firmware loader: allow disabling of udev as firmware loader
[linux/fpc-iii.git] / drivers / pinctrl / core.c
blobe09474ecde2346bd900d8f9d05ba3c26c63f9aa9
1 /*
2 * Core driver for the pin control subsystem
4 * Copyright (C) 2011-2012 ST-Ericsson SA
5 * Written on behalf of Linaro for ST-Ericsson
6 * Based on bits of regulator core, gpio core and clk core
8 * Author: Linus Walleij <linus.walleij@linaro.org>
10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 * License terms: GNU General Public License (GPL) version 2
14 #define pr_fmt(fmt) "pinctrl core: " fmt
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
41 static bool pinctrl_dummy_state;
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
62 /**
63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
65 * Usually this function is called by platforms without pinctrl driver support
66 * but run with some shared drivers using pinctrl APIs.
67 * After calling this function, the pinctrl core will return successfully
68 * with creating a dummy state for the driver to keep going smoothly.
70 void pinctrl_provide_dummies(void)
72 pinctrl_dummy_state = true;
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
77 /* We're not allowed to register devices without name */
78 return pctldev->desc->name;
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
84 return dev_name(pctldev->dev);
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
90 return pctldev->driver_data;
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
94 /**
95 * get_pinctrl_dev_from_devname() - look up pin controller device
96 * @devname: the name of a device instance, as returned by dev_name()
98 * Looks up a pin control device matching a certain device name or pure device
99 * pointer, the pure device pointer will take precedence.
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
103 struct pinctrl_dev *pctldev = NULL;
105 if (!devname)
106 return NULL;
108 mutex_lock(&pinctrldev_list_mutex);
110 list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 if (!strcmp(dev_name(pctldev->dev), devname)) {
112 /* Matched on device name */
113 mutex_unlock(&pinctrldev_list_mutex);
114 return pctldev;
118 mutex_unlock(&pinctrldev_list_mutex);
120 return NULL;
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
125 struct pinctrl_dev *pctldev;
127 mutex_lock(&pinctrldev_list_mutex);
129 list_for_each_entry(pctldev, &pinctrldev_list, node)
130 if (pctldev->dev->of_node == np) {
131 mutex_unlock(&pinctrldev_list_mutex);
132 return pctldev;
135 mutex_unlock(&pinctrldev_list_mutex);
137 return NULL;
141 * pin_get_from_name() - look up a pin number from a name
142 * @pctldev: the pin control device to lookup the pin on
143 * @name: the name of the pin to look up
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
147 unsigned i, pin;
149 /* The pin number can be retrived from the pin controller descriptor */
150 for (i = 0; i < pctldev->desc->npins; i++) {
151 struct pin_desc *desc;
153 pin = pctldev->desc->pins[i].number;
154 desc = pin_desc_get(pctldev, pin);
155 /* Pin space may be sparse */
156 if (desc && !strcmp(name, desc->name))
157 return pin;
160 return -EINVAL;
164 * pin_get_name_from_id() - look up a pin name from a pin id
165 * @pctldev: the pin control device to lookup the pin on
166 * @name: the name of the pin to look up
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
170 const struct pin_desc *desc;
172 desc = pin_desc_get(pctldev, pin);
173 if (desc == NULL) {
174 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 pin);
176 return NULL;
179 return desc->name;
183 * pin_is_valid() - check if pin exists on controller
184 * @pctldev: the pin control device to check the pin on
185 * @pin: pin to check, use the local pin controller index number
187 * This tells us whether a certain pin exist on a certain pin controller or
188 * not. Pin lists may be sparse, so some pins may not exist.
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
192 struct pin_desc *pindesc;
194 if (pin < 0)
195 return false;
197 mutex_lock(&pctldev->mutex);
198 pindesc = pin_desc_get(pctldev, pin);
199 mutex_unlock(&pctldev->mutex);
201 return pindesc != NULL;
203 EXPORT_SYMBOL_GPL(pin_is_valid);
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 const struct pinctrl_pin_desc *pins,
208 unsigned num_pins)
210 int i;
212 for (i = 0; i < num_pins; i++) {
213 struct pin_desc *pindesc;
215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 pins[i].number);
217 if (pindesc != NULL) {
218 radix_tree_delete(&pctldev->pin_desc_tree,
219 pins[i].number);
220 if (pindesc->dynamic_name)
221 kfree(pindesc->name);
223 kfree(pindesc);
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 unsigned number, const char *name)
230 struct pin_desc *pindesc;
232 pindesc = pin_desc_get(pctldev, number);
233 if (pindesc != NULL) {
234 pr_err("pin %d already registered on %s\n", number,
235 pctldev->desc->name);
236 return -EINVAL;
239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 if (pindesc == NULL) {
241 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
242 return -ENOMEM;
245 /* Set owner */
246 pindesc->pctldev = pctldev;
248 /* Copy basic pin info */
249 if (name) {
250 pindesc->name = name;
251 } else {
252 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
253 if (pindesc->name == NULL) {
254 kfree(pindesc);
255 return -ENOMEM;
257 pindesc->dynamic_name = true;
260 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
261 pr_debug("registered pin %d (%s) on %s\n",
262 number, pindesc->name, pctldev->desc->name);
263 return 0;
266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
267 struct pinctrl_pin_desc const *pins,
268 unsigned num_descs)
270 unsigned i;
271 int ret = 0;
273 for (i = 0; i < num_descs; i++) {
274 ret = pinctrl_register_one_pin(pctldev,
275 pins[i].number, pins[i].name);
276 if (ret)
277 return ret;
280 return 0;
284 * gpio_to_pin() - GPIO range GPIO number to pin number translation
285 * @range: GPIO range used for the translation
286 * @gpio: gpio pin to translate to a pin number
288 * Finds the pin number for a given GPIO using the specified GPIO range
289 * as a base for translation. The distinction between linear GPIO ranges
290 * and pin list based GPIO ranges is managed correctly by this function.
