Revert "ASoC: meson: axg-card: fix codec-to-codec link setup"
[linux/fpc-iii.git] / fs / jbd2 / journal.c
blobc1ce2805c5639960f5a641f039a457621221aa1f
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * linux/fs/jbd2/journal.c
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
9 * Generic filesystem journal-writing code; part of the ext2fs
10 * journaling system.
12 * This file manages journals: areas of disk reserved for logging
13 * transactional updates. This includes the kernel journaling thread
14 * which is responsible for scheduling updates to the log.
16 * We do not actually manage the physical storage of the journal in this
17 * file: that is left to a per-journal policy function, which allows us
18 * to store the journal within a filesystem-specified area for ext2
19 * journaling (ext2 can use a reserved inode for storing the log).
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/fs.h>
25 #include <linux/jbd2.h>
26 #include <linux/errno.h>
27 #include <linux/slab.h>
28 #include <linux/init.h>
29 #include <linux/mm.h>
30 #include <linux/freezer.h>
31 #include <linux/pagemap.h>
32 #include <linux/kthread.h>
33 #include <linux/poison.h>
34 #include <linux/proc_fs.h>
35 #include <linux/seq_file.h>
36 #include <linux/math64.h>
37 #include <linux/hash.h>
38 #include <linux/log2.h>
39 #include <linux/vmalloc.h>
40 #include <linux/backing-dev.h>
41 #include <linux/bitops.h>
42 #include <linux/ratelimit.h>
43 #include <linux/sched/mm.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/jbd2.h>
48 #include <linux/uaccess.h>
49 #include <asm/page.h>
51 #ifdef CONFIG_JBD2_DEBUG
52 ushort jbd2_journal_enable_debug __read_mostly;
53 EXPORT_SYMBOL(jbd2_journal_enable_debug);
55 module_param_named(jbd2_debug, jbd2_journal_enable_debug, ushort, 0644);
56 MODULE_PARM_DESC(jbd2_debug, "Debugging level for jbd2");
57 #endif
59 EXPORT_SYMBOL(jbd2_journal_extend);
60 EXPORT_SYMBOL(jbd2_journal_stop);
61 EXPORT_SYMBOL(jbd2_journal_lock_updates);
62 EXPORT_SYMBOL(jbd2_journal_unlock_updates);
63 EXPORT_SYMBOL(jbd2_journal_get_write_access);
64 EXPORT_SYMBOL(jbd2_journal_get_create_access);
65 EXPORT_SYMBOL(jbd2_journal_get_undo_access);
66 EXPORT_SYMBOL(jbd2_journal_set_triggers);
67 EXPORT_SYMBOL(jbd2_journal_dirty_metadata);
68 EXPORT_SYMBOL(jbd2_journal_forget);
69 EXPORT_SYMBOL(jbd2_journal_flush);
70 EXPORT_SYMBOL(jbd2_journal_revoke);
72 EXPORT_SYMBOL(jbd2_journal_init_dev);
73 EXPORT_SYMBOL(jbd2_journal_init_inode);
74 EXPORT_SYMBOL(jbd2_journal_check_used_features);
75 EXPORT_SYMBOL(jbd2_journal_check_available_features);
76 EXPORT_SYMBOL(jbd2_journal_set_features);
77 EXPORT_SYMBOL(jbd2_journal_load);
78 EXPORT_SYMBOL(jbd2_journal_destroy);
79 EXPORT_SYMBOL(jbd2_journal_abort);
80 EXPORT_SYMBOL(jbd2_journal_errno);
81 EXPORT_SYMBOL(jbd2_journal_ack_err);
82 EXPORT_SYMBOL(jbd2_journal_clear_err);
83 EXPORT_SYMBOL(jbd2_log_wait_commit);
84 EXPORT_SYMBOL(jbd2_log_start_commit);
85 EXPORT_SYMBOL(jbd2_journal_start_commit);
86 EXPORT_SYMBOL(jbd2_journal_force_commit_nested);
87 EXPORT_SYMBOL(jbd2_journal_wipe);
88 EXPORT_SYMBOL(jbd2_journal_blocks_per_page);
89 EXPORT_SYMBOL(jbd2_journal_invalidatepage);
90 EXPORT_SYMBOL(jbd2_journal_try_to_free_buffers);
91 EXPORT_SYMBOL(jbd2_journal_force_commit);
92 EXPORT_SYMBOL(jbd2_journal_inode_ranged_write);
93 EXPORT_SYMBOL(jbd2_journal_inode_ranged_wait);
94 EXPORT_SYMBOL(jbd2_journal_init_jbd_inode);
95 EXPORT_SYMBOL(jbd2_journal_release_jbd_inode);
96 EXPORT_SYMBOL(jbd2_journal_begin_ordered_truncate);
97 EXPORT_SYMBOL(jbd2_inode_cache);
99 static void __journal_abort_soft (journal_t *journal, int errno);
100 static int jbd2_journal_create_slab(size_t slab_size);
102 #ifdef CONFIG_JBD2_DEBUG
103 void __jbd2_debug(int level, const char *file, const char *func,
104 unsigned int line, const char *fmt, ...)
106 struct va_format vaf;
107 va_list args;
109 if (level > jbd2_journal_enable_debug)
110 return;
111 va_start(args, fmt);
112 vaf.fmt = fmt;
113 vaf.va = &args;
114 printk(KERN_DEBUG "%s: (%s, %u): %pV", file, func, line, &vaf);
115 va_end(args);
117 EXPORT_SYMBOL(__jbd2_debug);
118 #endif
120 /* Checksumming functions */
121 static int jbd2_verify_csum_type(journal_t *j, journal_superblock_t *sb)
123 if (!jbd2_journal_has_csum_v2or3_feature(j))
124 return 1;
126 return sb->s_checksum_type == JBD2_CRC32C_CHKSUM;
129 static __be32 jbd2_superblock_csum(journal_t *j, journal_superblock_t *sb)
131 __u32 csum;
132 __be32 old_csum;
134 old_csum = sb->s_checksum;
135 sb->s_checksum = 0;
136 csum = jbd2_chksum(j, ~0, (char *)sb, sizeof(journal_superblock_t));
137 sb->s_checksum = old_csum;
139 return cpu_to_be32(csum);
143 * Helper function used to manage commit timeouts
146 static void commit_timeout(struct timer_list *t)
148 journal_t *journal = from_timer(journal, t, j_commit_timer);
150 wake_up_process(journal->j_task);
154 * kjournald2: The main thread function used to manage a logging device
155 * journal.
157 * This kernel thread is responsible for two things:
159 * 1) COMMIT: Every so often we need to commit the current state of the
160 * filesystem to disk. The journal thread is responsible for writing
161 * all of the metadata buffers to disk.
163 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
164 * of the data in that part of the log has been rewritten elsewhere on
165 * the disk. Flushing these old buffers to reclaim space in the log is
166 * known as checkpointing, and this thread is responsible for that job.
169 static int kjournald2(void *arg)
171 journal_t *journal = arg;
172 transaction_t *transaction;
175 * Set up an interval timer which can be used to trigger a commit wakeup
176 * after the commit interval expires
178 timer_setup(&journal->j_commit_timer, commit_timeout, 0);
180 set_freezable();
182 /* Record that the journal thread is running */
183 journal->j_task = current;
184 wake_up(&journal->j_wait_done_commit);
187 * Make sure that no allocations from this kernel thread will ever
188 * recurse to the fs layer because we are responsible for the
189 * transaction commit and any fs involvement might get stuck waiting for
190 * the trasn. commit.
192 memalloc_nofs_save();
195 * And now, wait forever for commit wakeup events.
197 write_lock(&journal->j_state_lock);
199 loop:
200 if (journal->j_flags & JBD2_UNMOUNT)
201 goto end_loop;
203 jbd_debug(1, "commit_sequence=%u, commit_request=%u\n",
204 journal->j_commit_sequence, journal->j_commit_request);
206 if (journal->j_commit_sequence != journal->j_commit_request) {
207 jbd_debug(1, "OK, requests differ\n");
208 write_unlock(&journal->j_state_lock);
209 del_timer_sync(&journal->j_commit_timer);
210 jbd2_journal_commit_transaction(journal);
211 write_lock(&journal->j_state_lock);
212 goto loop;
215 wake_up(&journal->j_wait_done_commit);
216 if (freezing(current)) {
218 * The simpler the better. Flushing journal isn't a
219 * good idea, because that depends on threads that may
220 * be already stopped.
222 jbd_debug(1, "Now suspending kjournald2\n");
223 write_unlock(&journal->j_state_lock);
224 try_to_freeze();
225 write_lock(&journal->j_state_lock);
226 } else {
228 * We assume on resume that commits are already there,
229 * so we don't sleep
231 DEFINE_WAIT(wait);
232 int should_sleep = 1;
234 prepare_to_wait(&journal->j_wait_commit, &wait,
235 TASK_INTERRUPTIBLE);
236 if (journal->j_commit_sequence != journal->j_commit_request)
237 should_sleep = 0;
238 transaction = journal->j_running_transaction;
239 if (transaction && time_after_eq(jiffies,
240 transaction->t_expires))
241 should_sleep = 0;
242 if (journal->j_flags & JBD2_UNMOUNT)
243 should_sleep = 0;
244 if (should_sleep) {
245 write_unlock(&journal->j_state_lock);
246 schedule();
247 write_lock(&journal->j_state_lock);
249 finish_wait(&journal->j_wait_commit, &wait);
252 jbd_debug(1, "kjournald2 wakes\n");
255 * Were we woken up by a commit wakeup event?
257 transaction = journal->j_running_transaction;
258 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
259 journal->j_commit_request = transaction->t_tid;
260 jbd_debug(1, "woke because of timeout\n");
262 goto loop;
264 end_loop:
265 del_timer_sync(&journal->j_commit_timer);
266 journal->j_task = NULL;
267 wake_up(&journal->j_wait_done_commit);
268 jbd_debug(1, "Journal thread exiting.\n");
269 write_unlock(&journal->j_state_lock);
270 return 0;
273 static int jbd2_journal_start_thread(journal_t *journal)
275 struct task_struct *t;
277 t = kthread_run(kjournald2, journal, "jbd2/%s",
278 journal->j_devname);
279 if (IS_ERR(t))
280 return PTR_ERR(t);
282 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
283 return 0;
286 static void journal_kill_thread(journal_t *journal)
288 write_lock(&journal->j_state_lock);
289 journal->j_flags |= JBD2_UNMOUNT;
291 while (journal->j_task) {
292 write_unlock(&journal->j_state_lock);
293 wake_up(&journal->j_wait_commit);
294 wait_event(journal->j_wait_done_commit, journal->j_task == NULL);
295 write_lock(&journal->j_state_lock);
297 write_unlock(&journal->j_state_lock);
301 * jbd2_journal_write_metadata_buffer: write a metadata buffer to the journal.
303 * Writes a metadata buffer to a given disk block. The actual IO is not
304 * performed but a new buffer_head is constructed which labels the data
305 * to be written with the correct destination disk block.
307 * Any magic-number escaping which needs to be done will cause a
308 * copy-out here. If the buffer happens to start with the
309 * JBD2_MAGIC_NUMBER, then we can't write it to the log directly: the
310 * magic number is only written to the log for descripter blocks. In
311 * this case, we copy the data and replace the first word with 0, and we
312 * return a result code which indicates that this buffer needs to be
313 * marked as an escaped buffer in the corresponding log descriptor
314 * block. The missing word can then be restored when the block is read
315 * during recovery.
