2 * SuperH Timer Support - CMT
4 * Copyright (C) 2008 Magnus Damm
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/sh_timer.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
37 * The CMT comes in 5 different identified flavours, depending not only on the
38 * SoC but also on the particular instance. The following table lists the main
39 * characteristics of those flavours.
41 * 16B 32B 32B-F 48B 48B-2
42 * -----------------------------------------------------------------------------
43 * Channels 2 1/4 1 6 2/8
44 * Control Width 16 16 16 16 32
45 * Counter Width 16 32 32 32/48 32/48
46 * Shared Start/Stop Y Y Y Y N
48 * The 48-bit gen2 version has a per-channel start/stop register located in the
49 * channel registers block. All other versions have a shared start/stop register
50 * located in the global space.
52 * Channels are indexed from 0 to N-1 in the documentation. The channel index
53 * infers the start/stop bit position in the control register and the channel
54 * registers block address. Some CMT instances have a subset of channels
55 * available, in which case the index in the documentation doesn't match the
56 * "real" index as implemented in hardware. This is for instance the case with
57 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
58 * in the documentation but using start/stop bit 5 and having its registers
61 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
62 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
74 enum sh_cmt_model model
;
76 unsigned long width
; /* 16 or 32 bit version of hardware block */
77 unsigned long overflow_bit
;
78 unsigned long clear_bits
;
80 /* callbacks for CMSTR and CMCSR access */
81 unsigned long (*read_control
)(void __iomem
*base
, unsigned long offs
);
82 void (*write_control
)(void __iomem
*base
, unsigned long offs
,
85 /* callbacks for CMCNT and CMCOR access */
86 unsigned long (*read_count
)(void __iomem
*base
, unsigned long offs
);
87 void (*write_count
)(void __iomem
*base
, unsigned long offs
,
91 struct sh_cmt_channel
{
92 struct sh_cmt_device
*cmt
;
94 unsigned int index
; /* Index in the documentation */
95 unsigned int hwidx
; /* Real hardware index */
97 void __iomem
*iostart
;
100 unsigned int timer_bit
;
102 unsigned long match_value
;
103 unsigned long next_match_value
;
104 unsigned long max_match_value
;
107 struct clock_event_device ced
;
108 struct clocksource cs
;
109 unsigned long total_cycles
;
113 struct sh_cmt_device
{
114 struct platform_device
*pdev
;
116 const struct sh_cmt_info
*info
;
119 void __iomem
*mapbase_ch
;
120 void __iomem
*mapbase
;
123 struct sh_cmt_channel
*channels
;
124 unsigned int num_channels
;
127 bool has_clocksource
;
130 #define SH_CMT16_CMCSR_CMF (1 << 7)
131 #define SH_CMT16_CMCSR_CMIE (1 << 6)
132 #define SH_CMT16_CMCSR_CKS8 (0 << 0)
133 #define SH_CMT16_CMCSR_CKS32 (1 << 0)
134 #define SH_CMT16_CMCSR_CKS128 (2 << 0)
135 #define SH_CMT16_CMCSR_CKS512 (3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
138 #define SH_CMT32_CMCSR_CMF (1 << 15)
139 #define SH_CMT32_CMCSR_OVF (1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG (1 << 13)
141 #define SH_CMT32_CMCSR_STTF (1 << 12)
142 #define SH_CMT32_CMCSR_STPF (1 << 11)
143 #define SH_CMT32_CMCSR_SSIE (1 << 10)
144 #define SH_CMT32_CMCSR_CMS (1 << 9)
145 #define SH_CMT32_CMCSR_CMM (1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD (1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
158 static unsigned long sh_cmt_read16(void __iomem
*base
, unsigned long offs
)
160 return ioread16(base
+ (offs
<< 1));
163 static unsigned long sh_cmt_read32(void __iomem
*base
, unsigned long offs
)
165 return ioread32(base
+ (offs
