1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
6 * Defines functions of journalling api
8 * Copyright (C) 2003, 2004 Oracle. All rights reserved.
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public
12 * License as published by the Free Software Foundation; either
13 * version 2 of the License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public
21 * License along with this program; if not, write to the
22 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
23 * Boston, MA 021110-1307, USA.
27 #include <linux/types.h>
28 #include <linux/slab.h>
29 #include <linux/highmem.h>
30 #include <linux/kthread.h>
32 #define MLOG_MASK_PREFIX ML_JOURNAL
33 #include <cluster/masklog.h>
39 #include "extent_map.h"
40 #include "heartbeat.h"
43 #include "localalloc.h"
50 #include "buffer_head_io.h"
52 DEFINE_SPINLOCK(trans_inc_lock
);
54 static int ocfs2_force_read_journal(struct inode
*inode
);
55 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
57 static int __ocfs2_recovery_thread(void *arg
);
58 static int ocfs2_commit_cache(struct ocfs2_super
*osb
);
59 static int ocfs2_wait_on_mount(struct ocfs2_super
*osb
);
60 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
62 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
64 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
66 static int ocfs2_commit_thread(void *arg
);
68 static int ocfs2_commit_cache(struct ocfs2_super
*osb
)
73 struct ocfs2_journal
*journal
= NULL
;
77 journal
= osb
->journal
;
79 /* Flush all pending commits and checkpoint the journal. */
80 down_write(&journal
->j_trans_barrier
);
82 if (atomic_read(&journal
->j_num_trans
) == 0) {
83 up_write(&journal
->j_trans_barrier
);
84 mlog(0, "No transactions for me to flush!\n");
88 journal_lock_updates(journal
->j_journal
);
89 status
= journal_flush(journal
->j_journal
);
90 journal_unlock_updates(journal
->j_journal
);
92 up_write(&journal
->j_trans_barrier
);
97 old_id
= ocfs2_inc_trans_id(journal
);
99 flushed
= atomic_read(&journal
->j_num_trans
);
100 atomic_set(&journal
->j_num_trans
, 0);
101 up_write(&journal
->j_trans_barrier
);
103 mlog(0, "commit_thread: flushed transaction %lu (%u handles)\n",
104 journal
->j_trans_id
, flushed
);
106 ocfs2_kick_vote_thread(osb
);
107 wake_up(&journal
->j_checkpointed
);
113 /* pass it NULL and it will allocate a new handle object for you. If
114 * you pass it a handle however, it may still return error, in which
115 * case it has free'd the passed handle for you. */
116 handle_t
*ocfs2_start_trans(struct ocfs2_super
*osb
, int max_buffs
)
118 journal_t
*journal
= osb
->journal
->j_journal
;
121 BUG_ON(!osb
|| !osb
->journal
->j_journal
);
123 if (ocfs2_is_hard_readonly(osb
))
124 return ERR_PTR(-EROFS
);
126 BUG_ON(osb
->journal
->j_state
== OCFS2_JOURNAL_FREE
);
127 BUG_ON(max_buffs
<= 0);
129 /* JBD might support this, but our journalling code doesn't yet. */
130 if (journal_current_handle()) {
131 mlog(ML_ERROR
, "Recursive transaction attempted!\n");
135 down_read(&osb
->journal
->j_trans_barrier
);
137 handle
= journal_start(journal
, max_buffs
);
138 if (IS_ERR(handle
)) {
139 up_read(&osb
->journal
->j_trans_barrier
);
141 mlog_errno(PTR_ERR(handle
));
143 if (is_journal_aborted(journal
)) {
144 ocfs2_abort(osb
->sb
, "Detected aborted journal");
145 handle
= ERR_PTR(-EROFS
);
148 if (!ocfs2_mount_local(osb
))
149 atomic_inc(&(osb
->journal
->j_num_trans
));
155 int ocfs2_commit_trans(struct ocfs2_super
*osb
,
159 struct ocfs2_journal
*journal
= osb
->journal
;
163 ret
= journal_stop(handle
);
167 up_read(&journal
->j_trans_barrier
);
173 * 'nblocks' is what you want to add to the current
174 * transaction. extend_trans will either extend the current handle by
175 * nblocks, or commit it and start a new one with nblocks credits.
177 * WARNING: This will not release any semaphores or disk locks taken
178 * during the transaction, so make sure they were taken *before*
179 * start_trans or we'll have ordering deadlocks.
181 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
182 * good because transaction ids haven't yet been recorded on the
183 * cluster locks associated with this handle.
185 int ocfs2_extend_trans(handle_t
*handle
, int nblocks
)
194 mlog(0, "Trying to extend transaction by %d blocks\n", nblocks
);
196 status
= journal_extend(handle
, nblocks
);
203 mlog(0, "journal_extend failed, trying journal_restart\n");
204 status
= journal_restart(handle
, nblocks
);
218 int ocfs2_journal_access(handle_t
*handle
,
220 struct buffer_head
*bh
,
229 mlog_entry("bh->b_blocknr=%llu, type=%d (\"%s\"), bh->b_size = %zu\n",
230 (unsigned long long)bh
->b_blocknr
, type
,
231 (type
== OCFS2_JOURNAL_ACCESS_CREATE
) ?
