2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/list_sort.h>
23 #include "transaction.h"
26 #include "print-tree.h"
32 /* magic values for the inode_only field in btrfs_log_inode:
34 * LOG_INODE_ALL means to log everything
35 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 #define LOG_INODE_ALL 0
39 #define LOG_INODE_EXISTS 1
42 * directory trouble cases
44 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
45 * log, we must force a full commit before doing an fsync of the directory
46 * where the unlink was done.
47 * ---> record transid of last unlink/rename per directory
51 * rename foo/some_dir foo2/some_dir
53 * fsync foo/some_dir/some_file
55 * The fsync above will unlink the original some_dir without recording
56 * it in its new location (foo2). After a crash, some_dir will be gone
57 * unless the fsync of some_file forces a full commit
59 * 2) we must log any new names for any file or dir that is in the fsync
60 * log. ---> check inode while renaming/linking.
62 * 2a) we must log any new names for any file or dir during rename
63 * when the directory they are being removed from was logged.
64 * ---> check inode and old parent dir during rename
66 * 2a is actually the more important variant. With the extra logging
67 * a crash might unlink the old name without recreating the new one
69 * 3) after a crash, we must go through any directories with a link count
70 * of zero and redo the rm -rf
77 * The directory f1 was fully removed from the FS, but fsync was never
78 * called on f1, only its parent dir. After a crash the rm -rf must
79 * be replayed. This must be able to recurse down the entire
80 * directory tree. The inode link count fixup code takes care of the
85 * stages for the tree walking. The first
86 * stage (0) is to only pin down the blocks we find
87 * the second stage (1) is to make sure that all the inodes
88 * we find in the log are created in the subvolume.
90 * The last stage is to deal with directories and links and extents
91 * and all the other fun semantics
93 #define LOG_WALK_PIN_ONLY 0
94 #define LOG_WALK_REPLAY_INODES 1
95 #define LOG_WALK_REPLAY_ALL 2
97 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
98 struct btrfs_root
*root
, struct inode
*inode
,
100 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*root
,
102 struct btrfs_path
*path
, u64 objectid
);
103 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
104 struct btrfs_root
*root
,
105 struct btrfs_root
*log
,
106 struct btrfs_path
*path
,
107 u64 dirid
, int del_all
);
110 * tree logging is a special write ahead log used to make sure that
111 * fsyncs and O_SYNCs can happen without doing full tree commits.
113 * Full tree commits are expensive because they require commonly
114 * modified blocks to be recowed, creating many dirty pages in the
115 * extent tree an 4x-6x higher write load than ext3.
117 * Instead of doing a tree commit on every fsync, we use the
118 * key ranges and transaction ids to find items for a given file or directory
119 * that have changed in this transaction. Those items are copied into
120 * a special tree (one per subvolume root), that tree is written to disk
121 * and then the fsync is considered complete.
123 * After a crash, items are copied out of the log-tree back into the
124 * subvolume tree. Any file data extents found are recorded in the extent
125 * allocation tree, and the log-tree freed.
127 * The log tree is read three times, once to pin down all the extents it is
128 * using in ram and once, once to create all the inodes logged in the tree
129 * and once to do all the other items.
133 * start a sub transaction and setup the log tree
134 * this increments the log tree writer count to make the people
135 * syncing the tree wait for us to finish
137 static int start_log_trans(struct btrfs_trans_handle
*trans
,
138 struct btrfs_root
*root
)
143 mutex_lock(&root
->log_mutex
);
144 if (root
->log_root
) {
145 if (!root
->log_start_pid
) {
146 root
->log_start_pid
= current
->pid
;
147 root
->log_multiple_pids
= false;
148 } else if (root
->log_start_pid
!= current
->pid
) {
149 root
->log_multiple_pids
= true;
152 atomic_inc(&root
->log_batch
);
153 atomic_inc(&root
->log_writers
);
154 mutex_unlock(&root
->log_mutex
);
157 root
->log_multiple_pids
= false;
158 root
->log_start_pid
= current
->pid
;
159 mutex_lock(&root
->fs_info
->tree_log_mutex
);
160 if (!root
->fs_info
->log_root_tree
) {
161 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
165 if (err
== 0 && !root
->log_root
) {
166 ret
= btrfs_add_log_tree(trans
, root
);
170 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
171 atomic_inc(&root
->log_batch
);
172 atomic_inc(&root
->log_writers
);
173 mutex_unlock(&root
->log_mutex
);
178 * returns 0 if there was a log transaction running and we were able
179 * to join, or returns -ENOENT if there were not transactions
182 static int join_running_log_trans(struct btrfs_root
*root
)
190 mutex_lock(&root
->log_mutex
);
191 if (root
->log_root
) {
193 atomic_inc(&root
->log_writers
);
195 mutex_unlock(&root
->log_mutex
);
200 * This either makes the current running log transaction wait
201 * until you call btrfs_end_log_trans() or it makes any future
202 * log transactions wait until you call btrfs_end_log_trans()
204 int btrfs_pin_log_trans(struct btrfs_root
*root
)
208 mutex_lock(&root
->log_mutex
);
209 atomic_inc(&root
->log_writers
);
210 mutex_unlock(&root
->log_mutex
);
215 * indicate we're done making changes to the log tree
216 * and wake up anyone waiting to do a sync
218 void btrfs_end_log_trans(struct btrfs_root
*root
)
220 if (atomic_dec_and_test(&root
->log_writers
)) {
222 if (waitqueue_active(&root
->log_writer_wait
))
223 wake_up(&root
->log_writer_wait
);
229 * the walk control struct is used to pass state down the chain when
230 * processing the log tree. The stage field tells us which part
231 * of the log tree processing we are currently doing. The others
232 * are state fields used for that specific part
234 struct walk_control
{
235 /* should we free the extent on disk when done? This is used
236 * at transaction commit time while freeing a log tree
240 /* should we write out the extent buffer? This is used
241 * while flushing the log tree to disk during a sync
245 /* should we wait for the extent buffer io to finish? Also used
246 * while flushing the log tree to disk for a sync
250 /* pin only walk, we record which extents on disk belong to the
255 /* what stage of the replay code we're currently in */
258 /* the root we are currently replaying */
259 struct btrfs_root
*replay_dest
;
261 /* the trans handle for the current replay */
262 struct btrfs_trans_handle
*trans
;
264 /* the function that gets used to process blocks we find in the
265 * tree. Note the extent_buffer might not be up to date when it is
266 * passed in, and it must be checked or read if you need the data
269 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
270 struct walk_control
*wc
, u64 gen
);
274 * process_func used to pin down extents, write them or wait on them
276 static int process_one_buffer(struct btrfs_root
*log
,
277 struct extent_buffer
*eb
,
278 struct walk_control
*wc
, u64 gen
)
283 ret
= btrfs_pin_extent_for_log_replay(log
->fs_info
->extent_root
,
286 if (!ret
&& btrfs_buffer_uptodate(eb
, gen
, 0)) {
288 btrfs_write_tree_block(eb
);
290 btrfs_wait_tree_block_writeback(eb
);
296 * Item overwrite used by replay and tree logging. eb, slot and key all refer
297 * to the src data we are copying out.