<< 2));
168 static void sh_cmt_write16(void __iomem
*base
, unsigned long offs
,
171 iowrite16(value
, base
+ (offs
<< 1));
174 static void sh_cmt_write32(void __iomem
*base
, unsigned long offs
,
177 iowrite32(value
, base
+ (offs
<< 2));
180 static const struct sh_cmt_info sh_cmt_info
[] = {
182 .model
= SH_CMT_16BIT
,
184 .overflow_bit
= SH_CMT16_CMCSR_CMF
,
185 .clear_bits
= ~SH_CMT16_CMCSR_CMF
,
186 .read_control
= sh_cmt_read16
,
187 .write_control
= sh_cmt_write16
,
188 .read_count
= sh_cmt_read16
,
189 .write_count
= sh_cmt_write16
,
192 .model
= SH_CMT_32BIT
,
194 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
195 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
196 .read_control
= sh_cmt_read16
,
197 .write_control
= sh_cmt_write16
,
198 .read_count
= sh_cmt_read32
,
199 .write_count
= sh_cmt_write32
,
201 [SH_CMT_32BIT_FAST
] = {
202 .model
= SH_CMT_32BIT_FAST
,
204 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
205 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
206 .read_control
= sh_cmt_read16
,
207 .write_control
= sh_cmt_write16
,
208 .read_count
= sh_cmt_read32
,
209 .write_count
= sh_cmt_write32
,
212 .model
= SH_CMT_48BIT
,
214 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
215 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
216 .read_control
= sh_cmt_read32
,
217 .write_control
= sh_cmt_write32
,
218 .read_count
= sh_cmt_read32
,
219 .write_count
= sh_cmt_write32
,
221 [SH_CMT_48BIT_GEN2
] = {
222 .model
= SH_CMT_48BIT_GEN2
,
224 .overflow_bit
= SH_CMT32_CMCSR_CMF
,
225 .clear_bits
= ~(SH_CMT32_CMCSR_CMF
| SH_CMT32_CMCSR_OVF
),
226 .read_control
= sh_cmt_read32
,
227 .write_control
= sh_cmt_write32
,
228 .read_count
= sh_cmt_read32
,
229 .write_count
= sh_cmt_write32
,
233 #define CMCSR 0 /* channel register */
234 #define CMCNT 1 /* channel register */
235 #define CMCOR 2 /* channel register */
237 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel
*ch
)
240 return ch
->cmt
->info
->read_control(ch
->iostart
, 0);
242 return ch
->cmt
->info
->read_control(ch
->cmt
->mapbase
, 0);
245 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel
*ch
,
249 ch
->cmt
->info
->write_control(ch
->iostart
, 0, value
);
251 ch
->cmt
->info
->write_control(ch
->cmt
->mapbase
, 0, value
);
254 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel
*ch
)
256 return ch
->cmt
->info
->read_control(ch
->ioctrl
, CMCSR
);
259 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel
*ch
,
262 ch
->cmt
->info
->write_control(ch
->ioctrl
, CMCSR
, value
);
265 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel
*ch
)
267 return ch
->cmt
->info
->read_count(ch
->ioctrl
, CMCNT
);
270 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel
*ch
,
273 ch
->cmt
->info
->write_count(ch
->ioctrl
, CMCNT
, value
);
276 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel
*ch
,
279 ch
->cmt
->info
->write_count(ch
->ioctrl
, CMCOR
, value
);
282 static unsigned long sh_cmt_get_counter(struct sh_cmt_channel
*ch
,
285 unsigned long v1
, v2
, v3
;
288 o1
= sh_cmt_read_cmcsr(ch
) & ch
->cmt
->info
->overflow_bit
;
290 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
293 v1
= sh_cmt_read_cmcnt(ch
);
294 v2
= sh_cmt_read_cmcnt(ch
);
295 v3
= sh_cmt_read_cmcnt(ch
);
296 o1
= sh_cmt_read_cmcsr(ch
) & ch
->cmt
->info
->overflow_bit
;
297 } while (unlikely((o1
!= o2
) || (v1
> v2
&& v1
< v3
)
298 || (v2
> v3
&& v2
< v1
) || (v3
> v1
&& v3
< v2
)));
304 static DEFINE_RAW_SPINLOCK(sh_cmt_lock
);
306 static void sh_cmt_start_stop_ch(struct sh_cmt_channel
*ch
, int start
)
308 unsigned long flags
, value
;
310 /* start stop register shared by multiple timer channels */