317 * If the source buffer has already been modified by a new transaction
318 * since we took the last commit snapshot, we use the frozen copy of
319 * that data for IO. If we end up using the existing buffer_head's data
320 * for the write, then we have to make sure nobody modifies it while the
321 * IO is in progress. do_get_write_access() handles this.
323 * The function returns a pointer to the buffer_head to be used for IO.
326 * Return value:
327 * <0: Error
328 * >=0: Finished OK
330 * On success:
331 * Bit 0 set == escape performed on the data
332 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
335 int jbd2_journal_write_metadata_buffer(transaction_t *transaction,
336 struct journal_head *jh_in,
337 struct buffer_head **bh_out,
338 sector_t blocknr)
340 int need_copy_out = 0;
341 int done_copy_out = 0;
342 int do_escape = 0;
343 char *mapped_data;
344 struct buffer_head *new_bh;
345 struct page *new_page;
346 unsigned int new_offset;
347 struct buffer_head *bh_in = jh2bh(jh_in);
348 journal_t *journal = transaction->t_journal;
351 * The buffer really shouldn't be locked: only the current committing
352 * transaction is allowed to write it, so nobody else is allowed
353 * to do any IO.
355 * akpm: except if we're journalling data, and write() output is
356 * also part of a shared mapping, and another thread has
357 * decided to launch a writepage() against this buffer.
359 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
361 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
363 /* keep subsequent assertions sane */
364 atomic_set(&new_bh->b_count, 1);
366 jbd_lock_bh_state(bh_in);
367 repeat:
369 * If a new transaction has already done a buffer copy-out, then
370 * we use that version of the data for the commit.
372 if (jh_in->b_frozen_data) {
373 done_copy_out = 1;
374 new_page = virt_to_page(jh_in->b_frozen_data);
375 new_offset = offset_in_page(jh_in->b_frozen_data);
376 } else {
377 new_page = jh2bh(jh_in)->b_page;
378 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
381 mapped_data = kmap_atomic(new_page);
383 * Fire data frozen trigger if data already wasn't frozen. Do this
384 * before checking for escaping, as the trigger may modify the magic
385 * offset. If a copy-out happens afterwards, it will have the correct
386 * data in the buffer.
388 if (!done_copy_out)
389 jbd2_buffer_frozen_trigger(jh_in, mapped_data + new_offset,
390 jh_in->b_triggers);
393 * Check for escaping
395 if (*((__be32 *)(mapped_data + new_offset)) ==
396 cpu_to_be32(JBD2_MAGIC_NUMBER)) {
397 need_copy_out = 1;
398 do_escape = 1;
400 kunmap_atomic(mapped_data);
403 * Do we need to do a data copy?
405 if (need_copy_out && !done_copy_out) {
406 char *tmp;
408 jbd_unlock_bh_state(bh_in);
409 tmp = jbd2_alloc(bh_in->b_size, GFP_NOFS);
410 if (!tmp) {
411 brelse(new_bh);
412 return -ENOMEM;
414 jbd_lock_bh_state(bh_in);
415 if (jh_in->b_frozen_data) {
416 jbd2_free(tmp, bh_in->b_size);
417 goto repeat;
420 jh_in->b_frozen_data = tmp;
421 mapped_data = kmap_atomic(new_page);
422 memcpy(tmp, mapped_data + new_offset, bh_in->b_size);
423 kunmap_atomic(mapped_data);
425 new_page = virt_to_page(tmp);
426 new_offset = offset_in_page(tmp);
427 done_copy_out = 1;
430 * This isn't strictly necessary, as we're using frozen
431 * data for the escaping, but it keeps consistency with
432 * b_frozen_data usage.
434 jh_in->b_frozen_triggers = jh_in->b_triggers;
438 * Did we need to do an escaping? Now we've done all the
439 * copying, we can finally do so.
441 if (do_escape) {
442 mapped_data = kmap_atomic(new_page);
443 *((unsigned int *)(mapped_data + new_offset)) = 0;
444 kunmap_atomic(mapped_data);
447 set_bh_page(new_bh, new_page, new_offset);
448 new_bh->b_size = bh_in->b_size;
449 new_bh->b_bdev = journal->j_dev;
450 new_bh->b_blocknr = blocknr;
451 new_bh->b_private = bh_in;
452 set_buffer_mapped(new_bh);
453 set_buffer_dirty(new_bh);
455 *bh_out = new_bh;
458 * The to-be-written buffer needs to get moved to the io queue,
459 * and the original buffer whose contents we are shadowing or
460 * copying is moved to the transaction's shadow queue.
462 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
463 spin_lock(&journal->j_list_lock);
464 __jbd2_journal_file_buffer(jh_in, transaction, BJ_Shadow);
465 spin_unlock(&journal->j_list_lock);
466 set_buffer_shadow(bh_in);
467 jbd_unlock_bh_state(bh_in);
469 return do_escape | (done_copy_out << 1);
473 * Allocation code for the journal file. Manage the space left in the
474 * journal, so that we can begin checkpointing when appropriate.
478 * Called with j_state_lock locked for writing.
479 * Returns true if a transaction commit was started.
481 int __jbd2_log_start_commit(journal_t *journal, tid_t target)
483 /* Return if the txn has already requested to be committed */
484 if (journal->j_commit_request == target)
485 return 0;
488 * The only transaction we can possibly wait upon is the
489 * currently running transaction (if it exists). Otherwise,
490 * the target tid must be an old one.
492 if (journal->j_running_transaction &&
493 journal->j_running_transaction->t_tid == target) {
495 * We want a new commit: OK, mark the request and wakeup the
496 * commit thread. We do _not_ do the commit ourselves.
499 journal->j_commit_request = target;
500 jbd_debug(1, "JBD2: requesting commit %u/%u\n",
501 journal->j_commit_request,
502 journal->j_commit_sequence);
503 journal->j_running_transaction->t_requested = jiffies;
504 wake_up(&journal->j_wait_commit);
505 return 1;
506 } else if (!tid_geq(journal->j_commit_request, target))
507 /* This should never happen, but if it does, preserve
508 the evidence before kjournald goes into a loop and
509 increments j_commit_sequence beyond all recognition. */
510 WARN_ONCE(1, "JBD2: bad log_start_commit: %u %u %u %u\n",
511 journal->j_commit_request,
512 journal->j_commit_sequence,
513 target, journal->j_running_transaction ?
514 journal->j_running_transaction->t_tid : 0);
515 return 0;
518 int jbd2_log_start_commit(journal_t *journal, tid_t tid)
520 int ret;
522 write_lock(&journal->j_state_lock);
523 ret = __jbd2_log_start_commit(journal, tid);
524 write_unlock(&journal->j_state_lock);
525 return ret;
529 * Force and wait any uncommitted transactions. We can only force the running
530 * transaction if we don't have an active handle, otherwise, we will deadlock.
531 * Returns: <0 in case of error,
532 * 0 if nothing to commit,
533 * 1 if transaction was successfully committed.
535 static int __jbd2_journal_force_commit(journal_t *journal)
537 transaction_t *transaction = NULL;
538 tid_t tid;
539 int need_to_start = 0, ret = 0;
541 read_lock(&journal->j_state_lock);
542 if (journal->j_running_transaction && !current->journal_info) {
543 transaction = journal->j_running_transaction;
544 if (!tid_geq(journal->j_commit_request, transaction->t_tid))
545 need_to_start = 1;
546 } else if (journal->j_committing_transaction)
547 transaction = journal->j_committing_transaction;
549 if (!transaction) {
550 /* Nothing to commit */
551 read_unlock(&journal->j_state_lock);
552 return 0;
554 tid = transaction->t_tid;
555 read_unlock(&journal->j_state_lock);
556 if (need_to_start)
557 jbd2_log_start_commit(journal, tid);
558 ret = jbd2_log_wait_commit(journal, tid);
559 if (!ret)
560 ret = 1;
562 return ret;
566 * Force and wait upon a commit if the calling process is not within
567 * transaction. This is used for forcing out undo-protected data which contains
568 * bitmaps, when the fs is running out of space.
570 * @journal: journal to force
571 * Returns true if progress was made.
573 int jbd2_journal_force_commit_nested(journal_t *journal)
575 int ret;
577 ret = __jbd2_journal_force_commit(journal);
578 return ret > 0;
582 * int journal_force_commit() - force any uncommitted transactions
583 * @journal: journal to force
585 * Caller want unconditional commit. We can only force the running transaction
586 * if we don't have an active handle, otherwise, we will deadlock.
588 int jbd2_journal_force_commit(journal_t *journal)
590 int ret;
592 J_ASSERT(!current->journal_info);
593 ret = __jbd2_journal_force_commit(journal);
594 if (ret > 0)
595 ret = 0;
596 return ret;
600 * Start a commit of the current running transaction (if any). Returns true
601 * if a transaction is going to be committed (or is currently already
602 * committing), and fills its tid in at *ptid
604 int jbd2_journal_start_commit(journal_t *journal, tid_t *ptid)
606 int ret = 0;
608 write_lock(&journal->j_state_lock);
609 if (journal->j_running_transaction) {
610 tid_t tid = journal->j_running_transaction->t_tid;
612 __jbd2_log_start_commit(journal, tid);
613 /* There's a running transaction and we've just made sure
614 * it's commit has been scheduled. */
615 if (ptid)
616 *ptid = tid;
617 ret = 1;
618 } else if (journal->j_committing_transaction) {
620 * If commit has been started, then we have to wait for
621 * completion of that transaction.
623 if (ptid)
624 *ptid = journal->j_committing_transaction->t_tid;
625 ret = 1;
627 write_unlock(&journal->j_state_lock);
628 return ret;
632 * Return 1 if a given transaction has not yet sent barrier request
633 * connected with a transaction commit. If 0 is returned, transaction
634 * may or may not have sent the barrier. Used to avoid sending barrier
635 * twice in common cases.
637 int jbd2_trans_will_send_data_barrier(journal_t *journal, tid_t tid)
639 int ret = 0;
640 transaction_t *commit_trans;
642 if (!(journal->j_flags & JBD2_BARRIER))
643 return 0;
644 read_lock(&journal->j_state_lock);
645 /* Transaction already committed? */
646 if (tid_geq(journal->j_commit_sequence, tid))
647 goto out;
648 commit_trans = journal->j_committing_transaction;
649 if (!commit_trans || commit_trans->t_tid != tid) {
650 ret = 1;
651 goto out;
654 * Transaction is being committed and we already proceeded to
655 * submitting a flush to fs partition?
657 if (journal->j_fs_dev != journal->j_dev) {
658 if (!commit_trans->t_need_data_flush ||
659 commit_trans->t_state >= T_COMMIT_DFLUSH)
660 goto out;
661 } else {
662 if (commit_trans->t_state >= T_COMMIT_JFLUSH)
663 goto out;
665 ret = 1;
666 out:
667 read_unlock(&journal->j_state_lock);
668 return ret;
670 EXPORT_SYMBOL(jbd2_trans_will_send_data_barrier);
673 * Wait for a specified commit to complete.
674 * The caller may not hold the journal lock.
676 int jbd2_log_wait_commit(journal_t *journal, tid_t tid)
678 int err = 0;
680 read_lock(&journal->j_state_lock);
681 #ifdef CONFIG_PROVE_LOCKING
683 * Some callers make sure transaction is already committing and in that
684 * case we cannot block on open handles anymore. So don't warn in that
685 * case.
