1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 #include <linux/sched.h>
37 #include <linux/path.h>
38 #include <linux/timekeeping.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
45 #include <trace/events/task.h>
48 #include <trace/events/sched.h>
51 unsigned int core_pipe_limit
;
52 char core_pattern
[CORENAME_MAX_SIZE
] = "core";
53 static int core_name_size
= CORENAME_MAX_SIZE
;
60 /* The maximal length of core_pattern is also specified in sysctl.c */
62 static int expand_corename(struct core_name
*cn
, int size
)
64 char *corename
= krealloc(cn
->corename
, size
, GFP_KERNEL
);
69 if (size
> core_name_size
) /* racy but harmless */
70 core_name_size
= size
;
72 cn
->size
= ksize(corename
);
73 cn
->corename
= corename
;
77 static int cn_vprintf(struct core_name
*cn
, const char *fmt
, va_list arg
)
83 free
= cn
->size
- cn
->used
;
85 va_copy(arg_copy
, arg
);
86 need
= vsnprintf(cn
->corename
+ cn
->used
, free
, fmt
, arg_copy
);
94 if (!expand_corename(cn
, cn
->size
+ need
- free
+ 1))
100 static int cn_printf(struct core_name
*cn
, const char *fmt
, ...)
106 ret
= cn_vprintf(cn
, fmt
, arg
);
112 static int cn_esc_printf(struct core_name
*cn
, const char *fmt
, ...)
119 ret
= cn_vprintf(cn
, fmt
, arg
);
122 for (; cur
< cn
->used
; ++cur
) {
123 if (cn
->corename
[cur
] == '/')
124 cn
->corename
[cur
] = '!';
129 static int cn_print_exe_file(struct core_name
*cn
)
131 struct file
*exe_file
;
132 char *pathbuf
, *path
;
135 exe_file
= get_mm_exe_file(current
->mm
);
137 return cn_esc_printf(cn
, "%s (path unknown)", current
->comm
);
139 pathbuf
= kmalloc(PATH_MAX
, GFP_TEMPORARY
);
145 path
= d_path(&exe_file
->f_path
, pathbuf
, PATH_MAX
);
151 ret
= cn_esc_printf(cn
, "%s", path
);
160 /* format_corename will inspect the pattern parameter, and output a
161 * name into corename, which must have space for at least
162 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
164 static int format_corename(struct core_name
*cn
, struct coredump_params
*cprm
)
166 const struct cred
*cred
= current_cred();
167 const char *pat_ptr
= core_pattern
;
168 int ispipe
= (*pat_ptr
== '|');
169 int pid_in_pattern
= 0;
174 if (expand_corename(cn
, core_name_size
))
176 cn
->corename
[0] = '\0';
181 /* Repeat as long as we have more pattern to process and more output
184 if (*pat_ptr
!= '%') {
185 err
= cn_printf(cn
, "%c", *pat_ptr
++);
187 switch (*++pat_ptr
) {
188 /* single % at the end, drop that */
191 /* Double percent, output one percent */
193 err
= cn_printf(cn
, "%c", '%');
198 err
= cn_printf(cn
, "%d",
199 task_tgid_vnr(current
));
203 err
= cn_printf(cn
, "%d",
204 task_tgid_nr(current
));
207 err
= cn_printf(cn
, "%d",
208 task_pid_vnr(current
));
211 err
= cn_printf(cn
, "%d",
212 task_pid_nr(current
));
216 err
= cn_printf(cn
, "%d", cred
->uid
);
220 err
= cn_printf(cn
, "%d", cred
->gid
);
223 err
= cn_printf(cn
, "%d",
224 __get_dumpable(cprm
