2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
24 #include <linux/slab.h>
26 #include <linux/of_device.h>
28 #include <linux/mtd/nand_bch.h>
29 #include <linux/platform_data/elm.h>
31 #include <linux/platform_data/mtd-nand-omap2.h>
33 #define DRIVER_NAME "omap2-nand"
34 #define OMAP_NAND_TIMEOUT_MS 5000
36 #define NAND_Ecc_P1e (1 << 0)
37 #define NAND_Ecc_P2e (1 << 1)
38 #define NAND_Ecc_P4e (1 << 2)
39 #define NAND_Ecc_P8e (1 << 3)
40 #define NAND_Ecc_P16e (1 << 4)
41 #define NAND_Ecc_P32e (1 << 5)
42 #define NAND_Ecc_P64e (1 << 6)
43 #define NAND_Ecc_P128e (1 << 7)
44 #define NAND_Ecc_P256e (1 << 8)
45 #define NAND_Ecc_P512e (1 << 9)
46 #define NAND_Ecc_P1024e (1 << 10)
47 #define NAND_Ecc_P2048e (1 << 11)
49 #define NAND_Ecc_P1o (1 << 16)
50 #define NAND_Ecc_P2o (1 << 17)
51 #define NAND_Ecc_P4o (1 << 18)
52 #define NAND_Ecc_P8o (1 << 19)
53 #define NAND_Ecc_P16o (1 << 20)
54 #define NAND_Ecc_P32o (1 << 21)
55 #define NAND_Ecc_P64o (1 << 22)
56 #define NAND_Ecc_P128o (1 << 23)
57 #define NAND_Ecc_P256o (1 << 24)
58 #define NAND_Ecc_P512o (1 << 25)
59 #define NAND_Ecc_P1024o (1 << 26)
60 #define NAND_Ecc_P2048o (1 << 27)
62 #define TF(value) (value ? 1 : 0)
64 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
65 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
66 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
67 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
68 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
69 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
70 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
71 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
73 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
74 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
75 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
76 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
77 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
78 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
79 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
80 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
82 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
83 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
84 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
85 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
86 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
87 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
88 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
89 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
91 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
92 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
93 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
94 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
95 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
96 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
97 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
98 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
100 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
101 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
103 #define PREFETCH_CONFIG1_CS_SHIFT 24
104 #define ECC_CONFIG_CS_SHIFT 1
106 #define ENABLE_PREFETCH (0x1 << 7)
107 #define DMA_MPU_MODE_SHIFT 2
108 #define ECCSIZE0_SHIFT 12
109 #define ECCSIZE1_SHIFT 22
110 #define ECC1RESULTSIZE 0x1
111 #define ECCCLEAR 0x100
113 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
114 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
115 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
116 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
117 #define STATUS_BUFF_EMPTY 0x00000001
119 #define OMAP24XX_DMA_GPMC 4
121 #define SECTOR_BYTES 512
122 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
123 #define BCH4_BIT_PAD 4
125 /* GPMC ecc engine settings for read */
126 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
127 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
128 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
129 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
130 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
132 /* GPMC ecc engine settings for write */
133 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
134 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
135 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
137 #define BADBLOCK_MARKER_LENGTH 2
139 #ifdef CONFIG_MTD_NAND_OMAP_BCH
140 static u_char bch16_vector
[] = {0xf5, 0x24, 0x1c, 0xd0, 0x61, 0xb3, 0xf1, 0x55,
141 0x2e, 0x2c, 0x86, 0xa3, 0xed, 0x36, 0x1b, 0x78,
142 0x48, 0x76, 0xa9, 0x3b, 0x97, 0xd1, 0x7a, 0x93,
144 static u_char bch8_vector
[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
145 0xac, 0x6b, 0xff, 0x99, 0x7b};
146 static u_char bch4_vector
[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
149 /* oob info generated runtime depending on ecc algorithm and layout selected */
150 static struct nand_ecclayout omap_oobinfo
;
152 struct omap_nand_info
{
153 struct nand_hw_control controller
;
154 struct omap_nand_platform_data
*pdata
;
156 struct nand_chip nand
;
157 struct platform_device
*pdev
;
160 unsigned long phys_base
;
161 enum omap_ecc ecc_opt
;
162 struct completion comp
;
163 struct dma_chan
*dma
;
167 OMAP_NAND_IO_READ
= 0, /* read */
168 OMAP_NAND_IO_WRITE
, /* write */
172 struct gpmc_nand_regs reg
;
173 /* fields specific for BCHx_HW ECC scheme */
174 struct device
*elm_dev
;
175 struct device_node
*of_node
;
179 * omap_prefetch_enable - configures and starts prefetch transfer
180 * @cs: cs (chip select) number
181 * @fifo_th: fifo threshold to be used for read/ write
182 * @dma_mode: dma mode enable (1) or disable (0)
183 * @u32_count: number of bytes to be transferred
184 * @is_write: prefetch read(0) or write post(1) mode
186 static int omap_prefetch_enable(int cs
, int fifo_th
, int dma_mode
,
187 unsigned int u32_count
, int is_write
, struct omap_nand_info
*info
)
191 if (fifo_th
> PREFETCH_FIFOTHRESHOLD_MAX
)
194 if (readl(info
->reg
.gpmc_prefetch_control
))
197 /* Set the amount of bytes to be prefetched */
198 writel(u32_count
, info
->reg
.gpmc_prefetch_config2
);
200 /* Set dma/mpu mode, the prefetch read / post write and
201 * enable the engine. Set which cs is has requested for.
203 val
= ((cs
<< PREFETCH_CONFIG1_CS_SHIFT
) |
204 PREFETCH_FIFOTHRESHOLD(fifo_th
) | ENABLE_PREFETCH
|
205 (dma_mode
<< DMA_MPU_MODE_SHIFT
) | (0x1 & is_write
));
206 writel(val
, info
->reg
.gpmc_prefetch_config1
);
208 /* Start the prefetch engine */
209 writel(0x1, info
->reg
.gpmc_prefetch_control
);
215 * omap_prefetch_reset - disables and stops the prefetch engine
217 static int omap_prefetch_reset(int cs
, struct omap_nand_info
*info
)
221 /* check if the same module/cs is trying to reset */
222 config1
= readl(info
->reg
.gpmc_prefetch_config1
);
223 if (((config1
>> PREFETCH_CONFIG1_CS_SHIFT
) & CS_MASK
) != cs
)
226 /* Stop the PFPW engine */
227 writel(0x0, info
->reg
.gpmc_prefetch_control
);
229 /* Reset/disable the PFPW engine */
230 writel(0x0, info
->reg
.gpmc_prefetch_config1
);
236 * omap_hwcontrol - hardware specific access to control-lines
237 * @mtd: MTD device structure
238 * @cmd: command to device
240 * NAND_NCE: bit 0 -> don't care
241 * NAND_CLE: bit 1 -> Command Latch
242 * NAND_ALE: bit 2 -> Address Latch
244 * NOTE: boards may use different bits for these!!