687 if (tid_gt(tid, journal->j_commit_sequence) &&
688 (!journal->j_committing_transaction ||
689 journal->j_committing_transaction->t_tid != tid)) {
690 read_unlock(&journal->j_state_lock);
691 jbd2_might_wait_for_commit(journal);
692 read_lock(&journal->j_state_lock);
694 #endif
695 #ifdef CONFIG_JBD2_DEBUG
696 if (!tid_geq(journal->j_commit_request, tid)) {
697 printk(KERN_ERR
698 "%s: error: j_commit_request=%u, tid=%u\n",
699 __func__, journal->j_commit_request, tid);
701 #endif
702 while (tid_gt(tid, journal->j_commit_sequence)) {
703 jbd_debug(1, "JBD2: want %u, j_commit_sequence=%u\n",
704 tid, journal->j_commit_sequence);
705 read_unlock(&journal->j_state_lock);
706 wake_up(&journal->j_wait_commit);
707 wait_event(journal->j_wait_done_commit,
708 !tid_gt(tid, journal->j_commit_sequence));
709 read_lock(&journal->j_state_lock);
711 read_unlock(&journal->j_state_lock);
713 if (unlikely(is_journal_aborted(journal)))
714 err = -EIO;
715 return err;
718 /* Return 1 when transaction with given tid has already committed. */
719 int jbd2_transaction_committed(journal_t *journal, tid_t tid)
721 int ret = 1;
723 read_lock(&journal->j_state_lock);
724 if (journal->j_running_transaction &&
725 journal->j_running_transaction->t_tid == tid)
726 ret = 0;
727 if (journal->j_committing_transaction &&
728 journal->j_committing_transaction->t_tid == tid)
729 ret = 0;
730 read_unlock(&journal->j_state_lock);
731 return ret;
733 EXPORT_SYMBOL(jbd2_transaction_committed);
736 * When this function returns the transaction corresponding to tid
737 * will be completed. If the transaction has currently running, start
738 * committing that transaction before waiting for it to complete. If
739 * the transaction id is stale, it is by definition already completed,
740 * so just return SUCCESS.
742 int jbd2_complete_transaction(journal_t *journal, tid_t tid)
744 int need_to_wait = 1;
746 read_lock(&journal->j_state_lock);
747 if (journal->j_running_transaction &&
748 journal->j_running_transaction->t_tid == tid) {
749 if (journal->j_commit_request != tid) {
750 /* transaction not yet started, so request it */
751 read_unlock(&journal->j_state_lock);
752 jbd2_log_start_commit(journal, tid);
753 goto wait_commit;
755 } else if (!(journal->j_committing_transaction &&
756 journal->j_committing_transaction->t_tid == tid))
757 need_to_wait = 0;
758 read_unlock(&journal->j_state_lock);
759 if (!need_to_wait)
760 return 0;
761 wait_commit:
762 return jbd2_log_wait_commit(journal, tid);
764 EXPORT_SYMBOL(jbd2_complete_transaction);
767 * Log buffer allocation routines:
770 int jbd2_journal_next_log_block(journal_t *journal, unsigned long long *retp)
772 unsigned long blocknr;
774 write_lock(&journal->j_state_lock);
775 J_ASSERT(journal->j_free > 1);
777 blocknr = journal->j_head;
778 journal->j_head++;
779 journal->j_free--;
780 if (journal->j_head == journal->j_last)
781 journal->j_head = journal->j_first;
782 write_unlock(&journal->j_state_lock);
783 return jbd2_journal_bmap(journal, blocknr, retp);
787 * Conversion of logical to physical block numbers for the journal
789 * On external journals the journal blocks are identity-mapped, so
790 * this is a no-op. If needed, we can use j_blk_offset - everything is
791 * ready.
793 int jbd2_journal_bmap(journal_t *journal, unsigned long blocknr,
794 unsigned long long *retp)
796 int err = 0;
797 unsigned long long ret;
799 if (journal->j_inode) {
800 ret = bmap(journal->j_inode, blocknr);
801 if (ret)
802 *retp = ret;
803 else {
804 printk(KERN_ALERT "%s: journal block not found "
805 "at offset %lu on %s\n",
806 __func__, blocknr, journal->j_devname);
807 err = -EIO;
808 __journal_abort_soft(journal, err);
810 } else {
811 *retp = blocknr; /* +journal->j_blk_offset */
813 return err;
817 * We play buffer_head aliasing tricks to write data/metadata blocks to
818 * the journal without copying their contents, but for journal
819 * descriptor blocks we do need to generate bona fide buffers.
821 * After the caller of jbd2_journal_get_descriptor_buffer() has finished modifying
822 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
823 * But we don't bother doing that, so there will be coherency problems with
824 * mmaps of blockdevs which hold live JBD-controlled filesystems.
826 struct buffer_head *
827 jbd2_journal_get_descriptor_buffer(transaction_t *transaction, int type)
829 journal_t *journal = transaction->t_journal;
830 struct buffer_head *bh;
831 unsigned long long blocknr;
832 journal_header_t *header;
833 int err;
835 err = jbd2_journal_next_log_block(journal, &blocknr);
837 if (err)
838 return NULL;
840 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
841 if (!bh)
842 return NULL;
843 lock_buffer(bh);
844 memset(bh->b_data, 0, journal->j_blocksize);
845 header = (journal_header_t *)bh->b_data;
846 header->h_magic = cpu_to_be32(JBD2_MAGIC_NUMBER);
847 header->h_blocktype = cpu_to_be32(type);
848 header->h_sequence = cpu_to_be32(transaction->t_tid);
849 set_buffer_uptodate(bh);
850 unlock_buffer(bh);
851 BUFFER_TRACE(bh, "return this buffer");
852 return bh;
855 void jbd2_descriptor_block_csum_set(journal_t *j, struct buffer_head *bh)
857 struct jbd2_journal_block_tail *tail;
858 __u32 csum;
860 if (!jbd2_journal_has_csum_v2or3(j))
861 return;
863 tail = (struct jbd2_journal_block_tail *)(bh->b_data + j->j_blocksize -
864 sizeof(struct jbd2_journal_block_tail));
865 tail->t_checksum = 0;
866 csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
867 tail->t_checksum = cpu_to_be32(csum);
871 * Return tid of the oldest transaction in the journal and block in the journal
872 * where the transaction starts.
874 * If the journal is now empty, return which will be the next transaction ID
875 * we will write and where will that transaction start.
877 * The return value is 0 if journal tail cannot be pushed any further, 1 if
878 * it can.
880 int jbd2_journal_get_log_tail(journal_t *journal, tid_t *tid,
881 unsigned long *block)
883 transaction_t *transaction;
884 int ret;
886 read_lock(&journal->j_state_lock);
887 spin_lock(&journal->j_list_lock);
888 transaction = journal->j_checkpoint_transactions;
889 if (transaction) {
890 *tid = transaction->t_tid;
891 *block = transaction->t_log_start;
892 } else if ((transaction = journal->j_committing_transaction) != NULL) {
893 *tid = transaction->t_tid;
894 *block = transaction->t_log_start;
895 } else if ((transaction = journal->j_running_transaction) != NULL) {
896 *tid = transaction->t_tid;
897 *block = journal->j_head;
898 } else {
899 *tid = journal->j_transaction_sequence;
900 *block = journal->j_head;
902 ret = tid_gt(*tid, journal->j_tail_sequence);
903 spin_unlock(&journal->j_list_lock);
904 read_unlock(&journal->j_state_lock);
906 return ret;
910 * Update information in journal structure and in on disk journal superblock
911 * about log tail. This function does not check whether information passed in
912 * really pushes log tail further. It's responsibility of the caller to make
913 * sure provided log tail information is valid (e.g. by holding
914 * j_checkpoint_mutex all the time between computing log tail and calling this
915 * function as is the case with jbd2_cleanup_journal_tail()).
917 * Requires j_checkpoint_mutex
919 int __jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
921 unsigned long freed;
922 int ret;
924 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
927 * We cannot afford for write to remain in drive's caches since as
928 * soon as we update j_tail, next transaction can start reusing journal
929 * space and if we lose sb update during power failure we'd replay
930 * old transaction with possibly newly overwritten data.
932 ret = jbd2_journal_update_sb_log_tail(journal, tid, block,
933 REQ_SYNC | REQ_FUA);
934 if (ret)
935 goto out;
937 write_lock(&journal->j_state_lock);
938 freed = block - journal->j_tail;
939 if (block < journal->j_tail)
940 freed += journal->j_last - journal->j_first;
942 trace_jbd2_update_log_tail(journal, tid, block, freed);
943 jbd_debug(1,
944 "Cleaning journal tail from %u to %u (offset %lu), "
945 "freeing %lu\n",
946 journal->j_tail_sequence, tid, block, freed);
948 journal->j_free += freed;
949 journal->j_tail_sequence = tid;
950 journal->j_tail = block;
951 write_unlock(&journal->j_state_lock);
953 out:
954 return ret;
958 * This is a variation of __jbd2_update_log_tail which checks for validity of
959 * provided log tail and locks j_checkpoint_mutex. So it is safe against races
960 * with other threads updating log tail.