232 "OCFS2_JOURNAL_ACCESS_CREATE" :
233 "OCFS2_JOURNAL_ACCESS_WRITE",
236 /* we can safely remove this assertion after testing. */
237 if (!buffer_uptodate(bh
)) {
238 mlog(ML_ERROR
, "giving me a buffer that's not uptodate!\n");
239 mlog(ML_ERROR
, "b_blocknr=%llu\n",
240 (unsigned long long)bh
->b_blocknr
);
244 /* Set the current transaction information on the inode so
245 * that the locking code knows whether it can drop it's locks
246 * on this inode or not. We're protected from the commit
247 * thread updating the current transaction id until
248 * ocfs2_commit_trans() because ocfs2_start_trans() took
249 * j_trans_barrier for us. */
250 ocfs2_set_inode_lock_trans(OCFS2_SB(inode
->i_sb
)->journal
, inode
);
252 mutex_lock(&OCFS2_I(inode
)->ip_io_mutex
);
254 case OCFS2_JOURNAL_ACCESS_CREATE
:
255 case OCFS2_JOURNAL_ACCESS_WRITE
:
256 status
= journal_get_write_access(handle
, bh
);
259 case OCFS2_JOURNAL_ACCESS_UNDO
:
260 status
= journal_get_undo_access(handle
, bh
);
265 mlog(ML_ERROR
, "Uknown access type!\n");
267 mutex_unlock(&OCFS2_I(inode
)->ip_io_mutex
);
270 mlog(ML_ERROR
, "Error %d getting %d access to buffer!\n",
277 int ocfs2_journal_dirty(handle_t
*handle
,
278 struct buffer_head
*bh
)
282 mlog_entry("(bh->b_blocknr=%llu)\n",
283 (unsigned long long)bh
->b_blocknr
);
285 status
= journal_dirty_metadata(handle
, bh
);
287 mlog(ML_ERROR
, "Could not dirty metadata buffer. "
288 "(bh->b_blocknr=%llu)\n",
289 (unsigned long long)bh
->b_blocknr
);
295 int ocfs2_journal_dirty_data(handle_t
*handle
,
296 struct buffer_head
*bh
)
298 int err
= journal_dirty_data(handle
, bh
);
301 /* TODO: When we can handle it, abort the handle and go RO on
307 #define OCFS2_DEFAULT_COMMIT_INTERVAL (HZ * 5)
309 void ocfs2_set_journal_params(struct ocfs2_super
*osb
)
311 journal_t
*journal
= osb
->journal
->j_journal
;
313 spin_lock(&journal
->j_state_lock
);
314 journal
->j_commit_interval
= OCFS2_DEFAULT_COMMIT_INTERVAL
;
315 if (osb
->s_mount_opt
& OCFS2_MOUNT_BARRIER
)
316 journal
->j_flags
|= JFS_BARRIER
;
318 journal
->j_flags
&= ~JFS_BARRIER
;
319 spin_unlock(&journal
->j_state_lock
);
322 int ocfs2_journal_init(struct ocfs2_journal
*journal
, int *dirty
)
325 struct inode
*inode
= NULL
; /* the journal inode */
326 journal_t
*j_journal
= NULL
;
327 struct ocfs2_dinode
*di
= NULL
;
328 struct buffer_head
*bh
= NULL
;
329 struct ocfs2_super
*osb
;
336 osb
= journal
->j_osb
;
338 /* already have the inode for our journal */
339 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
346 if (is_bad_inode(inode
)) {
347 mlog(ML_ERROR
, "access error (bad inode)\n");
354 SET_INODE_JOURNAL(inode
);
355 OCFS2_I(inode
)->ip_open_count
++;
357 /* Skip recovery waits here - journal inode metadata never
358 * changes in a live cluster so it can be considered an
359 * exception to the rule. */
360 status
= ocfs2_meta_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
362 if (status
!= -ERESTARTSYS
)
363 mlog(ML_ERROR
, "Could not get lock on journal!\n");
368 di
= (struct ocfs2_dinode
*)bh
->b_data
;
370 if (inode
->i_size
< OCFS2_MIN_JOURNAL_SIZE
) {
371 mlog(ML_ERROR
, "Journal file size (%lld) is too small!\n",
377 mlog(0, "inode->i_size = %lld\n", inode
->i_size
);
378 mlog(0, "inode->i_blocks = %llu\n",
379 (unsigned long long)inode
->i_blocks
);
380 mlog(0, "inode->ip_clusters = %u\n", OCFS2_I(inode
)->ip_clusters
);
382 /* call the kernels journal init function now */
383 j_journal
= journal_init_inode(inode
);
384 if (j_journal
== NULL
) {
385 mlog(ML_ERROR
, "Linux journal layer error\n");
390 mlog(0, "Returned from journal_init_inode\n");
391 mlog(0, "j_journal->j_maxlen = %u\n", j_journal
->j_maxlen
);
393 *dirty
= (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
394 OCFS2_JOURNAL_DIRTY_FL
);
396 journal
->j_journal
= j_journal
;
397 journal
->j_inode
= inode
;
400 ocfs2_set_journal_params(osb
);
402 journal
->j_state
= OCFS2_JOURNAL_LOADED
;
408 ocfs2_meta_unlock(inode
, 1);
412 OCFS2_I(inode
)->ip_open_count
--;
421 static int ocfs2_journal_toggle_dirty(struct ocfs2_super