299 * root is the tree we are copying into, and path is a scratch
300 * path for use in this function (it should be released on entry and
301 * will be released on exit).
303 * If the key is already in the destination tree the existing item is
304 * overwritten. If the existing item isn't big enough, it is extended.
305 * If it is too large, it is truncated.
307 * If the key isn't in the destination yet, a new item is inserted.
309 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
310 struct btrfs_root
*root
,
311 struct btrfs_path
*path
,
312 struct extent_buffer
*eb
, int slot
,
313 struct btrfs_key
*key
)
317 u64 saved_i_size
= 0;
318 int save_old_i_size
= 0;
319 unsigned long src_ptr
;
320 unsigned long dst_ptr
;
321 int overwrite_root
= 0;
322 bool inode_item
= key
->type
== BTRFS_INODE_ITEM_KEY
;
324 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
327 item_size
= btrfs_item_size_nr(eb
, slot
);
328 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
330 /* look for the key in the destination tree */
331 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
338 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
340 if (dst_size
!= item_size
)
343 if (item_size
== 0) {
344 btrfs_release_path(path
);
347 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
348 src_copy
= kmalloc(item_size
, GFP_NOFS
);
349 if (!dst_copy
|| !src_copy
) {
350 btrfs_release_path(path
);
356 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
358 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
359 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
361 ret
= memcmp(dst_copy
, src_copy
, item_size
);
366 * they have the same contents, just return, this saves
367 * us from cowing blocks in the destination tree and doing
368 * extra writes that may not have been done by a previous
372 btrfs_release_path(path
);
377 * We need to load the old nbytes into the inode so when we
378 * replay the extents we've logged we get the right nbytes.
381 struct btrfs_inode_item
*item
;
384 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
385 struct btrfs_inode_item
);
386 nbytes
= btrfs_inode_nbytes(path
->nodes
[0], item
);
387 item
= btrfs_item_ptr(eb
, slot
,
388 struct btrfs_inode_item
);
389 btrfs_set_inode_nbytes(eb
, item
, nbytes
);
391 } else if (inode_item
) {
392 struct btrfs_inode_item
*item
;
395 * New inode, set nbytes to 0 so that the nbytes comes out
396 * properly when we replay the extents.
398 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
399 btrfs_set_inode_nbytes(eb
, item
, 0);
402 btrfs_release_path(path
);
403 /* try to insert the key into the destination tree */
404 ret
= btrfs_insert_empty_item(trans
, root
, path
,
407 /* make sure any existing item is the correct size */
408 if (ret
== -EEXIST
) {
410 found_size
= btrfs_item_size_nr(path
->nodes
[0],
412 if (found_size
> item_size
)
413 btrfs_truncate_item(root
, path
, item_size
, 1);
414 else if (found_size
< item_size
)
415 btrfs_extend_item(root
, path
,
416 item_size
- found_size
);
420 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
423 /* don't overwrite an existing inode if the generation number
424 * was logged as zero. This is done when the tree logging code
425 * is just logging an inode to make sure it exists after recovery.
427 * Also, don't overwrite i_size on directories during replay.
428 * log replay inserts and removes directory items based on the
429 * state of the tree found in the subvolume, and i_size is modified
432 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
433 struct btrfs_inode_item
*src_item
;
434 struct btrfs_inode_item
*dst_item
;
436 src_item
= (struct btrfs_inode_item
*)src_ptr
;
437 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
439 if (btrfs_inode_generation(eb
, src_item
) == 0)
442 if (overwrite_root
&&
443 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
444 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
446 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
451 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
454 if (save_old_i_size
) {
455 struct btrfs_inode_item
*dst_item
;
456 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
457 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
460 /* make sure the generation is filled in */
461 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
462 struct btrfs_inode_item
*dst_item
;
463 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
464 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
465 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
470 btrfs_mark_buffer_dirty(path
->nodes
[0]);
471 btrfs_release_path(path
);
476 * simple helper to read an inode off the disk from a given root
477 * This can only be called for subvolume roots and not for the log
479 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
482 struct btrfs_key key
;
485 key
.objectid
= objectid
;
486 key
.type
= BTRFS_INODE_ITEM_KEY
;
488 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
491 } else if (is_bad_inode(inode
)) {
498 /* replays a single extent in 'eb' at 'slot' with 'key' into the
499 * subvolume 'root'. path is released on entry and should be released
502 * extents in the log tree have not been allocated out of the extent
503 * tree yet. So, this completes the allocation, taking a reference
504 * as required if the extent already exists or creating a new extent
505 * if it isn't in the extent allocation tree yet.
507 * The extent is inserted into the file, dropping any existing extents
508 * from the file that overlap the new one.