962 void jbd2_update_log_tail(journal_t *journal, tid_t tid, unsigned long block)
964 mutex_lock_io(&journal->j_checkpoint_mutex);
965 if (tid_gt(tid, journal->j_tail_sequence))
966 __jbd2_update_log_tail(journal, tid, block);
967 mutex_unlock(&journal->j_checkpoint_mutex);
970 struct jbd2_stats_proc_session {
971 journal_t *journal;
972 struct transaction_stats_s *stats;
973 int start;
974 int max;
977 static void *jbd2_seq_info_start(struct seq_file *seq, loff_t *pos)
979 return *pos ? NULL : SEQ_START_TOKEN;
982 static void *jbd2_seq_info_next(struct seq_file *seq, void *v, loff_t *pos)
984 (*pos)++;
985 return NULL;
988 static int jbd2_seq_info_show(struct seq_file *seq, void *v)
990 struct jbd2_stats_proc_session *s = seq->private;
992 if (v != SEQ_START_TOKEN)
993 return 0;
994 seq_printf(seq, "%lu transactions (%lu requested), "
995 "each up to %u blocks\n",
996 s->stats->ts_tid, s->stats->ts_requested,
997 s->journal->j_max_transaction_buffers);
998 if (s->stats->ts_tid == 0)
999 return 0;
1000 seq_printf(seq, "average: \n %ums waiting for transaction\n",
1001 jiffies_to_msecs(s->stats->run.rs_wait / s->stats->ts_tid));
1002 seq_printf(seq, " %ums request delay\n",
1003 (s->stats->ts_requested == 0) ? 0 :
1004 jiffies_to_msecs(s->stats->run.rs_request_delay /
1005 s->stats->ts_requested));
1006 seq_printf(seq, " %ums running transaction\n",
1007 jiffies_to_msecs(s->stats->run.rs_running / s->stats->ts_tid));
1008 seq_printf(seq, " %ums transaction was being locked\n",
1009 jiffies_to_msecs(s->stats->run.rs_locked / s->stats->ts_tid));
1010 seq_printf(seq, " %ums flushing data (in ordered mode)\n",
1011 jiffies_to_msecs(s->stats->run.rs_flushing / s->stats->ts_tid));
1012 seq_printf(seq, " %ums logging transaction\n",
1013 jiffies_to_msecs(s->stats->run.rs_logging / s->stats->ts_tid));
1014 seq_printf(seq, " %lluus average transaction commit time\n",
1015 div_u64(s->journal->j_average_commit_time, 1000));
1016 seq_printf(seq, " %lu handles per transaction\n",
1017 s->stats->run.rs_handle_count / s->stats->ts_tid);
1018 seq_printf(seq, " %lu blocks per transaction\n",
1019 s->stats->run.rs_blocks / s->stats->ts_tid);
1020 seq_printf(seq, " %lu logged blocks per transaction\n",
1021 s->stats->run.rs_blocks_logged / s->stats->ts_tid);
1022 return 0;
1025 static void jbd2_seq_info_stop(struct seq_file *seq, void *v)
1029 static const struct seq_operations jbd2_seq_info_ops = {
1030 .start = jbd2_seq_info_start,
1031 .next = jbd2_seq_info_next,
1032 .stop = jbd2_seq_info_stop,
1033 .show = jbd2_seq_info_show,
1036 static int jbd2_seq_info_open(struct inode *inode, struct file *file)
1038 journal_t *journal = PDE_DATA(inode);
1039 struct jbd2_stats_proc_session *s;
1040 int rc, size;
1042 s = kmalloc(sizeof(*s), GFP_KERNEL);
1043 if (s == NULL)
1044 return -ENOMEM;
1045 size = sizeof(struct transaction_stats_s);
1046 s->stats = kmalloc(size, GFP_KERNEL);
1047 if (s->stats == NULL) {
1048 kfree(s);
1049 return -ENOMEM;
1051 spin_lock(&journal->j_history_lock);
1052 memcpy(s->stats, &journal->j_stats, size);
1053 s->journal = journal;
1054 spin_unlock(&journal->j_history_lock);
1056 rc = seq_open(file, &jbd2_seq_info_ops);
1057 if (rc == 0) {
1058 struct seq_file *m = file->private_data;
1059 m->private = s;
1060 } else {
1061 kfree(s->stats);
1062 kfree(s);
1064 return rc;
1068 static int jbd2_seq_info_release(struct inode *inode, struct file *file)
1070 struct seq_file *seq = file->private_data;
1071 struct jbd2_stats_proc_session *s = seq->private;
1072 kfree(s->stats);
1073 kfree(s);
1074 return seq_release(inode, file);
1077 static const struct file_operations jbd2_seq_info_fops = {
1078 .owner = THIS_MODULE,
1079 .open = jbd2_seq_info_open,
1080 .read = seq_read,
1081 .llseek = seq_lseek,
1082 .release = jbd2_seq_info_release,
1085 static struct proc_dir_entry *proc_jbd2_stats;
1087 static void jbd2_stats_proc_init(journal_t *journal)
1089 journal->j_proc_entry = proc_mkdir(journal->j_devname, proc_jbd2_stats);
1090 if (journal->j_proc_entry) {
1091 proc_create_data("info", S_IRUGO, journal->j_proc_entry,
1092 &jbd2_seq_info_fops, journal);
1096 static void jbd2_stats_proc_exit(journal_t *journal)
1098 remove_proc_entry("info", journal->j_proc_entry);
1099 remove_proc_entry(journal->j_devname, proc_jbd2_stats);
1103 * Management for journal control blocks: functions to create and
1104 * destroy journal_t structures, and to initialise and read existing
1105 * journal blocks from disk. */
1107 /* First: create and setup a journal_t object in memory. We initialise
1108 * very few fields yet: that has to wait until we have created the
1109 * journal structures from from scratch, or loaded them from disk. */
1111 static journal_t *journal_init_common(struct block_device *bdev,
1112 struct block_device *fs_dev,
1113 unsigned long long start, int len, int blocksize)
1115 static struct lock_class_key jbd2_trans_commit_key;
1116 journal_t *journal;
1117 int err;
1118 struct buffer_head *bh;
1119 int n;
1121 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
1122 if (!journal)
1123 return NULL;
1125 init_waitqueue_head(&journal->j_wait_transaction_locked);
1126 init_waitqueue_head(&journal->j_wait_done_commit);
1127 init_waitqueue_head(&journal->j_wait_commit);
1128 init_waitqueue_head(&journal->j_wait_updates);
1129 init_waitqueue_head(&journal->j_wait_reserved);
1130 mutex_init(&journal->j_barrier);
1131 mutex_init(&journal->j_checkpoint_mutex);
1132 spin_lock_init(&journal->j_revoke_lock);
1133 spin_lock_init(&journal->j_list_lock);
1134 rwlock_init(&journal->j_state_lock);
1136 journal->j_commit_interval = (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE);
1137 journal->j_min_batch_time = 0;
1138 journal->j_max_batch_time = 15000; /* 15ms */
1139 atomic_set(&journal->j_reserved_credits, 0);
1141 /* The journal is marked for error until we succeed with recovery! */
1142 journal->j_flags = JBD2_ABORT;
1144 /* Set up a default-sized revoke table for the new mount. */
1145 err = jbd2_journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
1146 if (err)
1147 goto err_cleanup;
1149 spin_lock_init(&journal->j_history_lock);
1151 lockdep_init_map(&journal->j_trans_commit_map, "jbd2_handle",
1152 &jbd2_trans_commit_key, 0);
1154 /* journal descriptor can store up to n blocks -bzzz */
1155 journal->j_blocksize = blocksize;
1156 journal->j_dev = bdev;
1157 journal->j_fs_dev = fs_dev;
1158 journal->j_blk_offset = start;
1159 journal->j_maxlen = len;
1160 n = journal->j_blocksize / sizeof(journal_block_tag_t);
1161 journal->j_wbufsize = n;
1162 journal->j_wbuf = kmalloc_array(n, sizeof(struct buffer_head *),
1163 GFP_KERNEL);
1164 if (!journal->j_wbuf)
1165 goto err_cleanup;
1167 bh = getblk_unmovable(journal->j_dev, start, journal->j_blocksize);
1168 if (!bh) {
1169 pr_err("%s: Cannot get buffer for journal superblock\n",
1170 __func__);
1171 goto err_cleanup;
1173 journal->j_sb_buffer = bh;
1174 journal->j_superblock = (journal_superblock_t *)bh->b_data;
1176 return journal;
1178 err_cleanup:
1179 kfree(journal->j_wbuf);
1180 jbd2_journal_destroy_revoke(journal);
1181 kfree(journal);
1182 return NULL;
1185 /* jbd2_journal_init_dev and jbd2_journal_init_inode:
1187 * Create a journal structure assigned some fixed set of disk blocks to
1188 * the journal. We don't actually touch those disk blocks yet, but we
1189 * need to set up all of the mapping information to tell the journaling
1190 * system where the journal blocks are.
1195 * journal_t * jbd2_journal_init_dev() - creates and initialises a journal structure
1196 * @bdev: Block device on which to create the journal
1197 * @fs_dev: Device which hold journalled filesystem for this journal.
1198 * @start: Block nr Start of journal.
1199 * @len: Length of the journal in blocks.
1200 * @blocksize: blocksize of journalling device
1202 * Returns: a newly created journal_t *
1204 * jbd2_journal_init_dev creates a journal which maps a fixed contiguous
1205 * range of blocks on an arbitrary block device.
1208 journal_t *jbd2_journal_init_dev(struct block_device *bdev,
1209 struct block_device *fs_dev,
1210 unsigned long long start, int len, int blocksize)
1212 journal_t *journal;
1214 journal = journal_init_common(bdev, fs_dev, start, len, blocksize);
1215 if (!journal)
1216 return NULL;
1218 bdevname(journal->j_dev, journal->j_devname);
1219 strreplace(journal->j_devname, '/', '!');
1220 jbd2_stats_proc_init(journal);
1222 return journal;
1226 * journal_t * jbd2_journal_init_inode () - creates a journal which maps to a inode.
1227 * @inode: An inode to create the journal in
1229 * jbd2_journal_init_inode creates a journal which maps an on-disk inode as
1230 * the journal. The inode must exist already, must support bmap() and
1231 * must have all data blocks preallocated.
1233 journal_t *jbd2_journal_init_inode(struct inode *inode)
1235 journal_t *journal;
1236 char *p;
1237 unsigned long long blocknr;
1239 blocknr = bmap(inode, 0);
1240 if (!blocknr) {
1241 pr_err("%s: Cannot locate journal superblock\n",
1242 __func__);
1243 return NULL;
1246 jbd_debug(1, "JBD2: inode %s/%ld, size %lld, bits %d, blksize %ld\n",
1247 inode->i_sb->s_id, inode->i_ino, (long long) inode->i_size,
1248 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
1250 journal = journal_init_common(inode->i_sb->s_bdev, inode->i_sb->s_bdev,
1251 blocknr, inode->i_size >> inode->i_sb->s_blocksize_bits,
1252 inode->i_sb->s_blocksize);
1253 if (!journal)
1254 return NULL;
1256 journal->j_inode = inode;
1257 bdevname(journal->j_dev, journal->j_devname);
1258 p = strreplace(journal->j_devname, '/', '!');
1259 sprintf(p, "-%lu", journal->j_inode->i_ino);
1260 jbd2_stats_proc_init(journal);
1262 return journal;
1266 * If the journal init or create aborts, we need to mark the journal
1267 * superblock as being NULL to prevent the journal destroy from writing
1268 * back a bogus superblock.
1270 static void journal_fail_superblock (journal_t *journal)
1272 struct buffer_head *bh = journal->j_sb_buffer;
1273 brelse(bh);
1274 journal->j_sb_buffer = NULL;
1278 * Given a journal_t structure, initialise the various fields for
1279 * startup of a new journaling session. We use this both when creating
1280 * a journal, and after recovering an old journal to reset it for
1281 * subsequent use.
1284 static int journal_reset(journal_t *journal)
1286 journal_superblock_t *sb = journal->j_superblock;
1287 unsigned long long first, last;
1289 first = be32_to_cpu(sb->s_first);
1290 last = be32_to_cpu(sb->s_maxlen);
1291 if (first + JBD2_MIN_JOURNAL_BLOCKS > last + 1) {
1292 printk(KERN_ERR "JBD2: Journal too short (blocks %llu-%llu).\n",
1293 first, last);
1294 journal_fail_superblock(journal);
1295 return -EINVAL;
1298 journal->j_first = first;
1299 journal->j_last = last;
1301 journal->j_head = first;
1302 journal->j_tail = first;
1303 journal->j_free = last - first;
1305 journal->j_tail_sequence = journal->j_transaction_sequence;
1306 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
1307 journal->j_commit_request = journal->j_commit_sequence;
1309 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
1312 * As a special case, if the on-disk copy is already marked as needing
1313 * no recovery (s_start == 0), then we can safely defer the superblock
1314 * update until the next commit by setting JBD2_FLUSHED. This avoids
1315 * attempting a write to a potential-readonly device.
1317 if (sb->s_start == 0) {
1318 jbd_debug(1, "JBD2: Skipping superblock update on recovered sb "
1319 "(start %ld, seq %u, errno %d)\n",
1320 journal->j_tail, journal->j_tail_sequence,
1321 journal->j_errno);
1322 journal->j_flags |= JBD2_FLUSHED;
1323 } else {
1324 /* Lock here to make assertions happy... */
1325 mutex_lock_io(&journal->j_checkpoint_mutex);
1327 * Update log tail information. We use REQ_FUA since new
1328 * transaction will start reusing journal space and so we
1329 * must make sure information about current log tail is on
1330 * disk before that.
1332 jbd2_journal_update_sb_log_tail(journal,
1333 journal->j_tail_sequence,
1334 journal->j_tail,
1335 REQ_SYNC | REQ_FUA);
1336 mutex_unlock(&journal->j_checkpoint_mutex);
1338 return jbd2_journal_start_thread(journal);
1342 * This function expects that the caller will have locked the journal
1343 * buffer head, and will return with it unlocked
1345 static int jbd2_write_superblock(journal_t *journal, int write_flags)
1347 struct buffer_head *bh = journal->j_sb_buffer;
1348 journal_superblock_t *sb = journal->j_superblock;
1349 int ret;
1351 /* Buffer got discarded which means block device got invalidated */
1352 if (!buffer_mapped(bh))
1353 return -EIO;
1355 trace_jbd2_write_superblock(journal, write_flags);
1356 if (!(journal->j_flags & JBD2_BARRIER))
1357 write_flags &= ~(REQ_FUA | REQ_PREFLUSH);
1358 if (buffer_write_io_error(bh)) {
1360 * Oh, dear. A previous attempt to write the journal
1361 * superblock failed. This could happen because the
1362 * USB device was yanked out. Or it could happen to
1363 * be a transient write error and maybe the block will
1364 * be remapped. Nothing we can do but to retry the
1365 * write and hope for the best.