*osb
,
426 struct ocfs2_journal
*journal
= osb
->journal
;
427 struct buffer_head
*bh
= journal
->j_bh
;
428 struct ocfs2_dinode
*fe
;
432 fe
= (struct ocfs2_dinode
*)bh
->b_data
;
433 if (!OCFS2_IS_VALID_DINODE(fe
)) {
434 /* This is called from startup/shutdown which will
435 * handle the errors in a specific manner, so no need
436 * to call ocfs2_error() here. */
437 mlog(ML_ERROR
, "Journal dinode %llu has invalid "
438 "signature: %.*s", (unsigned long long)fe
->i_blkno
, 7,
444 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
446 flags
|= OCFS2_JOURNAL_DIRTY_FL
;
448 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
449 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
451 status
= ocfs2_write_block(osb
, bh
, journal
->j_inode
);
461 * If the journal has been kmalloc'd it needs to be freed after this
464 void ocfs2_journal_shutdown(struct ocfs2_super
*osb
)
466 struct ocfs2_journal
*journal
= NULL
;
468 struct inode
*inode
= NULL
;
469 int num_running_trans
= 0;
475 journal
= osb
->journal
;
479 inode
= journal
->j_inode
;
481 if (journal
->j_state
!= OCFS2_JOURNAL_LOADED
)
484 /* need to inc inode use count as journal_destroy will iput. */
488 num_running_trans
= atomic_read(&(osb
->journal
->j_num_trans
));
489 if (num_running_trans
> 0)
490 mlog(0, "Shutting down journal: must wait on %d "
491 "running transactions!\n",
494 /* Do a commit_cache here. It will flush our journal, *and*
495 * release any locks that are still held.
496 * set the SHUTDOWN flag and release the trans lock.
497 * the commit thread will take the trans lock for us below. */
498 journal
->j_state
= OCFS2_JOURNAL_IN_SHUTDOWN
;
500 /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
501 * drop the trans_lock (which we want to hold until we
502 * completely destroy the journal. */
503 if (osb
->commit_task
) {
504 /* Wait for the commit thread */
505 mlog(0, "Waiting for ocfs2commit to exit....\n");
506 kthread_stop(osb
->commit_task
);
507 osb
->commit_task
= NULL
;
510 BUG_ON(atomic_read(&(osb
->journal
->j_num_trans
)) != 0);
512 if (ocfs2_mount_local(osb
)) {
513 journal_lock_updates(journal
->j_journal
);
514 status
= journal_flush(journal
->j_journal
);
515 journal_unlock_updates(journal
->j_journal
);
522 * Do not toggle if flush was unsuccessful otherwise
523 * will leave dirty metadata in a "clean" journal
525 status
= ocfs2_journal_toggle_dirty(osb
, 0);
530 /* Shutdown the kernel journal system */
531 journal_destroy(journal
->j_journal
);
533 OCFS2_I(inode
)->ip_open_count
--;
535 /* unlock our journal */
536 ocfs2_meta_unlock(inode
, 1);
538 brelse(journal
->j_bh
);
539 journal
->j_bh
= NULL
;
541 journal
->j_state
= OCFS2_JOURNAL_FREE
;
543 // up_write(&journal->j_trans_barrier);
550 static void ocfs2_clear_journal_error(struct super_block
*sb
,
556 olderr
= journal_errno(journal
);
558 mlog(ML_ERROR
, "File system error %d recorded in "
559 "journal %u.\n", olderr
, slot
);
560 mlog(ML_ERROR
, "File system on device %s needs checking.\n",
563 journal_ack_err(journal
);
564 journal_clear_err(journal
);
568 int ocfs2_journal_load(struct ocfs2_journal
*journal
, int local
)
571 struct ocfs2_super
*osb
;
578 osb
= journal
->j_osb
;
580 status
= journal_load(journal
->j_journal
);
582 mlog(ML_ERROR
, "Failed to load journal!\n");
586 ocfs2_clear_journal_error(osb
->sb
, journal
->j_journal
, osb
->slot_num
);
588 status
= ocfs2_journal_toggle_dirty(osb
, 1);
594 /* Launch the commit thread */
596 osb
->commit_task
= kthread_run(ocfs2_commit_thread
, osb
,
598 if (IS_ERR(osb
->commit_task
)) {
599 status
= PTR_ERR(osb
->commit_task
);
600 osb
->commit_task
= NULL
;
601 mlog(ML_ERROR
, "unable to launch ocfs2commit thread, "
606 osb
->commit_task
= NULL
;
614 /* 'full' flag tells us whether we clear out all blocks or if we just
615 * mark the journal clean */
616 int ocfs2_journal_wipe(struct ocfs2_journal
*journal
, int full
)
624 status
= journal_wipe(journal
->j_journal
, full
);
630 status
= ocfs2_journal_toggle_dirty(journal
->j_osb
, 0);
