firmware loader: allow disabling of udev as firmware loader
[linux/fpc-iii.git] / drivers / clocksource / sh_cmt.c
blobdfa780396b9166158240cd4a97d06759a696f867
1 /*
2 * SuperH Timer Support - CMT
4 * Copyright (C) 2008 Magnus Damm
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
16 #include <linux/clk.h>
17 #include <linux/clockchips.h>
18 #include <linux/clocksource.h>
19 #include <linux/delay.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/interrupt.h>
23 #include <linux/io.h>
24 #include <linux/ioport.h>
25 #include <linux/irq.h>
26 #include <linux/module.h>
27 #include <linux/platform_device.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/sh_timer.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
34 struct sh_cmt_device;
37 * The CMT comes in 5 different identified flavours, depending not only on the
38 * SoC but also on the particular instance. The following table lists the main
39 * characteristics of those flavours.
41 * 16B 32B 32B-F 48B 48B-2
42 * -----------------------------------------------------------------------------
43 * Channels 2 1/4 1 6 2/8
44 * Control Width 16 16 16 16 32
45 * Counter Width 16 32 32 32/48 32/48
46 * Shared Start/Stop Y Y Y Y N
48 * The 48-bit gen2 version has a per-channel start/stop register located in the
49 * channel registers block. All other versions have a shared start/stop register
50 * located in the global space.
52 * Channels are indexed from 0 to N-1 in the documentation. The channel index
53 * infers the start/stop bit position in the control register and the channel
54 * registers block address. Some CMT instances have a subset of channels
55 * available, in which case the index in the documentation doesn't match the
56 * "real" index as implemented in hardware. This is for instance the case with
57 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
58 * in the documentation but using start/stop bit 5 and having its registers
59 * block at 0x60.
61 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
62 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
65 enum sh_cmt_model {
66 SH_CMT_16BIT,
67 SH_CMT_32BIT,
68 SH_CMT_32BIT_FAST,
69 SH_CMT_48BIT,
70 SH_CMT_48BIT_GEN2,
73 struct sh_cmt_info {
74 enum sh_cmt_model model;
76 unsigned long width; /* 16 or 32 bit version of hardware block */
77 unsigned long overflow_bit;
78 unsigned long clear_bits;
80 /* callbacks for CMSTR and CMCSR access */
81 unsigned long (*read_control)(void __iomem *base, unsigned long offs);
82 void (*write_control)(void __iomem *base, unsigned long offs,
83 unsigned long value);
85 /* callbacks for CMCNT and CMCOR access */
86 unsigned long (*read_count)(void __iomem *base, unsigned long offs);
87 void (*write_count)(void __iomem *base, unsigned long offs,
88 unsigned long value);
91 struct sh_cmt_channel {
92 struct sh_cmt_device *cmt;
94 unsigned int index; /* Index in the documentation */
95 unsigned int hwidx; /* Real hardware index */
97 void __iomem *iostart;
98 void __iomem *ioctrl;
100 unsigned int timer_bit;
101 unsigned long flags;
102 unsigned long match_value;
103 unsigned long next_match_value;
104 unsigned long max_match_value;
105 unsigned long rate;
106 raw_spinlock_t lock;
107 struct clock_event_device ced;
108 struct clocksource cs;
109 unsigned long total_cycles;
110 bool cs_enabled;
113 struct sh_cmt_device {
114 struct platform_device *pdev;
116 const struct sh_cmt_info *info;
117 bool legacy;
119 void __iomem *mapbase_ch;
120 void __iomem *mapbase;
121 struct clk *clk;
123 struct sh_cmt_channel *channels;
124 unsigned int num_channels;
126 bool has_clockevent;
127 bool has_clocksource;
130 #define SH_CMT16_CMCSR_CMF (1 << 7)
131 #define SH_CMT16_CMCSR_CMIE (1 << 6)
132 #define SH_CMT16_CMCSR_CKS8 (0 << 0)
133 #define SH_CMT16_CMCSR_CKS32 (1 << 0)
134 #define SH_CMT16_CMCSR_CKS128 (2 << 0)
135 #define SH_CMT16_CMCSR_CKS512 (3 << 0)
136 #define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
138 #define SH_CMT32_CMCSR_CMF (1 << 15)
139 #define SH_CMT32_CMCSR_OVF (1 << 14)