246 static void omap_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int ctrl
)
248 struct omap_nand_info
*info
= container_of(mtd
,
249 struct omap_nand_info
, mtd
);
251 if (cmd
!= NAND_CMD_NONE
) {
253 writeb(cmd
, info
->reg
.gpmc_nand_command
);
255 else if (ctrl
& NAND_ALE
)
256 writeb(cmd
, info
->reg
.gpmc_nand_address
);
259 writeb(cmd
, info
->reg
.gpmc_nand_data
);
264 * omap_read_buf8 - read data from NAND controller into buffer
265 * @mtd: MTD device structure
266 * @buf: buffer to store date
267 * @len: number of bytes to read
269 static void omap_read_buf8(struct mtd_info
*mtd
, u_char
*buf
, int len
)
271 struct nand_chip
*nand
= mtd
->priv
;
273 ioread8_rep(nand
->IO_ADDR_R
, buf
, len
);
277 * omap_write_buf8 - write buffer to NAND controller
278 * @mtd: MTD device structure
280 * @len: number of bytes to write
282 static void omap_write_buf8(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
284 struct omap_nand_info
*info
= container_of(mtd
,
285 struct omap_nand_info
, mtd
);
286 u_char
*p
= (u_char
*)buf
;
290 iowrite8(*p
++, info
->nand
.IO_ADDR_W
);
291 /* wait until buffer is available for write */
293 status
= readl(info
->reg
.gpmc_status
) &
300 * omap_read_buf16 - read data from NAND controller into buffer
301 * @mtd: MTD device structure
302 * @buf: buffer to store date
303 * @len: number of bytes to read
305 static void omap_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
307 struct nand_chip
*nand
= mtd
->priv
;
309 ioread16_rep(nand
->IO_ADDR_R
, buf
, len
/ 2);
313 * omap_write_buf16 - write buffer to NAND controller
314 * @mtd: MTD device structure
316 * @len: number of bytes to write
318 static void omap_write_buf16(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
320 struct omap_nand_info
*info
= container_of(mtd
,
321 struct omap_nand_info
, mtd
);
322 u16
*p
= (u16
*) buf
;
324 /* FIXME try bursts of writesw() or DMA ... */
328 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
329 /* wait until buffer is available for write */
331 status
= readl(info
->reg
.gpmc_status
) &
338 * omap_read_buf_pref - read data from NAND controller into buffer
339 * @mtd: MTD device structure
340 * @buf: buffer to store date
341 * @len: number of bytes to read
343 static void omap_read_buf_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
345 struct omap_nand_info
*info
= container_of(mtd
,
346 struct omap_nand_info
, mtd
);
347 uint32_t r_count
= 0;
351 /* take care of subpage reads */
353 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
354 omap_read_buf16(mtd
, buf
, len
% 4);
356 omap_read_buf8(mtd
, buf
, len
% 4);
357 p
= (u32
*) (buf
+ len
% 4);
361 /* configure and start prefetch transfer */
362 ret
= omap_prefetch_enable(info
->gpmc_cs
,
363 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x0, info
);
365 /* PFPW engine is busy, use cpu copy method */
366 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
367 omap_read_buf16(mtd
, (u_char
*)p
, len
);
369 omap_read_buf8(mtd
, (u_char
*)p
, len
);
372 r_count
= readl(info
->reg
.gpmc_prefetch_status
);
373 r_count
= PREFETCH_STATUS_FIFO_CNT(r_count
);
374 r_count
= r_count
>> 2;
375 ioread32_rep(info
->nand
.IO_ADDR_R
, p
, r_count
);
379 /* disable and stop the PFPW engine */
380 omap_prefetch_reset(info
->gpmc_cs
, info
);
385 * omap_write_buf_pref - write buffer to NAND controller
386 * @mtd: MTD device structure
388 * @len: number of bytes to write
390 static void omap_write_buf_pref(struct mtd_info
*mtd
,
391 const u_char
*buf
, int len
)
393 struct omap_nand_info
*info
= container_of(mtd
,
394 struct omap_nand_info
, mtd
);
395 uint32_t w_count
= 0;
398 unsigned long tim
, limit
;
401 /* take care of subpage writes */
403 writeb(*buf
, info
->nand
.IO_ADDR_W
);
404 p
= (u16
*)(buf
+ 1);
408 /* configure and start prefetch transfer */
409 ret
= omap_prefetch_enable(info
->gpmc_cs
,
410 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x1, info
);
412 /* PFPW engine is busy, use cpu copy method */
413 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
414 omap_write_buf16(mtd
, (u_char
*)p
, len
);
416 omap_write_buf8(mtd
, (u_char
*)p
, len
);
419 w_count
= readl(info
->reg
.gpmc_prefetch_status
);
420 w_count
= PREFETCH_STATUS_FIFO_CNT(w_count
);
421 w_count
= w_count
>> 1;
422 for (i
= 0; (i
< w_count
) && len
; i
++, len
-= 2)
423 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
425 /* wait for data to flushed-out before reset the prefetch */
427 limit
= (loops_per_jiffy
*
428 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
431 val
= readl(info
->reg
.gpmc_prefetch_status
);
432 val
= PREFETCH_STATUS_COUNT(val
);
433 } while (val
&& (tim
++ < limit
));
435 /* disable and stop the PFPW engine */
436 omap_prefetch_reset(info
->gpmc_cs
, info
);
441 * omap_nand_dma_callback: callback on the completion of dma transfer
442 * @data: pointer to completion data structure
444 static void omap_nand_dma_callback(void *data
)
446 complete((struct completion
*) data
);
450 * omap_nand_dma_transfer: configure and start dma transfer
451 * @mtd: MTD device structure
452 * @addr: virtual address in RAM of source/destination
453 * @len: number of data bytes to be transferred
454 * @is_write: flag for read/write operation
456 static inline int omap_nand_dma_transfer(struct mtd_info
*mtd
, void *addr
,
457 unsigned int len
, int is_write
)
459 struct omap_nand_info
*info
= container_of(mtd
,
460 struct omap_nand_info
, mtd
);
461 struct dma_async_tx_descriptor
*tx
;
462 enum dma_data_direction dir
= is_write
? DMA_TO_DEVICE
:
464 struct scatterlist sg
;
465 unsigned long tim
, limit
;
470 if (addr
>= high_memory
) {
473 if (((size_t)addr
& PAGE_MASK
) !=
474 ((size_t)(addr
+ len
- 1) & PAGE_MASK
))
476 p1
= vmalloc_to_page(addr
);
479 addr
= page_address(p1
) + ((size_t)addr
& ~PAGE_MASK
);
482 sg_init_one(&sg
, addr
, len
);
483 n
= dma_map_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
485 dev_err(&info
->pdev
->dev
,
486 "Couldn't DMA map a %d byte buffer\n", len
);
490 tx
= dmaengine_prep_slave_sg(info
->dma
, &sg
, n
,
491 is_write
? DMA_MEM_TO_DEV
: DMA_DEV_TO_MEM
,
492 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
496 tx
->callback
= omap_nand_dma_callback
;
497 tx
->callback_param
= &info
->comp
;
498 dmaengine_submit(tx
);
500 /* configure and start prefetch transfer */
501 ret
= omap_prefetch_enable(info
->gpmc_cs
,
502 PREFETCH_FIFOTHRESHOLD_MAX
, 0x1, len
, is_write
, info
);
504 /* PFPW engine is busy, use cpu copy method */
507 init_completion(&info
->comp
);
508 dma_async_issue_pending(info
->dma
);
510 /* setup and start DMA using dma_addr */
511 wait_for_completion(&info
->comp
);
513 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
517 val
= readl(info
->reg
.gpmc_prefetch_status
);
518 val
= PREFETCH_STATUS_COUNT(val
);
519 } while (val
&& (tim
++ < limit
));
521 /* disable and stop the PFPW engine */
522 omap_prefetch_reset(info
->gpmc_cs
, info
);
524 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
528 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
530 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
531 is_write
== 0 ? omap_read_buf16(mtd
, (u_char
*) addr
, len
)
532 : omap_write_buf16(mtd
, (u_char
*) addr
, len
);
534 is_write
== 0 ? omap_read_buf8(mtd
, (u_char
*) addr
, len
)
535 : omap_write_buf8(mtd
, (u_char
*) addr
, len
);
540 * omap_read_buf_dma_pref - read data from NAND controller into buffer
541 * @mtd: MTD device structure
542 * @buf: buffer to store date
543 * @len: number of bytes to read
545 static void omap_read_buf_dma_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
547 if (len
<= mtd
->oobsize
)
548 omap_read_buf_pref(mtd
, buf
, len
);
550 /* start transfer in DMA mode */
551 omap_nand_dma_transfer(mtd
, buf
, len
, 0x0);
555 * omap_write_buf_dma_pref - write buffer to NAND controller
556 * @mtd: MTD device structure
558 * @len: number of bytes to write
560 static void omap_write_buf_dma_pref(struct mtd_info
*mtd
,
561 const u_char
*buf
, int len
)
563 if (len
<= mtd
->oobsize
)
564 omap_write_buf_pref(mtd
, buf
, len
);
566 /* start transfer in DMA mode */
567 omap_nand_dma_transfer(mtd
, (u_char
*) buf
, len
, 0x1);
571 * omap_nand_irq - GPMC irq handler
572 * @this_irq: gpmc irq number
573 * @dev: omap_nand_info structure pointer is passed here
575 static irqreturn_t
omap_nand_irq(int this_irq
, void *dev
)