311 raw_spin_lock_irqsave(&sh_cmt_lock
, flags
);
312 value
= sh_cmt_read_cmstr(ch
);
315 value
|= 1 << ch
->timer_bit
;
317 value
&= ~(1 << ch
->timer_bit
);
319 sh_cmt_write_cmstr(ch
, value
);
320 raw_spin_unlock_irqrestore(&sh_cmt_lock
, flags
);
323 static int sh_cmt_enable(struct sh_cmt_channel
*ch
, unsigned long *rate
)
327 pm_runtime_get_sync(&ch
->cmt
->pdev
->dev
);
328 dev_pm_syscore_device(&ch
->cmt
->pdev
->dev
, true);
331 ret
= clk_enable(ch
->cmt
->clk
);
333 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: cannot enable clock\n",
338 /* make sure channel is disabled */
339 sh_cmt_start_stop_ch(ch
, 0);
341 /* configure channel, periodic mode and maximum timeout */
342 if (ch
->cmt
->info
->width
== 16) {
343 *rate
= clk_get_rate(ch
->cmt
->clk
) / 512;
344 sh_cmt_write_cmcsr(ch
, SH_CMT16_CMCSR_CMIE
|
345 SH_CMT16_CMCSR_CKS512
);
347 *rate
= clk_get_rate(ch
->cmt
->clk
) / 8;
348 sh_cmt_write_cmcsr(ch
, SH_CMT32_CMCSR_CMM
|
349 SH_CMT32_CMCSR_CMTOUT_IE
|
350 SH_CMT32_CMCSR_CMR_IRQ
|
351 SH_CMT32_CMCSR_CKS_RCLK8
);
354 sh_cmt_write_cmcor(ch
, 0xffffffff);
355 sh_cmt_write_cmcnt(ch
, 0);
358 * According to the sh73a0 user's manual, as CMCNT can be operated
359 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
360 * modifying CMCNT register; two RCLK cycles are necessary before
361 * this register is either read or any modification of the value
362 * it holds is reflected in the LSI's actual operation.
364 * While at it, we're supposed to clear out the CMCNT as of this
365 * moment, so make sure it's processed properly here. This will
366 * take RCLKx2 at maximum.
368 for (k
= 0; k
< 100; k
++) {
369 if (!sh_cmt_read_cmcnt(ch
))
374 if (sh_cmt_read_cmcnt(ch
)) {
375 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: cannot clear CMCNT\n",
382 sh_cmt_start_stop_ch(ch
, 1);
386 clk_disable(ch
->cmt
->clk
);
392 static void sh_cmt_disable(struct sh_cmt_channel
*ch
)
394 /* disable channel */
395 sh_cmt_start_stop_ch(ch
, 0);
397 /* disable interrupts in CMT block */
398 sh_cmt_write_cmcsr(ch
, 0);
401 clk_disable(ch
->cmt
->clk
);
403 dev_pm_syscore_device(&ch
->cmt
->pdev
->dev
, false);
404 pm_runtime_put(&ch
->cmt
->pdev
->dev
);
408 #define FLAG_CLOCKEVENT (1 << 0)
409 #define FLAG_CLOCKSOURCE (1 << 1)
410 #define FLAG_REPROGRAM (1 << 2)
411 #define FLAG_SKIPEVENT (1 << 3)
412 #define FLAG_IRQCONTEXT (1 << 4)
414 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel
*ch
,
417 unsigned long new_match
;
418 unsigned long value
= ch
->next_match_value
;
419 unsigned long delay
= 0;
420 unsigned long now
= 0;
423 now
= sh_cmt_get_counter(ch
, &has_wrapped
);
424 ch
->flags
|= FLAG_REPROGRAM
; /* force reprogram */
427 /* we're competing with the interrupt handler.
428 * -> let the interrupt handler reprogram the timer.
429 * -> interrupt number two handles the event.
431 ch
->flags
|= FLAG_SKIPEVENT
;
439 /* reprogram the timer hardware,
440 * but don't save the new match value yet.
442 new_match
= now
+ value
+ delay
;
443 if (new_match
> ch
->max_match_value
)
444 new_match
= ch
->max_match_value
;
446 sh_cmt_write_cmcor(ch
, new_match
);
448 now
= sh_cmt_get_counter(ch
, &has_wrapped
);
449 if (has_wrapped
&& (new_match
> ch
->match_value
)) {
450 /* we are changing to a greater match value,
451 * so this wrap must be caused by the counter
452 * matching the old value.
453 * -> first interrupt reprograms the timer.
454 * -> interrupt number two handles the event.
456 ch
->flags
|= FLAG_SKIPEVENT
;
461 /* we are changing to a smaller match value,
462 * so the wrap must be caused by the counter
463 * matching the new value.
464 * -> save programmed match value.
465 * -> let isr handle the event.
