drm/nouveau/disp: fix dithering not being enabled on some eDP macbooks
[linux/fpc-iii.git] / kernel / sched.c
blob299f55ce4e1e6dc921c30d05f7c3ed478505d5ad
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <asm/mmu_context.h>
36 #include <linux/interrupt.h>
37 #include <linux/capability.h>
38 #include <linux/completion.h>
39 #include <linux/kernel_stat.h>
40 #include <linux/debug_locks.h>
41 #include <linux/perf_event.h>
42 #include <linux/security.h>
43 #include <linux/notifier.h>
44 #include <linux/profile.h>
45 #include <linux/freezer.h>
46 #include <linux/vmalloc.h>
47 #include <linux/blkdev.h>
48 #include <linux/delay.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/smp.h>
51 #include <linux/threads.h>
52 #include <linux/timer.h>
53 #include <linux/rcupdate.h>
54 #include <linux/cpu.h>
55 #include <linux/cpuset.h>
56 #include <linux/percpu.h>
57 #include <linux/proc_fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/stop_machine.h>
60 #include <linux/sysctl.h>
61 #include <linux/syscalls.h>
62 #include <linux/times.h>
63 #include <linux/tsacct_kern.h>
64 #include <linux/kprobes.h>
65 #include <linux/delayacct.h>
66 #include <linux/unistd.h>
67 #include <linux/pagemap.h>
68 #include <linux/hrtimer.h>
69 #include <linux/tick.h>
70 #include <linux/debugfs.h>
71 #include <linux/ctype.h>
72 #include <linux/ftrace.h>
73 #include <linux/slab.h>
74 #include <linux/init_task.h>
76 #include <asm/tlb.h>
77 #include <asm/irq_regs.h>
78 #include <asm/mutex.h>
79 #ifdef CONFIG_PARAVIRT
80 #include <asm/paravirt.h>
81 #endif
83 #include "sched_cpupri.h"
84 #include "workqueue_sched.h"
85 #include "sched_autogroup.h"
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/sched.h>
91 * Convert user-nice values [ -20 ... 0 ... 19 ]
92 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
93 * and back.
95 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
96 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
97 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
100 * 'User priority' is the nice value converted to something we
101 * can work with better when scaling various scheduler parameters,
102 * it's a [ 0 ... 39 ] range.
104 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
105 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
106 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
109 * Helpers for converting nanosecond timing to jiffy resolution
111 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
113 #define NICE_0_LOAD SCHED_LOAD_SCALE
114 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
117 * These are the 'tuning knobs' of the scheduler:
119 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
120 * Timeslices get refilled after they expire.
122 #define DEF_TIMESLICE (100 * HZ / 1000)
125 * single value that denotes runtime == period, ie unlimited time.
127 #define RUNTIME_INF ((u64)~0ULL)
129 static inline int rt_policy(int policy)
131 if (policy == SCHED_FIFO || policy == SCHED_RR)
132 return 1;
133 return 0;
136 static inline int task_has_rt_policy(struct task_struct *p)
138 return rt_policy(p->policy);
142 * This is the priority-queue data structure of the RT scheduling class:
144 struct rt_prio_array {
145 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
146 struct list_head queue[MAX_RT_PRIO];
149 struct rt_bandwidth {
150 /* nests inside the rq lock: */
151 raw_spinlock_t rt_runtime_lock;
152 ktime_t rt_period;
153 u64 rt_runtime;
154 struct hrtimer rt_period_timer;
157 static struct rt_bandwidth def_rt_bandwidth;
159 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
161 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
163 struct rt_bandwidth *rt_b =
164 container_of(timer, struct rt_bandwidth, rt_period_timer);
165 ktime_t now;
166 int overrun;
167 int idle = 0;
169 for (;;) {
170 now = hrtimer_cb_get_time(timer);
171 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
173 if (!overrun)
174 break;
176 idle = do_sched_rt_period_timer(rt_b, overrun);
179 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
182 static
183 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
185 rt_b->rt_period = ns_to_ktime(period);
186 rt_b->rt_runtime = runtime;
188 raw_spin_lock_init(&rt_b->rt_runtime_lock);
190 hrtimer_init(&rt_b->rt_period_timer,
191 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
192 rt_b->rt_period_timer.function = sched_rt_period_timer;
195 static inline int rt_bandwidth_enabled(void)
197 return sysctl_sched_rt_runtime >= 0;
200 static void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
202 unsigned long delta;
203 ktime_t soft, hard, now;
205 for (;;) {
206 if (hrtimer_active(period_timer))
207 break;
209 now = hrtimer_cb_get_time(period_timer);
210 hrtimer_forward(period_timer, now, period);
212 soft = hrtimer_get_softexpires(period_timer);
213 hard = hrtimer_get_expires(period_timer);
214 delta = ktime_to_ns(ktime_sub(hard, soft));
215 __hrtimer_start_range_ns(period_timer, soft, delta,
216 HRTIMER_MODE_ABS_PINNED, 0);
220 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
222 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
223 return;
225 if (hrtimer_active(&rt_b->rt_period_timer))
226 return;
228 raw_spin_lock(&rt_b->rt_runtime_lock);
229 start_bandwidth_timer(&rt_b->rt_period_timer, rt_b->rt_period);
230 raw_spin_unlock(&rt_b->rt_runtime_lock);
233 #ifdef CONFIG_RT_GROUP_SCHED
234 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
236 hrtimer_cancel(&rt_b->rt_period_timer);
238 #endif
241 * sched_domains_mutex serializes calls to init_sched_domains,
242 * detach_destroy_domains and partition_sched_domains.
244 static DEFINE_MUTEX(sched_domains_mutex);
246 #ifdef CONFIG_CGROUP_SCHED
248 #include <linux/cgroup.h>
250 struct cfs_rq;
252 static LIST_HEAD(task_groups);
254 struct cfs_bandwidth {
255 #ifdef CONFIG_CFS_BANDWIDTH
256 raw_spinlock_t lock;
257 ktime_t period;
258 u64 quota, runtime;
259 s64 hierarchal_quota;
260 u64 runtime_expires;
262 int idle, timer_active;
263 struct hrtimer period_timer, slack_timer;
264 struct list_head throttled_cfs_rq;
266 /* statistics */
267 int nr_periods, nr_throttled;
268 u64 throttled_time;
269 #endif
272 /* task group related information */
273 struct task_group {
274 struct cgroup_subsys_state css;
276 #ifdef CONFIG_FAIR_GROUP_SCHED
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
283 atomic_t load_weight;
284 #endif
286 #ifdef CONFIG_RT_GROUP_SCHED
287 struct sched_rt_entity **rt_se;
288 struct rt_rq **rt_rq;
290 struct rt_bandwidth rt_bandwidth;
291 #endif
293 struct rcu_head rcu;
294 struct list_head list;
296 struct task_group *parent;
297 struct list_head siblings;
298 struct list_head children;
300 #ifdef CONFIG_SCHED_AUTOGROUP
301 struct autogroup *autogroup;
302 #endif
304 struct cfs_bandwidth cfs_bandwidth;
307 /* task_group_lock serializes the addition/removal of task groups */
308 static DEFINE_SPINLOCK(task_group_lock);
310 #ifdef CONFIG_FAIR_GROUP_SCHED
312 # define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
315 * A weight of 0 or 1 can cause arithmetics problems.
316 * A weight of a cfs_rq is the sum of weights of which entities
317 * are queued on this cfs_rq, so a weight of a entity should not be
318 * too large, so as the shares value of a task group.
319 * (The default weight is 1024 - so there's no practical
320 * limitation from this.)
322 #define MIN_SHARES (1UL << 1)
323 #define MAX_SHARES (1UL << 18)
325 static int root_task_group_load = ROOT_TASK_GROUP_LOAD;
326 #endif
328 /* Default task group.
329 * Every task in system belong to this group at bootup.
331 struct task_group root_task_group;
333 #endif /* CONFIG_CGROUP_SCHED */
335 /* CFS-related fields in a runqueue */
336 struct cfs_rq {
337 struct load_weight load;
338 unsigned long nr_running, h_nr_running;
340 u64 exec_clock;
341 u64 min_vruntime;
342 #ifndef CONFIG_64BIT
343 u64 min_vruntime_copy;
344 #endif
346 struct rb_root tasks_timeline;
347 struct rb_node *rb_leftmost;
349 struct list_head tasks;
350 struct list_head *balance_iterator;
353 * 'curr' points to currently running entity on this cfs_rq.
354 * It is set to NULL otherwise (i.e when none are currently running).
356 struct sched_entity *curr, *next, *last, *skip;
358 #ifdef CONFIG_SCHED_DEBUG
359 unsigned int nr_spread_over;
360 #endif
362 #ifdef CONFIG_FAIR_GROUP_SCHED
363 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
366 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
367 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
368 * (like users, containers etc.)
370 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
371 * list is used during load balance.
373 int on_list;
374 struct list_head leaf_cfs_rq_list;
375 struct task_group *tg; /* group that "owns" this runqueue */
377 #ifdef CONFIG_SMP
379 * the part of load.weight contributed by tasks
381 unsigned long task_weight;
384 * h_load = weight * f(tg)
386 * Where f(tg) is the recursive weight fraction assigned to
387 * this group.
389 unsigned long h_load;
392 * Maintaining per-cpu shares distribution for group scheduling
394 * load_stamp is the last time we updated the load average
395 * load_last is the last time we updated the load average and saw load
396 * load_unacc_exec_time is currently unaccounted execution time
398 u64 load_avg;
399 u64 load_period;
400 u64 load_stamp, load_last, load_unacc_exec_time;
402 unsigned long load_contribution;
403 #endif
404 #ifdef CONFIG_CFS_BANDWIDTH
405 int runtime_enabled;
406 u64 runtime_expires;
407 s64 runtime_remaining;
409 u64 throttled_timestamp;
410 int throttled, throttle_count;
411 struct list_head throttled_list;
412 #endif
413 #endif
416 #ifdef CONFIG_FAIR_GROUP_SCHED
417 #ifdef CONFIG_CFS_BANDWIDTH
418 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
420 return &tg->cfs_bandwidth;
423 static inline u64 default_cfs_period(void);
424 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun);
425 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b);
427 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
429 struct cfs_bandwidth *cfs_b =
430 container_of(timer, struct cfs_bandwidth, slack_timer);
431 do_sched_cfs_slack_timer(cfs_b);
433 return HRTIMER_NORESTART;
436 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
438 struct cfs_bandwidth *cfs_b =
439 container_of(timer, struct cfs_bandwidth, period_timer);
440 ktime_t now;
441 int overrun;
442 int idle = 0;
444 for (;;) {
445 now = hrtimer_cb_get_time(timer);
446 overrun = hrtimer_forward(timer, now, cfs_b->period);
448 if (!overrun)
449 break;
451 idle = do_sched_cfs_period_timer(cfs_b, overrun);
454 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
457 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
459 raw_spin_lock_init(&cfs_b->lock);
460 cfs_b->runtime = 0;
461 cfs_b->quota = RUNTIME_INF;
462 cfs_b->period = ns_to_ktime(default_cfs_period());
464 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
465 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
466 cfs_b->period_timer.function = sched_cfs_period_timer;
467 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
468 cfs_b->slack_timer.function = sched_cfs_slack_timer;
471 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
473 cfs_rq->runtime_enabled = 0;
474 INIT_LIST_HEAD(&cfs_rq->throttled_list);
477 /* requires cfs_b->lock, may release to reprogram timer */
478 static void __start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
481 * The timer may be active because we're trying to set a new bandwidth
482 * period or because we're racing with the tear-down path
483 * (timer_active==0 becomes visible before the hrtimer call-back
484 * terminates). In either case we ensure that it's re-programmed
486 while (unlikely(hrtimer_active(&cfs_b->period_timer))) {
487 raw_spin_unlock(&cfs_b->lock);
488 /* ensure cfs_b->lock is available while we wait */
489 hrtimer_cancel(&cfs_b->period_timer);
491 raw_spin_lock(&cfs_b->lock);
492 /* if someone else restarted the timer then we're done */
493 if (cfs_b->timer_active)
494 return;
497 cfs_b->timer_active = 1;
498 start_bandwidth_timer(&cfs_b->period_timer, cfs_b->period);
501 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
503 hrtimer_cancel(&cfs_b->period_timer);
504 hrtimer_cancel(&cfs_b->slack_timer);
506 #else
507 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
508 static void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
509 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
511 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
513 return NULL;
515 #endif /* CONFIG_CFS_BANDWIDTH */
516 #endif /* CONFIG_FAIR_GROUP_SCHED */
518 /* Real-Time classes' related field in a runqueue: */
519 struct rt_rq {
520 struct rt_prio_array active;
521 unsigned long rt_nr_running;
522 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
523 struct {
524 int curr; /* highest queued rt task prio */
525 #ifdef CONFIG_SMP
526 int next; /* next highest */
527 #endif
528 } highest_prio;
529 #endif
530 #ifdef CONFIG_SMP
531 unsigned long rt_nr_migratory;
532 unsigned long rt_nr_total;
533 int overloaded;
534 struct plist_head pushable_tasks;
535 #endif
536 int rt_throttled;
537 u64 rt_time;
538 u64 rt_runtime;
539 /* Nests inside the rq lock: */
540 raw_spinlock_t rt_runtime_lock;
542 #ifdef CONFIG_RT_GROUP_SCHED
543 unsigned long rt_nr_boosted;
545 struct rq *rq;
546 struct list_head leaf_rt_rq_list;
547 struct task_group *tg;
548 #endif
551 #ifdef CONFIG_SMP
554 * We add the notion of a root-domain which will be used to define per-domain
555 * variables. Each exclusive cpuset essentially defines an island domain by
556 * fully partitioning the member cpus from any other cpuset. Whenever a new
557 * exclusive cpuset is created, we also create and attach a new root-domain
558 * object.
561 struct root_domain {
562 atomic_t refcount;
563 atomic_t rto_count;
564 struct rcu_head rcu;
565 cpumask_var_t span;
566 cpumask_var_t online;
569 * The "RT overload" flag: it gets set if a CPU has more than
570 * one runnable RT task.
572 cpumask_var_t rto_mask;
573 struct cpupri cpupri;
577 * By default the system creates a single root-domain with all cpus as
578 * members (mimicking the global state we have today).
580 static struct root_domain def_root_domain;
582 #endif /* CONFIG_SMP */
585 * This is the main, per-CPU runqueue data structure.
587 * Locking rule: those places that want to lock multiple runqueues
588 * (such as the load balancing or the thread migration code), lock
589 * acquire operations must be ordered by ascending &runqueue.
591 struct rq {
592 /* runqueue lock: */
593 raw_spinlock_t lock;
596 * nr_running and cpu_load should be in the same cacheline because
597 * remote CPUs use both these fields when doing load calculation.
599 unsigned long nr_running;
600 #define CPU_LOAD_IDX_MAX 5
601 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
602 unsigned long last_load_update_tick;
603 #ifdef CONFIG_NO_HZ
604 u64 nohz_stamp;
605 unsigned char nohz_balance_kick;
606 #endif
607 int skip_clock_update;
609 /* capture load from *all* tasks on this cpu: */
610 struct load_weight load;
611 unsigned long nr_load_updates;
612 u64 nr_switches;
614 struct cfs_rq cfs;
615 struct rt_rq rt;
617 #ifdef CONFIG_FAIR_GROUP_SCHED
618 /* list of leaf cfs_rq on this cpu: */
619 struct list_head leaf_cfs_rq_list;
620 #endif
621 #ifdef CONFIG_RT_GROUP_SCHED
622 struct list_head leaf_rt_rq_list;
623 #endif
626 * This is part of a global counter where only the total sum
627 * over all CPUs matters. A task can increase this counter on
628 * one CPU and if it got migrated afterwards it may decrease
629 * it on another CPU. Always updated under the runqueue lock:
631 unsigned long nr_uninterruptible;
633 struct task_struct *curr, *idle, *stop;
634 unsigned long next_balance;
635 struct mm_struct *prev_mm;
637 u64 clock;
638 u64 clock_task;
640 atomic_t nr_iowait;
642 #ifdef CONFIG_SMP
643 struct root_domain *rd;
644 struct sched_domain *sd;
646 unsigned long cpu_power;
648 unsigned char idle_balance;
649 /* For active balancing */
650 int post_schedule;
651 int active_balance;
652 int push_cpu;
653 struct cpu_stop_work active_balance_work;
654 /* cpu of this runqueue: */
655 int cpu;
656 int online;
658 u64 rt_avg;
659 u64 age_stamp;
660 u64 idle_stamp;
661 u64 avg_idle;
662 #endif
664 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
665 u64 prev_irq_time;
666 #endif
667 #ifdef CONFIG_PARAVIRT
668 u64 prev_steal_time;
669 #endif
670 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
671 u64 prev_steal_time_rq;
672 #endif
674 /* calc_load related fields */
675 unsigned long calc_load_update;
676 long calc_load_active;
678 #ifdef CONFIG_SCHED_HRTICK
679 #ifdef CONFIG_SMP
680 int hrtick_csd_pending;
681 struct call_single_data hrtick_csd;
682 #endif
683 struct hrtimer hrtick_timer;
684 #endif
686 #ifdef CONFIG_SCHEDSTATS
687 /* latency stats */
688 struct sched_info rq_sched_info;
689 unsigned long long rq_cpu_time;
690 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
692 /* sys_sched_yield() stats */
693 unsigned int yld_count;
695 /* schedule() stats */
696 unsigned int sched_switch;
697 unsigned int sched_count;
698 unsigned int sched_goidle;
700 /* try_to_wake_up() stats */
701 unsigned int ttwu_count;
702 unsigned int ttwu_local;
703 #endif
705 #ifdef CONFIG_SMP
706 struct llist_head wake_list;
707 #endif
710 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
713 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
715 static inline int cpu_of(struct rq *rq)
717 #ifdef CONFIG_SMP
718 return rq->cpu;
719 #else
720 return 0;
721 #endif
724 #define rcu_dereference_check_sched_domain(p) \
725 rcu_dereference_check((p), \
726 lockdep_is_held(&sched_domains_mutex))
729 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
730 * See detach_destroy_domains: synchronize_sched for details.
732 * The domain tree of any CPU may only be accessed from within
733 * preempt-disabled sections.
735 #define for_each_domain(cpu, __sd) \
736 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
738 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
739 #define this_rq() (&__get_cpu_var(runqueues))
740 #define task_rq(p) cpu_rq(task_cpu(p))
741 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
742 #define raw_rq() (&__raw_get_cpu_var(runqueues))
744 #ifdef CONFIG_CGROUP_SCHED
747 * Return the group to which this tasks belongs.
749 * We use task_subsys_state_check() and extend the RCU verification with
750 * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
751 * task it moves into the cgroup. Therefore by holding either of those locks,
752 * we pin the task to the current cgroup.
754 static inline struct task_group *task_group(struct task_struct *p)
756 struct task_group *tg;
757 struct cgroup_subsys_state *css;
759 css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
760 lockdep_is_held(&p->pi_lock) ||
761 lockdep_is_held(&task_rq(p)->lock));
762 tg = container_of(css, struct task_group, css);
764 return autogroup_task_group(p, tg);
767 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
768 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
770 #ifdef CONFIG_FAIR_GROUP_SCHED
771 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
772 p->se.parent = task_group(p)->se[cpu];
773 #endif
775 #ifdef CONFIG_RT_GROUP_SCHED
776 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
777 p->rt.parent = task_group(p)->rt_se[cpu];
778 #endif
781 #else /* CONFIG_CGROUP_SCHED */
783 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
784 static inline struct task_group *task_group(struct task_struct *p)
786 return NULL;
789 #endif /* CONFIG_CGROUP_SCHED */
791 static void update_rq_clock_task(struct rq *rq, s64 delta);
793 static void update_rq_clock(struct rq *rq)
795 s64 delta;
797 if (rq->skip_clock_update > 0)
798 return;
800 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
801 rq->clock += delta;
802 update_rq_clock_task(rq, delta);
806 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
808 #ifdef CONFIG_SCHED_DEBUG
809 # define const_debug __read_mostly
810 #else
811 # define const_debug static const
812 #endif
815 * runqueue_is_locked - Returns true if the current cpu runqueue is locked
816 * @cpu: the processor in question.
818 * This interface allows printk to be called with the runqueue lock
819 * held and know whether or not it is OK to wake up the klogd.
821 int runqueue_is_locked(int cpu)
823 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
827 * Debugging: various feature bits
830 #define SCHED_FEAT(name, enabled) \
831 __SCHED_FEAT_##name ,
833 enum {
834 #include "sched_features.h"
837 #undef SCHED_FEAT
839 #define SCHED_FEAT(name, enabled) \
840 (1UL << __SCHED_FEAT_##name) * enabled |
842 const_debug unsigned int sysctl_sched_features =
843 #include "sched_features.h"
846 #undef SCHED_FEAT
848 #ifdef CONFIG_SCHED_DEBUG
849 #define SCHED_FEAT(name, enabled) \
850 #name ,
852 static __read_mostly char *sched_feat_names[] = {
853 #include "sched_features.h"
854 NULL
857 #undef SCHED_FEAT
859 static int sched_feat_show(struct seq_file *m, void *v)
861 int i;
863 for (i = 0; sched_feat_names[i]; i++) {
864 if (!(sysctl_sched_features & (1UL << i)))
865 seq_puts(m, "NO_");
866 seq_printf(m, "%s ", sched_feat_names[i]);
868 seq_puts(m, "\n");
870 return 0;
873 static ssize_t
874 sched_feat_write(struct file *filp, const char __user *ubuf,
875 size_t cnt, loff_t *ppos)
877 char buf[64];
878 char *cmp;
879 int neg = 0;
880 int i;
882 if (cnt > 63)
883 cnt = 63;
885 if (copy_from_user(&buf, ubuf, cnt))
886 return -EFAULT;
888 buf[cnt] = 0;
889 cmp = strstrip(buf);
891 if (strncmp(cmp, "NO_", 3) == 0) {
892 neg = 1;
893 cmp += 3;
896 for (i = 0; sched_feat_names[i]; i++) {
897 if (strcmp(cmp, sched_feat_names[i]) == 0) {
898 if (neg)
899 sysctl_sched_features &= ~(1UL << i);
900 else
901 sysctl_sched_features |= (1UL << i);
902 break;
906 if (!sched_feat_names[i])
907 return -EINVAL;
909 *ppos += cnt;
911 return cnt;
914 static int sched_feat_open(struct inode *inode, struct file *filp)
916 return single_open(filp, sched_feat_show, NULL);
919 static const struct file_operations sched_feat_fops = {
920 .open = sched_feat_open,
921 .write = sched_feat_write,
922 .read = seq_read,
923 .llseek = seq_lseek,
924 .release = single_release,
927 static __init int sched_init_debug(void)
929 debugfs_create_file("sched_features", 0644, NULL, NULL,
930 &sched_feat_fops);
932 return 0;
934 late_initcall(sched_init_debug);
936 #endif
938 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
941 * Number of tasks to iterate in a single balance run.
942 * Limited because this is done with IRQs disabled.
944 const_debug unsigned int sysctl_sched_nr_migrate = 32;
947 * period over which we average the RT time consumption, measured
948 * in ms.
950 * default: 1s
952 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
955 * period over which we measure -rt task cpu usage in us.
956 * default: 1s
958 unsigned int sysctl_sched_rt_period = 1000000;
960 static __read_mostly int scheduler_running;
963 * part of the period that we allow rt tasks to run in us.
964 * default: 0.95s
966 int sysctl_sched_rt_runtime = 950000;
968 static inline u64 global_rt_period(void)
970 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
973 static inline u64 global_rt_runtime(void)
975 if (sysctl_sched_rt_runtime < 0)
976 return RUNTIME_INF;
978 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
981 #ifndef prepare_arch_switch
982 # define prepare_arch_switch(next) do { } while (0)
983 #endif
984 #ifndef finish_arch_switch
985 # define finish_arch_switch(prev) do { } while (0)
986 #endif
988 static inline int task_current(struct rq *rq, struct task_struct *p)
990 return rq->curr == p;
993 static inline int task_running(struct rq *rq, struct task_struct *p)
995 #ifdef CONFIG_SMP
996 return p->on_cpu;
997 #else
998 return task_current(rq, p);
999 #endif
1002 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
1003 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1005 #ifdef CONFIG_SMP
1007 * We can optimise this out completely for !SMP, because the
1008 * SMP rebalancing from interrupt is the only thing that cares
1009 * here.
1011 next->on_cpu = 1;
1012 #endif
1015 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1017 #ifdef CONFIG_SMP
1019 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1020 * We must ensure this doesn't happen until the switch is completely
1021 * finished.
1023 smp_wmb();
1024 prev->on_cpu = 0;
1025 #endif
1026 #ifdef CONFIG_DEBUG_SPINLOCK
1027 /* this is a valid case when another task releases the spinlock */
1028 rq->lock.owner = current;
1029 #endif
1031 * If we are tracking spinlock dependencies then we have to
1032 * fix up the runqueue lock - which gets 'carried over' from
1033 * prev into current:
1035 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
1037 raw_spin_unlock_irq(&rq->lock);
1040 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
1041 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
1043 #ifdef CONFIG_SMP
1045 * We can optimise this out completely for !SMP, because the
1046 * SMP rebalancing from interrupt is the only thing that cares
1047 * here.
1049 next->on_cpu = 1;
1050 #endif
1051 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1052 raw_spin_unlock_irq(&rq->lock);
1053 #else
1054 raw_spin_unlock(&rq->lock);
1055 #endif
1058 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
1060 #ifdef CONFIG_SMP
1062 * After ->on_cpu is cleared, the task can be moved to a different CPU.
1063 * We must ensure this doesn't happen until the switch is completely
1064 * finished.
1066 smp_wmb();
1067 prev->on_cpu = 0;
1068 #endif
1069 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1070 local_irq_enable();
1071 #endif
1073 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1076 * __task_rq_lock - lock the rq @p resides on.
1078 static inline struct rq *__task_rq_lock(struct task_struct *p)
1079 __acquires(rq->lock)
1081 struct rq *rq;
1083 lockdep_assert_held(&p->pi_lock);
1085 for (;;) {
1086 rq = task_rq(p);
1087 raw_spin_lock(&rq->lock);
1088 if (likely(rq == task_rq(p)))
1089 return rq;
1090 raw_spin_unlock(&rq->lock);
1095 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1097 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1098 __acquires(p->pi_lock)
1099 __acquires(rq->lock)
1101 struct rq *rq;
1103 for (;;) {
1104 raw_spin_lock_irqsave(&p->pi_lock, *flags);
1105 rq = task_rq(p);
1106 raw_spin_lock(&rq->lock);
1107 if (likely(rq == task_rq(p)))
1108 return rq;
1109 raw_spin_unlock(&rq->lock);
1110 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1114 static void __task_rq_unlock(struct rq *rq)
1115 __releases(rq->lock)
1117 raw_spin_unlock(&rq->lock);
1120 static inline void
1121 task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1122 __releases(rq->lock)
1123 __releases(p->pi_lock)
1125 raw_spin_unlock(&rq->lock);
1126 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1130 * this_rq_lock - lock this runqueue and disable interrupts.
1132 static struct rq *this_rq_lock(void)
1133 __acquires(rq->lock)
1135 struct rq *rq;
1137 local_irq_disable();
1138 rq = this_rq();
1139 raw_spin_lock(&rq->lock);
1141 return rq;
1144 #ifdef CONFIG_SCHED_HRTICK
1146 * Use HR-timers to deliver accurate preemption points.
1148 * Its all a bit involved since we cannot program an hrt while holding the
1149 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1150 * reschedule event.
1152 * When we get rescheduled we reprogram the hrtick_timer outside of the
1153 * rq->lock.
1157 * Use hrtick when:
1158 * - enabled by features
1159 * - hrtimer is actually high res
1161 static inline int hrtick_enabled(struct rq *rq)
1163 if (!sched_feat(HRTICK))
1164 return 0;
1165 if (!cpu_active(cpu_of(rq)))
1166 return 0;
1167 return hrtimer_is_hres_active(&rq->hrtick_timer);
1170 static void hrtick_clear(struct rq *rq)
1172 if (hrtimer_active(&rq->hrtick_timer))
1173 hrtimer_cancel(&rq->hrtick_timer);
1177 * High-resolution timer tick.
1178 * Runs from hardirq context with interrupts disabled.
1180 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1182 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1184 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1186 raw_spin_lock(&rq->lock);
1187 update_rq_clock(rq);
1188 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1189 raw_spin_unlock(&rq->lock);
1191 return HRTIMER_NORESTART;
1194 #ifdef CONFIG_SMP
1196 * called from hardirq (IPI) context
1198 static void __hrtick_start(void *arg)
1200 struct rq *rq = arg;
1202 raw_spin_lock(&rq->lock);
1203 hrtimer_restart(&rq->hrtick_timer);
1204 rq->hrtick_csd_pending = 0;
1205 raw_spin_unlock(&rq->lock);
1209 * Called to set the hrtick timer state.
1211 * called with rq->lock held and irqs disabled
1213 static void hrtick_start(struct rq *rq, u64 delay)
1215 struct hrtimer *timer = &rq->hrtick_timer;
1216 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1218 hrtimer_set_expires(timer, time);
1220 if (rq == this_rq()) {
1221 hrtimer_restart(timer);
1222 } else if (!rq->hrtick_csd_pending) {
1223 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1224 rq->hrtick_csd_pending = 1;
1228 static int
1229 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1231 int cpu = (int)(long)hcpu;
1233 switch (action) {
1234 case CPU_UP_CANCELED:
1235 case CPU_UP_CANCELED_FROZEN:
1236 case CPU_DOWN_PREPARE:
1237 case CPU_DOWN_PREPARE_FROZEN:
1238 case CPU_DEAD:
1239 case CPU_DEAD_FROZEN:
1240 hrtick_clear(cpu_rq(cpu));
1241 return NOTIFY_OK;
1244 return NOTIFY_DONE;
1247 static __init void init_hrtick(void)
1249 hotcpu_notifier(hotplug_hrtick, 0);
1251 #else
1253 * Called to set the hrtick timer state.
1255 * called with rq->lock held and irqs disabled
1257 static void hrtick_start(struct rq *rq, u64 delay)
1259 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1260 HRTIMER_MODE_REL_PINNED, 0);
1263 static inline void init_hrtick(void)
1266 #endif /* CONFIG_SMP */
1268 static void init_rq_hrtick(struct rq *rq)
1270 #ifdef CONFIG_SMP
1271 rq->hrtick_csd_pending = 0;
1273 rq->hrtick_csd.flags = 0;
1274 rq->hrtick_csd.func = __hrtick_start;
1275 rq->hrtick_csd.info = rq;
1276 #endif
1278 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1279 rq->hrtick_timer.function = hrtick;
1281 #else /* CONFIG_SCHED_HRTICK */
1282 static inline void hrtick_clear(struct rq *rq)
1286 static inline void init_rq_hrtick(struct rq *rq)
1290 static inline void init_hrtick(void)
1293 #endif /* CONFIG_SCHED_HRTICK */
1296 * resched_task - mark a task 'to be rescheduled now'.
1298 * On UP this means the setting of the need_resched flag, on SMP it
1299 * might also involve a cross-CPU call to trigger the scheduler on
1300 * the target CPU.