510 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
511 struct btrfs_root
*root
,
512 struct btrfs_path
*path
,
513 struct extent_buffer
*eb
, int slot
,
514 struct btrfs_key
*key
)
518 u64 start
= key
->offset
;
520 struct btrfs_file_extent_item
*item
;
521 struct inode
*inode
= NULL
;
525 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
526 found_type
= btrfs_file_extent_type(eb
, item
);
528 if (found_type
== BTRFS_FILE_EXTENT_REG
||
529 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
530 nbytes
= btrfs_file_extent_num_bytes(eb
, item
);
531 extent_end
= start
+ nbytes
;
534 * We don't add to the inodes nbytes if we are prealloc or a
537 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
539 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
540 size
= btrfs_file_extent_inline_len(eb
, item
);
541 nbytes
= btrfs_file_extent_ram_bytes(eb
, item
);
542 extent_end
= ALIGN(start
+ size
, root
->sectorsize
);
548 inode
= read_one_inode(root
, key
->objectid
);
555 * first check to see if we already have this extent in the
556 * file. This must be done before the btrfs_drop_extents run
557 * so we don't try to drop this extent.
559 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
563 (found_type
== BTRFS_FILE_EXTENT_REG
||
564 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
565 struct btrfs_file_extent_item cmp1
;
566 struct btrfs_file_extent_item cmp2
;
567 struct btrfs_file_extent_item
*existing
;
568 struct extent_buffer
*leaf
;
570 leaf
= path
->nodes
[0];
571 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
572 struct btrfs_file_extent_item
);
574 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
576 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
580 * we already have a pointer to this exact extent,
581 * we don't have to do anything
583 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
584 btrfs_release_path(path
);
588 btrfs_release_path(path
);
590 /* drop any overlapping extents */
591 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, extent_end
, 1);
595 if (found_type
== BTRFS_FILE_EXTENT_REG
||
596 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
598 unsigned long dest_offset
;
599 struct btrfs_key ins
;
601 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
605 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
607 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
608 (unsigned long)item
, sizeof(*item
));
610 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
611 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
612 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
613 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
615 if (ins
.objectid
> 0) {
618 LIST_HEAD(ordered_sums
);
620 * is this extent already allocated in the extent
621 * allocation tree? If so, just add a reference
623 ret
= btrfs_lookup_extent(root
, ins
.objectid
,
626 ret
= btrfs_inc_extent_ref(trans
, root
,
627 ins
.objectid
, ins
.offset
,
628 0, root
->root_key
.objectid
,
629 key
->objectid
, offset
, 0);
634 * insert the extent pointer in the extent
637 ret
= btrfs_alloc_logged_file_extent(trans
,
638 root
, root
->root_key
.objectid
,
639 key
->objectid
, offset
, &ins
);
643 btrfs_release_path(path
);
645 if (btrfs_file_extent_compression(eb
, item
)) {
646 csum_start
= ins
.objectid
;
647 csum_end
= csum_start
+ ins
.offset
;
649 csum_start
= ins
.objectid
+
650 btrfs_file_extent_offset(eb
, item
);
651 csum_end
= csum_start
+
652 btrfs_file_extent_num_bytes(eb
, item
);
655 ret
= btrfs_lookup_csums_range(root
->log_root
,
656 csum_start
, csum_end
- 1,
660 while (!list_empty(&ordered_sums
)) {
661 struct btrfs_ordered_sum
*sums
;
662 sums
= list_entry(ordered_sums
.next
,
663 struct btrfs_ordered_sum
,
666 ret
= btrfs_csum_file_blocks(trans
,
667 root
->fs_info
->csum_root
,
669 list_del(&sums
->list
);
675 btrfs_release_path(path
);
677 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
678 /* inline extents are easy, we just overwrite them */
679 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
684 inode_add_bytes(inode
, nbytes
);
685 ret
= btrfs_update_inode(trans
, root
, inode
);
693 * when cleaning up conflicts between the directory names in the
694 * subvolume, directory names in the log and directory names in the
695 * inode back references, we may have to unlink inodes from directories.
697 * This is a helper function to do the unlink of a specific directory
700 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
701 struct btrfs_root
*root
,
702 struct btrfs_path
*path
,
704 struct btrfs_dir_item
*di
)
709 struct extent_buffer
*leaf
;
710 struct btrfs_key location
;
713 leaf
= path
->nodes
[0];
715 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
716 name_len
= btrfs_dir_name_len(leaf
, di
);
717 name
= kmalloc(name_len
, GFP_NOFS
);
721 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
722 btrfs_release_path(path
);
724 inode
= read_one_inode(root
, location
.objectid
);
730 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
734 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
737 btrfs_run_delayed_items(trans
, root
);
745 * helper function to see if a given name and sequence number found
746 * in an inode back reference are already in a directory and correctly
747 * point to this inode
749 static noinline
int inode_in_dir(struct btrfs_root
*root
,
750 struct btrfs_path
*path
,
751 u64 dirid
, u64 objectid
, u64 index
,
752 const char *name
, int name_len
)
754 struct btrfs_dir_item
*di
;
755 struct btrfs_key location
;
758 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
759 index
, name
, name_len
, 0);
760 if (di
&& !IS_ERR(di
)) {
761 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
762 if (location
.objectid
!= objectid
)
766 btrfs_release_path(path
);
768 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
769 if (di
&& !IS_ERR(di
)) {
770 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
771 if (location
.objectid
!= objectid
)
777 btrfs_release_path(path
);
782 * helper function to check a log tree for a named back reference in
783 * an inode. This is used to decide if a back reference that is
784 * found in the subvolume conflicts with what we find in the log.
786 * inode backreferences may have multiple refs in a single item,
787 * during replay we process one reference at a time, and we don't
788 * want to delete valid links to a file from the subvolume if that
789 * link is also in the log.