467 ch
->match_value
= new_match
;
471 /* be safe: verify hardware settings */
472 if (now
< new_match
) {
473 /* timer value is below match value, all good.
474 * this makes sure we won't miss any match events.
475 * -> save programmed match value.
476 * -> let isr handle the event.
478 ch
->match_value
= new_match
;
482 /* the counter has reached a value greater
483 * than our new match value. and since the
484 * has_wrapped flag isn't set we must have
485 * programmed a too close event.
486 * -> increase delay and retry.
494 dev_warn(&ch
->cmt
->pdev
->dev
, "ch%u: too long delay\n",
500 static void __sh_cmt_set_next(struct sh_cmt_channel
*ch
, unsigned long delta
)
502 if (delta
> ch
->max_match_value
)
503 dev_warn(&ch
->cmt
->pdev
->dev
, "ch%u: delta out of range\n",
506 ch
->next_match_value
= delta
;
507 sh_cmt_clock_event_program_verify(ch
, 0);
510 static void sh_cmt_set_next(struct sh_cmt_channel
*ch
, unsigned long delta
)
514 raw_spin_lock_irqsave(&ch
->lock
, flags
);
515 __sh_cmt_set_next(ch
, delta
);
516 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
519 static irqreturn_t
sh_cmt_interrupt(int irq
, void *dev_id
)
521 struct sh_cmt_channel
*ch
= dev_id
;
524 sh_cmt_write_cmcsr(ch
, sh_cmt_read_cmcsr(ch
) &
525 ch
->cmt
->info
->clear_bits
);
527 /* update clock source counter to begin with if enabled
528 * the wrap flag should be cleared by the timer specific
529 * isr before we end up here.
531 if (ch
->flags
& FLAG_CLOCKSOURCE
)
532 ch
->total_cycles
+= ch
->match_value
+ 1;
534 if (!(ch
->flags
& FLAG_REPROGRAM
))
535 ch
->next_match_value
= ch
->max_match_value
;
537 ch
->flags
|= FLAG_IRQCONTEXT
;
539 if (ch
->flags
& FLAG_CLOCKEVENT
) {
540 if (!(ch
->flags
& FLAG_SKIPEVENT
)) {
541 if (ch
->ced
.mode
== CLOCK_EVT_MODE_ONESHOT
) {
542 ch
->next_match_value
= ch
->max_match_value
;
543 ch
->flags
|= FLAG_REPROGRAM
;
546 ch
->ced
.event_handler(&ch
->ced
);
550 ch
->flags
&= ~FLAG_SKIPEVENT
;
552 if (ch
->flags
& FLAG_REPROGRAM
) {
553 ch
->flags
&= ~FLAG_REPROGRAM
;
554 sh_cmt_clock_event_program_verify(ch
, 1);
556 if (ch
->flags
& FLAG_CLOCKEVENT
)
557 if ((ch
->ced
.mode
== CLOCK_EVT_MODE_SHUTDOWN
)
558 || (ch
->match_value
== ch
->next_match_value
))
559 ch
->flags
&= ~FLAG_REPROGRAM
;
562 ch
->flags
&= ~FLAG_IRQCONTEXT
;
567 static int sh_cmt_start(struct sh_cmt_channel
*ch
, unsigned long flag
)
572 raw_spin_lock_irqsave(&ch
->lock
, flags
);
574 if (!(ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
)))
575 ret
= sh_cmt_enable(ch
, &ch
->rate
);
581 /* setup timeout if no clockevent */
582 if ((flag
== FLAG_CLOCKSOURCE
) && (!(ch
->flags
& FLAG_CLOCKEVENT
)))
583 __sh_cmt_set_next(ch
, ch
->max_match_value
);
585 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
590 static void sh_cmt_stop(struct sh_cmt_channel
*ch
, unsigned long flag
)
595 raw_spin_lock_irqsave(&ch
->lock
, flags
);
597 f
= ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
);
600 if (f
&& !(ch
->flags
& (FLAG_CLOCKEVENT
| FLAG_CLOCKSOURCE
)))
603 /* adjust the timeout to maximum if only clocksource left */
604 if ((flag
== FLAG_CLOCKEVENT