577 struct omap_nand_info
*info
= (struct omap_nand_info
*) dev
;
580 bytes
= readl(info
->reg
.gpmc_prefetch_status
);
581 bytes
= PREFETCH_STATUS_FIFO_CNT(bytes
);
582 bytes
= bytes
& 0xFFFC; /* io in multiple of 4 bytes */
583 if (info
->iomode
== OMAP_NAND_IO_WRITE
) { /* checks for write io */
584 if (this_irq
== info
->gpmc_irq_count
)
587 if (info
->buf_len
&& (info
->buf_len
< bytes
))
588 bytes
= info
->buf_len
;
589 else if (!info
->buf_len
)
591 iowrite32_rep(info
->nand
.IO_ADDR_W
,
592 (u32
*)info
->buf
, bytes
>> 2);
593 info
->buf
= info
->buf
+ bytes
;
594 info
->buf_len
-= bytes
;
597 ioread32_rep(info
->nand
.IO_ADDR_R
,
598 (u32
*)info
->buf
, bytes
>> 2);
599 info
->buf
= info
->buf
+ bytes
;
601 if (this_irq
== info
->gpmc_irq_count
)
608 complete(&info
->comp
);
610 disable_irq_nosync(info
->gpmc_irq_fifo
);
611 disable_irq_nosync(info
->gpmc_irq_count
);
617 * omap_read_buf_irq_pref - read data from NAND controller into buffer
618 * @mtd: MTD device structure
619 * @buf: buffer to store date
620 * @len: number of bytes to read
622 static void omap_read_buf_irq_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
624 struct omap_nand_info
*info
= container_of(mtd
,
625 struct omap_nand_info
, mtd
);
628 if (len
<= mtd
->oobsize
) {
629 omap_read_buf_pref(mtd
, buf
, len
);
633 info
->iomode
= OMAP_NAND_IO_READ
;
635 init_completion(&info
->comp
);
637 /* configure and start prefetch transfer */
638 ret
= omap_prefetch_enable(info
->gpmc_cs
,
639 PREFETCH_FIFOTHRESHOLD_MAX
/2, 0x0, len
, 0x0, info
);
641 /* PFPW engine is busy, use cpu copy method */
646 enable_irq(info
->gpmc_irq_count
);
647 enable_irq(info
->gpmc_irq_fifo
);
649 /* waiting for read to complete */
650 wait_for_completion(&info
->comp
);
652 /* disable and stop the PFPW engine */
653 omap_prefetch_reset(info
->gpmc_cs
, info
);
657 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
658 omap_read_buf16(mtd
, buf
, len
);
660 omap_read_buf8(mtd
, buf
, len
);
664 * omap_write_buf_irq_pref - write buffer to NAND controller
665 * @mtd: MTD device structure
667 * @len: number of bytes to write
669 static void omap_write_buf_irq_pref(struct mtd_info
*mtd
,
670 const u_char
*buf
, int len
)
672 struct omap_nand_info
*info
= container_of(mtd
,
673 struct omap_nand_info
, mtd
);
675 unsigned long tim
, limit
;
678 if (len
<= mtd
->oobsize
) {
679 omap_write_buf_pref(mtd
, buf
, len
);
683 info
->iomode
= OMAP_NAND_IO_WRITE
;
684 info
->buf
= (u_char
*) buf
;
685 init_completion(&info
->comp
);
687 /* configure and start prefetch transfer : size=24 */
688 ret
= omap_prefetch_enable(info
->gpmc_cs
,
689 (PREFETCH_FIFOTHRESHOLD_MAX
* 3) / 8, 0x0, len
, 0x1, info
);
691 /* PFPW engine is busy, use cpu copy method */
696 enable_irq(info
->gpmc_irq_count
);
697 enable_irq(info
->gpmc_irq_fifo
);
699 /* waiting for write to complete */
700 wait_for_completion(&info
->comp
);
702 /* wait for data to flushed-out before reset the prefetch */
704 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
706 val
= readl(info
->reg
.gpmc_prefetch_status
);
707 val
= PREFETCH_STATUS_COUNT(val
);
709 } while (val
&& (tim
++ < limit
));
711 /* disable and stop the PFPW engine */
712 omap_prefetch_reset(info
->gpmc_cs
, info
);
716 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
717 omap_write_buf16(mtd
, buf
, len
);
719 omap_write_buf8(mtd
, buf
, len
);
723 * gen_true_ecc - This function will generate true ECC value
724 * @ecc_buf: buffer to store ecc code
726 * This generated true ECC value can be used when correcting
727 * data read from NAND flash memory core
729 static void gen_true_ecc(u8
*ecc_buf
)
731 u32 tmp
= ecc_buf
[0] | (ecc_buf
[1] << 16) |
732 ((ecc_buf
[2] & 0xF0) << 20) | ((ecc_buf
[2] & 0x0F) << 8);
734 ecc_buf
[0] = ~(P64o(tmp
) | P64e(tmp
) | P32o(tmp
) | P32e(tmp
) |
735 P16o(tmp
) | P16e(tmp
) | P8o(tmp
) | P8e(tmp
));
736 ecc_buf
[1] = ~(P1024o(tmp
) | P1024e(tmp
) | P512o(tmp
) | P512e(tmp
) |
737 P256o(tmp
) | P256e(tmp
) | P128o(tmp
) | P128e(tmp
));
738 ecc_buf
[2] = ~(P4o(tmp
) | P4e(tmp
) | P2o(tmp
) | P2e(tmp
) | P1o(tmp
) |
739 P1e(tmp
) | P2048o(tmp
) | P2048e(tmp
));
743 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
744 * @ecc_data1: ecc code from nand spare area
745 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
746 * @page_data: page data
748 * This function compares two ECC's and indicates if there is an error.
749 * If the error can be corrected it will be corrected to the buffer.
750 * If there is no error, %0 is returned. If there is an error but it
751 * was corrected, %1 is returned. Otherwise, %-1 is returned.
753 static int omap_compare_ecc(u8
*ecc_data1
, /* read from NAND memory */
754 u8
*ecc_data2
, /* read from register */
758 u8 tmp0_bit
[8], tmp1_bit
[8], tmp2_bit
[8];
759 u8 comp0_bit
[8], comp1_bit
[8], comp2_bit
[8];
766 isEccFF
= ((*(u32
*)ecc_data1
& 0xFFFFFF) == 0xFFFFFF);
768 gen_true_ecc(ecc_data1
);
769 gen_true_ecc(ecc_data2
);
771 for (i
= 0; i
<= 2; i
++) {
772 *(ecc_data1
+ i
) = ~(*(ecc_data1
+ i
));
773 *(ecc_data2
+ i
) = ~(*(ecc_data2
+ i
));
776 for (i
= 0; i
< 8; i
++) {
777 tmp0_bit
[i
] = *ecc_data1
% 2;
778 *ecc_data1
= *ecc_data1
/ 2;
781 for (i
= 0; i
< 8; i
++) {
782 tmp1_bit
[i
] = *(ecc_data1
+ 1) % 2;
783 *(ecc_data1
+ 1) = *(ecc_data1
+ 1) / 2;
786 for (i
= 0; i
< 8; i
++) {
787 tmp2_bit
[i
] = *(ecc_data1
+ 2) % 2;
788 *(ecc_data1
+ 2) = *(ecc_data1
+ 2) / 2;
791 for (i
= 0; i
< 8; i
++) {
792 comp0_bit
[i
] = *ecc_data2
% 2;
793 *ecc_data2
= *ecc_data2
/ 2;
796 for (i
= 0; i
< 8; i
++) {
797 comp1_bit
[i
] = *(ecc_data2
+ 1) % 2;
798 *(ecc_data2
+ 1) = *(ecc_data2
+ 1) / 2;
801 for (i
= 0; i
< 8; i
++) {
802 comp2_bit
[i
] = *(ecc_data2
+ 2) % 2;
803 *(ecc_data2
+ 2) = *(ecc_data2
+ 2) / 2;
806 for (i
= 0; i
< 6; i
++)
807 ecc_bit
[i
] = tmp2_bit
[i
+ 2] ^ comp2_bit
[i
+ 2];
809 for (i
= 0; i
< 8; i
++)
810 ecc_bit
[i
+ 6] = tmp0_bit
[i
] ^ comp0_bit
[i
];
812 for (i
= 0; i
< 8; i
++)
813 ecc_bit
[i
+ 14] = tmp1_bit
[i
] ^ comp1_bit
[i
];
815 ecc_bit
[22] = tmp2_bit
[0] ^ comp2_bit
[0];
816 ecc_bit
[23] = tmp2_bit
[1] ^ comp2_bit
[1];
818 for (i
= 0; i
< 24; i
++)
819 ecc_sum
+= ecc_bit
[i
];
823 /* Not reached because this function is not called if
824 * ECC values are equal
829 /* Uncorrectable error */
830 pr_debug("ECC UNCORRECTED_ERROR 1\n");
834 /* UN-Correctable error */
835 pr_debug("ECC UNCORRECTED_ERROR B\n");
839 /* Correctable error */
840 find_byte
= (ecc_bit
[23] << 8) +
850 find_bit
= (ecc_bit
[5] << 2) + (ecc_bit
[3] << 1) + ecc_bit
[1];
852 pr_debug("Correcting single bit ECC error at offset: "
853 "%d, bit: %d\n", find_byte
, find_bit
);
855 page_data
[find_byte
] ^= (1 << find_bit
);
860 if (ecc_data2
[0] == 0 &&
865 pr_debug("UNCORRECTED_ERROR default\n");
871 * omap_correct_data - Compares the ECC read with HW generated ECC
872 * @mtd: MTD device structure
874 * @read_ecc: ecc read from nand flash
875 * @calc_ecc: ecc read from HW ECC registers
877 * Compares the ecc read from nand spare area with ECC registers values
878 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
879 * detection and correction. If there are no errors, %0 is returned. If
880 * there were errors and all of the errors were corrected, the number of
881 * corrected errors is returned. If uncorrectable errors exist, %-1 is
884 static int omap_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
885 u_char
*read_ecc
, u_char
*calc_ecc
)
887 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
889 int blockCnt
= 0, i
= 0, ret
= 0;
892 /* Ex NAND_ECC_HW12_2048 */
893 if ((info
->nand
.ecc
.mode
== NAND_ECC_HW
) &&
894 (info
->nand
.ecc
.size
== 2048))
899 for (i
= 0; i
< blockCnt
; i
++) {
900 if (memcmp(read_ecc
, calc_ecc
, 3) != 0) {
901 ret
= omap_compare_ecc(read_ecc
, calc_ecc
, dat
);
904 /* keep track of the number of corrected errors */
915 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
916 * @mtd: MTD device structure
917 * @dat: The pointer to data on which ecc is computed
918 * @ecc_code: The ecc_code buffer
920 * Using noninverted ECC can be considered ugly since writing a blank
921 * page ie. padding will clear the ECC bytes. This is no problem as long
922 * nobody is trying to write data on the seemingly unused page. Reading
923 * an erased page will produce an ECC mismatch between generated and read
924 * ECC bytes that has to be dealt with separately.