->mm_flags
));
226 /* signal that caused the coredump */
228 err
= cn_printf(cn
, "%ld", cprm
->siginfo
->si_signo
);
230 /* UNIX time of coredump */
234 time
= ktime_get_real_seconds();
235 err
= cn_printf(cn
, "%lld", time
);
241 err
= cn_esc_printf(cn
, "%s",
242 utsname()->nodename
);
247 err
= cn_esc_printf(cn
, "%s", current
->comm
);
250 err
= cn_print_exe_file(cn
);
252 /* core limit size */
254 err
= cn_printf(cn
, "%lu",
255 rlimit(RLIMIT_CORE
));
268 /* Backward compatibility with core_uses_pid:
270 * If core_pattern does not include a %p (as is the default)
271 * and core_uses_pid is set, then .%pid will be appended to
272 * the filename. Do not do this for piped commands. */
273 if (!ispipe
&& !pid_in_pattern
&& core_uses_pid
) {
274 err
= cn_printf(cn
, ".%d", task_tgid_vnr(current
));
281 static int zap_process(struct task_struct
*start
, int exit_code
)
283 struct task_struct
*t
;
286 start
->signal
->group_exit_code
= exit_code
;
287 start
->signal
->group_stop_count
= 0;
291 task_clear_jobctl_pending(t
, JOBCTL_PENDING_MASK
);
292 if (t
!= current
&& t
->mm
) {
293 sigaddset(&t
->pending
.signal
, SIGKILL
);
294 signal_wake_up(t
, 1);
297 } while_each_thread(start
, t
);
302 static int zap_threads(struct task_struct
*tsk
, struct mm_struct
*mm
,
303 struct core_state
*core_state
, int exit_code
)
305 struct task_struct
*g
, *p
;
309 spin_lock_irq(&tsk
->sighand
->siglock
);
310 if (!signal_group_exit(tsk
->signal
)) {
311 mm
->core_state
= core_state
;
312 nr
= zap_process(tsk
, exit_code
);
313 tsk
->signal
->group_exit_task
= tsk
;
314 /* ignore all signals except SIGKILL, see prepare_signal() */
315 tsk
->signal
->flags
= SIGNAL_GROUP_COREDUMP
;
316 clear_tsk_thread_flag(tsk
, TIF_SIGPENDING
);
318 spin_unlock_irq(&tsk
->sighand
->siglock
);
319 if (unlikely(nr
< 0))
322 tsk
->flags
|= PF_DUMPCORE
;
323 if (atomic_read(&mm
->mm_users
) == nr
+ 1)
326 * We should find and kill all tasks which use this mm, and we should
327 * count them correctly into ->nr_threads. We don't take tasklist
328 * lock, but this is safe wrt:
331 * None of sub-threads can fork after zap_process(leader). All
332 * processes which were created before this point should be
333 * visible to zap_threads() because copy_process() adds the new
334 * process to the tail of init_task.tasks list, and lock/unlock
335 * of ->siglock provides a memory barrier.
338 * The caller holds mm->mmap_sem. This means that the task which
339 * uses this mm can't pass exit_mm(), so it can't exit or clear
343 * It does list_replace_rcu(&leader->tasks, ¤t->tasks),
344 * we must see either old or new leader, this does not matter.
345 * However, it can change p->sighand, so lock_task_sighand(p)
346 * must be used. Since p->mm != NULL and we hold ->mmap_sem
349 * Note also that "g" can be the old leader with ->mm == NULL
350 * and already unhashed and thus removed from ->thread_group.