640 * JBD Might read a cached version of another nodes journal file. We
641 * don't want this as this file changes often and we get no
642 * notification on those changes. The only way to be sure that we've
643 * got the most up to date version of those blocks then is to force
644 * read them off disk. Just searching through the buffer cache won't
645 * work as there may be pages backing this file which are still marked
646 * up to date. We know things can't change on this file underneath us
647 * as we have the lock by now :)
649 static int ocfs2_force_read_journal(struct inode
*inode
)
653 u64 v_blkno
, p_blkno
;
654 #define CONCURRENT_JOURNAL_FILL 32
655 struct buffer_head
*bhs
[CONCURRENT_JOURNAL_FILL
];
659 BUG_ON(inode
->i_blocks
!=
660 ocfs2_align_bytes_to_sectors(i_size_read(inode
)));
662 memset(bhs
, 0, sizeof(struct buffer_head
*) * CONCURRENT_JOURNAL_FILL
);
664 mlog(0, "Force reading %llu blocks\n",
665 (unsigned long long)(inode
->i_blocks
>>
666 (inode
->i_sb
->s_blocksize_bits
- 9)));
670 (inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9))) {
672 status
= ocfs2_extent_map_get_blocks(inode
, v_blkno
,
680 if (p_blocks
> CONCURRENT_JOURNAL_FILL
)
681 p_blocks
= CONCURRENT_JOURNAL_FILL
;
683 /* We are reading journal data which should not
684 * be put in the uptodate cache */
685 status
= ocfs2_read_blocks(OCFS2_SB(inode
->i_sb
),
686 p_blkno
, p_blocks
, bhs
, 0,
693 for(i
= 0; i
< p_blocks
; i
++) {
702 for(i
= 0; i
< CONCURRENT_JOURNAL_FILL
; i
++)
709 struct ocfs2_la_recovery_item
{
710 struct list_head lri_list
;
712 struct ocfs2_dinode
*lri_la_dinode
;
713 struct ocfs2_dinode
*lri_tl_dinode
;
716 /* Does the second half of the recovery process. By this point, the
717 * node is marked clean and can actually be considered recovered,
718 * hence it's no longer in the recovery map, but there's still some
719 * cleanup we can do which shouldn't happen within the recovery thread
720 * as locking in that context becomes very difficult if we are to take
721 * recovering nodes into account.
723 * NOTE: This function can and will sleep on recovery of other nodes
724 * during cluster locking, just like any other ocfs2 process.
726 void ocfs2_complete_recovery(struct work_struct
*work
)
729 struct ocfs2_journal
*journal
=
730 container_of(work
, struct ocfs2_journal
, j_recovery_work
);
731 struct ocfs2_super
*osb
= journal
->j_osb
;
732 struct ocfs2_dinode
*la_dinode
, *tl_dinode
;
733 struct ocfs2_la_recovery_item
*item
;
734 struct list_head
*p
, *n
;
735 LIST_HEAD(tmp_la_list
);
739 mlog(0, "completing recovery from keventd\n");
741 spin_lock(&journal
->j_lock
);
742 list_splice_init(&journal
->j_la_cleanups
, &tmp_la_list
);
743 spin_unlock(&journal
->j_lock
);
745 list_for_each_safe(p
, n
, &tmp_la_list
) {
746 item
= list_entry(p
, struct ocfs2_la_recovery_item
, lri_list
);
747 list_del_init(&item
->lri_list
);
749 mlog(0, "Complete recovery for slot %d\n", item
->lri_slot
);
751 la_dinode
= item
->lri_la_dinode
;
753 mlog(0, "Clean up local alloc %llu\n",
754 (unsigned long long)la_dinode
->i_blkno
);
756 ret
= ocfs2_complete_local_alloc_recovery(osb
,
764 tl_dinode
= item
->lri_tl_dinode
;
766 mlog(0, "Clean up truncate log %llu\n",
767 (unsigned long long)tl_dinode
->i_blkno
);
769 ret
= ocfs2_complete_truncate_log_recovery(osb
,
777 ret
= ocfs2_recover_orphans(osb
, item
->lri_slot
);
784 mlog(0, "Recovery completion\n");
788 /* NOTE: This function always eats your references to la_dinode and
789 * tl_dinode, either manually on error, or by passing them to
790 * ocfs2_complete_recovery */
791 static void ocfs2_queue_recovery_completion(struct ocfs2_journal
*journal
,
793 struct ocfs2_dinode
*la_dinode
,
794 struct ocfs2_dinode
*tl_dinode
)
796 struct ocfs2_la_recovery_item
*item
;
798 item
= kmalloc(sizeof(struct ocfs2_la_recovery_item
), GFP_NOFS
);
800 /* Though we wish to avoid it, we are in fact safe in
801 * skipping local alloc cleanup as fsck.ocfs2 is more
802 * than capable of reclaiming unused space. */
813 INIT_LIST_HEAD(&item
->lri_list
);