1367 printk(KERN_ERR "JBD2: previous I/O error detected "
1368 "for journal superblock update for %s.\n",
1369 journal->j_devname);
1370 clear_buffer_write_io_error(bh);
1371 set_buffer_uptodate(bh);
1373 if (jbd2_journal_has_csum_v2or3(journal))
1374 sb->s_checksum = jbd2_superblock_csum(journal, sb);
1375 get_bh(bh);
1376 bh->b_end_io = end_buffer_write_sync;
1377 ret = submit_bh(REQ_OP_WRITE, write_flags, bh);
1378 wait_on_buffer(bh);
1379 if (buffer_write_io_error(bh)) {
1380 clear_buffer_write_io_error(bh);
1381 set_buffer_uptodate(bh);
1382 ret = -EIO;
1384 if (ret) {
1385 printk(KERN_ERR "JBD2: Error %d detected when updating "
1386 "journal superblock for %s.\n", ret,
1387 journal->j_devname);
1388 jbd2_journal_abort(journal, ret);
1391 return ret;
1395 * jbd2_journal_update_sb_log_tail() - Update log tail in journal sb on disk.
1396 * @journal: The journal to update.
1397 * @tail_tid: TID of the new transaction at the tail of the log
1398 * @tail_block: The first block of the transaction at the tail of the log
1399 * @write_op: With which operation should we write the journal sb
1401 * Update a journal's superblock information about log tail and write it to
1402 * disk, waiting for the IO to complete.
1404 int jbd2_journal_update_sb_log_tail(journal_t *journal, tid_t tail_tid,
1405 unsigned long tail_block, int write_op)
1407 journal_superblock_t *sb = journal->j_superblock;
1408 int ret;
1410 if (is_journal_aborted(journal))
1411 return -EIO;
1413 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1414 jbd_debug(1, "JBD2: updating superblock (start %lu, seq %u)\n",
1415 tail_block, tail_tid);
1417 lock_buffer(journal->j_sb_buffer);
1418 sb->s_sequence = cpu_to_be32(tail_tid);
1419 sb->s_start = cpu_to_be32(tail_block);
1421 ret = jbd2_write_superblock(journal, write_op);
1422 if (ret)
1423 goto out;
1425 /* Log is no longer empty */
1426 write_lock(&journal->j_state_lock);
1427 WARN_ON(!sb->s_sequence);
1428 journal->j_flags &= ~JBD2_FLUSHED;
1429 write_unlock(&journal->j_state_lock);
1431 out:
1432 return ret;
1436 * jbd2_mark_journal_empty() - Mark on disk journal as empty.
1437 * @journal: The journal to update.
1438 * @write_op: With which operation should we write the journal sb
1440 * Update a journal's dynamic superblock fields to show that journal is empty.
1441 * Write updated superblock to disk waiting for IO to complete.
1443 static void jbd2_mark_journal_empty(journal_t *journal, int write_op)
1445 journal_superblock_t *sb = journal->j_superblock;
1447 BUG_ON(!mutex_is_locked(&journal->j_checkpoint_mutex));
1448 lock_buffer(journal->j_sb_buffer);
1449 if (sb->s_start == 0) { /* Is it already empty? */
1450 unlock_buffer(journal->j_sb_buffer);
1451 return;
1454 jbd_debug(1, "JBD2: Marking journal as empty (seq %u)\n",
1455 journal->j_tail_sequence);
1457 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
1458 sb->s_start = cpu_to_be32(0);
1460 jbd2_write_superblock(journal, write_op);
1462 /* Log is no longer empty */
1463 write_lock(&journal->j_state_lock);
1464 journal->j_flags |= JBD2_FLUSHED;
1465 write_unlock(&journal->j_state_lock);
1470 * jbd2_journal_update_sb_errno() - Update error in the journal.
1471 * @journal: The journal to update.
1473 * Update a journal's errno. Write updated superblock to disk waiting for IO
1474 * to complete.
1476 void jbd2_journal_update_sb_errno(journal_t *journal)
1478 journal_superblock_t *sb = journal->j_superblock;
1479 int errcode;
1481 lock_buffer(journal->j_sb_buffer);
1482 errcode = journal->j_errno;
1483 if (errcode == -ESHUTDOWN)
1484 errcode = 0;
1485 jbd_debug(1, "JBD2: updating superblock error (errno %d)\n", errcode);
1486 sb->s_errno = cpu_to_be32(errcode);
1488 jbd2_write_superblock(journal, REQ_SYNC | REQ_FUA);
1490 EXPORT_SYMBOL(jbd2_journal_update_sb_errno);
1493 * Read the superblock for a given journal, performing initial
1494 * validation of the format.
1496 static int journal_get_superblock(journal_t *journal)
1498 struct buffer_head *bh;
1499 journal_superblock_t *sb;
1500 int err = -EIO;
1502 bh = journal->j_sb_buffer;
1504 J_ASSERT(bh != NULL);
1505 if (!buffer_uptodate(bh)) {
1506 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1507 wait_on_buffer(bh);
1508 if (!buffer_uptodate(bh)) {
1509 printk(KERN_ERR
1510 "JBD2: IO error reading journal superblock\n");
1511 goto out;
1515 if (buffer_verified(bh))
1516 return 0;
1518 sb = journal->j_superblock;
1520 err = -EINVAL;
1522 if (sb->s_header.h_magic != cpu_to_be32(JBD2_MAGIC_NUMBER) ||
1523 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1524 printk(KERN_WARNING "JBD2: no valid journal superblock found\n");
1525 goto out;
1528 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1529 case JBD2_SUPERBLOCK_V1:
1530 journal->j_format_version = 1;
1531 break;
1532 case JBD2_SUPERBLOCK_V2:
1533 journal->j_format_version = 2;
1534 break;
1535 default:
1536 printk(KERN_WARNING "JBD2: unrecognised superblock format ID\n");
1537 goto out;
1540 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1541 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1542 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1543 printk(KERN_WARNING "JBD2: journal file too short\n");
1544 goto out;
1547 if (be32_to_cpu(sb->s_first) == 0 ||
1548 be32_to_cpu(sb->s_first) >= journal->j_maxlen) {
1549 printk(KERN_WARNING
1550 "JBD2: Invalid start block of journal: %u\n",
1551 be32_to_cpu(sb->s_first));
1552 goto out;
1555 if (jbd2_has_feature_csum2(journal) &&
1556 jbd2_has_feature_csum3(journal)) {
1557 /* Can't have checksum v2 and v3 at the same time! */
1558 printk(KERN_ERR "JBD2: Can't enable checksumming v2 and v3 "
1559 "at the same time!\n");
1560 goto out;
1563 if (jbd2_journal_has_csum_v2or3_feature(journal) &&
1564 jbd2_has_feature_checksum(journal)) {
1565 /* Can't have checksum v1 and v2 on at the same time! */
1566 printk(KERN_ERR "JBD2: Can't enable checksumming v1 and v2/3 "
1567 "at the same time!\n");
1568 goto out;
1571 if (!jbd2_verify_csum_type(journal, sb)) {
1572 printk(KERN_ERR "JBD2: Unknown checksum type\n");
1573 goto out;
1576 /* Load the checksum driver */
1577 if (jbd2_journal_has_csum_v2or3_feature(journal)) {
1578 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1579 if (IS_ERR(journal->j_chksum_driver)) {
1580 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1581 err = PTR_ERR(journal->j_chksum_driver);
1582 journal->j_chksum_driver = NULL;
1583 goto out;
1587 if (jbd2_journal_has_csum_v2or3(journal)) {
1588 /* Check superblock checksum */
1589 if (sb->s_checksum != jbd2_superblock_csum(journal, sb)) {
1590 printk(KERN_ERR "JBD2: journal checksum error\n");
1591 err = -EFSBADCRC;
1592 goto out;
1595 /* Precompute checksum seed for all metadata */
1596 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1597 sizeof(sb->s_uuid));
1600 set_buffer_verified(bh);
1602 return 0;
1604 out:
1605 journal_fail_superblock(journal);
1606 return err;
1610 * Load the on-disk journal superblock and read the key fields into the
1611 * journal_t.
1614 static int load_superblock(journal_t *journal)
1616 int err;
1617 journal_superblock_t *sb;
1619 err = journal_get_superblock(journal);
1620 if (err)
1621 return err;
1623 sb = journal->j_superblock;
1625 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1626 journal->j_tail = be32_to_cpu(sb->s_start);
1627 journal->j_first = be32_to_cpu(sb->s_first);
1628 journal->j_last = be32_to_cpu(sb->s_maxlen);
1629 journal->j_errno = be32_to_cpu(sb->s_errno);
1631 return 0;
1636 * int jbd2_journal_load() - Read journal from disk.
1637 * @journal: Journal to act on.
1639 * Given a journal_t structure which tells us which disk blocks contain
1640 * a journal, read the journal from disk to initialise the in-memory
1641 * structures.
1643 int jbd2_journal_load(journal_t *journal)
1645 int err;
1646 journal_superblock_t *sb;
1648 err = load_superblock(journal);
1649 if (err)
1650 return err;
1652 sb = journal->j_superblock;
1653 /* If this is a V2 superblock, then we have to check the
1654 * features flags on it. */
1656 if (journal->j_format_version >= 2) {
1657 if ((sb->s_feature_ro_compat &
1658 ~cpu_to_be32(JBD2_KNOWN_ROCOMPAT_FEATURES)) ||
1659 (sb->s_feature_incompat &
1660 ~cpu_to_be32(JBD2_KNOWN_INCOMPAT_FEATURES))) {
1661 printk(KERN_WARNING
1662 "JBD2: Unrecognised features on journal\n");
1663 return -EINVAL;
1668 * Create a slab for this blocksize
1670 err = jbd2_journal_create_slab(be32_to_cpu(sb->s_blocksize));
1671 if (err)
1672 return err;
1674 /* Let the recovery code check whether it needs to recover any
1675 * data from the journal. */
1676 if (jbd2_journal_recover(journal))
1677 goto recovery_error;
1679 if (journal->j_failed_commit) {
1680 printk(KERN_ERR "JBD2: journal transaction %u on %s "
1681 "is corrupt.\n", journal->j_failed_commit,
1682 journal->j_devname);
1683 return -EFSCORRUPTED;
1686 * clear JBD2_ABORT flag initialized in journal_init_common
1687 * here to update log tail information with the newest seq.
1689 journal->j_flags &= ~JBD2_ABORT;
1691 /* OK, we've finished with the dynamic journal bits:
1692 * reinitialise the dynamic contents of the superblock in memory
1693 * and reset them on disk. */
1694 if (journal_reset(journal))
1695 goto recovery_error;
1697 journal->j_flags |= JBD2_LOADED;
1698 return 0;
1700 recovery_error:
1701 printk(KERN_WARNING "JBD2: recovery failed\n");
1702 return -EIO;
1706 * void jbd2_journal_destroy() - Release a journal_t structure.
1707 * @journal: Journal to act on.
1709 * Release a journal_t structure once it is no longer in use by the
1710 * journaled object.