351 * This is OK, __unhash_process()->list_del_rcu() does not
352 * clear the ->next pointer, we will find the new leader via
356 for_each_process(g
) {
357 if (g
== tsk
->group_leader
)
359 if (g
->flags
& PF_KTHREAD
)
364 if (unlikely(p
->mm
== mm
)) {
365 lock_task_sighand(p
, &flags
);
366 nr
+= zap_process(p
, exit_code
);
367 p
->signal
->flags
= SIGNAL_GROUP_EXIT
;
368 unlock_task_sighand(p
, &flags
);
372 } while_each_thread(g
, p
);
376 atomic_set(&core_state
->nr_threads
, nr
);
380 static int coredump_wait(int exit_code
, struct core_state
*core_state
)
382 struct task_struct
*tsk
= current
;
383 struct mm_struct
*mm
= tsk
->mm
;
384 int core_waiters
= -EBUSY
;
386 init_completion(&core_state
->startup
);
387 core_state
->dumper
.task
= tsk
;
388 core_state
->dumper
.next
= NULL
;
390 down_write(&mm
->mmap_sem
);
392 core_waiters
= zap_threads(tsk
, mm
, core_state
, exit_code
);
393 up_write(&mm
->mmap_sem
);
395 if (core_waiters
> 0) {
396 struct core_thread
*ptr
;
398 wait_for_completion(&core_state
->startup
);
400 * Wait for all the threads to become inactive, so that
401 * all the thread context (extended register state, like
402 * fpu etc) gets copied to the memory.
404 ptr
= core_state
->dumper
.next
;
405 while (ptr
!= NULL
) {
406 wait_task_inactive(ptr
->task
, 0);
414 static void coredump_finish(struct mm_struct
*mm
, bool core_dumped
)
416 struct core_thread
*curr
, *next
;
417 struct task_struct
*task
;
419 spin_lock_irq(¤t
->sighand
->siglock
);
420 if (core_dumped
&& !__fatal_signal_pending(current
))
421 current
->signal
->group_exit_code
|= 0x80;
422 current
->signal
->group_exit_task
= NULL
;
423 current
->signal
->flags
= SIGNAL_GROUP_EXIT
;
424 spin_unlock_irq(¤t
->sighand
->siglock
);
426 next
= mm
->core_state
->dumper
.next
;
427 while ((curr
= next
) != NULL
) {
431 * see exit_mm(), curr->task must not see
432 * ->task == NULL before we read ->next.
436 wake_up_process(task
);
439 mm
->core_state
= NULL
;
442 static bool dump_interrupted(void)
445 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
446 * can do try_to_freeze() and check __fatal_signal_pending(),
447 * but then we need to teach dump_write() to restart and clear
450 return signal_pending(current
);
453 static void wait_for_dump_helpers(struct file
*file
)
455 struct pipe_inode_info
*pipe
= file
->private_data
;
460 wake_up_interruptible_sync(&pipe
->wait
);
461 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
465 * We actually want wait_event_freezable() but then we need
466 * to clear TIF_SIGPENDING and improve dump_interrupted().
468 wait_event_interruptible(pipe
->wait
, pipe
->readers
== 1);
478 * helper function to customize the process used
479 * to collect the core in userspace. Specifically
480 * it sets up a pipe and installs it as fd 0 (stdin)
481 * for the process. Returns 0 on success, or
482 * PTR_ERR on failure.
483 * Note that it also sets the core limit to 1. This
484 * is a special value that we use to trap recursive
487 static int umh_pipe_setup(struct subprocess_info
*info
, struct cred
*new)
489 struct file
*files
[2];
490 struct coredump_params
*cp
= (struct coredump_params
*)info
->data
;
491 int err
= create_pipe_files(files
, 0);
497 err
= replace_fd(0, files
[0], 0);
499 /* and disallow core files too */
500 current
->signal
->rlim
[RLIMIT_CORE
] = (struct rlimit
){1, 1};
505 void do_coredump(const siginfo_t
*siginfo
)
507 struct core_state core_state
;
509 struct mm_struct
*mm
= current
->mm
;
510 struct linux_binfmt
* binfmt
;
511 const struct cred
*old_cred
;
515 struct files_struct
*displaced
;
516 /* require nonrelative corefile path and be extra careful */
517 bool need_suid_safe
= false;
518 bool core_dumped
= false;
519 static atomic_t core_dump_count
= ATOMIC_INIT(0);
520 struct coredump_params cprm
= {
522 .regs
= signal_pt_regs(),
523 .limit
= rlimit(RLIMIT_CORE
),
525 * We must use the same mm->flags while dumping core to avoid
526 * inconsistency of bit flags, since this flag is not protected
529 .mm_flags
= mm
->flags
,
532 audit_core_dumps(siginfo
->si_signo
);
535 if (!binfmt
|| !binfmt
->core_dump
)
537 if (!__get_dumpable(cprm
.mm_flags
))
540 cred
= prepare_creds();
544 * We cannot trust fsuid as being the "true" uid of the process
545 * nor do we know its entire history. We only know it was tainted
546 * so we dump it as root in mode 2, and only into a controlled
547 * environment (pipe handler or fully qualified path).
