
;
1585 denali
->nand
.ecc
.write_oob
= denali_write_oob
;
1586 denali
->nand
.erase
= denali_erase
;
1588 if (nand_scan_tail(&denali
->mtd
)) {
1590 goto failed_req_irq
;
1593 ret
= mtd_device_register(&denali
->mtd
, NULL
, 0);
1595 dev_err(denali
->dev
, "Spectra: Failed to register MTD: %d\n",
1597 goto failed_req_irq
;
1602 denali_irq_cleanup(denali
->irq
, denali
);
1606 EXPORT_SYMBOL(denali_init
);
1608 /* driver exit point */
1609 void denali_remove(struct denali_nand_info
*denali
)
1611 denali_irq_cleanup(denali
->irq
, denali
);
1612 dma_unmap_single(denali
->dev
, denali
->buf
.dma_buf
,
1613 denali
->mtd
.writesize
+ denali
->mtd
.oobsize
,
1616 EXPORT_SYMBOL(denali_remove
);