1 #include <linux/ceph/ceph_debug.h>
3 #include <linux/crc32c.h>
4 #include <linux/ctype.h>
5 #include <linux/highmem.h>
6 #include <linux/inet.h>
7 #include <linux/kthread.h>
9 #include <linux/slab.h>
10 #include <linux/socket.h>
11 #include <linux/string.h>
13 #include <linux/bio.h>
14 #endif /* CONFIG_BLOCK */
15 #include <linux/dns_resolver.h>
18 #include <linux/ceph/ceph_features.h>
19 #include <linux/ceph/libceph.h>
20 #include <linux/ceph/messenger.h>
21 #include <linux/ceph/decode.h>
22 #include <linux/ceph/pagelist.h>
23 #include <linux/export.h>
25 #define list_entry_next(pos, member) \
26 list_entry(pos->member.next, typeof(*pos), member)
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
44 * | NEW* | transient initial state
46 * | con_sock_state_init()
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
52 * | \ con_sock_state_connecting()
53 * | ----------------------
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
63 * | + con_sock_state_closing() \ |
65 * | / --------------- | |
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
73 * | CONNECTED | TCP connection established
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
96 * ceph_connection flag bits
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105 static bool con_flag_valid(unsigned long con_flag
)
108 case CON_FLAG_LOSSYTX
:
109 case CON_FLAG_KEEPALIVE_PENDING
:
110 case CON_FLAG_WRITE_PENDING
:
111 case CON_FLAG_SOCK_CLOSED
:
112 case CON_FLAG_BACKOFF
:
119 static void con_flag_clear(struct ceph_connection
*con
, unsigned long con_flag
)
121 BUG_ON(!con_flag_valid(con_flag
));
123 clear_bit(con_flag
, &con
->flags
);
126 static void con_flag_set(struct ceph_connection
*con
, unsigned long con_flag
)
128 BUG_ON(!con_flag_valid(con_flag
));
130 set_bit(con_flag
, &con
->flags
);
133 static bool con_flag_test(struct ceph_connection
*con
, unsigned long con_flag
)
135 BUG_ON(!con_flag_valid(con_flag
));
137 return test_bit(con_flag
, &con
->flags
);
140 static bool con_flag_test_and_clear(struct ceph_connection
*con
,
141 unsigned long con_flag
)
143 BUG_ON(!con_flag_valid(con_flag
));
145 return test_and_clear_bit(con_flag
, &con
->flags
);
148 static bool con_flag_test_and_set(struct ceph_connection
*con
,
149 unsigned long con_flag
)
151 BUG_ON(!con_flag_valid(con_flag
));
153 return test_and_set_bit(con_flag
, &con
->flags
);
156 /* Slab caches for frequently-allocated structures */
158 static struct kmem_cache
*ceph_msg_cache
;
159 static struct kmem_cache
*ceph_msg_data_cache
;
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
163 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
164 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
166 #ifdef CONFIG_LOCKDEP
167 static struct lock_class_key socket_class
;
171 * When skipping (ignoring) a block of input we read it into a "skip
172 * buffer," which is this many bytes in size.
174 #define SKIP_BUF_SIZE 1024
176 static void queue_con(struct ceph_connection
*con
);
177 static void con_work(struct work_struct
*);
178 static void con_fault(struct ceph_connection
*con
);
181 * Nicely render a sockaddr as a string. An array of formatted
182 * strings is used, to approximate reentrancy.
184 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
185 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
186 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
187 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
189 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
190 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
192 static struct page
*zero_page
; /* used in certain error cases */
194 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
198 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
199 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
201 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
204 switch (ss
->ss_family
) {
206 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%hu", &in4
->sin_addr
,
207 ntohs(in4
->sin_port
));
211 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%hu", &in6
->sin6_addr
,
212 ntohs(in6
->sin6_port
));
216 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
222 EXPORT_SYMBOL(ceph_pr_addr
);
224 static void encode_my_addr(struct ceph_messenger
*msgr
)
226 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
227 ceph_encode_addr(&msgr
->my_enc_addr
);
231 * work queue for all reading and writing to/from the socket.
233 static struct workqueue_struct
*ceph_msgr_wq
;
235 static int ceph_msgr_slab_init(void)
237 BUG_ON(ceph_msg_cache
);
238 ceph_msg_cache
= kmem_cache_create("ceph_msg",
239 sizeof (struct ceph_msg
),
240 __alignof__(struct ceph_msg
), 0, NULL
);
245 BUG_ON(ceph_msg_data_cache
);
246 ceph_msg_data_cache
= kmem_cache_create("ceph_msg_data",
247 sizeof (struct ceph_msg_data
),
248 __alignof__(struct ceph_msg_data
),
250 if (ceph_msg_data_cache
)
253 kmem_cache_destroy(ceph_msg_cache
);
254 ceph_msg_cache
= NULL
;
259 static void ceph_msgr_slab_exit(void)
261 BUG_ON(!ceph_msg_data_cache
);
262 kmem_cache_destroy(ceph_msg_data_cache
);
263 ceph_msg_data_cache
= NULL
;
265 BUG_ON(!ceph_msg_cache
);
266 kmem_cache_destroy(ceph_msg_cache
);
267 ceph_msg_cache
= NULL
;
270 static void _ceph_msgr_exit(void)
273 destroy_workqueue(ceph_msgr_wq
);
277 ceph_msgr_slab_exit();
279 BUG_ON(zero_page
== NULL
);
281 page_cache_release(zero_page
);
285 int ceph_msgr_init(void)
287 BUG_ON(zero_page
!= NULL
);
288 zero_page
= ZERO_PAGE(0);
289 page_cache_get(zero_page
);
291 if (ceph_msgr_slab_init())
294 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", 0, 0);
298 pr_err("msgr_init failed to create workqueue\n");
303 EXPORT_SYMBOL(ceph_msgr_init
);
305 void ceph_msgr_exit(void)
307 BUG_ON(ceph_msgr_wq
== NULL
);
311 EXPORT_SYMBOL(ceph_msgr_exit
);
313 void ceph_msgr_flush(void)
315 flush_workqueue(ceph_msgr_wq
);
317 EXPORT_SYMBOL(ceph_msgr_flush
);
319 /* Connection socket state transition functions */
321 static void con_sock_state_init(struct ceph_connection
*con
)
325 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
326 if (WARN_ON(old_state
!= CON_SOCK_STATE_NEW
))
327 printk("%s: unexpected old state %d\n", __func__
, old_state
);
328 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
329 CON_SOCK_STATE_CLOSED
);
332 static void con_sock_state_connecting(struct ceph_connection
*con
)
336 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTING
);
337 if (WARN_ON(old_state
!= CON_SOCK_STATE_CLOSED
))
338 printk("%s: unexpected old state %d\n", __func__
, old_state
);
339 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
340 CON_SOCK_STATE_CONNECTING
);
343 static void con_sock_state_connected(struct ceph_connection
*con
)
347 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTED
);
348 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
))
349 printk("%s: unexpected old state %d\n", __func__
, old_state
);
350 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
351 CON_SOCK_STATE_CONNECTED
);
354 static void con_sock_state_closing(struct ceph_connection
*con
)
358 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSING
);
359 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
&&
360 old_state
!= CON_SOCK_STATE_CONNECTED
&&
361 old_state
!= CON_SOCK_STATE_CLOSING
))
362 printk("%s: unexpected old state %d\n", __func__
, old_state
);
363 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
364 CON_SOCK_STATE_CLOSING
);
367 static void con_sock_state_closed(struct ceph_connection
*con
)
371 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
372 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTED
&&
373 old_state
!= CON_SOCK_STATE_CLOSING
&&
374 old_state
!= CON_SOCK_STATE_CONNECTING
&&
375 old_state
!= CON_SOCK_STATE_CLOSED
))
376 printk("%s: unexpected old state %d\n", __func__
, old_state
);
377 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
378 CON_SOCK_STATE_CLOSED
);
382 * socket callback functions
385 /* data available on socket, or listen socket received a connect */
386 static void ceph_sock_data_ready(struct sock
*sk
)
388 struct ceph_connection
*con
= sk
->sk_user_data
;
389 if (atomic_read(&con
->msgr
->stopping
)) {
393 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
394 dout("%s on %p state = %lu, queueing work\n", __func__
,
400 /* socket has buffer space for writing */
401 static void ceph_sock_write_space(struct sock
*sk
)
403 struct ceph_connection
*con
= sk
->sk_user_data
;
405 /* only queue to workqueue if there is data we want to write,
406 * and there is sufficient space in the socket buffer to accept
407 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
408 * doesn't get called again until try_write() fills the socket
409 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
410 * and net/core/stream.c:sk_stream_write_space().
412 if (con_flag_test(con
, CON_FLAG_WRITE_PENDING
)) {
413 if (sk_stream_is_writeable(sk
)) {
414 dout("%s %p queueing write work\n", __func__
, con
);
415 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
419 dout("%s %p nothing to write\n", __func__
, con
);
423 /* socket's state has changed */
424 static void ceph_sock_state_change(struct sock
*sk
)
426 struct ceph_connection
*con
= sk
->sk_user_data
;
428 dout("%s %p state = %lu sk_state = %u\n", __func__
,
429 con
, con
->state
, sk
->sk_state
);
431 switch (sk
->sk_state
) {
433 dout("%s TCP_CLOSE\n", __func__
);
435 dout("%s TCP_CLOSE_WAIT\n", __func__
);
436 con_sock_state_closing(con
);
437 con_flag_set(con
, CON_FLAG_SOCK_CLOSED
);
440 case TCP_ESTABLISHED
:
441 dout("%s TCP_ESTABLISHED\n", __func__
);
442 con_sock_state_connected(con
);
445 default: /* Everything else is uninteresting */
451 * set up socket callbacks
453 static void set_sock_callbacks(struct socket
*sock
,
454 struct ceph_connection
*con
)
456 struct sock
*sk
= sock
->sk
;
457 sk
->sk_user_data
= con
;
458 sk
->sk_data_ready
= ceph_sock_data_ready
;
459 sk
->sk_write_space
= ceph_sock_write_space
;
460 sk
->sk_state_change
= ceph_sock_state_change
;
469 * initiate connection to a remote socket.