926 static int omap_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
929 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
933 val
= readl(info
->reg
.gpmc_ecc_config
);
934 if (((val
>> ECC_CONFIG_CS_SHIFT
) & ~CS_MASK
) != info
->gpmc_cs
)
937 /* read ecc result */
938 val
= readl(info
->reg
.gpmc_ecc1_result
);
939 *ecc_code
++ = val
; /* P128e, ..., P1e */
940 *ecc_code
++ = val
>> 16; /* P128o, ..., P1o */
941 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
942 *ecc_code
++ = ((val
>> 8) & 0x0f) | ((val
>> 20) & 0xf0);
948 * omap_enable_hwecc - This function enables the hardware ecc functionality
949 * @mtd: MTD device structure
950 * @mode: Read/Write mode
952 static void omap_enable_hwecc(struct mtd_info
*mtd
, int mode
)
954 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
956 struct nand_chip
*chip
= mtd
->priv
;
957 unsigned int dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
960 /* clear ecc and enable bits */
961 val
= ECCCLEAR
| ECC1
;
962 writel(val
, info
->reg
.gpmc_ecc_control
);
964 /* program ecc and result sizes */
965 val
= ((((info
->nand
.ecc
.size
>> 1) - 1) << ECCSIZE1_SHIFT
) |
967 writel(val
, info
->reg
.gpmc_ecc_size_config
);
972 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
974 case NAND_ECC_READSYN
:
975 writel(ECCCLEAR
, info
->reg
.gpmc_ecc_control
);
978 dev_info(&info
->pdev
->dev
,
979 "error: unrecognized Mode[%d]!\n", mode
);
983 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
984 val
= (dev_width
<< 7) | (info
->gpmc_cs
<< 1) | (0x1);
985 writel(val
, info
->reg
.gpmc_ecc_config
);
989 * omap_wait - wait until the command is done
990 * @mtd: MTD device structure
991 * @chip: NAND Chip structure
993 * Wait function is called during Program and erase operations and
994 * the way it is called from MTD layer, we should wait till the NAND
995 * chip is ready after the programming/erase operation has completed.
997 * Erase can take up to 400ms and program up to 20ms according to
998 * general NAND and SmartMedia specs
1000 static int omap_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
1002 struct nand_chip
*this = mtd
->priv
;
1003 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1005 unsigned long timeo
= jiffies
;
1006 int status
, state
= this->state
;
1008 if (state
== FL_ERASING
)
1009 timeo
+= msecs_to_jiffies(400);
1011 timeo
+= msecs_to_jiffies(20);
1013 writeb(NAND_CMD_STATUS
& 0xFF, info
->reg
.gpmc_nand_command
);
1014 while (time_before(jiffies
, timeo
)) {
1015 status
= readb(info
->reg
.gpmc_nand_data
);
1016 if (status
& NAND_STATUS_READY
)
1021 status
= readb(info
->reg
.gpmc_nand_data
);
1026 * omap_dev_ready - calls the platform specific dev_ready function
1027 * @mtd: MTD device structure
1029 static int omap_dev_ready(struct mtd_info
*mtd
)
1031 unsigned int val
= 0;
1032 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1035 val
= readl(info
->reg
.gpmc_status
);
1037 if ((val
& 0x100) == 0x100) {
1045 * omap_enable_hwecc_bch - Program GPMC to perform BCH ECC calculation
1046 * @mtd: MTD device structure
1047 * @mode: Read/Write mode
1049 * When using BCH, sector size is hardcoded to 512 bytes.
1050 * Using wrapping mode 6 both for reading and writing if ELM module not uses
1051 * for error correction.
1053 * eccsize0 = 0 (no additional protected byte in spare area)
1054 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1056 static void __maybe_unused
omap_enable_hwecc_bch(struct mtd_info
*mtd
, int mode
)
1058 unsigned int bch_type
;
1059 unsigned int dev_width
, nsectors
;
1060 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1062 enum omap_ecc ecc_opt
= info
->ecc_opt
;
1063 struct nand_chip
*chip
= mtd
->priv
;
1065 unsigned int ecc_size1
, ecc_size0
;
1067 /* GPMC configurations for calculating ECC */
1069 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1072 if (mode
== NAND_ECC_READ
) {
1073 wr_mode
= BCH_WRAPMODE_6
;
1074 ecc_size0
= BCH_ECC_SIZE0
;
1075 ecc_size1
= BCH_ECC_SIZE1
;
1077 wr_mode
= BCH_WRAPMODE_6
;
1078 ecc_size0
= BCH_ECC_SIZE0
;
1079 ecc_size1
= BCH_ECC_SIZE1
;
1082 case OMAP_ECC_BCH4_CODE_HW
:
1084 nsectors
= chip
->ecc
.steps
;
1085 if (mode
== NAND_ECC_READ
) {
1086 wr_mode
= BCH_WRAPMODE_1
;
1087 ecc_size0
= BCH4R_ECC_SIZE0
;
1088 ecc_size1
= BCH4R_ECC_SIZE1
;
1090 wr_mode
= BCH_WRAPMODE_6
;
1091 ecc_size0
= BCH_ECC_SIZE0
;
1092 ecc_size1
= BCH_ECC_SIZE1
;
1095 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1098 if (mode
== NAND_ECC_READ
) {
1099 wr_mode
= BCH_WRAPMODE_6
;
1100 ecc_size0
= BCH_ECC_SIZE0
;
1101 ecc_size1
= BCH_ECC_SIZE1
;
1103 wr_mode
= BCH_WRAPMODE_6
;
1104 ecc_size0
= BCH_ECC_SIZE0
;
1105 ecc_size1
= BCH_ECC_SIZE1
;
1108 case OMAP_ECC_BCH8_CODE_HW
:
1110 nsectors
= chip
->ecc
.steps
;
1111 if (mode
== NAND_ECC_READ
) {
1112 wr_mode
= BCH_WRAPMODE_1
;
1113 ecc_size0
= BCH8R_ECC_SIZE0
;
1114 ecc_size1
= BCH8R_ECC_SIZE1
;
1116 wr_mode
= BCH_WRAPMODE_6
;
1117 ecc_size0
= BCH_ECC_SIZE0
;
1118 ecc_size1
= BCH_ECC_SIZE1
;
1121 case OMAP_ECC_BCH16_CODE_HW
:
1123 nsectors
= chip
->ecc
.steps
;
1124 if (mode
== NAND_ECC_READ
) {
1126 ecc_size0
= 52; /* ECC bits in nibbles per sector */
1127 ecc_size1
= 0; /* non-ECC bits in nibbles per sector */
1130 ecc_size0
= 0; /* extra bits in nibbles per sector */
1131 ecc_size1
= 52; /* OOB bits in nibbles per sector */
1138 writel(ECC1
, info
->reg
.gpmc_ecc_control
);
1140 /* Configure ecc size for BCH */
1141 val
= (ecc_size1
<< ECCSIZE1_SHIFT
) | (ecc_size0
<< ECCSIZE0_SHIFT
);
1142 writel(val
, info
->reg
.gpmc_ecc_size_config
);
1144 dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
1146 /* BCH configuration */
1147 val
= ((1 << 16) | /* enable BCH */
1148 (bch_type
<< 12) | /* BCH4/BCH8/BCH16 */
1149 (wr_mode
<< 8) | /* wrap mode */
1150 (dev_width
<< 7) | /* bus width */
1151 (((nsectors
-1) & 0x7) << 4) | /* number of sectors */
1152 (info
->gpmc_cs