791 static noinline
int backref_in_log(struct btrfs_root
*log
,
792 struct btrfs_key
*key
,
794 char *name
, int namelen
)
796 struct btrfs_path
*path
;
797 struct btrfs_inode_ref
*ref
;
799 unsigned long ptr_end
;
800 unsigned long name_ptr
;
806 path
= btrfs_alloc_path();
810 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
814 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
816 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
817 if (btrfs_find_name_in_ext_backref(path
, ref_objectid
,
818 name
, namelen
, NULL
))
824 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
825 ptr_end
= ptr
+ item_size
;
826 while (ptr
< ptr_end
) {
827 ref
= (struct btrfs_inode_ref
*)ptr
;
828 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
829 if (found_name_len
== namelen
) {
830 name_ptr
= (unsigned long)(ref
+ 1);
831 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
838 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
841 btrfs_free_path(path
);
845 static inline int __add_inode_ref(struct btrfs_trans_handle
*trans
,
846 struct btrfs_root
*root
,
847 struct btrfs_path
*path
,
848 struct btrfs_root
*log_root
,
849 struct inode
*dir
, struct inode
*inode
,
850 struct extent_buffer
*eb
,
851 u64 inode_objectid
, u64 parent_objectid
,
852 u64 ref_index
, char *name
, int namelen
,
858 struct extent_buffer
*leaf
;
859 struct btrfs_dir_item
*di
;
860 struct btrfs_key search_key
;
861 struct btrfs_inode_extref
*extref
;
864 /* Search old style refs */
865 search_key
.objectid
= inode_objectid
;
866 search_key
.type
= BTRFS_INODE_REF_KEY
;
867 search_key
.offset
= parent_objectid
;
868 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
870 struct btrfs_inode_ref
*victim_ref
;
872 unsigned long ptr_end
;
874 leaf
= path
->nodes
[0];
876 /* are we trying to overwrite a back ref for the root directory
877 * if so, just jump out, we're done
879 if (search_key
.objectid
== search_key
.offset
)
882 /* check all the names in this back reference to see
883 * if they are in the log. if so, we allow them to stay
884 * otherwise they must be unlinked as a conflict
886 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
887 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
888 while (ptr
< ptr_end
) {
889 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
890 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
892 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
896 read_extent_buffer(leaf
, victim_name
,
897 (unsigned long)(victim_ref
+ 1),
900 if (!backref_in_log(log_root
, &search_key
,
904 btrfs_inc_nlink(inode
);
905 btrfs_release_path(path
);
907 ret
= btrfs_unlink_inode(trans
, root
, dir
,
913 btrfs_run_delayed_items(trans
, root
);
919 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
923 * NOTE: we have searched root tree and checked the
924 * coresponding ref, it does not need to check again.
928 btrfs_release_path(path
);
930 /* Same search but for extended refs */
931 extref
= btrfs_lookup_inode_extref(NULL
, root
, path
, name
, namelen
,
932 inode_objectid
, parent_objectid
, 0,
934 if (!IS_ERR_OR_NULL(extref
)) {
938 struct inode
*victim_parent
;
940 leaf
= path
->nodes
[0];
942 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
943 base
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
945 while (cur_offset
< item_size
) {
946 extref
= (struct btrfs_inode_extref
*)base
+ cur_offset
;
948 victim_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
950 if (btrfs_inode_extref_parent(leaf
, extref
) != parent_objectid
)
953 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
956 read_extent_buffer(leaf
, victim_name
, (unsigned long)&extref
->name
,
959 search_key
.objectid
= inode_objectid
;
960 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
961 search_key
.offset
= btrfs_extref_hash(parent_objectid
,
965 if (!backref_in_log(log_root
, &search_key
,
966 parent_objectid
, victim_name
,
969 victim_parent
= read_one_inode(root
,
972 btrfs_inc_nlink(inode
);
973 btrfs_release_path(path
);
975 ret
= btrfs_unlink_inode(trans
, root
,
980 btrfs_run_delayed_items(trans
, root
);
993 cur_offset
+= victim_name_len
+ sizeof(*extref
);
997 btrfs_release_path(path
);
999 /* look for a conflicting sequence number */
1000 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
1001 ref_index
, name
, namelen
, 0);
1002 if (di
&& !IS_ERR(di
)) {
1003 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1007 btrfs_release_path(path
);
1009 /* look for a conflicing name */
1010 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
1012 if (di
&& !IS_ERR(di
)) {
1013 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1017 btrfs_release_path(path
);
1022 static int extref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1023 u32
*namelen
, char **name
, u64
*index
,
1024 u64
*parent_objectid
)
1026 struct btrfs_inode_extref
*extref
;
1028 extref
= (struct btrfs_inode_extref
*)ref_ptr
;
1030 *namelen
= btrfs_inode_extref_name_len(eb
, extref
);
1031 *name
= kmalloc(*namelen
, GFP_NOFS
);
1035 read_extent_buffer(eb
, *name
, (unsigned long)&extref
->name
,
1038 *index
= btrfs_inode_extref_index(eb
, extref
);
1039 if (parent_objectid
)
1040 *parent_objectid
= btrfs_inode_extref_parent(eb
, extref
);
1045 static int ref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1046 u32
*namelen
, char **name
, u64
*index
)
1048 struct btrfs_inode_ref
*ref
;
1050 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
1052 *namelen
= btrfs_inode_ref_name_len(eb
, ref
);
1053 *name
= kmalloc(*namelen
, GFP_NOFS
);
1057 read_extent_buffer(eb
, *name
, (unsigned long)(ref
+ 1), *namelen
);
1059 *index
= btrfs_inode_ref_index(eb
, ref
);
1065 * replay one inode back reference item found in the log tree.
1066 * eb, slot and key refer to the buffer and key found in the log tree.
1067 * root is the destination we are replaying into, and path is for temp
1068 * use by this function. (it should be released on return).