1302 #ifdef CONFIG_SMP
1304 #ifndef tsk_is_polling
1305 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1306 #endif
1308 static void resched_task(struct task_struct *p)
1310 int cpu;
1312 assert_raw_spin_locked(&task_rq(p)->lock);
1314 if (test_tsk_need_resched(p))
1315 return;
1317 set_tsk_need_resched(p);
1319 cpu = task_cpu(p);
1320 if (cpu == smp_processor_id())
1321 return;
1323 /* NEED_RESCHED must be visible before we test polling */
1324 smp_mb();
1325 if (!tsk_is_polling(p))
1326 smp_send_reschedule(cpu);
1329 static void resched_cpu(int cpu)
1331 struct rq *rq = cpu_rq(cpu);
1332 unsigned long flags;
1334 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1335 return;
1336 resched_task(cpu_curr(cpu));
1337 raw_spin_unlock_irqrestore(&rq->lock, flags);
1340 #ifdef CONFIG_NO_HZ
1342 * In the semi idle case, use the nearest busy cpu for migrating timers
1343 * from an idle cpu. This is good for power-savings.
1345 * We don't do similar optimization for completely idle system, as
1346 * selecting an idle cpu will add more delays to the timers than intended
1347 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1349 int get_nohz_timer_target(void)
1351 int cpu = smp_processor_id();
1352 int i;
1353 struct sched_domain *sd;
1355 rcu_read_lock();
1356 for_each_domain(cpu, sd) {
1357 for_each_cpu(i, sched_domain_span(sd)) {
1358 if (!idle_cpu(i)) {
1359 cpu = i;
1360 goto unlock;
1364 unlock:
1365 rcu_read_unlock();
1366 return cpu;
1369 * When add_timer_on() enqueues a timer into the timer wheel of an
1370 * idle CPU then this timer might expire before the next timer event
1371 * which is scheduled to wake up that CPU. In case of a completely
1372 * idle system the next event might even be infinite time into the
1373 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1374 * leaves the inner idle loop so the newly added timer is taken into
1375 * account when the CPU goes back to idle and evaluates the timer
1376 * wheel for the next timer event.
1378 void wake_up_idle_cpu(int cpu)
1380 struct rq *rq = cpu_rq(cpu);
1382 if (cpu == smp_processor_id())
1383 return;
1386 * This is safe, as this function is called with the timer
1387 * wheel base lock of (cpu) held. When the CPU is on the way
1388 * to idle and has not yet set rq->curr to idle then it will
1389 * be serialized on the timer wheel base lock and take the new
1390 * timer into account automatically.
1392 if (rq->curr != rq->idle)
1393 return;
1396 * We can set TIF_RESCHED on the idle task of the other CPU
1397 * lockless. The worst case is that the other CPU runs the
1398 * idle task through an additional NOOP schedule()
1400 set_tsk_need_resched(rq->idle);
1402 /* NEED_RESCHED must be visible before we test polling */
1403 smp_mb();
1404 if (!tsk_is_polling(rq->idle))
1405 smp_send_reschedule(cpu);
1408 static inline bool got_nohz_idle_kick(void)
1410 return idle_cpu(smp_processor_id()) && this_rq()->nohz_balance_kick;
1413 #else /* CONFIG_NO_HZ */
1415 static inline bool got_nohz_idle_kick(void)
1417 return false;
1420 #endif /* CONFIG_NO_HZ */
1422 static u64 sched_avg_period(void)
1424 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1427 static void sched_avg_update(struct rq *rq)
1429 s64 period = sched_avg_period();
1431 while ((s64)(rq->clock - rq->age_stamp) > period) {
1433 * Inline assembly required to prevent the compiler
1434 * optimising this loop into a divmod call.
1435 * See __iter_div_u64_rem() for another example of this.
1437 asm("" : "+rm" (rq->age_stamp));
1438 rq->age_stamp += period;
1439 rq->rt_avg /= 2;
1443 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1445 rq->rt_avg += rt_delta;
1446 sched_avg_update(rq);
1449 #else /* !CONFIG_SMP */
1450 static void resched_task(struct task_struct *p)
1452 assert_raw_spin_locked(&task_rq(p)->lock);
1453 set_tsk_need_resched(p);
1456 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1460 static void sched_avg_update(struct rq *rq)
1463 #endif /* CONFIG_SMP */
1465 #if BITS_PER_LONG == 32
1466 # define WMULT_CONST (~0UL)
1467 #else
1468 # define WMULT_CONST (1UL << 32)
1469 #endif
1471 #define WMULT_SHIFT 32
1474 * Shift right and round:
1476 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1479 * delta *= weight / lw
1481 static unsigned long
1482 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1483 struct load_weight *lw)
1485 u64 tmp;
1488 * weight can be less than 2^SCHED_LOAD_RESOLUTION for task group sched
1489 * entities since MIN_SHARES = 2. Treat weight as 1 if less than
1490 * 2^SCHED_LOAD_RESOLUTION.
1492 if (likely(weight > (1UL << SCHED_LOAD_RESOLUTION)))
1493 tmp = (u64)delta_exec * scale_load_down(weight);
1494 else
1495 tmp = (u64)delta_exec;
1497 if (!lw->inv_weight) {
1498 unsigned long w = scale_load_down(lw->weight);
1500 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
1501 lw->inv_weight = 1;
1502 else if (unlikely(!w))
1503 lw->inv_weight = WMULT_CONST;
1504 else
1505 lw->inv_weight = WMULT_CONST / w;
1509 * Check whether we'd overflow the 64-bit multiplication:
1511 if (unlikely(tmp > WMULT_CONST))
1512 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1513 WMULT_SHIFT/2);
1514 else
1515 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1517 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1520 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1522 lw->weight += inc;
1523 lw->inv_weight = 0;
1526 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1528 lw->weight -= dec;
1529 lw->inv_weight = 0;
1532 static inline void update_load_set(struct load_weight *lw, unsigned long w)
1534 lw->weight = w;
1535 lw->inv_weight = 0;
1539 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1540 * of tasks with abnormal "nice" values across CPUs the contribution that
1541 * each task makes to its run queue's load is weighted according to its
1542 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1543 * scaled version of the new time slice allocation that they receive on time
1544 * slice expiry etc.
1547 #define WEIGHT_IDLEPRIO 3
1548 #define WMULT_IDLEPRIO 1431655765
1551 * Nice levels are multiplicative, with a gentle 10% change for every
1552 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1553 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1554 * that remained on nice 0.
1556 * The "10% effect" is relative and cumulative: from _any_ nice level,
1557 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1558 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1559 * If a task goes up by ~10% and another task goes down by ~10% then
1560 * the relative distance between them is ~25%.)
1562 static const int prio_to_weight[40] = {
1563 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1564 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1565 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1566 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1567 /* 0 */ 1024, 820, 655, 526, 423,
1568 /* 5 */ 335, 272, 215, 172, 137,
1569 /* 10 */ 110, 87, 70, 56, 45,
1570 /* 15 */ 36, 29, 23, 18, 15,
1574 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1576 * In cases where the weight does not change often, we can use the
1577 * precalculated inverse to speed up arithmetics by turning divisions
1578 * into multiplications:
1580 static const u32 prio_to_wmult[40] = {
1581 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1582 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1583 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1584 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1585 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1586 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1587 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1588 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1591 /* Time spent by the tasks of the cpu accounting group executing in ... */
1592 enum cpuacct_stat_index {
1593 CPUACCT_STAT_USER, /* ... user mode */
1594 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1596 CPUACCT_STAT_NSTATS,
1599 #ifdef CONFIG_CGROUP_CPUACCT
1600 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1601 static void cpuacct_update_stats(struct task_struct *tsk,
1602 enum cpuacct_stat_index idx, cputime_t val);
1603 #else
1604 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1605 static inline void cpuacct_update_stats(struct task_struct *tsk,
1606 enum cpuacct_stat_index idx, cputime_t val) {}
1607 #endif
1609 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1611 update_load_add(&rq->load, load);
1614 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1616 update_load_sub(&rq->load, load);
1619 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
1620 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
1621 typedef int (*tg_visitor)(struct task_group *, void *);
1624 * Iterate task_group tree rooted at *from, calling @down when first entering a
1625 * node and @up when leaving it for the final time.
1627 * Caller must hold rcu_lock or sufficient equivalent.
1629 static int walk_tg_tree_from(struct task_group *from,
1630 tg_visitor down, tg_visitor up, void *data)
1632 struct task_group *parent, *child;
1633 int ret;
1635 parent = from;
1637 down:
1638 ret = (*down)(parent, data);
1639 if (ret)
1640 goto out;
1641 list_for_each_entry_rcu(child, &parent->children, siblings) {
1642 parent = child;
1643 goto down;
1646 continue;
1648 ret = (*up)(parent, data);
1649 if (ret || parent == from)
1650 goto out;
1652 child = parent;
1653 parent = parent->parent;
1654 if (parent)
1655 goto up;
1656 out:
1657 return ret;
1661 * Iterate the full tree, calling @down when first entering a node and @up when
1662 * leaving it for the final time.
1664 * Caller must hold rcu_lock or sufficient equivalent.
1667 static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1669 return walk_tg_tree_from(&root_task_group, down, up, data);
1672 static int tg_nop(struct task_group *tg, void *data)
1674 return 0;
1676 #endif
1678 #ifdef CONFIG_SMP
1679 /* Used instead of source_load when we know the type == 0 */
1680 static unsigned long weighted_cpuload(const int cpu)
1682 return cpu_rq(cpu)->load.weight;
1686 * Return a low guess at the load of a migration-source cpu weighted
1687 * according to the scheduling class and "nice" value.
1689 * We want to under-estimate the load of migration sources, to
1690 * balance conservatively.
1692 static unsigned long source_load(int cpu, int type)
1694 struct rq *rq = cpu_rq(cpu);
1695 unsigned long total = weighted_cpuload(cpu);
1697 if (type == 0 || !sched_feat(LB_BIAS))
1698 return total;
1700 return min(rq->cpu_load[type-1], total);
1704 * Return a high guess at the load of a migration-target cpu weighted
1705 * according to the scheduling class and "nice" value.
1707 static unsigned long target_load(int cpu, int type)
1709 struct rq *rq = cpu_rq(cpu);
1710 unsigned long total = weighted_cpuload(cpu);
1712 if (type == 0 || !sched_feat(LB_BIAS))
1713 return total;
1715 return max(rq->cpu_load[type-1], total);
1718 static unsigned long power_of(int cpu)
1720 return cpu_rq(cpu)->cpu_power;
1723 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1725 static unsigned long cpu_avg_load_per_task(int cpu)
1727 struct rq *rq = cpu_rq(cpu);
1728 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1730 if (nr_running)
1731 return rq->load.weight / nr_running;
1733 return 0;
1736 #ifdef CONFIG_PREEMPT
1738 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1741 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1742 * way at the expense of forcing extra atomic operations in all
1743 * invocations. This assures that the double_lock is acquired using the
1744 * same underlying policy as the spinlock_t on this architecture, which
1745 * reduces latency compared to the unfair variant below. However, it
1746 * also adds more overhead and therefore may reduce throughput.
1748 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1749 __releases(this_rq->lock)
1750 __acquires(busiest->lock)
1751 __acquires(this_rq->lock)
1753 raw_spin_unlock(&this_rq->lock);
1754 double_rq_lock(this_rq, busiest);
1756 return 1;
1759 #else
1761 * Unfair double_lock_balance: Optimizes throughput at the expense of
1762 * latency by eliminating extra atomic operations when the locks are
1763 * already in proper order on entry. This favors lower cpu-ids and will
1764 * grant the double lock to lower cpus over higher ids under contention,
1765 * regardless of entry order into the function.
1767 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1768 __releases(this_rq->lock)
1769 __acquires(busiest->lock)
1770 __acquires(this_rq->lock)
1772 int ret = 0;
1774 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1775 if (busiest < this_rq) {
1776 raw_spin_unlock(&this_rq->lock);
1777 raw_spin_lock(&busiest->lock);
1778 raw_spin_lock_nested(&this_rq->lock,
1779 SINGLE_DEPTH_NESTING);
1780 ret = 1;
1781 } else
1782 raw_spin_lock_nested(&busiest->lock,
1783 SINGLE_DEPTH_NESTING);
1785 return ret;
1788 #endif /* CONFIG_PREEMPT */
1791 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1793 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1795 if (unlikely(!irqs_disabled())) {
1796 /* printk() doesn't work good under rq->lock */
1797 raw_spin_unlock(&this_rq->lock);
1798 BUG_ON(1);
1801 return _double_lock_balance(this_rq, busiest);
1804 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1805 __releases(busiest->lock)
1807 raw_spin_unlock(&busiest->lock);
1808 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1812 * double_rq_lock - safely lock two runqueues
1814 * Note this does not disable interrupts like task_rq_lock,
1815 * you need to do so manually before calling.
1817 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1818 __acquires(rq1->lock)
1819 __acquires(rq2->lock)
1821 BUG_ON(!irqs_disabled());
1822 if (rq1 == rq2) {
1823 raw_spin_lock(&rq1->lock);
1824 __acquire(rq2->lock); /* Fake it out ;) */
1825 } else {
1826 if (rq1 < rq2) {
1827 raw_spin_lock(&rq1->lock);
1828 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1829 } else {
1830 raw_spin_lock(&rq2->lock);
1831 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1837 * double_rq_unlock - safely unlock two runqueues
1839 * Note this does not restore interrupts like task_rq_unlock,
1840 * you need to do so manually after calling.
1842 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1843 __releases(rq1->lock)
1844 __releases(rq2->lock)
1846 raw_spin_unlock(&rq1->lock);
1847 if (rq1 != rq2)
1848 raw_spin_unlock(&rq2->lock);
1849 else
1850 __release(rq2->lock);
1853 #else /* CONFIG_SMP */
1856 * double_rq_lock - safely lock two runqueues
1858 * Note this does not disable interrupts like task_rq_lock,
1859 * you need to do so manually before calling.
1861 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1862 __acquires(rq1->lock)
1863 __acquires(rq2->lock)
1865 BUG_ON(!irqs_disabled());
1866 BUG_ON(rq1 != rq2);
1867 raw_spin_lock(&rq1->lock);
1868 __acquire(rq2->lock); /* Fake it out ;) */
1872 * double_rq_unlock - safely unlock two runqueues
1874 * Note this does not restore interrupts like task_rq_unlock,
1875 * you need to do so manually after calling.
1877 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1878 __releases(rq1->lock)
1879 __releases(rq2->lock)
1881 BUG_ON(rq1 != rq2);
1882 raw_spin_unlock(&rq1->lock);
1883 __release(rq2->lock);
1886 #endif
1888 static void calc_load_account_idle(struct rq *this_rq);
1889 static void update_sysctl(void);
1890 static int get_update_sysctl_factor(void);
1891 static void update_cpu_load(struct rq *this_rq);
1893 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1895 set_task_rq(p, cpu);
1896 #ifdef CONFIG_SMP
1898 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1899 * successfully executed on another CPU. We must ensure that updates of
1900 * per-task data have been completed by this moment.
1902 smp_wmb();
1903 task_thread_info(p)->cpu = cpu;
1904 #endif
1907 static const struct sched_class rt_sched_class;
1909 #define sched_class_highest (&stop_sched_class)
1910 #define for_each_class(class) \
1911 for (class = sched_class_highest; class; class = class->next)
1913 #include "sched_stats.h"
1915 static void inc_nr_running(struct rq *rq)
1917 rq->nr_running++;
1920 static void dec_nr_running(struct rq *rq)
1922 rq->nr_running--;
1925 static void set_load_weight(struct task_struct *p)
1927 int prio = p->static_prio - MAX_RT_PRIO;
1928 struct load_weight *load = &p->se.load;
1931 * SCHED_IDLE tasks get minimal weight:
1933 if (p->policy == SCHED_IDLE) {
1934 load->weight = scale_load(WEIGHT_IDLEPRIO);
1935 load->inv_weight = WMULT_IDLEPRIO;
1936 return;
1939 load->weight = scale_load(prio_to_weight[prio]);
1940 load->inv_weight = prio_to_wmult[prio];
1943 static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1945 update_rq_clock(rq);
1946 sched_info_queued(p);
1947 p->sched_class->enqueue_task(rq, p, flags);
1950 static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1952 update_rq_clock(rq);
1953 sched_info_dequeued(p);
1954 p->sched_class->dequeue_task(rq, p, flags);
1958 * activate_task - move a task to the runqueue.
1960 static void activate_task(struct rq *rq, struct task_struct *p, int flags)
1962 if (task_contributes_to_load(p))
1963 rq->nr_uninterruptible--;
1965 enqueue_task(rq, p, flags);
1969 * deactivate_task - remove a task from the runqueue.
1971 static void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1973 if (task_contributes_to_load(p))
1974 rq->nr_uninterruptible++;
1976 dequeue_task(rq, p, flags);
1979 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
1982 * There are no locks covering percpu hardirq/softirq time.
1983 * They are only modified in account_system_vtime, on corresponding CPU
1984 * with interrupts disabled. So, writes are safe.
1985 * They are read and saved off onto struct rq in update_rq_clock().
1986 * This may result in other CPU reading this CPU's irq time and can
1987 * race with irq/account_system_vtime on this CPU. We would either get old
1988 * or new value with a side effect of accounting a slice of irq time to wrong
1989 * task when irq is in progress while we read rq->clock. That is a worthy
1990 * compromise in place of having locks on each irq in account_system_time.
1992 static DEFINE_PER_CPU(u64, cpu_hardirq_time);
1993 static DEFINE_PER_CPU(u64, cpu_softirq_time);
1995 static DEFINE_PER_CPU(u64, irq_start_time);
1996 static int sched_clock_irqtime;
1998 void enable_sched_clock_irqtime(void)
2000 sched_clock_irqtime = 1;
2003 void disable_sched_clock_irqtime(void)
2005 sched_clock_irqtime = 0;
2008 #ifndef CONFIG_64BIT
2009 static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
2011 static inline void irq_time_write_begin(void)
2013 __this_cpu_inc(irq_time_seq.sequence);
2014 smp_wmb();
2017 static inline void irq_time_write_end(void)
2019 smp_wmb();
2020 __this_cpu_inc(irq_time_seq.sequence);
2023 static inline u64 irq_time_read(int cpu)
2025 u64 irq_time;
2026 unsigned seq;
2028 do {
2029 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
2030 irq_time = per_cpu(cpu_softirq_time, cpu) +
2031 per_cpu(cpu_hardirq_time, cpu);
2032 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
2034 return irq_time;
2036 #else /* CONFIG_64BIT */
2037 static inline void irq_time_write_begin(void)
2041 static inline void irq_time_write_end(void)
2045 static inline u64 irq_time_read(int cpu)
2047 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
2049 #endif /* CONFIG_64BIT */
2052 * Called before incrementing preempt_count on {soft,}irq_enter
2053 * and before decrementing preempt_count on {soft,}irq_exit.
2055 void account_system_vtime(struct task_struct *curr)
2057 unsigned long flags;
2058 s64 delta;
2059 int cpu;
2061 if (!sched_clock_irqtime)
2062 return;
2064 local_irq_save(flags);
2066 cpu = smp_processor_id();
2067 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
2068 __this_cpu_add(irq_start_time, delta);
2070 irq_time_write_begin();
2072 * We do not account for softirq time from ksoftirqd here.
2073 * We want to continue accounting softirq time to ksoftirqd thread
2074 * in that case, so as not to confuse scheduler with a special task
2075 * that do not consume any time, but still wants to run.
2077 if (hardirq_count())
2078 __this_cpu_add(cpu_hardirq_time, delta);
2079 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
2080 __this_cpu_add(cpu_softirq_time, delta);
2082 irq_time_write_end();
2083 local_irq_restore(flags);
2085 EXPORT_SYMBOL_GPL(account_system_vtime);
2087 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
2089 #ifdef CONFIG_PARAVIRT
2090 static inline u64 steal_ticks(u64 steal)
2092 if (unlikely(steal > NSEC_PER_SEC))
2093 return div_u64(steal, TICK_NSEC);
2095 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
2097 #endif
2099 static void update_rq_clock_task(struct rq *rq, s64 delta)
2102 * In theory, the compile should just see 0 here, and optimize out the call
2103 * to sched_rt_avg_update. But I don't trust it...
2105 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2106 s64 steal = 0, irq_delta = 0;
2107 #endif
2108 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2109 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
2112 * Since irq_time is only updated on {soft,}irq_exit, we might run into
2113 * this case when a previous update_rq_clock() happened inside a
2114 * {soft,}irq region.
2116 * When this happens, we stop ->clock_task and only update the
2117 * prev_irq_time stamp to account for the part that fit, so that a next
2118 * update will consume the rest. This ensures ->clock_task is
2119 * monotonic.
2121 * It does however cause some slight miss-attribution of {soft,}irq
2122 * time, a more accurate solution would be to update the irq_time using
2123 * the current rq->clock timestamp, except that would require using
2124 * atomic ops.
2126 if (irq_delta > delta)
2127 irq_delta = delta;
2129 rq->prev_irq_time += irq_delta;
2130 delta -= irq_delta;
2131 #endif
2132 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
2133 if (static_branch((&paravirt_steal_rq_enabled))) {
2134 u64 st;
2136 steal = paravirt_steal_clock(cpu_of(rq));
2137 steal -= rq->prev_steal_time_rq;
2139 if (unlikely(steal > delta))
2140 steal = delta;
2142 st = steal_ticks(steal);
2143 steal = st * TICK_NSEC;
2145 rq->prev_steal_time_rq += steal;
2147 delta -= steal;
2149 #endif
2151 rq->clock_task += delta;
2153 #if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
2154 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
2155 sched_rt_avg_update(rq, irq_delta + steal);
2156 #endif
2159 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
2160 static int irqtime_account_hi_update(void)
2162 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2163 unsigned long flags;
2164 u64 latest_ns;
2165 int ret = 0;
2167 local_irq_save(flags);
2168 latest_ns = this_cpu_read(cpu_hardirq_time);
2169 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->irq))
2170 ret = 1;
2171 local_irq_restore(flags);
2172 return ret;
2175 static int irqtime_account_si_update(void)
2177 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2178 unsigned long flags;
2179 u64 latest_ns;
2180 int ret = 0;
2182 local_irq_save(flags);
2183 latest_ns = this_cpu_read(cpu_softirq_time);
2184 if (cputime64_gt(nsecs_to_cputime64(latest_ns), cpustat->softirq))
2185 ret = 1;
2186 local_irq_restore(flags);
2187 return ret;
2190 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
2192 #define sched_clock_irqtime (0)
2194 #endif
2196 #include "sched_idletask.c"
2197 #include "sched_fair.c"
2198 #include "sched_rt.c"
2199 #include "sched_autogroup.c"
2200 #include "sched_stoptask.c"
2201 #ifdef CONFIG_SCHED_DEBUG
2202 # include "sched_debug.c"
2203 #endif
2205 void sched_set_stop_task(int cpu, struct task_struct *stop)
2207 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2208 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2210 if (stop) {
2212 * Make it appear like a SCHED_FIFO task, its something
2213 * userspace knows about and won't get confused about.
2215 * Also, it will make PI more or less work without too
2216 * much confusion -- but then, stop work should not
2217 * rely on PI working anyway.
2219 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
2221 stop->sched_class = &stop_sched_class;
2224 cpu_rq(cpu)->stop = stop;
2226 if (old_stop) {
2228 * Reset it back to a normal scheduling class so that
2229 * it can die in pieces.
2231 old_stop->sched_class = &rt_sched_class;
2236 * __normal_prio - return the priority that is based on the static prio
2238 static inline int __normal_prio(struct task_struct *p)
2240 return p->static_prio;
2244 * Calculate the expected normal priority: i.e. priority
2245 * without taking RT-inheritance into account. Might be
2246 * boosted by interactivity modifiers. Changes upon fork,
2247 * setprio syscalls, and whenever the interactivity
2248 * estimator recalculates.
2250 static inline int normal_prio(struct task_struct *p)
2252 int prio;
2254 if (task_has_rt_policy(p))
2255 prio = MAX_RT_PRIO-1 - p->rt_priority;
2256 else
2257 prio = __normal_prio(p);
2258 return prio;
2262 * Calculate the current priority, i.e. the priority
2263 * taken into account by the scheduler. This value might
2264 * be boosted by RT tasks, or might be boosted by
2265 * interactivity modifiers. Will be RT if the task got
2266 * RT-boosted. If not then it returns p->normal_prio.
2268 static int effective_prio(struct task_struct *p)
2270 p->normal_prio = normal_prio(p);
2272 * If we are RT tasks or we were boosted to RT priority,
2273 * keep the priority unchanged. Otherwise, update priority
2274 * to the normal priority:
2276 if (!rt_prio(p->prio))
2277 return p->normal_prio;
2278 return p->prio;
2282 * task_curr - is this task currently executing on a CPU?
2283 * @p: the task in question.
2285 inline int task_curr(const struct task_struct *p)
2287 return cpu_curr(task_cpu(p)) == p;
2290 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
2291 const struct sched_class *prev_class,
2292 int oldprio)
2294 if (prev_class != p->sched_class) {
2295 if (prev_class->switched_from)
2296 prev_class->switched_from(rq, p);
2297 p->sched_class->switched_to(rq, p);
2298 } else if (oldprio != p->prio)
2299 p->sched_class->prio_changed(rq, p, oldprio);
2302 static void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
2304 const struct sched_class *class;
2306 if (p->sched_class == rq->curr->sched_class) {
2307 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
2308 } else {
2309 for_each_class(class) {
2310 if (class == rq->curr->sched_class)
2311 break;
2312 if (class == p->sched_class) {
2313 resched_task(rq->curr);
2314 break;
2320 * A queue event has occurred, and we're going to schedule. In
2321 * this case, we can save a useless back to back clock update.
2323 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
2324 rq->skip_clock_update = 1;
2327 #ifdef CONFIG_SMP
2329 * Is this task likely cache-hot:
2331 static int
2332 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2334 s64 delta;
2336 if (p->sched_class != &fair_sched_class)
2337 return 0;
2339 if (unlikely(p->policy == SCHED_IDLE))
2340 return 0;
2343 * Buddy candidates are cache hot:
2345 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2346 (&p->se == cfs_rq_of(&p->se)->next ||
2347 &p->se == cfs_rq_of(&p->se)->last))
2348 return 1;
2350 if (sysctl_sched_migration_cost == -1)
2351 return 1;
2352 if (sysctl_sched_migration_cost == 0)
2353 return 0;
2355 delta = now - p->se.exec_start;
2357 return delta < (s64)sysctl_sched_migration_cost;
2360 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2362 #ifdef CONFIG_SCHED_DEBUG
2364 * We should never call set_task_cpu() on a blocked task,
2365 * ttwu() will sort out the placement.
2367 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2368 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2370 #ifdef CONFIG_LOCKDEP
2372 * The caller should hold either p->pi_lock or rq->lock, when changing
2373 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2375 * sched_move_task() holds both and thus holding either pins the cgroup,
2376 * see set_task_rq().
2378 * Furthermore, all task_rq users should acquire both locks, see
2379 * task_rq_lock().
2381 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2382 lockdep_is_held(&task_rq(p)->lock)));
2383 #endif
2384 #endif
2386 trace_sched_migrate_task(p, new_cpu);
2388 if (task_cpu(p) != new_cpu) {
2389 p->se.nr_migrations++;
2390 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
2393 __set_task_cpu(p, new_cpu);
2396 struct migration_arg {
2397 struct task_struct *task;
2398 int dest_cpu;
2401 static int migration_cpu_stop(void *data);
2404 * wait_task_inactive - wait for a thread to unschedule.
2406 * If @match_state is nonzero, it's the @p->state value just checked and
2407 * not expected to change. If it changes, i.e. @p might have woken up,
2408 * then return zero. When we succeed in waiting for @p to be off its CPU,
2409 * we return a positive number (its total switch count). If a second call
2410 * a short while later returns the same number, the caller can be sure that
2411 * @p has remained unscheduled the whole time.
2413 * The caller must ensure that the task *will* unschedule sometime soon,
2414 * else this function might spin for a *long* time. This function can't
2415 * be called with interrupts off, or it may introduce deadlock with
2416 * smp_call_function() if an IPI is sent by the same process we are
2417 * waiting to become inactive.
2419 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2421 unsigned long flags;
2422 int running, on_rq;
2423 unsigned long ncsw;
2424 struct rq *rq;
2426 for (;;) {
2428 * We do the initial early heuristics without holding
2429 * any task-queue locks at all. We'll only try to get
2430 * the runqueue lock when things look like they will
2431 * work out!
2433 rq = task_rq(p);
2436 * If the task is actively running on another CPU
2437 * still, just relax and busy-wait without holding
2438 * any locks.
2440 * NOTE! Since we don't hold any locks, it's not
2441 * even sure that "rq" stays as the right runqueue!
2442 * But we don't care, since "task_running()" will
2443 * return false if the runqueue has changed and p
2444 * is actually now running somewhere else!
2446 while (task_running(rq, p)) {
2447 if (match_state && unlikely(p->state != match_state))
2448 return 0;
2449 cpu_relax();
2453 * Ok, time to look more closely! We need the rq
2454 * lock now, to be *sure*. If we're wrong, we'll
2455 * just go back and repeat.
2457 rq = task_rq_lock(p, &flags);
2458 trace_sched_wait_task(p);
2459 running = task_running(rq, p);
2460 on_rq = p->on_rq;
2461 ncsw = 0;
2462 if (!match_state || p->state == match_state)
2463 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2464 task_rq_unlock(rq, p, &flags);
2467 * If it changed from the expected state, bail out now.
2469 if (unlikely(!ncsw))
2470 break;
2473 * Was it really running after all now that we
2474 * checked with the proper locks actually held?
2476 * Oops. Go back and try again..
2478 if (unlikely(running)) {
2479 cpu_relax();
2480 continue;
2484 * It's not enough that it's not actively running,
2485 * it must be off the runqueue _entirely_, and not
2486 * preempted!
2488 * So if it was still runnable (but just not actively
2489 * running right now), it's preempted, and we should
2490 * yield - it could be a while.
2492 if (unlikely(on_rq)) {
2493 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
2495 set_current_state(TASK_UNINTERRUPTIBLE);
2496 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2497 continue;
2501 * Ahh, all good. It wasn't running, and it wasn't
2502 * runnable, which means that it will never become
2503 * running in the future either. We're all done!
2505 break;
2508 return ncsw;
2511 /***
2512 * kick_process - kick a running thread to enter/exit the kernel
2513 * @p: the to-be-kicked thread
2515 * Cause a process which is running on another CPU to enter
2516 * kernel-mode, without any delay. (to get signals handled.)
2518 * NOTE: this function doesn't have to take the runqueue lock,
2519 * because all it wants to ensure is that the remote task enters
2520 * the kernel. If the IPI races and the task has been migrated
2521 * to another CPU then no harm is done and the purpose has been
2522 * achieved as well.