292 * This function assumes the gpio is part of the specified GPIO range, use
293 * only after making sure this is the case (e.g. by calling it on the
294 * result of successful pinctrl_get_device_gpio_range calls)!
296 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
297 unsigned int gpio)
299 unsigned int offset = gpio - range->base;
300 if (range->pins)
301 return range->pins[offset];
302 else
303 return range->pin_base + offset;
307 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
308 * @pctldev: pin controller device to check
309 * @gpio: gpio pin to check taken from the global GPIO pin space
311 * Tries to match a GPIO pin number to the ranges handled by a certain pin
312 * controller, return the range or NULL
314 static struct pinctrl_gpio_range *
315 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
317 struct pinctrl_gpio_range *range = NULL;
319 mutex_lock(&pctldev->mutex);
320 /* Loop over the ranges */
321 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
322 /* Check if we're in the valid range */
323 if (gpio >= range->base &&
324 gpio < range->base + range->npins) {
325 mutex_unlock(&pctldev->mutex);
326 return range;
329 mutex_unlock(&pctldev->mutex);
330 return NULL;
334 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
335 * the same GPIO chip are in range
336 * @gpio: gpio pin to check taken from the global GPIO pin space
338 * This function is complement of pinctrl_match_gpio_range(). If the return
339 * value of pinctrl_match_gpio_range() is NULL, this function could be used
340 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
341 * of the same GPIO chip don't have back-end pinctrl interface.
342 * If the return value is true, it means that pinctrl device is ready & the
343 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
344 * is false, it means that pinctrl device may not be ready.
346 #ifdef CONFIG_GPIOLIB
347 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
349 struct pinctrl_dev *pctldev;
350 struct pinctrl_gpio_range *range = NULL;
351 struct gpio_chip *chip = gpio_to_chip(gpio);
353 mutex_lock(&pinctrldev_list_mutex);
355 /* Loop over the pin controllers */
356 list_for_each_entry(pctldev, &pinctrldev_list, node) {
357 /* Loop over the ranges */
358 mutex_lock(&pctldev->mutex);
359 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
360 /* Check if any gpio range overlapped with gpio chip */
361 if (range->base + range->npins - 1 < chip->base ||
362 range->base > chip->base + chip->ngpio - 1)
363 continue;
364 mutex_unlock(&pctldev->mutex);
365 mutex_unlock(&pinctrldev_list_mutex);
366 return true;
368 mutex_unlock(&pctldev->mutex);
371 mutex_unlock(&pinctrldev_list_mutex);
373 return false;
375 #else
376 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
377 #endif
380 * pinctrl_get_device_gpio_range() - find device for GPIO range
381 * @gpio: the pin to locate the pin controller for
382 * @outdev: the pin control device if found
383 * @outrange: the GPIO range if found
385 * Find the pin controller handling a certain GPIO pin from the pinspace of
386 * the GPIO subsystem, return the device and the matching GPIO range. Returns
387 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
388 * may still have not been registered.
390 static int pinctrl_get_device_gpio_range(unsigned gpio,
391 struct pinctrl_dev **outdev,
392 struct pinctrl_gpio_range **outrange)
394 struct pinctrl_dev *pctldev = NULL;
396 mutex_lock(&pinctrldev_list_mutex);
398 /* Loop over the pin controllers */
399 list_for_each_entry(pctldev, &pinctrldev_list, node) {
400 struct pinctrl_gpio_range *range;
402 range = pinctrl_match_gpio_range(pctldev, gpio);
403 if (range != NULL) {
404 *outdev = pctldev;
405 *outrange = range;
406 mutex_unlock(&pinctrldev_list_mutex);
407 return 0;
411 mutex_unlock(&pinctrldev_list_mutex);
413 return -EPROBE_DEFER;
417 * pinctrl_add_gpio_range() - register a GPIO range for a controller
418 * @pctldev: pin controller device to add the range to
419 * @range: the GPIO range to add
421 * This adds a range of GPIOs to be handled by a certain pin controller. Call
422 * this to register handled ranges after registering your pin controller.
424 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
425 struct pinctrl_gpio_range *range)
427 mutex_lock(&pctldev->mutex);
428 list_add_tail(&range->node, &pctldev->gpio_ranges);
429 mutex_unlock(&pctldev->mutex);
431 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
433 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
434 struct pinctrl_gpio_range *ranges,
435 unsigned nranges)
437 int i;
439 for (i = 0; i < nranges; i++)
440 pinctrl_add_gpio_range(pctldev, &ranges[i]);
442 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
444 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
445 struct pinctrl_gpio_range *range)
447 struct pinctrl_dev *pctldev;
449 pctldev = get_pinctrl_dev_from_devname(devname);
452 * If we can't find this device, let's assume that is because
453 * it has not probed yet, so the driver trying to register this
454 * range need to defer probing.