1070 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
1071 struct btrfs_root
*root
,
1072 struct btrfs_root
*log
,
1073 struct btrfs_path
*path
,
1074 struct extent_buffer
*eb
, int slot
,
1075 struct btrfs_key
*key
)
1078 struct inode
*inode
;
1079 unsigned long ref_ptr
;
1080 unsigned long ref_end
;
1084 int search_done
= 0;
1085 int log_ref_ver
= 0;
1086 u64 parent_objectid
;
1089 int ref_struct_size
;
1091 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
1092 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
1094 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1095 struct btrfs_inode_extref
*r
;
1097 ref_struct_size
= sizeof(struct btrfs_inode_extref
);
1099 r
= (struct btrfs_inode_extref
*)ref_ptr
;
1100 parent_objectid
= btrfs_inode_extref_parent(eb
, r
);
1102 ref_struct_size
= sizeof(struct btrfs_inode_ref
);
1103 parent_objectid
= key
->offset
;
1105 inode_objectid
= key
->objectid
;
1108 * it is possible that we didn't log all the parent directories
1109 * for a given inode. If we don't find the dir, just don't
1110 * copy the back ref in. The link count fixup code will take
1113 dir
= read_one_inode(root
, parent_objectid
);
1117 inode
= read_one_inode(root
, inode_objectid
);
1123 while (ref_ptr
< ref_end
) {
1125 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1126 &ref_index
, &parent_objectid
);
1128 * parent object can change from one array
1132 dir
= read_one_inode(root
, parent_objectid
);
1136 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1142 /* if we already have a perfect match, we're done */
1143 if (!inode_in_dir(root
, path
, btrfs_ino(dir
), btrfs_ino(inode
),
1144 ref_index
, name
, namelen
)) {
1146 * look for a conflicting back reference in the
1147 * metadata. if we find one we have to unlink that name
1148 * of the file before we add our new link. Later on, we
1149 * overwrite any existing back reference, and we don't
1150 * want to create dangling pointers in the directory.
1154 ret
= __add_inode_ref(trans
, root
, path
, log
,
1158 ref_index
, name
, namelen
,
1168 /* insert our name */
1169 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
,
1174 btrfs_update_inode(trans
, root
, inode
);
1177 ref_ptr
= (unsigned long)(ref_ptr
+ ref_struct_size
) + namelen
;
1185 /* finally write the back reference in the inode */
1186 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
1188 btrfs_release_path(path
);
1194 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
1195 struct btrfs_root
*root
, u64 offset
)
1198 ret
= btrfs_find_orphan_item(root
, offset
);
1200 ret
= btrfs_insert_orphan_item(trans
, root
, offset
);
1204 static int count_inode_extrefs(struct btrfs_root
*root
,
1205 struct inode
*inode
, struct btrfs_path
*path
)
1209 unsigned int nlink
= 0;
1212 u64 inode_objectid
= btrfs_ino(inode
);
1215 struct btrfs_inode_extref
*extref
;
1216 struct extent_buffer
*leaf
;
1219 ret
= btrfs_find_one_extref(root
, inode_objectid
, offset
, path
,
1224 leaf
= path
->nodes
[0];
1225 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1226 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1228 while (cur_offset
< item_size
) {
1229 extref
= (struct btrfs_inode_extref
*) (ptr
+ cur_offset
);
1230 name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1234 cur_offset
+= name_len
+ sizeof(*extref
);
1238 btrfs_release_path(path
);
1240 btrfs_release_path(path
);
1247 static int count_inode_refs(struct btrfs_root
*root
,
1248 struct inode
*inode
, struct btrfs_path
*path
)
1251 struct btrfs_key key
;
1252 unsigned int nlink
= 0;
1254 unsigned long ptr_end
;
1256 u64 ino
= btrfs_ino(inode
);
1259 key
.type
= BTRFS_INODE_REF_KEY
;
1260 key
.offset
= (u64
)-1;
1263 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1267 if (path
->slots
[0] == 0)
1271 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1273 if (key
.objectid
!= ino
||
1274 key
.type
!= BTRFS_INODE_REF_KEY
)
1276 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1277 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1279 while (ptr
< ptr_end
) {
1280 struct btrfs_inode_ref
*ref
;
1282 ref
= (struct btrfs_inode_ref
*)ptr
;
1283 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1285 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1289 if (key
.offset
== 0)
1292 btrfs_release_path(path
);
1294 btrfs_release_path(path
);
1300 * There are a few corners where the link count of the file can't
1301 * be properly maintained during replay. So, instead of adding
1302 * lots of complexity to the log code, we just scan the backrefs
1303 * for any file that has been through replay.
1305 * The scan will update the link count on the inode to reflect the
1306 * number of back refs found. If it goes down to zero, the iput
1307 * will free the inode.