2524 void kick_process(struct task_struct *p)
2526 int cpu;
2528 preempt_disable();
2529 cpu = task_cpu(p);
2530 if ((cpu != smp_processor_id()) && task_curr(p))
2531 smp_send_reschedule(cpu);
2532 preempt_enable();
2534 EXPORT_SYMBOL_GPL(kick_process);
2535 #endif /* CONFIG_SMP */
2537 #ifdef CONFIG_SMP
2539 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
2541 static int select_fallback_rq(int cpu, struct task_struct *p)
2543 int dest_cpu;
2544 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2546 /* Look for allowed, online CPU in same node. */
2547 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2548 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
2549 return dest_cpu;
2551 /* Any allowed, online CPU? */
2552 dest_cpu = cpumask_any_and(tsk_cpus_allowed(p), cpu_active_mask);
2553 if (dest_cpu < nr_cpu_ids)
2554 return dest_cpu;
2556 /* No more Mr. Nice Guy. */
2557 dest_cpu = cpuset_cpus_allowed_fallback(p);
2559 * Don't tell them about moving exiting tasks or
2560 * kernel threads (both mm NULL), since they never
2561 * leave kernel.
2563 if (p->mm && printk_ratelimit()) {
2564 printk(KERN_INFO "process %d (%s) no longer affine to cpu%d\n",
2565 task_pid_nr(p), p->comm, cpu);
2568 return dest_cpu;
2572 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
2574 static inline
2575 int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
2577 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
2580 * In order not to call set_task_cpu() on a blocking task we need
2581 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2582 * cpu.
2584 * Since this is common to all placement strategies, this lives here.
2586 * [ this allows ->select_task() to simply return task_cpu(p) and
2587 * not worry about this generic constraint ]
2589 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
2590 !cpu_online(cpu)))
2591 cpu = select_fallback_rq(task_cpu(p), p);
2593 return cpu;
2596 static void update_avg(u64 *avg, u64 sample)
2598 s64 diff = sample - *avg;
2599 *avg += diff >> 3;
2601 #endif
2603 static void
2604 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2606 #ifdef CONFIG_SCHEDSTATS
2607 struct rq *rq = this_rq();
2609 #ifdef CONFIG_SMP
2610 int this_cpu = smp_processor_id();
2612 if (cpu == this_cpu) {
2613 schedstat_inc(rq, ttwu_local);
2614 schedstat_inc(p, se.statistics.nr_wakeups_local);
2615 } else {
2616 struct sched_domain *sd;
2618 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2619 rcu_read_lock();
2620 for_each_domain(this_cpu, sd) {
2621 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2622 schedstat_inc(sd, ttwu_wake_remote);
2623 break;
2626 rcu_read_unlock();
2629 if (wake_flags & WF_MIGRATED)
2630 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2632 #endif /* CONFIG_SMP */
2634 schedstat_inc(rq, ttwu_count);
2635 schedstat_inc(p, se.statistics.nr_wakeups);
2637 if (wake_flags & WF_SYNC)
2638 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2640 #endif /* CONFIG_SCHEDSTATS */
2643 static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
2645 activate_task(rq, p, en_flags);
2646 p->on_rq = 1;
2648 /* if a worker is waking up, notify workqueue */
2649 if (p->flags & PF_WQ_WORKER)
2650 wq_worker_waking_up(p, cpu_of(rq));
2654 * Mark the task runnable and perform wakeup-preemption.
2656 static void
2657 ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
2659 trace_sched_wakeup(p, true);
2660 check_preempt_curr(rq, p, wake_flags);
2662 p->state = TASK_RUNNING;
2663 #ifdef CONFIG_SMP
2664 if (p->sched_class->task_woken)
2665 p->sched_class->task_woken(rq, p);
2667 if (rq->idle_stamp) {
2668 u64 delta = rq->clock - rq->idle_stamp;
2669 u64 max = 2*sysctl_sched_migration_cost;
2671 if (delta > max)
2672 rq->avg_idle = max;
2673 else
2674 update_avg(&rq->avg_idle, delta);
2675 rq->idle_stamp = 0;
2677 #endif
2680 static void
2681 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
2683 #ifdef CONFIG_SMP
2684 if (p->sched_contributes_to_load)
2685 rq->nr_uninterruptible--;
2686 #endif
2688 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
2689 ttwu_do_wakeup(rq, p, wake_flags);
2693 * Called in case the task @p isn't fully descheduled from its runqueue,
2694 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
2695 * since all we need to do is flip p->state to TASK_RUNNING, since
2696 * the task is still ->on_rq.
2698 static int ttwu_remote(struct task_struct *p, int wake_flags)
2700 struct rq *rq;
2701 int ret = 0;
2703 rq = __task_rq_lock(p);
2704 if (p->on_rq) {
2705 ttwu_do_wakeup(rq, p, wake_flags);
2706 ret = 1;
2708 __task_rq_unlock(rq);
2710 return ret;
2713 #ifdef CONFIG_SMP
2714 static void sched_ttwu_pending(void)
2716 struct rq *rq = this_rq();
2717 struct llist_node *llist = llist_del_all(&rq->wake_list);
2718 struct task_struct *p;
2720 raw_spin_lock(&rq->lock);
2722 while (llist) {
2723 p = llist_entry(llist, struct task_struct, wake_entry);
2724 llist = llist_next(llist);
2725 ttwu_do_activate(rq, p, 0);
2728 raw_spin_unlock(&rq->lock);
2731 void scheduler_ipi(void)
2733 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
2734 return;
2737 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
2738 * traditionally all their work was done from the interrupt return
2739 * path. Now that we actually do some work, we need to make sure
2740 * we do call them.
2742 * Some archs already do call them, luckily irq_enter/exit nest
2743 * properly.
2745 * Arguably we should visit all archs and update all handlers,
2746 * however a fair share of IPIs are still resched only so this would
2747 * somewhat pessimize the simple resched case.
2749 irq_enter();
2750 sched_ttwu_pending();
2753 * Check if someone kicked us for doing the nohz idle load balance.
2755 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
2756 this_rq()->idle_balance = 1;
2757 raise_softirq_irqoff(SCHED_SOFTIRQ);
2759 irq_exit();
2762 static void ttwu_queue_remote(struct task_struct *p, int cpu)
2764 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
2765 smp_send_reschedule(cpu);
2768 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2769 static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
2771 struct rq *rq;
2772 int ret = 0;
2774 rq = __task_rq_lock(p);
2775 if (p->on_cpu) {
2776 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2777 ttwu_do_wakeup(rq, p, wake_flags);
2778 ret = 1;
2780 __task_rq_unlock(rq);
2782 return ret;
2785 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2786 #endif /* CONFIG_SMP */
2788 static void ttwu_queue(struct task_struct *p, int cpu)
2790 struct rq *rq = cpu_rq(cpu);
2792 #if defined(CONFIG_SMP)
2793 if (sched_feat(TTWU_QUEUE) && cpu != smp_processor_id()) {
2794 sched_clock_cpu(cpu); /* sync clocks x-cpu */
2795 ttwu_queue_remote(p, cpu);
2796 return;
2798 #endif
2800 raw_spin_lock(&rq->lock);
2801 ttwu_do_activate(rq, p, 0);
2802 raw_spin_unlock(&rq->lock);
2806 * try_to_wake_up - wake up a thread
2807 * @p: the thread to be awakened
2808 * @state: the mask of task states that can be woken
2809 * @wake_flags: wake modifier flags (WF_*)
2811 * Put it on the run-queue if it's not already there. The "current"
2812 * thread is always on the run-queue (except when the actual
2813 * re-schedule is in progress), and as such you're allowed to do
2814 * the simpler "current->state = TASK_RUNNING" to mark yourself
2815 * runnable without the overhead of this.
2817 * Returns %true if @p was woken up, %false if it was already running
2818 * or @state didn't match @p's state.
2820 static int
2821 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2823 unsigned long flags;
2824 int cpu, success = 0;
2826 smp_wmb();
2827 raw_spin_lock_irqsave(&p->pi_lock, flags);
2828 if (!(p->state & state))
2829 goto out;
2831 success = 1; /* we're going to change ->state */
2832 cpu = task_cpu(p);
2834 if (p->on_rq && ttwu_remote(p, wake_flags))
2835 goto stat;
2837 #ifdef CONFIG_SMP
2839 * If the owning (remote) cpu is still in the middle of schedule() with
2840 * this task as prev, wait until its done referencing the task.
2842 while (p->on_cpu) {
2843 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2845 * In case the architecture enables interrupts in
2846 * context_switch(), we cannot busy wait, since that
2847 * would lead to deadlocks when an interrupt hits and
2848 * tries to wake up @prev. So bail and do a complete
2849 * remote wakeup.
2851 if (ttwu_activate_remote(p, wake_flags))
2852 goto stat;
2853 #else
2854 cpu_relax();
2855 #endif
2858 * Pairs with the smp_wmb() in finish_lock_switch().
2860 smp_rmb();
2862 p->sched_contributes_to_load = !!task_contributes_to_load(p);
2863 p->state = TASK_WAKING;
2865 if (p->sched_class->task_waking)
2866 p->sched_class->task_waking(p);
2868 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
2869 if (task_cpu(p) != cpu) {
2870 wake_flags |= WF_MIGRATED;
2871 set_task_cpu(p, cpu);
2873 #endif /* CONFIG_SMP */
2875 ttwu_queue(p, cpu);
2876 stat:
2877 ttwu_stat(p, cpu, wake_flags);
2878 out:
2879 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2881 return success;
2885 * try_to_wake_up_local - try to wake up a local task with rq lock held
2886 * @p: the thread to be awakened
2888 * Put @p on the run-queue if it's not already there. The caller must
2889 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2890 * the current task.
2892 static void try_to_wake_up_local(struct task_struct *p)
2894 struct rq *rq = task_rq(p);
2896 BUG_ON(rq != this_rq());
2897 BUG_ON(p == current);
2898 lockdep_assert_held(&rq->lock);
2900 if (!raw_spin_trylock(&p->pi_lock)) {
2901 raw_spin_unlock(&rq->lock);
2902 raw_spin_lock(&p->pi_lock);
2903 raw_spin_lock(&rq->lock);
2906 if (!(p->state & TASK_NORMAL))
2907 goto out;
2909 if (!p->on_rq)
2910 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2912 ttwu_do_wakeup(rq, p, 0);
2913 ttwu_stat(p, smp_processor_id(), 0);
2914 out:
2915 raw_spin_unlock(&p->pi_lock);
2919 * wake_up_process - Wake up a specific process
2920 * @p: The process to be woken up.
2922 * Attempt to wake up the nominated process and move it to the set of runnable
2923 * processes. Returns 1 if the process was woken up, 0 if it was already
2924 * running.
2926 * It may be assumed that this function implies a write memory barrier before
2927 * changing the task state if and only if any tasks are woken up.
2929 int wake_up_process(struct task_struct *p)
2931 return try_to_wake_up(p, TASK_ALL, 0);
2933 EXPORT_SYMBOL(wake_up_process);
2935 int wake_up_state(struct task_struct *p, unsigned int state)
2937 return try_to_wake_up(p, state, 0);
2941 * Perform scheduler related setup for a newly forked process p.
2942 * p is forked by current.
2944 * __sched_fork() is basic setup used by init_idle() too:
2946 static void __sched_fork(struct task_struct *p)
2948 p->on_rq = 0;
2950 p->se.on_rq = 0;
2951 p->se.exec_start = 0;
2952 p->se.sum_exec_runtime = 0;
2953 p->se.prev_sum_exec_runtime = 0;
2954 p->se.nr_migrations = 0;
2955 p->se.vruntime = 0;
2956 INIT_LIST_HEAD(&p->se.group_node);
2958 #ifdef CONFIG_SCHEDSTATS
2959 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2960 #endif
2962 INIT_LIST_HEAD(&p->rt.run_list);
2964 #ifdef CONFIG_PREEMPT_NOTIFIERS
2965 INIT_HLIST_HEAD(&p->preempt_notifiers);
2966 #endif
2970 * fork()/clone()-time setup:
2972 void sched_fork(struct task_struct *p)
2974 unsigned long flags;
2975 int cpu = get_cpu();
2977 __sched_fork(p);
2979 * We mark the process as running here. This guarantees that
2980 * nobody will actually run it, and a signal or other external
2981 * event cannot wake it up and insert it on the runqueue either.
2983 p->state = TASK_RUNNING;
2986 * Make sure we do not leak PI boosting priority to the child.
2988 p->prio = current->normal_prio;
2991 * Revert to default priority/policy on fork if requested.
2993 if (unlikely(p->sched_reset_on_fork)) {
2994 if (task_has_rt_policy(p)) {
2995 p->policy = SCHED_NORMAL;
2996 p->static_prio = NICE_TO_PRIO(0);
2997 p->rt_priority = 0;
2998 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2999 p->static_prio = NICE_TO_PRIO(0);
3001 p->prio = p->normal_prio = __normal_prio(p);
3002 set_load_weight(p);
3005 * We don't need the reset flag anymore after the fork. It has
3006 * fulfilled its duty:
3008 p->sched_reset_on_fork = 0;
3011 if (!rt_prio(p->prio))
3012 p->sched_class = &fair_sched_class;
3014 if (p->sched_class->task_fork)
3015 p->sched_class->task_fork(p);
3018 * The child is not yet in the pid-hash so no cgroup attach races,
3019 * and the cgroup is pinned to this child due to cgroup_fork()
3020 * is ran before sched_fork().
3022 * Silence PROVE_RCU.
3024 raw_spin_lock_irqsave(&p->pi_lock, flags);
3025 set_task_cpu(p, cpu);
3026 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3028 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
3029 if (likely(sched_info_on()))
3030 memset(&p->sched_info, 0, sizeof(p->sched_info));
3031 #endif
3032 #if defined(CONFIG_SMP)
3033 p->on_cpu = 0;
3034 #endif
3035 #ifdef CONFIG_PREEMPT_COUNT
3036 /* Want to start with kernel preemption disabled. */
3037 task_thread_info(p)->preempt_count = 1;
3038 #endif
3039 #ifdef CONFIG_SMP
3040 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3041 #endif
3043 put_cpu();
3047 * wake_up_new_task - wake up a newly created task for the first time.
3049 * This function will do some initial scheduler statistics housekeeping
3050 * that must be done for every newly created context, then puts the task
3051 * on the runqueue and wakes it.
3053 void wake_up_new_task(struct task_struct *p)
3055 unsigned long flags;
3056 struct rq *rq;
3058 raw_spin_lock_irqsave(&p->pi_lock, flags);
3059 #ifdef CONFIG_SMP
3061 * Fork balancing, do it here and not earlier because:
3062 * - cpus_allowed can change in the fork path
3063 * - any previously selected cpu might disappear through hotplug
3065 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
3066 #endif
3068 rq = __task_rq_lock(p);
3069 activate_task(rq, p, 0);
3070 p->on_rq = 1;
3071 trace_sched_wakeup_new(p, true);
3072 check_preempt_curr(rq, p, WF_FORK);
3073 #ifdef CONFIG_SMP
3074 if (p->sched_class->task_woken)
3075 p->sched_class->task_woken(rq, p);
3076 #endif
3077 task_rq_unlock(rq, p, &flags);
3080 #ifdef CONFIG_PREEMPT_NOTIFIERS
3083 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3084 * @notifier: notifier struct to register
3086 void preempt_notifier_register(struct preempt_notifier *notifier)
3088 hlist_add_head(&notifier->link, &current->preempt_notifiers);
3090 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3093 * preempt_notifier_unregister - no longer interested in preemption notifications
3094 * @notifier: notifier struct to unregister
3096 * This is safe to call from within a preemption notifier.
3098 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3100 hlist_del(&notifier->link);
3102 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3104 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3106 struct preempt_notifier *notifier;
3107 struct hlist_node *node;
3109 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3110 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3113 static void
3114 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3115 struct task_struct *next)
3117 struct preempt_notifier *notifier;
3118 struct hlist_node *node;
3120 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
3121 notifier->ops->sched_out(notifier, next);
3124 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3126 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3130 static void
3131 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3132 struct task_struct *next)
3136 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3139 * prepare_task_switch - prepare to switch tasks
3140 * @rq: the runqueue preparing to switch
3141 * @prev: the current task that is being switched out
3142 * @next: the task we are going to switch to.
3144 * This is called with the rq lock held and interrupts off. It must
3145 * be paired with a subsequent finish_task_switch after the context
3146 * switch.
3148 * prepare_task_switch sets up locking and calls architecture specific
3149 * hooks.
3151 static inline void
3152 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3153 struct task_struct *next)
3155 sched_info_switch(prev, next);
3156 perf_event_task_sched_out(prev, next);
3157 fire_sched_out_preempt_notifiers(prev, next);
3158 prepare_lock_switch(rq, next);
3159 prepare_arch_switch(next);
3160 trace_sched_switch(prev, next);
3164 * finish_task_switch - clean up after a task-switch
3165 * @rq: runqueue associated with task-switch
3166 * @prev: the thread we just switched away from.
3168 * finish_task_switch must be called after the context switch, paired
3169 * with a prepare_task_switch call before the context switch.
3170 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3171 * and do any other architecture-specific cleanup actions.
3173 * Note that we may have delayed dropping an mm in context_switch(). If
3174 * so, we finish that here outside of the runqueue lock. (Doing it
3175 * with the lock held can cause deadlocks; see schedule() for
3176 * details.)
3178 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
3179 __releases(rq->lock)
3181 struct mm_struct *mm = rq->prev_mm;
3182 long prev_state;
3184 rq->prev_mm = NULL;
3187 * A task struct has one reference for the use as "current".
3188 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3189 * schedule one last time. The schedule call will never return, and
3190 * the scheduled task must drop that reference.
3191 * The test for TASK_DEAD must occur while the runqueue locks are
3192 * still held, otherwise prev could be scheduled on another cpu, die
3193 * there before we look at prev->state, and then the reference would
3194 * be dropped twice.
3195 * Manfred Spraul <manfred@colorfullife.com>
3197 prev_state = prev->state;
3198 finish_arch_switch(prev);
3199 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3200 local_irq_disable();
3201 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3202 perf_event_task_sched_in(prev, current);
3203 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
3204 local_irq_enable();
3205 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
3206 finish_lock_switch(rq, prev);
3208 fire_sched_in_preempt_notifiers(current);
3209 if (mm)
3210 mmdrop(mm);
3211 if (unlikely(prev_state == TASK_DEAD)) {
3213 * Remove function-return probe instances associated with this
3214 * task and put them back on the free list.
3216 kprobe_flush_task(prev);
3217 put_task_struct(prev);
3221 #ifdef CONFIG_SMP
3223 /* assumes rq->lock is held */
3224 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
3226 if (prev->sched_class->pre_schedule)
3227 prev->sched_class->pre_schedule(rq, prev);
3230 /* rq->lock is NOT held, but preemption is disabled */
3231 static inline void post_schedule(struct rq *rq)
3233 if (rq->post_schedule) {
3234 unsigned long flags;
3236 raw_spin_lock_irqsave(&rq->lock, flags);
3237 if (rq->curr->sched_class->post_schedule)
3238 rq->curr->sched_class->post_schedule(rq);
3239 raw_spin_unlock_irqrestore(&rq->lock, flags);
3241 rq->post_schedule = 0;
3245 #else
3247 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
3251 static inline void post_schedule(struct rq *rq)
3255 #endif
3258 * schedule_tail - first thing a freshly forked thread must call.
3259 * @prev: the thread we just switched away from.
3261 asmlinkage void schedule_tail(struct task_struct *prev)
3262 __releases(rq->lock)
3264 struct rq *rq = this_rq();
3266 finish_task_switch(rq, prev);
3269 * FIXME: do we need to worry about rq being invalidated by the
3270 * task_switch?
3272 post_schedule(rq);
3274 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
3275 /* In this case, finish_task_switch does not reenable preemption */
3276 preempt_enable();
3277 #endif
3278 if (current->set_child_tid)
3279 put_user(task_pid_vnr(current), current->set_child_tid);
3283 * context_switch - switch to the new MM and the new
3284 * thread's register state.
3286 static inline void
3287 context_switch(struct rq *rq, struct task_struct *prev,
3288 struct task_struct *next)
3290 struct mm_struct *mm, *oldmm;
3292 prepare_task_switch(rq, prev, next);
3294 mm = next->mm;
3295 oldmm = prev->active_mm;
3297 * For paravirt, this is coupled with an exit in switch_to to
3298 * combine the page table reload and the switch backend into
3299 * one hypercall.
3301 arch_start_context_switch(prev);
3303 if (!mm) {
3304 next->active_mm = oldmm;
3305 atomic_inc(&oldmm->mm_count);
3306 enter_lazy_tlb(oldmm, next);
3307 } else
3308 switch_mm(oldmm, mm, next);
3310 if (!prev->mm) {
3311 prev->active_mm = NULL;
3312 rq->prev_mm = oldmm;
3315 * Since the runqueue lock will be released by the next
3316 * task (which is an invalid locking op but in the case
3317 * of the scheduler it's an obvious special-case), so we
3318 * do an early lockdep release here:
3320 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
3321 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3322 #endif
3324 /* Here we just switch the register state and the stack. */
3325 switch_to(prev, next, prev);
3327 barrier();
3329 * this_rq must be evaluated again because prev may have moved
3330 * CPUs since it called schedule(), thus the 'rq' on its stack
3331 * frame will be invalid.
3333 finish_task_switch(this_rq(), prev);
3337 * nr_running, nr_uninterruptible and nr_context_switches:
3339 * externally visible scheduler statistics: current number of runnable
3340 * threads, current number of uninterruptible-sleeping threads, total
3341 * number of context switches performed since bootup.
3343 unsigned long nr_running(void)
3345 unsigned long i, sum = 0;
3347 for_each_online_cpu(i)
3348 sum += cpu_rq(i)->nr_running;
3350 return sum;
3353 unsigned long nr_uninterruptible(void)
3355 unsigned long i, sum = 0;
3357 for_each_possible_cpu(i)
3358 sum += cpu_rq(i)->nr_uninterruptible;
3361 * Since we read the counters lockless, it might be slightly
3362 * inaccurate. Do not allow it to go below zero though:
3364 if (unlikely((long)sum < 0))
3365 sum = 0;
3367 return sum;
3370 unsigned long long nr_context_switches(void)
3372 int i;
3373 unsigned long long sum = 0;
3375 for_each_possible_cpu(i)
3376 sum += cpu_rq(i)->nr_switches;
3378 return sum;
3381 unsigned long nr_iowait(void)
3383 unsigned long i, sum = 0;
3385 for_each_possible_cpu(i)
3386 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3388 return sum;
3391 unsigned long nr_iowait_cpu(int cpu)
3393 struct rq *this = cpu_rq(cpu);
3394 return atomic_read(&this->nr_iowait);
3397 unsigned long this_cpu_load(void)
3399 struct rq *this = this_rq();
3400 return this->cpu_load[0];
3404 /* Variables and functions for calc_load */
3405 static atomic_long_t calc_load_tasks;
3406 static unsigned long calc_load_update;
3407 unsigned long avenrun[3];
3408 EXPORT_SYMBOL(avenrun);
3410 static long calc_load_fold_active(struct rq *this_rq)
3412 long nr_active, delta = 0;
3414 nr_active = this_rq->nr_running;
3415 nr_active += (long) this_rq->nr_uninterruptible;
3417 if (nr_active != this_rq->calc_load_active) {
3418 delta = nr_active - this_rq->calc_load_active;
3419 this_rq->calc_load_active = nr_active;
3422 return delta;
3425 static unsigned long
3426 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3428 load *= exp;
3429 load += active * (FIXED_1 - exp);
3430 load += 1UL << (FSHIFT - 1);
3431 return load >> FSHIFT;
3434 #ifdef CONFIG_NO_HZ
3436 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
3438 * When making the ILB scale, we should try to pull this in as well.
3440 static atomic_long_t calc_load_tasks_idle;
3442 static void calc_load_account_idle(struct rq *this_rq)
3444 long delta;
3446 delta = calc_load_fold_active(this_rq);
3447 if (delta)
3448 atomic_long_add(delta, &calc_load_tasks_idle);
3451 static long calc_load_fold_idle(void)
3453 long delta = 0;
3456 * Its got a race, we don't care...
3458 if (atomic_long_read(&calc_load_tasks_idle))
3459 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
3461 return delta;
3465 * fixed_power_int - compute: x^n, in O(log n) time
3467 * @x: base of the power
3468 * @frac_bits: fractional bits of @x
3469 * @n: power to raise @x to.
3471 * By exploiting the relation between the definition of the natural power
3472 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
3473 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
3474 * (where: n_i \elem {0, 1}, the binary vector representing n),
3475 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
3476 * of course trivially computable in O(log_2 n), the length of our binary
3477 * vector.
3479 static unsigned long
3480 fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
3482 unsigned long result = 1UL << frac_bits;
3484 if (n) for (;;) {
3485 if (n & 1) {
3486 result *= x;
3487 result += 1UL << (frac_bits - 1);
3488 result >>= frac_bits;
3490 n >>= 1;
3491 if (!n)
3492 break;
3493 x *= x;
3494 x += 1UL << (frac_bits - 1);
3495 x >>= frac_bits;
3498 return result;
3502 * a1 = a0 * e + a * (1 - e)
3504 * a2 = a1 * e + a * (1 - e)
3505 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
3506 * = a0 * e^2 + a * (1 - e) * (1 + e)
3508 * a3 = a2 * e + a * (1 - e)
3509 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
3510 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
3512 * ...
3514 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
3515 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
3516 * = a0 * e^n + a * (1 - e^n)
3518 * [1] application of the geometric series:
3520 * n 1 - x^(n+1)
3521 * S_n := \Sum x^i = -------------
3522 * i=0 1 - x
3524 static unsigned long
3525 calc_load_n(unsigned long load, unsigned long exp,
3526 unsigned long active, unsigned int n)
3529 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
3533 * NO_HZ can leave us missing all per-cpu ticks calling
3534 * calc_load_account_active(), but since an idle CPU folds its delta into
3535 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
3536 * in the pending idle delta if our idle period crossed a load cycle boundary.
3538 * Once we've updated the global active value, we need to apply the exponential
3539 * weights adjusted to the number of cycles missed.
3541 static void calc_global_nohz(void)
3543 long delta, active, n;
3546 * If we crossed a calc_load_update boundary, make sure to fold
3547 * any pending idle changes, the respective CPUs might have
3548 * missed the tick driven calc_load_account_active() update
3549 * due to NO_HZ.
3551 delta = calc_load_fold_idle();
3552 if (delta)
3553 atomic_long_add(delta, &calc_load_tasks);
3556 * It could be the one fold was all it took, we done!
3558 if (time_before(jiffies, calc_load_update + 10))
3559 return;
3562 * Catch-up, fold however many we are behind still
3564 delta = jiffies - calc_load_update - 10;
3565 n = 1 + (delta / LOAD_FREQ);
3567 active = atomic_long_read(&calc_load_tasks);
3568 active = active > 0 ? active * FIXED_1 : 0;
3570 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
3571 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
3572 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
3574 calc_load_update += n * LOAD_FREQ;
3576 #else
3577 static void calc_load_account_idle(struct rq *this_rq)
3581 static inline long calc_load_fold_idle(void)
3583 return 0;
3586 static void calc_global_nohz(void)
3589 #endif
3592 * get_avenrun - get the load average array
3593 * @loads: pointer to dest load array
3594 * @offset: offset to add
3595 * @shift: shift count to shift the result left
3597 * These values are estimates at best, so no need for locking.
3599 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3601 loads[0] = (avenrun[0] + offset) << shift;
3602 loads[1] = (avenrun[1] + offset) << shift;
3603 loads[2] = (avenrun[2] + offset) << shift;
3607 * calc_load - update the avenrun load estimates 10 ticks after the
3608 * CPUs have updated calc_load_tasks.
3610 void calc_global_load(unsigned long ticks)
3612 long active;
3614 if (time_before(jiffies, calc_load_update + 10))
3615 return;
3617 active = atomic_long_read(&calc_load_tasks);
3618 active = active > 0 ? active * FIXED_1 : 0;
3620 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3621 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3622 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3624 calc_load_update += LOAD_FREQ;
3627 * Account one period with whatever state we found before
3628 * folding in the nohz state and ageing the entire idle period.
3630 * This avoids loosing a sample when we go idle between
3631 * calc_load_account_active() (10 ticks ago) and now and thus
3632 * under-accounting.
3634 calc_global_nohz();
3638 * Called from update_cpu_load() to periodically update this CPU's
3639 * active count.
3641 static void calc_load_account_active(struct rq *this_rq)
3643 long delta;
3645 if (time_before(jiffies, this_rq->calc_load_update))
3646 return;
3648 delta = calc_load_fold_active(this_rq);
3649 delta += calc_load_fold_idle();
3650 if (delta)
3651 atomic_long_add(delta, &calc_load_tasks);
3653 this_rq->calc_load_update += LOAD_FREQ;
3657 * The exact cpuload at various idx values, calculated at every tick would be
3658 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3660 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3661 * on nth tick when cpu may be busy, then we have:
3662 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3663 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3665 * decay_load_missed() below does efficient calculation of
3666 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3667 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3669 * The calculation is approximated on a 128 point scale.
3670 * degrade_zero_ticks is the number of ticks after which load at any
3671 * particular idx is approximated to be zero.
3672 * degrade_factor is a precomputed table, a row for each load idx.
3673 * Each column corresponds to degradation factor for a power of two ticks,
3674 * based on 128 point scale.
3675 * Example:
3676 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3677 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3679 * With this power of 2 load factors, we can degrade the load n times
3680 * by looking at 1 bits in n and doing as many mult/shift instead of
3681 * n mult/shifts needed by the exact degradation.
3683 #define DEGRADE_SHIFT 7
3684 static const unsigned char
3685 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
3686 static const unsigned char
3687 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
3688 {0, 0, 0, 0, 0, 0, 0, 0},
3689 {64, 32, 8, 0, 0, 0, 0, 0},
3690 {96, 72, 40, 12, 1, 0, 0},
3691 {112, 98, 75, 43, 15, 1, 0},
3692 {120, 112, 98, 76, 45, 16, 2} };
3695 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3696 * would be when CPU is idle and so we just decay the old load without
3697 * adding any new load.
3699 static unsigned long
3700 decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
3702 int j = 0;
3704 if (!missed_updates)
3705 return load;
3707 if (missed_updates >= degrade_zero_ticks[idx])
3708 return 0;
3710 if (idx == 1)
3711 return load >> missed_updates;
3713 while (missed_updates) {
3714 if (missed_updates % 2)
3715 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
3717 missed_updates >>= 1;
3718 j++;
3720 return load;
3724 * Update rq->cpu_load[] statistics. This function is usually called every
3725 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3726 * every tick. We fix it up based on jiffies.
3728 static void update_cpu_load(struct rq *this_rq)
3730 unsigned long this_load = this_rq->load.weight;
3731 unsigned long curr_jiffies = jiffies;
3732 unsigned long pending_updates;
3733 int i, scale;
3735 this_rq->nr_load_updates++;
3737 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3738 if (curr_jiffies == this_rq->last_load_update_tick)
3739 return;
3741 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
3742 this_rq->last_load_update_tick = curr_jiffies;
3744 /* Update our load: */
3745 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
3746 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3747 unsigned long old_load, new_load;
3749 /* scale is effectively 1 << i now, and >> i divides by scale */
3751 old_load = this_rq->cpu_load[i];
3752 old_load = decay_load_missed(old_load, pending_updates - 1, i);
3753 new_load = this_load;
3755 * Round up the averaging division if load is increasing. This
3756 * prevents us from getting stuck on 9 if the load is 10, for
3757 * example.