814 item
->lri_la_dinode
= la_dinode
;
815 item
->lri_slot
= slot_num
;
816 item
->lri_tl_dinode
= tl_dinode
;
818 spin_lock(&journal
->j_lock
);
819 list_add_tail(&item
->lri_list
, &journal
->j_la_cleanups
);
820 queue_work(ocfs2_wq
, &journal
->j_recovery_work
);
821 spin_unlock(&journal
->j_lock
);
824 /* Called by the mount code to queue recovery the last part of
825 * recovery for it's own slot. */
826 void ocfs2_complete_mount_recovery(struct ocfs2_super
*osb
)
828 struct ocfs2_journal
*journal
= osb
->journal
;
831 /* No need to queue up our truncate_log as regular
832 * cleanup will catch that. */
833 ocfs2_queue_recovery_completion(journal
,
835 osb
->local_alloc_copy
,
837 ocfs2_schedule_truncate_log_flush(osb
, 0);
839 osb
->local_alloc_copy
= NULL
;
844 static int __ocfs2_recovery_thread(void *arg
)
846 int status
, node_num
;
847 struct ocfs2_super
*osb
= arg
;
851 status
= ocfs2_wait_on_mount(osb
);
857 status
= ocfs2_super_lock(osb
, 1);
863 while(!ocfs2_node_map_is_empty(osb
, &osb
->recovery_map
)) {
864 node_num
= ocfs2_node_map_first_set_bit(osb
,
866 if (node_num
== O2NM_INVALID_NODE_NUM
) {
867 mlog(0, "Out of nodes to recover.\n");
871 status
= ocfs2_recover_node(osb
, node_num
);
874 "Error %d recovering node %d on device (%u,%u)!\n",
876 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
877 mlog(ML_ERROR
, "Volume requires unmount.\n");
881 ocfs2_recovery_map_clear(osb
, node_num
);
883 ocfs2_super_unlock(osb
, 1);
885 /* We always run recovery on our own orphan dir - the dead
886 * node(s) may have voted "no" on an inode delete earlier. A
887 * revote is therefore required. */
888 ocfs2_queue_recovery_completion(osb
->journal
, osb
->slot_num
, NULL
,
892 mutex_lock(&osb
->recovery_lock
);
894 !ocfs2_node_map_is_empty(osb
, &osb
->recovery_map
)) {
895 mutex_unlock(&osb
->recovery_lock
);
899 osb
->recovery_thread_task
= NULL
;
900 mb(); /* sync with ocfs2_recovery_thread_running */
901 wake_up(&osb
->recovery_event
);
903 mutex_unlock(&osb
->recovery_lock
);
906 /* no one is callint kthread_stop() for us so the kthread() api
907 * requires that we call do_exit(). And it isn't exported, but
908 * complete_and_exit() seems to be a minimal wrapper around it. */
909 complete_and_exit(NULL
, status
);
913 void ocfs2_recovery_thread(struct ocfs2_super
*osb
, int node_num
)
915 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
916 node_num
, osb
->node_num
);
918 mutex_lock(&osb
->recovery_lock
);
919 if (osb
->disable_recovery
)
922 /* People waiting on recovery will wait on
923 * the recovery map to empty. */
924 if (!ocfs2_recovery_map_set(osb
, node_num
))
925 mlog(0, "node %d already be in recovery.\n", node_num
);
927 mlog(0, "starting recovery thread...\n");
929 if (osb
->recovery_thread_task
)
932 osb
->recovery_thread_task
= kthread_run(__ocfs2_recovery_thread
, osb
,
934 if (IS_ERR(osb
->recovery_thread_task
)) {
935 mlog_errno((int)PTR_ERR(osb
->recovery_thread_task
));
936 osb
->recovery_thread_task
= NULL
;
940 mutex_unlock(&osb
->recovery_lock
);
941 wake_up(&osb
->recovery_event
);
946 /* Does the actual journal replay and marks the journal inode as
947 * clean. Will only replay if the journal inode is marked dirty. */
948 static int ocfs2_replay_journal(struct ocfs2_super
*osb
,
955 struct inode
*inode
= NULL
;
956 struct ocfs2_dinode
*fe
;
957 journal_t
*journal
= NULL
;
958 struct buffer_head
*bh
= NULL
;
960 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
967 if (is_bad_inode(inode
)) {
974 SET_INODE_JOURNAL(inode
);
976 status
= ocfs2_meta_lock_full(inode
, &bh
, 1, OCFS2_META_LOCK_RECOVERY
);
978 mlog(0, "status returned from ocfs2_meta_lock=%d\n", status
);
979 if (status
!= -ERESTARTSYS
)
980 mlog(ML_ERROR
, "Could not lock journal!\n");
985 fe
= (struct ocfs2_dinode
*) bh
->b_data
;
987 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
989 if (!(flags
& OCFS2_JOURNAL_DIRTY_FL
)) {
990 mlog(0, "No recovery required for node %d\n", node_num
);
994 mlog(ML_NOTICE
, "Recovering node %d from slot %d on device (%u,%u)\n",