471 static int ceph_tcp_connect(struct ceph_connection
*con
)
473 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
478 ret
= sock_create_kern(con
->peer_addr
.in_addr
.ss_family
, SOCK_STREAM
,
482 sock
->sk
->sk_allocation
= GFP_NOFS
;
484 #ifdef CONFIG_LOCKDEP
485 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
488 set_sock_callbacks(sock
, con
);
490 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
492 con_sock_state_connecting(con
);
493 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
495 if (ret
== -EINPROGRESS
) {
496 dout("connect %s EINPROGRESS sk_state = %u\n",
497 ceph_pr_addr(&con
->peer_addr
.in_addr
),
499 } else if (ret
< 0) {
500 pr_err("connect %s error %d\n",
501 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
503 con
->error_msg
= "connect error";
511 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
513 struct kvec iov
= {buf
, len
};
514 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
517 r
= kernel_recvmsg(sock
, &msg
, &iov
, 1, len
, msg
.msg_flags
);
523 static int ceph_tcp_recvpage(struct socket
*sock
, struct page
*page
,
524 int page_offset
, size_t length
)
529 BUG_ON(page_offset
+ length
> PAGE_SIZE
);
533 ret
= ceph_tcp_recvmsg(sock
, kaddr
+ page_offset
, length
);
540 * write something. @more is true if caller will be sending more data
543 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
544 size_t kvlen
, size_t len
, int more
)
546 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
550 msg
.msg_flags
|= MSG_MORE
;
552 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
554 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
560 static int __ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
561 int offset
, size_t size
, bool more
)
563 int flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
| (more
? MSG_MORE
: MSG_EOR
);
566 ret
= kernel_sendpage(sock
, page
, offset
, size
, flags
);
573 static int ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
574 int offset
, size_t size
, bool more
)
579 /* sendpage cannot properly handle pages with page_count == 0,
580 * we need to fallback to sendmsg if that's the case */
581 if (page_count(page
) >= 1)
582 return __ceph_tcp_sendpage(sock
, page
, offset
, size
, more
);
584 iov
.iov_base
= kmap(page
) + offset
;
586 ret
= ceph_tcp_sendmsg(sock
, &iov
, 1, size
, more
);
593 * Shutdown/close the socket for the given connection.
595 static int con_close_socket(struct ceph_connection
*con
)
599 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
601 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
602 sock_release(con
->sock
);
607 * Forcibly clear the SOCK_CLOSED flag. It gets set
608 * independent of the connection mutex, and we could have
609 * received a socket close event before we had the chance to
610 * shut the socket down.
612 con_flag_clear(con
, CON_FLAG_SOCK_CLOSED
);
614 con_sock_state_closed(con
);
619 * Reset a connection. Discard all incoming and outgoing messages
620 * and clear *_seq state.
622 static void ceph_msg_remove(struct ceph_msg
*msg
)
624 list_del_init(&msg
->list_head
);
625 BUG_ON(msg
->con
== NULL
);
626 msg
->con
->ops
->put(msg
->con
);
631 static void ceph_msg_remove_list(struct list_head
*head
)
633 while (!list_empty(head
)) {
634 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
636 ceph_msg_remove(msg
);
640 static void reset_connection(struct ceph_connection
*con
)
642 /* reset connection, out_queue, msg_ and connect_seq */
643 /* discard existing out_queue and msg_seq */
644 dout("reset_connection %p\n", con
);
645 ceph_msg_remove_list(&con
->out_queue
);
646 ceph_msg_remove_list(&con
->out_sent
);
649 BUG_ON(con
->in_msg
->con
!= con
);
650 con
->in_msg
->con
= NULL
;
651 ceph_msg_put(con
->in_msg
);
656 con
->connect_seq
= 0;
659 ceph_msg_put(con
->out_msg
);
663 con
->in_seq_acked
= 0;
667 * mark a peer down. drop any open connections.
669 void ceph_con_close(struct ceph_connection
*con
)
671 mutex_lock(&con
->mutex
);
672 dout("con_close %p peer %s\n", con
,
673 ceph_pr_addr(&con
->peer_addr
.in_addr
));
674 con
->state
= CON_STATE_CLOSED
;
676 con_flag_clear(con
, CON_FLAG_LOSSYTX
); /* so we retry next connect */
677 con_flag_clear(con
, CON_FLAG_KEEPALIVE_PENDING
);
678 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
679 con_flag_clear(con
, CON_FLAG_BACKOFF
);
681 reset_connection(con
);
682 con
->peer_global_seq
= 0;
683 cancel_delayed_work(&con
->work
);
684 con_close_socket(con
);
685 mutex_unlock(&con
->mutex
);
687 EXPORT_SYMBOL(ceph_con_close
);
690 * Reopen a closed connection, with a new peer address.
692 void ceph_con_open(struct ceph_connection
*con
,
693 __u8 entity_type
, __u64 entity_num
,
694 struct ceph_entity_addr
*addr
)
696 mutex_lock(&con
->mutex
);
697 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
699 WARN_ON(con
->state
!= CON_STATE_CLOSED
);
700 con
->state
= CON_STATE_PREOPEN
;
702 con
->peer_name
.type
= (__u8
) entity_type
;
703 con
->peer_name
.num
= cpu_to_le64(entity_num
);
705 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
706 con
->delay
= 0; /* reset backoff memory */
707 mutex_unlock(&con
->mutex
);
710 EXPORT_SYMBOL(ceph_con_open
);
713 * return true if this connection ever successfully opened
715 bool ceph_con_opened(struct ceph_connection
*con
)
717 return con
->connect_seq
> 0;
721 * initialize a new connection.
723 void ceph_con_init(struct ceph_connection
*con
, void *private,
724 const struct ceph_connection_operations
*ops
,
725 struct ceph_messenger
*msgr
)
727 dout("con_init %p\n", con
);
728 memset(con
, 0, sizeof(*con
));
729 con
->private = private;
733 con_sock_state_init(con
);
735 mutex_init(&con
->mutex
);
736 INIT_LIST_HEAD(&con
->out_queue
);
737 INIT_LIST_HEAD(&con
->out_sent
);
738 INIT_DELAYED_WORK(&con
->work
, con_work
);
740 con
->state
= CON_STATE_CLOSED
;
742 EXPORT_SYMBOL(ceph_con_init
);
746 * We maintain a global counter to order connection attempts. Get
747 * a unique seq greater than @gt.
749 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
753 spin_lock(&msgr
->global_seq_lock
);
754 if (msgr
->global_seq
< gt
)
755 msgr
->global_seq
= gt
;
756 ret
= ++msgr
->global_seq
;
757 spin_unlock(&msgr
->global_seq_lock
);
761 static void con_out_kvec_reset(struct ceph_connection
*con
)
763 con
->out_kvec_left
= 0;
764 con
->out_kvec_bytes
= 0;
765 con
->out_kvec_cur
= &con
->out_kvec
[0];
768 static void con_out_kvec_add(struct ceph_connection
*con
,
769 size_t size
, void *data
)
773 index
= con
->out_kvec_left
;
774 BUG_ON(index
>= ARRAY_SIZE(con
->out_kvec
));
776 con
->out_kvec
[index
].iov_len
= size
;
777 con
->out_kvec
[index
].iov_base
= data
;
778 con
->out_kvec_left
++;
779 con
->out_kvec_bytes
+= size
;
785 * For a bio data item, a piece is whatever remains of the next
786 * entry in the current bio iovec, or the first entry in the next
789 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor
*cursor
,
792 struct ceph_msg_data
*data
= cursor
->data
;
795 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
800 cursor
->resid
= min(length
, data
->bio_length
);
802 cursor
->bvec_iter
= bio
->bi_iter
;
804 cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
);
807 static struct page
*ceph_msg_data_bio_next(struct ceph_msg_data_cursor
*cursor
,
811 struct ceph_msg_data
*data
= cursor
->data
;
813 struct bio_vec bio_vec
;
815 BUG_ON(data
->type
!= CEPH_MSG_DATA_BIO
);
820 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
822 *page_offset
= (size_t) bio_vec
.bv_offset
;
823 BUG_ON(*page_offset
>= PAGE_SIZE
);
824 if (cursor
->last_piece
) /* pagelist offset is always 0 */
825 *length
= cursor
->resid
;
827 *length
= (size_t) bio_vec
.bv_len
;
828 BUG_ON(*length
> cursor
->resid
);
829 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
831 return bio_vec
.bv_page
;
834 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor
*cursor
,
838 struct bio_vec bio_vec
;
840 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_BIO
);
845 bio_vec
= bio_iter_iovec(bio
, cursor
->bvec_iter
);
847 /* Advance the cursor offset */
849 BUG_ON(cursor
->resid
< bytes
);
850 cursor
->resid
-= bytes
;
852 bio_advance_iter(bio
, &cursor
->bvec_iter
, bytes
);
854 if (bytes
< bio_vec
.bv_len
)
855 return false; /* more bytes to process in this segment */
857 /* Move on to the next segment, and possibly the next bio */
859 if (!cursor
->bvec_iter
.bi_size
) {
863 cursor
->bvec_iter
= bio
->bi_iter
;
865 memset(&cursor
->bvec_iter
, 0,
866 sizeof(cursor
->bvec_iter
));
869 if (!cursor
->last_piece
) {
870 BUG_ON(!cursor
->resid
);
872 /* A short read is OK, so use <= rather than == */
873 if (cursor
->resid
<= bio_iter_len(bio
, cursor
->bvec_iter
))
874 cursor
->last_piece
= true;
879 #endif /* CONFIG_BLOCK */
882 * For a page array, a piece comes from the first page in the array
883 * that has not already been fully consumed.