<< 1) | /* ECC CS */
1153 (0x1)); /* enable ECC */
1155 writel(val
, info
->reg
.gpmc_ecc_config
);
1157 /* Clear ecc and enable bits */
1158 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
1161 static u8 bch4_polynomial
[] = {0x28, 0x13, 0xcc, 0x39, 0x96, 0xac, 0x7f};
1162 static u8 bch8_polynomial
[] = {0xef, 0x51, 0x2e, 0x09, 0xed, 0x93, 0x9a, 0xc2,
1163 0x97, 0x79, 0xe5, 0x24, 0xb5};
1166 * omap_calculate_ecc_bch - Generate bytes of ECC bytes
1167 * @mtd: MTD device structure
1168 * @dat: The pointer to data on which ecc is computed
1169 * @ecc_code: The ecc_code buffer
1171 * Support calculating of BCH4/8 ecc vectors for the page
1173 static int __maybe_unused
omap_calculate_ecc_bch(struct mtd_info
*mtd
,
1174 const u_char
*dat
, u_char
*ecc_calc
)
1176 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1178 int eccbytes
= info
->nand
.ecc
.bytes
;
1179 struct gpmc_nand_regs
*gpmc_regs
= &info
->reg
;
1181 unsigned long nsectors
, bch_val1
, bch_val2
, bch_val3
, bch_val4
;
1185 nsectors
= ((readl(info
->reg
.gpmc_ecc_config
) >> 4) & 0x7) + 1;
1186 for (i
= 0; i
< nsectors
; i
++) {
1187 ecc_code
= ecc_calc
;
1188 switch (info
->ecc_opt
) {
1189 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1190 case OMAP_ECC_BCH8_CODE_HW
:
1191 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1192 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1193 bch_val3
= readl(gpmc_regs
->gpmc_bch_result2
[i
]);
1194 bch_val4
= readl(gpmc_regs
->gpmc_bch_result3
[i
]);
1195 *ecc_code
++ = (bch_val4
& 0xFF);
1196 *ecc_code
++ = ((bch_val3
>> 24) & 0xFF);
1197 *ecc_code
++ = ((bch_val3
>> 16) & 0xFF);
1198 *ecc_code
++ = ((bch_val3
>> 8) & 0xFF);
1199 *ecc_code
++ = (bch_val3
& 0xFF);
1200 *ecc_code
++ = ((bch_val2
>> 24) & 0xFF);
1201 *ecc_code
++ = ((bch_val2
>> 16) & 0xFF);
1202 *ecc_code
++ = ((bch_val2
>> 8) & 0xFF);
1203 *ecc_code
++ = (bch_val2
& 0xFF);
1204 *ecc_code
++ = ((bch_val1
>> 24) & 0xFF);
1205 *ecc_code
++ = ((bch_val1
>> 16) & 0xFF);
1206 *ecc_code
++ = ((bch_val1
>> 8) & 0xFF);
1207 *ecc_code
++ = (bch_val1
& 0xFF);
1209 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1210 case OMAP_ECC_BCH4_CODE_HW
:
1211 bch_val1
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1212 bch_val2
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1213 *ecc_code
++ = ((bch_val2
>> 12) & 0xFF);
1214 *ecc_code
++ = ((bch_val2
>> 4) & 0xFF);
1215 *ecc_code
++ = ((bch_val2
& 0xF) << 4) |
1216 ((bch_val1
>> 28) & 0xF);
1217 *ecc_code
++ = ((bch_val1
>> 20) & 0xFF);
1218 *ecc_code
++ = ((bch_val1
>> 12) & 0xFF);
1219 *ecc_code
++ = ((bch_val1
>> 4) & 0xFF);
1220 *ecc_code
++ = ((bch_val1
& 0xF) << 4);
1222 case OMAP_ECC_BCH16_CODE_HW
:
1223 val
= readl(gpmc_regs
->gpmc_bch_result6
[i
]);
1224 ecc_code
[0] = ((val
>> 8) & 0xFF);
1225 ecc_code
[1] = ((val
>> 0) & 0xFF);
1226 val
= readl(gpmc_regs
->gpmc_bch_result5
[i
]);
1227 ecc_code
[2] = ((val
>> 24) & 0xFF);
1228 ecc_code
[3] = ((val
>> 16) & 0xFF);
1229 ecc_code
[4] = ((val
>> 8) & 0xFF);
1230 ecc_code
[5] = ((val
>> 0) & 0xFF);
1231 val
= readl(gpmc_regs
->gpmc_bch_result4
[i
]);
1232 ecc_code
[6] = ((val
>> 24) & 0xFF);
1233 ecc_code
[7] = ((val
>> 16) & 0xFF);
1234 ecc_code
[8] = ((val
>> 8) & 0xFF);
1235 ecc_code
[9] = ((val
>> 0) & 0xFF);
1236 val
= readl(gpmc_regs
->gpmc_bch_result3
[i
]);
1237 ecc_code
[10] = ((val
>> 24) & 0xFF);
1238 ecc_code
[11] = ((val
>> 16) & 0xFF);
1239 ecc_code
[12] = ((val
>> 8) & 0xFF);
1240 ecc_code
[13] = ((val
>> 0) & 0xFF);
1241 val
= readl(gpmc_regs
->gpmc_bch_result2
[i
]);
1242 ecc_code
[14] = ((val
>> 24) & 0xFF);
1243 ecc_code
[15] = ((val
>> 16) & 0xFF);
1244 ecc_code
[16] = ((val
>> 8) & 0xFF);
1245 ecc_code
[17] = ((val
>> 0) & 0xFF);
1246 val
= readl(gpmc_regs
->gpmc_bch_result1
[i
]);
1247 ecc_code
[18] = ((val
>> 24) & 0xFF);
1248 ecc_code
[19] = ((val
>> 16) & 0xFF);
1249 ecc_code
[20] = ((val
>> 8) & 0xFF);
1250 ecc_code
[21] = ((val
>> 0) & 0xFF);
1251 val
= readl(gpmc_regs
->gpmc_bch_result0
[i
]);
1252 ecc_code
[22] = ((val
>> 24) & 0xFF);
1253 ecc_code
[23] = ((val
>> 16) & 0xFF);
1254 ecc_code
[24] = ((val
>> 8) & 0xFF);
1255 ecc_code
[25] = ((val
>> 0) & 0xFF);
1261 /* ECC scheme specific syndrome customizations */
1262 switch (info
->ecc_opt
) {
1263 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1264 /* Add constant polynomial to remainder, so that
1265 * ECC of blank pages results in 0x0 on reading back */
1266 for (j
= 0; j
< eccbytes
; j
++)
1267 ecc_calc
[j
] ^= bch4_polynomial
[j
];
1269 case OMAP_ECC_BCH4_CODE_HW
:
1270 /* Set 8th ECC byte as 0x0 for ROM compatibility */
1271 ecc_calc
[eccbytes
- 1] = 0x0;
1273 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1274 /* Add constant polynomial to remainder, so that
1275 * ECC of blank pages results in 0x0 on reading back */
1276 for (j
= 0; j
< eccbytes
; j
++)
1277 ecc_calc
[j
] ^= bch8_polynomial
[j
];
1279 case OMAP_ECC_BCH8_CODE_HW
:
1280 /* Set 14th ECC byte as 0x0 for ROM compatibility */
1281 ecc_calc
[eccbytes
- 1] = 0x0;
1283 case OMAP_ECC_BCH16_CODE_HW
:
1289 ecc_calc
+= eccbytes
;
1295 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1297 * erased_sector_bitflips - count bit flips
1298 * @data: data sector buffer
1300 * @info: omap_nand_info
1302 * Check the bit flips in erased page falls below correctable level.
1303 * If falls below, report the page as erased with correctable bit
1304 * flip, else report as uncorrectable page.
1306 static int erased_sector_bitflips(u_char
*data
, u_char
*oob
,
1307 struct omap_nand_info
*info
)
1309 int flip_bits
= 0, i
;
1311 for (i
= 0; i
< info
->nand
.ecc
.size
; i
++) {
1312 flip_bits
+= hweight8(~data
[i
]);
1313 if (flip_bits
> info
->nand
.ecc
.strength
)
1317 for (i
= 0; i
< info
->nand
.ecc
.bytes
- 1; i
++) {
1318 flip_bits
+= hweight8(~oob
[i
]);
1319 if (flip_bits
> info
->nand
.ecc
.strength
)
1324 * Bit flips falls in correctable level.