996 MAJOR(osb
->sb
->s_dev
), MINOR(osb
->sb
->s_dev
));
998 OCFS2_I(inode
)->ip_clusters
= le32_to_cpu(fe
->i_clusters
);
1000 status
= ocfs2_force_read_journal(inode
);
1006 mlog(0, "calling journal_init_inode\n");
1007 journal
= journal_init_inode(inode
);
1008 if (journal
== NULL
) {
1009 mlog(ML_ERROR
, "Linux journal layer error\n");
1014 status
= journal_load(journal
);
1019 journal_destroy(journal
);
1023 ocfs2_clear_journal_error(osb
->sb
, journal
, slot_num
);
1025 /* wipe the journal */
1026 mlog(0, "flushing the journal.\n");
1027 journal_lock_updates(journal
);
1028 status
= journal_flush(journal
);
1029 journal_unlock_updates(journal
);
1033 /* This will mark the node clean */
1034 flags
= le32_to_cpu(fe
->id1
.journal1
.ij_flags
);
1035 flags
&= ~OCFS2_JOURNAL_DIRTY_FL
;
1036 fe
->id1
.journal1
.ij_flags
= cpu_to_le32(flags
);
1038 status
= ocfs2_write_block(osb
, bh
, inode
);
1045 journal_destroy(journal
);
1048 /* drop the lock on this nodes journal */
1050 ocfs2_meta_unlock(inode
, 1);
1063 * Do the most important parts of node recovery:
1064 * - Replay it's journal
1065 * - Stamp a clean local allocator file
1066 * - Stamp a clean truncate log
1067 * - Mark the node clean
1069 * If this function completes without error, a node in OCFS2 can be
1070 * said to have been safely recovered. As a result, failure during the
1071 * second part of a nodes recovery process (local alloc recovery) is
1072 * far less concerning.
1074 static int ocfs2_recover_node(struct ocfs2_super
*osb
,
1079 struct ocfs2_slot_info
*si
= osb
->slot_info
;
1080 struct ocfs2_dinode
*la_copy
= NULL
;
1081 struct ocfs2_dinode
*tl_copy
= NULL
;
1083 mlog_entry("(node_num=%d, osb->node_num = %d)\n",
1084 node_num
, osb
->node_num
);
1086 mlog(0, "checking node %d\n", node_num
);
1088 /* Should not ever be called to recover ourselves -- in that
1089 * case we should've called ocfs2_journal_load instead. */
1090 BUG_ON(osb
->node_num
== node_num
);
1092 slot_num
= ocfs2_node_num_to_slot(si
, node_num
);
1093 if (slot_num
== OCFS2_INVALID_SLOT
) {
1095 mlog(0, "no slot for this node, so no recovery required.\n");
1099 mlog(0, "node %d was using slot %d\n", node_num
, slot_num
);
1101 status
= ocfs2_replay_journal(osb
, node_num
, slot_num
);
1107 /* Stamp a clean local alloc file AFTER recovering the journal... */
1108 status
= ocfs2_begin_local_alloc_recovery(osb
, slot_num
, &la_copy
);
1114 /* An error from begin_truncate_log_recovery is not
1115 * serious enough to warrant halting the rest of
1117 status
= ocfs2_begin_truncate_log_recovery(osb
, slot_num
, &tl_copy
);
1121 /* Likewise, this would be a strange but ultimately not so
1122 * harmful place to get an error... */
1123 ocfs2_clear_slot(si
, slot_num
);
1124 status
= ocfs2_update_disk_slots(osb
, si
);
1128 /* This will kfree the memory pointed to by la_copy and tl_copy */
1129 ocfs2_queue_recovery_completion(osb
->journal
, slot_num
, la_copy
,
1139 /* Test node liveness by trylocking his journal. If we get the lock,
1140 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1141 * still alive (we couldn't get the lock) and < 0 on error. */
1142 static int ocfs2_trylock_journal(struct ocfs2_super
*osb
,
1146 struct inode
*inode
= NULL
;
1148 inode
= ocfs2_get_system_file_inode(osb
, JOURNAL_SYSTEM_INODE
,
1150 if (inode
== NULL
) {
1151 mlog(ML_ERROR
, "access error\n");
1155 if (is_bad_inode(inode
)) {
1156 mlog(ML_ERROR
, "access error (bad inode)\n");
1162 SET_INODE_JOURNAL(inode
);
1164 flags
= OCFS2_META_LOCK_RECOVERY
| OCFS2_META_LOCK_NOQUEUE
;
1165 status
= ocfs2_meta_lock_full(inode
, NULL
, 1, flags
);
1167 if (status
!= -EAGAIN
)
1172 ocfs2_meta_unlock(inode
, 1);
1180 /* Call this underneath ocfs2_super_lock. It also assumes that the
1181 * slot info struct has been updated from disk. */
1182 int ocfs2_mark_dead_nodes(struct ocfs2_super
*osb
)
1184 int status
, i
, node_num
;
1185 struct ocfs2_slot_info
*si
= osb
->slot_info
;
1187 /* This is called with the super block cluster lock, so we