1309 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
1310 struct btrfs_root
*root
,
1311 struct inode
*inode
)
1313 struct btrfs_path
*path
;
1316 u64 ino
= btrfs_ino(inode
);
1318 path
= btrfs_alloc_path();
1322 ret
= count_inode_refs(root
, inode
, path
);
1328 ret
= count_inode_extrefs(root
, inode
, path
);
1339 if (nlink
!= inode
->i_nlink
) {
1340 set_nlink(inode
, nlink
);
1341 btrfs_update_inode(trans
, root
, inode
);
1343 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1345 if (inode
->i_nlink
== 0) {
1346 if (S_ISDIR(inode
->i_mode
)) {
1347 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1352 ret
= insert_orphan_item(trans
, root
, ino
);
1356 btrfs_free_path(path
);
1360 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1361 struct btrfs_root
*root
,
1362 struct btrfs_path
*path
)
1365 struct btrfs_key key
;
1366 struct inode
*inode
;
1368 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1369 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1370 key
.offset
= (u64
)-1;
1372 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1377 if (path
->slots
[0] == 0)
1382 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1383 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1384 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1387 ret
= btrfs_del_item(trans
, root
, path
);
1391 btrfs_release_path(path
);
1392 inode
= read_one_inode(root
, key
.offset
);
1396 ret
= fixup_inode_link_count(trans
, root
, inode
);
1402 * fixup on a directory may create new entries,
1403 * make sure we always look for the highset possible
1406 key
.offset
= (u64
)-1;
1410 btrfs_release_path(path
);
1416 * record a given inode in the fixup dir so we can check its link
1417 * count when replay is done. The link count is incremented here
1418 * so the inode won't go away until we check it
1420 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1421 struct btrfs_root
*root
,
1422 struct btrfs_path
*path
,
1425 struct btrfs_key key
;
1427 struct inode
*inode
;
1429 inode
= read_one_inode(root
, objectid
);
1433 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1434 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1435 key
.offset
= objectid
;
1437 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1439 btrfs_release_path(path
);
1441 if (!inode
->i_nlink
)
1442 set_nlink(inode
, 1);
1444 btrfs_inc_nlink(inode
);
1445 ret
= btrfs_update_inode(trans
, root
, inode
);
1446 } else if (ret
== -EEXIST
) {
1449 BUG(); /* Logic Error */
1457 * when replaying the log for a directory, we only insert names
1458 * for inodes that actually exist. This means an fsync on a directory
1459 * does not implicitly fsync all the new files in it
1461 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1462 struct btrfs_root
*root
,
1463 struct btrfs_path
*path
,
1464 u64 dirid
, u64 index
,
1465 char *name
, int name_len
, u8 type
,
1466 struct btrfs_key
*location
)
1468 struct inode
*inode
;
1472 inode
= read_one_inode(root
, location
->objectid
);
1476 dir
= read_one_inode(root
, dirid
);
1481 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1483 /* FIXME, put inode into FIXUP list */
1491 * take a single entry in a log directory item and replay it into
1494 * if a conflicting item exists in the subdirectory already,
1495 * the inode it points to is unlinked and put into the link count
1498 * If a name from the log points to a file or directory that does
1499 * not exist in the FS, it is skipped. fsyncs on directories
1500 * do not force down inodes inside that directory, just changes to the
1501 * names or unlinks in a directory.
1503 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1504 struct btrfs_root
*root
,
1505 struct btrfs_path
*path
,
1506 struct extent_buffer
*eb
,
1507 struct btrfs_dir_item
*di
,
1508 struct btrfs_key
*key
)
1512 struct btrfs_dir_item
*dst_di
;
1513 struct btrfs_key found_key
;
1514 struct btrfs_key log_key
;
1520 dir
= read_one_inode(root
, key
->objectid
);
1524 name_len
= btrfs_dir_name_len(eb
, di
);
1525 name
= kmalloc(name_len
, GFP_NOFS
);
1529 log_type
= btrfs_dir_type(eb
, di
);
1530 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1533 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1534 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1539 btrfs_release_path(path
);
1541 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1542 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1544 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1545 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1554 if (IS_ERR_OR_NULL(dst_di
)) {
1555 /* we need a sequence number to insert, so we only
1556 * do inserts for the BTRFS_DIR_INDEX_KEY types
1558 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1563 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1564 /* the existing item matches the logged item */
1565 if (found_key
.objectid
== log_key
.objectid
&&
1566 found_key
.type
== log_key
.type
&&
1567 found_key
.offset
== log_key
.offset
&&
1568 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1573 * don't drop the conflicting directory entry if the inode
1574 * for the new entry doesn't exist
1579 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1583 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1586 btrfs_release_path(path
);
1592 btrfs_release_path(path
);
1593 ret
= insert_one_name(trans
, root
, path
, key
->objectid
, key
->offset
,
1594 name
, name_len
, log_type
, &log_key
);
1595 if (ret
&& ret
!= -ENOENT
)
1602 * find all the names in a directory item and reconcile them into
1603 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1604 * one name in a directory item, but the same code gets used for
1605 * both directory index types
1607 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1608 struct btrfs_root
*root
,
1609 struct btrfs_path
*path
,
1610 struct extent_buffer
*eb
, int slot
,
1611 struct btrfs_key
*key
)
1614 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1615 struct btrfs_dir_item
*di
;
1618 unsigned long ptr_end
;
1620 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1621 ptr_end
= ptr
+ item_size
;
1622 while (ptr
< ptr_end
) {
1623 di
= (struct btrfs_dir_item
*)ptr
;
1624 if (verify_dir_item(root
, eb
, di
))
1626 name_len
= btrfs_dir_name_len(eb
, di
);
1627 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1630 ptr
= (unsigned long)(di
+ 1);
1637 * directory replay has two parts. There are the standard directory
1638 * items in the log copied from the subvolume, and range items
1639 * created in the log while the subvolume was logged.
1641 * The range items tell us which parts of the key space the log
1642 * is authoritative for. During replay, if a key in the subvolume
1643 * directory is in a logged range item, but not actually in the log
1644 * that means it was deleted from the directory before the fsync
1645 * and should be removed.