1325 * Fill data area with 0xFF
1328 memset(data
, 0xFF, info
->nand
.ecc
.size
);
1329 memset(oob
, 0xFF, info
->nand
.ecc
.bytes
);
1336 * omap_elm_correct_data - corrects page data area in case error reported
1337 * @mtd: MTD device structure
1339 * @read_ecc: ecc read from nand flash
1340 * @calc_ecc: ecc read from HW ECC registers
1342 * Calculated ecc vector reported as zero in case of non-error pages.
1343 * In case of non-zero ecc vector, first filter out erased-pages, and
1344 * then process data via ELM to detect bit-flips.
1346 static int omap_elm_correct_data(struct mtd_info
*mtd
, u_char
*data
,
1347 u_char
*read_ecc
, u_char
*calc_ecc
)
1349 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1351 struct nand_ecc_ctrl
*ecc
= &info
->nand
.ecc
;
1352 int eccsteps
= info
->nand
.ecc
.steps
;
1353 int i
, j
, stat
= 0;
1354 int eccflag
, actual_eccbytes
;
1355 struct elm_errorvec err_vec
[ERROR_VECTOR_MAX
];
1356 u_char
*ecc_vec
= calc_ecc
;
1357 u_char
*spare_ecc
= read_ecc
;
1358 u_char
*erased_ecc_vec
;
1361 bool is_error_reported
= false;
1362 u32 bit_pos
, byte_pos
, error_max
, pos
;
1365 switch (info
->ecc_opt
) {
1366 case OMAP_ECC_BCH4_CODE_HW
:
1367 /* omit 7th ECC byte reserved for ROM code compatibility */
1368 actual_eccbytes
= ecc
->bytes
- 1;
1369 erased_ecc_vec
= bch4_vector
;
1371 case OMAP_ECC_BCH8_CODE_HW
:
1372 /* omit 14th ECC byte reserved for ROM code compatibility */
1373 actual_eccbytes
= ecc
->bytes
- 1;
1374 erased_ecc_vec
= bch8_vector
;
1376 case OMAP_ECC_BCH16_CODE_HW
:
1377 actual_eccbytes
= ecc
->bytes
;
1378 erased_ecc_vec
= bch16_vector
;
1381 pr_err("invalid driver configuration\n");
1385 /* Initialize elm error vector to zero */
1386 memset(err_vec
, 0, sizeof(err_vec
));
1388 for (i
= 0; i
< eccsteps
; i
++) {
1389 eccflag
= 0; /* initialize eccflag */
1392 * Check any error reported,
1393 * In case of error, non zero ecc reported.
1395 for (j
= 0; j
< actual_eccbytes
; j
++) {
1396 if (calc_ecc
[j
] != 0) {
1397 eccflag
= 1; /* non zero ecc, error present */
1403 if (memcmp(calc_ecc
, erased_ecc_vec
,
1404 actual_eccbytes
) == 0) {
1406 * calc_ecc[] matches pattern for ECC(all 0xff)
1407 * so this is definitely an erased-page
1410 buf
= &data
[info
->nand
.ecc
.size
* i
];
1412 * count number of 0-bits in read_buf.
1413 * This check can be removed once a similar
1414 * check is introduced in generic NAND driver
1416 bitflip_count
= erased_sector_bitflips(
1417 buf
, read_ecc
, info
);
1418 if (bitflip_count
) {
1420 * number of 0-bits within ECC limits
1421 * So this may be an erased-page
1423 stat
+= bitflip_count
;
1426 * Too many 0-bits. It may be a
1427 * - programmed-page, OR
1428 * - erased-page with many bit-flips
1429 * So this page requires check by ELM
1431 err_vec
[i
].error_reported
= true;
1432 is_error_reported
= true;
1437 /* Update the ecc vector */
1438 calc_ecc
+= ecc
->bytes
;
1439 read_ecc
+= ecc
->bytes
;
1442 /* Check if any error reported */
1443 if (!is_error_reported
)
1446 /* Decode BCH error using ELM module */
1447 elm_decode_bch_error_page(info
->elm_dev
, ecc_vec
, err_vec
);
1450 for (i
= 0; i
< eccsteps
; i
++) {
1451 if (err_vec
[i
].error_uncorrectable
) {
1452 pr_err("nand: uncorrectable bit-flips found\n");
1454 } else if (err_vec
[i
].error_reported
) {
1455 for (j
= 0; j
< err_vec
[i
].error_count
; j
++) {
1456 switch (info
->ecc_opt
) {
1457 case OMAP_ECC_BCH4_CODE_HW
:
1458 /* Add 4 bits to take care of padding */
1459 pos
= err_vec
[i
].error_loc
[j
] +
1462 case OMAP_ECC_BCH8_CODE_HW
:
1463 case OMAP_ECC_BCH16_CODE_HW
:
1464 pos
= err_vec
[i
].error_loc
[j
];
1469 error_max
= (ecc
->size
+ actual_eccbytes
) * 8;
1470 /* Calculate bit position of error */
1473 /* Calculate byte position of error */
1474 byte_pos
= (error_max
- pos
- 1) / 8;
1476 if (pos
< error_max
) {
1477 if (byte_pos
< 512) {
1478 pr_debug("bitflip@dat[%d]=%x\n",
1479 byte_pos
, data
[byte_pos
]);
1480 data
[byte_pos
] ^= 1 << bit_pos
;
1482 pr_debug("bitflip@oob[%d]=%x\n",
1484 spare_ecc
[byte_pos
- 512]);
1485 spare_ecc
[byte_pos
- 512] ^=
1489 pr_err("invalid bit-flip @ %d:%d\n",
1496 /* Update number of correctable errors */
1497 stat
+= err_vec
[i
].error_count
;
1499 /* Update page data with sector size */
1501 spare_ecc
+= ecc
->bytes
;
1504 return (err
) ? err
: stat
;
1508 * omap_write_page_bch - BCH ecc based write page function for entire page
1509 * @mtd: mtd info structure
1510 * @chip: nand chip info structure
1512 * @oob_required: must write chip->oob_poi to OOB
1514 * Custom write page method evolved to support multi sector writing in one shot
1516 static int omap_write_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1517 const uint8_t *buf
, int oob_required
)
1520 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1521 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1523 /* Enable GPMC ecc engine */
1524 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1527 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1529 /* Update ecc vector from GPMC result registers */
1530 chip
->ecc
.calculate(mtd
, buf
, &ecc_calc
[0]);
1532 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1533 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1535 /* Write ecc vector to OOB area */
1536 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1541 * omap_read_page_bch - BCH ecc based page read function for entire page
1542 * @mtd: mtd info structure
1543 * @chip: nand chip info structure
1544 * @buf: buffer to store read data
1545 * @oob_required: caller requires OOB data read to chip->oob_poi
1546 * @page: page number to read
1548 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1549 * used for error correction.
1550 * Custom method evolved to support ELM error correction & multi sector
1551 * reading. On reading page data area is read along with OOB data with
1552 * ecc engine enabled. ecc vector updated after read of OOB data.
1553 * For non error pages ecc vector reported as zero.