140 #define SH_CMT32_CMCSR_WRFLG (1 << 13)
141 #define SH_CMT32_CMCSR_STTF (1 << 12)
142 #define SH_CMT32_CMCSR_STPF (1 << 11)
143 #define SH_CMT32_CMCSR_SSIE (1 << 10)
144 #define SH_CMT32_CMCSR_CMS (1 << 9)
145 #define SH_CMT32_CMCSR_CMM (1 << 8)
146 #define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
147 #define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
148 #define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
149 #define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
150 #define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
151 #define SH_CMT32_CMCSR_DBGIVD (1 << 3)
152 #define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
153 #define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
154 #define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
155 #define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
156 #define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
158 static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
160 return ioread16(base + (offs << 1));
163 static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
165 return ioread32(base + (offs << 2));
168 static void sh_cmt_write16(void __iomem *base, unsigned long offs,
169 unsigned long value)
171 iowrite16(value, base + (offs << 1));
174 static void sh_cmt_write32(void __iomem *base, unsigned long offs,
175 unsigned long value)
177 iowrite32(value, base + (offs << 2));
180 static const struct sh_cmt_info sh_cmt_info[] = {
181 [SH_CMT_16BIT] = {
182 .model = SH_CMT_16BIT,
183 .width = 16,
184 .overflow_bit = SH_CMT16_CMCSR_CMF,
185 .clear_bits = ~SH_CMT16_CMCSR_CMF,
186 .read_control = sh_cmt_read16,
187 .write_control = sh_cmt_write16,
188 .read_count = sh_cmt_read16,
189 .write_count = sh_cmt_write16,
191 [SH_CMT_32BIT] = {
192 .model = SH_CMT_32BIT,
193 .width = 32,
194 .overflow_bit = SH_CMT32_CMCSR_CMF,
195 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
196 .read_control = sh_cmt_read16,
197 .write_control = sh_cmt_write16,
198 .read_count = sh_cmt_read32,
199 .write_count = sh_cmt_write32,
201 [SH_CMT_32BIT_FAST] = {
202 .model = SH_CMT_32BIT_FAST,
203 .width = 32,
204 .overflow_bit = SH_CMT32_CMCSR_CMF,
205 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
206 .read_control = sh_cmt_read16,
207 .write_control = sh_cmt_write16,
208 .read_count = sh_cmt_read32,
209 .write_count = sh_cmt_write32,
211 [SH_CMT_48BIT] = {
212 .model = SH_CMT_48BIT,
213 .width = 32,
214 .overflow_bit = SH_CMT32_CMCSR_CMF,
215 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216 .read_control = sh_cmt_read32,
217 .write_control = sh_cmt_write32,
218 .read_count = sh_cmt_read32,
219 .write_count = sh_cmt_write32,
221 [SH_CMT_48BIT_GEN2] = {
222 .model = SH_CMT_48BIT_GEN2,
223 .width = 32,
224 .overflow_bit = SH_CMT32_CMCSR_CMF,
225 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
226 .read_control = sh_cmt_read32,
227 .write_control = sh_cmt_write32,
228 .read_count = sh_cmt_read32,
229 .write_count = sh_cmt_write32,
233 #define CMCSR 0 /* channel register */
234 #define CMCNT 1 /* channel register */
235 #define CMCOR 2 /* channel register */
237 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
239 if (ch->iostart)
240 return ch->cmt->info->read_control(ch->iostart, 0);
241 else
242 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
245 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
246 unsigned long value)
248 if (ch->iostart)
249 ch->cmt->info->write_control(ch->iostart, 0, value);
250 else
251 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
254 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
256 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
259 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
260 unsigned long value)
262 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
265 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
267 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
270 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
271 unsigned long value)