885 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor
*cursor
,
888 struct ceph_msg_data
*data
= cursor
->data
;
891 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
893 BUG_ON(!data
->pages
);
894 BUG_ON(!data
->length
);
896 cursor
->resid
= min(length
, data
->length
);
897 page_count
= calc_pages_for(data
->alignment
, (u64
)data
->length
);
898 cursor
->page_offset
= data
->alignment
& ~PAGE_MASK
;
899 cursor
->page_index
= 0;
900 BUG_ON(page_count
> (int)USHRT_MAX
);
901 cursor
->page_count
= (unsigned short)page_count
;
902 BUG_ON(length
> SIZE_MAX
- cursor
->page_offset
);
903 cursor
->last_piece
= (size_t)cursor
->page_offset
+ length
<= PAGE_SIZE
;
907 ceph_msg_data_pages_next(struct ceph_msg_data_cursor
*cursor
,
908 size_t *page_offset
, size_t *length
)
910 struct ceph_msg_data
*data
= cursor
->data
;
912 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
914 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
915 BUG_ON(cursor
->page_offset
>= PAGE_SIZE
);
917 *page_offset
= cursor
->page_offset
;
918 if (cursor
->last_piece
)
919 *length
= cursor
->resid
;
921 *length
= PAGE_SIZE
- *page_offset
;
923 return data
->pages
[cursor
->page_index
];
926 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor
*cursor
,
929 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_PAGES
);
931 BUG_ON(cursor
->page_offset
+ bytes
> PAGE_SIZE
);
933 /* Advance the cursor page offset */
935 cursor
->resid
-= bytes
;
936 cursor
->page_offset
= (cursor
->page_offset
+ bytes
) & ~PAGE_MASK
;
937 if (!bytes
|| cursor
->page_offset
)
938 return false; /* more bytes to process in the current page */
941 return false; /* no more data */
943 /* Move on to the next page; offset is already at 0 */
945 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
946 cursor
->page_index
++;
947 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
953 * For a pagelist, a piece is whatever remains to be consumed in the
954 * first page in the list, or the front of the next page.
957 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor
*cursor
,
960 struct ceph_msg_data
*data
= cursor
->data
;
961 struct ceph_pagelist
*pagelist
;
964 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
966 pagelist
= data
->pagelist
;
970 return; /* pagelist can be assigned but empty */
972 BUG_ON(list_empty(&pagelist
->head
));
973 page
= list_first_entry(&pagelist
->head
, struct page
, lru
);
975 cursor
->resid
= min(length
, pagelist
->length
);
978 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
982 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor
*cursor
,
983 size_t *page_offset
, size_t *length
)
985 struct ceph_msg_data
*data
= cursor
->data
;
986 struct ceph_pagelist
*pagelist
;
988 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
990 pagelist
= data
->pagelist
;
993 BUG_ON(!cursor
->page
);
994 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
996 /* offset of first page in pagelist is always 0 */
997 *page_offset
= cursor
->offset
& ~PAGE_MASK
;
998 if (cursor
->last_piece
)
999 *length
= cursor
->resid
;
1001 *length
= PAGE_SIZE
- *page_offset
;
1003 return cursor
->page
;
1006 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor
*cursor
,
1009 struct ceph_msg_data
*data
= cursor
->data
;
1010 struct ceph_pagelist
*pagelist
;
1012 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1014 pagelist
= data
->pagelist
;
1017 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1018 BUG_ON((cursor
->offset
& ~PAGE_MASK
) + bytes
> PAGE_SIZE
);
1020 /* Advance the cursor offset */
1022 cursor
->resid
-= bytes
;
1023 cursor
->offset
+= bytes
;
1024 /* offset of first page in pagelist is always 0 */
1025 if (!bytes
|| cursor
->offset
& ~PAGE_MASK
)
1026 return false; /* more bytes to process in the current page */
1029 return false; /* no more data */
1031 /* Move on to the next page */
1033 BUG_ON(list_is_last(&cursor
->page
->lru
, &pagelist
->head
));
1034 cursor
->page
= list_entry_next(cursor
->page
, lru
);
1035 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1041 * Message data is handled (sent or received) in pieces, where each
1042 * piece resides on a single page. The network layer might not
1043 * consume an entire piece at once. A data item's cursor keeps
1044 * track of which piece is next to process and how much remains to
1045 * be processed in that piece. It also tracks whether the current
1046 * piece is the last one in the data item.
1048 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
)
1050 size_t length
= cursor
->total_resid
;
1052 switch (cursor
->data
->type
) {
1053 case CEPH_MSG_DATA_PAGELIST
:
1054 ceph_msg_data_pagelist_cursor_init(cursor
, length
);
1056 case CEPH_MSG_DATA_PAGES
:
1057 ceph_msg_data_pages_cursor_init(cursor
, length
);
1060 case CEPH_MSG_DATA_BIO
:
1061 ceph_msg_data_bio_cursor_init(cursor
, length
);
1063 #endif /* CONFIG_BLOCK */
1064 case CEPH_MSG_DATA_NONE
:
1069 cursor
->need_crc
= true;
1072 static void ceph_msg_data_cursor_init(struct ceph_msg
*msg
, size_t length
)
1074 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1075 struct ceph_msg_data
*data
;
1078 BUG_ON(length
> msg
->data_length
);
1079 BUG_ON(list_empty(&msg
->data
));
1081 cursor
->data_head
= &msg
->data
;
1082 cursor
->total_resid
= length
;
1083 data
= list_first_entry(&msg
->data
, struct ceph_msg_data
, links
);
1084 cursor
->data
= data
;
1086 __ceph_msg_data_cursor_init(cursor
);
1090 * Return the page containing the next piece to process for a given
1091 * data item, and supply the page offset and length of that piece.
1092 * Indicate whether this is the last piece in this data item.
1094 static struct page
*ceph_msg_data_next(struct ceph_msg_data_cursor
*cursor
,
1095 size_t *page_offset
, size_t *length
,
1100 switch (cursor
->data
->type
) {
1101 case CEPH_MSG_DATA_PAGELIST
:
1102 page
= ceph_msg_data_pagelist_next(cursor
, page_offset
, length
);
1104 case CEPH_MSG_DATA_PAGES
:
1105 page
= ceph_msg_data_pages_next(cursor
, page_offset
, length
);
1108 case CEPH_MSG_DATA_BIO
:
1109 page
= ceph_msg_data_bio_next(cursor
, page_offset
, length
);
1111 #endif /* CONFIG_BLOCK */
1112 case CEPH_MSG_DATA_NONE
:
1118 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
1121 *last_piece
= cursor
->last_piece
;
1127 * Returns true if the result moves the cursor on to the next piece
1130 static bool ceph_msg_data_advance(struct ceph_msg_data_cursor
*cursor
,
1135 BUG_ON(bytes
> cursor
->resid
);
1136 switch (cursor
->data
->type
) {
1137 case CEPH_MSG_DATA_PAGELIST
:
1138 new_piece
= ceph_msg_data_pagelist_advance(cursor
, bytes
);
1140 case CEPH_MSG_DATA_PAGES
:
1141 new_piece
= ceph_msg_data_pages_advance(cursor
, bytes
);
1144 case CEPH_MSG_DATA_BIO
:
1145 new_piece
= ceph_msg_data_bio_advance(cursor
, bytes
);
1147 #endif /* CONFIG_BLOCK */
1148 case CEPH_MSG_DATA_NONE
:
1153 cursor
->total_resid
-= bytes
;
1155 if (!cursor
->resid
&& cursor
->total_resid
) {
1156 WARN_ON(!cursor
->last_piece
);
1157 BUG_ON(list_is_last(&cursor
->data
->links
, cursor
->data_head
));
1158 cursor
->data
= list_entry_next(cursor
->data
, links
);
1159 __ceph_msg_data_cursor_init(cursor
);
1162 cursor
->need_crc
= new_piece
;
1167 static void prepare_message_data(struct ceph_msg
*msg
, u32 data_len
)
1172 /* Initialize data cursor */
1174 ceph_msg_data_cursor_init(msg
, (size_t)data_len
);
1178 * Prepare footer for currently outgoing message, and finish things
1179 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1181 static void prepare_write_message_footer(struct ceph_connection
*con
)
1183 struct ceph_msg
*m
= con
->out_msg
;
1184 int v
= con
->out_kvec_left
;
1186 m
->footer
.flags
|= CEPH_MSG_FOOTER_COMPLETE
;
1188 dout("prepare_write_message_footer %p\n", con
);
1189 con
->out_kvec_is_msg
= true;
1190 con
->out_kvec
[v
].iov_base
= &m
->footer
;
1191 con
->out_kvec
[v
].iov_len
= sizeof(m
->footer
);
1192 con
->out_kvec_bytes
+= sizeof(m
->footer
);
1193 con
->out_kvec_left
++;
1194 con
->out_more
= m
->more_to_follow
;
1195 con
->out_msg_done
= true;
1199 * Prepare headers for the next outgoing message.
1201 static void prepare_write_message(struct ceph_connection
*con
)
1206 con_out_kvec_reset(con
);
1207 con
->out_kvec_is_msg
= true;
1208 con
->out_msg_done
= false;
1210 /* Sneak an ack in there first? If we can get it into the same
1211 * TCP packet that's a good thing. */
1212 if (con
->in_seq
> con
->in_seq_acked
) {
1213 con
->in_seq_acked
= con
->in_seq
;
1214 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1215 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1216 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1217 &con
->out_temp_ack
);
1220 BUG_ON(list_empty(&con
->out_queue
));
1221 m
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
1223 BUG_ON(m
->con
!= con
);
1225 /* put message on sent list */
1227 list_move_tail(&m
->list_head
, &con
->out_sent
);
1230 * only assign outgoing seq # if we haven't sent this message
1231 * yet. if it is requeued, resend with it's original seq.