1555 static int omap_read_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1556 uint8_t *buf
, int oob_required
, int page
)
1558 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1559 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1560 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1561 uint8_t *oob
= &chip
->oob_poi
[eccpos
[0]];
1562 uint32_t oob_pos
= mtd
->writesize
+ chip
->ecc
.layout
->eccpos
[0];
1564 unsigned int max_bitflips
= 0;
1566 /* Enable GPMC ecc engine */
1567 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1570 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1572 /* Read oob bytes */
1573 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, oob_pos
, -1);
1574 chip
->read_buf(mtd
, oob
, chip
->ecc
.total
);
1576 /* Calculate ecc bytes */
1577 chip
->ecc
.calculate(mtd
, buf
, ecc_calc
);
1579 memcpy(ecc_code
, &chip
->oob_poi
[eccpos
[0]], chip
->ecc
.total
);
1581 stat
= chip
->ecc
.correct(mtd
, buf
, ecc_code
, ecc_calc
);
1584 mtd
->ecc_stats
.failed
++;
1586 mtd
->ecc_stats
.corrected
+= stat
;
1587 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1590 return max_bitflips
;
1594 * is_elm_present - checks for presence of ELM module by scanning DT nodes
1595 * @omap_nand_info: NAND device structure containing platform data
1596 * @bch_type: 0x0=BCH4, 0x1=BCH8, 0x2=BCH16
1598 static int is_elm_present(struct omap_nand_info
*info
,
1599 struct device_node
*elm_node
, enum bch_ecc bch_type
)
1601 struct platform_device
*pdev
;
1602 struct nand_ecc_ctrl
*ecc
= &info
->nand
.ecc
;
1604 /* check whether elm-id is passed via DT */
1606 pr_err("nand: error: ELM DT node not found\n");
1609 pdev
= of_find_device_by_node(elm_node
);
1610 /* check whether ELM device is registered */
1612 pr_err("nand: error: ELM device not found\n");
1615 /* ELM module available, now configure it */
1616 info
->elm_dev
= &pdev
->dev
;
1617 err
= elm_config(info
->elm_dev
, bch_type
,
1618 (info
->mtd
.writesize
/ ecc
->size
), ecc
->size
, ecc
->bytes
);
1622 #endif /* CONFIG_MTD_NAND_ECC_BCH */
1624 static int omap_nand_probe(struct platform_device
*pdev
)
1626 struct omap_nand_info
*info
;
1627 struct omap_nand_platform_data
*pdata
;
1628 struct mtd_info
*mtd
;
1629 struct nand_chip
*nand_chip
;
1630 struct nand_ecclayout
*ecclayout
;
1633 dma_cap_mask_t mask
;
1636 struct resource
*res
;
1637 struct mtd_part_parser_data ppdata
= {};
1639 pdata
= dev_get_platdata(&pdev
->dev
);
1640 if (pdata
== NULL
) {
1641 dev_err(&pdev
->dev
, "platform data missing\n");
1645 info
= devm_kzalloc(&pdev
->dev
, sizeof(struct omap_nand_info
),
1650 platform_set_drvdata(pdev
, info
);
1652 spin_lock_init(&info
->controller
.lock
);
1653 init_waitqueue_head(&info
->controller
.wq
);
1656 info
->gpmc_cs
= pdata
->cs
;
1657 info
->reg
= pdata
->reg
;
1658 info
->of_node
= pdata
->of_node
;
1659 info
->ecc_opt
= pdata
->ecc_opt
;
1661 mtd
->priv
= &info
->nand
;
1662 mtd
->name
= dev_name(&pdev
->dev
);
1663 mtd
->owner
= THIS_MODULE
;
1664 nand_chip
= &info
->nand
;
1665 nand_chip
->ecc
.priv
= NULL
;
1666 nand_chip
->options
|= NAND_SKIP_BBTSCAN
;
1668 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1669 nand_chip
->IO_ADDR_R
= devm_ioremap_resource(&pdev
->dev
, res
);
1670 if (IS_ERR(nand_chip
->IO_ADDR_R
))
1671 return PTR_ERR(nand_chip
->IO_ADDR_R
);
1673 info
->phys_base
= res
->start
;
1675 nand_chip
->controller
= &info
->controller
;
1677 nand_chip
->IO_ADDR_W
= nand_chip
->IO_ADDR_R
;
1678 nand_chip
->cmd_ctrl
= omap_hwcontrol
;
1681 * If RDY/BSY line is connected to OMAP then use the omap ready
1682 * function and the generic nand_wait function which reads the status
1683 * register after monitoring the RDY/BSY line. Otherwise use a standard
1684 * chip delay which is slightly more than tR (AC Timing) of the NAND
1685 * device and read status register until you get a failure or success
1687 if (pdata
->dev_ready
) {
1688 nand_chip
->dev_ready
= omap_dev_ready
;
1689 nand_chip
->chip_delay
= 0;
1691 nand_chip
->waitfunc
= omap_wait
;
1692 nand_chip
->chip_delay
= 50;
1695 /* scan NAND device connected to chip controller */
1696 nand_chip
->options
|= pdata
->devsize
& NAND_BUSWIDTH_16
;
1697 if (nand_scan_ident(mtd
, 1, NULL
)) {
1698 pr_err("nand device scan failed, may be bus-width mismatch\n");
1703 /* check for small page devices */
1704 if ((mtd
->oobsize
< 64) && (pdata
->ecc_opt
!= OMAP_ECC_HAM1_CODE_HW
)) {
1705 pr_err("small page devices are not supported\n");
1710 /* re-populate low-level callbacks based on xfer modes */
1711 switch (pdata
->xfer_type
) {
1712 case NAND_OMAP_PREFETCH_POLLED
:
1713 nand_chip
->read_buf
= omap_read_buf_pref
;
1714 nand_chip
->write_buf
= omap_write_buf_pref
;
1717 case NAND_OMAP_POLLED
:
1718 /* Use nand_base defaults for {read,write}_buf */
1721 case NAND_OMAP_PREFETCH_DMA
:
1723 dma_cap_set(DMA_SLAVE
, mask
);
1724 sig
= OMAP24XX_DMA_GPMC
;
1725 info
->dma
= dma_request_channel(mask
, omap_dma_filter_fn
, &sig
);
1727 dev_err(&pdev
->dev
, "DMA engine request failed\n");
1731 struct dma_slave_config cfg
;
1733 memset(&cfg
, 0, sizeof(cfg
));
1734 cfg
.src_addr
= info
->phys_base
;
1735 cfg
.dst_addr
= info
->phys_base
;
1736 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1737 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1738 cfg
.src_maxburst
= 16;
1739 cfg
.dst_maxburst
= 16;
1740 err
= dmaengine_slave_config(info
->dma
, &cfg
);
1742 dev_err(&pdev
->dev
, "DMA engine slave config failed: %d\n",
1746 nand_chip
->read_buf
= omap_read_buf_dma_pref
;
1747 nand_chip
->write_buf
= omap_write_buf_dma_pref
;
1751 case NAND_OMAP_PREFETCH_IRQ
:
1752 info
->gpmc_irq_fifo
= platform_get_irq(pdev
, 0);
1753 if (info
->gpmc_irq_fifo
<= 0) {
1754 dev_err(&pdev
->dev
, "error getting fifo irq\n");
1758 err
= devm_request_irq(&pdev
->dev
, info
->gpmc_irq_fifo
,
1759 omap_nand_irq
, IRQF_SHARED
,
1760 "gpmc-nand-fifo", info
);
1762 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
1763 info
->gpmc_irq_fifo
, err
);
1764 info
->gpmc_irq_fifo
= 0;
1768 info
->gpmc_irq_count
= platform_get_irq(pdev
, 1);
1769 if (info
->gpmc_irq_count
<= 0) {
1770 dev_err(&pdev
->dev
, "error getting count irq\n");
1774 err
= devm_request_irq(&pdev
->dev
, info
->gpmc_irq_count
,
1775 omap_nand_irq
, IRQF_SHARED
,
1776 "gpmc-nand-count", info
);
1778 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
1779 info
->gpmc_irq_count
, err
);
1780 info
->gpmc_irq_count
= 0;
1784 nand_chip
->read_buf
= omap_read_buf_irq_pref
;
1785 nand_chip
->write_buf
= omap_write_buf_irq_pref
;
1791 "xfer_type(%d) not supported!\n", pdata
->xfer_type
);
1796 /* populate MTD interface based on ECC scheme */
1797 nand_chip
->ecc
.layout
= &omap_oobinfo
;
1798 ecclayout
= &omap_oobinfo
;
1799 switch (info
->ecc_opt
) {
1800 case OMAP_ECC_HAM1_CODE_HW
:
1801 pr_info("nand: using OMAP_ECC_HAM1_CODE_HW\n");
1802 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1803 nand_chip
->ecc
.bytes
= 3;
1804 nand_chip
->ecc
.size
= 512;
1805 nand_chip
->ecc
.strength
= 1;
1806 nand_chip
->ecc
.calculate
= omap_calculate_ecc
;
1807 nand_chip
->ecc
.hwctl
= omap_enable_hwecc
;
1808 nand_chip
->ecc
.correct
= omap_correct_data
;
1809 /* define ECC layout */
1810 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1812 nand_chip
->ecc
.size
);
1813 if (nand_chip
->options
& NAND_BUSWIDTH_16
)
1814 oob_index
= BADBLOCK_MARKER_LENGTH
;
1817 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++)
1818 ecclayout
->eccpos
[i
] = oob_index
;
1819 /* no reserved-marker in ecclayout for this ecc-scheme */
1820 ecclayout
->oobfree
->offset
=
1821 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1824 case OMAP_ECC_BCH4_CODE_HW_DETECTION_SW
:
1825 #ifdef CONFIG_MTD_NAND_ECC_BCH
1826 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW_DETECTION_SW\n");
1827 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1828 nand_chip
->ecc
.size
= 512;
1829 nand_chip