273 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
276 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
277 unsigned long value)
279 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
282 static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
283 int *has_wrapped)
285 unsigned long v1, v2, v3;
286 int o1, o2;
288 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
290 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
291 do {
292 o2 = o1;
293 v1 = sh_cmt_read_cmcnt(ch);
294 v2 = sh_cmt_read_cmcnt(ch);
295 v3 = sh_cmt_read_cmcnt(ch);
296 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
297 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
298 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
300 *has_wrapped = o1;
301 return v2;
304 static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
306 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
308 unsigned long flags, value;
310 /* start stop register shared by multiple timer channels */
311 raw_spin_lock_irqsave(&sh_cmt_lock, flags);
312 value = sh_cmt_read_cmstr(ch);
314 if (start)
315 value |= 1 << ch->timer_bit;
316 else
317 value &= ~(1 << ch->timer_bit);
319 sh_cmt_write_cmstr(ch, value);
320 raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
323 static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
325 int k, ret;
327 pm_runtime_get_sync(&ch->cmt->pdev->dev);
328 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
330 /* enable clock */
331 ret = clk_enable(ch->cmt->clk);
332 if (ret) {
333 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
334 ch->index);
335 goto err0;
338 /* make sure channel is disabled */
339 sh_cmt_start_stop_ch(ch, 0);
341 /* configure channel, periodic mode and maximum timeout */
342 if (ch->cmt->info->width == 16) {
343 *rate = clk_get_rate(ch->cmt->clk) / 512;
344 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
345 SH_CMT16_CMCSR_CKS512);
346 } else {
347 *rate = clk_get_rate(ch->cmt->clk) / 8;
348 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
349 SH_CMT32_CMCSR_CMTOUT_IE |
350 SH_CMT32_CMCSR_CMR_IRQ |
351 SH_CMT32_CMCSR_CKS_RCLK8);
354 sh_cmt_write_cmcor(ch, 0xffffffff);
355 sh_cmt_write_cmcnt(ch, 0);
358 * According to the sh73a0 user's manual, as CMCNT can be operated
359 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
360 * modifying CMCNT register; two RCLK cycles are necessary before
361 * this register is either read or any modification of the value
362 * it holds is reflected in the LSI's actual operation.
364 * While at it, we're supposed to clear out the CMCNT as of this
365 * moment, so make sure it's processed properly here. This will
366 * take RCLKx2 at maximum.
368 for (k = 0; k < 100; k++) {
369 if (!sh_cmt_read_cmcnt(ch))
370 break;
371 udelay(1);
374 if (sh_cmt_read_cmcnt(ch)) {
375 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
376 ch->index);
377 ret = -ETIMEDOUT;
378 goto err1;
381 /* enable channel */
382 sh_cmt_start_stop_ch(ch, 1);
383 return 0;
384 err1:
385 /* stop clock */
386 clk_disable(ch->cmt->clk);
388 err0:
389 return ret;
392 static void sh_cmt_disable(struct sh_cmt_channel *ch)
394 /* disable channel */
395 sh_cmt_start_stop_ch(ch, 0);
397 /* disable interrupts in CMT block */
398 sh_cmt_write_cmcsr(ch, 0);
400 /* stop clock */
401 clk_disable(ch->cmt->clk);
403 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
404 pm_runtime_put(&ch->cmt->pdev->dev);
407 /* private flags */
408 #define FLAG_CLOCKEVENT (1 << 0)
409 #define FLAG_CLOCKSOURCE (1 << 1)
410 #define FLAG_REPROGRAM (1 << 2)
411 #define FLAG_SKIPEVENT (1 << 3)
412 #define FLAG_IRQCONTEXT (1 << 4)
414 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
415 int absolute)
417 unsigned long new_match;
418 unsigned long value = ch->next_match_value;
419 unsigned long delay = 0;
420 unsigned long now = 0;
421 int has_wrapped;
423 now = sh_cmt_get_counter(ch, &has_wrapped);
424 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
426 if (has_wrapped) {
427 /* we're competing with the interrupt handler.