) && (ch
->flags
& FLAG_CLOCKSOURCE
))
605 __sh_cmt_set_next(ch
, ch
->max_match_value
);
607 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
610 static struct sh_cmt_channel
*cs_to_sh_cmt(struct clocksource
*cs
)
612 return container_of(cs
, struct sh_cmt_channel
, cs
);
615 static cycle_t
sh_cmt_clocksource_read(struct clocksource
*cs
)
617 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
618 unsigned long flags
, raw
;
622 raw_spin_lock_irqsave(&ch
->lock
, flags
);
623 value
= ch
->total_cycles
;
624 raw
= sh_cmt_get_counter(ch
, &has_wrapped
);
626 if (unlikely(has_wrapped
))
627 raw
+= ch
->match_value
+ 1;
628 raw_spin_unlock_irqrestore(&ch
->lock
, flags
);
633 static int sh_cmt_clocksource_enable(struct clocksource
*cs
)
636 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
638 WARN_ON(ch
->cs_enabled
);
640 ch
->total_cycles
= 0;
642 ret
= sh_cmt_start(ch
, FLAG_CLOCKSOURCE
);
644 __clocksource_updatefreq_hz(cs
, ch
->rate
);
645 ch
->cs_enabled
= true;
650 static void sh_cmt_clocksource_disable(struct clocksource
*cs
)
652 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
654 WARN_ON(!ch
->cs_enabled
);
656 sh_cmt_stop(ch
, FLAG_CLOCKSOURCE
);
657 ch
->cs_enabled
= false;
660 static void sh_cmt_clocksource_suspend(struct clocksource
*cs
)
662 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
664 sh_cmt_stop(ch
, FLAG_CLOCKSOURCE
);
665 pm_genpd_syscore_poweroff(&ch
->cmt
->pdev
->dev
);
668 static void sh_cmt_clocksource_resume(struct clocksource
*cs
)
670 struct sh_cmt_channel
*ch
= cs_to_sh_cmt(cs
);
672 pm_genpd_syscore_poweron(&ch
->cmt
->pdev
->dev
);
673 sh_cmt_start(ch
, FLAG_CLOCKSOURCE
);
676 static int sh_cmt_register_clocksource(struct sh_cmt_channel
*ch
,
679 struct clocksource
*cs
= &ch
->cs
;
683 cs
->read
= sh_cmt_clocksource_read
;
684 cs
->enable
= sh_cmt_clocksource_enable
;
685 cs
->disable
= sh_cmt_clocksource_disable
;
686 cs
->suspend
= sh_cmt_clocksource_suspend
;
687 cs
->resume
= sh_cmt_clocksource_resume
;
688 cs
->mask
= CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
689 cs
->flags
= CLOCK_SOURCE_IS_CONTINUOUS
;
691 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used as clock source\n",
694 /* Register with dummy 1 Hz value, gets updated in ->enable() */
695 clocksource_register_hz(cs
, 1);
699 static struct sh_cmt_channel
*ced_to_sh_cmt(struct clock_event_device
*ced
)
701 return container_of(ced
, struct sh_cmt_channel
, ced
);
704 static void sh_cmt_clock_event_start(struct sh_cmt_channel
*ch
, int periodic
)
706 struct clock_event_device
*ced
= &ch
->ced
;
708 sh_cmt_start(ch
, FLAG_CLOCKEVENT
);
710 /* TODO: calculate good shift from rate and counter bit width */
713 ced
->mult
= div_sc(ch
->rate
, NSEC_PER_SEC
, ced
->shift
);
714 ced
->max_delta_ns
= clockevent_delta2ns(ch
->max_match_value
, ced
);
715 ced
->min_delta_ns
= clockevent_delta2ns(0x1f, ced
);
718 sh_cmt_set_next(ch
, ((ch
->rate
+ HZ
/2) / HZ
) - 1);
720 sh_cmt_set_next(ch
, ch
->max_match_value
);
723 static void sh_cmt_clock_event_mode(enum clock_event_mode mode
,
724 struct clock_event_device
*ced
)