549 if (__get_dumpable(cprm
.mm_flags
) == SUID_DUMP_ROOT
) {
550 /* Setuid core dump mode */
551 cred
->fsuid
= GLOBAL_ROOT_UID
; /* Dump root private */
552 need_suid_safe
= true;
555 retval
= coredump_wait(siginfo
->si_signo
, &core_state
);
559 old_cred
= override_creds(cred
);
561 ispipe
= format_corename(&cn
, &cprm
);
566 struct subprocess_info
*sub_info
;
569 printk(KERN_WARNING
"format_corename failed\n");
570 printk(KERN_WARNING
"Aborting core\n");
574 if (cprm
.limit
== 1) {
575 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
577 * Normally core limits are irrelevant to pipes, since
578 * we're not writing to the file system, but we use
579 * cprm.limit of 1 here as a special value, this is a
580 * consistent way to catch recursive crashes.
581 * We can still crash if the core_pattern binary sets
582 * RLIM_CORE = !1, but it runs as root, and can do
583 * lots of stupid things.
585 * Note that we use task_tgid_vnr here to grab the pid
586 * of the process group leader. That way we get the
587 * right pid if a thread in a multi-threaded
588 * core_pattern process dies.
591 "Process %d(%s) has RLIMIT_CORE set to 1\n",
592 task_tgid_vnr(current
), current
->comm
);
593 printk(KERN_WARNING
"Aborting core\n");
596 cprm
.limit
= RLIM_INFINITY
;
598 dump_count
= atomic_inc_return(&core_dump_count
);
599 if (core_pipe_limit
&& (core_pipe_limit
< dump_count
)) {
600 printk(KERN_WARNING
"Pid %d(%s) over core_pipe_limit\n",
601 task_tgid_vnr(current
), current
->comm
);
602 printk(KERN_WARNING
"Skipping core dump\n");
606 helper_argv
= argv_split(GFP_KERNEL
, cn
.corename
, NULL
);
608 printk(KERN_WARNING
"%s failed to allocate memory\n",
614 sub_info
= call_usermodehelper_setup(helper_argv
[0],
615 helper_argv
, NULL
, GFP_KERNEL
,
616 umh_pipe_setup
, NULL
, &cprm
);
618 retval
= call_usermodehelper_exec(sub_info
,
621 argv_free(helper_argv
);
623 printk(KERN_INFO
"Core dump to |%s pipe failed\n",
629 int open_flags
= O_CREAT
| O_RDWR
| O_NOFOLLOW
|
630 O_LARGEFILE
| O_EXCL
;
632 if (cprm
.limit
< binfmt
->min_coredump
)
635 if (need_suid_safe
&& cn
.corename
[0] != '/') {
636 printk(KERN_WARNING
"Pid %d(%s) can only dump core "\
637 "to fully qualified path!\n",
638 task_tgid_vnr(current
), current
->comm
);
639 printk(KERN_WARNING
"Skipping core dump\n");
644 * Unlink the file if it exists unless this is a SUID
645 * binary - in that case, we're running around with root
646 * privs and don't want to unlink another user's coredump.
648 if (!need_suid_safe
) {
654 * If it doesn't exist, that's fine. If there's some
655 * other problem, we'll catch it at the filp_open().
657 (void) sys_unlink((const char __user
*)cn
.corename
);
662 * There is a race between unlinking and creating the
663 * file, but if that causes an EEXIST here, that's
664 * fine - another process raced with us while creating
665 * the corefile, and the other process won. To userspace,
666 * what matters is that at least one of the two processes
667 * writes its coredump successfully, not which one.