428 * -> let the interrupt handler reprogram the timer.
429 * -> interrupt number two handles the event.
431 ch->flags |= FLAG_SKIPEVENT;
432 return;
435 if (absolute)
436 now = 0;
438 do {
439 /* reprogram the timer hardware,
440 * but don't save the new match value yet.
442 new_match = now + value + delay;
443 if (new_match > ch->max_match_value)
444 new_match = ch->max_match_value;
446 sh_cmt_write_cmcor(ch, new_match);
448 now = sh_cmt_get_counter(ch, &has_wrapped);
449 if (has_wrapped && (new_match > ch->match_value)) {
450 /* we are changing to a greater match value,
451 * so this wrap must be caused by the counter
452 * matching the old value.
453 * -> first interrupt reprograms the timer.
454 * -> interrupt number two handles the event.
456 ch->flags |= FLAG_SKIPEVENT;
457 break;
460 if (has_wrapped) {
461 /* we are changing to a smaller match value,
462 * so the wrap must be caused by the counter
463 * matching the new value.
464 * -> save programmed match value.
465 * -> let isr handle the event.
467 ch->match_value = new_match;
468 break;
471 /* be safe: verify hardware settings */
472 if (now < new_match) {
473 /* timer value is below match value, all good.
474 * this makes sure we won't miss any match events.
475 * -> save programmed match value.
476 * -> let isr handle the event.
478 ch->match_value = new_match;
479 break;
482 /* the counter has reached a value greater
483 * than our new match value. and since the
484 * has_wrapped flag isn't set we must have
485 * programmed a too close event.
486 * -> increase delay and retry.
488 if (delay)
489 delay <<= 1;
490 else
491 delay = 1;
493 if (!delay)
494 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
495 ch->index);
497 } while (delay);
500 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
502 if (delta > ch->max_match_value)
503 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
504 ch->index);
506 ch->next_match_value = delta;
507 sh_cmt_clock_event_program_verify(ch, 0);
510 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
512 unsigned long flags;
514 raw_spin_lock_irqsave(&ch->lock, flags);
515 __sh_cmt_set_next(ch, delta);
516 raw_spin_unlock_irqrestore(&ch->lock, flags);
519 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
521 struct sh_cmt_channel *ch = dev_id;
523 /* clear flags */
524 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
525 ch->cmt->info->clear_bits);
527 /* update clock source counter to begin with if enabled
528 * the wrap flag should be cleared by the timer specific
529 * isr before we end up here.