456 if (!pctldev) {
457 return ERR_PTR(-EPROBE_DEFER);
459 pinctrl_add_gpio_range(pctldev, range);
461 return pctldev;
463 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
465 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
466 const unsigned **pins, unsigned *num_pins)
468 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
469 int gs;
471 if (!pctlops->get_group_pins)
472 return -EINVAL;
474 gs = pinctrl_get_group_selector(pctldev, pin_group);
475 if (gs < 0)
476 return gs;
478 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
480 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
483 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
484 * @pctldev: the pin controller device to look in
485 * @pin: a controller-local number to find the range for
487 struct pinctrl_gpio_range *
488 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
489 unsigned int pin)
491 struct pinctrl_gpio_range *range;
493 mutex_lock(&pctldev->mutex);
494 /* Loop over the ranges */
495 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
496 /* Check if we're in the valid range */
497 if (range->pins) {
498 int a;
499 for (a = 0; a < range->npins; a++) {
500 if (range->pins[a] == pin)
501 goto out;
503 } else if (pin >= range->pin_base &&
504 pin < range->pin_base + range->npins)
505 goto out;
507 range = NULL;
508 out:
509 mutex_unlock(&pctldev->mutex);
510 return range;
512 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
515 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
516 * @pctldev: pin controller device to remove the range from
517 * @range: the GPIO range to remove
519 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
520 struct pinctrl_gpio_range *range)
522 mutex_lock(&pctldev->mutex);
523 list_del(&range->node);
524 mutex_unlock(&pctldev->mutex);
526 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
529 * pinctrl_get_group_selector() - returns the group selector for a group
530 * @pctldev: the pin controller handling the group
531 * @pin_group: the pin group to look up
533 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
534 const char *pin_group)
536 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
537 unsigned ngroups = pctlops->get_groups_count(pctldev);
538 unsigned group_selector = 0;
540 while (group_selector < ngroups) {
541 const char *gname = pctlops->get_group_name(pctldev,
542 group_selector);
543 if (!strcmp(gname, pin_group)) {
544 dev_dbg(pctldev->dev,
545 "found group selector %u for %s\n",
546 group_selector,
547 pin_group);
548 return group_selector;
551 group_selector++;
554 dev_err(pctldev->dev, "does not have pin group %s\n",
555 pin_group);
557 return -EINVAL;
561 * pinctrl_request_gpio() - request a single pin to be used in as GPIO
562 * @gpio: the GPIO pin number from the GPIO subsystem number space
564 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
565 * as part of their gpio_request() semantics, platforms and individual drivers
566 * shall *NOT* request GPIO pins to be muxed in.
568 int pinctrl_request_gpio(unsigned gpio)
570 struct pinctrl_dev *pctldev;
571 struct pinctrl_gpio_range *range;
572 int ret;
573 int pin;
575 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
576 if (ret) {
577 if (pinctrl_ready_for_gpio_range(gpio))
578 ret = 0;
579 return ret;
582 mutex_lock(&pctldev->mutex);
584 /* Convert to the pin controllers number space */
585 pin = gpio_to_pin(range, gpio);
587 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
589 mutex_unlock(&pctldev->mutex);
591 return ret;
593 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
596 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
597 * @gpio: the GPIO pin number from the GPIO subsystem number space
599 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
600 * as part of their gpio_free() semantics, platforms and individual drivers
601 * shall *NOT* request GPIO pins to be muxed out.
603 void pinctrl_free_gpio(unsigned gpio)
605 struct pinctrl_dev *pctldev;
606 struct pinctrl_gpio_range *range;
607 int ret;
608 int pin;
610 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
611 if (ret) {
612 return;
614 mutex_lock(&pctldev->mutex);
616 /* Convert to the pin controllers number space */
617 pin = gpio_to_pin(range, gpio);
619 pinmux_free_gpio(pctldev, pin, range);
621 mutex_unlock(&pctldev->mutex);
623 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
625 static int pinctrl_gpio_direction(unsigned gpio, bool input)
627 struct pinctrl_dev *pctldev;
628 struct pinctrl_gpio_range *range;
629 int ret;
630 int pin;
632 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
633 if (ret) {
634 return ret;
637 mutex_lock(&pctldev->mutex);
639 /* Convert to the pin controllers number space */
640 pin = gpio_to_pin(range, gpio);
641 ret = pinmux_gpio_direction(pctldev, range, pin, input);
643 mutex_unlock(&pctldev->mutex);
645 return ret;
649 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
650 * @gpio: the GPIO pin number from the GPIO subsystem number space
652 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
653 * as part of their gpio_direction_input() semantics, platforms and individual
654 * drivers shall *NOT* touch pin control GPIO calls.
656 int pinctrl_gpio_direction_input(unsigned gpio)
658 return pinctrl_gpio_direction(gpio, true);
660 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
663 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
664 * @gpio: the GPIO pin number from the GPIO subsystem number space
666 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
667 * as part of their gpio_direction_output() semantics, platforms and individual
668 * drivers shall *NOT* touch pin control GPIO calls.
670 int pinctrl_gpio_direction_output(unsigned gpio)
672 return pinctrl_gpio_direction(gpio, false);
674 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
676 static struct pinctrl_state *find_state(struct pinctrl *p,
677 const char *name)
679 struct pinctrl_state *state;
681 list_for_each_entry(state, &p->states, node)
682 if (!strcmp(state->name, name))
683 return state;
685 return NULL;
688 static struct pinctrl_state *create_state(struct pinctrl *p,
689 const char *name)
691 struct pinctrl_state *state;
693 state = kzalloc(sizeof(*state), GFP_KERNEL);
694 if (state == NULL) {
695 dev_err(p->dev,
696 "failed to alloc struct pinctrl_state\n");
697 return ERR_PTR(-ENOMEM);
700 state->name = name;
701 INIT_LIST_HEAD(&state->settings);
703 list_add_tail(&state->node, &p->states);
705 return state;
708 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
710 struct pinctrl_state *state;
711 struct pinctrl_setting *setting;
712 int ret;
714 state = find_state(p, map->name);
715 if (!state)
716 state = create_state(p, map->name);
717 if (IS_ERR(state))
718 return PTR_ERR(state);
720 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
721 return 0;
723 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
724 if (setting == NULL) {
725 dev_err(p->dev,
726 "failed to alloc struct pinctrl_setting\n");
727 return -ENOMEM;
730 setting->type = map->type;
732 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
733 if (setting->pctldev == NULL) {
734 kfree(setting);
735 /* Do not defer probing of hogs (circular loop) */
736 if (!strcmp(map->ctrl_dev_name, map->dev_name))
737 return -ENODEV;
739 * OK let us guess that the driver is not there yet, and
740 * let's defer obtaining this pinctrl handle to later...