726 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
728 /* deal with old setting first */
730 case CLOCK_EVT_MODE_PERIODIC
:
731 case CLOCK_EVT_MODE_ONESHOT
:
732 sh_cmt_stop(ch
, FLAG_CLOCKEVENT
);
739 case CLOCK_EVT_MODE_PERIODIC
:
740 dev_info(&ch
->cmt
->pdev
->dev
,
741 "ch%u: used for periodic clock events\n", ch
->index
);
742 sh_cmt_clock_event_start(ch
, 1);
744 case CLOCK_EVT_MODE_ONESHOT
:
745 dev_info(&ch
->cmt
->pdev
->dev
,
746 "ch%u: used for oneshot clock events\n", ch
->index
);
747 sh_cmt_clock_event_start(ch
, 0);
749 case CLOCK_EVT_MODE_SHUTDOWN
:
750 case CLOCK_EVT_MODE_UNUSED
:
751 sh_cmt_stop(ch
, FLAG_CLOCKEVENT
);
758 static int sh_cmt_clock_event_next(unsigned long delta
,
759 struct clock_event_device
*ced
)
761 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
763 BUG_ON(ced
->mode
!= CLOCK_EVT_MODE_ONESHOT
);
764 if (likely(ch
->flags
& FLAG_IRQCONTEXT
))
765 ch
->next_match_value
= delta
- 1;
767 sh_cmt_set_next(ch
, delta
- 1);
772 static void sh_cmt_clock_event_suspend(struct clock_event_device
*ced
)
774 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
776 pm_genpd_syscore_poweroff(&ch
->cmt
->pdev
->dev
);
777 clk_unprepare(ch
->cmt
->clk
);
780 static void sh_cmt_clock_event_resume(struct clock_event_device
*ced
)
782 struct sh_cmt_channel
*ch
= ced_to_sh_cmt(ced
);
784 clk_prepare(ch
->cmt
->clk
);
785 pm_genpd_syscore_poweron(&ch
->cmt
->pdev
->dev
);
788 static int sh_cmt_register_clockevent(struct sh_cmt_channel
*ch
,
791 struct clock_event_device
*ced
= &ch
->ced
;
795 irq
= platform_get_irq(ch
->cmt
->pdev
, ch
->cmt
->legacy
? 0 : ch
->index
);
797 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: failed to get irq\n",
802 ret
= request_irq(irq
, sh_cmt_interrupt
,
803 IRQF_TIMER
| IRQF_IRQPOLL
| IRQF_NOBALANCING
,
804 dev_name(&ch
->cmt
->pdev
->dev
), ch
);
806 dev_err(&ch
->cmt
->pdev
->dev
, "ch%u: failed to request irq %d\n",
812 ced
->features
= CLOCK_EVT_FEAT_PERIODIC
;
813 ced
->features
|= CLOCK_EVT_FEAT_ONESHOT
;
815 ced
->cpumask
= cpu_possible_mask
;
816 ced
->set_next_event
= sh_cmt_clock_event_next
;
817 ced
->set_mode
= sh_cmt_clock_event_mode
;
818 ced
->suspend
= sh_cmt_clock_event_suspend
;
819 ced
->resume
= sh_cmt_clock_event_resume
;
821 dev_info(&ch
->cmt
->pdev
->dev
, "ch%u: used for clock events\n",
823 clockevents_register_device(ced
);
828 static int sh_cmt_register(struct sh_cmt_channel
*ch
, const char *name
,
829 bool clockevent
, bool clocksource
)
834 ch
->cmt
->has_clockevent
= true;
835 ret
= sh_cmt_register_clockevent(ch
, name
);
841 ch
->cmt
->has_clocksource
= true;
842 sh_cmt_register_clocksource(ch
, name
);
848 static int sh_cmt_setup_channel(struct sh_cmt_channel
*ch
, unsigned int index
,
849 unsigned int hwidx
, bool clockevent
,
850 bool clocksource
, struct sh_cmt_device
*cmt
)
854 /* Skip unused channels. */
855 if (!clockevent
&& !clocksource
)
863 * Compute the address of the channel control register block. For the
864 * timers with a per-channel start/stop register, compute its address
867 * For legacy configuration the address has been mapped explicitly.