531 if (ch->flags & FLAG_CLOCKSOURCE)
532 ch->total_cycles += ch->match_value + 1;
534 if (!(ch->flags & FLAG_REPROGRAM))
535 ch->next_match_value = ch->max_match_value;
537 ch->flags |= FLAG_IRQCONTEXT;
539 if (ch->flags & FLAG_CLOCKEVENT) {
540 if (!(ch->flags & FLAG_SKIPEVENT)) {
541 if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
542 ch->next_match_value = ch->max_match_value;
543 ch->flags |= FLAG_REPROGRAM;
546 ch->ced.event_handler(&ch->ced);
550 ch->flags &= ~FLAG_SKIPEVENT;
552 if (ch->flags & FLAG_REPROGRAM) {
553 ch->flags &= ~FLAG_REPROGRAM;
554 sh_cmt_clock_event_program_verify(ch, 1);
556 if (ch->flags & FLAG_CLOCKEVENT)
557 if ((ch->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
558 || (ch->match_value == ch->next_match_value))
559 ch->flags &= ~FLAG_REPROGRAM;
562 ch->flags &= ~FLAG_IRQCONTEXT;
564 return IRQ_HANDLED;
567 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
569 int ret = 0;
570 unsigned long flags;
572 raw_spin_lock_irqsave(&ch->lock, flags);
574 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
575 ret = sh_cmt_enable(ch, &ch->rate);
577 if (ret)
578 goto out;
579 ch->flags |= flag;
581 /* setup timeout if no clockevent */
582 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
583 __sh_cmt_set_next(ch, ch->max_match_value);
584 out:
585 raw_spin_unlock_irqrestore(&ch->lock, flags);
587 return ret;
590 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
592 unsigned long flags;
593 unsigned long f;
595 raw_spin_lock_irqsave(&ch->lock, flags);
597 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
598 ch->flags &= ~flag;
600 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
601 sh_cmt_disable(ch);
603 /* adjust the timeout to maximum if only clocksource left */
604 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
605 __sh_cmt_set_next(ch, ch->max_match_value);
607 raw_spin_unlock_irqrestore(&ch->lock, flags);
610 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
612 return container_of(cs, struct sh_cmt_channel, cs);
615 static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
617 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
618 unsigned long flags, raw;
619 unsigned long value;
620 int has_wrapped;
622 raw_spin_lock_irqsave(&ch->lock, flags);
623 value = ch->total_cycles;
624 raw = sh_cmt_get_counter(ch, &has_wrapped);
626 if (unlikely(has_wrapped))
627 raw += ch->match_value + 1;
628 raw_spin_unlock_irqrestore(&ch->lock, flags);
630 return value + raw;
633 static int sh_cmt_clocksource_enable(struct clocksource *cs)
635 int ret;
636 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
638 WARN_ON(ch->cs_enabled);
640 ch->total_cycles = 0;
642 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
643 if (!ret) {
644 __clocksource_updatefreq_hz(cs, ch->rate);
645 ch->cs_enabled = true;
647 return ret;
650 static void sh_cmt_clocksource_disable(struct clocksource *cs)
652 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
654 WARN_ON(!ch->cs_enabled);
656 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
657 ch->cs_enabled = false;
660 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
662 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
664 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
665 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
668 static void sh_cmt_clocksource_resume(struct clocksource *cs)
670 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
672 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
673 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
676 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
677 const char *name)
679 struct clocksource *cs = &ch->cs;
681 cs->name = name;
682 cs->rating = 125;
683 cs->read = sh_cmt_clocksource_read;
684 cs->enable = sh_cmt_clocksource_enable;
685 cs->disable = sh_cmt_clocksource_disable;
686 cs->suspend = sh_cmt_clocksource_suspend;
687 cs->resume = sh_cmt_clocksource_resume;
688 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
689 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
691 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
692 ch->index);
694 /* Register with dummy 1 Hz value, gets updated in ->enable() */
695 clocksource_register_hz(cs, 1);
696 return 0;
699 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
701 return container_of(ced, struct sh_cmt_channel, ced);
704 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
706 struct clock_event_device *ced = &ch->ced;
708 sh_cmt_start(ch, FLAG_CLOCKEVENT);