742 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
743 map->ctrl_dev_name);
744 return -EPROBE_DEFER;
747 setting->dev_name = map->dev_name;
749 switch (map->type) {
750 case PIN_MAP_TYPE_MUX_GROUP:
751 ret = pinmux_map_to_setting(map, setting);
752 break;
753 case PIN_MAP_TYPE_CONFIGS_PIN:
754 case PIN_MAP_TYPE_CONFIGS_GROUP:
755 ret = pinconf_map_to_setting(map, setting);
756 break;
757 default:
758 ret = -EINVAL;
759 break;
761 if (ret < 0) {
762 kfree(setting);
763 return ret;
766 list_add_tail(&setting->node, &state->settings);
768 return 0;
771 static struct pinctrl *find_pinctrl(struct device *dev)
773 struct pinctrl *p;
775 mutex_lock(&pinctrl_list_mutex);
776 list_for_each_entry(p, &pinctrl_list, node)
777 if (p->dev == dev) {
778 mutex_unlock(&pinctrl_list_mutex);
779 return p;
782 mutex_unlock(&pinctrl_list_mutex);
783 return NULL;
786 static void pinctrl_free(struct pinctrl *p, bool inlist);
788 static struct pinctrl *create_pinctrl(struct device *dev)
790 struct pinctrl *p;
791 const char *devname;
792 struct pinctrl_maps *maps_node;
793 int i;
794 struct pinctrl_map const *map;
795 int ret;
798 * create the state cookie holder struct pinctrl for each
799 * mapping, this is what consumers will get when requesting
800 * a pin control handle with pinctrl_get()
802 p = kzalloc(sizeof(*p), GFP_KERNEL);
803 if (p == NULL) {
804 dev_err(dev, "failed to alloc struct pinctrl\n");
805 return ERR_PTR(-ENOMEM);
807 p->dev = dev;
808 INIT_LIST_HEAD(&p->states);
809 INIT_LIST_HEAD(&p->dt_maps);
811 ret = pinctrl_dt_to_map(p);
812 if (ret < 0) {
813 kfree(p);
814 return ERR_PTR(ret);
817 devname = dev_name(dev);
819 mutex_lock(&pinctrl_maps_mutex);
820 /* Iterate over the pin control maps to locate the right ones */
821 for_each_maps(maps_node, i, map) {
822 /* Map must be for this device */
823 if (strcmp(map->dev_name, devname))
824 continue;
826 ret = add_setting(p, map);
828 * At this point the adding of a setting may:
830 * - Defer, if the pinctrl device is not yet available
831 * - Fail, if the pinctrl device is not yet available,
832 * AND the setting is a hog. We cannot defer that, since
833 * the hog will kick in immediately after the device
834 * is registered.
836 * If the error returned was not -EPROBE_DEFER then we
837 * accumulate the errors to see if we end up with
838 * an -EPROBE_DEFER later, as that is the worst case.
840 if (ret == -EPROBE_DEFER) {
841 pinctrl_free(p, false);
842 mutex_unlock(&pinctrl_maps_mutex);
843 return ERR_PTR(ret);
846 mutex_unlock(&pinctrl_maps_mutex);
848 if (ret < 0) {
849 /* If some other error than deferral occured, return here */
850 pinctrl_free(p, false);
851 return ERR_PTR(ret);
854 kref_init(&p->users);
856 /* Add the pinctrl handle to the global list */
857 mutex_lock(&pinctrl_list_mutex);
858 list_add_tail(&p->node, &pinctrl_list);
859 mutex_unlock(&pinctrl_list_mutex);
861 return p;
865 * pinctrl_get() - retrieves the pinctrl handle for a device
866 * @dev: the device to obtain the handle for
868 struct pinctrl *pinctrl_get(struct device *dev)
870 struct pinctrl *p;
872 if (WARN_ON(!dev))
873 return ERR_PTR(-EINVAL);
876 * See if somebody else (such as the device core) has already
877 * obtained a handle to the pinctrl for this device. In that case,
878 * return another pointer to it.
880 p = find_pinctrl(dev);
881 if (p != NULL) {
882 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
883 kref_get(&p->users);
884 return p;
887 return create_pinctrl(dev);
889 EXPORT_SYMBOL_GPL(pinctrl_get);
891 static void pinctrl_free_setting(bool disable_setting,
892 struct pinctrl_setting *setting)
894 switch (setting->type) {
895 case PIN_MAP_TYPE_MUX_GROUP:
896 if (disable_setting)
897 pinmux_disable_setting(setting);
898 pinmux_free_setting(setting);
899 break;
900 case PIN_MAP_TYPE_CONFIGS_PIN:
901 case PIN_MAP_TYPE_CONFIGS_GROUP:
902 pinconf_free_setting(setting);
903 break;
904 default:
905 break;
909 static void pinctrl_free(struct pinctrl *p, bool inlist)
911 struct pinctrl_state *state, *n1;
912 struct pinctrl_setting *setting, *n2;
914 mutex_lock(&pinctrl_list_mutex);
915 list_for_each_entry_safe(state, n1, &p->states, node) {
916 list_for_each_entry_safe(setting, n2, &state->settings, node) {
917 pinctrl_free_setting(state == p->state, setting);
918 list_del(&setting->node);
919 kfree(setting);
921 list_del(&state->node);
922 kfree(state);
925 pinctrl_dt_free_maps(p);
927 if (inlist)
928 list_del(&p->node);
929 kfree(p);
930 mutex_unlock(&pinctrl_list_mutex);
934 * pinctrl_release() - release the pinctrl handle
935 * @kref: the kref in the pinctrl being released
937 static void pinctrl_release(struct kref *kref)
939 struct pinctrl *p = container_of(kref, struct pinctrl, users);
941 pinctrl_free(p, true);
945 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
946 * @p: the pinctrl handle to release
948 void pinctrl_put(struct pinctrl *p)
950 kref_put(&p->users, pinctrl_release);
952 EXPORT_SYMBOL_GPL(pinctrl_put);
955 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
956 * @p: the pinctrl handle to retrieve the state from
957 * @name: the state name to retrieve
959 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
960 const char *name)
962 struct pinctrl_state *state;
964 state = find_state(p, name);
965 if (!state) {
966 if (pinctrl_dummy_state) {
967 /* create dummy state */
968 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
969 name);
970 state = create_state(p, name);
971 } else
972 state = ERR_PTR(-ENODEV);
975 return state;
977 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
980 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
981 * @p: the pinctrl handle for the device that requests configuration
982 * @state: the state handle to select/activate/program
984 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
986 struct pinctrl_setting *setting, *setting2;
987 struct pinctrl_state *old_state = p->state;
988 int ret;
990 if (p->state == state)
991 return 0;
993 if (p->state) {
995 * The set of groups with a mux configuration in the old state
996 * may not be identical to the set of groups with a mux setting
997 * in the new state. While this might be unusual, it's entirely
998 * possible for the "user"-supplied mapping table to be written
999 * that way. For each group that was configured in the old state
1000 * but not in the new state, this code puts that group into a
1001 * safe/disabled state.