1188 * know that the slot map can't change underneath us. */
1190 spin_lock(&si
->si_lock
);
1191 for(i
= 0; i
< si
->si_num_slots
; i
++) {
1192 if (i
== osb
->slot_num
)
1194 if (ocfs2_is_empty_slot(si
, i
))
1197 node_num
= si
->si_global_node_nums
[i
];
1198 if (ocfs2_node_map_test_bit(osb
, &osb
->recovery_map
, node_num
))
1200 spin_unlock(&si
->si_lock
);
1202 /* Ok, we have a slot occupied by another node which
1203 * is not in the recovery map. We trylock his journal
1204 * file here to test if he's alive. */
1205 status
= ocfs2_trylock_journal(osb
, i
);
1207 /* Since we're called from mount, we know that
1208 * the recovery thread can't race us on
1209 * setting / checking the recovery bits. */
1210 ocfs2_recovery_thread(osb
, node_num
);
1211 } else if ((status
< 0) && (status
!= -EAGAIN
)) {
1216 spin_lock(&si
->si_lock
);
1218 spin_unlock(&si
->si_lock
);
1226 static int ocfs2_queue_orphans(struct ocfs2_super
*osb
,
1228 struct inode
**head
)
1231 struct inode
*orphan_dir_inode
= NULL
;
1233 unsigned long offset
, blk
, local
;
1234 struct buffer_head
*bh
= NULL
;
1235 struct ocfs2_dir_entry
*de
;
1236 struct super_block
*sb
= osb
->sb
;
1238 orphan_dir_inode
= ocfs2_get_system_file_inode(osb
,
1239 ORPHAN_DIR_SYSTEM_INODE
,
1241 if (!orphan_dir_inode
) {
1247 mutex_lock(&orphan_dir_inode
->i_mutex
);
1248 status
= ocfs2_meta_lock(orphan_dir_inode
, NULL
, 0);
1256 while(offset
< i_size_read(orphan_dir_inode
)) {
1257 blk
= offset
>> sb
->s_blocksize_bits
;
1259 bh
= ocfs2_bread(orphan_dir_inode
, blk
, &status
, 0);
1270 while(offset
< i_size_read(orphan_dir_inode
)
1271 && local
< sb
->s_blocksize
) {
1272 de
= (struct ocfs2_dir_entry
*) (bh
->b_data
+ local
);
1274 if (!ocfs2_check_dir_entry(orphan_dir_inode
,
1282 local
+= le16_to_cpu(de
->rec_len
);
1283 offset
+= le16_to_cpu(de
->rec_len
);
1285 /* I guess we silently fail on no inode? */
1286 if (!le64_to_cpu(de
->inode
))
1288 if (de
->file_type
> OCFS2_FT_MAX
) {
1290 "block %llu contains invalid de: "
1291 "inode = %llu, rec_len = %u, "
1292 "name_len = %u, file_type = %u, "
1294 (unsigned long long)bh
->b_blocknr
,
1295 (unsigned long long)le64_to_cpu(de
->inode
),
1296 le16_to_cpu(de
->rec_len
),
1303 if (de
->name_len
== 1 && !strncmp(".", de
->name
, 1))
1305 if (de
->name_len
== 2 && !strncmp("..", de
->name
, 2))
1308 iter
= ocfs2_iget(osb
, le64_to_cpu(de
->inode
),
1309 OCFS2_FI_FLAG_NOLOCK
);
1313 mlog(0, "queue orphan %llu\n",
1314 (unsigned long long)OCFS2_I(iter
)->ip_blkno
);
1315 /* No locking is required for the next_orphan
1316 * queue as there is only ever a single
1317 * process doing orphan recovery. */
1318 OCFS2_I(iter
)->ip_next_orphan
= *head
;
1325 ocfs2_meta_unlock(orphan_dir_inode
, 0);
1327 mutex_unlock(&orphan_dir_inode
->i_mutex
);
1328 iput(orphan_dir_inode
);
1332 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super
*osb
,
1337 spin_lock(&osb
->osb_lock
);
1338 ret
= !osb
->osb_orphan_wipes
[slot
];
1339 spin_unlock(&osb
->osb_lock
);
1343 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super
*osb
,
1346 spin_lock(&osb
->osb_lock
);
1347 /* Mark ourselves such that new processes in delete_inode()
1348 * know to quit early. */
1349 ocfs2_node_map_set_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
1350 while (osb
->osb_orphan_wipes
[slot
]) {
1351 /* If any processes are already in the middle of an
1352 * orphan wipe on this dir, then we need to wait for
1354 spin_unlock(&osb
->osb_lock
);
1355 wait_event_interruptible(osb
->osb_wipe_event
,
1356 ocfs2_orphan_recovery_can_continue(osb
, slot
));
1357 spin_lock(&osb
->osb_lock
);
1359 spin_unlock(&osb
->osb_lock
);
1362 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super
*osb
,
1365 ocfs2_node_map_clear_bit(osb
, &osb
->osb_recovering_orphan_dirs
, slot
);
1369 * Orphan recovery. Each mounted node has it's own orphan dir which we
1370 * must run during recovery. Our strategy here is to build a list of
1371 * the inodes in the orphan dir and iget/iput them. The VFS does
1372 * (most) of the rest of the work.