1233 if (m
->needs_out_seq
) {
1234 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
1235 m
->needs_out_seq
= false;
1237 WARN_ON(m
->data_length
!= le32_to_cpu(m
->hdr
.data_len
));
1239 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1240 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
1241 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
1243 BUG_ON(le32_to_cpu(m
->hdr
.front_len
) != m
->front
.iov_len
);
1245 /* tag + hdr + front + middle */
1246 con_out_kvec_add(con
, sizeof (tag_msg
), &tag_msg
);
1247 con_out_kvec_add(con
, sizeof (m
->hdr
), &m
->hdr
);
1248 con_out_kvec_add(con
, m
->front
.iov_len
, m
->front
.iov_base
);
1251 con_out_kvec_add(con
, m
->middle
->vec
.iov_len
,
1252 m
->middle
->vec
.iov_base
);
1254 /* fill in crc (except data pages), footer */
1255 crc
= crc32c(0, &m
->hdr
, offsetof(struct ceph_msg_header
, crc
));
1256 con
->out_msg
->hdr
.crc
= cpu_to_le32(crc
);
1257 con
->out_msg
->footer
.flags
= 0;
1259 crc
= crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
);
1260 con
->out_msg
->footer
.front_crc
= cpu_to_le32(crc
);
1262 crc
= crc32c(0, m
->middle
->vec
.iov_base
,
1263 m
->middle
->vec
.iov_len
);
1264 con
->out_msg
->footer
.middle_crc
= cpu_to_le32(crc
);
1266 con
->out_msg
->footer
.middle_crc
= 0;
1267 dout("%s front_crc %u middle_crc %u\n", __func__
,
1268 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
1269 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
1271 /* is there a data payload? */
1272 con
->out_msg
->footer
.data_crc
= 0;
1273 if (m
->data_length
) {
1274 prepare_message_data(con
->out_msg
, m
->data_length
);
1275 con
->out_more
= 1; /* data + footer will follow */
1277 /* no, queue up footer too and be done */
1278 prepare_write_message_footer(con
);
1281 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1287 static void prepare_write_ack(struct ceph_connection
*con
)
1289 dout("prepare_write_ack %p %llu -> %llu\n", con
,
1290 con
->in_seq_acked
, con
->in_seq
);
1291 con
->in_seq_acked
= con
->in_seq
;
1293 con_out_kvec_reset(con
);
1295 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1297 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1298 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1299 &con
->out_temp_ack
);
1301 con
->out_more
= 1; /* more will follow.. eventually.. */
1302 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1306 * Prepare to share the seq during handshake
1308 static void prepare_write_seq(struct ceph_connection
*con
)
1310 dout("prepare_write_seq %p %llu -> %llu\n", con
,
1311 con
->in_seq_acked
, con
->in_seq
);
1312 con
->in_seq_acked
= con
->in_seq
;
1314 con_out_kvec_reset(con
);
1316 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1317 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1318 &con
->out_temp_ack
);
1320 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1324 * Prepare to write keepalive byte.
1326 static void prepare_write_keepalive(struct ceph_connection
*con
)
1328 dout("prepare_write_keepalive %p\n", con
);
1329 con_out_kvec_reset(con
);
1330 con_out_kvec_add(con
, sizeof (tag_keepalive
), &tag_keepalive
);
1331 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1335 * Connection negotiation.
1338 static struct ceph_auth_handshake
*get_connect_authorizer(struct ceph_connection
*con
,
1341 struct ceph_auth_handshake
*auth
;
1343 if (!con
->ops
->get_authorizer
) {
1344 con
->out_connect
.authorizer_protocol
= CEPH_AUTH_UNKNOWN
;
1345 con
->out_connect
.authorizer_len
= 0;
1349 /* Can't hold the mutex while getting authorizer */
1350 mutex_unlock(&con
->mutex
);
1351 auth
= con
->ops
->get_authorizer(con
, auth_proto
, con
->auth_retry
);
1352 mutex_lock(&con
->mutex
);
1356 if (con
->state
!= CON_STATE_NEGOTIATING
)
1357 return ERR_PTR(-EAGAIN
);
1359 con
->auth_reply_buf
= auth
->authorizer_reply_buf
;
1360 con
->auth_reply_buf_len
= auth
->authorizer_reply_buf_len
;
1365 * We connected to a peer and are saying hello.
1367 static void prepare_write_banner(struct ceph_connection
*con
)
1369 con_out_kvec_add(con
, strlen(CEPH_BANNER
), CEPH_BANNER
);
1370 con_out_kvec_add(con
, sizeof (con
->msgr
->my_enc_addr
),
1371 &con
->msgr
->my_enc_addr
);
1374 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1377 static int prepare_write_connect(struct ceph_connection
*con
)
1379 unsigned int global_seq
= get_global_seq(con
->msgr
, 0);
1382 struct ceph_auth_handshake
*auth
;
1384 switch (con
->peer_name
.type
) {
1385 case CEPH_ENTITY_TYPE_MON
:
1386 proto
= CEPH_MONC_PROTOCOL
;
1388 case CEPH_ENTITY_TYPE_OSD
:
1389 proto
= CEPH_OSDC_PROTOCOL
;
1391 case CEPH_ENTITY_TYPE_MDS
:
1392 proto
= CEPH_MDSC_PROTOCOL
;
1398 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
1399 con
->connect_seq
, global_seq
, proto
);
1401 con
->out_connect
.features
= cpu_to_le64(con
->msgr
->supported_features
);
1402 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
1403 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
1404 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
1405 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
1406 con
->out_connect
.flags
= 0;
1408 auth_proto
= CEPH_AUTH_UNKNOWN
;
1409 auth
= get_connect_authorizer(con
, &auth_proto
);
1411 return PTR_ERR(auth
);
1413 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_proto
);
1414 con
->out_connect
.authorizer_len
= auth
?
1415 cpu_to_le32(auth
->authorizer_buf_len
) : 0;
1417 con_out_kvec_add(con
, sizeof (con
->out_connect
),
1419 if (auth
&& auth
->authorizer_buf_len
)
1420 con_out_kvec_add(con
, auth
->authorizer_buf_len
,
1421 auth
->authorizer_buf
);
1424 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1430 * write as much of pending kvecs to the socket as we can.
1432 * 0 -> socket full, but more to do
1435 static int write_partial_kvec(struct ceph_connection
*con
)
1439 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
1440 while (con
->out_kvec_bytes
> 0) {
1441 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
1442 con
->out_kvec_left
, con
->out_kvec_bytes
,
1446 con
->out_kvec_bytes
-= ret
;
1447 if (con
->out_kvec_bytes
== 0)
1450 /* account for full iov entries consumed */
1451 while (ret
>= con
->out_kvec_cur
->iov_len
) {
1452 BUG_ON(!con
->out_kvec_left
);
1453 ret
-= con
->out_kvec_cur
->iov_len
;
1454 con
->out_kvec_cur
++;
1455 con
->out_kvec_left
--;
1457 /* and for a partially-consumed entry */
1459 con
->out_kvec_cur
->iov_len
-= ret
;
1460 con
->out_kvec_cur
->iov_base
+= ret
;
1463 con
->out_kvec_left
= 0;
1464 con
->out_kvec_is_msg
= false;
1467 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
1468 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
1469 return ret
; /* done! */
1472 static u32
ceph_crc32c_page(u32 crc
, struct page
*page
,
1473 unsigned int page_offset
,
1474 unsigned int length
)
1479 BUG_ON(kaddr
== NULL
);
1480 crc
= crc32c(crc
, kaddr
+ page_offset
, length
);
1486 * Write as much message data payload as we can. If we finish, queue
1488 * 1 -> done, footer is now queued in out_kvec[].
1489 * 0 -> socket full, but more to do
1492 static int write_partial_message_data(struct ceph_connection
*con
)
1494 struct ceph_msg
*msg
= con
->out_msg
;
1495 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1496 bool do_datacrc
= !con
->msgr
->nocrc
;
1499 dout("%s %p msg %p\n", __func__
, con
, msg
);
1501 if (list_empty(&msg
->data
))
1505 * Iterate through each page that contains data to be
1506 * written, and send as much as possible for each.
1508 * If we are calculating the data crc (the default), we will
1509 * need to map the page. If we have no pages, they have
1510 * been revoked, so use the zero page.
1512 crc
= do_datacrc
? le32_to_cpu(msg
->footer
.data_crc
) : 0;
1513 while (cursor
->resid
) {
1521 page
= ceph_msg_data_next(&msg
->cursor
, &page_offset
, &length
,
1523 ret
= ceph_tcp_sendpage(con
->sock
, page
, page_offset
,
1524 length
, last_piece
);
1527 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1531 if (do_datacrc
&& cursor
->need_crc
)
1532 crc
= ceph_crc32c_page(crc
, page
, page_offset
, length
);
1533 need_crc
= ceph_msg_data_advance(&msg
->cursor
, (size_t)ret
);
1536 dout("%s %p msg %p done\n", __func__
, con
, msg
);
1538 /* prepare and queue up footer, too */
1540 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1542 msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
1543 con_out_kvec_reset(con
);
1544 prepare_write_message_footer(con
);
1546 return 1; /* must return > 0 to indicate success */
1552 static int write_partial_skip(struct ceph_connection
*con
)
1556 while (con
->out_skip
> 0) {
1557 size_t size
= min(con
->out_skip
, (int) PAGE_CACHE_SIZE
);
1559 ret
= ceph_tcp_sendpage(con
->sock
, zero_page
, 0, size
, true);
1562 con
->out_skip
-= ret
;
1570 * Prepare to read connection handshake, or an ack.
1572 static void prepare_read_banner(struct ceph_connection
*con
)
1574 dout("prepare_read_banner %p\n", con
);
1575 con
->in_base_pos
= 0;
1578 static void prepare_read_connect(struct ceph_connection
*con
)
1580 dout("prepare_read_connect %p\n", con
);
1581 con
->in_base_pos
= 0;
1584 static void prepare_read_ack(struct ceph_connection
*con
)
1586 dout("prepare_read_ack %p\n", con
);
1587 con
->in_base_pos
= 0;
1590 static void prepare_read_seq(struct ceph_connection
*con
)
1592 dout("prepare_read_seq %p\n", con
);
1593 con
->in_base_pos
= 0;
1594 con
->in_tag
= CEPH_MSGR_TAG_SEQ
;
1597 static void prepare_read_tag(struct ceph_connection
*con
)
1599 dout("prepare_read_tag %p\n", con
);
1600 con
->in_base_pos
= 0;
1601 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1605 * Prepare to read a message.