3759 if (new_load > old_load)
3760 new_load += scale - 1;
3762 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
3765 sched_avg_update(this_rq);
3768 static void update_cpu_load_active(struct rq *this_rq)
3770 update_cpu_load(this_rq);
3772 calc_load_account_active(this_rq);
3775 #ifdef CONFIG_SMP
3778 * sched_exec - execve() is a valuable balancing opportunity, because at
3779 * this point the task has the smallest effective memory and cache footprint.
3781 void sched_exec(void)
3783 struct task_struct *p = current;
3784 unsigned long flags;
3785 int dest_cpu;
3787 raw_spin_lock_irqsave(&p->pi_lock, flags);
3788 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
3789 if (dest_cpu == smp_processor_id())
3790 goto unlock;
3792 if (likely(cpu_active(dest_cpu))) {
3793 struct migration_arg arg = { p, dest_cpu };
3795 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3796 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
3797 return;
3799 unlock:
3800 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3803 #endif
3805 DEFINE_PER_CPU(struct kernel_stat, kstat);
3807 EXPORT_PER_CPU_SYMBOL(kstat);
3810 * Return any ns on the sched_clock that have not yet been accounted in
3811 * @p in case that task is currently running.
3813 * Called with task_rq_lock() held on @rq.
3815 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3817 u64 ns = 0;
3819 if (task_current(rq, p)) {
3820 update_rq_clock(rq);
3821 ns = rq->clock_task - p->se.exec_start;
3822 if ((s64)ns < 0)
3823 ns = 0;
3826 return ns;
3829 unsigned long long task_delta_exec(struct task_struct *p)
3831 unsigned long flags;
3832 struct rq *rq;
3833 u64 ns = 0;
3835 rq = task_rq_lock(p, &flags);
3836 ns = do_task_delta_exec(p, rq);
3837 task_rq_unlock(rq, p, &flags);
3839 return ns;
3843 * Return accounted runtime for the task.
3844 * In case the task is currently running, return the runtime plus current's
3845 * pending runtime that have not been accounted yet.
3847 unsigned long long task_sched_runtime(struct task_struct *p)
3849 unsigned long flags;
3850 struct rq *rq;
3851 u64 ns = 0;
3853 rq = task_rq_lock(p, &flags);
3854 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3855 task_rq_unlock(rq, p, &flags);
3857 return ns;
3861 * Account user cpu time to a process.
3862 * @p: the process that the cpu time gets accounted to
3863 * @cputime: the cpu time spent in user space since the last update
3864 * @cputime_scaled: cputime scaled by cpu frequency
3866 void account_user_time(struct task_struct *p, cputime_t cputime,
3867 cputime_t cputime_scaled)
3869 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3870 cputime64_t tmp;
3872 /* Add user time to process. */
3873 p->utime = cputime_add(p->utime, cputime);
3874 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3875 account_group_user_time(p, cputime);
3877 /* Add user time to cpustat. */
3878 tmp = cputime_to_cputime64(cputime);
3879 if (TASK_NICE(p) > 0)
3880 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3881 else
3882 cpustat->user = cputime64_add(cpustat->user, tmp);
3884 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3885 /* Account for user time used */
3886 acct_update_integrals(p);
3890 * Account guest cpu time to a process.
3891 * @p: the process that the cpu time gets accounted to
3892 * @cputime: the cpu time spent in virtual machine since the last update
3893 * @cputime_scaled: cputime scaled by cpu frequency
3895 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3896 cputime_t cputime_scaled)
3898 cputime64_t tmp;
3899 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3901 tmp = cputime_to_cputime64(cputime);
3903 /* Add guest time to process. */
3904 p->utime = cputime_add(p->utime, cputime);
3905 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3906 account_group_user_time(p, cputime);
3907 p->gtime = cputime_add(p->gtime, cputime);
3909 /* Add guest time to cpustat. */
3910 if (TASK_NICE(p) > 0) {
3911 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3912 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3913 } else {
3914 cpustat->user = cputime64_add(cpustat->user, tmp);
3915 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3920 * Account system cpu time to a process and desired cpustat field
3921 * @p: the process that the cpu time gets accounted to
3922 * @cputime: the cpu time spent in kernel space since the last update
3923 * @cputime_scaled: cputime scaled by cpu frequency
3924 * @target_cputime64: pointer to cpustat field that has to be updated
3926 static inline
3927 void __account_system_time(struct task_struct *p, cputime_t cputime,
3928 cputime_t cputime_scaled, cputime64_t *target_cputime64)
3930 cputime64_t tmp = cputime_to_cputime64(cputime);
3932 /* Add system time to process. */
3933 p->stime = cputime_add(p->stime, cputime);
3934 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3935 account_group_system_time(p, cputime);
3937 /* Add system time to cpustat. */
3938 *target_cputime64 = cputime64_add(*target_cputime64, tmp);
3939 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3941 /* Account for system time used */
3942 acct_update_integrals(p);
3946 * Account system cpu time to a process.
3947 * @p: the process that the cpu time gets accounted to
3948 * @hardirq_offset: the offset to subtract from hardirq_count()
3949 * @cputime: the cpu time spent in kernel space since the last update
3950 * @cputime_scaled: cputime scaled by cpu frequency
3952 void account_system_time(struct task_struct *p, int hardirq_offset,
3953 cputime_t cputime, cputime_t cputime_scaled)
3955 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3956 cputime64_t *target_cputime64;
3958 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3959 account_guest_time(p, cputime, cputime_scaled);
3960 return;
3963 if (hardirq_count() - hardirq_offset)
3964 target_cputime64 = &cpustat->irq;
3965 else if (in_serving_softirq())
3966 target_cputime64 = &cpustat->softirq;
3967 else
3968 target_cputime64 = &cpustat->system;
3970 __account_system_time(p, cputime, cputime_scaled, target_cputime64);
3974 * Account for involuntary wait time.
3975 * @cputime: the cpu time spent in involuntary wait
3977 void account_steal_time(cputime_t cputime)
3979 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3980 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3982 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3986 * Account for idle time.
3987 * @cputime: the cpu time spent in idle wait
3989 void account_idle_time(cputime_t cputime)
3991 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3992 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3993 struct rq *rq = this_rq();
3995 if (atomic_read(&rq->nr_iowait) > 0)
3996 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3997 else
3998 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
4001 static __always_inline bool steal_account_process_tick(void)
4003 #ifdef CONFIG_PARAVIRT
4004 if (static_branch(&paravirt_steal_enabled)) {
4005 u64 steal, st = 0;
4007 steal = paravirt_steal_clock(smp_processor_id());
4008 steal -= this_rq()->prev_steal_time;
4010 st = steal_ticks(steal);
4011 this_rq()->prev_steal_time += st * TICK_NSEC;
4013 account_steal_time(st);
4014 return st;
4016 #endif
4017 return false;
4020 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
4022 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
4024 * Account a tick to a process and cpustat
4025 * @p: the process that the cpu time gets accounted to
4026 * @user_tick: is the tick from userspace
4027 * @rq: the pointer to rq
4029 * Tick demultiplexing follows the order
4030 * - pending hardirq update
4031 * - pending softirq update
4032 * - user_time
4033 * - idle_time
4034 * - system time
4035 * - check for guest_time
4036 * - else account as system_time
4038 * Check for hardirq is done both for system and user time as there is
4039 * no timer going off while we are on hardirq and hence we may never get an
4040 * opportunity to update it solely in system time.
4041 * p->stime and friends are only updated on system time and not on irq
4042 * softirq as those do not count in task exec_runtime any more.
4044 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4045 struct rq *rq)
4047 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4048 cputime64_t tmp = cputime_to_cputime64(cputime_one_jiffy);
4049 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4051 if (steal_account_process_tick())
4052 return;
4054 if (irqtime_account_hi_update()) {
4055 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4056 } else if (irqtime_account_si_update()) {
4057 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
4058 } else if (this_cpu_ksoftirqd() == p) {
4060 * ksoftirqd time do not get accounted in cpu_softirq_time.
4061 * So, we have to handle it separately here.
4062 * Also, p->stime needs to be updated for ksoftirqd.
4064 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4065 &cpustat->softirq);
4066 } else if (user_tick) {
4067 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4068 } else if (p == rq->idle) {
4069 account_idle_time(cputime_one_jiffy);
4070 } else if (p->flags & PF_VCPU) { /* System time or guest time */
4071 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
4072 } else {
4073 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
4074 &cpustat->system);
4078 static void irqtime_account_idle_ticks(int ticks)
4080 int i;
4081 struct rq *rq = this_rq();
4083 for (i = 0; i < ticks; i++)
4084 irqtime_account_process_tick(current, 0, rq);
4086 #else /* CONFIG_IRQ_TIME_ACCOUNTING */
4087 static void irqtime_account_idle_ticks(int ticks) {}
4088 static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
4089 struct rq *rq) {}
4090 #endif /* CONFIG_IRQ_TIME_ACCOUNTING */
4093 * Account a single tick of cpu time.
4094 * @p: the process that the cpu time gets accounted to
4095 * @user_tick: indicates if the tick is a user or a system tick
4097 void account_process_tick(struct task_struct *p, int user_tick)
4099 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
4100 struct rq *rq = this_rq();
4102 if (sched_clock_irqtime) {
4103 irqtime_account_process_tick(p, user_tick, rq);
4104 return;
4107 if (steal_account_process_tick())
4108 return;
4110 if (user_tick)
4111 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
4112 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
4113 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
4114 one_jiffy_scaled);
4115 else
4116 account_idle_time(cputime_one_jiffy);
4120 * Account multiple ticks of steal time.
4121 * @p: the process from which the cpu time has been stolen
4122 * @ticks: number of stolen ticks
4124 void account_steal_ticks(unsigned long ticks)
4126 account_steal_time(jiffies_to_cputime(ticks));
4130 * Account multiple ticks of idle time.
4131 * @ticks: number of stolen ticks
4133 void account_idle_ticks(unsigned long ticks)
4136 if (sched_clock_irqtime) {
4137 irqtime_account_idle_ticks(ticks);
4138 return;
4141 account_idle_time(jiffies_to_cputime(ticks));
4144 #endif
4147 * Use precise platform statistics if available:
4149 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
4150 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4152 *ut = p->utime;
4153 *st = p->stime;
4156 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4158 struct task_cputime cputime;
4160 thread_group_cputime(p, &cputime);
4162 *ut = cputime.utime;
4163 *st = cputime.stime;
4165 #else
4167 #ifndef nsecs_to_cputime
4168 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
4169 #endif
4171 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4173 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
4176 * Use CFS's precise accounting:
4178 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
4180 if (total) {
4181 u64 temp = rtime;
4183 temp *= utime;
4184 do_div(temp, total);
4185 utime = (cputime_t)temp;
4186 } else
4187 utime = rtime;
4190 * Compare with previous values, to keep monotonicity:
4192 p->prev_utime = max(p->prev_utime, utime);
4193 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
4195 *ut = p->prev_utime;
4196 *st = p->prev_stime;
4200 * Must be called with siglock held.
4202 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
4204 struct signal_struct *sig = p->signal;
4205 struct task_cputime cputime;
4206 cputime_t rtime, utime, total;
4208 thread_group_cputime(p, &cputime);
4210 total = cputime_add(cputime.utime, cputime.stime);
4211 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
4213 if (total) {
4214 u64 temp = rtime;
4216 temp *= cputime.utime;
4217 do_div(temp, total);
4218 utime = (cputime_t)temp;
4219 } else
4220 utime = rtime;
4222 sig->prev_utime = max(sig->prev_utime, utime);
4223 sig->prev_stime = max(sig->prev_stime,
4224 cputime_sub(rtime, sig->prev_utime));
4226 *ut = sig->prev_utime;
4227 *st = sig->prev_stime;
4229 #endif
4232 * This function gets called by the timer code, with HZ frequency.
4233 * We call it with interrupts disabled.
4235 void scheduler_tick(void)
4237 int cpu = smp_processor_id();
4238 struct rq *rq = cpu_rq(cpu);
4239 struct task_struct *curr = rq->curr;
4241 sched_clock_tick();
4243 raw_spin_lock(&rq->lock);
4244 update_rq_clock(rq);
4245 update_cpu_load_active(rq);
4246 curr->sched_class->task_tick(rq, curr, 0);
4247 raw_spin_unlock(&rq->lock);
4249 perf_event_task_tick();
4251 #ifdef CONFIG_SMP
4252 rq->idle_balance = idle_cpu(cpu);
4253 trigger_load_balance(rq, cpu);
4254 #endif
4257 notrace unsigned long get_parent_ip(unsigned long addr)
4259 if (in_lock_functions(addr)) {
4260 addr = CALLER_ADDR2;
4261 if (in_lock_functions(addr))
4262 addr = CALLER_ADDR3;
4264 return addr;
4267 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4268 defined(CONFIG_PREEMPT_TRACER))
4270 void __kprobes add_preempt_count(int val)
4272 #ifdef CONFIG_DEBUG_PREEMPT
4274 * Underflow?
4276 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4277 return;
4278 #endif
4279 preempt_count() += val;
4280 #ifdef CONFIG_DEBUG_PREEMPT
4282 * Spinlock count overflowing soon?
4284 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4285 PREEMPT_MASK - 10);
4286 #endif
4287 if (preempt_count() == val)
4288 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4290 EXPORT_SYMBOL(add_preempt_count);
4292 void __kprobes sub_preempt_count(int val)
4294 #ifdef CONFIG_DEBUG_PREEMPT
4296 * Underflow?
4298 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4299 return;
4301 * Is the spinlock portion underflowing?
4303 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4304 !(preempt_count() & PREEMPT_MASK)))
4305 return;
4306 #endif
4308 if (preempt_count() == val)
4309 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
4310 preempt_count() -= val;
4312 EXPORT_SYMBOL(sub_preempt_count);
4314 #endif
4317 * Print scheduling while atomic bug:
4319 static noinline void __schedule_bug(struct task_struct *prev)
4321 struct pt_regs *regs = get_irq_regs();
4323 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4324 prev->comm, prev->pid, preempt_count());
4326 debug_show_held_locks(prev);
4327 print_modules();
4328 if (irqs_disabled())
4329 print_irqtrace_events(prev);
4331 if (regs)
4332 show_regs(regs);
4333 else
4334 dump_stack();
4338 * Various schedule()-time debugging checks and statistics:
4340 static inline void schedule_debug(struct task_struct *prev)
4343 * Test if we are atomic. Since do_exit() needs to call into
4344 * schedule() atomically, we ignore that path for now.
4345 * Otherwise, whine if we are scheduling when we should not be.
4347 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
4348 __schedule_bug(prev);
4349 rcu_sleep_check();
4351 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4353 schedstat_inc(this_rq(), sched_count);
4356 static void put_prev_task(struct rq *rq, struct task_struct *prev)
4358 if (prev->on_rq || rq->skip_clock_update < 0)
4359 update_rq_clock(rq);
4360 prev->sched_class->put_prev_task(rq, prev);
4364 * Pick up the highest-prio task:
4366 static inline struct task_struct *
4367 pick_next_task(struct rq *rq)
4369 const struct sched_class *class;
4370 struct task_struct *p;
4373 * Optimization: we know that if all tasks are in
4374 * the fair class we can call that function directly:
4376 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
4377 p = fair_sched_class.pick_next_task(rq);
4378 if (likely(p))
4379 return p;
4382 for_each_class(class) {
4383 p = class->pick_next_task(rq);
4384 if (p)
4385 return p;
4388 BUG(); /* the idle class will always have a runnable task */
4392 * __schedule() is the main scheduler function.
4394 static void __sched __schedule(void)
4396 struct task_struct *prev, *next;
4397 unsigned long *switch_count;
4398 struct rq *rq;
4399 int cpu;
4401 need_resched:
4402 preempt_disable();
4403 cpu = smp_processor_id();
4404 rq = cpu_rq(cpu);
4405 rcu_note_context_switch(cpu);
4406 prev = rq->curr;
4408 schedule_debug(prev);
4410 if (sched_feat(HRTICK))
4411 hrtick_clear(rq);
4413 raw_spin_lock_irq(&rq->lock);
4415 switch_count = &prev->nivcsw;
4416 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
4417 if (unlikely(signal_pending_state(prev->state, prev))) {
4418 prev->state = TASK_RUNNING;
4419 } else {
4420 deactivate_task(rq, prev, DEQUEUE_SLEEP);
4421 prev->on_rq = 0;
4424 * If a worker went to sleep, notify and ask workqueue
4425 * whether it wants to wake up a task to maintain
4426 * concurrency.
4428 if (prev->flags & PF_WQ_WORKER) {
4429 struct task_struct *to_wakeup;
4431 to_wakeup = wq_worker_sleeping(prev, cpu);
4432 if (to_wakeup)
4433 try_to_wake_up_local(to_wakeup);
4436 switch_count = &prev->nvcsw;
4439 pre_schedule(rq, prev);
4441 if (unlikely(!rq->nr_running))
4442 idle_balance(cpu, rq);
4444 put_prev_task(rq, prev);
4445 next = pick_next_task(rq);
4446 clear_tsk_need_resched(prev);
4447 rq->skip_clock_update = 0;
4449 if (likely(prev != next)) {
4450 rq->nr_switches++;
4451 rq->curr = next;
4452 ++*switch_count;
4454 context_switch(rq, prev, next); /* unlocks the rq */
4456 * The context switch have flipped the stack from under us
4457 * and restored the local variables which were saved when
4458 * this task called schedule() in the past. prev == current
4459 * is still correct, but it can be moved to another cpu/rq.
4461 cpu = smp_processor_id();
4462 rq = cpu_rq(cpu);
4463 } else
4464 raw_spin_unlock_irq(&rq->lock);
4466 post_schedule(rq);
4468 preempt_enable_no_resched();
4469 if (need_resched())
4470 goto need_resched;
4473 static inline void sched_submit_work(struct task_struct *tsk)
4475 if (!tsk->state)
4476 return;
4478 * If we are going to sleep and we have plugged IO queued,
4479 * make sure to submit it to avoid deadlocks.
4481 if (blk_needs_flush_plug(tsk))
4482 blk_schedule_flush_plug(tsk);
4485 asmlinkage void __sched schedule(void)
4487 struct task_struct *tsk = current;
4489 sched_submit_work(tsk);
4490 __schedule();
4492 EXPORT_SYMBOL(schedule);
4494 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
4496 static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
4498 if (lock->owner != owner)
4499 return false;
4502 * Ensure we emit the owner->on_cpu, dereference _after_ checking
4503 * lock->owner still matches owner, if that fails, owner might
4504 * point to free()d memory, if it still matches, the rcu_read_lock()
4505 * ensures the memory stays valid.
4507 barrier();
4509 return owner->on_cpu;
4513 * Look out! "owner" is an entirely speculative pointer
4514 * access and not reliable.
4516 int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
4518 if (!sched_feat(OWNER_SPIN))
4519 return 0;
4521 rcu_read_lock();
4522 while (owner_running(lock, owner)) {
4523 if (need_resched())
4524 break;
4526 arch_mutex_cpu_relax();
4528 rcu_read_unlock();
4531 * We break out the loop above on need_resched() and when the
4532 * owner changed, which is a sign for heavy contention. Return
4533 * success only when lock->owner is NULL.
4535 return lock->owner == NULL;
4537 #endif
4539 #ifdef CONFIG_PREEMPT
4541 * this is the entry point to schedule() from in-kernel preemption
4542 * off of preempt_enable. Kernel preemptions off return from interrupt
4543 * occur there and call schedule directly.
4545 asmlinkage void __sched notrace preempt_schedule(void)
4547 struct thread_info *ti = current_thread_info();
4550 * If there is a non-zero preempt_count or interrupts are disabled,
4551 * we do not want to preempt the current task. Just return..
4553 if (likely(ti->preempt_count || irqs_disabled()))
4554 return;
4556 do {
4557 add_preempt_count_notrace(PREEMPT_ACTIVE);
4558 __schedule();
4559 sub_preempt_count_notrace(PREEMPT_ACTIVE);
4562 * Check again in case we missed a preemption opportunity
4563 * between schedule and now.
4565 barrier();
4566 } while (need_resched());
4568 EXPORT_SYMBOL(preempt_schedule);
4571 * this is the entry point to schedule() from kernel preemption
4572 * off of irq context.
4573 * Note, that this is called and return with irqs disabled. This will
4574 * protect us against recursive calling from irq.
4576 asmlinkage void __sched preempt_schedule_irq(void)
4578 struct thread_info *ti = current_thread_info();
4580 /* Catch callers which need to be fixed */
4581 BUG_ON(ti->preempt_count || !irqs_disabled());
4583 do {
4584 add_preempt_count(PREEMPT_ACTIVE);
4585 local_irq_enable();
4586 __schedule();
4587 local_irq_disable();
4588 sub_preempt_count(PREEMPT_ACTIVE);
4591 * Check again in case we missed a preemption opportunity
4592 * between schedule and now.
4594 barrier();
4595 } while (need_resched());
4598 #endif /* CONFIG_PREEMPT */
4600 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
4601 void *key)
4603 return try_to_wake_up(curr->private, mode, wake_flags);
4605 EXPORT_SYMBOL(default_wake_function);
4608 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4609 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
4610 * number) then we wake all the non-exclusive tasks and one exclusive task.
4612 * There are circumstances in which we can try to wake a task which has already
4613 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
4614 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4616 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4617 int nr_exclusive, int wake_flags, void *key)
4619 wait_queue_t *curr, *next;
4621 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
4622 unsigned flags = curr->flags;
4624 if (curr->func(curr, mode, wake_flags, key) &&
4625 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
4626 break;
4631 * __wake_up - wake up threads blocked on a waitqueue.
4632 * @q: the waitqueue
4633 * @mode: which threads
4634 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4635 * @key: is directly passed to the wakeup function
4637 * It may be assumed that this function implies a write memory barrier before
4638 * changing the task state if and only if any tasks are woken up.
4640 void __wake_up(wait_queue_head_t *q, unsigned int mode,
4641 int nr_exclusive, void *key)
4643 unsigned long flags;
4645 spin_lock_irqsave(&q->lock, flags);
4646 __wake_up_common(q, mode, nr_exclusive, 0, key);
4647 spin_unlock_irqrestore(&q->lock, flags);
4649 EXPORT_SYMBOL(__wake_up);
4652 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4654 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
4656 __wake_up_common(q, mode, 1, 0, NULL);
4658 EXPORT_SYMBOL_GPL(__wake_up_locked);
4660 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
4662 __wake_up_common(q, mode, 1, 0, key);
4664 EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4667 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4668 * @q: the waitqueue
4669 * @mode: which threads
4670 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4671 * @key: opaque value to be passed to wakeup targets
4673 * The sync wakeup differs that the waker knows that it will schedule
4674 * away soon, so while the target thread will be woken up, it will not
4675 * be migrated to another CPU - ie. the two threads are 'synchronized'
4676 * with each other. This can prevent needless bouncing between CPUs.
4678 * On UP it can prevent extra preemption.
4680 * It may be assumed that this function implies a write memory barrier before
4681 * changing the task state if and only if any tasks are woken up.
4683 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
4684 int nr_exclusive, void *key)
4686 unsigned long flags;
4687 int wake_flags = WF_SYNC;
4689 if (unlikely(!q))
4690 return;
4692 if (unlikely(!nr_exclusive))
4693 wake_flags = 0;
4695 spin_lock_irqsave(&q->lock, flags);
4696 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
4697 spin_unlock_irqrestore(&q->lock, flags);
4699 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
4702 * __wake_up_sync - see __wake_up_sync_key()
4704 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
4706 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
4708 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4711 * complete: - signals a single thread waiting on this completion
4712 * @x: holds the state of this particular completion
4714 * This will wake up a single thread waiting on this completion. Threads will be
4715 * awakened in the same order in which they were queued.
4717 * See also complete_all(), wait_for_completion() and related routines.
4719 * It may be assumed that this function implies a write memory barrier before
4720 * changing the task state if and only if any tasks are woken up.
4722 void complete(struct completion *x)
4724 unsigned long flags;
4726 spin_lock_irqsave(&x->wait.lock, flags);
4727 x->done++;
4728 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
4729 spin_unlock_irqrestore(&x->wait.lock, flags);
4731 EXPORT_SYMBOL(complete);
4734 * complete_all: - signals all threads waiting on this completion
4735 * @x: holds the state of this particular completion
4737 * This will wake up all threads waiting on this particular completion event.
4739 * It may be assumed that this function implies a write memory barrier before
4740 * changing the task state if and only if any tasks are woken up.
4742 void complete_all(struct completion *x)
4744 unsigned long flags;
4746 spin_lock_irqsave(&x->wait.lock, flags);
4747 x->done += UINT_MAX/2;
4748 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
4749 spin_unlock_irqrestore(&x->wait.lock, flags);
4751 EXPORT_SYMBOL(complete_all);
4753 static inline long __sched
4754 do_wait_for_common(struct completion *x, long timeout, int state)
4756 if (!x->done) {
4757 DECLARE_WAITQUEUE(wait, current);
4759 __add_wait_queue_tail_exclusive(&x->wait, &wait);
4760 do {
4761 if (signal_pending_state(state, current)) {
4762 timeout = -ERESTARTSYS;
4763 break;
4765 __set_current_state(state);
4766 spin_unlock_irq(&x->wait.lock);
4767 timeout = schedule_timeout(timeout);
4768 spin_lock_irq(&x->wait.lock);
4769 } while (!x->done && timeout);
4770 __remove_wait_queue(&x->wait, &wait);
4771 if (!x->done)
4772 return timeout;
4774 x->done--;
4775 return timeout ?: 1;
4778 static long __sched
4779 wait_for_common(struct completion *x, long timeout, int state)
4781 might_sleep();
4783 spin_lock_irq(&x->wait.lock);
4784 timeout = do_wait_for_common(x, timeout, state);
4785 spin_unlock_irq(&x->wait.lock);
4786 return timeout;
4790 * wait_for_completion: - waits for completion of a task
4791 * @x: holds the state of this particular completion
4793 * This waits to be signaled for completion of a specific task. It is NOT
4794 * interruptible and there is no timeout.
4796 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4797 * and interrupt capability. Also see complete().
4799 void __sched wait_for_completion(struct completion *x)
4801 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
4803 EXPORT_SYMBOL(wait_for_completion);
4806 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4807 * @x: holds the state of this particular completion
4808 * @timeout: timeout value in jiffies
4810 * This waits for either a completion of a specific task to be signaled or for a
4811 * specified timeout to expire. The timeout is in jiffies. It is not
4812 * interruptible.
4814 * The return value is 0 if timed out, and positive (at least 1, or number of
4815 * jiffies left till timeout) if completed.
4817 unsigned long __sched
4818 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4820 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4822 EXPORT_SYMBOL(wait_for_completion_timeout);
4825 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4826 * @x: holds the state of this particular completion
4828 * This waits for completion of a specific task to be signaled. It is
4829 * interruptible.
4831 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
4833 int __sched wait_for_completion_interruptible(struct completion *x)
4835 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4836 if (t == -ERESTARTSYS)
4837 return t;
4838 return 0;
4840 EXPORT_SYMBOL(wait_for_completion_interruptible);
4843 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4844 * @x: holds the state of this particular completion
4845 * @timeout: timeout value in jiffies
4847 * This waits for either a completion of a specific task to be signaled or for a
4848 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4850 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
4851 * positive (at least 1, or number of jiffies left till timeout) if completed.
4853 long __sched
4854 wait_for_completion_interruptible_timeout(struct completion *x,
4855 unsigned long timeout)
4857 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4859 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4862 * wait_for_completion_killable: - waits for completion of a task (killable)
4863 * @x: holds the state of this particular completion
4865 * This waits to be signaled for completion of a specific task. It can be
4866 * interrupted by a kill signal.
4868 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
4870 int __sched wait_for_completion_killable(struct completion *x)
4872 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4873 if (t == -ERESTARTSYS)
4874 return t;
4875 return 0;
4877 EXPORT_SYMBOL(wait_for_completion_killable);
4880 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4881 * @x: holds the state of this particular completion
4882 * @timeout: timeout value in jiffies
4884 * This waits for either a completion of a specific task to be
4885 * signaled or for a specified timeout to expire. It can be
4886 * interrupted by a kill signal. The timeout is in jiffies.
4888 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
4889 * positive (at least 1, or number of jiffies left till timeout) if completed.
4891 long __sched
4892 wait_for_completion_killable_timeout(struct completion *x,
4893 unsigned long timeout)
4895 return wait_for_common(x, timeout, TASK_KILLABLE);
4897 EXPORT_SYMBOL(wait_for_completion_killable_timeout);
4900 * try_wait_for_completion - try to decrement a completion without blocking
4901 * @x: completion structure
4903 * Returns: 0 if a decrement cannot be done without blocking
4904 * 1 if a decrement succeeded.
4906 * If a completion is being used as a counting completion,
4907 * attempt to decrement the counter without blocking. This
4908 * enables us to avoid waiting if the resource the completion
4909 * is protecting is not available.
4911 bool try_wait_for_completion(struct completion *x)
4913 unsigned long flags;
4914 int ret = 1;
4916 spin_lock_irqsave(&x->wait.lock, flags);
4917 if (!x->done)
4918 ret = 0;
4919 else
4920 x->done--;
4921 spin_unlock_irqrestore(&x->wait.lock, flags);
4922 return ret;
4924 EXPORT_SYMBOL(try_wait_for_completion);
4927 * completion_done - Test to see if a completion has any waiters
4928 * @x: completion structure
4930 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4931 * 1 if there are no waiters.
4934 bool completion_done(struct completion *x)
4936 unsigned long flags;
4937 int ret = 1;
4939 spin_lock_irqsave(&x->wait.lock, flags);
4940 if (!x->done)
4941 ret = 0;
4942 spin_unlock_irqrestore(&x->wait.lock, flags);
4943 return ret;
4945 EXPORT_SYMBOL(completion_done);
4947 static long __sched
4948 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4950 unsigned long flags;
4951 wait_queue_t wait;
4953 init_waitqueue_entry(&wait, current);
4955 __set_current_state(state);
4957 spin_lock_irqsave(&q->lock, flags);
4958 __add_wait_queue(q, &wait);
4959 spin_unlock(&q->lock);
4960 timeout = schedule_timeout(timeout);
4961 spin_lock_irq(&q->lock);
4962 __remove_wait_queue(q, &wait);
4963 spin_unlock_irqrestore(&q->lock, flags);
4965 return timeout;
4968 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4970 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4972 EXPORT_SYMBOL(interruptible_sleep_on);
4974 long __sched
4975 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4977 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4979 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4981 void __sched sleep_on(wait_queue_head_t *q)
4983 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4985 EXPORT_SYMBOL(sleep_on);
4987 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4989 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4991 EXPORT_SYMBOL(sleep_on_timeout);
4993 #ifdef CONFIG_RT_MUTEXES
4996 * rt_mutex_setprio - set the current priority of a task
4997 * @p: task
4998 * @prio: prio value (kernel-internal form)
5000 * This function changes the 'effective' priority of a task. It does
5001 * not touch ->normal_prio like __setscheduler().