1374 * Orphan recovery can happen at any time, not just mount so we have a
1375 * couple of extra considerations.
1377 * - We grab as many inodes as we can under the orphan dir lock -
1378 * doing iget() outside the orphan dir risks getting a reference on
1380 * - We must be sure not to deadlock with other processes on the
1381 * system wanting to run delete_inode(). This can happen when they go
1382 * to lock the orphan dir and the orphan recovery process attempts to
1383 * iget() inside the orphan dir lock. This can be avoided by
1384 * advertising our state to ocfs2_delete_inode().
1386 static int ocfs2_recover_orphans(struct ocfs2_super
*osb
,
1390 struct inode
*inode
= NULL
;
1392 struct ocfs2_inode_info
*oi
;
1394 mlog(0, "Recover inodes from orphan dir in slot %d\n", slot
);
1396 ocfs2_mark_recovering_orphan_dir(osb
, slot
);
1397 ret
= ocfs2_queue_orphans(osb
, slot
, &inode
);
1398 ocfs2_clear_recovering_orphan_dir(osb
, slot
);
1400 /* Error here should be noted, but we want to continue with as
1401 * many queued inodes as we've got. */
1406 oi
= OCFS2_I(inode
);
1407 mlog(0, "iput orphan %llu\n", (unsigned long long)oi
->ip_blkno
);
1409 iter
= oi
->ip_next_orphan
;
1411 spin_lock(&oi
->ip_lock
);
1412 /* Delete voting may have set these on the assumption
1413 * that the other node would wipe them successfully.
1414 * If they are still in the node's orphan dir, we need
1415 * to reset that state. */
1416 oi
->ip_flags
&= ~(OCFS2_INODE_DELETED
|OCFS2_INODE_SKIP_DELETE
);
1418 /* Set the proper information to get us going into
1419 * ocfs2_delete_inode. */
1420 oi
->ip_flags
|= OCFS2_INODE_MAYBE_ORPHANED
;
1421 oi
->ip_orphaned_slot
= slot
;
1422 spin_unlock(&oi
->ip_lock
);
1432 static int ocfs2_wait_on_mount(struct ocfs2_super
*osb
)
1434 /* This check is good because ocfs2 will wait on our recovery
1435 * thread before changing it to something other than MOUNTED
1437 wait_event(osb
->osb_mount_event
,
1438 atomic_read(&osb
->vol_state
) == VOLUME_MOUNTED
||
1439 atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
);
1441 /* If there's an error on mount, then we may never get to the
1442 * MOUNTED flag, but this is set right before
1443 * dismount_volume() so we can trust it. */
1444 if (atomic_read(&osb
->vol_state
) == VOLUME_DISABLED
) {
1445 mlog(0, "mount error, exiting!\n");
1452 static int ocfs2_commit_thread(void *arg
)
1455 struct ocfs2_super
*osb
= arg
;
1456 struct ocfs2_journal
*journal
= osb
->journal
;
1458 /* we can trust j_num_trans here because _should_stop() is only set in
1459 * shutdown and nobody other than ourselves should be able to start
1460 * transactions. committing on shutdown might take a few iterations
1461 * as final transactions put deleted inodes on the list */
1462 while (!(kthread_should_stop() &&
1463 atomic_read(&journal
->j_num_trans
) == 0)) {
1465 wait_event_interruptible(osb
->checkpoint_event
,
1466 atomic_read(&journal
->j_num_trans
)
1467 || kthread_should_stop());
1469 status
= ocfs2_commit_cache(osb
);
1473 if (kthread_should_stop() && atomic_read(&journal
->j_num_trans
)){
1475 "commit_thread: %u transactions pending on "
1477 atomic_read(&journal
->j_num_trans
));
1484 /* Look for a dirty journal without taking any cluster locks. Used for
1485 * hard readonly access to determine whether the file system journals
1486 * require recovery. */
1487 int ocfs2_check_journals_nolocks(struct ocfs2_super
*osb
)
1491 struct buffer_head
*di_bh
;
1492 struct ocfs2_dinode
*di
;
1493 struct inode
*journal
= NULL
;
1495 for(slot
= 0; slot
< osb
->max_slots
; slot
++) {
1496 journal
= ocfs2_get_system_file_inode(osb
,
1497 JOURNAL_SYSTEM_INODE
,
1499 if (!journal
|| is_bad_inode(journal
)) {
1506 ret
= ocfs2_read_block(osb
, OCFS2_I(journal
)->ip_blkno
, &di_bh
,
1513 di
= (struct ocfs2_dinode
*) di_bh
->b_data
;
1515 if (le32_to_cpu(di
->id1
.journal1
.ij_flags
) &
1516 OCFS2_JOURNAL_DIRTY_FL
)