1711 * Return <0 if we couldn't clean up the journal.
1713 int jbd2_journal_destroy(journal_t *journal)
1715 int err = 0;
1717 /* Wait for the commit thread to wake up and die. */
1718 journal_kill_thread(journal);
1720 /* Force a final log commit */
1721 if (journal->j_running_transaction)
1722 jbd2_journal_commit_transaction(journal);
1724 /* Force any old transactions to disk */
1726 /* Totally anal locking here... */
1727 spin_lock(&journal->j_list_lock);
1728 while (journal->j_checkpoint_transactions != NULL) {
1729 spin_unlock(&journal->j_list_lock);
1730 mutex_lock_io(&journal->j_checkpoint_mutex);
1731 err = jbd2_log_do_checkpoint(journal);
1732 mutex_unlock(&journal->j_checkpoint_mutex);
1734 * If checkpointing failed, just free the buffers to avoid
1735 * looping forever
1737 if (err) {
1738 jbd2_journal_destroy_checkpoint(journal);
1739 spin_lock(&journal->j_list_lock);
1740 break;
1742 spin_lock(&journal->j_list_lock);
1745 J_ASSERT(journal->j_running_transaction == NULL);
1746 J_ASSERT(journal->j_committing_transaction == NULL);
1747 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1748 spin_unlock(&journal->j_list_lock);
1750 if (journal->j_sb_buffer) {
1751 if (!is_journal_aborted(journal)) {
1752 mutex_lock_io(&journal->j_checkpoint_mutex);
1754 write_lock(&journal->j_state_lock);
1755 journal->j_tail_sequence =
1756 ++journal->j_transaction_sequence;
1757 write_unlock(&journal->j_state_lock);
1759 jbd2_mark_journal_empty(journal,
1760 REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1761 mutex_unlock(&journal->j_checkpoint_mutex);
1762 } else
1763 err = -EIO;
1764 brelse(journal->j_sb_buffer);
1767 if (journal->j_proc_entry)
1768 jbd2_stats_proc_exit(journal);
1769 iput(journal->j_inode);
1770 if (journal->j_revoke)
1771 jbd2_journal_destroy_revoke(journal);
1772 if (journal->j_chksum_driver)
1773 crypto_free_shash(journal->j_chksum_driver);
1774 kfree(journal->j_wbuf);
1775 kfree(journal);
1777 return err;
1782 *int jbd2_journal_check_used_features () - Check if features specified are used.
1783 * @journal: Journal to check.
1784 * @compat: bitmask of compatible features
1785 * @ro: bitmask of features that force read-only mount
1786 * @incompat: bitmask of incompatible features
1788 * Check whether the journal uses all of a given set of
1789 * features. Return true (non-zero) if it does.
1792 int jbd2_journal_check_used_features (journal_t *journal, unsigned long compat,
1793 unsigned long ro, unsigned long incompat)
1795 journal_superblock_t *sb;
1797 if (!compat && !ro && !incompat)
1798 return 1;
1799 /* Load journal superblock if it is not loaded yet. */
1800 if (journal->j_format_version == 0 &&
1801 journal_get_superblock(journal) != 0)
1802 return 0;
1803 if (journal->j_format_version == 1)
1804 return 0;
1806 sb = journal->j_superblock;
1808 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1809 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1810 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1811 return 1;
1813 return 0;
1817 * int jbd2_journal_check_available_features() - Check feature set in journalling layer
1818 * @journal: Journal to check.
1819 * @compat: bitmask of compatible features
1820 * @ro: bitmask of features that force read-only mount
1821 * @incompat: bitmask of incompatible features
1823 * Check whether the journaling code supports the use of
1824 * all of a given set of features on this journal. Return true
1825 * (non-zero) if it can. */
1827 int jbd2_journal_check_available_features (journal_t *journal, unsigned long compat,
1828 unsigned long ro, unsigned long incompat)
1830 if (!compat && !ro && !incompat)
1831 return 1;
1833 /* We can support any known requested features iff the
1834 * superblock is in version 2. Otherwise we fail to support any
1835 * extended sb features. */
1837 if (journal->j_format_version != 2)
1838 return 0;
1840 if ((compat & JBD2_KNOWN_COMPAT_FEATURES) == compat &&
1841 (ro & JBD2_KNOWN_ROCOMPAT_FEATURES) == ro &&
1842 (incompat & JBD2_KNOWN_INCOMPAT_FEATURES) == incompat)
1843 return 1;
1845 return 0;
1849 * int jbd2_journal_set_features () - Mark a given journal feature in the superblock
1850 * @journal: Journal to act on.
1851 * @compat: bitmask of compatible features
1852 * @ro: bitmask of features that force read-only mount
1853 * @incompat: bitmask of incompatible features
1855 * Mark a given journal feature as present on the
1856 * superblock. Returns true if the requested features could be set.
1860 int jbd2_journal_set_features (journal_t *journal, unsigned long compat,
1861 unsigned long ro, unsigned long incompat)
1863 #define INCOMPAT_FEATURE_ON(f) \
1864 ((incompat & (f)) && !(sb->s_feature_incompat & cpu_to_be32(f)))
1865 #define COMPAT_FEATURE_ON(f) \
1866 ((compat & (f)) && !(sb->s_feature_compat & cpu_to_be32(f)))
1867 journal_superblock_t *sb;
1869 if (jbd2_journal_check_used_features(journal, compat, ro, incompat))
1870 return 1;
1872 if (!jbd2_journal_check_available_features(journal, compat, ro, incompat))
1873 return 0;
1875 /* If enabling v2 checksums, turn on v3 instead */
1876 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V2) {
1877 incompat &= ~JBD2_FEATURE_INCOMPAT_CSUM_V2;
1878 incompat |= JBD2_FEATURE_INCOMPAT_CSUM_V3;
1881 /* Asking for checksumming v3 and v1? Only give them v3. */
1882 if (incompat & JBD2_FEATURE_INCOMPAT_CSUM_V3 &&
1883 compat & JBD2_FEATURE_COMPAT_CHECKSUM)
1884 compat &= ~JBD2_FEATURE_COMPAT_CHECKSUM;
1886 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1887 compat, ro, incompat);
1889 sb = journal->j_superblock;
1891 /* Load the checksum driver if necessary */
1892 if ((journal->j_chksum_driver == NULL) &&
1893 INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1894 journal->j_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
1895 if (IS_ERR(journal->j_chksum_driver)) {
1896 printk(KERN_ERR "JBD2: Cannot load crc32c driver.\n");
1897 journal->j_chksum_driver = NULL;
1898 return 0;
1900 /* Precompute checksum seed for all metadata */
1901 journal->j_csum_seed = jbd2_chksum(journal, ~0, sb->s_uuid,
1902 sizeof(sb->s_uuid));
1905 lock_buffer(journal->j_sb_buffer);
1907 /* If enabling v3 checksums, update superblock */
1908 if (INCOMPAT_FEATURE_ON(JBD2_FEATURE_INCOMPAT_CSUM_V3)) {
1909 sb->s_checksum_type = JBD2_CRC32C_CHKSUM;
1910 sb->s_feature_compat &=
1911 ~cpu_to_be32(JBD2_FEATURE_COMPAT_CHECKSUM);
1914 /* If enabling v1 checksums, downgrade superblock */
1915 if (COMPAT_FEATURE_ON(JBD2_FEATURE_COMPAT_CHECKSUM))
1916 sb->s_feature_incompat &=
1917 ~cpu_to_be32(JBD2_FEATURE_INCOMPAT_CSUM_V2 |
1918 JBD2_FEATURE_INCOMPAT_CSUM_V3);
1920 sb->s_feature_compat |= cpu_to_be32(compat);
1921 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1922 sb->s_feature_incompat |= cpu_to_be32(incompat);
1923 unlock_buffer(journal->j_sb_buffer);
1925 return 1;
1926 #undef COMPAT_FEATURE_ON
1927 #undef INCOMPAT_FEATURE_ON
1931 * jbd2_journal_clear_features () - Clear a given journal feature in the
1932 * superblock
1933 * @journal: Journal to act on.
1934 * @compat: bitmask of compatible features
1935 * @ro: bitmask of features that force read-only mount
1936 * @incompat: bitmask of incompatible features
1938 * Clear a given journal feature as present on the
1939 * superblock.
1941 void jbd2_journal_clear_features(journal_t *journal, unsigned long compat,
1942 unsigned long ro, unsigned long incompat)
1944 journal_superblock_t *sb;
1946 jbd_debug(1, "Clear features 0x%lx/0x%lx/0x%lx\n",
1947 compat, ro, incompat);
1949 sb = journal->j_superblock;
1951 sb->s_feature_compat &= ~cpu_to_be32(compat);
1952 sb->s_feature_ro_compat &= ~cpu_to_be32(ro);
1953 sb->s_feature_incompat &= ~cpu_to_be32(incompat);
1955 EXPORT_SYMBOL(jbd2_journal_clear_features);
1958 * int jbd2_journal_flush () - Flush journal
1959 * @journal: Journal to act on.
1961 * Flush all data for a given journal to disk and empty the journal.
1962 * Filesystems can use this when remounting readonly to ensure that
1963 * recovery does not need to happen on remount.
1966 int jbd2_journal_flush(journal_t *journal)
1968 int err = 0;
1969 transaction_t *transaction = NULL;
1971 write_lock(&journal->j_state_lock);
1973 /* Force everything buffered to the log... */
1974 if (journal->j_running_transaction) {
1975 transaction = journal->j_running_transaction;
1976 __jbd2_log_start_commit(journal, transaction->t_tid);
1977 } else if (journal->j_committing_transaction)
1978 transaction = journal->j_committing_transaction;
1980 /* Wait for the log commit to complete... */
1981 if (transaction) {
1982 tid_t tid = transaction->t_tid;
1984 write_unlock(&journal->j_state_lock);
1985 jbd2_log_wait_commit(journal, tid);
1986 } else {
1987 write_unlock(&journal->j_state_lock);
1990 /* ...and flush everything in the log out to disk. */
1991 spin_lock(&journal->j_list_lock);
1992 while (!err && journal->j_checkpoint_transactions != NULL) {
1993 spin_unlock(&journal->j_list_lock);
1994 mutex_lock_io(&journal->j_checkpoint_mutex);
1995 err = jbd2_log_do_checkpoint(journal);
1996 mutex_unlock(&journal->j_checkpoint_mutex);
1997 spin_lock(&journal->j_list_lock);
1999 spin_unlock(&journal->j_list_lock);
2001 if (is_journal_aborted(journal))
2002 return -EIO;
2004 mutex_lock_io(&journal->j_checkpoint_mutex);
2005 if (!err) {
2006 err = jbd2_cleanup_journal_tail(journal);
2007 if (err < 0) {
2008 mutex_unlock(&journal->j_checkpoint_mutex);
2009 goto out;
2011 err = 0;
2014 /* Finally, mark the journal as really needing no recovery.
2015 * This sets s_start==0 in the underlying superblock, which is
2016 * the magic code for a fully-recovered superblock. Any future
2017 * commits of data to the journal will restore the current
2018 * s_start value. */
2019 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2020 mutex_unlock(&journal->j_checkpoint_mutex);
2021 write_lock(&journal->j_state_lock);
2022 J_ASSERT(!journal->j_running_transaction);
2023 J_ASSERT(!journal->j_committing_transaction);
2024 J_ASSERT(!journal->j_checkpoint_transactions);
2025 J_ASSERT(journal->j_head == journal->j_tail);
2026 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
2027 write_unlock(&journal->j_state_lock);
2028 out:
2029 return err;
2033 * int jbd2_journal_wipe() - Wipe journal contents
2034 * @journal: Journal to act on.