1607 static int prepare_read_message(struct ceph_connection
*con
)
1609 dout("prepare_read_message %p\n", con
);
1610 BUG_ON(con
->in_msg
!= NULL
);
1611 con
->in_base_pos
= 0;
1612 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
1617 static int read_partial(struct ceph_connection
*con
,
1618 int end
, int size
, void *object
)
1620 while (con
->in_base_pos
< end
) {
1621 int left
= end
- con
->in_base_pos
;
1622 int have
= size
- left
;
1623 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
1626 con
->in_base_pos
+= ret
;
1633 * Read all or part of the connect-side handshake on a new connection
1635 static int read_partial_banner(struct ceph_connection
*con
)
1641 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
1644 size
= strlen(CEPH_BANNER
);
1646 ret
= read_partial(con
, end
, size
, con
->in_banner
);
1650 size
= sizeof (con
->actual_peer_addr
);
1652 ret
= read_partial(con
, end
, size
, &con
->actual_peer_addr
);
1656 size
= sizeof (con
->peer_addr_for_me
);
1658 ret
= read_partial(con
, end
, size
, &con
->peer_addr_for_me
);
1666 static int read_partial_connect(struct ceph_connection
*con
)
1672 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1674 size
= sizeof (con
->in_reply
);
1676 ret
= read_partial(con
, end
, size
, &con
->in_reply
);
1680 size
= le32_to_cpu(con
->in_reply
.authorizer_len
);
1682 ret
= read_partial(con
, end
, size
, con
->auth_reply_buf
);
1686 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1687 con
, (int)con
->in_reply
.tag
,
1688 le32_to_cpu(con
->in_reply
.connect_seq
),
1689 le32_to_cpu(con
->in_reply
.global_seq
));
1696 * Verify the hello banner looks okay.
1698 static int verify_hello(struct ceph_connection
*con
)
1700 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1701 pr_err("connect to %s got bad banner\n",
1702 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1703 con
->error_msg
= "protocol error, bad banner";
1709 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1711 switch (ss
->ss_family
) {
1713 return ((struct sockaddr_in
*)ss
)->sin_addr
.s_addr
== 0;
1716 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[0] == 0 &&
1717 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[1] == 0 &&
1718 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[2] == 0 &&
1719 ((struct sockaddr_in6
*)ss
)->sin6_addr
.s6_addr32
[3] == 0;
1724 static int addr_port(struct sockaddr_storage
*ss
)
1726 switch (ss
->ss_family
) {
1728 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1730 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1735 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1737 switch (ss
->ss_family
) {
1739 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1742 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1748 * Unlike other *_pton function semantics, zero indicates success.
1750 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1751 char delim
, const char **ipend
)
1753 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
1754 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
1756 memset(ss
, 0, sizeof(*ss
));
1758 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1759 ss
->ss_family
= AF_INET
;
1763 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1764 ss
->ss_family
= AF_INET6
;
1772 * Extract hostname string and resolve using kernel DNS facility.
1774 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1775 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1776 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1778 const char *end
, *delim_p
;
1779 char *colon_p
, *ip_addr
= NULL
;
1783 * The end of the hostname occurs immediately preceding the delimiter or
1784 * the port marker (':') where the delimiter takes precedence.
1786 delim_p
= memchr(name
, delim
, namelen
);
1787 colon_p
= memchr(name
, ':', namelen
);
1789 if (delim_p
&& colon_p
)
1790 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1791 else if (!delim_p
&& colon_p
)
1795 if (!end
) /* case: hostname:/ */
1796 end
= name
+ namelen
;
1802 /* do dns_resolve upcall */
1803 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1805 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1813 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1814 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1819 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1820 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1827 * Parse a server name (IP or hostname). If a valid IP address is not found
1828 * then try to extract a hostname to resolve using userspace DNS upcall.
1830 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1831 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1835 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1837 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1843 * Parse an ip[:port] list into an addr array. Use the default
1844 * monitor port if a port isn't specified.
1846 int ceph_parse_ips(const char *c
, const char *end
,
1847 struct ceph_entity_addr
*addr
,
1848 int max_count
, int *count
)
1850 int i
, ret
= -EINVAL
;
1853 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1854 for (i
= 0; i
< max_count
; i
++) {
1856 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1865 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1874 dout("missing matching ']'\n");
1881 if (p
< end
&& *p
== ':') {
1884 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1885 port
= (port
* 10) + (*p
- '0');
1889 port
= CEPH_MON_PORT
;
1890 else if (port
> 65535)
1893 port
= CEPH_MON_PORT
;
1896 addr_set_port(ss
, port
);
1898 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
1915 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
1918 EXPORT_SYMBOL(ceph_parse_ips
);
1920 static int process_banner(struct ceph_connection
*con
)
1922 dout("process_banner on %p\n", con
);
1924 if (verify_hello(con
) < 0)
1927 ceph_decode_addr(&con
->actual_peer_addr
);
1928 ceph_decode_addr(&con
->peer_addr_for_me
);
1931 * Make sure the other end is who we wanted. note that the other
1932 * end may not yet know their ip address, so if it's 0.0.0.0, give
1933 * them the benefit of the doubt.
1935 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
1936 sizeof(con
->peer_addr
)) != 0 &&
1937 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
1938 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
1939 pr_warning("wrong peer, want %s/%d, got %s/%d\n",
1940 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1941 (int)le32_to_cpu(con
->peer_addr
.nonce
),
1942 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
1943 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
1944 con
->error_msg
= "wrong peer at address";
1949 * did we learn our address?
1951 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
1952 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
1954 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
1955 &con
->peer_addr_for_me
.in_addr
,
1956 sizeof(con
->peer_addr_for_me
.in_addr
));
1957 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
1958 encode_my_addr(con
->msgr
);
1959 dout("process_banner learned my addr is %s\n",
1960 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
1966 static int process_connect(struct ceph_connection
*con
)
1968 u64 sup_feat
= con
->msgr
->supported_features
;
1969 u64 req_feat
= con
->msgr
->required_features
;
1970 u64 server_feat
= ceph_sanitize_features(
1971 le64_to_cpu(con
->in_reply
.features
));
1974 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
1976 switch (con
->in_reply
.tag
) {
1977 case CEPH_MSGR_TAG_FEATURES
:
1978 pr_err("%s%lld %s feature set mismatch,"
1979 " my %llx < server's %llx, missing %llx\n",
1980 ENTITY_NAME(con
->peer_name
),
1981 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1982 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
1983 con
->error_msg
= "missing required protocol features";
1984 reset_connection(con
);
1987 case CEPH_MSGR_TAG_BADPROTOVER
:
1988 pr_err("%s%lld %s protocol version mismatch,"
1989 " my %d != server's %d\n",
1990 ENTITY_NAME(con
->peer_name
),
1991 ceph_pr_addr(&con
->peer_addr
.in_addr
),
1992 le32_to_cpu(con
->out_connect
.protocol_version
),
1993 le32_to_cpu(con
->in_reply
.protocol_version
));
1994 con
->error_msg
= "protocol version mismatch";
1995 reset_connection(con
);
1998 case CEPH_MSGR_TAG_BADAUTHORIZER
:
2000 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
2002 if (con
->auth_retry
== 2) {
2003 con
->error_msg
= "connect authorization failure";
2006 con_out_kvec_reset(con
);
2007 ret
= prepare_write_connect(con
);
2010 prepare_read_connect(con
);
2013 case CEPH_MSGR_TAG_RESETSESSION
:
2015 * If we connected with a large connect_seq but the peer
2016 * has no record of a session with us (no connection, or
2017 * connect_seq == 0), they will send RESETSESION to indicate
2018 * that they must have reset their session, and may have
2021 dout("process_connect got RESET peer seq %u\n",
2022 le32_to_cpu(con
->in_reply
.connect_seq
));
2023 pr_err("%s%lld %s connection reset\n",
2024 ENTITY_NAME(con
->peer_name
),
2025 ceph_pr_addr(&con
->peer_addr
.in_addr
));
2026 reset_connection(con
);
2027 con_out_kvec_reset(con
);
2028 ret
= prepare_write_connect(con
);
2031 prepare_read_connect(con
);
2033 /* Tell ceph about it. */
2034 mutex_unlock(&con
->mutex
);
2035 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
2036 if (con
->ops
->peer_reset
)
2037 con
->ops
->peer_reset(con
);
2038 mutex_lock(&con
->mutex
);
2039 if (con
->state
!= CON_STATE_NEGOTIATING
)
2043 case CEPH_MSGR_TAG_RETRY_SESSION
:
2045 * If we sent a smaller connect_seq than the peer has, try
2046 * again with a larger value.
2048 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2049 le32_to_cpu(con
->out_connect
.connect_seq
),
2050 le32_to_cpu(con
->in_reply
.connect_seq
));
2051 con
->connect_seq
= le32_to_cpu(con
->in_reply
.connect_seq
);
2052 con_out_kvec_reset(con
);
2053 ret
= prepare_write_connect(con
);
2056 prepare_read_connect(con
);
2059 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
2061 * If we sent a smaller global_seq than the peer has, try
2062 * again with a larger value.