5003 * Used by the rt_mutex code to implement priority inheritance logic.
5005 void rt_mutex_setprio(struct task_struct *p, int prio)
5007 int oldprio, on_rq, running;
5008 struct rq *rq;
5009 const struct sched_class *prev_class;
5011 BUG_ON(prio < 0 || prio > MAX_PRIO);
5013 rq = __task_rq_lock(p);
5015 trace_sched_pi_setprio(p, prio);
5016 oldprio = p->prio;
5017 prev_class = p->sched_class;
5018 on_rq = p->on_rq;
5019 running = task_current(rq, p);
5020 if (on_rq)
5021 dequeue_task(rq, p, 0);
5022 if (running)
5023 p->sched_class->put_prev_task(rq, p);
5025 if (rt_prio(prio))
5026 p->sched_class = &rt_sched_class;
5027 else
5028 p->sched_class = &fair_sched_class;
5030 p->prio = prio;
5032 if (running)
5033 p->sched_class->set_curr_task(rq);
5034 if (on_rq)
5035 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
5037 check_class_changed(rq, p, prev_class, oldprio);
5038 __task_rq_unlock(rq);
5041 #endif
5043 void set_user_nice(struct task_struct *p, long nice)
5045 int old_prio, delta, on_rq;
5046 unsigned long flags;
5047 struct rq *rq;
5049 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5050 return;
5052 * We have to be careful, if called from sys_setpriority(),
5053 * the task might be in the middle of scheduling on another CPU.
5055 rq = task_rq_lock(p, &flags);
5057 * The RT priorities are set via sched_setscheduler(), but we still
5058 * allow the 'normal' nice value to be set - but as expected
5059 * it wont have any effect on scheduling until the task is
5060 * SCHED_FIFO/SCHED_RR:
5062 if (task_has_rt_policy(p)) {
5063 p->static_prio = NICE_TO_PRIO(nice);
5064 goto out_unlock;
5066 on_rq = p->on_rq;
5067 if (on_rq)
5068 dequeue_task(rq, p, 0);
5070 p->static_prio = NICE_TO_PRIO(nice);
5071 set_load_weight(p);
5072 old_prio = p->prio;
5073 p->prio = effective_prio(p);
5074 delta = p->prio - old_prio;
5076 if (on_rq) {
5077 enqueue_task(rq, p, 0);
5079 * If the task increased its priority or is running and
5080 * lowered its priority, then reschedule its CPU:
5082 if (delta < 0 || (delta > 0 && task_running(rq, p)))
5083 resched_task(rq->curr);
5085 out_unlock:
5086 task_rq_unlock(rq, p, &flags);
5088 EXPORT_SYMBOL(set_user_nice);
5091 * can_nice - check if a task can reduce its nice value
5092 * @p: task
5093 * @nice: nice value
5095 int can_nice(const struct task_struct *p, const int nice)
5097 /* convert nice value [19,-20] to rlimit style value [1,40] */
5098 int nice_rlim = 20 - nice;
5100 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5101 capable(CAP_SYS_NICE));
5104 #ifdef __ARCH_WANT_SYS_NICE
5107 * sys_nice - change the priority of the current process.
5108 * @increment: priority increment
5110 * sys_setpriority is a more generic, but much slower function that
5111 * does similar things.
5113 SYSCALL_DEFINE1(nice, int, increment)
5115 long nice, retval;
5118 * Setpriority might change our priority at the same moment.
5119 * We don't have to worry. Conceptually one call occurs first
5120 * and we have a single winner.
5122 if (increment < -40)
5123 increment = -40;
5124 if (increment > 40)
5125 increment = 40;
5127 nice = TASK_NICE(current) + increment;
5128 if (nice < -20)
5129 nice = -20;
5130 if (nice > 19)
5131 nice = 19;
5133 if (increment < 0 && !can_nice(current, nice))
5134 return -EPERM;
5136 retval = security_task_setnice(current, nice);
5137 if (retval)
5138 return retval;
5140 set_user_nice(current, nice);
5141 return 0;
5144 #endif
5147 * task_prio - return the priority value of a given task.
5148 * @p: the task in question.
5150 * This is the priority value as seen by users in /proc.
5151 * RT tasks are offset by -200. Normal tasks are centered
5152 * around 0, value goes from -16 to +15.
5154 int task_prio(const struct task_struct *p)
5156 return p->prio - MAX_RT_PRIO;
5160 * task_nice - return the nice value of a given task.
5161 * @p: the task in question.
5163 int task_nice(const struct task_struct *p)
5165 return TASK_NICE(p);
5167 EXPORT_SYMBOL(task_nice);
5170 * idle_cpu - is a given cpu idle currently?
5171 * @cpu: the processor in question.
5173 int idle_cpu(int cpu)
5175 struct rq *rq = cpu_rq(cpu);
5177 if (rq->curr != rq->idle)
5178 return 0;
5180 if (rq->nr_running)
5181 return 0;
5183 #ifdef CONFIG_SMP
5184 if (!llist_empty(&rq->wake_list))
5185 return 0;
5186 #endif
5188 return 1;
5192 * idle_task - return the idle task for a given cpu.
5193 * @cpu: the processor in question.
5195 struct task_struct *idle_task(int cpu)
5197 return cpu_rq(cpu)->idle;
5201 * find_process_by_pid - find a process with a matching PID value.
5202 * @pid: the pid in question.
5204 static struct task_struct *find_process_by_pid(pid_t pid)
5206 return pid ? find_task_by_vpid(pid) : current;
5209 /* Actually do priority change: must hold rq lock. */
5210 static void
5211 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
5213 p->policy = policy;
5214 p->rt_priority = prio;
5215 p->normal_prio = normal_prio(p);
5216 /* we are holding p->pi_lock already */
5217 p->prio = rt_mutex_getprio(p);
5218 if (rt_prio(p->prio))
5219 p->sched_class = &rt_sched_class;
5220 else
5221 p->sched_class = &fair_sched_class;
5222 set_load_weight(p);
5226 * check the target process has a UID that matches the current process's
5228 static bool check_same_owner(struct task_struct *p)
5230 const struct cred *cred = current_cred(), *pcred;
5231 bool match;
5233 rcu_read_lock();
5234 pcred = __task_cred(p);
5235 if (cred->user->user_ns == pcred->user->user_ns)
5236 match = (cred->euid == pcred->euid ||
5237 cred->euid == pcred->uid);
5238 else
5239 match = false;
5240 rcu_read_unlock();
5241 return match;
5244 static int __sched_setscheduler(struct task_struct *p, int policy,
5245 const struct sched_param *param, bool user)
5247 int retval, oldprio, oldpolicy = -1, on_rq, running;
5248 unsigned long flags;
5249 const struct sched_class *prev_class;
5250 struct rq *rq;
5251 int reset_on_fork;
5253 /* may grab non-irq protected spin_locks */
5254 BUG_ON(in_interrupt());
5255 recheck:
5256 /* double check policy once rq lock held */
5257 if (policy < 0) {
5258 reset_on_fork = p->sched_reset_on_fork;
5259 policy = oldpolicy = p->policy;
5260 } else {
5261 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
5262 policy &= ~SCHED_RESET_ON_FORK;
5264 if (policy != SCHED_FIFO && policy != SCHED_RR &&
5265 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5266 policy != SCHED_IDLE)
5267 return -EINVAL;
5271 * Valid priorities for SCHED_FIFO and SCHED_RR are
5272 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5273 * SCHED_BATCH and SCHED_IDLE is 0.
5275 if (param->sched_priority < 0 ||
5276 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
5277 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
5278 return -EINVAL;
5279 if (rt_policy(policy) != (param->sched_priority != 0))
5280 return -EINVAL;
5283 * Allow unprivileged RT tasks to decrease priority:
5285 if (user && !capable(CAP_SYS_NICE)) {
5286 if (rt_policy(policy)) {
5287 unsigned long rlim_rtprio =
5288 task_rlimit(p, RLIMIT_RTPRIO);
5290 /* can't set/change the rt policy */
5291 if (policy != p->policy && !rlim_rtprio)
5292 return -EPERM;
5294 /* can't increase priority */
5295 if (param->sched_priority > p->rt_priority &&
5296 param->sched_priority > rlim_rtprio)
5297 return -EPERM;
5301 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5302 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5304 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
5305 if (!can_nice(p, TASK_NICE(p)))
5306 return -EPERM;
5309 /* can't change other user's priorities */
5310 if (!check_same_owner(p))
5311 return -EPERM;
5313 /* Normal users shall not reset the sched_reset_on_fork flag */
5314 if (p->sched_reset_on_fork && !reset_on_fork)
5315 return -EPERM;
5318 if (user) {
5319 retval = security_task_setscheduler(p);
5320 if (retval)
5321 return retval;
5325 * make sure no PI-waiters arrive (or leave) while we are
5326 * changing the priority of the task:
5328 * To be able to change p->policy safely, the appropriate
5329 * runqueue lock must be held.
5331 rq = task_rq_lock(p, &flags);
5334 * Changing the policy of the stop threads its a very bad idea
5336 if (p == rq->stop) {
5337 task_rq_unlock(rq, p, &flags);
5338 return -EINVAL;
5342 * If not changing anything there's no need to proceed further:
5344 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
5345 param->sched_priority == p->rt_priority))) {
5347 __task_rq_unlock(rq);
5348 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5349 return 0;
5352 #ifdef CONFIG_RT_GROUP_SCHED
5353 if (user) {
5355 * Do not allow realtime tasks into groups that have no runtime
5356 * assigned.
5358 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5359 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5360 !task_group_is_autogroup(task_group(p))) {
5361 task_rq_unlock(rq, p, &flags);
5362 return -EPERM;
5365 #endif
5367 /* recheck policy now with rq lock held */
5368 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5369 policy = oldpolicy = -1;
5370 task_rq_unlock(rq, p, &flags);
5371 goto recheck;
5373 on_rq = p->on_rq;
5374 running = task_current(rq, p);
5375 if (on_rq)
5376 deactivate_task(rq, p, 0);
5377 if (running)
5378 p->sched_class->put_prev_task(rq, p);
5380 p->sched_reset_on_fork = reset_on_fork;
5382 oldprio = p->prio;
5383 prev_class = p->sched_class;
5384 __setscheduler(rq, p, policy, param->sched_priority);
5386 if (running)
5387 p->sched_class->set_curr_task(rq);
5388 if (on_rq)
5389 activate_task(rq, p, 0);
5391 check_class_changed(rq, p, prev_class, oldprio);
5392 task_rq_unlock(rq, p, &flags);
5394 rt_mutex_adjust_pi(p);
5396 return 0;
5400 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5401 * @p: the task in question.
5402 * @policy: new policy.
5403 * @param: structure containing the new RT priority.
5405 * NOTE that the task may be already dead.
5407 int sched_setscheduler(struct task_struct *p, int policy,
5408 const struct sched_param *param)
5410 return __sched_setscheduler(p, policy, param, true);
5412 EXPORT_SYMBOL_GPL(sched_setscheduler);
5415 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5416 * @p: the task in question.
5417 * @policy: new policy.
5418 * @param: structure containing the new RT priority.
5420 * Just like sched_setscheduler, only don't bother checking if the
5421 * current context has permission. For example, this is needed in
5422 * stop_machine(): we create temporary high priority worker threads,
5423 * but our caller might not have that capability.
5425 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5426 const struct sched_param *param)
5428 return __sched_setscheduler(p, policy, param, false);
5431 static int
5432 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5434 struct sched_param lparam;
5435 struct task_struct *p;
5436 int retval;
5438 if (!param || pid < 0)
5439 return -EINVAL;
5440 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5441 return -EFAULT;
5443 rcu_read_lock();
5444 retval = -ESRCH;
5445 p = find_process_by_pid(pid);
5446 if (p != NULL)
5447 retval = sched_setscheduler(p, policy, &lparam);
5448 rcu_read_unlock();
5450 return retval;
5454 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5455 * @pid: the pid in question.
5456 * @policy: new policy.
5457 * @param: structure containing the new RT priority.
5459 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5460 struct sched_param __user *, param)
5462 /* negative values for policy are not valid */
5463 if (policy < 0)
5464 return -EINVAL;
5466 return do_sched_setscheduler(pid, policy, param);
5470 * sys_sched_setparam - set/change the RT priority of a thread
5471 * @pid: the pid in question.
5472 * @param: structure containing the new RT priority.
5474 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5476 return do_sched_setscheduler(pid, -1, param);
5480 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5481 * @pid: the pid in question.
5483 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5485 struct task_struct *p;
5486 int retval;
5488 if (pid < 0)
5489 return -EINVAL;
5491 retval = -ESRCH;
5492 rcu_read_lock();
5493 p = find_process_by_pid(pid);
5494 if (p) {
5495 retval = security_task_getscheduler(p);
5496 if (!retval)
5497 retval = p->policy
5498 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5500 rcu_read_unlock();
5501 return retval;
5505 * sys_sched_getparam - get the RT priority of a thread
5506 * @pid: the pid in question.
5507 * @param: structure containing the RT priority.
5509 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5511 struct sched_param lp;
5512 struct task_struct *p;
5513 int retval;
5515 if (!param || pid < 0)
5516 return -EINVAL;
5518 rcu_read_lock();
5519 p = find_process_by_pid(pid);
5520 retval = -ESRCH;
5521 if (!p)
5522 goto out_unlock;
5524 retval = security_task_getscheduler(p);
5525 if (retval)
5526 goto out_unlock;
5528 lp.sched_priority = p->rt_priority;
5529 rcu_read_unlock();
5532 * This one might sleep, we cannot do it with a spinlock held ...
5534 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5536 return retval;
5538 out_unlock:
5539 rcu_read_unlock();
5540 return retval;
5543 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
5545 cpumask_var_t cpus_allowed, new_mask;
5546 struct task_struct *p;
5547 int retval;
5549 get_online_cpus();
5550 rcu_read_lock();
5552 p = find_process_by_pid(pid);
5553 if (!p) {
5554 rcu_read_unlock();
5555 put_online_cpus();
5556 return -ESRCH;
5559 /* Prevent p going away */
5560 get_task_struct(p);
5561 rcu_read_unlock();
5563 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5564 retval = -ENOMEM;
5565 goto out_put_task;
5567 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5568 retval = -ENOMEM;
5569 goto out_free_cpus_allowed;
5571 retval = -EPERM;
5572 if (!check_same_owner(p) && !task_ns_capable(p, CAP_SYS_NICE))
5573 goto out_unlock;
5575 retval = security_task_setscheduler(p);
5576 if (retval)
5577 goto out_unlock;
5579 cpuset_cpus_allowed(p, cpus_allowed);
5580 cpumask_and(new_mask, in_mask, cpus_allowed);
5581 again:
5582 retval = set_cpus_allowed_ptr(p, new_mask);
5584 if (!retval) {
5585 cpuset_cpus_allowed(p, cpus_allowed);
5586 if (!cpumask_subset(new_mask, cpus_allowed)) {
5588 * We must have raced with a concurrent cpuset
5589 * update. Just reset the cpus_allowed to the
5590 * cpuset's cpus_allowed
5592 cpumask_copy(new_mask, cpus_allowed);
5593 goto again;
5596 out_unlock:
5597 free_cpumask_var(new_mask);
5598 out_free_cpus_allowed:
5599 free_cpumask_var(cpus_allowed);
5600 out_put_task:
5601 put_task_struct(p);
5602 put_online_cpus();
5603 return retval;
5606 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
5607 struct cpumask *new_mask)
5609 if (len < cpumask_size())
5610 cpumask_clear(new_mask);
5611 else if (len > cpumask_size())
5612 len = cpumask_size();
5614 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5618 * sys_sched_setaffinity - set the cpu affinity of a process
5619 * @pid: pid of the process
5620 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5621 * @user_mask_ptr: user-space pointer to the new cpu mask
5623 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5624 unsigned long __user *, user_mask_ptr)
5626 cpumask_var_t new_mask;
5627 int retval;
5629 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5630 return -ENOMEM;
5632 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5633 if (retval == 0)
5634 retval = sched_setaffinity(pid, new_mask);
5635 free_cpumask_var(new_mask);
5636 return retval;
5639 long sched_getaffinity(pid_t pid, struct cpumask *mask)
5641 struct task_struct *p;
5642 unsigned long flags;
5643 int retval;
5645 get_online_cpus();
5646 rcu_read_lock();
5648 retval = -ESRCH;
5649 p = find_process_by_pid(pid);
5650 if (!p)
5651 goto out_unlock;
5653 retval = security_task_getscheduler(p);
5654 if (retval)
5655 goto out_unlock;
5657 raw_spin_lock_irqsave(&p->pi_lock, flags);
5658 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
5659 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5661 out_unlock:
5662 rcu_read_unlock();
5663 put_online_cpus();
5665 return retval;
5669 * sys_sched_getaffinity - get the cpu affinity of a process
5670 * @pid: pid of the process
5671 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5672 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5674 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5675 unsigned long __user *, user_mask_ptr)
5677 int ret;
5678 cpumask_var_t mask;
5680 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
5681 return -EINVAL;
5682 if (len & (sizeof(unsigned long)-1))
5683 return -EINVAL;
5685 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5686 return -ENOMEM;
5688 ret = sched_getaffinity(pid, mask);
5689 if (ret == 0) {
5690 size_t retlen = min_t(size_t, len, cpumask_size());
5692 if (copy_to_user(user_mask_ptr, mask, retlen))
5693 ret = -EFAULT;
5694 else
5695 ret = retlen;
5697 free_cpumask_var(mask);
5699 return ret;
5703 * sys_sched_yield - yield the current processor to other threads.
5705 * This function yields the current CPU to other tasks. If there are no
5706 * other threads running on this CPU then this function will return.
5708 SYSCALL_DEFINE0(sched_yield)
5710 struct rq *rq = this_rq_lock();
5712 schedstat_inc(rq, yld_count);
5713 current->sched_class->yield_task(rq);
5716 * Since we are going to call schedule() anyway, there's
5717 * no need to preempt or enable interrupts:
5719 __release(rq->lock);
5720 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
5721 do_raw_spin_unlock(&rq->lock);
5722 preempt_enable_no_resched();
5724 schedule();
5726 return 0;
5729 static inline int should_resched(void)
5731 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
5734 static void __cond_resched(void)
5736 add_preempt_count(PREEMPT_ACTIVE);
5737 __schedule();
5738 sub_preempt_count(PREEMPT_ACTIVE);
5741 int __sched _cond_resched(void)
5743 if (should_resched()) {
5744 __cond_resched();
5745 return 1;
5747 return 0;
5749 EXPORT_SYMBOL(_cond_resched);
5752 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5753 * call schedule, and on return reacquire the lock.
5755 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5756 * operations here to prevent schedule() from being called twice (once via
5757 * spin_unlock(), once by hand).
5759 int __cond_resched_lock(spinlock_t *lock)
5761 int resched = should_resched();
5762 int ret = 0;
5764 lockdep_assert_held(lock);
5766 if (spin_needbreak(lock) || resched) {
5767 spin_unlock(lock);
5768 if (resched)
5769 __cond_resched();
5770 else
5771 cpu_relax();
5772 ret = 1;
5773 spin_lock(lock);
5775 return ret;
5777 EXPORT_SYMBOL(__cond_resched_lock);
5779 int __sched __cond_resched_softirq(void)
5781 BUG_ON(!in_softirq());
5783 if (should_resched()) {
5784 local_bh_enable();
5785 __cond_resched();
5786 local_bh_disable();
5787 return 1;
5789 return 0;
5791 EXPORT_SYMBOL(__cond_resched_softirq);
5794 * yield - yield the current processor to other threads.
5796 * This is a shortcut for kernel-space yielding - it marks the
5797 * thread runnable and calls sys_sched_yield().
5799 void __sched yield(void)
5801 set_current_state(TASK_RUNNING);
5802 sys_sched_yield();
5804 EXPORT_SYMBOL(yield);
5807 * yield_to - yield the current processor to another thread in
5808 * your thread group, or accelerate that thread toward the
5809 * processor it's on.
5810 * @p: target task
5811 * @preempt: whether task preemption is allowed or not
5813 * It's the caller's job to ensure that the target task struct
5814 * can't go away on us before we can do any checks.
5816 * Returns true if we indeed boosted the target task.
5818 bool __sched yield_to(struct task_struct *p, bool preempt)
5820 struct task_struct *curr = current;
5821 struct rq *rq, *p_rq;
5822 unsigned long flags;
5823 bool yielded = 0;
5825 local_irq_save(flags);
5826 rq = this_rq();
5828 again:
5829 p_rq = task_rq(p);
5830 double_rq_lock(rq, p_rq);
5831 while (task_rq(p) != p_rq) {
5832 double_rq_unlock(rq, p_rq);
5833 goto again;
5836 if (!curr->sched_class->yield_to_task)
5837 goto out;
5839 if (curr->sched_class != p->sched_class)
5840 goto out;
5842 if (task_running(p_rq, p) || p->state)
5843 goto out;
5845 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
5846 if (yielded) {
5847 schedstat_inc(rq, yld_count);
5849 * Make p's CPU reschedule; pick_next_entity takes care of
5850 * fairness.
5852 if (preempt && rq != p_rq)
5853 resched_task(p_rq->curr);
5856 out:
5857 double_rq_unlock(rq, p_rq);
5858 local_irq_restore(flags);
5860 if (yielded)
5861 schedule();
5863 return yielded;
5865 EXPORT_SYMBOL_GPL(yield_to);
5868 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5869 * that process accounting knows that this is a task in IO wait state.
5871 void __sched io_schedule(void)
5873 struct rq *rq = raw_rq();
5875 delayacct_blkio_start();
5876 atomic_inc(&rq->nr_iowait);
5877 blk_flush_plug(current);
5878 current->in_iowait = 1;
5879 schedule();
5880 current->in_iowait = 0;
5881 atomic_dec(&rq->nr_iowait);
5882 delayacct_blkio_end();
5884 EXPORT_SYMBOL(io_schedule);
5886 long __sched io_schedule_timeout(long timeout)
5888 struct rq *rq = raw_rq();
5889 long ret;
5891 delayacct_blkio_start();
5892 atomic_inc(&rq->nr_iowait);
5893 blk_flush_plug(current);
5894 current->in_iowait = 1;
5895 ret = schedule_timeout(timeout);
5896 current->in_iowait = 0;
5897 atomic_dec(&rq->nr_iowait);
5898 delayacct_blkio_end();
5899 return ret;
5903 * sys_sched_get_priority_max - return maximum RT priority.
5904 * @policy: scheduling class.
5906 * this syscall returns the maximum rt_priority that can be used
5907 * by a given scheduling class.
5909 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
5911 int ret = -EINVAL;
5913 switch (policy) {
5914 case SCHED_FIFO:
5915 case SCHED_RR:
5916 ret = MAX_USER_RT_PRIO-1;
5917 break;
5918 case SCHED_NORMAL:
5919 case SCHED_BATCH:
5920 case SCHED_IDLE:
5921 ret = 0;
5922 break;
5924 return ret;
5928 * sys_sched_get_priority_min - return minimum RT priority.
5929 * @policy: scheduling class.
5931 * this syscall returns the minimum rt_priority that can be used
5932 * by a given scheduling class.
5934 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5936 int ret = -EINVAL;
5938 switch (policy) {
5939 case SCHED_FIFO:
5940 case SCHED_RR:
5941 ret = 1;
5942 break;
5943 case SCHED_NORMAL:
5944 case SCHED_BATCH:
5945 case SCHED_IDLE:
5946 ret = 0;
5948 return ret;
5952 * sys_sched_rr_get_interval - return the default timeslice of a process.
5953 * @pid: pid of the process.
5954 * @interval: userspace pointer to the timeslice value.
5956 * this syscall writes the default timeslice value of a given process
5957 * into the user-space timespec buffer. A value of '0' means infinity.
5959 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5960 struct timespec __user *, interval)
5962 struct task_struct *p;
5963 unsigned int time_slice;
5964 unsigned long flags;
5965 struct rq *rq;
5966 int retval;
5967 struct timespec t;
5969 if (pid < 0)
5970 return -EINVAL;
5972 retval = -ESRCH;
5973 rcu_read_lock();
5974 p = find_process_by_pid(pid);
5975 if (!p)
5976 goto out_unlock;
5978 retval = security_task_getscheduler(p);
5979 if (retval)
5980 goto out_unlock;
5982 rq = task_rq_lock(p, &flags);
5983 time_slice = p->sched_class->get_rr_interval(rq, p);
5984 task_rq_unlock(rq, p, &flags);
5986 rcu_read_unlock();
5987 jiffies_to_timespec(time_slice, &t);
5988 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5989 return retval;
5991 out_unlock:
5992 rcu_read_unlock();
5993 return retval;
5996 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5998 void sched_show_task(struct task_struct *p)
6000 unsigned long free = 0;
6001 unsigned state;
6003 state = p->state ? __ffs(p->state) + 1 : 0;
6004 printk(KERN_INFO "%-15.15s %c", p->comm,
6005 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
6006 #if BITS_PER_LONG == 32
6007 if (state == TASK_RUNNING)
6008 printk(KERN_CONT " running ");
6009 else
6010 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
6011 #else
6012 if (state == TASK_RUNNING)
6013 printk(KERN_CONT " running task ");
6014 else
6015 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
6016 #endif
6017 #ifdef CONFIG_DEBUG_STACK_USAGE
6018 free = stack_not_used(p);
6019 #endif
6020 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
6021 task_pid_nr(p), task_pid_nr(p->real_parent),
6022 (unsigned long)task_thread_info(p)->flags);
6024 show_stack(p, NULL);
6027 void show_state_filter(unsigned long state_filter)
6029 struct task_struct *g, *p;
6031 #if BITS_PER_LONG == 32
6032 printk(KERN_INFO
6033 " task PC stack pid father\n");
6034 #else
6035 printk(KERN_INFO
6036 " task PC stack pid father\n");
6037 #endif
6038 rcu_read_lock();
6039 do_each_thread(g, p) {
6041 * reset the NMI-timeout, listing all files on a slow
6042 * console might take a lot of time:
6044 touch_nmi_watchdog();
6045 if (!state_filter || (p->state & state_filter))
6046 sched_show_task(p);
6047 } while_each_thread(g, p);
6049 touch_all_softlockup_watchdogs();
6051 #ifdef CONFIG_SCHED_DEBUG
6052 sysrq_sched_debug_show();
6053 #endif
6054 rcu_read_unlock();
6056 * Only show locks if all tasks are dumped:
6058 if (!state_filter)
6059 debug_show_all_locks();
6062 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6064 idle->sched_class = &idle_sched_class;
6068 * init_idle - set up an idle thread for a given CPU
6069 * @idle: task in question
6070 * @cpu: cpu the idle task belongs to
6072 * NOTE: this function does not set the idle thread's NEED_RESCHED
6073 * flag, to make booting more robust.
6075 void __cpuinit init_idle(struct task_struct *idle, int cpu)
6077 struct rq *rq = cpu_rq(cpu);
6078 unsigned long flags;
6080 raw_spin_lock_irqsave(&rq->lock, flags);
6082 __sched_fork(idle);
6083 idle->state = TASK_RUNNING;
6084 idle->se.exec_start = sched_clock();
6086 do_set_cpus_allowed(idle, cpumask_of(cpu));
6088 * We're having a chicken and egg problem, even though we are
6089 * holding rq->lock, the cpu isn't yet set to this cpu so the
6090 * lockdep check in task_group() will fail.
6092 * Similar case to sched_fork(). / Alternatively we could
6093 * use task_rq_lock() here and obtain the other rq->lock.
6095 * Silence PROVE_RCU
6097 rcu_read_lock();
6098 __set_task_cpu(idle, cpu);
6099 rcu_read_unlock();
6101 rq->curr = rq->idle = idle;
6102 #if defined(CONFIG_SMP)
6103 idle->on_cpu = 1;
6104 #endif
6105 raw_spin_unlock_irqrestore(&rq->lock, flags);
6107 /* Set the preempt count _outside_ the spinlocks! */
6108 task_thread_info(idle)->preempt_count = 0;
6111 * The idle tasks have their own, simple scheduling class:
6113 idle->sched_class = &idle_sched_class;
6114 ftrace_graph_init_idle_task(idle, cpu);
6115 #if defined(CONFIG_SMP)
6116 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6117 #endif
6121 * Increase the granularity value when there are more CPUs,
6122 * because with more CPUs the 'effective latency' as visible
6123 * to users decreases. But the relationship is not linear,
6124 * so pick a second-best guess by going with the log2 of the
6125 * number of CPUs.
6127 * This idea comes from the SD scheduler of Con Kolivas:
6129 static int get_update_sysctl_factor(void)
6131 unsigned int cpus = min_t(int, num_online_cpus(), 8);
6132 unsigned int factor;
6134 switch (sysctl_sched_tunable_scaling) {
6135 case SCHED_TUNABLESCALING_NONE:
6136 factor = 1;
6137 break;
6138 case SCHED_TUNABLESCALING_LINEAR:
6139 factor = cpus;
6140 break;
6141 case SCHED_TUNABLESCALING_LOG:
6142 default:
6143 factor = 1 + ilog2(cpus);
6144 break;
6147 return factor;
6150 static void update_sysctl(void)
6152 unsigned int factor = get_update_sysctl_factor();
6154 #define SET_SYSCTL(name) \
6155 (sysctl_##name = (factor) * normalized_sysctl_##name)
6156 SET_SYSCTL(sched_min_granularity);
6157 SET_SYSCTL(sched_latency);
6158 SET_SYSCTL(sched_wakeup_granularity);
6159 #undef SET_SYSCTL
6162 static inline void sched_init_granularity(void)
6164 update_sysctl();
6167 #ifdef CONFIG_SMP
6168 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
6170 if (p->sched_class && p->sched_class->set_cpus_allowed)
6171 p->sched_class->set_cpus_allowed(p, new_mask);
6173 cpumask_copy(&p->cpus_allowed, new_mask);
6174 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
6178 * This is how migration works:
6180 * 1) we invoke migration_cpu_stop() on the target CPU using
6181 * stop_one_cpu().
6182 * 2) stopper starts to run (implicitly forcing the migrated thread
6183 * off the CPU)
6184 * 3) it checks whether the migrated task is still in the wrong runqueue.
6185 * 4) if it's in the wrong runqueue then the migration thread removes
6186 * it and puts it into the right queue.
6187 * 5) stopper completes and stop_one_cpu() returns and the migration
6188 * is done.
6192 * Change a given task's CPU affinity. Migrate the thread to a
6193 * proper CPU and schedule it away if the CPU it's executing on
6194 * is removed from the allowed bitmask.
6196 * NOTE: the caller must have a valid reference to the task, the
6197 * task must not exit() & deallocate itself prematurely. The
6198 * call is not atomic; no spinlocks may be held.