1647 static noinline
int find_dir_range(struct btrfs_root
*root
,
1648 struct btrfs_path
*path
,
1649 u64 dirid
, int key_type
,
1650 u64
*start_ret
, u64
*end_ret
)
1652 struct btrfs_key key
;
1654 struct btrfs_dir_log_item
*item
;
1658 if (*start_ret
== (u64
)-1)
1661 key
.objectid
= dirid
;
1662 key
.type
= key_type
;
1663 key
.offset
= *start_ret
;
1665 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1669 if (path
->slots
[0] == 0)
1674 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1676 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1680 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1681 struct btrfs_dir_log_item
);
1682 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1684 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1686 *start_ret
= key
.offset
;
1687 *end_ret
= found_end
;
1692 /* check the next slot in the tree to see if it is a valid item */
1693 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1694 if (path
->slots
[0] >= nritems
) {
1695 ret
= btrfs_next_leaf(root
, path
);
1702 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1704 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1708 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1709 struct btrfs_dir_log_item
);
1710 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1711 *start_ret
= key
.offset
;
1712 *end_ret
= found_end
;
1715 btrfs_release_path(path
);
1720 * this looks for a given directory item in the log. If the directory
1721 * item is not in the log, the item is removed and the inode it points
1724 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1725 struct btrfs_root
*root
,
1726 struct btrfs_root
*log
,
1727 struct btrfs_path
*path
,
1728 struct btrfs_path
*log_path
,
1730 struct btrfs_key
*dir_key
)
1733 struct extent_buffer
*eb
;
1736 struct btrfs_dir_item
*di
;
1737 struct btrfs_dir_item
*log_di
;
1740 unsigned long ptr_end
;
1742 struct inode
*inode
;
1743 struct btrfs_key location
;
1746 eb
= path
->nodes
[0];
1747 slot
= path
->slots
[0];
1748 item_size
= btrfs_item_size_nr(eb
, slot
);
1749 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1750 ptr_end
= ptr
+ item_size
;
1751 while (ptr
< ptr_end
) {
1752 di
= (struct btrfs_dir_item
*)ptr
;
1753 if (verify_dir_item(root
, eb
, di
)) {
1758 name_len
= btrfs_dir_name_len(eb
, di
);
1759 name
= kmalloc(name_len
, GFP_NOFS
);
1764 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1767 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
1768 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
1771 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
1772 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
1778 if (IS_ERR_OR_NULL(log_di
)) {
1779 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
1780 btrfs_release_path(path
);
1781 btrfs_release_path(log_path
);
1782 inode
= read_one_inode(root
, location
.objectid
);
1788 ret
= link_to_fixup_dir(trans
, root
,
1789 path
, location
.objectid
);
1796 btrfs_inc_nlink(inode
);
1797 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1800 btrfs_run_delayed_items(trans
, root
);
1806 /* there might still be more names under this key
1807 * check and repeat if required
1809 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
1816 btrfs_release_path(log_path
);
1819 ptr
= (unsigned long)(di
+ 1);
1824 btrfs_release_path(path
);
1825 btrfs_release_path(log_path
);
1830 * deletion replay happens before we copy any new directory items
1831 * out of the log or out of backreferences from inodes. It
1832 * scans the log to find ranges of keys that log is authoritative for,
1833 * and then scans the directory to find items in those ranges that are
1834 * not present in the log.
1836 * Anything we don't find in the log is unlinked and removed from the
1839 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
1840 struct btrfs_root
*root
,
1841 struct btrfs_root
*log
,
1842 struct btrfs_path
*path
,
1843 u64 dirid
, int del_all
)
1847 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
1849 struct btrfs_key dir_key
;
1850 struct btrfs_key found_key
;
1851 struct btrfs_path
*log_path
;
1854 dir_key
.objectid
= dirid
;
1855 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
1856 log_path
= btrfs_alloc_path();
1860 dir
= read_one_inode(root
, dirid
);
1861 /* it isn't an error if the inode isn't there, that can happen
1862 * because we replay the deletes before we copy in the inode item
1866 btrfs_free_path(log_path
);
1874 range_end
= (u64
)-1;
1876 ret
= find_dir_range(log
, path
, dirid
, key_type
,
1877 &range_start
, &range_end
);
1882 dir_key
.offset
= range_start
;
1885 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
1890 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1891 if (path
->slots
[0] >= nritems
) {
1892 ret
= btrfs_next_leaf(root
, path
);
1896 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1898 if (found_key
.objectid
!= dirid
||
1899 found_key
.type
!= dir_key
.type
)
1902 if (found_key
.offset
> range_end
)
1905 ret
= check_item_in_log(trans
, root
, log
, path
,
1910 if (found_key
.offset
== (u64
)-1)
1912 dir_key
.offset
= found_key
.offset
+ 1;
1914 btrfs_release_path(path
);
1915 if (range_end
== (u64
)-1)
1917 range_start
= range_end
+ 1;
1922 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
1923 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
1924 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
1925 btrfs_release_path(path
);
1929 btrfs_release_path(path
);
1930 btrfs_free_path(log_path
);
1936 * the process_func used to replay items from the log tree. This
1937 * gets called in two different stages. The first stage just looks
1938 * for inodes and makes sure they are all copied into the subvolume.
1940 * The second stage copies all the other item types from the log into
1941 * the subvolume. The two stage approach is slower, but gets rid of
1942 * lots of complexity around inodes referencing other inodes that exist
1943 * only in the log (references come from either directory items or inode
1946 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
1947 struct walk_control
*wc
, u64 gen
)
1950 struct btrfs_path
*path
;
1951 struct btrfs_root
*root
= wc
->replay_dest
;
1952 struct btrfs_key key
;
1957 ret
= btrfs_read_buffer(eb
, gen
);
1961 level
= btrfs_header_level(eb
);
1966 path
= btrfs_alloc_path();
1970 nritems
= btrfs_header_nritems(eb
);
1971 for (i
= 0; i
< nritems
; i
++) {
1972 btrfs_item_key_to_cpu(eb
, &key
, i
);
1974 /* inode keys are done during the first stage */
1975 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
1976 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
1977 struct btrfs_inode_item
*inode_item
;
1980 inode_item
= btrfs_item_ptr(eb
, i
,
1981 struct btrfs_inode_item
);
1982 mode
= btrfs_inode_mode(eb
, inode_item
);
1983 if (S_ISDIR(mode
)) {
1984 ret
= replay_dir_deletes(wc
->trans
,
1985 root
, log
, path
, key
.objectid
, 0);
1989 ret
= overwrite_item(wc
->trans
, root
, path
,
1994 /* for regular files, make sure corresponding
1995 * orhpan item exist. extents past the new EOF
1996 * will be truncated later by orphan cleanup.