2035 * @write: flag (see below)
2037 * Wipe out all of the contents of a journal, safely. This will produce
2038 * a warning if the journal contains any valid recovery information.
2039 * Must be called between journal_init_*() and jbd2_journal_load().
2041 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
2042 * we merely suppress recovery.
2045 int jbd2_journal_wipe(journal_t *journal, int write)
2047 int err = 0;
2049 J_ASSERT (!(journal->j_flags & JBD2_LOADED));
2051 err = load_superblock(journal);
2052 if (err)
2053 return err;
2055 if (!journal->j_tail)
2056 goto no_recovery;
2058 printk(KERN_WARNING "JBD2: %s recovery information on journal\n",
2059 write ? "Clearing" : "Ignoring");
2061 err = jbd2_journal_skip_recovery(journal);
2062 if (write) {
2063 /* Lock to make assertions happy... */
2064 mutex_lock_io(&journal->j_checkpoint_mutex);
2065 jbd2_mark_journal_empty(journal, REQ_SYNC | REQ_FUA);
2066 mutex_unlock(&journal->j_checkpoint_mutex);
2069 no_recovery:
2070 return err;
2074 * Journal abort has very specific semantics, which we describe
2075 * for journal abort.
2077 * Two internal functions, which provide abort to the jbd layer
2078 * itself are here.
2082 * Quick version for internal journal use (doesn't lock the journal).
2083 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
2084 * and don't attempt to make any other journal updates.
2086 void __jbd2_journal_abort_hard(journal_t *journal)
2088 transaction_t *transaction;
2090 if (journal->j_flags & JBD2_ABORT)
2091 return;
2093 printk(KERN_ERR "Aborting journal on device %s.\n",
2094 journal->j_devname);
2096 write_lock(&journal->j_state_lock);
2097 journal->j_flags |= JBD2_ABORT;
2098 transaction = journal->j_running_transaction;
2099 if (transaction)
2100 __jbd2_log_start_commit(journal, transaction->t_tid);
2101 write_unlock(&journal->j_state_lock);
2104 /* Soft abort: record the abort error status in the journal superblock,
2105 * but don't do any other IO. */
2106 static void __journal_abort_soft (journal_t *journal, int errno)
2108 int old_errno;
2110 write_lock(&journal->j_state_lock);
2111 old_errno = journal->j_errno;
2112 if (!journal->j_errno || errno == -ESHUTDOWN)
2113 journal->j_errno = errno;
2115 if (journal->j_flags & JBD2_ABORT) {
2116 write_unlock(&journal->j_state_lock);
2117 if (old_errno != -ESHUTDOWN && errno == -ESHUTDOWN)
2118 jbd2_journal_update_sb_errno(journal);
2119 return;
2121 write_unlock(&journal->j_state_lock);
2123 __jbd2_journal_abort_hard(journal);
2125 jbd2_journal_update_sb_errno(journal);
2126 write_lock(&journal->j_state_lock);
2127 journal->j_flags |= JBD2_REC_ERR;
2128 write_unlock(&journal->j_state_lock);
2132 * void jbd2_journal_abort () - Shutdown the journal immediately.
2133 * @journal: the journal to shutdown.
2134 * @errno: an error number to record in the journal indicating
2135 * the reason for the shutdown.
2137 * Perform a complete, immediate shutdown of the ENTIRE
2138 * journal (not of a single transaction). This operation cannot be
2139 * undone without closing and reopening the journal.
2141 * The jbd2_journal_abort function is intended to support higher level error
2142 * recovery mechanisms such as the ext2/ext3 remount-readonly error
2143 * mode.
2145 * Journal abort has very specific semantics. Any existing dirty,
2146 * unjournaled buffers in the main filesystem will still be written to
2147 * disk by bdflush, but the journaling mechanism will be suspended
2148 * immediately and no further transaction commits will be honoured.
2150 * Any dirty, journaled buffers will be written back to disk without
2151 * hitting the journal. Atomicity cannot be guaranteed on an aborted
2152 * filesystem, but we _do_ attempt to leave as much data as possible
2153 * behind for fsck to use for cleanup.
2155 * Any attempt to get a new transaction handle on a journal which is in
2156 * ABORT state will just result in an -EROFS error return. A
2157 * jbd2_journal_stop on an existing handle will return -EIO if we have
2158 * entered abort state during the update.
2160 * Recursive transactions are not disturbed by journal abort until the
2161 * final jbd2_journal_stop, which will receive the -EIO error.
2163 * Finally, the jbd2_journal_abort call allows the caller to supply an errno
2164 * which will be recorded (if possible) in the journal superblock. This
2165 * allows a client to record failure conditions in the middle of a
2166 * transaction without having to complete the transaction to record the
2167 * failure to disk. ext3_error, for example, now uses this
2168 * functionality.
2172 void jbd2_journal_abort(journal_t *journal, int errno)
2174 __journal_abort_soft(journal, errno);
2178 * int jbd2_journal_errno () - returns the journal's error state.
2179 * @journal: journal to examine.
2181 * This is the errno number set with jbd2_journal_abort(), the last
2182 * time the journal was mounted - if the journal was stopped
2183 * without calling abort this will be 0.
2185 * If the journal has been aborted on this mount time -EROFS will
2186 * be returned.
2188 int jbd2_journal_errno(journal_t *journal)
2190 int err;
2192 read_lock(&journal->j_state_lock);
2193 if (journal->j_flags & JBD2_ABORT)
2194 err = -EROFS;
2195 else
2196 err = journal->j_errno;
2197 read_unlock(&journal->j_state_lock);
2198 return err;
2202 * int jbd2_journal_clear_err () - clears the journal's error state
2203 * @journal: journal to act on.
2205 * An error must be cleared or acked to take a FS out of readonly
2206 * mode.
2208 int jbd2_journal_clear_err(journal_t *journal)
2210 int err = 0;
2212 write_lock(&journal->j_state_lock);
2213 if (journal->j_flags & JBD2_ABORT)
2214 err = -EROFS;
2215 else
2216 journal->j_errno = 0;
2217 write_unlock(&journal->j_state_lock);
2218 return err;
2222 * void jbd2_journal_ack_err() - Ack journal err.
2223 * @journal: journal to act on.
2225 * An error must be cleared or acked to take a FS out of readonly
2226 * mode.
2228 void jbd2_journal_ack_err(journal_t *journal)
2230 write_lock(&journal->j_state_lock);
2231 if (journal->j_errno)
2232 journal->j_flags |= JBD2_ACK_ERR;
2233 write_unlock(&journal->j_state_lock);
2236 int jbd2_journal_blocks_per_page(struct inode *inode)
2238 return 1 << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
2242 * helper functions to deal with 32 or 64bit block numbers.
2244 size_t journal_tag_bytes(journal_t *journal)
2246 size_t sz;
2248 if (jbd2_has_feature_csum3(journal))
2249 return sizeof(journal_block_tag3_t);
2251 sz = sizeof(journal_block_tag_t);
2253 if (jbd2_has_feature_csum2(journal))
2254 sz += sizeof(__u16);
2256 if (jbd2_has_feature_64bit(journal))
2257 return sz;
2258 else
2259 return sz - sizeof(__u32);
2263 * JBD memory management
2265 * These functions are used to allocate block-sized chunks of memory
2266 * used for making copies of buffer_head data. Very often it will be
2267 * page-sized chunks of data, but sometimes it will be in
2268 * sub-page-size chunks. (For example, 16k pages on Power systems
2269 * with a 4k block file system.) For blocks smaller than a page, we
2270 * use a SLAB allocator. There are slab caches for each block size,
2271 * which are allocated at mount time, if necessary, and we only free
2272 * (all of) the slab caches when/if the jbd2 module is unloaded. For
2273 * this reason we don't need to a mutex to protect access to
2274 * jbd2_slab[] allocating or releasing memory; only in
2275 * jbd2_journal_create_slab().
2277 #define JBD2_MAX_SLABS 8
2278 static struct kmem_cache *jbd2_slab[JBD2_MAX_SLABS];
2280 static const char *jbd2_slab_names[JBD2_MAX_SLABS] = {
2281 "jbd2_1k", "jbd2_2k", "jbd2_4k", "jbd2_8k",
2282 "jbd2_16k", "jbd2_32k", "jbd2_64k", "jbd2_128k"
2286 static void jbd2_journal_destroy_slabs(void)
2288 int i;
2290 for (i = 0; i < JBD2_MAX_SLABS; i++) {
2291 kmem_cache_destroy(jbd2_slab[i]);
2292 jbd2_slab[i] = NULL;
2296 static int jbd2_journal_create_slab(size_t size)
2298 static DEFINE_MUTEX(jbd2_slab_create_mutex);
2299 int i = order_base_2(size) - 10;
2300 size_t slab_size;
2302 if (size == PAGE_SIZE)
2303 return 0;
2305 if (i >= JBD2_MAX_SLABS)
2306 return -EINVAL;
2308 if (unlikely(i < 0))
2309 i = 0;
2310 mutex_lock(&jbd2_slab_create_mutex);
2311 if (jbd2_slab[i]) {
2312 mutex_unlock(&jbd2_slab_create_mutex);
2313 return 0; /* Already created */
2316 slab_size = 1 << (i+10);
2317 jbd2_slab[i] = kmem_cache_create(jbd2_slab_names[i], slab_size,
2318 slab_size, 0, NULL);
2319 mutex_unlock(&jbd2_slab_create_mutex);
2320 if (!jbd2_slab[i]) {
2321 printk(KERN_EMERG "JBD2: no memory for jbd2_slab cache\n");
2322 return -ENOMEM;
2324 return 0;
2327 static struct kmem_cache *get_slab(size_t size)
2329 int i = order_base_2(size) - 10;
2331 BUG_ON(i >= JBD2_MAX_SLABS);
2332 if (unlikely(i < 0))
2333 i = 0;
2334 BUG_ON(jbd2_slab[i] == NULL);
2335 return jbd2_slab[i];
2338 void *jbd2_alloc(size_t size, gfp_t flags)
2340 void *ptr;
2342 BUG_ON(size & (size-1)); /* Must be a power of 2 */
2344 if (size < PAGE_SIZE)
2345 ptr = kmem_cache_alloc(get_slab(size), flags);
2346 else
2347 ptr = (void *)__get_free_pages(flags, get_order(size));
2349 /* Check alignment; SLUB has gotten this wrong in the past,
2350 * and this can lead to user data corruption! */
2351 BUG_ON(((unsigned long) ptr) & (size-1));
2353 return ptr;
2356 void jbd2_free(void *ptr, size_t size)
2358 if (size < PAGE_SIZE)
2359 kmem_cache_free(get_slab(size), ptr);
2360 else
2361 free_pages((unsigned long)ptr, get_order(size));
2365 * Journal_head storage management
2367 static struct kmem_cache *jbd2_journal_head_cache;
2368 #ifdef CONFIG_JBD2_DEBUG
2369 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
2370 #endif
2372 static int __init jbd2_journal_init_journal_head_cache(void)
2374 J_ASSERT(!jbd2_journal_head_cache);
2375 jbd2_journal_head_cache = kmem_cache_create("jbd2_journal_head",
2376 sizeof(struct journal_head),
2377 0, /* offset */
2378 SLAB_TEMPORARY | SLAB_TYPESAFE_BY_RCU,
2379 NULL); /* ctor */
2380 if (!jbd2_journal_head_cache) {
2381 printk(KERN_EMERG "JBD2: no memory for journal_head cache\n");
2382 return -ENOMEM;
2384 return 0;
2387 static void jbd2_journal_destroy_journal_head_cache(void)
2389 kmem_cache_destroy(jbd2_journal_head_cache);
2390 jbd2_journal_head_cache = NULL;
2394 * journal_head splicing and dicing
2396 static struct journal_head *journal_alloc_journal_head(void)
2398 struct journal_head *ret;
2400 #ifdef CONFIG_JBD2_DEBUG
2401 atomic_inc(&nr_journal_heads);
2402 #endif
2403 ret = kmem_cache_zalloc(jbd2_journal_head_cache, GFP_NOFS);
2404 if (!ret) {
2405 jbd_debug(1, "out of memory for journal_head\n");
2406 pr_notice_ratelimited("ENOMEM in %s, retrying.\n", __func__);
2407 ret = kmem_cache_zalloc(jbd2_journal_head_cache,
2408 GFP_NOFS | __GFP_NOFAIL);
2410 return ret;
2413 static void journal_free_journal_head(struct journal_head *jh)
2415 #ifdef CONFIG_JBD2_DEBUG
2416 atomic_dec(&nr_journal_heads);
2417 memset(jh, JBD2_POISON_FREE, sizeof(*jh));
2418 #endif
2419 kmem_cache_free(jbd2_journal_head_cache, jh);
2423 * A journal_head is attached to a buffer_head whenever JBD has an
2424 * interest in the buffer.