710 /* TODO: calculate good shift from rate and counter bit width */
712 ced->shift = 32;
713 ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
714 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
715 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
717 if (periodic)
718 sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
719 else
720 sh_cmt_set_next(ch, ch->max_match_value);
723 static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
724 struct clock_event_device *ced)
726 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
728 /* deal with old setting first */
729 switch (ced->mode) {
730 case CLOCK_EVT_MODE_PERIODIC:
731 case CLOCK_EVT_MODE_ONESHOT:
732 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
733 break;
734 default:
735 break;
738 switch (mode) {
739 case CLOCK_EVT_MODE_PERIODIC:
740 dev_info(&ch->cmt->pdev->dev,
741 "ch%u: used for periodic clock events\n", ch->index);
742 sh_cmt_clock_event_start(ch, 1);
743 break;
744 case CLOCK_EVT_MODE_ONESHOT:
745 dev_info(&ch->cmt->pdev->dev,
746 "ch%u: used for oneshot clock events\n", ch->index);
747 sh_cmt_clock_event_start(ch, 0);
748 break;
749 case CLOCK_EVT_MODE_SHUTDOWN:
750 case CLOCK_EVT_MODE_UNUSED:
751 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
752 break;
753 default:
754 break;
758 static int sh_cmt_clock_event_next(unsigned long delta,
759 struct clock_event_device *ced)
761 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
763 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
764 if (likely(ch->flags & FLAG_IRQCONTEXT))
765 ch->next_match_value = delta - 1;
766 else
767 sh_cmt_set_next(ch, delta - 1);
769 return 0;
772 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
774 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
776 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
777 clk_unprepare(ch->cmt->clk);
780 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
782 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
784 clk_prepare(ch->cmt->clk);
785 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
788 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
789 const char *name)
791 struct clock_event_device *ced = &ch->ced;
792 int irq;
793 int ret;
795 irq = platform_get_irq(ch->cmt->pdev, ch->cmt->legacy ? 0 : ch->index);
796 if (irq < 0) {
797 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
798 ch->index);
799 return irq;
802 ret = request_irq(irq, sh_cmt_interrupt,
803 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
804 dev_name(&ch->cmt->pdev->dev), ch);
805 if (ret) {
806 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
807 ch->index, irq);
808 return ret;
811 ced->name = name;
812 ced->features = CLOCK_EVT_FEAT_PERIODIC;
813 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
814 ced->rating = 125;
815 ced->cpumask = cpu_possible_mask;
816 ced->set_next_event = sh_cmt_clock_event_next;
817 ced->set_mode = sh_cmt_clock_event_mode;
818 ced->suspend = sh_cmt_clock_event_suspend;
819 ced->resume = sh_cmt_clock_event_resume;
821 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
822 ch->index);
823 clockevents_register_device(ced);
825 return 0;
828 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
829 bool clockevent, bool clocksource)
831 int ret;
833 if (clockevent) {
834 ch->cmt->has_clockevent = true;
835 ret = sh_cmt_register_clockevent(ch, name);
836 if (ret < 0)
837 return ret;
840 if (clocksource) {
841 ch->cmt->has_clocksource = true;
842 sh_cmt_register_clocksource(ch, name);
845 return 0;
848 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
849 unsigned int hwidx, bool clockevent,
850 bool clocksource, struct sh_cmt_device *cmt)
852 int ret;
854 /* Skip unused channels. */
855 if (!clockevent && !clocksource)
856 return 0;
858 ch->cmt = cmt;
859 ch->index = index;
860 ch->hwidx = hwidx;
863 * Compute the address of the channel control register block. For the
864 * timers with a per-channel start/stop register, compute its address
865 * as well.
867 * For legacy configuration the address has been mapped explicitly.
869 if (cmt->legacy) {
870 ch->ioctrl = cmt->mapbase_ch;
871 } else {
872 switch (cmt->info->model) {
873 case SH_CMT_16BIT:
874 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
875 break;
876 case SH_CMT_32BIT:
877 case SH_CMT_48BIT:
878 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
879 break;
880 case SH_CMT_32BIT_FAST:
882 * The 32-bit "fast" timer has a single channel at hwidx
883 * 5 but is located at offset 0x40 instead of 0x60 for
884 * some reason.