2064 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2065 con
->peer_global_seq
,
2066 le32_to_cpu(con
->in_reply
.global_seq
));
2067 get_global_seq(con
->msgr
,
2068 le32_to_cpu(con
->in_reply
.global_seq
));
2069 con_out_kvec_reset(con
);
2070 ret
= prepare_write_connect(con
);
2073 prepare_read_connect(con
);
2076 case CEPH_MSGR_TAG_SEQ
:
2077 case CEPH_MSGR_TAG_READY
:
2078 if (req_feat
& ~server_feat
) {
2079 pr_err("%s%lld %s protocol feature mismatch,"
2080 " my required %llx > server's %llx, need %llx\n",
2081 ENTITY_NAME(con
->peer_name
),
2082 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2083 req_feat
, server_feat
, req_feat
& ~server_feat
);
2084 con
->error_msg
= "missing required protocol features";
2085 reset_connection(con
);
2089 WARN_ON(con
->state
!= CON_STATE_NEGOTIATING
);
2090 con
->state
= CON_STATE_OPEN
;
2091 con
->auth_retry
= 0; /* we authenticated; clear flag */
2092 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
2094 con
->peer_features
= server_feat
;
2095 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2096 con
->peer_global_seq
,
2097 le32_to_cpu(con
->in_reply
.connect_seq
),
2099 WARN_ON(con
->connect_seq
!=
2100 le32_to_cpu(con
->in_reply
.connect_seq
));
2102 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
2103 con_flag_set(con
, CON_FLAG_LOSSYTX
);
2105 con
->delay
= 0; /* reset backoff memory */
2107 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_SEQ
) {
2108 prepare_write_seq(con
);
2109 prepare_read_seq(con
);
2111 prepare_read_tag(con
);
2115 case CEPH_MSGR_TAG_WAIT
:
2117 * If there is a connection race (we are opening
2118 * connections to each other), one of us may just have
2119 * to WAIT. This shouldn't happen if we are the
2122 pr_err("process_connect got WAIT as client\n");
2123 con
->error_msg
= "protocol error, got WAIT as client";
2127 pr_err("connect protocol error, will retry\n");
2128 con
->error_msg
= "protocol error, garbage tag during connect";
2136 * read (part of) an ack
2138 static int read_partial_ack(struct ceph_connection
*con
)
2140 int size
= sizeof (con
->in_temp_ack
);
2143 return read_partial(con
, end
, size
, &con
->in_temp_ack
);
2147 * We can finally discard anything that's been acked.
2149 static void process_ack(struct ceph_connection
*con
)
2152 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
2155 while (!list_empty(&con
->out_sent
)) {
2156 m
= list_first_entry(&con
->out_sent
, struct ceph_msg
,
2158 seq
= le64_to_cpu(m
->hdr
.seq
);
2161 dout("got ack for seq %llu type %d at %p\n", seq
,
2162 le16_to_cpu(m
->hdr
.type
), m
);
2163 m
->ack_stamp
= jiffies
;
2166 prepare_read_tag(con
);
2170 static int read_partial_message_section(struct ceph_connection
*con
,
2171 struct kvec
*section
,
2172 unsigned int sec_len
, u32
*crc
)
2178 while (section
->iov_len
< sec_len
) {
2179 BUG_ON(section
->iov_base
== NULL
);
2180 left
= sec_len
- section
->iov_len
;
2181 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
2182 section
->iov_len
, left
);
2185 section
->iov_len
+= ret
;
2187 if (section
->iov_len
== sec_len
)
2188 *crc
= crc32c(0, section
->iov_base
, section
->iov_len
);
2193 static int read_partial_msg_data(struct ceph_connection
*con
)
2195 struct ceph_msg
*msg
= con
->in_msg
;
2196 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
2197 const bool do_datacrc
= !con
->msgr
->nocrc
;
2205 if (list_empty(&msg
->data
))
2209 crc
= con
->in_data_crc
;
2210 while (cursor
->resid
) {
2211 page
= ceph_msg_data_next(&msg
->cursor
, &page_offset
, &length
,
2213 ret
= ceph_tcp_recvpage(con
->sock
, page
, page_offset
, length
);
2216 con
->in_data_crc
= crc
;
2222 crc
= ceph_crc32c_page(crc
, page
, page_offset
, ret
);
2223 (void) ceph_msg_data_advance(&msg
->cursor
, (size_t)ret
);
2226 con
->in_data_crc
= crc
;
2228 return 1; /* must return > 0 to indicate success */
2232 * read (part of) a message.
2234 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
);
2236 static int read_partial_message(struct ceph_connection
*con
)
2238 struct ceph_msg
*m
= con
->in_msg
;
2242 unsigned int front_len
, middle_len
, data_len
;
2243 bool do_datacrc
= !con
->msgr
->nocrc
;
2247 dout("read_partial_message con %p msg %p\n", con
, m
);
2250 size
= sizeof (con
->in_hdr
);
2252 ret
= read_partial(con
, end
, size
, &con
->in_hdr
);
2256 crc
= crc32c(0, &con
->in_hdr
, offsetof(struct ceph_msg_header
, crc
));
2257 if (cpu_to_le32(crc
) != con
->in_hdr
.crc
) {
2258 pr_err("read_partial_message bad hdr "
2259 " crc %u != expected %u\n",
2260 crc
, con
->in_hdr
.crc
);
2264 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2265 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
2267 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2268 if (middle_len
> CEPH_MSG_MAX_MIDDLE_LEN
)
2270 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2271 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
2275 seq
= le64_to_cpu(con
->in_hdr
.seq
);
2276 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
2277 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2278 ENTITY_NAME(con
->peer_name
),
2279 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2280 seq
, con
->in_seq
+ 1);
2281 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2283 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2285 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
2286 pr_err("read_partial_message bad seq %lld expected %lld\n",
2287 seq
, con
->in_seq
+ 1);
2288 con
->error_msg
= "bad message sequence # for incoming message";
2292 /* allocate message? */
2296 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
2297 front_len
, data_len
);
2298 ret
= ceph_con_in_msg_alloc(con
, &skip
);
2302 BUG_ON(!con
->in_msg
^ skip
);
2303 if (con
->in_msg
&& data_len
> con
->in_msg
->data_length
) {
2304 pr_warning("%s skipping long message (%u > %zd)\n",
2305 __func__
, data_len
, con
->in_msg
->data_length
);
2306 ceph_msg_put(con
->in_msg
);
2311 /* skip this message */
2312 dout("alloc_msg said skip message\n");
2313 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2315 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2320 BUG_ON(!con
->in_msg
);
2321 BUG_ON(con
->in_msg
->con
!= con
);
2323 m
->front
.iov_len
= 0; /* haven't read it yet */
2325 m
->middle
->vec
.iov_len
= 0;
2327 /* prepare for data payload, if any */
2330 prepare_message_data(con
->in_msg
, data_len
);
2334 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
2335 &con
->in_front_crc
);
2341 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
2343 &con
->in_middle_crc
);
2350 ret
= read_partial_msg_data(con
);
2356 size
= sizeof (m
->footer
);
2358 ret
= read_partial(con
, end
, size
, &m
->footer
);
2362 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2363 m
, front_len
, m
->footer
.front_crc
, middle_len
,
2364 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
2367 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
2368 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2369 m
, con
->in_front_crc
, m
->footer
.front_crc
);
2372 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
2373 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2374 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
2378 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
2379 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
2380 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
2381 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
2385 return 1; /* done! */
2389 * Process message. This happens in the worker thread. The callback should
2390 * be careful not to do anything that waits on other incoming messages or it
2393 static void process_message(struct ceph_connection
*con
)
2395 struct ceph_msg
*msg
;
2397 BUG_ON(con
->in_msg
->con
!= con
);
2398 con
->in_msg
->con
= NULL
;
2403 /* if first message, set peer_name */
2404 if (con
->peer_name
.type
== 0)
2405 con
->peer_name
= msg
->hdr
.src
;
2408 mutex_unlock(&con
->mutex
);
2410 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2411 msg
, le64_to_cpu(msg
->hdr
.seq
),
2412 ENTITY_NAME(msg
->hdr
.src
),
2413 le16_to_cpu(msg
->hdr
.type
),
2414 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2415 le32_to_cpu(msg
->hdr
.front_len
),
2416 le32_to_cpu(msg
->hdr
.data_len
),
2417 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
2418 con
->ops
->dispatch(con
, msg
);
2420 mutex_lock(&con
->mutex
);
2425 * Write something to the socket. Called in a worker thread when the
2426 * socket appears to be writeable and we have something ready to send.
2428 static int try_write(struct ceph_connection
*con
)
2432 dout("try_write start %p state %lu\n", con
, con
->state
);
2435 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
2437 /* open the socket first? */
2438 if (con
->state
== CON_STATE_PREOPEN
) {
2440 con
->state
= CON_STATE_CONNECTING
;
2442 con_out_kvec_reset(con
);
2443 prepare_write_banner(con
);
2444 prepare_read_banner(con
);
2446 BUG_ON(con
->in_msg
);
2447 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2448 dout("try_write initiating connect on %p new state %lu\n",
2450 ret
= ceph_tcp_connect(con
);
2452 con
->error_msg
= "connect error";
2458 /* kvec data queued? */
2459 if (con
->out_skip
) {
2460 ret
= write_partial_skip(con
);
2464 if (con
->out_kvec_left
) {
2465 ret
= write_partial_kvec(con
);
2472 if (con
->out_msg_done
) {
2473 ceph_msg_put(con
->out_msg
);
2474 con
->out_msg
= NULL
; /* we're done with this one */
2478 ret
= write_partial_message_data(con
);
2480 goto more_kvec
; /* we need to send the footer, too! */
2484 dout("try_write write_partial_message_data err %d\n",
2491 if (con
->state
== CON_STATE_OPEN
) {
2492 /* is anything else pending? */
2493 if (!list_empty(&con
->out_queue
)) {
2494 prepare_write_message(con
);
2497 if (con
->in_seq
> con
->in_seq_acked
) {
2498 prepare_write_ack(con
);
2501 if (con_flag_test_and_clear(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2502 prepare_write_keepalive(con
);
2507 /* Nothing to do! */
2508 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2509 dout("try_write nothing else to write.\n");
2512 dout("try_write done on %p ret %d\n", con
, ret
);
2519 * Read what we can from the socket.
2521 static int try_read(struct ceph_connection
*con
)
2526 dout("try_read start on %p state %lu\n", con
, con
->state
);
2527 if (con
->state
!= CON_STATE_CONNECTING
&&
2528 con
->state
!= CON_STATE_NEGOTIATING
&&
2529 con
->state
!= CON_STATE_OPEN
)
2534 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
2537 if (con
->state
== CON_STATE_CONNECTING
) {
2538 dout("try_read connecting\n");
2539 ret
= read_partial_banner(con
);
2542 ret
= process_banner(con
);
2546 con
->state
= CON_STATE_NEGOTIATING
;
2549 * Received banner is good, exchange connection info.