669 if (need_suid_safe
) {
671 * Using user namespaces, normal user tasks can change
672 * their current->fs->root to point to arbitrary
673 * directories. Since the intention of the "only dump
674 * with a fully qualified path" rule is to control where
675 * coredumps may be placed using root privileges,
676 * current->fs->root must not be used. Instead, use the
677 * root directory of init_task.
681 task_lock(&init_task
);
682 get_fs_root(init_task
.fs
, &root
);
683 task_unlock(&init_task
);
684 cprm
.file
= file_open_root(root
.dentry
, root
.mnt
,
685 cn
.corename
, open_flags
, 0600);
688 cprm
.file
= filp_open(cn
.corename
, open_flags
, 0600);
690 if (IS_ERR(cprm
.file
))
693 inode
= file_inode(cprm
.file
);
694 if (inode
->i_nlink
> 1)
696 if (d_unhashed(cprm
.file
->f_path
.dentry
))
699 * AK: actually i see no reason to not allow this for named
700 * pipes etc, but keep the previous behaviour for now.
702 if (!S_ISREG(inode
->i_mode
))
705 * Don't dump core if the filesystem changed owner or mode
706 * of the file during file creation. This is an issue when
707 * a process dumps core while its cwd is e.g. on a vfat
710 if (!uid_eq(inode
->i_uid
, current_fsuid()))
712 if ((inode
->i_mode
& 0677) != 0600)
714 if (!(cprm
.file
->f_mode
& FMODE_CAN_WRITE
))
716 if (do_truncate(cprm
.file
->f_path
.dentry
, 0, 0, cprm
.file
))
720 /* get us an unshared descriptor table; almost always a no-op */
721 retval
= unshare_files(&displaced
);
725 put_files_struct(displaced
);
726 if (!dump_interrupted()) {
727 file_start_write(cprm
.file
);
728 core_dumped
= binfmt
->core_dump(&cprm
);
729 file_end_write(cprm
.file
);
731 if (ispipe
&& core_pipe_limit
)
732 wait_for_dump_helpers(cprm
.file
);
735 filp_close(cprm
.file
, NULL
);
738 atomic_dec(&core_dump_count
);
741 coredump_finish(mm
, core_dumped
);
742 revert_creds(old_cred
);
750 * Core dumping helper functions. These are the only things you should
751 * do on a core-file: use only these functions to write out all the
754 int dump_emit(struct coredump_params
*cprm
, const void *addr
, int nr
)
756 struct file
*file
= cprm
->file
;
757 loff_t pos
= file
->f_pos
;
759 if (cprm
->written
+ nr
> cprm
->limit
)
762 if (dump_interrupted())
764 n
= __kernel_write(file
, addr
, nr
, &pos
);
773 EXPORT_SYMBOL(dump_emit
);
775 int dump_skip(struct coredump_params
*cprm
, size_t nr
)
777 static char zeroes
[PAGE_SIZE
];
778 struct file
*file
= cprm
->file
;
779 if (file
->f_op
->llseek
&& file
->f_op
->llseek
!= no_llseek
) {
780 if (cprm
->written
+ nr
> cprm
->limit
)
782 if (dump_interrupted() ||
783 file
->f_op
->llseek(file
, nr
, SEEK_CUR
) < 0)
788 while (nr
> PAGE_SIZE
) {
789 if (!dump_emit(cprm
, zeroes
, PAGE_SIZE
))
793 return dump_emit(cprm
, zeroes
, nr
);
796 EXPORT_SYMBOL(dump_skip
);
798 int dump_align(struct coredump_params
*cprm
, int align
)
800 unsigned mod
= cprm
->written
& (align
- 1);
801 if (align
& (align
- 1))
803 return mod
? dump_skip(cprm
, align
- mod
) : 1;
805 EXPORT_SYMBOL(dump_align
);