6200 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
6202 unsigned long flags;
6203 struct rq *rq;
6204 unsigned int dest_cpu;
6205 int ret = 0;
6207 rq = task_rq_lock(p, &flags);
6209 if (cpumask_equal(&p->cpus_allowed, new_mask))
6210 goto out;
6212 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
6213 ret = -EINVAL;
6214 goto out;
6217 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
6218 ret = -EINVAL;
6219 goto out;
6222 do_set_cpus_allowed(p, new_mask);
6224 /* Can the task run on the task's current CPU? If so, we're done */
6225 if (cpumask_test_cpu(task_cpu(p), new_mask))
6226 goto out;
6228 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
6229 if (p->on_rq) {
6230 struct migration_arg arg = { p, dest_cpu };
6231 /* Need help from migration thread: drop lock and wait. */
6232 task_rq_unlock(rq, p, &flags);
6233 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
6234 tlb_migrate_finish(p->mm);
6235 return 0;
6237 out:
6238 task_rq_unlock(rq, p, &flags);
6240 return ret;
6242 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
6245 * Move (not current) task off this cpu, onto dest cpu. We're doing
6246 * this because either it can't run here any more (set_cpus_allowed()
6247 * away from this CPU, or CPU going down), or because we're
6248 * attempting to rebalance this task on exec (sched_exec).
6250 * So we race with normal scheduler movements, but that's OK, as long
6251 * as the task is no longer on this CPU.
6253 * Returns non-zero if task was successfully migrated.
6255 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
6257 struct rq *rq_dest, *rq_src;
6258 int ret = 0;
6260 if (unlikely(!cpu_active(dest_cpu)))
6261 return ret;
6263 rq_src = cpu_rq(src_cpu);
6264 rq_dest = cpu_rq(dest_cpu);
6266 raw_spin_lock(&p->pi_lock);
6267 double_rq_lock(rq_src, rq_dest);
6268 /* Already moved. */
6269 if (task_cpu(p) != src_cpu)
6270 goto done;
6271 /* Affinity changed (again). */
6272 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
6273 goto fail;
6276 * If we're not on a rq, the next wake-up will ensure we're
6277 * placed properly.
6279 if (p->on_rq) {
6280 deactivate_task(rq_src, p, 0);
6281 set_task_cpu(p, dest_cpu);
6282 activate_task(rq_dest, p, 0);
6283 check_preempt_curr(rq_dest, p, 0);
6285 done:
6286 ret = 1;
6287 fail:
6288 double_rq_unlock(rq_src, rq_dest);
6289 raw_spin_unlock(&p->pi_lock);
6290 return ret;
6294 * migration_cpu_stop - this will be executed by a highprio stopper thread
6295 * and performs thread migration by bumping thread off CPU then
6296 * 'pushing' onto another runqueue.
6298 static int migration_cpu_stop(void *data)
6300 struct migration_arg *arg = data;
6303 * The original target cpu might have gone down and we might
6304 * be on another cpu but it doesn't matter.
6306 local_irq_disable();
6307 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
6308 local_irq_enable();
6309 return 0;
6312 #ifdef CONFIG_HOTPLUG_CPU
6315 * Ensures that the idle task is using init_mm right before its cpu goes
6316 * offline.
6318 void idle_task_exit(void)
6320 struct mm_struct *mm = current->active_mm;
6322 BUG_ON(cpu_online(smp_processor_id()));
6324 if (mm != &init_mm)
6325 switch_mm(mm, &init_mm, current);
6326 mmdrop(mm);
6330 * While a dead CPU has no uninterruptible tasks queued at this point,
6331 * it might still have a nonzero ->nr_uninterruptible counter, because
6332 * for performance reasons the counter is not stricly tracking tasks to
6333 * their home CPUs. So we just add the counter to another CPU's counter,
6334 * to keep the global sum constant after CPU-down:
6336 static void migrate_nr_uninterruptible(struct rq *rq_src)
6338 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
6340 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6341 rq_src->nr_uninterruptible = 0;
6345 * remove the tasks which were accounted by rq from calc_load_tasks.
6347 static void calc_global_load_remove(struct rq *rq)
6349 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
6350 rq->calc_load_active = 0;
6353 #ifdef CONFIG_CFS_BANDWIDTH
6354 static void unthrottle_offline_cfs_rqs(struct rq *rq)
6356 struct cfs_rq *cfs_rq;
6358 for_each_leaf_cfs_rq(rq, cfs_rq) {
6359 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6361 if (!cfs_rq->runtime_enabled)
6362 continue;
6365 * clock_task is not advancing so we just need to make sure
6366 * there's some valid quota amount
6368 cfs_rq->runtime_remaining = cfs_b->quota;
6369 if (cfs_rq_throttled(cfs_rq))
6370 unthrottle_cfs_rq(cfs_rq);
6373 #else
6374 static void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6375 #endif
6378 * Migrate all tasks from the rq, sleeping tasks will be migrated by
6379 * try_to_wake_up()->select_task_rq().
6381 * Called with rq->lock held even though we'er in stop_machine() and
6382 * there's no concurrency possible, we hold the required locks anyway
6383 * because of lock validation efforts.
6385 static void migrate_tasks(unsigned int dead_cpu)
6387 struct rq *rq = cpu_rq(dead_cpu);
6388 struct task_struct *next, *stop = rq->stop;
6389 int dest_cpu;
6392 * Fudge the rq selection such that the below task selection loop
6393 * doesn't get stuck on the currently eligible stop task.
6395 * We're currently inside stop_machine() and the rq is either stuck
6396 * in the stop_machine_cpu_stop() loop, or we're executing this code,
6397 * either way we should never end up calling schedule() until we're
6398 * done here.
6400 rq->stop = NULL;
6402 /* Ensure any throttled groups are reachable by pick_next_task */
6403 unthrottle_offline_cfs_rqs(rq);
6405 for ( ; ; ) {
6407 * There's this thread running, bail when that's the only
6408 * remaining thread.
6410 if (rq->nr_running == 1)
6411 break;
6413 next = pick_next_task(rq);
6414 BUG_ON(!next);
6415 next->sched_class->put_prev_task(rq, next);
6417 /* Find suitable destination for @next, with force if needed. */
6418 dest_cpu = select_fallback_rq(dead_cpu, next);
6419 raw_spin_unlock(&rq->lock);
6421 __migrate_task(next, dead_cpu, dest_cpu);
6423 raw_spin_lock(&rq->lock);
6426 rq->stop = stop;
6429 #endif /* CONFIG_HOTPLUG_CPU */
6431 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6433 static struct ctl_table sd_ctl_dir[] = {
6435 .procname = "sched_domain",
6436 .mode = 0555,
6441 static struct ctl_table sd_ctl_root[] = {
6443 .procname = "kernel",
6444 .mode = 0555,
6445 .child = sd_ctl_dir,
6450 static struct ctl_table *sd_alloc_ctl_entry(int n)
6452 struct ctl_table *entry =
6453 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
6455 return entry;
6458 static void sd_free_ctl_entry(struct ctl_table **tablep)
6460 struct ctl_table *entry;
6463 * In the intermediate directories, both the child directory and
6464 * procname are dynamically allocated and could fail but the mode
6465 * will always be set. In the lowest directory the names are
6466 * static strings and all have proc handlers.
6468 for (entry = *tablep; entry->mode; entry++) {
6469 if (entry->child)
6470 sd_free_ctl_entry(&entry->child);
6471 if (entry->proc_handler == NULL)
6472 kfree(entry->procname);
6475 kfree(*tablep);
6476 *tablep = NULL;
6479 static void
6480 set_table_entry(struct ctl_table *entry,
6481 const char *procname, void *data, int maxlen,
6482 mode_t mode, proc_handler *proc_handler)
6484 entry->procname = procname;
6485 entry->data = data;
6486 entry->maxlen = maxlen;
6487 entry->mode = mode;
6488 entry->proc_handler = proc_handler;
6491 static struct ctl_table *
6492 sd_alloc_ctl_domain_table(struct sched_domain *sd)
6494 struct ctl_table *table = sd_alloc_ctl_entry(13);
6496 if (table == NULL)
6497 return NULL;
6499 set_table_entry(&table[0], "min_interval", &sd->min_interval,
6500 sizeof(long), 0644, proc_doulongvec_minmax);
6501 set_table_entry(&table[1], "max_interval", &sd->max_interval,
6502 sizeof(long), 0644, proc_doulongvec_minmax);
6503 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
6504 sizeof(int), 0644, proc_dointvec_minmax);
6505 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
6506 sizeof(int), 0644, proc_dointvec_minmax);
6507 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
6508 sizeof(int), 0644, proc_dointvec_minmax);
6509 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
6510 sizeof(int), 0644, proc_dointvec_minmax);
6511 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
6512 sizeof(int), 0644, proc_dointvec_minmax);
6513 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
6514 sizeof(int), 0644, proc_dointvec_minmax);
6515 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
6516 sizeof(int), 0644, proc_dointvec_minmax);
6517 set_table_entry(&table[9], "cache_nice_tries",
6518 &sd->cache_nice_tries,
6519 sizeof(int), 0644, proc_dointvec_minmax);
6520 set_table_entry(&table[10], "flags", &sd->flags,
6521 sizeof(int), 0644, proc_dointvec_minmax);
6522 set_table_entry(&table[11], "name", sd->name,
6523 CORENAME_MAX_SIZE, 0444, proc_dostring);
6524 /* &table[12] is terminator */
6526 return table;
6529 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
6531 struct ctl_table *entry, *table;
6532 struct sched_domain *sd;
6533 int domain_num = 0, i;
6534 char buf[32];
6536 for_each_domain(cpu, sd)
6537 domain_num++;
6538 entry = table = sd_alloc_ctl_entry(domain_num + 1);
6539 if (table == NULL)
6540 return NULL;
6542 i = 0;
6543 for_each_domain(cpu, sd) {
6544 snprintf(buf, 32, "domain%d", i);
6545 entry->procname = kstrdup(buf, GFP_KERNEL);
6546 entry->mode = 0555;
6547 entry->child = sd_alloc_ctl_domain_table(sd);
6548 entry++;
6549 i++;
6551 return table;
6554 static struct ctl_table_header *sd_sysctl_header;
6555 static void register_sched_domain_sysctl(void)
6557 int i, cpu_num = num_possible_cpus();
6558 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6559 char buf[32];
6561 WARN_ON(sd_ctl_dir[0].child);
6562 sd_ctl_dir[0].child = entry;
6564 if (entry == NULL)
6565 return;
6567 for_each_possible_cpu(i) {
6568 snprintf(buf, 32, "cpu%d", i);
6569 entry->procname = kstrdup(buf, GFP_KERNEL);
6570 entry->mode = 0555;
6571 entry->child = sd_alloc_ctl_cpu_table(i);
6572 entry++;
6575 WARN_ON(sd_sysctl_header);
6576 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6579 /* may be called multiple times per register */
6580 static void unregister_sched_domain_sysctl(void)
6582 if (sd_sysctl_header)
6583 unregister_sysctl_table(sd_sysctl_header);
6584 sd_sysctl_header = NULL;
6585 if (sd_ctl_dir[0].child)
6586 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6588 #else
6589 static void register_sched_domain_sysctl(void)
6592 static void unregister_sched_domain_sysctl(void)
6595 #endif
6597 static void set_rq_online(struct rq *rq)
6599 if (!rq->online) {
6600 const struct sched_class *class;
6602 cpumask_set_cpu(rq->cpu, rq->rd->online);
6603 rq->online = 1;
6605 for_each_class(class) {
6606 if (class->rq_online)
6607 class->rq_online(rq);
6612 static void set_rq_offline(struct rq *rq)
6614 if (rq->online) {
6615 const struct sched_class *class;
6617 for_each_class(class) {
6618 if (class->rq_offline)
6619 class->rq_offline(rq);
6622 cpumask_clear_cpu(rq->cpu, rq->rd->online);
6623 rq->online = 0;
6628 * migration_call - callback that gets triggered when a CPU is added.
6629 * Here we can start up the necessary migration thread for the new CPU.
6631 static int __cpuinit
6632 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
6634 int cpu = (long)hcpu;
6635 unsigned long flags;
6636 struct rq *rq = cpu_rq(cpu);
6638 switch (action & ~CPU_TASKS_FROZEN) {
6640 case CPU_UP_PREPARE:
6641 rq->calc_load_update = calc_load_update;
6642 break;
6644 case CPU_ONLINE:
6645 /* Update our root-domain */
6646 raw_spin_lock_irqsave(&rq->lock, flags);
6647 if (rq->rd) {
6648 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6650 set_rq_online(rq);
6652 raw_spin_unlock_irqrestore(&rq->lock, flags);
6653 break;
6655 #ifdef CONFIG_HOTPLUG_CPU
6656 case CPU_DYING:
6657 sched_ttwu_pending();
6658 /* Update our root-domain */
6659 raw_spin_lock_irqsave(&rq->lock, flags);
6660 if (rq->rd) {
6661 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
6662 set_rq_offline(rq);
6664 migrate_tasks(cpu);
6665 BUG_ON(rq->nr_running != 1); /* the migration thread */
6666 raw_spin_unlock_irqrestore(&rq->lock, flags);
6668 migrate_nr_uninterruptible(rq);
6669 calc_global_load_remove(rq);
6670 break;
6671 #endif
6674 update_max_interval();
6676 return NOTIFY_OK;
6680 * Register at high priority so that task migration (migrate_all_tasks)
6681 * happens before everything else. This has to be lower priority than
6682 * the notifier in the perf_event subsystem, though.
6684 static struct notifier_block __cpuinitdata migration_notifier = {
6685 .notifier_call = migration_call,
6686 .priority = CPU_PRI_MIGRATION,
6689 static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
6690 unsigned long action, void *hcpu)
6692 switch (action & ~CPU_TASKS_FROZEN) {
6693 case CPU_ONLINE:
6694 case CPU_DOWN_FAILED:
6695 set_cpu_active((long)hcpu, true);
6696 return NOTIFY_OK;
6697 default:
6698 return NOTIFY_DONE;
6702 static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
6703 unsigned long action, void *hcpu)
6705 switch (action & ~CPU_TASKS_FROZEN) {
6706 case CPU_DOWN_PREPARE:
6707 set_cpu_active((long)hcpu, false);
6708 return NOTIFY_OK;
6709 default:
6710 return NOTIFY_DONE;
6714 static int __init migration_init(void)
6716 void *cpu = (void *)(long)smp_processor_id();
6717 int err;
6719 /* Initialize migration for the boot CPU */
6720 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6721 BUG_ON(err == NOTIFY_BAD);
6722 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6723 register_cpu_notifier(&migration_notifier);
6725 /* Register cpu active notifiers */
6726 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
6727 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
6729 return 0;
6731 early_initcall(migration_init);
6732 #endif
6734 #ifdef CONFIG_SMP
6736 static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
6738 #ifdef CONFIG_SCHED_DEBUG
6740 static __read_mostly int sched_domain_debug_enabled;
6742 static int __init sched_domain_debug_setup(char *str)
6744 sched_domain_debug_enabled = 1;
6746 return 0;
6748 early_param("sched_debug", sched_domain_debug_setup);
6750 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
6751 struct cpumask *groupmask)
6753 struct sched_group *group = sd->groups;
6754 char str[256];
6756 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
6757 cpumask_clear(groupmask);
6759 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6761 if (!(sd->flags & SD_LOAD_BALANCE)) {
6762 printk("does not load-balance\n");
6763 if (sd->parent)
6764 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6765 " has parent");
6766 return -1;
6769 printk(KERN_CONT "span %s level %s\n", str, sd->name);
6771 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
6772 printk(KERN_ERR "ERROR: domain->span does not contain "
6773 "CPU%d\n", cpu);
6775 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
6776 printk(KERN_ERR "ERROR: domain->groups does not contain"
6777 " CPU%d\n", cpu);
6780 printk(KERN_DEBUG "%*s groups:", level + 1, "");
6781 do {
6782 if (!group) {
6783 printk("\n");
6784 printk(KERN_ERR "ERROR: group is NULL\n");
6785 break;
6788 if (!group->sgp->power) {
6789 printk(KERN_CONT "\n");
6790 printk(KERN_ERR "ERROR: domain->cpu_power not "
6791 "set\n");
6792 break;
6795 if (!cpumask_weight(sched_group_cpus(group))) {
6796 printk(KERN_CONT "\n");
6797 printk(KERN_ERR "ERROR: empty group\n");
6798 break;
6801 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
6802 printk(KERN_CONT "\n");
6803 printk(KERN_ERR "ERROR: repeated CPUs\n");
6804 break;
6807 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
6809 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
6811 printk(KERN_CONT " %s", str);
6812 if (group->sgp->power != SCHED_POWER_SCALE) {
6813 printk(KERN_CONT " (cpu_power = %d)",
6814 group->sgp->power);
6817 group = group->next;
6818 } while (group != sd->groups);
6819 printk(KERN_CONT "\n");
6821 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6822 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6824 if (sd->parent &&
6825 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6826 printk(KERN_ERR "ERROR: parent span is not a superset "
6827 "of domain->span\n");
6828 return 0;
6831 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6833 int level = 0;
6835 if (!sched_domain_debug_enabled)
6836 return;
6838 if (!sd) {
6839 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6840 return;
6843 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6845 for (;;) {
6846 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
6847 break;
6848 level++;
6849 sd = sd->parent;
6850 if (!sd)
6851 break;
6854 #else /* !CONFIG_SCHED_DEBUG */
6855 # define sched_domain_debug(sd, cpu) do { } while (0)
6856 #endif /* CONFIG_SCHED_DEBUG */
6858 static int sd_degenerate(struct sched_domain *sd)
6860 if (cpumask_weight(sched_domain_span(sd)) == 1)
6861 return 1;
6863 /* Following flags need at least 2 groups */
6864 if (sd->flags & (SD_LOAD_BALANCE |
6865 SD_BALANCE_NEWIDLE |
6866 SD_BALANCE_FORK |
6867 SD_BALANCE_EXEC |
6868 SD_SHARE_CPUPOWER |
6869 SD_SHARE_PKG_RESOURCES)) {
6870 if (sd->groups != sd->groups->next)
6871 return 0;
6874 /* Following flags don't use groups */
6875 if (sd->flags & (SD_WAKE_AFFINE))
6876 return 0;
6878 return 1;
6881 static int
6882 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6884 unsigned long cflags = sd->flags, pflags = parent->flags;
6886 if (sd_degenerate(parent))
6887 return 1;
6889 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6890 return 0;
6892 /* Flags needing groups don't count if only 1 group in parent */
6893 if (parent->groups == parent->groups->next) {
6894 pflags &= ~(SD_LOAD_BALANCE |
6895 SD_BALANCE_NEWIDLE |
6896 SD_BALANCE_FORK |
6897 SD_BALANCE_EXEC |
6898 SD_SHARE_CPUPOWER |
6899 SD_SHARE_PKG_RESOURCES);
6900 if (nr_node_ids == 1)
6901 pflags &= ~SD_SERIALIZE;
6903 if (~cflags & pflags)
6904 return 0;
6906 return 1;
6909 static void free_rootdomain(struct rcu_head *rcu)
6911 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
6913 cpupri_cleanup(&rd->cpupri);
6914 free_cpumask_var(rd->rto_mask);
6915 free_cpumask_var(rd->online);
6916 free_cpumask_var(rd->span);
6917 kfree(rd);
6920 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6922 struct root_domain *old_rd = NULL;
6923 unsigned long flags;
6925 raw_spin_lock_irqsave(&rq->lock, flags);
6927 if (rq->rd) {
6928 old_rd = rq->rd;
6930 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6931 set_rq_offline(rq);
6933 cpumask_clear_cpu(rq->cpu, old_rd->span);
6936 * If we dont want to free the old_rt yet then
6937 * set old_rd to NULL to skip the freeing later
6938 * in this function:
6940 if (!atomic_dec_and_test(&old_rd->refcount))
6941 old_rd = NULL;
6944 atomic_inc(&rd->refcount);
6945 rq->rd = rd;
6947 cpumask_set_cpu(rq->cpu, rd->span);
6948 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6949 set_rq_online(rq);
6951 raw_spin_unlock_irqrestore(&rq->lock, flags);
6953 if (old_rd)
6954 call_rcu_sched(&old_rd->rcu, free_rootdomain);
6957 static int init_rootdomain(struct root_domain *rd)
6959 memset(rd, 0, sizeof(*rd));
6961 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
6962 goto out;
6963 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
6964 goto free_span;
6965 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
6966 goto free_online;
6968 if (cpupri_init(&rd->cpupri) != 0)
6969 goto free_rto_mask;
6970 return 0;
6972 free_rto_mask:
6973 free_cpumask_var(rd->rto_mask);
6974 free_online:
6975 free_cpumask_var(rd->online);
6976 free_span:
6977 free_cpumask_var(rd->span);
6978 out:
6979 return -ENOMEM;
6982 static void init_defrootdomain(void)
6984 init_rootdomain(&def_root_domain);
6986 atomic_set(&def_root_domain.refcount, 1);
6989 static struct root_domain *alloc_rootdomain(void)
6991 struct root_domain *rd;
6993 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6994 if (!rd)
6995 return NULL;
6997 if (init_rootdomain(rd) != 0) {
6998 kfree(rd);
6999 return NULL;
7002 return rd;
7005 static void free_sched_groups(struct sched_group *sg, int free_sgp)
7007 struct sched_group *tmp, *first;
7009 if (!sg)
7010 return;
7012 first = sg;
7013 do {
7014 tmp = sg->next;
7016 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
7017 kfree(sg->sgp);
7019 kfree(sg);
7020 sg = tmp;
7021 } while (sg != first);
7024 static void free_sched_domain(struct rcu_head *rcu)
7026 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
7029 * If its an overlapping domain it has private groups, iterate and
7030 * nuke them all.
7032 if (sd->flags & SD_OVERLAP) {
7033 free_sched_groups(sd->groups, 1);
7034 } else if (atomic_dec_and_test(&sd->groups->ref)) {
7035 kfree(sd->groups->sgp);
7036 kfree(sd->groups);
7038 kfree(sd);
7041 static void destroy_sched_domain(struct sched_domain *sd, int cpu)
7043 call_rcu(&sd->rcu, free_sched_domain);
7046 static void destroy_sched_domains(struct sched_domain *sd, int cpu)
7048 for (; sd; sd = sd->parent)
7049 destroy_sched_domain(sd, cpu);
7053 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
7054 * hold the hotplug lock.
7056 static void
7057 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
7059 struct rq *rq = cpu_rq(cpu);
7060 struct sched_domain *tmp;
7062 /* Remove the sched domains which do not contribute to scheduling. */
7063 for (tmp = sd; tmp; ) {
7064 struct sched_domain *parent = tmp->parent;
7065 if (!parent)
7066 break;
7068 if (sd_parent_degenerate(tmp, parent)) {
7069 tmp->parent = parent->parent;
7070 if (parent->parent)
7071 parent->parent->child = tmp;
7072 destroy_sched_domain(parent, cpu);
7073 } else
7074 tmp = tmp->parent;
7077 if (sd && sd_degenerate(sd)) {
7078 tmp = sd;
7079 sd = sd->parent;
7080 destroy_sched_domain(tmp, cpu);
7081 if (sd)
7082 sd->child = NULL;
7085 sched_domain_debug(sd, cpu);
7087 rq_attach_root(rq, rd);
7088 tmp = rq->sd;
7089 rcu_assign_pointer(rq->sd, sd);
7090 destroy_sched_domains(tmp, cpu);
7093 /* cpus with isolated domains */
7094 static cpumask_var_t cpu_isolated_map;
7096 /* Setup the mask of cpus configured for isolated domains */
7097 static int __init isolated_cpu_setup(char *str)
7099 alloc_bootmem_cpumask_var(&cpu_isolated_map);
7100 cpulist_parse(str, cpu_isolated_map);
7101 return 1;
7104 __setup("isolcpus=", isolated_cpu_setup);
7106 #ifdef CONFIG_NUMA
7109 * find_next_best_node - find the next node to include in a sched_domain
7110 * @node: node whose sched_domain we're building
7111 * @used_nodes: nodes already in the sched_domain
7113 * Find the next node to include in a given scheduling domain. Simply
7114 * finds the closest node not already in the @used_nodes map.
7116 * Should use nodemask_t.
7118 static int find_next_best_node(int node, nodemask_t *used_nodes)
7120 int i, n, val, min_val, best_node = -1;
7122 min_val = INT_MAX;
7124 for (i = 0; i < nr_node_ids; i++) {
7125 /* Start at @node */
7126 n = (node + i) % nr_node_ids;
7128 if (!nr_cpus_node(n))
7129 continue;
7131 /* Skip already used nodes */
7132 if (node_isset(n, *used_nodes))
7133 continue;
7135 /* Simple min distance search */
7136 val = node_distance(node, n);
7138 if (val < min_val) {
7139 min_val = val;
7140 best_node = n;
7144 if (best_node != -1)
7145 node_set(best_node, *used_nodes);
7146 return best_node;
7150 * sched_domain_node_span - get a cpumask for a node's sched_domain
7151 * @node: node whose cpumask we're constructing
7152 * @span: resulting cpumask
7154 * Given a node, construct a good cpumask for its sched_domain to span. It
7155 * should be one that prevents unnecessary balancing, but also spreads tasks
7156 * out optimally.
7158 static void sched_domain_node_span(int node, struct cpumask *span)
7160 nodemask_t used_nodes;
7161 int i;
7163 cpumask_clear(span);
7164 nodes_clear(used_nodes);
7166 cpumask_or(span, span, cpumask_of_node(node));
7167 node_set(node, used_nodes);
7169 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
7170 int next_node = find_next_best_node(node, &used_nodes);
7171 if (next_node < 0)
7172 break;
7173 cpumask_or(span, span, cpumask_of_node(next_node));
7177 static const struct cpumask *cpu_node_mask(int cpu)
7179 lockdep_assert_held(&sched_domains_mutex);
7181 sched_domain_node_span(cpu_to_node(cpu), sched_domains_tmpmask);
7183 return sched_domains_tmpmask;
7186 static const struct cpumask *cpu_allnodes_mask(int cpu)
7188 return cpu_possible_mask;
7190 #endif /* CONFIG_NUMA */
7192 static const struct cpumask *cpu_cpu_mask(int cpu)
7194 return cpumask_of_node(cpu_to_node(cpu));
7197 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
7199 struct sd_data {
7200 struct sched_domain **__percpu sd;
7201 struct sched_group **__percpu sg;
7202 struct sched_group_power **__percpu sgp;
7205 struct s_data {
7206 struct sched_domain ** __percpu sd;
7207 struct root_domain *rd;
7210 enum s_alloc {
7211 sa_rootdomain,
7212 sa_sd,
7213 sa_sd_storage,
7214 sa_none,
7217 struct sched_domain_topology_level;
7219 typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
7220 typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
7222 #define SDTL_OVERLAP 0x01
7224 struct sched_domain_topology_level {
7225 sched_domain_init_f init;
7226 sched_domain_mask_f mask;
7227 int flags;
7228 struct sd_data data;
7231 static int
7232 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
7234 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
7235 const struct cpumask *span = sched_domain_span(sd);
7236 struct cpumask *covered = sched_domains_tmpmask;
7237 struct sd_data *sdd = sd->private;
7238 struct sched_domain *child;
7239 int i;
7241 cpumask_clear(covered);
7243 for_each_cpu(i, span) {
7244 struct cpumask *sg_span;
7246 if (cpumask_test_cpu(i, covered))
7247 continue;
7249 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7250 GFP_KERNEL, cpu_to_node(i));
7252 if (!sg)
7253 goto fail;
7255 sg_span = sched_group_cpus(sg);
7257 child = *per_cpu_ptr(sdd->sd, i);
7258 if (child->child) {
7259 child = child->child;
7260 cpumask_copy(sg_span, sched_domain_span(child));
7261 } else
7262 cpumask_set_cpu(i, sg_span);
7264 cpumask_or(covered, covered, sg_span);
7266 sg->sgp = *per_cpu_ptr(sdd->sgp, cpumask_first(sg_span));
7267 atomic_inc(&sg->sgp->ref);
7269 if (cpumask_test_cpu(cpu, sg_span))
7270 groups = sg;
7272 if (!first)
7273 first = sg;
7274 if (last)
7275 last->next = sg;
7276 last = sg;
7277 last->next = first;
7279 sd->groups = groups;
7281 return 0;
7283 fail:
7284 free_sched_groups(first, 0);
7286 return -ENOMEM;
7289 static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
7291 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
7292 struct sched_domain *child = sd->child;
7294 if (child)
7295 cpu = cpumask_first(sched_domain_span(child));
7297 if (sg) {
7298 *sg = *per_cpu_ptr(sdd->sg, cpu);
7299 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
7300 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
7303 return cpu;
7307 * build_sched_groups will build a circular linked list of the groups
7308 * covered by the given span, and will set each group's ->cpumask correctly,
7309 * and ->cpu_power to 0.
7311 * Assumes the sched_domain tree is fully constructed
7313 static int
7314 build_sched_groups(struct sched_domain *sd, int cpu)
7316 struct sched_group *first = NULL, *last = NULL;
7317 struct sd_data *sdd = sd->private;
7318 const struct cpumask *span = sched_domain_span(sd);
7319 struct cpumask *covered;
7320 int i;
7322 get_group(cpu, sdd, &sd->groups);
7323 atomic_inc(&sd->groups->ref);
7325 if (cpu != cpumask_first(sched_domain_span(sd)))
7326 return 0;
7328 lockdep_assert_held(&sched_domains_mutex);
7329 covered = sched_domains_tmpmask;
7331 cpumask_clear(covered);
7333 for_each_cpu(i, span) {
7334 struct sched_group *sg;
7335 int group = get_group(i, sdd, &sg);
7336 int j;
7338 if (cpumask_test_cpu(i, covered))
7339 continue;
7341 cpumask_clear(sched_group_cpus(sg));
7342 sg->sgp->power = 0;
7344 for_each_cpu(j, span) {
7345 if (get_group(j, sdd, NULL) != group)
7346 continue;
7348 cpumask_set_cpu(j, covered);
7349 cpumask_set_cpu(j, sched_group_cpus(sg));
7352 if (!first)
7353 first = sg;
7354 if (last)
7355 last->next = sg;
7356 last = sg;
7358 last->next = first;
7360 return 0;
7364 * Initialize sched groups cpu_power.
7366 * cpu_power indicates the capacity of sched group, which is used while
7367 * distributing the load between different sched groups in a sched domain.
7368 * Typically cpu_power for all the groups in a sched domain will be same unless
7369 * there are asymmetries in the topology. If there are asymmetries, group
7370 * having more cpu_power will pickup more load compared to the group having
7371 * less cpu_power.