1003 list_for_each_entry(setting, &p->state->settings, node) {
1004 bool found = false;
1005 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1006 continue;
1007 list_for_each_entry(setting2, &state->settings, node) {
1008 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
1009 continue;
1010 if (setting2->data.mux.group ==
1011 setting->data.mux.group) {
1012 found = true;
1013 break;
1016 if (!found)
1017 pinmux_disable_setting(setting);
1021 p->state = NULL;
1023 /* Apply all the settings for the new state */
1024 list_for_each_entry(setting, &state->settings, node) {
1025 switch (setting->type) {
1026 case PIN_MAP_TYPE_MUX_GROUP:
1027 ret = pinmux_enable_setting(setting);
1028 break;
1029 case PIN_MAP_TYPE_CONFIGS_PIN:
1030 case PIN_MAP_TYPE_CONFIGS_GROUP:
1031 ret = pinconf_apply_setting(setting);
1032 break;
1033 default:
1034 ret = -EINVAL;
1035 break;
1038 if (ret < 0) {
1039 goto unapply_new_state;
1043 p->state = state;
1045 return 0;
1047 unapply_new_state:
1048 dev_err(p->dev, "Error applying setting, reverse things back\n");
1050 list_for_each_entry(setting2, &state->settings, node) {
1051 if (&setting2->node == &setting->node)
1052 break;
1054 * All we can do here is pinmux_disable_setting.
1055 * That means that some pins are muxed differently now
1056 * than they were before applying the setting (We can't
1057 * "unmux a pin"!), but it's not a big deal since the pins
1058 * are free to be muxed by another apply_setting.
1060 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1061 pinmux_disable_setting(setting2);
1064 /* There's no infinite recursive loop here because p->state is NULL */
1065 if (old_state)
1066 pinctrl_select_state(p, old_state);
1068 return ret;
1070 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1072 static void devm_pinctrl_release(struct device *dev, void *res)
1074 pinctrl_put(*(struct pinctrl **)res);
1078 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1079 * @dev: the device to obtain the handle for
1081 * If there is a need to explicitly destroy the returned struct pinctrl,
1082 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1084 struct pinctrl *devm_pinctrl_get(struct device *dev)
1086 struct pinctrl **ptr, *p;
1088 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1089 if (!ptr)
1090 return ERR_PTR(-ENOMEM);
1092 p = pinctrl_get(dev);
1093 if (!IS_ERR(p)) {
1094 *ptr = p;
1095 devres_add(dev, ptr);
1096 } else {
1097 devres_free(ptr);
1100 return p;
1102 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1104 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1106 struct pinctrl **p = res;
1108 return *p == data;
1112 * devm_pinctrl_put() - Resource managed pinctrl_put()
1113 * @p: the pinctrl handle to release
1115 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1116 * this function will not need to be called and the resource management
1117 * code will ensure that the resource is freed.
1119 void devm_pinctrl_put(struct pinctrl *p)
1121 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1122 devm_pinctrl_match, p));
1124 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1126 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1127 bool dup, bool locked)
1129 int i, ret;
1130 struct pinctrl_maps *maps_node;
1132 pr_debug("add %d pinmux maps\n", num_maps);
1134 /* First sanity check the new mapping */
1135 for (i = 0; i < num_maps; i++) {
1136 if (!maps[i].dev_name) {
1137 pr_err("failed to register map %s (%d): no device given\n",
1138 maps[i].name, i);
1139 return -EINVAL;
1142 if (!maps[i].name) {
1143 pr_err("failed to register map %d: no map name given\n",
1145 return -EINVAL;
1148 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1149 !maps[i].ctrl_dev_name) {
1150 pr_err("failed to register map %s (%d): no pin control device given\n",
1151 maps[i].name, i);
1152 return -EINVAL;
1155 switch (maps[i].type) {
1156 case PIN_MAP_TYPE_DUMMY_STATE:
1157 break;
1158 case PIN_MAP_TYPE_MUX_GROUP:
1159 ret = pinmux_validate_map(&maps[i], i);
1160 if (ret < 0)
1161 return ret;
1162 break;
1163 case PIN_MAP_TYPE_CONFIGS_PIN:
1164 case PIN_MAP_TYPE_CONFIGS_GROUP:
1165 ret = pinconf_validate_map(&maps[i], i);
1166 if (ret < 0)
1167 return ret;
1168 break;
1169 default:
1170 pr_err("failed to register map %s (%d): invalid type given\n",
1171 maps[i].name, i);
1172 return -EINVAL;
1176 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1177 if (!maps_node) {
1178 pr_err("failed to alloc struct pinctrl_maps\n");
1179 return -ENOMEM;
1182 maps_node->num_maps = num_maps;
1183 if (dup) {
1184 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1185 GFP_KERNEL);
1186 if (!maps_node->maps) {
1187 pr_err("failed to duplicate mapping table\n");
1188 kfree(maps_node);
1189 return -ENOMEM;
1191 } else {
1192 maps_node->maps = maps;
1195 if (!locked)
1196 mutex_lock(&pinctrl_maps_mutex);
1197 list_add_tail(&maps_node->node, &pinctrl_maps);
1198 if (!locked)
1199 mutex_unlock(&pinctrl_maps_mutex);
1201 return 0;
1205 * pinctrl_register_mappings() - register a set of pin controller mappings
1206 * @maps: the pincontrol mappings table to register. This should probably be
1207 * marked with __initdata so it can be discarded after boot. This
1208 * function will perform a shallow copy for the mapping entries.