886 ch->ioctrl = cmt->mapbase + 0x40;
887 break;
888 case SH_CMT_48BIT_GEN2:
889 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
890 ch->ioctrl = ch->iostart + 0x10;
891 break;
895 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
896 ch->max_match_value = ~0;
897 else
898 ch->max_match_value = (1 << cmt->info->width) - 1;
900 ch->match_value = ch->max_match_value;
901 raw_spin_lock_init(&ch->lock);
903 if (cmt->legacy) {
904 ch->timer_bit = ch->hwidx;
905 } else {
906 ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2
907 ? 0 : ch->hwidx;
910 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
911 clockevent, clocksource);
912 if (ret) {
913 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
914 ch->index);
915 return ret;
917 ch->cs_enabled = false;
919 return 0;
922 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
924 struct resource *mem;
926 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
927 if (!mem) {
928 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
929 return -ENXIO;
932 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
933 if (cmt->mapbase == NULL) {
934 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
935 return -ENXIO;
938 return 0;
941 static int sh_cmt_map_memory_legacy(struct sh_cmt_device *cmt)
943 struct sh_timer_config *cfg = cmt->pdev->dev.platform_data;
944 struct resource *res, *res2;
946 /* map memory, let mapbase_ch point to our channel */
947 res = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
948 if (!res) {
949 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
950 return -ENXIO;
953 cmt->mapbase_ch = ioremap_nocache(res->start, resource_size(res));
954 if (cmt->mapbase_ch == NULL) {
955 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
956 return -ENXIO;
959 /* optional resource for the shared timer start/stop register */
960 res2 = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 1);
962 /* map second resource for CMSTR */
963 cmt->mapbase = ioremap_nocache(res2 ? res2->start :
964 res->start - cfg->channel_offset,
965 res2 ? resource_size(res2) : 2);
966 if (cmt->mapbase == NULL) {
967 dev_err(&cmt->pdev->dev, "failed to remap I/O second memory\n");
968 iounmap(cmt->mapbase_ch);
969 return -ENXIO;
972 /* identify the model based on the resources */
973 if (resource_size(res) == 6)
974 cmt->info = &sh_cmt_info[SH_CMT_16BIT];
975 else if (res2 && (resource_size(res2) == 4))
976 cmt->info = &sh_cmt_info[SH_CMT_48BIT_GEN2];
977 else
978 cmt->info = &sh_cmt_info[SH_CMT_32BIT];
980 return 0;
983 static void sh_cmt_unmap_memory(struct sh_cmt_device *cmt)
985 iounmap(cmt->mapbase);
986 if (cmt->mapbase_ch)
987 iounmap(cmt->mapbase_ch);
990 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
992 struct sh_timer_config *cfg = pdev->dev.platform_data;
993 const struct platform_device_id *id = pdev->id_entry;
994 unsigned int hw_channels;
995 int ret;
997 memset(cmt, 0, sizeof(*cmt));
998 cmt->pdev = pdev;
1000 if (!cfg) {
1001 dev_err(&cmt->pdev->dev, "missing platform data\n");
1002 return -ENXIO;
1005 cmt->info = (const struct sh_cmt_info *)id->driver_data;
1006 cmt->legacy = cmt->info ? false : true;
1008 /* Get hold of clock. */
1009 cmt->clk = clk_get(&cmt->pdev->dev, cmt->legacy ? "cmt_fck" : "fck");
1010 if (IS_ERR(cmt->clk)) {
1011 dev_err(&cmt->pdev->dev, "cannot get clock\n");
1012 return PTR_ERR(cmt->clk);
1015 ret = clk_prepare(cmt->clk);
1016 if (ret < 0)
1017 goto err_clk_put;
1020 * Map the memory resource(s). We need to support both the legacy
1021 * platform device configuration (with one device per channel) and the
1022 * new version (with multiple channels per device).