2426 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
2427 * is set. This bit is tested in core kernel code where we need to take
2428 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
2429 * there.
2431 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
2433 * When a buffer has its BH_JBD bit set it is immune from being released by
2434 * core kernel code, mainly via ->b_count.
2436 * A journal_head is detached from its buffer_head when the journal_head's
2437 * b_jcount reaches zero. Running transaction (b_transaction) and checkpoint
2438 * transaction (b_cp_transaction) hold their references to b_jcount.
2440 * Various places in the kernel want to attach a journal_head to a buffer_head
2441 * _before_ attaching the journal_head to a transaction. To protect the
2442 * journal_head in this situation, jbd2_journal_add_journal_head elevates the
2443 * journal_head's b_jcount refcount by one. The caller must call
2444 * jbd2_journal_put_journal_head() to undo this.
2446 * So the typical usage would be:
2448 * (Attach a journal_head if needed. Increments b_jcount)
2449 * struct journal_head *jh = jbd2_journal_add_journal_head(bh);
2450 * ...
2451 * (Get another reference for transaction)
2452 * jbd2_journal_grab_journal_head(bh);
2453 * jh->b_transaction = xxx;
2454 * (Put original reference)
2455 * jbd2_journal_put_journal_head(jh);
2459 * Give a buffer_head a journal_head.
2461 * May sleep.
2463 struct journal_head *jbd2_journal_add_journal_head(struct buffer_head *bh)
2465 struct journal_head *jh;
2466 struct journal_head *new_jh = NULL;
2468 repeat:
2469 if (!buffer_jbd(bh))
2470 new_jh = journal_alloc_journal_head();
2472 jbd_lock_bh_journal_head(bh);
2473 if (buffer_jbd(bh)) {
2474 jh = bh2jh(bh);
2475 } else {
2476 J_ASSERT_BH(bh,
2477 (atomic_read(&bh->b_count) > 0) ||
2478 (bh->b_page && bh->b_page->mapping));
2480 if (!new_jh) {
2481 jbd_unlock_bh_journal_head(bh);
2482 goto repeat;
2485 jh = new_jh;
2486 new_jh = NULL; /* We consumed it */
2487 set_buffer_jbd(bh);
2488 bh->b_private = jh;
2489 jh->b_bh = bh;
2490 get_bh(bh);
2491 BUFFER_TRACE(bh, "added journal_head");
2493 jh->b_jcount++;
2494 jbd_unlock_bh_journal_head(bh);
2495 if (new_jh)
2496 journal_free_journal_head(new_jh);
2497 return bh->b_private;
2501 * Grab a ref against this buffer_head's journal_head. If it ended up not
2502 * having a journal_head, return NULL
2504 struct journal_head *jbd2_journal_grab_journal_head(struct buffer_head *bh)
2506 struct journal_head *jh = NULL;
2508 jbd_lock_bh_journal_head(bh);
2509 if (buffer_jbd(bh)) {
2510 jh = bh2jh(bh);
2511 jh->b_jcount++;
2513 jbd_unlock_bh_journal_head(bh);
2514 return jh;
2517 static void __journal_remove_journal_head(struct buffer_head *bh)
2519 struct journal_head *jh = bh2jh(bh);
2521 J_ASSERT_JH(jh, jh->b_jcount >= 0);
2522 J_ASSERT_JH(jh, jh->b_transaction == NULL);
2523 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2524 J_ASSERT_JH(jh, jh->b_cp_transaction == NULL);
2525 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
2526 J_ASSERT_BH(bh, buffer_jbd(bh));
2527 J_ASSERT_BH(bh, jh2bh(jh) == bh);
2528 BUFFER_TRACE(bh, "remove journal_head");
2529 if (jh->b_frozen_data) {
2530 printk(KERN_WARNING "%s: freeing b_frozen_data\n", __func__);
2531 jbd2_free(jh->b_frozen_data, bh->b_size);
2533 if (jh->b_committed_data) {
2534 printk(KERN_WARNING "%s: freeing b_committed_data\n", __func__);
2535 jbd2_free(jh->b_committed_data, bh->b_size);
2537 bh->b_private = NULL;
2538 jh->b_bh = NULL; /* debug, really */
2539 clear_buffer_jbd(bh);
2540 journal_free_journal_head(jh);
2544 * Drop a reference on the passed journal_head. If it fell to zero then
2545 * release the journal_head from the buffer_head.
2547 void jbd2_journal_put_journal_head(struct journal_head *jh)
2549 struct buffer_head *bh = jh2bh(jh);
2551 jbd_lock_bh_journal_head(bh);
2552 J_ASSERT_JH(jh, jh->b_jcount > 0);
2553 --jh->b_jcount;
2554 if (!jh->b_jcount) {
2555 __journal_remove_journal_head(bh);
2556 jbd_unlock_bh_journal_head(bh);
2557 __brelse(bh);
2558 } else
2559 jbd_unlock_bh_journal_head(bh);
2563 * Initialize jbd inode head
2565 void jbd2_journal_init_jbd_inode(struct jbd2_inode *jinode, struct inode *inode)
2567 jinode->i_transaction = NULL;
2568 jinode->i_next_transaction = NULL;
2569 jinode->i_vfs_inode = inode;
2570 jinode->i_flags = 0;
2571 jinode->i_dirty_start = 0;
2572 jinode->i_dirty_end = 0;
2573 INIT_LIST_HEAD(&jinode->i_list);
2577 * Function to be called before we start removing inode from memory (i.e.,
2578 * clear_inode() is a fine place to be called from). It removes inode from
2579 * transaction's lists.
2581 void jbd2_journal_release_jbd_inode(journal_t *journal,
2582 struct jbd2_inode *jinode)
2584 if (!journal)
2585 return;
2586 restart:
2587 spin_lock(&journal->j_list_lock);
2588 /* Is commit writing out inode - we have to wait */
2589 if (jinode->i_flags & JI_COMMIT_RUNNING) {
2590 wait_queue_head_t *wq;
2591 DEFINE_WAIT_BIT(wait, &jinode->i_flags, __JI_COMMIT_RUNNING);
2592 wq = bit_waitqueue(&jinode->i_flags, __JI_COMMIT_RUNNING);
2593 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2594 spin_unlock(&journal->j_list_lock);
2595 schedule();
2596 finish_wait(wq, &wait.wq_entry);
2597 goto restart;
2600 if (jinode->i_transaction) {
2601 list_del(&jinode->i_list);
2602 jinode->i_transaction = NULL;
2604 spin_unlock(&journal->j_list_lock);
2608 #ifdef CONFIG_PROC_FS
2610 #define JBD2_STATS_PROC_NAME "fs/jbd2"
2612 static void __init jbd2_create_jbd_stats_proc_entry(void)
2614 proc_jbd2_stats = proc_mkdir(JBD2_STATS_PROC_NAME, NULL);
2617 static void __exit jbd2_remove_jbd_stats_proc_entry(void)
2619 if (proc_jbd2_stats)
2620 remove_proc_entry(JBD2_STATS_PROC_NAME, NULL);
2623 #else
2625 #define jbd2_create_jbd_stats_proc_entry() do {} while (0)
2626 #define jbd2_remove_jbd_stats_proc_entry() do {} while (0)
2628 #endif
2630 struct kmem_cache *jbd2_handle_cache, *jbd2_inode_cache;
2632 static int __init jbd2_journal_init_inode_cache(void)
2634 J_ASSERT(!jbd2_inode_cache);
2635 jbd2_inode_cache = KMEM_CACHE(jbd2_inode, 0);
2636 if (!jbd2_inode_cache) {
2637 pr_emerg("JBD2: failed to create inode cache\n");
2638 return -ENOMEM;
2640 return 0;
2643 static int __init jbd2_journal_init_handle_cache(void)
2645 J_ASSERT(!jbd2_handle_cache);
2646 jbd2_handle_cache = KMEM_CACHE(jbd2_journal_handle, SLAB_TEMPORARY);
2647 if (!jbd2_handle_cache) {
2648 printk(KERN_EMERG "JBD2: failed to create handle cache\n");
2649 return -ENOMEM;
2651 return 0;
2654 static void jbd2_journal_destroy_inode_cache(void)
2656 kmem_cache_destroy(jbd2_inode_cache);
2657 jbd2_inode_cache = NULL;
2660 static void jbd2_journal_destroy_handle_cache(void)
2662 kmem_cache_destroy(jbd2_handle_cache);
2663 jbd2_handle_cache = NULL;
2667 * Module startup and shutdown
2670 static int __init journal_init_caches(void)
2672 int ret;
2674 ret = jbd2_journal_init_revoke_record_cache();
2675 if (ret == 0)
2676 ret = jbd2_journal_init_revoke_table_cache();
2677 if (ret == 0)
2678 ret = jbd2_journal_init_journal_head_cache();
2679 if (ret == 0)
2680 ret = jbd2_journal_init_handle_cache();
2681 if (ret == 0)
2682 ret = jbd2_journal_init_inode_cache();
2683 if (ret == 0)
2684 ret = jbd2_journal_init_transaction_cache();
2685 return ret;
2688 static void jbd2_journal_destroy_caches(void)
2690 jbd2_journal_destroy_revoke_record_cache();
2691 jbd2_journal_destroy_revoke_table_cache();
2692 jbd2_journal_destroy_journal_head_cache();
2693 jbd2_journal_destroy_handle_cache();
2694 jbd2_journal_destroy_inode_cache();
2695 jbd2_journal_destroy_transaction_cache();
2696 jbd2_journal_destroy_slabs();
2699 static int __init journal_init(void)
2701 int ret;
2703 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
2705 ret = journal_init_caches();
2706 if (ret == 0) {
2707 jbd2_create_jbd_stats_proc_entry();
2708 } else {
2709 jbd2_journal_destroy_caches();
2711 return ret;
2714 static void __exit journal_exit(void)
2716 #ifdef CONFIG_JBD2_DEBUG
2717 int n = atomic_read(&nr_journal_heads);
2718 if (n)
2719 printk(KERN_ERR "JBD2: leaked %d journal_heads!\n", n);
2720 #endif
2721 jbd2_remove_jbd_stats_proc_entry();
2722 jbd2_journal_destroy_caches();
2725 MODULE_LICENSE("GPL");
2726 module_init(journal_init);
2727 module_exit(journal_exit);