1209 * @num_maps: the number of maps in the mapping table
1211 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1212 unsigned num_maps)
1214 return pinctrl_register_map(maps, num_maps, true, false);
1217 void pinctrl_unregister_map(struct pinctrl_map const *map)
1219 struct pinctrl_maps *maps_node;
1221 mutex_lock(&pinctrl_maps_mutex);
1222 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1223 if (maps_node->maps == map) {
1224 list_del(&maps_node->node);
1225 kfree(maps_node);
1226 mutex_unlock(&pinctrl_maps_mutex);
1227 return;
1230 mutex_unlock(&pinctrl_maps_mutex);
1234 * pinctrl_force_sleep() - turn a given controller device into sleep state
1235 * @pctldev: pin controller device
1237 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1239 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1240 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1241 return 0;
1243 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1246 * pinctrl_force_default() - turn a given controller device into default state
1247 * @pctldev: pin controller device
1249 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1251 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1252 return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1253 return 0;
1255 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1257 #ifdef CONFIG_PM
1260 * pinctrl_pm_select_state() - select pinctrl state for PM
1261 * @dev: device to select default state for
1262 * @state: state to set
1264 static int pinctrl_pm_select_state(struct device *dev,
1265 struct pinctrl_state *state)
1267 struct dev_pin_info *pins = dev->pins;
1268 int ret;
1270 if (IS_ERR(state))
1271 return 0; /* No such state */
1272 ret = pinctrl_select_state(pins->p, state);
1273 if (ret)
1274 dev_err(dev, "failed to activate pinctrl state %s\n",
1275 state->name);
1276 return ret;
1280 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1281 * @dev: device to select default state for
1283 int pinctrl_pm_select_default_state(struct device *dev)
1285 if (!dev->pins)
1286 return 0;
1288 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1290 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1293 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1294 * @dev: device to select sleep state for
1296 int pinctrl_pm_select_sleep_state(struct device *dev)
1298 if (!dev->pins)
1299 return 0;
1301 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1303 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1306 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1307 * @dev: device to select idle state for
1309 int pinctrl_pm_select_idle_state(struct device *dev)
1311 if (!dev->pins)
1312 return 0;
1314 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1316 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1317 #endif
1319 #ifdef CONFIG_DEBUG_FS
1321 static int pinctrl_pins_show(struct seq_file *s, void *what)
1323 struct pinctrl_dev *pctldev = s->private;
1324 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1325 unsigned i, pin;
1327 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1329 mutex_lock(&pctldev->mutex);
1331 /* The pin number can be retrived from the pin controller descriptor */
1332 for (i = 0; i < pctldev->desc->npins; i++) {
1333 struct pin_desc *desc;
1335 pin = pctldev->desc->pins[i].number;
1336 desc = pin_desc_get(pctldev, pin);
1337 /* Pin space may be sparse */
1338 if (desc == NULL)
1339 continue;
1341 seq_printf(s, "pin %d (%s) ", pin,
1342 desc->name ? desc->name : "unnamed");
1344 /* Driver-specific info per pin */
1345 if (ops->pin_dbg_show)
1346 ops->pin_dbg_show(pctldev, s, pin);
1348 seq_puts(s, "\n");
1351 mutex_unlock(&pctldev->mutex);
1353 return 0;
1356 static int pinctrl_groups_show(struct seq_file *s, void *what)
1358 struct pinctrl_dev *pctldev = s->private;
1359 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1360 unsigned ngroups, selector = 0;
1362 mutex_lock(&pctldev->mutex);
1364 ngroups = ops->get_groups_count(pctldev);
1366 seq_puts(s, "registered pin groups:\n");
1367 while (selector < ngroups) {
1368 const unsigned *pins = NULL;
1369 unsigned num_pins = 0;
1370 const char *gname = ops->get_group_name(pctldev, selector);
1371 const char *pname;
1372 int ret = 0;
1373 int i;
1375 if (ops->get_group_pins)
1376 ret = ops->get_group_pins(pctldev, selector,
1377 &pins, &num_pins);
1378 if (ret)
1379 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1380 gname);
1381 else {
1382 seq_printf(s, "group: %s\n", gname);
1383 for (i = 0; i < num_pins; i++) {
1384 pname = pin_get_name(pctldev, pins[i]);
1385 if (WARN_ON(!pname)) {
1386 mutex_unlock(&pctldev->mutex);
1387 return -EINVAL;
1389 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1391 seq_puts(s, "\n");
1393 selector++;
1396 mutex_unlock(&pctldev->mutex);
1398 return 0;
1401 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1403 struct pinctrl_dev *pctldev = s->private;
1404 struct pinctrl_gpio_range *range = NULL;
1406 seq_puts(s, "GPIO ranges handled:\n");
1408 mutex_lock(&pctldev->mutex);
1410 /* Loop over the ranges */
1411 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1412 if (range->pins) {
1413 int a;
1414 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1415 range->id, range->name,
1416 range->base, (range->base + range->npins - 1));
1417 for (a = 0; a < range->npins - 1; a++)
1418 seq_printf(s, "%u, ", range->pins[a]);