1024 if (cmt->legacy)
1025 ret = sh_cmt_map_memory_legacy(cmt);
1026 else
1027 ret = sh_cmt_map_memory(cmt);
1029 if (ret < 0)
1030 goto err_clk_unprepare;
1032 /* Allocate and setup the channels. */
1033 if (cmt->legacy) {
1034 cmt->num_channels = 1;
1035 hw_channels = 0;
1036 } else {
1037 cmt->num_channels = hweight8(cfg->channels_mask);
1038 hw_channels = cfg->channels_mask;
1041 cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1042 GFP_KERNEL);
1043 if (cmt->channels == NULL) {
1044 ret = -ENOMEM;
1045 goto err_unmap;
1048 if (cmt->legacy) {
1049 ret = sh_cmt_setup_channel(&cmt->channels[0],
1050 cfg->timer_bit, cfg->timer_bit,
1051 cfg->clockevent_rating != 0,
1052 cfg->clocksource_rating != 0, cmt);
1053 if (ret < 0)
1054 goto err_unmap;
1055 } else {
1056 unsigned int mask = hw_channels;
1057 unsigned int i;
1060 * Use the first channel as a clock event device and the second
1061 * channel as a clock source. If only one channel is available
1062 * use it for both.
1064 for (i = 0; i < cmt->num_channels; ++i) {
1065 unsigned int hwidx = ffs(mask) - 1;
1066 bool clocksource = i == 1 || cmt->num_channels == 1;
1067 bool clockevent = i == 0;
1069 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1070 clockevent, clocksource,
1071 cmt);
1072 if (ret < 0)
1073 goto err_unmap;
1075 mask &= ~(1 << hwidx);
1079 platform_set_drvdata(pdev, cmt);
1081 return 0;
1083 err_unmap:
1084 kfree(cmt->channels);
1085 sh_cmt_unmap_memory(cmt);
1086 err_clk_unprepare:
1087 clk_unprepare(cmt->clk);
1088 err_clk_put:
1089 clk_put(cmt->clk);
1090 return ret;
1093 static int sh_cmt_probe(struct platform_device *pdev)
1095 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1096 int ret;
1098 if (!is_early_platform_device(pdev)) {
1099 pm_runtime_set_active(&pdev->dev);
1100 pm_runtime_enable(&pdev->dev);
1103 if (cmt) {
1104 dev_info(&pdev->dev, "kept as earlytimer\n");
1105 goto out;
1108 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1109 if (cmt == NULL)
1110 return -ENOMEM;
1112 ret = sh_cmt_setup(cmt, pdev);
1113 if (ret) {
1114 kfree(cmt);
1115 pm_runtime_idle(&pdev->dev);
1116 return ret;
1118 if (is_early_platform_device(pdev))
1119 return 0;
1121 out:
1122 if (cmt->has_clockevent || cmt->has_clocksource)
1123 pm_runtime_irq_safe(&pdev->dev);
1124 else
1125 pm_runtime_idle(&pdev->dev);
1127 return 0;
1130 static int sh_cmt_remove(struct platform_device *pdev)
1132 return -EBUSY; /* cannot unregister clockevent and clocksource */
1135 static const struct platform_device_id sh_cmt_id_table[] = {
1136 { "sh_cmt", 0 },
1137 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
1138 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
1139 { "sh-cmt-32-fast", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT_FAST] },
1140 { "sh-cmt-48", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT] },
1141 { "sh-cmt-48-gen2", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT_GEN2] },
1144 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
1146 static struct platform_driver sh_cmt_device_driver = {
1147 .probe = sh_cmt_probe,
1148 .remove = sh_cmt_remove,
1149 .driver = {
1150 .name = "sh_cmt",
1152 .id_table = sh_cmt_id_table,
1155 static int __init sh_cmt_init(void)
1157 return platform_driver_register(&sh_cmt_device_driver);
1160 static void __exit sh_cmt_exit(void)
1162 platform_driver_unregister(&sh_cmt_device_driver);
1165 early_platform_init("earlytimer", &sh_cmt_device_driver);
1166 subsys_initcall(sh_cmt_init);
1167 module_exit(sh_cmt_exit);
1169 MODULE_AUTHOR("Magnus Damm");
1170 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1171 MODULE_LICENSE("GPL v2");