7373 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7375 struct sched_group *sg = sd->groups;
7377 WARN_ON(!sd || !sg);
7379 do {
7380 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
7381 sg = sg->next;
7382 } while (sg != sd->groups);
7384 if (cpu != group_first_cpu(sg))
7385 return;
7387 update_group_power(sd, cpu);
7391 * Initializers for schedule domains
7392 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7395 #ifdef CONFIG_SCHED_DEBUG
7396 # define SD_INIT_NAME(sd, type) sd->name = #type
7397 #else
7398 # define SD_INIT_NAME(sd, type) do { } while (0)
7399 #endif
7401 #define SD_INIT_FUNC(type) \
7402 static noinline struct sched_domain * \
7403 sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
7405 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
7406 *sd = SD_##type##_INIT; \
7407 SD_INIT_NAME(sd, type); \
7408 sd->private = &tl->data; \
7409 return sd; \
7412 SD_INIT_FUNC(CPU)
7413 #ifdef CONFIG_NUMA
7414 SD_INIT_FUNC(ALLNODES)
7415 SD_INIT_FUNC(NODE)
7416 #endif
7417 #ifdef CONFIG_SCHED_SMT
7418 SD_INIT_FUNC(SIBLING)
7419 #endif
7420 #ifdef CONFIG_SCHED_MC
7421 SD_INIT_FUNC(MC)
7422 #endif
7423 #ifdef CONFIG_SCHED_BOOK
7424 SD_INIT_FUNC(BOOK)
7425 #endif
7427 static int default_relax_domain_level = -1;
7428 int sched_domain_level_max;
7430 static int __init setup_relax_domain_level(char *str)
7432 unsigned long val;
7434 val = simple_strtoul(str, NULL, 0);
7435 if (val < sched_domain_level_max)
7436 default_relax_domain_level = val;
7438 return 1;
7440 __setup("relax_domain_level=", setup_relax_domain_level);
7442 static void set_domain_attribute(struct sched_domain *sd,
7443 struct sched_domain_attr *attr)
7445 int request;
7447 if (!attr || attr->relax_domain_level < 0) {
7448 if (default_relax_domain_level < 0)
7449 return;
7450 else
7451 request = default_relax_domain_level;
7452 } else
7453 request = attr->relax_domain_level;
7454 if (request < sd->level) {
7455 /* turn off idle balance on this domain */
7456 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7457 } else {
7458 /* turn on idle balance on this domain */
7459 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
7463 static void __sdt_free(const struct cpumask *cpu_map);
7464 static int __sdt_alloc(const struct cpumask *cpu_map);
7466 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
7467 const struct cpumask *cpu_map)
7469 switch (what) {
7470 case sa_rootdomain:
7471 if (!atomic_read(&d->rd->refcount))
7472 free_rootdomain(&d->rd->rcu); /* fall through */
7473 case sa_sd:
7474 free_percpu(d->sd); /* fall through */
7475 case sa_sd_storage:
7476 __sdt_free(cpu_map); /* fall through */
7477 case sa_none:
7478 break;
7482 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
7483 const struct cpumask *cpu_map)
7485 memset(d, 0, sizeof(*d));
7487 if (__sdt_alloc(cpu_map))
7488 return sa_sd_storage;
7489 d->sd = alloc_percpu(struct sched_domain *);
7490 if (!d->sd)
7491 return sa_sd_storage;
7492 d->rd = alloc_rootdomain();
7493 if (!d->rd)
7494 return sa_sd;
7495 return sa_rootdomain;
7499 * NULL the sd_data elements we've used to build the sched_domain and
7500 * sched_group structure so that the subsequent __free_domain_allocs()
7501 * will not free the data we're using.
7503 static void claim_allocations(int cpu, struct sched_domain *sd)
7505 struct sd_data *sdd = sd->private;
7507 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
7508 *per_cpu_ptr(sdd->sd, cpu) = NULL;
7510 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
7511 *per_cpu_ptr(sdd->sg, cpu) = NULL;
7513 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
7514 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
7517 #ifdef CONFIG_SCHED_SMT
7518 static const struct cpumask *cpu_smt_mask(int cpu)
7520 return topology_thread_cpumask(cpu);
7522 #endif
7525 * Topology list, bottom-up.
7527 static struct sched_domain_topology_level default_topology[] = {
7528 #ifdef CONFIG_SCHED_SMT
7529 { sd_init_SIBLING, cpu_smt_mask, },
7530 #endif
7531 #ifdef CONFIG_SCHED_MC
7532 { sd_init_MC, cpu_coregroup_mask, },
7533 #endif
7534 #ifdef CONFIG_SCHED_BOOK
7535 { sd_init_BOOK, cpu_book_mask, },
7536 #endif
7537 { sd_init_CPU, cpu_cpu_mask, },
7538 #ifdef CONFIG_NUMA
7539 { sd_init_NODE, cpu_node_mask, SDTL_OVERLAP, },
7540 { sd_init_ALLNODES, cpu_allnodes_mask, },
7541 #endif
7542 { NULL, },
7545 static struct sched_domain_topology_level *sched_domain_topology = default_topology;
7547 static int __sdt_alloc(const struct cpumask *cpu_map)
7549 struct sched_domain_topology_level *tl;
7550 int j;
7552 for (tl = sched_domain_topology; tl->init; tl++) {
7553 struct sd_data *sdd = &tl->data;
7555 sdd->sd = alloc_percpu(struct sched_domain *);
7556 if (!sdd->sd)
7557 return -ENOMEM;
7559 sdd->sg = alloc_percpu(struct sched_group *);
7560 if (!sdd->sg)
7561 return -ENOMEM;
7563 sdd->sgp = alloc_percpu(struct sched_group_power *);
7564 if (!sdd->sgp)
7565 return -ENOMEM;
7567 for_each_cpu(j, cpu_map) {
7568 struct sched_domain *sd;
7569 struct sched_group *sg;
7570 struct sched_group_power *sgp;
7572 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
7573 GFP_KERNEL, cpu_to_node(j));
7574 if (!sd)
7575 return -ENOMEM;
7577 *per_cpu_ptr(sdd->sd, j) = sd;
7579 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
7580 GFP_KERNEL, cpu_to_node(j));
7581 if (!sg)
7582 return -ENOMEM;
7584 *per_cpu_ptr(sdd->sg, j) = sg;
7586 sgp = kzalloc_node(sizeof(struct sched_group_power),
7587 GFP_KERNEL, cpu_to_node(j));
7588 if (!sgp)
7589 return -ENOMEM;
7591 *per_cpu_ptr(sdd->sgp, j) = sgp;
7595 return 0;
7598 static void __sdt_free(const struct cpumask *cpu_map)
7600 struct sched_domain_topology_level *tl;
7601 int j;
7603 for (tl = sched_domain_topology; tl->init; tl++) {
7604 struct sd_data *sdd = &tl->data;
7606 for_each_cpu(j, cpu_map) {
7607 struct sched_domain *sd;
7609 if (sdd->sd) {
7610 sd = *per_cpu_ptr(sdd->sd, j);
7611 if (sd && (sd->flags & SD_OVERLAP))
7612 free_sched_groups(sd->groups, 0);
7613 kfree(*per_cpu_ptr(sdd->sd, j));
7616 if (sdd->sg)
7617 kfree(*per_cpu_ptr(sdd->sg, j));
7618 if (sdd->sgp)
7619 kfree(*per_cpu_ptr(sdd->sgp, j));
7621 free_percpu(sdd->sd);
7622 sdd->sd = NULL;
7623 free_percpu(sdd->sg);
7624 sdd->sg = NULL;
7625 free_percpu(sdd->sgp);
7626 sdd->sgp = NULL;
7630 struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
7631 struct s_data *d, const struct cpumask *cpu_map,
7632 struct sched_domain_attr *attr, struct sched_domain *child,
7633 int cpu)
7635 struct sched_domain *sd = tl->init(tl, cpu);
7636 if (!sd)
7637 return child;
7639 set_domain_attribute(sd, attr);
7640 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
7641 if (child) {
7642 sd->level = child->level + 1;
7643 sched_domain_level_max = max(sched_domain_level_max, sd->level);
7644 child->parent = sd;
7646 sd->child = child;
7648 return sd;
7652 * Build sched domains for a given set of cpus and attach the sched domains
7653 * to the individual cpus
7655 static int build_sched_domains(const struct cpumask *cpu_map,
7656 struct sched_domain_attr *attr)
7658 enum s_alloc alloc_state = sa_none;
7659 struct sched_domain *sd;
7660 struct s_data d;
7661 int i, ret = -ENOMEM;
7663 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
7664 if (alloc_state != sa_rootdomain)
7665 goto error;
7667 /* Set up domains for cpus specified by the cpu_map. */
7668 for_each_cpu(i, cpu_map) {
7669 struct sched_domain_topology_level *tl;
7671 sd = NULL;
7672 for (tl = sched_domain_topology; tl->init; tl++) {
7673 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
7674 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
7675 sd->flags |= SD_OVERLAP;
7676 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
7677 break;
7680 while (sd->child)
7681 sd = sd->child;
7683 *per_cpu_ptr(d.sd, i) = sd;
7686 /* Build the groups for the domains */
7687 for_each_cpu(i, cpu_map) {
7688 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7689 sd->span_weight = cpumask_weight(sched_domain_span(sd));
7690 if (sd->flags & SD_OVERLAP) {
7691 if (build_overlap_sched_groups(sd, i))
7692 goto error;
7693 } else {
7694 if (build_sched_groups(sd, i))
7695 goto error;
7700 /* Calculate CPU power for physical packages and nodes */
7701 for (i = nr_cpumask_bits-1; i >= 0; i--) {
7702 if (!cpumask_test_cpu(i, cpu_map))
7703 continue;
7705 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
7706 claim_allocations(i, sd);
7707 init_sched_groups_power(i, sd);
7711 /* Attach the domains */
7712 rcu_read_lock();
7713 for_each_cpu(i, cpu_map) {
7714 sd = *per_cpu_ptr(d.sd, i);
7715 cpu_attach_domain(sd, d.rd, i);
7717 rcu_read_unlock();
7719 ret = 0;
7720 error:
7721 __free_domain_allocs(&d, alloc_state, cpu_map);
7722 return ret;
7725 static cpumask_var_t *doms_cur; /* current sched domains */
7726 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7727 static struct sched_domain_attr *dattr_cur;
7728 /* attribues of custom domains in 'doms_cur' */
7731 * Special case: If a kmalloc of a doms_cur partition (array of
7732 * cpumask) fails, then fallback to a single sched domain,
7733 * as determined by the single cpumask fallback_doms.
7735 static cpumask_var_t fallback_doms;
7738 * arch_update_cpu_topology lets virtualized architectures update the
7739 * cpu core maps. It is supposed to return 1 if the topology changed
7740 * or 0 if it stayed the same.
7742 int __attribute__((weak)) arch_update_cpu_topology(void)
7744 return 0;
7747 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7749 int i;
7750 cpumask_var_t *doms;
7752 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7753 if (!doms)
7754 return NULL;
7755 for (i = 0; i < ndoms; i++) {
7756 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7757 free_sched_domains(doms, i);
7758 return NULL;
7761 return doms;
7764 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7766 unsigned int i;
7767 for (i = 0; i < ndoms; i++)
7768 free_cpumask_var(doms[i]);
7769 kfree(doms);
7773 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7774 * For now this just excludes isolated cpus, but could be used to
7775 * exclude other special cases in the future.
7777 static int init_sched_domains(const struct cpumask *cpu_map)
7779 int err;
7781 arch_update_cpu_topology();
7782 ndoms_cur = 1;
7783 doms_cur = alloc_sched_domains(ndoms_cur);
7784 if (!doms_cur)
7785 doms_cur = &fallback_doms;
7786 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7787 dattr_cur = NULL;
7788 err = build_sched_domains(doms_cur[0], NULL);
7789 register_sched_domain_sysctl();
7791 return err;
7795 * Detach sched domains from a group of cpus specified in cpu_map
7796 * These cpus will now be attached to the NULL domain
7798 static void detach_destroy_domains(const struct cpumask *cpu_map)
7800 int i;
7802 rcu_read_lock();
7803 for_each_cpu(i, cpu_map)
7804 cpu_attach_domain(NULL, &def_root_domain, i);
7805 rcu_read_unlock();
7808 /* handle null as "default" */
7809 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7810 struct sched_domain_attr *new, int idx_new)
7812 struct sched_domain_attr tmp;
7814 /* fast path */
7815 if (!new && !cur)
7816 return 1;
7818 tmp = SD_ATTR_INIT;
7819 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7820 new ? (new + idx_new) : &tmp,
7821 sizeof(struct sched_domain_attr));
7825 * Partition sched domains as specified by the 'ndoms_new'
7826 * cpumasks in the array doms_new[] of cpumasks. This compares
7827 * doms_new[] to the current sched domain partitioning, doms_cur[].
7828 * It destroys each deleted domain and builds each new domain.
7830 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7831 * The masks don't intersect (don't overlap.) We should setup one
7832 * sched domain for each mask. CPUs not in any of the cpumasks will
7833 * not be load balanced. If the same cpumask appears both in the
7834 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7835 * it as it is.
7837 * The passed in 'doms_new' should be allocated using
7838 * alloc_sched_domains. This routine takes ownership of it and will
7839 * free_sched_domains it when done with it. If the caller failed the
7840 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7841 * and partition_sched_domains() will fallback to the single partition
7842 * 'fallback_doms', it also forces the domains to be rebuilt.
7844 * If doms_new == NULL it will be replaced with cpu_online_mask.
7845 * ndoms_new == 0 is a special case for destroying existing domains,
7846 * and it will not create the default domain.
7848 * Call with hotplug lock held
7850 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7851 struct sched_domain_attr *dattr_new)
7853 int i, j, n;
7854 int new_topology;
7856 mutex_lock(&sched_domains_mutex);
7858 /* always unregister in case we don't destroy any domains */
7859 unregister_sched_domain_sysctl();
7861 /* Let architecture update cpu core mappings. */
7862 new_topology = arch_update_cpu_topology();
7864 n = doms_new ? ndoms_new : 0;
7866 /* Destroy deleted domains */
7867 for (i = 0; i < ndoms_cur; i++) {
7868 for (j = 0; j < n && !new_topology; j++) {
7869 if (cpumask_equal(doms_cur[i], doms_new[j])
7870 && dattrs_equal(dattr_cur, i, dattr_new, j))
7871 goto match1;
7873 /* no match - a current sched domain not in new doms_new[] */
7874 detach_destroy_domains(doms_cur[i]);
7875 match1:
7879 if (doms_new == NULL) {
7880 ndoms_cur = 0;
7881 doms_new = &fallback_doms;
7882 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7883 WARN_ON_ONCE(dattr_new);
7886 /* Build new domains */
7887 for (i = 0; i < ndoms_new; i++) {
7888 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7889 if (cpumask_equal(doms_new[i], doms_cur[j])
7890 && dattrs_equal(dattr_new, i, dattr_cur, j))
7891 goto match2;
7893 /* no match - add a new doms_new */
7894 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
7895 match2:
7899 /* Remember the new sched domains */
7900 if (doms_cur != &fallback_doms)
7901 free_sched_domains(doms_cur, ndoms_cur);
7902 kfree(dattr_cur); /* kfree(NULL) is safe */
7903 doms_cur = doms_new;
7904 dattr_cur = dattr_new;
7905 ndoms_cur = ndoms_new;
7907 register_sched_domain_sysctl();
7909 mutex_unlock(&sched_domains_mutex);
7912 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7913 static void reinit_sched_domains(void)
7915 get_online_cpus();
7917 /* Destroy domains first to force the rebuild */
7918 partition_sched_domains(0, NULL, NULL);
7920 rebuild_sched_domains();
7921 put_online_cpus();
7924 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7926 unsigned int level = 0;
7928 if (sscanf(buf, "%u", &level) != 1)
7929 return -EINVAL;
7932 * level is always be positive so don't check for
7933 * level < POWERSAVINGS_BALANCE_NONE which is 0
7934 * What happens on 0 or 1 byte write,
7935 * need to check for count as well?
7938 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7939 return -EINVAL;
7941 if (smt)
7942 sched_smt_power_savings = level;
7943 else
7944 sched_mc_power_savings = level;
7946 reinit_sched_domains();
7948 return count;
7951 #ifdef CONFIG_SCHED_MC
7952 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7953 struct sysdev_class_attribute *attr,
7954 char *page)
7956 return sprintf(page, "%u\n", sched_mc_power_savings);
7958 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7959 struct sysdev_class_attribute *attr,
7960 const char *buf, size_t count)
7962 return sched_power_savings_store(buf, count, 0);
7964 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7965 sched_mc_power_savings_show,
7966 sched_mc_power_savings_store);
7967 #endif
7969 #ifdef CONFIG_SCHED_SMT
7970 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7971 struct sysdev_class_attribute *attr,
7972 char *page)
7974 return sprintf(page, "%u\n", sched_smt_power_savings);
7976 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7977 struct sysdev_class_attribute *attr,
7978 const char *buf, size_t count)
7980 return sched_power_savings_store(buf, count, 1);
7982 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7983 sched_smt_power_savings_show,
7984 sched_smt_power_savings_store);
7985 #endif
7987 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7989 int err = 0;
7991 #ifdef CONFIG_SCHED_SMT
7992 if (smt_capable())
7993 err = sysfs_create_file(&cls->kset.kobj,
7994 &attr_sched_smt_power_savings.attr);
7995 #endif
7996 #ifdef CONFIG_SCHED_MC
7997 if (!err && mc_capable())
7998 err = sysfs_create_file(&cls->kset.kobj,
7999 &attr_sched_mc_power_savings.attr);
8000 #endif
8001 return err;
8003 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
8006 * Update cpusets according to cpu_active mask. If cpusets are
8007 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
8008 * around partition_sched_domains().
8010 static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
8011 void *hcpu)
8013 switch (action & ~CPU_TASKS_FROZEN) {
8014 case CPU_ONLINE:
8015 case CPU_DOWN_FAILED:
8016 cpuset_update_active_cpus();
8017 return NOTIFY_OK;
8018 default:
8019 return NOTIFY_DONE;
8023 static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
8024 void *hcpu)
8026 switch (action & ~CPU_TASKS_FROZEN) {
8027 case CPU_DOWN_PREPARE:
8028 cpuset_update_active_cpus();
8029 return NOTIFY_OK;
8030 default:
8031 return NOTIFY_DONE;
8035 static int update_runtime(struct notifier_block *nfb,
8036 unsigned long action, void *hcpu)
8038 int cpu = (int)(long)hcpu;
8040 switch (action) {
8041 case CPU_DOWN_PREPARE:
8042 case CPU_DOWN_PREPARE_FROZEN:
8043 disable_runtime(cpu_rq(cpu));
8044 return NOTIFY_OK;
8046 case CPU_DOWN_FAILED:
8047 case CPU_DOWN_FAILED_FROZEN:
8048 case CPU_ONLINE:
8049 case CPU_ONLINE_FROZEN:
8050 enable_runtime(cpu_rq(cpu));
8051 return NOTIFY_OK;
8053 default:
8054 return NOTIFY_DONE;
8058 void __init sched_init_smp(void)
8060 cpumask_var_t non_isolated_cpus;
8062 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
8063 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
8065 get_online_cpus();
8066 mutex_lock(&sched_domains_mutex);
8067 init_sched_domains(cpu_active_mask);
8068 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8069 if (cpumask_empty(non_isolated_cpus))
8070 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
8071 mutex_unlock(&sched_domains_mutex);
8072 put_online_cpus();
8074 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
8075 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
8077 /* RT runtime code needs to handle some hotplug events */
8078 hotcpu_notifier(update_runtime, 0);
8080 init_hrtick();
8082 /* Move init over to a non-isolated CPU */
8083 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
8084 BUG();
8085 sched_init_granularity();
8086 free_cpumask_var(non_isolated_cpus);
8088 init_sched_rt_class();
8090 #else
8091 void __init sched_init_smp(void)
8093 sched_init_granularity();
8095 #endif /* CONFIG_SMP */
8097 const_debug unsigned int sysctl_timer_migration = 1;
8099 int in_sched_functions(unsigned long addr)
8101 return in_lock_functions(addr) ||
8102 (addr >= (unsigned long)__sched_text_start
8103 && addr < (unsigned long)__sched_text_end);
8106 static void init_cfs_rq(struct cfs_rq *cfs_rq)
8108 cfs_rq->tasks_timeline = RB_ROOT;
8109 INIT_LIST_HEAD(&cfs_rq->tasks);
8110 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8111 #ifndef CONFIG_64BIT
8112 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8113 #endif
8116 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8118 struct rt_prio_array *array;
8119 int i;
8121 array = &rt_rq->active;
8122 for (i = 0; i < MAX_RT_PRIO; i++) {
8123 INIT_LIST_HEAD(array->queue + i);
8124 __clear_bit(i, array->bitmap);
8126 /* delimiter for bitsearch: */
8127 __set_bit(MAX_RT_PRIO, array->bitmap);
8129 #if defined CONFIG_SMP
8130 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8131 rt_rq->highest_prio.next = MAX_RT_PRIO;
8132 rt_rq->rt_nr_migratory = 0;
8133 rt_rq->overloaded = 0;
8134 plist_head_init(&rt_rq->pushable_tasks);
8135 #endif
8137 rt_rq->rt_time = 0;
8138 rt_rq->rt_throttled = 0;
8139 rt_rq->rt_runtime = 0;
8140 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
8143 #ifdef CONFIG_FAIR_GROUP_SCHED
8144 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8145 struct sched_entity *se, int cpu,
8146 struct sched_entity *parent)
8148 struct rq *rq = cpu_rq(cpu);
8150 cfs_rq->tg = tg;
8151 cfs_rq->rq = rq;
8152 #ifdef CONFIG_SMP
8153 /* allow initial update_cfs_load() to truncate */
8154 cfs_rq->load_stamp = 1;
8155 #endif
8156 init_cfs_rq_runtime(cfs_rq);
8158 tg->cfs_rq[cpu] = cfs_rq;
8159 tg->se[cpu] = se;
8161 /* se could be NULL for root_task_group */
8162 if (!se)
8163 return;
8165 if (!parent)
8166 se->cfs_rq = &rq->cfs;
8167 else
8168 se->cfs_rq = parent->my_q;
8170 se->my_q = cfs_rq;
8171 update_load_set(&se->load, 0);
8172 se->parent = parent;
8174 #endif
8176 #ifdef CONFIG_RT_GROUP_SCHED
8177 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8178 struct sched_rt_entity *rt_se, int cpu,
8179 struct sched_rt_entity *parent)
8181 struct rq *rq = cpu_rq(cpu);
8183 rt_rq->highest_prio.curr = MAX_RT_PRIO;
8184 rt_rq->rt_nr_boosted = 0;
8185 rt_rq->rq = rq;
8186 rt_rq->tg = tg;
8188 tg->rt_rq[cpu] = rt_rq;
8189 tg->rt_se[cpu] = rt_se;
8191 if (!rt_se)
8192 return;
8194 if (!parent)
8195 rt_se->rt_rq = &rq->rt;
8196 else
8197 rt_se->rt_rq = parent->my_q;
8199 rt_se->my_q = rt_rq;
8200 rt_se->parent = parent;
8201 INIT_LIST_HEAD(&rt_se->run_list);
8203 #endif
8205 void __init sched_init(void)
8207 int i, j;
8208 unsigned long alloc_size = 0, ptr;
8210 #ifdef CONFIG_FAIR_GROUP_SCHED
8211 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8212 #endif
8213 #ifdef CONFIG_RT_GROUP_SCHED
8214 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8215 #endif
8216 #ifdef CONFIG_CPUMASK_OFFSTACK
8217 alloc_size += num_possible_cpus() * cpumask_size();
8218 #endif
8219 if (alloc_size) {
8220 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
8222 #ifdef CONFIG_FAIR_GROUP_SCHED
8223 root_task_group.se = (struct sched_entity **)ptr;
8224 ptr += nr_cpu_ids * sizeof(void **);
8226 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8227 ptr += nr_cpu_ids * sizeof(void **);
8229 #endif /* CONFIG_FAIR_GROUP_SCHED */
8230 #ifdef CONFIG_RT_GROUP_SCHED
8231 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8232 ptr += nr_cpu_ids * sizeof(void **);
8234 root_task_group.rt_rq = (struct rt_rq **)ptr;
8235 ptr += nr_cpu_ids * sizeof(void **);
8237 #endif /* CONFIG_RT_GROUP_SCHED */
8238 #ifdef CONFIG_CPUMASK_OFFSTACK
8239 for_each_possible_cpu(i) {
8240 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
8241 ptr += cpumask_size();
8243 #endif /* CONFIG_CPUMASK_OFFSTACK */
8246 #ifdef CONFIG_SMP
8247 init_defrootdomain();
8248 #endif
8250 init_rt_bandwidth(&def_rt_bandwidth,
8251 global_rt_period(), global_rt_runtime());
8253 #ifdef CONFIG_RT_GROUP_SCHED
8254 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8255 global_rt_period(), global_rt_runtime());
8256 #endif /* CONFIG_RT_GROUP_SCHED */
8258 #ifdef CONFIG_CGROUP_SCHED
8259 list_add(&root_task_group.list, &task_groups);
8260 INIT_LIST_HEAD(&root_task_group.children);
8261 autogroup_init(&init_task);
8262 #endif /* CONFIG_CGROUP_SCHED */
8264 for_each_possible_cpu(i) {
8265 struct rq *rq;
8267 rq = cpu_rq(i);
8268 raw_spin_lock_init(&rq->lock);
8269 rq->nr_running = 0;
8270 rq->calc_load_active = 0;
8271 rq->calc_load_update = jiffies + LOAD_FREQ;
8272 init_cfs_rq(&rq->cfs);
8273 init_rt_rq(&rq->rt, rq);
8274 #ifdef CONFIG_FAIR_GROUP_SCHED
8275 root_task_group.shares = root_task_group_load;
8276 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
8278 * How much cpu bandwidth does root_task_group get?
8280 * In case of task-groups formed thr' the cgroup filesystem, it
8281 * gets 100% of the cpu resources in the system. This overall
8282 * system cpu resource is divided among the tasks of
8283 * root_task_group and its child task-groups in a fair manner,
8284 * based on each entity's (task or task-group's) weight
8285 * (se->load.weight).
8287 * In other words, if root_task_group has 10 tasks of weight
8288 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8289 * then A0's share of the cpu resource is:
8291 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8293 * We achieve this by letting root_task_group's tasks sit
8294 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
8296 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
8297 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
8298 #endif /* CONFIG_FAIR_GROUP_SCHED */
8300 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
8301 #ifdef CONFIG_RT_GROUP_SCHED
8302 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
8303 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
8304 #endif
8306 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8307 rq->cpu_load[j] = 0;
8309 rq->last_load_update_tick = jiffies;
8311 #ifdef CONFIG_SMP
8312 rq->sd = NULL;
8313 rq->rd = NULL;
8314 rq->cpu_power = SCHED_POWER_SCALE;
8315 rq->post_schedule = 0;
8316 rq->active_balance = 0;
8317 rq->next_balance = jiffies;
8318 rq->push_cpu = 0;
8319 rq->cpu = i;
8320 rq->online = 0;
8321 rq->idle_stamp = 0;
8322 rq->avg_idle = 2*sysctl_sched_migration_cost;
8323 rq_attach_root(rq, &def_root_domain);
8324 #ifdef CONFIG_NO_HZ
8325 rq->nohz_balance_kick = 0;
8326 #endif
8327 #endif
8328 init_rq_hrtick(rq);
8329 atomic_set(&rq->nr_iowait, 0);
8332 set_load_weight(&init_task);
8334 #ifdef CONFIG_PREEMPT_NOTIFIERS
8335 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8336 #endif
8338 #ifdef CONFIG_SMP
8339 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8340 #endif
8342 #ifdef CONFIG_RT_MUTEXES
8343 plist_head_init(&init_task.pi_waiters);
8344 #endif
8347 * The boot idle thread does lazy MMU switching as well:
8349 atomic_inc(&init_mm.mm_count);
8350 enter_lazy_tlb(&init_mm, current);
8353 * Make us the idle thread. Technically, schedule() should not be
8354 * called from this thread, however somewhere below it might be,
8355 * but because we are the idle thread, we just pick up running again
8356 * when this runqueue becomes "idle".
8358 init_idle(current, smp_processor_id());
8360 calc_load_update = jiffies + LOAD_FREQ;
8363 * During early bootup we pretend to be a normal task:
8365 current->sched_class = &fair_sched_class;
8367 #ifdef CONFIG_SMP
8368 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
8369 #ifdef CONFIG_NO_HZ
8370 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
8371 alloc_cpumask_var(&nohz.grp_idle_mask, GFP_NOWAIT);
8372 atomic_set(&nohz.load_balancer, nr_cpu_ids);
8373 atomic_set(&nohz.first_pick_cpu, nr_cpu_ids);
8374 atomic_set(&nohz.second_pick_cpu, nr_cpu_ids);
8375 #endif
8376 /* May be allocated at isolcpus cmdline parse time */
8377 if (cpu_isolated_map == NULL)
8378 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
8379 #endif /* SMP */
8381 scheduler_running = 1;
8384 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
8385 static inline int preempt_count_equals(int preempt_offset)
8387 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
8389 return (nested == preempt_offset);
8392 void __might_sleep(const char *file, int line, int preempt_offset)
8394 static unsigned long prev_jiffy; /* ratelimiting */
8396 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
8397 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
8398 system_state != SYSTEM_RUNNING || oops_in_progress)
8399 return;
8400 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8401 return;
8402 prev_jiffy = jiffies;
8404 printk(KERN_ERR
8405 "BUG: sleeping function called from invalid context at %s:%d\n",
8406 file, line);
8407 printk(KERN_ERR
8408 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8409 in_atomic(), irqs_disabled(),
8410 current->pid, current->comm);
8412 debug_show_held_locks(current);
8413 if (irqs_disabled())
8414 print_irqtrace_events(current);
8415 dump_stack();
8417 EXPORT_SYMBOL(__might_sleep);
8418 #endif
8420 #ifdef CONFIG_MAGIC_SYSRQ
8421 static void normalize_task(struct rq *rq, struct task_struct *p)
8423 const struct sched_class *prev_class = p->sched_class;
8424 int old_prio = p->prio;
8425 int on_rq;
8427 on_rq = p->on_rq;
8428 if (on_rq)
8429 deactivate_task(rq, p, 0);
8430 __setscheduler(rq, p, SCHED_NORMAL, 0);
8431 if (on_rq) {
8432 activate_task(rq, p, 0);
8433 resched_task(rq->curr);
8436 check_class_changed(rq, p, prev_class, old_prio);
8439 void normalize_rt_tasks(void)
8441 struct task_struct *g, *p;
8442 unsigned long flags;
8443 struct rq *rq;
8445 read_lock_irqsave(&tasklist_lock, flags);
8446 do_each_thread(g, p) {
8448 * Only normalize user tasks:
8450 if (!p->mm)
8451 continue;
8453 p->se.exec_start = 0;
8454 #ifdef CONFIG_SCHEDSTATS
8455 p->se.statistics.wait_start = 0;
8456 p->se.statistics.sleep_start = 0;
8457 p->se.statistics.block_start = 0;
8458 #endif
8460 if (!rt_task(p)) {
8462 * Renice negative nice level userspace
8463 * tasks back to 0:
8465 if (TASK_NICE(p) < 0 && p->mm)
8466 set_user_nice(p, 0);
8467 continue;
8470 raw_spin_lock(&p->pi_lock);
8471 rq = __task_rq_lock(p);
8473 normalize_task(rq, p);
8475 __task_rq_unlock(rq);
8476 raw_spin_unlock(&p->pi_lock);
8477 } while_each_thread(g, p);
8479 read_unlock_irqrestore(&tasklist_lock, flags);
8482 #endif /* CONFIG_MAGIC_SYSRQ */
8484 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
8486 * These functions are only useful for the IA64 MCA handling, or kdb.
8488 * They can only be called when the whole system has been
8489 * stopped - every CPU needs to be quiescent, and no scheduling
8490 * activity can take place. Using them for anything else would
8491 * be a serious bug, and as a result, they aren't even visible
8492 * under any other configuration.