1419 seq_printf(s, "%u}\n", range->pins[a]);
1421 else
1422 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1423 range->id, range->name,
1424 range->base, (range->base + range->npins - 1),
1425 range->pin_base,
1426 (range->pin_base + range->npins - 1));
1429 mutex_unlock(&pctldev->mutex);
1431 return 0;
1434 static int pinctrl_devices_show(struct seq_file *s, void *what)
1436 struct pinctrl_dev *pctldev;
1438 seq_puts(s, "name [pinmux] [pinconf]\n");
1440 mutex_lock(&pinctrldev_list_mutex);
1442 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1443 seq_printf(s, "%s ", pctldev->desc->name);
1444 if (pctldev->desc->pmxops)
1445 seq_puts(s, "yes ");
1446 else
1447 seq_puts(s, "no ");
1448 if (pctldev->desc->confops)
1449 seq_puts(s, "yes");
1450 else
1451 seq_puts(s, "no");
1452 seq_puts(s, "\n");
1455 mutex_unlock(&pinctrldev_list_mutex);
1457 return 0;
1460 static inline const char *map_type(enum pinctrl_map_type type)
1462 static const char * const names[] = {
1463 "INVALID",
1464 "DUMMY_STATE",
1465 "MUX_GROUP",
1466 "CONFIGS_PIN",
1467 "CONFIGS_GROUP",
1470 if (type >= ARRAY_SIZE(names))
1471 return "UNKNOWN";
1473 return names[type];
1476 static int pinctrl_maps_show(struct seq_file *s, void *what)
1478 struct pinctrl_maps *maps_node;
1479 int i;
1480 struct pinctrl_map const *map;
1482 seq_puts(s, "Pinctrl maps:\n");
1484 mutex_lock(&pinctrl_maps_mutex);
1485 for_each_maps(maps_node, i, map) {
1486 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1487 map->dev_name, map->name, map_type(map->type),
1488 map->type);
1490 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1491 seq_printf(s, "controlling device %s\n",
1492 map->ctrl_dev_name);
1494 switch (map->type) {
1495 case PIN_MAP_TYPE_MUX_GROUP:
1496 pinmux_show_map(s, map);
1497 break;
1498 case PIN_MAP_TYPE_CONFIGS_PIN:
1499 case PIN_MAP_TYPE_CONFIGS_GROUP:
1500 pinconf_show_map(s, map);
1501 break;
1502 default:
1503 break;
1506 seq_printf(s, "\n");
1508 mutex_unlock(&pinctrl_maps_mutex);
1510 return 0;
1513 static int pinctrl_show(struct seq_file *s, void *what)
1515 struct pinctrl *p;
1516 struct pinctrl_state *state;
1517 struct pinctrl_setting *setting;
1519 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1521 mutex_lock(&pinctrl_list_mutex);
1523 list_for_each_entry(p, &pinctrl_list, node) {
1524 seq_printf(s, "device: %s current state: %s\n",
1525 dev_name(p->dev),
1526 p->state ? p->state->name : "none");
1528 list_for_each_entry(state, &p->states, node) {
1529 seq_printf(s, " state: %s\n", state->name);
1531 list_for_each_entry(setting, &state->settings, node) {
1532 struct pinctrl_dev *pctldev = setting->pctldev;
1534 seq_printf(s, " type: %s controller %s ",
1535 map_type(setting->type),
1536 pinctrl_dev_get_name(pctldev));
1538 switch (setting->type) {
1539 case PIN_MAP_TYPE_MUX_GROUP:
1540 pinmux_show_setting(s, setting);
1541 break;
1542 case PIN_MAP_TYPE_CONFIGS_PIN:
1543 case PIN_MAP_TYPE_CONFIGS_GROUP:
1544 pinconf_show_setting(s, setting);
1545 break;
1546 default:
1547 break;
1553 mutex_unlock(&pinctrl_list_mutex);
1555 return 0;
1558 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1560 return single_open(file, pinctrl_pins_show, inode->i_private);
1563 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1565 return single_open(file, pinctrl_groups_show, inode->i_private);
1568 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1570 return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1573 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1575 return single_open(file, pinctrl_devices_show, NULL);
1578 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1580 return single_open(file, pinctrl_maps_show, NULL);
1583 static int pinctrl_open(struct inode *inode, struct file *file)
1585 return single_open(file, pinctrl_show, NULL);
1588 static const struct file_operations pinctrl_pins_ops = {
1589 .open = pinctrl_pins_open,
1590 .read = seq_read,
1591 .llseek = seq_lseek,
1592 .release = single_release,
1595 static const struct file_operations pinctrl_groups_ops = {
1596 .open = pinctrl_groups_open,
1597 .read = seq_read,
1598 .llseek = seq_lseek,
1599 .release = single_release,
1602 static const struct file_operations pinctrl_gpioranges_ops = {
1603 .open = pinctrl_gpioranges_open,
1604 .read = seq_read,
1605 .llseek = seq_lseek,
1606 .release = single_release,
1609 static const struct file_operations pinctrl_devices_ops = {
1610 .open = pinctrl_devices_open,
1611 .read = seq_read,
1612 .llseek = seq_lseek,
1613 .release = single_release,
1616 static const struct file_operations pinctrl_maps_ops = {
1617 .open = pinctrl_maps_open,
1618 .read = seq_read,
1619 .llseek = seq_lseek,
1620 .release = single_release,
1623 static const struct file_operations pinctrl_ops = {
1624 .open = pinctrl_open,
1625 .read = seq_read,
1626 .llseek = seq_lseek,
1627 .release = single_release,
1630 static struct dentry *debugfs_root;
1632 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1634 struct dentry *device_root;
1636 device_root = debugfs_create_dir(dev_name(pctldev->dev),
1637 debugfs_root);
1638 pctldev->device_root = device_root;
1640 if (IS_ERR(device_root) || !device_root) {
1641 pr_warn("failed to create debugfs directory for %s\n",
1642 dev_name(pctldev->dev));
1643 return;
1645 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1646 device_root, pctldev, &pinctrl_pins_ops);
1647 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1648 device_root, pctldev, &pinctrl_groups_ops);