870 ch
->ioctrl
= cmt
->mapbase_ch
;
872 switch (cmt
->info
->model
) {
874 ch
->ioctrl
= cmt
->mapbase
+ 2 + ch
->hwidx
* 6;
878 ch
->ioctrl
= cmt
->mapbase
+ 0x10 + ch
->hwidx
* 0x10;
880 case SH_CMT_32BIT_FAST
:
882 * The 32-bit "fast" timer has a single channel at hwidx
883 * 5 but is located at offset 0x40 instead of 0x60 for
886 ch
->ioctrl
= cmt
->mapbase
+ 0x40;
888 case SH_CMT_48BIT_GEN2
:
889 ch
->iostart
= cmt
->mapbase
+ ch
->hwidx
* 0x100;
890 ch
->ioctrl
= ch
->iostart
+ 0x10;
895 if (cmt
->info
->width
== (sizeof(ch
->max_match_value
) * 8))
896 ch
->max_match_value
= ~0;
898 ch
->max_match_value
= (1 << cmt
->info
->width
) - 1;
900 ch
->match_value
= ch
->max_match_value
;
901 raw_spin_lock_init(&ch
->lock
);
904 ch
->timer_bit
= ch
->hwidx
;
906 ch
->timer_bit
= cmt
->info
->model
== SH_CMT_48BIT_GEN2
910 ret
= sh_cmt_register(ch
, dev_name(&cmt
->pdev
->dev
),
911 clockevent
, clocksource
);
913 dev_err(&cmt
->pdev
->dev
, "ch%u: registration failed\n",
917 ch
->cs_enabled
= false;
922 static int sh_cmt_map_memory(struct sh_cmt_device
*cmt
)
924 struct resource
*mem
;
926 mem
= platform_get_resource(cmt
->pdev
, IORESOURCE_MEM
, 0);
928 dev_err(&cmt
->pdev
->dev
, "failed to get I/O memory\n");
932 cmt
->mapbase
= ioremap_nocache(mem
->start
, resource_size(mem
));
933 if (cmt
->mapbase
== NULL
) {
934 dev_err(&cmt
->pdev
->dev
, "failed to remap I/O memory\n");
941 static int sh_cmt_map_memory_legacy(struct sh_cmt_device
*cmt
)
943 struct sh_timer_config
*cfg
= cmt
->pdev
->dev
.platform_data
;
944 struct resource
*res
, *res2
;
946 /* map memory, let mapbase_ch point to our channel */
947 res
= platform_get_resource(cmt
->pdev
, IORESOURCE_MEM
, 0);
949 dev_err(&cmt
->pdev
->dev
, "failed to get I/O memory\n");
953 cmt
->mapbase_ch
= ioremap_nocache(res
->start
, resource_size(res
));
954 if (cmt
->mapbase_ch
== NULL
) {
955 dev_err(&cmt
->pdev
->dev
, "failed to remap I/O memory\n");
959 /* optional resource for the shared timer start/stop register */
960 res2
= platform_get_resource(cmt
->pdev
, IORESOURCE_MEM
, 1);
962 /* map second resource for CMSTR */
963 cmt
->mapbase
= ioremap_nocache(res2
? res2
->start
:
964 res
->start
- cfg
->channel_offset
,
965 res2
? resource_size(res2
) : 2);
966 if (cmt
->mapbase
== NULL
) {
967 dev_err(&cmt
->pdev
->dev
, "failed to remap I/O second memory\n");
968 iounmap(cmt
->mapbase_ch
);
972 /* identify the model based on the resources */
973 if (resource_size(res
) == 6)
974 cmt
->info
= &sh_cmt_info
[SH_CMT_16BIT
];
975 else if (res2
&& (resource_size(res2
) == 4))
976 cmt
->info
= &sh_cmt_info
[SH_CMT_48BIT_GEN2
];
978 cmt
->info
= &sh_cmt_info
[SH_CMT_32BIT
];
983 static void sh_cmt_unmap_memory(struct sh_cmt_device
*cmt
)
985 iounmap(cmt
->mapbase
);
987 iounmap(cmt
->mapbase_ch
);
990 static int sh_cmt_setup(struct sh_cmt_device
*cmt
, struct platform_device
*pdev
)
992 struct sh_timer_config
*cfg
= pdev
->dev
.platform_data
;
993 const struct platform_device_id
*id
= pdev
->id_entry
;
994 unsigned int hw_channels
;
997 memset(cmt
, 0, sizeof(*cmt
));
1001 dev_err(&cmt
->pdev
->dev
, "missing platform data\n");
1005 cmt
->info
= (const struct sh_cmt_info
*)id
->driver_data
;
1006 cmt
->legacy
= cmt
->info
? false : true;
1008 /* Get hold of clock. */
1009 cmt
->clk
= clk_get(&cmt
->pdev
->dev
, cmt
->legacy
? "cmt_fck" : "fck");
1010 if (IS_ERR(cmt
->clk
)) {
1011 dev_err(&cmt
->pdev
->dev
, "cannot get clock\n");
1012 return PTR_ERR(cmt
->clk
);
1015 ret
= clk_prepare(cmt
->clk
);
1020 * Map the memory resource(s). We need to support both the legacy
1021 * platform device configuration (with one device per channel) and the
1022 * new version (with multiple channels per device).