->ecc
.bytes
= 7;
1830 nand_chip
->ecc
.strength
= 4;
1831 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1832 nand_chip
->ecc
.correct
= nand_bch_correct_data
;
1833 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1834 /* define ECC layout */
1835 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1837 nand_chip
->ecc
.size
);
1838 oob_index
= BADBLOCK_MARKER_LENGTH
;
1839 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++) {
1840 ecclayout
->eccpos
[i
] = oob_index
;
1841 if (((i
+ 1) % nand_chip
->ecc
.bytes
) == 0)
1844 /* include reserved-marker in ecclayout->oobfree calculation */
1845 ecclayout
->oobfree
->offset
= 1 +
1846 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1847 /* software bch library is used for locating errors */
1848 nand_chip
->ecc
.priv
= nand_bch_init(mtd
,
1849 nand_chip
->ecc
.size
,
1850 nand_chip
->ecc
.bytes
,
1851 &nand_chip
->ecc
.layout
);
1852 if (!nand_chip
->ecc
.priv
) {
1853 pr_err("nand: error: unable to use s/w BCH library\n");
1858 pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1863 case OMAP_ECC_BCH4_CODE_HW
:
1864 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1865 pr_info("nand: using OMAP_ECC_BCH4_CODE_HW ECC scheme\n");
1866 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1867 nand_chip
->ecc
.size
= 512;
1868 /* 14th bit is kept reserved for ROM-code compatibility */
1869 nand_chip
->ecc
.bytes
= 7 + 1;
1870 nand_chip
->ecc
.strength
= 4;
1871 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1872 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
1873 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1874 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
1875 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
1876 /* define ECC layout */
1877 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1879 nand_chip
->ecc
.size
);
1880 oob_index
= BADBLOCK_MARKER_LENGTH
;
1881 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++)
1882 ecclayout
->eccpos
[i
] = oob_index
;
1883 /* reserved marker already included in ecclayout->eccbytes */
1884 ecclayout
->oobfree
->offset
=
1885 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1886 /* This ECC scheme requires ELM H/W block */
1887 if (is_elm_present(info
, pdata
->elm_of_node
, BCH4_ECC
) < 0) {
1888 pr_err("nand: error: could not initialize ELM\n");
1894 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1899 case OMAP_ECC_BCH8_CODE_HW_DETECTION_SW
:
1900 #ifdef CONFIG_MTD_NAND_ECC_BCH
1901 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW_DETECTION_SW\n");
1902 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1903 nand_chip
->ecc
.size
= 512;
1904 nand_chip
->ecc
.bytes
= 13;
1905 nand_chip
->ecc
.strength
= 8;
1906 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1907 nand_chip
->ecc
.correct
= nand_bch_correct_data
;
1908 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1909 /* define ECC layout */
1910 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1912 nand_chip
->ecc
.size
);
1913 oob_index
= BADBLOCK_MARKER_LENGTH
;
1914 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++) {
1915 ecclayout
->eccpos
[i
] = oob_index
;
1916 if (((i
+ 1) % nand_chip
->ecc
.bytes
) == 0)
1919 /* include reserved-marker in ecclayout->oobfree calculation */
1920 ecclayout
->oobfree
->offset
= 1 +
1921 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1922 /* software bch library is used for locating errors */
1923 nand_chip
->ecc
.priv
= nand_bch_init(mtd
,
1924 nand_chip
->ecc
.size
,
1925 nand_chip
->ecc
.bytes
,
1926 &nand_chip
->ecc
.layout
);
1927 if (!nand_chip
->ecc
.priv
) {
1928 pr_err("nand: error: unable to use s/w BCH library\n");
1934 pr_err("nand: error: CONFIG_MTD_NAND_ECC_BCH not enabled\n");
1939 case OMAP_ECC_BCH8_CODE_HW
:
1940 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1941 pr_info("nand: using OMAP_ECC_BCH8_CODE_HW ECC scheme\n");
1942 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1943 nand_chip
->ecc
.size
= 512;
1944 /* 14th bit is kept reserved for ROM-code compatibility */
1945 nand_chip
->ecc
.bytes
= 13 + 1;
1946 nand_chip
->ecc
.strength
= 8;
1947 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1948 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
1949 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1950 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
1951 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
1952 /* This ECC scheme requires ELM H/W block */
1953 err
= is_elm_present(info
, pdata
->elm_of_node
, BCH8_ECC
);
1955 pr_err("nand: error: could not initialize ELM\n");
1958 /* define ECC layout */
1959 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1961 nand_chip
->ecc
.size
);
1962 oob_index
= BADBLOCK_MARKER_LENGTH
;
1963 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++)
1964 ecclayout
->eccpos
[i
] = oob_index
;
1965 /* reserved marker already included in ecclayout->eccbytes */
1966 ecclayout
->oobfree
->offset
=
1967 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
1970 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
1975 case OMAP_ECC_BCH16_CODE_HW
:
1976 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1977 pr_info("using OMAP_ECC_BCH16_CODE_HW ECC scheme\n");
1978 nand_chip
->ecc
.mode
= NAND_ECC_HW
;
1979 nand_chip
->ecc
.size
= 512;
1980 nand_chip
->ecc
.bytes
= 26;
1981 nand_chip
->ecc
.strength
= 16;
1982 nand_chip
->ecc
.hwctl
= omap_enable_hwecc_bch
;
1983 nand_chip
->ecc
.correct
= omap_elm_correct_data
;
1984 nand_chip
->ecc
.calculate
= omap_calculate_ecc_bch
;
1985 nand_chip
->ecc
.read_page
= omap_read_page_bch
;
1986 nand_chip
->ecc
.write_page
= omap_write_page_bch
;
1987 /* This ECC scheme requires ELM H/W block */
1988 err
= is_elm_present(info
, pdata
->elm_of_node
, BCH16_ECC
);
1990 pr_err("ELM is required for this ECC scheme\n");
1993 /* define ECC layout */
1994 ecclayout
->eccbytes
= nand_chip
->ecc
.bytes
*
1996 nand_chip
->ecc
.size
);
1997 oob_index
= BADBLOCK_MARKER_LENGTH
;
1998 for (i
= 0; i
< ecclayout
->eccbytes
; i
++, oob_index
++)
1999 ecclayout
->eccpos
[i
] = oob_index
;
2000 /* reserved marker already included in ecclayout->eccbytes */
2001 ecclayout
->oobfree
->offset
=
2002 ecclayout
->eccpos
[ecclayout
->eccbytes
- 1] + 1;
2005 pr_err("nand: error: CONFIG_MTD_NAND_OMAP_BCH not enabled\n");
2010 pr_err("nand: error: invalid or unsupported ECC scheme\n");
2015 /* all OOB bytes from oobfree->offset till end off OOB are free */
2016 ecclayout
->oobfree
->length
= mtd
->oobsize
- ecclayout
->oobfree
->offset
;
2017 /* check if NAND device's OOB is enough to store ECC signatures */
2018 if (mtd
->oobsize
< (ecclayout
->eccbytes
+ BADBLOCK_MARKER_LENGTH
)) {
2019 pr_err("not enough OOB bytes required = %d, available=%d\n",
2020 ecclayout
->eccbytes
, mtd
->oobsize
);
2025 /* second phase scan */
2026 if (nand_scan_tail(mtd
)) {
2031 ppdata
.of_node
= pdata
->of_node
;
2032 mtd_device_parse_register(mtd
, NULL
, &ppdata
, pdata
->parts
,
2035 platform_set_drvdata(pdev
, mtd
);
2041 dma_release_channel(info
->dma
);
2042 if (nand_chip
->ecc
.priv
) {
2043 nand_bch_free(nand_chip
->ecc
.priv
);
2044 nand_chip
->ecc
.priv
= NULL
;
2049 static int omap_nand_remove(struct platform_device
*pdev
)
2051 struct mtd_info
*mtd
= platform_get_drvdata(pdev
);
2052 struct nand_chip
*nand_chip
= mtd
->priv
;
2053 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
2055 if (nand_chip
->ecc
.priv
) {
2056 nand_bch_free(nand_chip
->ecc
.priv
);
2057 nand_chip
->ecc
.priv
= NULL
;
2060 dma_release_channel(info
->dma
);
2065 static struct platform_driver omap_nand_driver
= {
2066 .probe
= omap_nand_probe
,
2067 .remove
= omap_nand_remove
,
2069 .name
= DRIVER_NAME
,
2070 .owner
= THIS_MODULE
,
2074 module_platform_driver(omap_nand_driver
);
2076 MODULE_ALIAS("platform:" DRIVER_NAME
);
2077 MODULE_LICENSE("GPL");
2078 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");