1649 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1650 device_root, pctldev, &pinctrl_gpioranges_ops);
1651 if (pctldev->desc->pmxops)
1652 pinmux_init_device_debugfs(device_root, pctldev);
1653 if (pctldev->desc->confops)
1654 pinconf_init_device_debugfs(device_root, pctldev);
1657 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1659 debugfs_remove_recursive(pctldev->device_root);
1662 static void pinctrl_init_debugfs(void)
1664 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1665 if (IS_ERR(debugfs_root) || !debugfs_root) {
1666 pr_warn("failed to create debugfs directory\n");
1667 debugfs_root = NULL;
1668 return;
1671 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1672 debugfs_root, NULL, &pinctrl_devices_ops);
1673 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1674 debugfs_root, NULL, &pinctrl_maps_ops);
1675 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1676 debugfs_root, NULL, &pinctrl_ops);
1679 #else /* CONFIG_DEBUG_FS */
1681 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1685 static void pinctrl_init_debugfs(void)
1689 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1693 #endif
1695 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1697 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1699 if (!ops ||
1700 !ops->get_groups_count ||
1701 !ops->get_group_name)
1702 return -EINVAL;
1704 if (ops->dt_node_to_map && !ops->dt_free_map)
1705 return -EINVAL;
1707 return 0;
1711 * pinctrl_register() - register a pin controller device
1712 * @pctldesc: descriptor for this pin controller
1713 * @dev: parent device for this pin controller
1714 * @driver_data: private pin controller data for this pin controller
1716 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1717 struct device *dev, void *driver_data)
1719 struct pinctrl_dev *pctldev;
1720 int ret;
1722 if (!pctldesc)
1723 return NULL;
1724 if (!pctldesc->name)
1725 return NULL;
1727 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1728 if (pctldev == NULL) {
1729 dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1730 return NULL;
1733 /* Initialize pin control device struct */
1734 pctldev->owner = pctldesc->owner;
1735 pctldev->desc = pctldesc;
1736 pctldev->driver_data = driver_data;
1737 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1738 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1739 pctldev->dev = dev;
1740 mutex_init(&pctldev->mutex);
1742 /* check core ops for sanity */
1743 if (pinctrl_check_ops(pctldev)) {
1744 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1745 goto out_err;
1748 /* If we're implementing pinmuxing, check the ops for sanity */
1749 if (pctldesc->pmxops) {
1750 if (pinmux_check_ops(pctldev))
1751 goto out_err;
1754 /* If we're implementing pinconfig, check the ops for sanity */
1755 if (pctldesc->confops) {
1756 if (pinconf_check_ops(pctldev))
1757 goto out_err;
1760 /* Register all the pins */
1761 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1762 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1763 if (ret) {
1764 dev_err(dev, "error during pin registration\n");
1765 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1766 pctldesc->npins);
1767 goto out_err;
1770 mutex_lock(&pinctrldev_list_mutex);
1771 list_add_tail(&pctldev->node, &pinctrldev_list);
1772 mutex_unlock(&pinctrldev_list_mutex);
1774 pctldev->p = pinctrl_get(pctldev->dev);
1776 if (!IS_ERR(pctldev->p)) {
1777 pctldev->hog_default =
1778 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1779 if (IS_ERR(pctldev->hog_default)) {
1780 dev_dbg(dev, "failed to lookup the default state\n");
1781 } else {
1782 if (pinctrl_select_state(pctldev->p,
1783 pctldev->hog_default))
1784 dev_err(dev,
1785 "failed to select default state\n");
1788 pctldev->hog_sleep =
1789 pinctrl_lookup_state(pctldev->p,
1790 PINCTRL_STATE_SLEEP);
1791 if (IS_ERR(pctldev->hog_sleep))
1792 dev_dbg(dev, "failed to lookup the sleep state\n");
1795 pinctrl_init_device_debugfs(pctldev);
1797 return pctldev;
1799 out_err:
1800 mutex_destroy(&pctldev->mutex);
1801 kfree(pctldev);
1802 return NULL;
1804 EXPORT_SYMBOL_GPL(pinctrl_register);
1807 * pinctrl_unregister() - unregister pinmux
1808 * @pctldev: pin controller to unregister
1810 * Called by pinmux drivers to unregister a pinmux.
1812 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1814 struct pinctrl_gpio_range *range, *n;
1815 if (pctldev == NULL)
1816 return;
1818 mutex_lock(&pinctrldev_list_mutex);
1819 mutex_lock(&pctldev->mutex);
1821 pinctrl_remove_device_debugfs(pctldev);
1823 if (!IS_ERR(pctldev->p))
1824 pinctrl_put(pctldev->p);
1826 /* TODO: check that no pinmuxes are still active? */
1827 list_del(&pctldev->node);
1828 /* Destroy descriptor tree */
1829 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1830 pctldev->desc->npins);
1831 /* remove gpio ranges map */
1832 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1833 list_del(&range->node);
1835 mutex_unlock(&pctldev->mutex);
1836 mutex_destroy(&pctldev->mutex);
1837 kfree(pctldev);
1838 mutex_unlock(&pinctrldev_list_mutex);
1840 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1842 static int __init pinctrl_init(void)
1844 pr_info("initialized pinctrl subsystem\n");
1845 pinctrl_init_debugfs();
1846 return 0;
1849 /* init early since many drivers really need to initialized pinmux early */
1850 core_initcall(pinctrl_init);