1025 ret
= sh_cmt_map_memory_legacy(cmt
);
1027 ret
= sh_cmt_map_memory(cmt
);
1030 goto err_clk_unprepare
;
1032 /* Allocate and setup the channels. */
1034 cmt
->num_channels
= 1;
1037 cmt
->num_channels
= hweight8(cfg
->channels_mask
);
1038 hw_channels
= cfg
->channels_mask
;
1041 cmt
->channels
= kzalloc(cmt
->num_channels
* sizeof(*cmt
->channels
),
1043 if (cmt
->channels
== NULL
) {
1049 ret
= sh_cmt_setup_channel(&cmt
->channels
[0],
1050 cfg
->timer_bit
, cfg
->timer_bit
,
1051 cfg
->clockevent_rating
!= 0,
1052 cfg
->clocksource_rating
!= 0, cmt
);
1056 unsigned int mask
= hw_channels
;
1060 * Use the first channel as a clock event device and the second
1061 * channel as a clock source. If only one channel is available
1064 for (i
= 0; i
< cmt
->num_channels
; ++i
) {
1065 unsigned int hwidx
= ffs(mask
) - 1;
1066 bool clocksource
= i
== 1 || cmt
->num_channels
== 1;
1067 bool clockevent
= i
== 0;
1069 ret
= sh_cmt_setup_channel(&cmt
->channels
[i
], i
, hwidx
,
1070 clockevent
, clocksource
,
1075 mask
&= ~(1 << hwidx
);
1079 platform_set_drvdata(pdev
, cmt
);
1084 kfree(cmt
->channels
);
1085 sh_cmt_unmap_memory(cmt
);
1087 clk_unprepare(cmt
->clk
);
1093 static int sh_cmt_probe(struct platform_device
*pdev
)
1095 struct sh_cmt_device
*cmt
= platform_get_drvdata(pdev
);
1098 if (!is_early_platform_device(pdev
)) {
1099 pm_runtime_set_active(&pdev
->dev
);
1100 pm_runtime_enable(&pdev
->dev
);
1104 dev_info(&pdev
->dev
, "kept as earlytimer\n");
1108 cmt
= kzalloc(sizeof(*cmt
), GFP_KERNEL
);
1112 ret
= sh_cmt_setup(cmt
, pdev
);
1115 pm_runtime_idle(&pdev
->dev
);
1118 if (is_early_platform_device(pdev
))
1122 if (cmt
->has_clockevent
|| cmt
->has_clocksource
)
1123 pm_runtime_irq_safe(&pdev
->dev
);
1125 pm_runtime_idle(&pdev
->dev
);
1130 static int sh_cmt_remove(struct platform_device
*pdev
)
1132 return -EBUSY
; /* cannot unregister clockevent and clocksource */
1135 static const struct platform_device_id sh_cmt_id_table
[] = {
1137 { "sh-cmt-16", (kernel_ulong_t
)&sh_cmt_info
[SH_CMT_16BIT
] },
1138 { "sh-cmt-32", (kernel_ulong_t
)&sh_cmt_info
[SH_CMT_32BIT
] },
1139 { "sh-cmt-32-fast", (kernel_ulong_t
)&sh_cmt_info
[SH_CMT_32BIT_FAST
] },
1140 { "sh-cmt-48", (kernel_ulong_t
)&sh_cmt_info
[SH_CMT_48BIT
] },
1141 { "sh-cmt-48-gen2", (kernel_ulong_t
)&sh_cmt_info
[SH_CMT_48BIT_GEN2
] },
1144 MODULE_DEVICE_TABLE(platform
, sh_cmt_id_table
);
1146 static struct platform_driver sh_cmt_device_driver
= {
1147 .probe
= sh_cmt_probe
,
1148 .remove
= sh_cmt_remove
,
1152 .id_table
= sh_cmt_id_table
,
1155 static int __init
sh_cmt_init(void)
1157 return platform_driver_register(&sh_cmt_device_driver
);
1160 static void __exit
sh_cmt_exit(void)
1162 platform_driver_unregister(&sh_cmt_device_driver
);
1165 early_platform_init("earlytimer", &sh_cmt_device_driver
);
1166 subsys_initcall(sh_cmt_init
);
1167 module_exit(sh_cmt_exit
);
1169 MODULE_AUTHOR("Magnus Damm");
1170 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1171 MODULE_LICENSE("GPL v2");