2550 * Do not reset out_kvec, as sending our banner raced
2551 * with receiving peer banner after connect completed.
2553 ret
= prepare_write_connect(con
);
2556 prepare_read_connect(con
);
2558 /* Send connection info before awaiting response */
2562 if (con
->state
== CON_STATE_NEGOTIATING
) {
2563 dout("try_read negotiating\n");
2564 ret
= read_partial_connect(con
);
2567 ret
= process_connect(con
);
2573 WARN_ON(con
->state
!= CON_STATE_OPEN
);
2575 if (con
->in_base_pos
< 0) {
2577 * skipping + discarding content.
2579 * FIXME: there must be a better way to do this!
2581 static char buf
[SKIP_BUF_SIZE
];
2582 int skip
= min((int) sizeof (buf
), -con
->in_base_pos
);
2584 dout("skipping %d / %d bytes\n", skip
, -con
->in_base_pos
);
2585 ret
= ceph_tcp_recvmsg(con
->sock
, buf
, skip
);
2588 con
->in_base_pos
+= ret
;
2589 if (con
->in_base_pos
)
2592 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
2596 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
2599 dout("try_read got tag %d\n", (int)con
->in_tag
);
2600 switch (con
->in_tag
) {
2601 case CEPH_MSGR_TAG_MSG
:
2602 prepare_read_message(con
);
2604 case CEPH_MSGR_TAG_ACK
:
2605 prepare_read_ack(con
);
2607 case CEPH_MSGR_TAG_CLOSE
:
2608 con_close_socket(con
);
2609 con
->state
= CON_STATE_CLOSED
;
2615 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
2616 ret
= read_partial_message(con
);
2620 con
->error_msg
= "bad crc";
2624 con
->error_msg
= "io error";
2629 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2631 process_message(con
);
2632 if (con
->state
== CON_STATE_OPEN
)
2633 prepare_read_tag(con
);
2636 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
||
2637 con
->in_tag
== CEPH_MSGR_TAG_SEQ
) {
2639 * the final handshake seq exchange is semantically
2640 * equivalent to an ACK
2642 ret
= read_partial_ack(con
);
2650 dout("try_read done on %p ret %d\n", con
, ret
);
2654 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2655 con
->error_msg
= "protocol error, garbage tag";
2662 * Atomically queue work on a connection after the specified delay.
2663 * Bump @con reference to avoid races with connection teardown.
2664 * Returns 0 if work was queued, or an error code otherwise.
2666 static int queue_con_delay(struct ceph_connection
*con
, unsigned long delay
)
2668 if (!con
->ops
->get(con
)) {
2669 dout("%s %p ref count 0\n", __func__
, con
);
2674 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, delay
)) {
2675 dout("%s %p - already queued\n", __func__
, con
);
2681 dout("%s %p %lu\n", __func__
, con
, delay
);
2686 static void queue_con(struct ceph_connection
*con
)
2688 (void) queue_con_delay(con
, 0);
2691 static bool con_sock_closed(struct ceph_connection
*con
)
2693 if (!con_flag_test_and_clear(con
, CON_FLAG_SOCK_CLOSED
))
2697 case CON_STATE_ ## x: \
2698 con->error_msg = "socket closed (con state " #x ")"; \
2701 switch (con
->state
) {
2709 pr_warning("%s con %p unrecognized state %lu\n",
2710 __func__
, con
, con
->state
);
2711 con
->error_msg
= "unrecognized con state";
2720 static bool con_backoff(struct ceph_connection
*con
)
2724 if (!con_flag_test_and_clear(con
, CON_FLAG_BACKOFF
))
2727 ret
= queue_con_delay(con
, round_jiffies_relative(con
->delay
));
2729 dout("%s: con %p FAILED to back off %lu\n", __func__
,
2731 BUG_ON(ret
== -ENOENT
);
2732 con_flag_set(con
, CON_FLAG_BACKOFF
);
2738 /* Finish fault handling; con->mutex must *not* be held here */
2740 static void con_fault_finish(struct ceph_connection
*con
)
2743 * in case we faulted due to authentication, invalidate our
2744 * current tickets so that we can get new ones.
2746 if (con
->auth_retry
&& con
->ops
->invalidate_authorizer
) {
2747 dout("calling invalidate_authorizer()\n");
2748 con
->ops
->invalidate_authorizer(con
);
2751 if (con
->ops
->fault
)
2752 con
->ops
->fault(con
);
2756 * Do some work on a connection. Drop a connection ref when we're done.
2758 static void con_work(struct work_struct
*work
)
2760 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2764 mutex_lock(&con
->mutex
);
2768 if ((fault
= con_sock_closed(con
))) {
2769 dout("%s: con %p SOCK_CLOSED\n", __func__
, con
);
2772 if (con_backoff(con
)) {
2773 dout("%s: con %p BACKOFF\n", __func__
, con
);
2776 if (con
->state
== CON_STATE_STANDBY
) {
2777 dout("%s: con %p STANDBY\n", __func__
, con
);
2780 if (con
->state
== CON_STATE_CLOSED
) {
2781 dout("%s: con %p CLOSED\n", __func__
, con
);
2785 if (con
->state
== CON_STATE_PREOPEN
) {
2786 dout("%s: con %p PREOPEN\n", __func__
, con
);
2790 ret
= try_read(con
);
2794 con
->error_msg
= "socket error on read";
2799 ret
= try_write(con
);
2803 con
->error_msg
= "socket error on write";
2807 break; /* If we make it to here, we're done */
2811 mutex_unlock(&con
->mutex
);
2814 con_fault_finish(con
);
2820 * Generic error/fault handler. A retry mechanism is used with
2821 * exponential backoff
2823 static void con_fault(struct ceph_connection
*con
)
2825 pr_warning("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
2826 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
2827 dout("fault %p state %lu to peer %s\n",
2828 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
2830 WARN_ON(con
->state
!= CON_STATE_CONNECTING
&&
2831 con
->state
!= CON_STATE_NEGOTIATING
&&
2832 con
->state
!= CON_STATE_OPEN
);
2834 con_close_socket(con
);
2836 if (con_flag_test(con
, CON_FLAG_LOSSYTX
)) {
2837 dout("fault on LOSSYTX channel, marking CLOSED\n");
2838 con
->state
= CON_STATE_CLOSED
;
2843 BUG_ON(con
->in_msg
->con
!= con
);
2844 con
->in_msg
->con
= NULL
;
2845 ceph_msg_put(con
->in_msg
);
2850 /* Requeue anything that hasn't been acked */
2851 list_splice_init(&con
->out_sent
, &con
->out_queue
);
2853 /* If there are no messages queued or keepalive pending, place
2854 * the connection in a STANDBY state */
2855 if (list_empty(&con
->out_queue
) &&
2856 !con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2857 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
2858 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2859 con
->state
= CON_STATE_STANDBY
;
2861 /* retry after a delay. */
2862 con
->state
= CON_STATE_PREOPEN
;
2863 if (con
->delay
== 0)
2864 con
->delay
= BASE_DELAY_INTERVAL
;
2865 else if (con
->delay
< MAX_DELAY_INTERVAL
)
2867 con_flag_set(con
, CON_FLAG_BACKOFF
);
2875 * initialize a new messenger instance
2877 void ceph_messenger_init(struct ceph_messenger
*msgr
,
2878 struct ceph_entity_addr
*myaddr
,
2879 u64 supported_features
,
2880 u64 required_features
,
2883 msgr
->supported_features
= supported_features
;
2884 msgr
->required_features
= required_features
;
2886 spin_lock_init(&msgr
->global_seq_lock
);
2889 msgr
->inst
.addr
= *myaddr
;
2891 /* select a random nonce */
2892 msgr
->inst
.addr
.type
= 0;
2893 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
2894 encode_my_addr(msgr
);
2895 msgr
->nocrc
= nocrc
;
2897 atomic_set(&msgr
->stopping
, 0);
2899 dout("%s %p\n", __func__
, msgr
);
2901 EXPORT_SYMBOL(ceph_messenger_init
);
2903 static void clear_standby(struct ceph_connection
*con
)
2905 /* come back from STANDBY? */
2906 if (con
->state
== CON_STATE_STANDBY
) {
2907 dout("clear_standby %p and ++connect_seq\n", con
);
2908 con
->state
= CON_STATE_PREOPEN
;
2910 WARN_ON(con_flag_test(con
, CON_FLAG_WRITE_PENDING
));
2911 WARN_ON(con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
));
2916 * Queue up an outgoing message on the given connection.