8496 * curr_task - return the current task for a given cpu.
8497 * @cpu: the processor in question.
8499 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8501 struct task_struct *curr_task(int cpu)
8503 return cpu_curr(cpu);
8506 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
8508 #ifdef CONFIG_IA64
8510 * set_curr_task - set the current task for a given cpu.
8511 * @cpu: the processor in question.
8512 * @p: the task pointer to set.
8514 * Description: This function must only be used when non-maskable interrupts
8515 * are serviced on a separate stack. It allows the architecture to switch the
8516 * notion of the current task on a cpu in a non-blocking manner. This function
8517 * must be called with all CPU's synchronized, and interrupts disabled, the
8518 * and caller must save the original value of the current task (see
8519 * curr_task() above) and restore that value before reenabling interrupts and
8520 * re-starting the system.
8522 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8524 void set_curr_task(int cpu, struct task_struct *p)
8526 cpu_curr(cpu) = p;
8529 #endif
8531 #ifdef CONFIG_FAIR_GROUP_SCHED
8532 static void free_fair_sched_group(struct task_group *tg)
8534 int i;
8536 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8538 for_each_possible_cpu(i) {
8539 if (tg->cfs_rq)
8540 kfree(tg->cfs_rq[i]);
8541 if (tg->se)
8542 kfree(tg->se[i]);
8545 kfree(tg->cfs_rq);
8546 kfree(tg->se);
8549 static
8550 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8552 struct cfs_rq *cfs_rq;
8553 struct sched_entity *se;
8554 int i;
8556 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8557 if (!tg->cfs_rq)
8558 goto err;
8559 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8560 if (!tg->se)
8561 goto err;
8563 tg->shares = NICE_0_LOAD;
8565 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8567 for_each_possible_cpu(i) {
8568 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8569 GFP_KERNEL, cpu_to_node(i));
8570 if (!cfs_rq)
8571 goto err;
8573 se = kzalloc_node(sizeof(struct sched_entity),
8574 GFP_KERNEL, cpu_to_node(i));
8575 if (!se)
8576 goto err_free_rq;
8578 init_cfs_rq(cfs_rq);
8579 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
8582 return 1;
8584 err_free_rq:
8585 kfree(cfs_rq);
8586 err:
8587 return 0;
8590 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8592 struct rq *rq = cpu_rq(cpu);
8593 unsigned long flags;
8596 * Only empty task groups can be destroyed; so we can speculatively
8597 * check on_list without danger of it being re-added.
8599 if (!tg->cfs_rq[cpu]->on_list)
8600 return;
8602 raw_spin_lock_irqsave(&rq->lock, flags);
8603 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8604 raw_spin_unlock_irqrestore(&rq->lock, flags);
8606 #else /* !CONFIG_FAIR_GROUP_SCHED */
8607 static inline void free_fair_sched_group(struct task_group *tg)
8611 static inline
8612 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8614 return 1;
8617 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8620 #endif /* CONFIG_FAIR_GROUP_SCHED */
8622 #ifdef CONFIG_RT_GROUP_SCHED
8623 static void free_rt_sched_group(struct task_group *tg)
8625 int i;
8627 if (tg->rt_se)
8628 destroy_rt_bandwidth(&tg->rt_bandwidth);
8630 for_each_possible_cpu(i) {
8631 if (tg->rt_rq)
8632 kfree(tg->rt_rq[i]);
8633 if (tg->rt_se)
8634 kfree(tg->rt_se[i]);
8637 kfree(tg->rt_rq);
8638 kfree(tg->rt_se);
8641 static
8642 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8644 struct rt_rq *rt_rq;
8645 struct sched_rt_entity *rt_se;
8646 int i;
8648 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8649 if (!tg->rt_rq)
8650 goto err;
8651 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8652 if (!tg->rt_se)
8653 goto err;
8655 init_rt_bandwidth(&tg->rt_bandwidth,
8656 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8658 for_each_possible_cpu(i) {
8659 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8660 GFP_KERNEL, cpu_to_node(i));
8661 if (!rt_rq)
8662 goto err;
8664 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8665 GFP_KERNEL, cpu_to_node(i));
8666 if (!rt_se)
8667 goto err_free_rq;
8669 init_rt_rq(rt_rq, cpu_rq(i));
8670 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
8671 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
8674 return 1;
8676 err_free_rq:
8677 kfree(rt_rq);
8678 err:
8679 return 0;
8681 #else /* !CONFIG_RT_GROUP_SCHED */
8682 static inline void free_rt_sched_group(struct task_group *tg)
8686 static inline
8687 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8689 return 1;
8691 #endif /* CONFIG_RT_GROUP_SCHED */
8693 #ifdef CONFIG_CGROUP_SCHED
8694 static void free_sched_group(struct task_group *tg)
8696 free_fair_sched_group(tg);
8697 free_rt_sched_group(tg);
8698 autogroup_free(tg);
8699 kfree(tg);
8702 /* allocate runqueue etc for a new task group */
8703 struct task_group *sched_create_group(struct task_group *parent)
8705 struct task_group *tg;
8706 unsigned long flags;
8708 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8709 if (!tg)
8710 return ERR_PTR(-ENOMEM);
8712 if (!alloc_fair_sched_group(tg, parent))
8713 goto err;
8715 if (!alloc_rt_sched_group(tg, parent))
8716 goto err;
8718 spin_lock_irqsave(&task_group_lock, flags);
8719 list_add_rcu(&tg->list, &task_groups);
8721 WARN_ON(!parent); /* root should already exist */
8723 tg->parent = parent;
8724 INIT_LIST_HEAD(&tg->children);
8725 list_add_rcu(&tg->siblings, &parent->children);
8726 spin_unlock_irqrestore(&task_group_lock, flags);
8728 return tg;
8730 err:
8731 free_sched_group(tg);
8732 return ERR_PTR(-ENOMEM);
8735 /* rcu callback to free various structures associated with a task group */
8736 static void free_sched_group_rcu(struct rcu_head *rhp)
8738 /* now it should be safe to free those cfs_rqs */
8739 free_sched_group(container_of(rhp, struct task_group, rcu));
8742 /* Destroy runqueue etc associated with a task group */
8743 void sched_destroy_group(struct task_group *tg)
8745 unsigned long flags;
8746 int i;
8748 /* end participation in shares distribution */
8749 for_each_possible_cpu(i)
8750 unregister_fair_sched_group(tg, i);
8752 spin_lock_irqsave(&task_group_lock, flags);
8753 list_del_rcu(&tg->list);
8754 list_del_rcu(&tg->siblings);
8755 spin_unlock_irqrestore(&task_group_lock, flags);
8757 /* wait for possible concurrent references to cfs_rqs complete */
8758 call_rcu(&tg->rcu, free_sched_group_rcu);
8761 /* change task's runqueue when it moves between groups.
8762 * The caller of this function should have put the task in its new group
8763 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8764 * reflect its new group.
8766 void sched_move_task(struct task_struct *tsk)
8768 int on_rq, running;
8769 unsigned long flags;
8770 struct rq *rq;
8772 rq = task_rq_lock(tsk, &flags);
8774 running = task_current(rq, tsk);
8775 on_rq = tsk->on_rq;
8777 if (on_rq)
8778 dequeue_task(rq, tsk, 0);
8779 if (unlikely(running))
8780 tsk->sched_class->put_prev_task(rq, tsk);
8782 #ifdef CONFIG_FAIR_GROUP_SCHED
8783 if (tsk->sched_class->task_move_group)
8784 tsk->sched_class->task_move_group(tsk, on_rq);
8785 else
8786 #endif
8787 set_task_rq(tsk, task_cpu(tsk));
8789 if (unlikely(running))
8790 tsk->sched_class->set_curr_task(rq);
8791 if (on_rq)
8792 enqueue_task(rq, tsk, 0);
8794 task_rq_unlock(rq, tsk, &flags);
8796 #endif /* CONFIG_CGROUP_SCHED */
8798 #ifdef CONFIG_FAIR_GROUP_SCHED
8799 static DEFINE_MUTEX(shares_mutex);
8801 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8803 int i;
8804 unsigned long flags;
8807 * We can't change the weight of the root cgroup.
8809 if (!tg->se[0])
8810 return -EINVAL;
8812 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8814 mutex_lock(&shares_mutex);
8815 if (tg->shares == shares)
8816 goto done;
8818 tg->shares = shares;
8819 for_each_possible_cpu(i) {
8820 struct rq *rq = cpu_rq(i);
8821 struct sched_entity *se;
8823 se = tg->se[i];
8824 /* Propagate contribution to hierarchy */
8825 raw_spin_lock_irqsave(&rq->lock, flags);
8826 for_each_sched_entity(se)
8827 update_cfs_shares(group_cfs_rq(se));
8828 raw_spin_unlock_irqrestore(&rq->lock, flags);
8831 done:
8832 mutex_unlock(&shares_mutex);
8833 return 0;
8836 unsigned long sched_group_shares(struct task_group *tg)
8838 return tg->shares;
8840 #endif
8842 #if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
8843 static unsigned long to_ratio(u64 period, u64 runtime)
8845 if (runtime == RUNTIME_INF)
8846 return 1ULL << 20;
8848 return div64_u64(runtime << 20, period);
8850 #endif
8852 #ifdef CONFIG_RT_GROUP_SCHED
8854 * Ensure that the real time constraints are schedulable.
8856 static DEFINE_MUTEX(rt_constraints_mutex);
8858 /* Must be called with tasklist_lock held */
8859 static inline int tg_has_rt_tasks(struct task_group *tg)
8861 struct task_struct *g, *p;
8863 do_each_thread(g, p) {
8864 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8865 return 1;
8866 } while_each_thread(g, p);
8868 return 0;
8871 struct rt_schedulable_data {
8872 struct task_group *tg;
8873 u64 rt_period;
8874 u64 rt_runtime;
8877 static int tg_rt_schedulable(struct task_group *tg, void *data)
8879 struct rt_schedulable_data *d = data;
8880 struct task_group *child;
8881 unsigned long total, sum = 0;
8882 u64 period, runtime;
8884 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8885 runtime = tg->rt_bandwidth.rt_runtime;
8887 if (tg == d->tg) {
8888 period = d->rt_period;
8889 runtime = d->rt_runtime;
8893 * Cannot have more runtime than the period.
8895 if (runtime > period && runtime != RUNTIME_INF)
8896 return -EINVAL;
8899 * Ensure we don't starve existing RT tasks.
8901 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8902 return -EBUSY;
8904 total = to_ratio(period, runtime);
8907 * Nobody can have more than the global setting allows.
8909 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8910 return -EINVAL;
8913 * The sum of our children's runtime should not exceed our own.
8915 list_for_each_entry_rcu(child, &tg->children, siblings) {
8916 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8917 runtime = child->rt_bandwidth.rt_runtime;
8919 if (child == d->tg) {
8920 period = d->rt_period;
8921 runtime = d->rt_runtime;
8924 sum += to_ratio(period, runtime);
8927 if (sum > total)
8928 return -EINVAL;
8930 return 0;
8933 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8935 int ret;
8937 struct rt_schedulable_data data = {
8938 .tg = tg,
8939 .rt_period = period,
8940 .rt_runtime = runtime,
8943 rcu_read_lock();
8944 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
8945 rcu_read_unlock();
8947 return ret;
8950 static int tg_set_rt_bandwidth(struct task_group *tg,
8951 u64 rt_period, u64 rt_runtime)
8953 int i, err = 0;
8955 mutex_lock(&rt_constraints_mutex);
8956 read_lock(&tasklist_lock);
8957 err = __rt_schedulable(tg, rt_period, rt_runtime);
8958 if (err)
8959 goto unlock;
8961 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8962 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8963 tg->rt_bandwidth.rt_runtime = rt_runtime;
8965 for_each_possible_cpu(i) {
8966 struct rt_rq *rt_rq = tg->rt_rq[i];
8968 raw_spin_lock(&rt_rq->rt_runtime_lock);
8969 rt_rq->rt_runtime = rt_runtime;
8970 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8972 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8973 unlock:
8974 read_unlock(&tasklist_lock);
8975 mutex_unlock(&rt_constraints_mutex);
8977 return err;
8980 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8982 u64 rt_runtime, rt_period;
8984 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8985 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8986 if (rt_runtime_us < 0)
8987 rt_runtime = RUNTIME_INF;
8989 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
8992 long sched_group_rt_runtime(struct task_group *tg)
8994 u64 rt_runtime_us;
8996 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8997 return -1;
8999 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9000 do_div(rt_runtime_us, NSEC_PER_USEC);
9001 return rt_runtime_us;
9004 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9006 u64 rt_runtime, rt_period;
9008 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9009 rt_runtime = tg->rt_bandwidth.rt_runtime;
9011 if (rt_period == 0)
9012 return -EINVAL;
9014 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
9017 long sched_group_rt_period(struct task_group *tg)
9019 u64 rt_period_us;
9021 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9022 do_div(rt_period_us, NSEC_PER_USEC);
9023 return rt_period_us;
9026 static int sched_rt_global_constraints(void)
9028 u64 runtime, period;
9029 int ret = 0;
9031 if (sysctl_sched_rt_period <= 0)
9032 return -EINVAL;
9034 runtime = global_rt_runtime();
9035 period = global_rt_period();
9038 * Sanity check on the sysctl variables.
9040 if (runtime > period && runtime != RUNTIME_INF)
9041 return -EINVAL;
9043 mutex_lock(&rt_constraints_mutex);
9044 read_lock(&tasklist_lock);
9045 ret = __rt_schedulable(NULL, 0, 0);
9046 read_unlock(&tasklist_lock);
9047 mutex_unlock(&rt_constraints_mutex);
9049 return ret;
9052 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9054 /* Don't accept realtime tasks when there is no way for them to run */
9055 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9056 return 0;
9058 return 1;
9061 #else /* !CONFIG_RT_GROUP_SCHED */
9062 static int sched_rt_global_constraints(void)
9064 unsigned long flags;
9065 int i;
9067 if (sysctl_sched_rt_period <= 0)
9068 return -EINVAL;
9071 * There's always some RT tasks in the root group
9072 * -- migration, kstopmachine etc..
9074 if (sysctl_sched_rt_runtime == 0)
9075 return -EBUSY;
9077 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9078 for_each_possible_cpu(i) {
9079 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9081 raw_spin_lock(&rt_rq->rt_runtime_lock);
9082 rt_rq->rt_runtime = global_rt_runtime();
9083 raw_spin_unlock(&rt_rq->rt_runtime_lock);
9085 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9087 return 0;
9089 #endif /* CONFIG_RT_GROUP_SCHED */
9091 int sched_rt_handler(struct ctl_table *table, int write,
9092 void __user *buffer, size_t *lenp,
9093 loff_t *ppos)
9095 int ret;
9096 int old_period, old_runtime;
9097 static DEFINE_MUTEX(mutex);
9099 mutex_lock(&mutex);
9100 old_period = sysctl_sched_rt_period;
9101 old_runtime = sysctl_sched_rt_runtime;
9103 ret = proc_dointvec(table, write, buffer, lenp, ppos);
9105 if (!ret && write) {
9106 ret = sched_rt_global_constraints();
9107 if (ret) {
9108 sysctl_sched_rt_period = old_period;
9109 sysctl_sched_rt_runtime = old_runtime;
9110 } else {
9111 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9112 def_rt_bandwidth.rt_period =
9113 ns_to_ktime(global_rt_period());
9116 mutex_unlock(&mutex);
9118 return ret;
9121 #ifdef CONFIG_CGROUP_SCHED
9123 /* return corresponding task_group object of a cgroup */
9124 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
9126 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9127 struct task_group, css);
9130 static struct cgroup_subsys_state *
9131 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
9133 struct task_group *tg, *parent;
9135 if (!cgrp->parent) {
9136 /* This is early initialization for the top cgroup */
9137 return &root_task_group.css;
9140 parent = cgroup_tg(cgrp->parent);
9141 tg = sched_create_group(parent);
9142 if (IS_ERR(tg))
9143 return ERR_PTR(-ENOMEM);
9145 return &tg->css;
9148 static void
9149 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9151 struct task_group *tg = cgroup_tg(cgrp);
9153 sched_destroy_group(tg);
9156 static int
9157 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9159 #ifdef CONFIG_RT_GROUP_SCHED
9160 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
9161 return -EINVAL;
9162 #else
9163 /* We don't support RT-tasks being in separate groups */
9164 if (tsk->sched_class != &fair_sched_class)
9165 return -EINVAL;
9166 #endif
9167 return 0;
9170 static void
9171 cpu_cgroup_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
9173 sched_move_task(tsk);
9176 static void
9177 cpu_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
9178 struct cgroup *old_cgrp, struct task_struct *task)
9181 * cgroup_exit() is called in the copy_process() failure path.
9182 * Ignore this case since the task hasn't ran yet, this avoids
9183 * trying to poke a half freed task state from generic code.
9185 if (!(task->flags & PF_EXITING))
9186 return;
9188 sched_move_task(task);
9191 #ifdef CONFIG_FAIR_GROUP_SCHED
9192 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9193 u64 shareval)
9195 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
9198 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
9200 struct task_group *tg = cgroup_tg(cgrp);
9202 return (u64) scale_load_down(tg->shares);
9205 #ifdef CONFIG_CFS_BANDWIDTH
9206 static DEFINE_MUTEX(cfs_constraints_mutex);
9208 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
9209 const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
9211 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
9213 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
9215 int i, ret = 0, runtime_enabled;
9216 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9218 if (tg == &root_task_group)
9219 return -EINVAL;
9222 * Ensure we have at some amount of bandwidth every period. This is
9223 * to prevent reaching a state of large arrears when throttled via
9224 * entity_tick() resulting in prolonged exit starvation.
9226 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
9227 return -EINVAL;
9230 * Likewise, bound things on the otherside by preventing insane quota
9231 * periods. This also allows us to normalize in computing quota
9232 * feasibility.
9234 if (period > max_cfs_quota_period)
9235 return -EINVAL;
9237 mutex_lock(&cfs_constraints_mutex);
9238 ret = __cfs_schedulable(tg, period, quota);
9239 if (ret)
9240 goto out_unlock;
9242 runtime_enabled = quota != RUNTIME_INF;
9243 raw_spin_lock_irq(&cfs_b->lock);
9244 cfs_b->period = ns_to_ktime(period);
9245 cfs_b->quota = quota;
9247 __refill_cfs_bandwidth_runtime(cfs_b);
9248 /* restart the period timer (if active) to handle new period expiry */
9249 if (runtime_enabled && cfs_b->timer_active) {
9250 /* force a reprogram */
9251 cfs_b->timer_active = 0;
9252 __start_cfs_bandwidth(cfs_b);
9254 raw_spin_unlock_irq(&cfs_b->lock);
9256 for_each_possible_cpu(i) {
9257 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
9258 struct rq *rq = rq_of(cfs_rq);
9260 raw_spin_lock_irq(&rq->lock);
9261 cfs_rq->runtime_enabled = runtime_enabled;
9262 cfs_rq->runtime_remaining = 0;
9264 if (cfs_rq_throttled(cfs_rq))
9265 unthrottle_cfs_rq(cfs_rq);
9266 raw_spin_unlock_irq(&rq->lock);
9268 out_unlock:
9269 mutex_unlock(&cfs_constraints_mutex);
9271 return ret;
9274 int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
9276 u64 quota, period;
9278 period = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9279 if (cfs_quota_us < 0)
9280 quota = RUNTIME_INF;
9281 else
9282 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
9284 return tg_set_cfs_bandwidth(tg, period, quota);
9287 long tg_get_cfs_quota(struct task_group *tg)
9289 u64 quota_us;
9291 if (tg_cfs_bandwidth(tg)->quota == RUNTIME_INF)
9292 return -1;
9294 quota_us = tg_cfs_bandwidth(tg)->quota;
9295 do_div(quota_us, NSEC_PER_USEC);
9297 return quota_us;
9300 int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
9302 u64 quota, period;
9304 period = (u64)cfs_period_us * NSEC_PER_USEC;
9305 quota = tg_cfs_bandwidth(tg)->quota;
9307 if (period <= 0)
9308 return -EINVAL;
9310 return tg_set_cfs_bandwidth(tg, period, quota);
9313 long tg_get_cfs_period(struct task_group *tg)
9315 u64 cfs_period_us;
9317 cfs_period_us = ktime_to_ns(tg_cfs_bandwidth(tg)->period);
9318 do_div(cfs_period_us, NSEC_PER_USEC);
9320 return cfs_period_us;
9323 static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
9325 return tg_get_cfs_quota(cgroup_tg(cgrp));
9328 static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
9329 s64 cfs_quota_us)
9331 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
9334 static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
9336 return tg_get_cfs_period(cgroup_tg(cgrp));
9339 static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
9340 u64 cfs_period_us)
9342 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
9345 struct cfs_schedulable_data {
9346 struct task_group *tg;
9347 u64 period, quota;
9351 * normalize group quota/period to be quota/max_period
9352 * note: units are usecs
9354 static u64 normalize_cfs_quota(struct task_group *tg,
9355 struct cfs_schedulable_data *d)
9357 u64 quota, period;
9359 if (tg == d->tg) {
9360 period = d->period;
9361 quota = d->quota;
9362 } else {
9363 period = tg_get_cfs_period(tg);
9364 quota = tg_get_cfs_quota(tg);
9367 /* note: these should typically be equivalent */
9368 if (quota == RUNTIME_INF || quota == -1)
9369 return RUNTIME_INF;
9371 return to_ratio(period, quota);
9374 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
9376 struct cfs_schedulable_data *d = data;
9377 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9378 s64 quota = 0, parent_quota = -1;
9380 if (!tg->parent) {
9381 quota = RUNTIME_INF;
9382 } else {
9383 struct cfs_bandwidth *parent_b = tg_cfs_bandwidth(tg->parent);
9385 quota = normalize_cfs_quota(tg, d);
9386 parent_quota = parent_b->hierarchal_quota;
9389 * ensure max(child_quota) <= parent_quota, inherit when no
9390 * limit is set
9392 if (quota == RUNTIME_INF)
9393 quota = parent_quota;
9394 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
9395 return -EINVAL;
9397 cfs_b->hierarchal_quota = quota;
9399 return 0;
9402 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
9404 int ret;
9405 struct cfs_schedulable_data data = {
9406 .tg = tg,
9407 .period = period,
9408 .quota = quota,
9411 if (quota != RUNTIME_INF) {
9412 do_div(data.period, NSEC_PER_USEC);
9413 do_div(data.quota, NSEC_PER_USEC);
9416 rcu_read_lock();
9417 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
9418 rcu_read_unlock();
9420 return ret;
9423 static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
9424 struct cgroup_map_cb *cb)
9426 struct task_group *tg = cgroup_tg(cgrp);
9427 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
9429 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
9430 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
9431 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
9433 return 0;
9435 #endif /* CONFIG_CFS_BANDWIDTH */
9436 #endif /* CONFIG_FAIR_GROUP_SCHED */
9438 #ifdef CONFIG_RT_GROUP_SCHED
9439 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
9440 s64 val)
9442 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
9445 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
9447 return sched_group_rt_runtime(cgroup_tg(cgrp));
9450 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9451 u64 rt_period_us)
9453 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9456 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9458 return sched_group_rt_period(cgroup_tg(cgrp));
9460 #endif /* CONFIG_RT_GROUP_SCHED */
9462 static struct cftype cpu_files[] = {
9463 #ifdef CONFIG_FAIR_GROUP_SCHED
9465 .name = "shares",
9466 .read_u64 = cpu_shares_read_u64,
9467 .write_u64 = cpu_shares_write_u64,
9469 #endif
9470 #ifdef CONFIG_CFS_BANDWIDTH
9472 .name = "cfs_quota_us",
9473 .read_s64 = cpu_cfs_quota_read_s64,
9474 .write_s64 = cpu_cfs_quota_write_s64,
9477 .name = "cfs_period_us",
9478 .read_u64 = cpu_cfs_period_read_u64,
9479 .write_u64 = cpu_cfs_period_write_u64,
9482 .name = "stat",
9483 .read_map = cpu_stats_show,
9485 #endif
9486 #ifdef CONFIG_RT_GROUP_SCHED
9488 .name = "rt_runtime_us",
9489 .read_s64 = cpu_rt_runtime_read,
9490 .write_s64 = cpu_rt_runtime_write,
9493 .name = "rt_period_us",
9494 .read_u64 = cpu_rt_period_read_uint,
9495 .write_u64 = cpu_rt_period_write_uint,
9497 #endif
9500 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9502 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
9505 struct cgroup_subsys cpu_cgroup_subsys = {
9506 .name = "cpu",
9507 .create = cpu_cgroup_create,
9508 .destroy = cpu_cgroup_destroy,
9509 .can_attach_task = cpu_cgroup_can_attach_task,
9510 .attach_task = cpu_cgroup_attach_task,
9511 .exit = cpu_cgroup_exit,
9512 .populate = cpu_cgroup_populate,
9513 .subsys_id = cpu_cgroup_subsys_id,
9514 .early_init = 1,
9517 #endif /* CONFIG_CGROUP_SCHED */
9519 #ifdef CONFIG_CGROUP_CPUACCT
9522 * CPU accounting code for task groups.
9524 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9525 * (balbir@in.ibm.com).
9528 /* track cpu usage of a group of tasks and its child groups */
9529 struct cpuacct {
9530 struct cgroup_subsys_state css;
9531 /* cpuusage holds pointer to a u64-type object on every cpu */
9532 u64 __percpu *cpuusage;
9533 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
9534 struct cpuacct *parent;
9537 struct cgroup_subsys cpuacct_subsys;
9539 /* return cpu accounting group corresponding to this container */
9540 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
9542 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
9543 struct cpuacct, css);
9546 /* return cpu accounting group to which this task belongs */
9547 static inline struct cpuacct *task_ca(struct task_struct *tsk)
9549 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9550 struct cpuacct, css);
9553 /* create a new cpu accounting group */
9554 static struct cgroup_subsys_state *cpuacct_create(
9555 struct cgroup_subsys *ss, struct cgroup *cgrp)
9557 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9558 int i;
9560 if (!ca)
9561 goto out;
9563 ca->cpuusage = alloc_percpu(u64);
9564 if (!ca->cpuusage)
9565 goto out_free_ca;
9567 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9568 if (percpu_counter_init(&ca->cpustat[i], 0))
9569 goto out_free_counters;
9571 if (cgrp->parent)
9572 ca->parent = cgroup_ca(cgrp->parent);
9574 return &ca->css;
9576 out_free_counters:
9577 while (--i >= 0)
9578 percpu_counter_destroy(&ca->cpustat[i]);
9579 free_percpu(ca->cpuusage);
9580 out_free_ca:
9581 kfree(ca);
9582 out:
9583 return ERR_PTR(-ENOMEM);
9586 /* destroy an existing cpu accounting group */
9587 static void
9588 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
9590 struct cpuacct *ca = cgroup_ca(cgrp);
9591 int i;
9593 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
9594 percpu_counter_destroy(&ca->cpustat[i]);
9595 free_percpu(ca->cpuusage);
9596 kfree(ca);
9599 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9601 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9602 u64 data;
9604 #ifndef CONFIG_64BIT
9606 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9608 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9609 data = *cpuusage;
9610 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9611 #else
9612 data = *cpuusage;
9613 #endif
9615 return data;
9618 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9620 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9622 #ifndef CONFIG_64BIT
9624 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9626 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
9627 *cpuusage = val;
9628 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
9629 #else
9630 *cpuusage = val;
9631 #endif
9634 /* return total cpu usage (in nanoseconds) of a group */
9635 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
9637 struct cpuacct *ca = cgroup_ca(cgrp);
9638 u64 totalcpuusage = 0;
9639 int i;
9641 for_each_present_cpu(i)
9642 totalcpuusage += cpuacct_cpuusage_read(ca, i);
9644 return totalcpuusage;
9647 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9648 u64 reset)
9650 struct cpuacct *ca = cgroup_ca(cgrp);
9651 int err = 0;
9652 int i;
9654 if (reset) {
9655 err = -EINVAL;
9656 goto out;
9659 for_each_present_cpu(i)
9660 cpuacct_cpuusage_write(ca, i, 0);
9662 out:
9663 return err;
9666 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9667 struct seq_file *m)
9669 struct cpuacct *ca = cgroup_ca(cgroup);
9670 u64 percpu;
9671 int i;
9673 for_each_present_cpu(i) {
9674 percpu = cpuacct_cpuusage_read(ca, i);
9675 seq_printf(m, "%llu ", (unsigned long long) percpu);
9677 seq_printf(m, "\n");
9678 return 0;
9681 static const char *cpuacct_stat_desc[] = {
9682 [CPUACCT_STAT_USER] = "user",
9683 [CPUACCT_STAT_SYSTEM] = "system",
9686 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
9687 struct cgroup_map_cb *cb)
9689 struct cpuacct *ca = cgroup_ca(cgrp);
9690 int i;
9692 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
9693 s64 val = percpu_counter_read(&ca->cpustat[i]);
9694 val = cputime64_to_clock_t(val);
9695 cb->fill(cb, cpuacct_stat_desc[i], val);
9697 return 0;
9700 static struct cftype files[] = {
9702 .name = "usage",
9703 .read_u64 = cpuusage_read,
9704 .write_u64 = cpuusage_write,
9707 .name = "usage_percpu",
9708 .read_seq_string = cpuacct_percpu_seq_read,
9711 .name = "stat",
9712 .read_map = cpuacct_stats_show,
9716 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
9718 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
9722 * charge this task's execution time to its accounting group.
9724 * called with rq->lock held.
9726 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9728 struct cpuacct *ca;
9729 int cpu;
9731 if (unlikely(!cpuacct_subsys.active))
9732 return;
9734 cpu = task_cpu(tsk);
9736 rcu_read_lock();
9738 ca = task_ca(tsk);
9740 for (; ca; ca = ca->parent) {
9741 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
9742 *cpuusage += cputime;
9745 rcu_read_unlock();
9749 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9750 * in cputime_t units. As a result, cpuacct_update_stats calls
9751 * percpu_counter_add with values large enough to always overflow the
9752 * per cpu batch limit causing bad SMP scalability.
9754 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9755 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9756 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9758 #ifdef CONFIG_SMP
9759 #define CPUACCT_BATCH \
9760 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9761 #else
9762 #define CPUACCT_BATCH 0
9763 #endif
9766 * Charge the system/user time to the task's accounting group.
9768 static void cpuacct_update_stats(struct task_struct *tsk,
9769 enum cpuacct_stat_index idx, cputime_t val)
9771 struct cpuacct *ca;
9772 int batch = CPUACCT_BATCH;
9774 if (unlikely(!cpuacct_subsys.active))
9775 return;
9777 rcu_read_lock();
9778 ca = task_ca(tsk);
9780 do {
9781 __percpu_counter_add(&ca->cpustat[idx], val, batch);
9782 ca = ca->parent;
9783 } while (ca);
9784 rcu_read_unlock();
9787 struct cgroup_subsys cpuacct_subsys = {
9788 .name = "cpuacct",
9789 .create = cpuacct_create,
9790 .destroy = cpuacct_destroy,
9791 .populate = cpuacct_populate,
9792 .subsys_id = cpuacct_subsys_id,
9794 #endif /* CONFIG_CGROUP_CPUACCT */