2918 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
2921 msg
->hdr
.src
= con
->msgr
->inst
.name
;
2922 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
2923 msg
->needs_out_seq
= true;
2925 mutex_lock(&con
->mutex
);
2927 if (con
->state
== CON_STATE_CLOSED
) {
2928 dout("con_send %p closed, dropping %p\n", con
, msg
);
2930 mutex_unlock(&con
->mutex
);
2934 BUG_ON(msg
->con
!= NULL
);
2935 msg
->con
= con
->ops
->get(con
);
2936 BUG_ON(msg
->con
== NULL
);
2938 BUG_ON(!list_empty(&msg
->list_head
));
2939 list_add_tail(&msg
->list_head
, &con
->out_queue
);
2940 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
2941 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
2942 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2943 le32_to_cpu(msg
->hdr
.front_len
),
2944 le32_to_cpu(msg
->hdr
.middle_len
),
2945 le32_to_cpu(msg
->hdr
.data_len
));
2948 mutex_unlock(&con
->mutex
);
2950 /* if there wasn't anything waiting to send before, queue
2952 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
2955 EXPORT_SYMBOL(ceph_con_send
);
2958 * Revoke a message that was previously queued for send
2960 void ceph_msg_revoke(struct ceph_msg
*msg
)
2962 struct ceph_connection
*con
= msg
->con
;
2965 return; /* Message not in our possession */
2967 mutex_lock(&con
->mutex
);
2968 if (!list_empty(&msg
->list_head
)) {
2969 dout("%s %p msg %p - was on queue\n", __func__
, con
, msg
);
2970 list_del_init(&msg
->list_head
);
2971 BUG_ON(msg
->con
== NULL
);
2972 msg
->con
->ops
->put(msg
->con
);
2978 if (con
->out_msg
== msg
) {
2979 dout("%s %p msg %p - was sending\n", __func__
, con
, msg
);
2980 con
->out_msg
= NULL
;
2981 if (con
->out_kvec_is_msg
) {
2982 con
->out_skip
= con
->out_kvec_bytes
;
2983 con
->out_kvec_is_msg
= false;
2989 mutex_unlock(&con
->mutex
);
2993 * Revoke a message that we may be reading data into
2995 void ceph_msg_revoke_incoming(struct ceph_msg
*msg
)
2997 struct ceph_connection
*con
;
2999 BUG_ON(msg
== NULL
);
3001 dout("%s msg %p null con\n", __func__
, msg
);
3003 return; /* Message not in our possession */
3007 mutex_lock(&con
->mutex
);
3008 if (con
->in_msg
== msg
) {
3009 unsigned int front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
3010 unsigned int middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
3011 unsigned int data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
3013 /* skip rest of message */
3014 dout("%s %p msg %p revoked\n", __func__
, con
, msg
);
3015 con
->in_base_pos
= con
->in_base_pos
-
3016 sizeof(struct ceph_msg_header
) -
3020 sizeof(struct ceph_msg_footer
);
3021 ceph_msg_put(con
->in_msg
);
3023 con
->in_tag
= CEPH_MSGR_TAG_READY
;
3026 dout("%s %p in_msg %p msg %p no-op\n",
3027 __func__
, con
, con
->in_msg
, msg
);
3029 mutex_unlock(&con
->mutex
);
3033 * Queue a keepalive byte to ensure the tcp connection is alive.
3035 void ceph_con_keepalive(struct ceph_connection
*con
)
3037 dout("con_keepalive %p\n", con
);
3038 mutex_lock(&con
->mutex
);
3040 mutex_unlock(&con
->mutex
);
3041 if (con_flag_test_and_set(con
, CON_FLAG_KEEPALIVE_PENDING
) == 0 &&
3042 con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3045 EXPORT_SYMBOL(ceph_con_keepalive
);
3047 static struct ceph_msg_data
*ceph_msg_data_create(enum ceph_msg_data_type type
)
3049 struct ceph_msg_data
*data
;
3051 if (WARN_ON(!ceph_msg_data_type_valid(type
)))
3054 data
= kmem_cache_zalloc(ceph_msg_data_cache
, GFP_NOFS
);
3057 INIT_LIST_HEAD(&data
->links
);
3062 static void ceph_msg_data_destroy(struct ceph_msg_data
*data
)
3067 WARN_ON(!list_empty(&data
->links
));
3068 if (data
->type
== CEPH_MSG_DATA_PAGELIST
) {
3069 ceph_pagelist_release(data
->pagelist
);
3070 kfree(data
->pagelist
);
3072 kmem_cache_free(ceph_msg_data_cache
, data
);
3075 void ceph_msg_data_add_pages(struct ceph_msg
*msg
, struct page
**pages
,
3076 size_t length
, size_t alignment
)
3078 struct ceph_msg_data
*data
;
3083 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGES
);
3085 data
->pages
= pages
;
3086 data
->length
= length
;
3087 data
->alignment
= alignment
& ~PAGE_MASK
;
3089 list_add_tail(&data
->links
, &msg
->data
);
3090 msg
->data_length
+= length
;
3092 EXPORT_SYMBOL(ceph_msg_data_add_pages
);
3094 void ceph_msg_data_add_pagelist(struct ceph_msg
*msg
,
3095 struct ceph_pagelist
*pagelist
)
3097 struct ceph_msg_data
*data
;
3100 BUG_ON(!pagelist
->length
);
3102 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST
);
3104 data
->pagelist
= pagelist
;
3106 list_add_tail(&data
->links
, &msg
->data
);
3107 msg
->data_length
+= pagelist
->length
;
3109 EXPORT_SYMBOL(ceph_msg_data_add_pagelist
);
3112 void ceph_msg_data_add_bio(struct ceph_msg
*msg
, struct bio
*bio
,
3115 struct ceph_msg_data
*data
;
3119 data
= ceph_msg_data_create(CEPH_MSG_DATA_BIO
);
3122 data
->bio_length
= length
;
3124 list_add_tail(&data
->links
, &msg
->data
);
3125 msg
->data_length
+= length
;
3127 EXPORT_SYMBOL(ceph_msg_data_add_bio
);
3128 #endif /* CONFIG_BLOCK */
3131 * construct a new message with given type, size
3132 * the new msg has a ref count of 1.
3134 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
3139 m
= kmem_cache_zalloc(ceph_msg_cache
, flags
);
3143 m
->hdr
.type
= cpu_to_le16(type
);
3144 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
3145 m
->hdr
.front_len
= cpu_to_le32(front_len
);
3147 INIT_LIST_HEAD(&m
->list_head
);
3148 kref_init(&m
->kref
);
3149 INIT_LIST_HEAD(&m
->data
);
3153 m
->front
.iov_base
= ceph_kvmalloc(front_len
, flags
);
3154 if (m
->front
.iov_base
== NULL
) {
3155 dout("ceph_msg_new can't allocate %d bytes\n",
3160 m
->front
.iov_base
= NULL
;
3162 m
->front_alloc_len
= m
->front
.iov_len
= front_len
;
3164 dout("ceph_msg_new %p front %d\n", m
, front_len
);
3171 pr_err("msg_new can't create type %d front %d\n", type
,
3175 dout("msg_new can't create type %d front %d\n", type
,
3180 EXPORT_SYMBOL(ceph_msg_new
);
3183 * Allocate "middle" portion of a message, if it is needed and wasn't
3184 * allocated by alloc_msg. This allows us to read a small fixed-size
3185 * per-type header in the front and then gracefully fail (i.e.,
3186 * propagate the error to the caller based on info in the front) when
3187 * the middle is too large.
3189 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3191 int type
= le16_to_cpu(msg
->hdr
.type
);
3192 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
3194 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
3195 ceph_msg_type_name(type
), middle_len
);
3196 BUG_ON(!middle_len
);
3197 BUG_ON(msg
->middle
);
3199 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
3206 * Allocate a message for receiving an incoming message on a
3207 * connection, and save the result in con->in_msg. Uses the
3208 * connection's private alloc_msg op if available.
3210 * Returns 0 on success, or a negative error code.
3212 * On success, if we set *skip = 1:
3213 * - the next message should be skipped and ignored.
3214 * - con->in_msg == NULL
3215 * or if we set *skip = 0:
3216 * - con->in_msg is non-null.
3217 * On error (ENOMEM, EAGAIN, ...),
3218 * - con->in_msg == NULL
3220 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
)
3222 struct ceph_msg_header
*hdr
= &con
->in_hdr
;
3223 int middle_len
= le32_to_cpu(hdr
->middle_len
);
3224 struct ceph_msg
*msg
;
3227 BUG_ON(con
->in_msg
!= NULL
);
3228 BUG_ON(!con
->ops
->alloc_msg
);
3230 mutex_unlock(&con
->mutex
);
3231 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
3232 mutex_lock(&con
->mutex
);
3233 if (con
->state
!= CON_STATE_OPEN
) {
3241 con
->in_msg
->con
= con
->ops
->get(con
);
3242 BUG_ON(con
->in_msg
->con
== NULL
);
3245 * Null message pointer means either we should skip
3246 * this message or we couldn't allocate memory. The
3247 * former is not an error.
3251 con
->error_msg
= "error allocating memory for incoming message";
3255 memcpy(&con
->in_msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
3257 if (middle_len
&& !con
->in_msg
->middle
) {
3258 ret
= ceph_alloc_middle(con
, con
->in_msg
);
3260 ceph_msg_put(con
->in_msg
);
3270 * Free a generically kmalloc'd message.
3272 void ceph_msg_kfree(struct ceph_msg
*m
)
3274 dout("msg_kfree %p\n", m
);
3275 ceph_kvfree(m
->front
.iov_base
);
3276 kmem_cache_free(ceph_msg_cache
, m
);
3280 * Drop a msg ref. Destroy as needed.
3282 void ceph_msg_last_put(struct kref
*kref
)
3284 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
3286 struct list_head
*links
;
3287 struct list_head
*next
;
3289 dout("ceph_msg_put last one on %p\n", m
);
3290 WARN_ON(!list_empty(&m
->list_head
));
3292 /* drop middle, data, if any */
3294 ceph_buffer_put(m
->middle
);
3298 list_splice_init(&m
->data
, &data
);
3299 list_for_each_safe(links
, next
, &data
) {
3300 struct ceph_msg_data
*data
;
3302 data
= list_entry(links
, struct ceph_msg_data
, links
);
3303 list_del_init(links
);
3304 ceph_msg_data_destroy(data
);
3309 ceph_msgpool_put(m
->pool
, m
);
3313 EXPORT_SYMBOL(ceph_msg_last_put
);
3315 void ceph_msg_dump(struct ceph_msg
*msg
)
3317 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg
,
3318 msg
->front_alloc_len
, msg
->data_length
);
3319 print_hex_dump(KERN_DEBUG
, "header: ",
3320 DUMP_PREFIX_OFFSET
, 16, 1,
3321 &msg
->hdr
, sizeof(msg
->hdr
), true);
3322 print_hex_dump(KERN_DEBUG
, " front: ",
3323 DUMP_PREFIX_OFFSET
, 16, 1,
3324 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
3326 print_hex_dump(KERN_DEBUG
, "middle: ",
3327 DUMP_PREFIX_OFFSET
, 16, 1,
3328 msg
->middle
->vec
.iov_base
,
3329 msg
->middle
->vec
.iov_len
, true);
3330 print_hex_dump(KERN_DEBUG
, "footer: ",
3331 DUMP_PREFIX_OFFSET
, 16, 1,
3332 &msg
->footer
, sizeof(msg
->footer
), true);
3334 EXPORT_SYMBOL(ceph_msg_dump
);