1998 if (S_ISREG(mode
)) {
1999 ret
= insert_orphan_item(wc
->trans
, root
,
2005 ret
= link_to_fixup_dir(wc
->trans
, root
,
2006 path
, key
.objectid
);
2010 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
2013 /* these keys are simply copied */
2014 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
2015 ret
= overwrite_item(wc
->trans
, root
, path
,
2019 } else if (key
.type
== BTRFS_INODE_REF_KEY
) {
2020 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2022 if (ret
&& ret
!= -ENOENT
)
2025 } else if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
2026 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2028 if (ret
&& ret
!= -ENOENT
)
2031 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
2032 ret
= replay_one_extent(wc
->trans
, root
, path
,
2036 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
||
2037 key
.type
== BTRFS_DIR_INDEX_KEY
) {
2038 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2044 btrfs_free_path(path
);
2048 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
2049 struct btrfs_root
*root
,
2050 struct btrfs_path
*path
, int *level
,
2051 struct walk_control
*wc
)
2056 struct extent_buffer
*next
;
2057 struct extent_buffer
*cur
;
2058 struct extent_buffer
*parent
;
2062 WARN_ON(*level
< 0);
2063 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2065 while (*level
> 0) {
2066 WARN_ON(*level
< 0);
2067 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2068 cur
= path
->nodes
[*level
];
2070 if (btrfs_header_level(cur
) != *level
)
2073 if (path
->slots
[*level
] >=
2074 btrfs_header_nritems(cur
))
2077 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
2078 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
2079 blocksize
= btrfs_level_size(root
, *level
- 1);
2081 parent
= path
->nodes
[*level
];
2082 root_owner
= btrfs_header_owner(parent
);
2084 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
2089 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
);
2091 free_extent_buffer(next
);
2095 path
->slots
[*level
]++;
2097 ret
= btrfs_read_buffer(next
, ptr_gen
);
2099 free_extent_buffer(next
);
2103 btrfs_tree_lock(next
);
2104 btrfs_set_lock_blocking(next
);
2105 clean_tree_block(trans
, root
, next
);
2106 btrfs_wait_tree_block_writeback(next
);
2107 btrfs_tree_unlock(next
);
2109 WARN_ON(root_owner
!=
2110 BTRFS_TREE_LOG_OBJECTID
);
2111 ret
= btrfs_free_and_pin_reserved_extent(root
,
2114 free_extent_buffer(next
);
2118 free_extent_buffer(next
);
2121 ret
= btrfs_read_buffer(next
, ptr_gen
);
2123 free_extent_buffer(next
);
2127 WARN_ON(*level
<= 0);
2128 if (path
->nodes
[*level
-1])
2129 free_extent_buffer(path
->nodes
[*level
-1]);
2130 path
->nodes
[*level
-1] = next
;
2131 *level
= btrfs_header_level(next
);
2132 path
->slots
[*level
] = 0;
2135 WARN_ON(*level
< 0);
2136 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
2138 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
2144 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
2145 struct btrfs_root
*root
,
2146 struct btrfs_path
*path
, int *level
,
2147 struct walk_control
*wc
)
2154 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
2155 slot
= path
->slots
[i
];
2156 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
2159 WARN_ON(*level
== 0);
2162 struct extent_buffer
*parent
;
2163 if (path
->nodes
[*level
] == root
->node
)
2164 parent
= path
->nodes
[*level
];
2166 parent
= path
->nodes
[*level
+ 1];
2168 root_owner
= btrfs_header_owner(parent
);
2169 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
2170 btrfs_header_generation(path
->nodes
[*level
]));
2175 struct extent_buffer
*next
;
2177 next
= path
->nodes
[*level
];
2179 btrfs_tree_lock(next
);
2180 btrfs_set_lock_blocking(next
);
2181 clean_tree_block(trans
, root
, next
);
2182 btrfs_wait_tree_block_writeback(next
);
2183 btrfs_tree_unlock(next
);
2185 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
2186 ret
= btrfs_free_and_pin_reserved_extent(root
,
2187 path
->nodes
[*level
]->start
,
2188 path
->nodes
[*level
]->len
);
2192 free_extent_buffer(path
->nodes
[*level
]);
2193 path
->nodes
[*level
] = NULL
;
2201 * drop the reference count on the tree rooted at 'snap'. This traverses
2202 * the tree freeing any blocks that have a ref count of zero after being
2205 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
2206 struct btrfs_root
*log
, struct walk_control
*wc
)
2211 struct btrfs_path
*path
;
2214 path
= btrfs_alloc_path();
2218 level
= btrfs_header_level(log
->node
);
2220 path
->nodes
[level
] = log
->node
;
2221 extent_buffer_get(log
->node
);
2222 path
->slots
[level
] = 0;
2225 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
2233 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
2242 /* was the root node processed? if not, catch it here */
2243 if (path
->nodes
[orig_level
]) {
2244 ret
= wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
2245 btrfs_header_generation(path
->nodes
[orig_level
]));
2249 struct extent_buffer
*next
;
2251 next
= path
->nodes
[orig_level
];
2253 btrfs_tree_lock(next
);
2254 btrfs_set_lock_blocking(next
);
2255 clean_tree_block(trans
, log
, next
);
2256 btrfs_wait_tree_block_writeback(next
);
2257 btrfs_tree_unlock(next
);
2259 WARN_ON(log
->root_key
.objectid
!=
2260 BTRFS_TREE_LOG_OBJECTID
);
2261 ret
= btrfs_free_and_pin_reserved_extent(log
, next
->start
,
2269 btrfs_free_path(path
);
2274 * helper function to update the item for a given subvolumes log root
2275 * in the tree of log roots
2277 static int update_log_root(struct btrfs_trans_handle
*trans
,
2278 struct btrfs_root
*log
)
2282 if (log
->log_transid
== 1) {
2283 /* insert root item on the first sync */
2284 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
2285 &log
->root_key
, &log
->root_item
);
2287 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
2288 &log
->root_key
, &log
->root_item
);
2293 static int wait_log_commit(struct btrfs_trans_handle
*trans
,
2294 struct btrfs_root
*root
, unsigned long transid
)
2297 int index
= transid
% 2;
2300 * we only allow two pending log transactions at a time,
2301 * so we know that if ours is more than 2 older than the
2302 * current transaction, we're done
2305 prepare_to_wait(&root
->log_commit_wait
[index
],
2306 &wait
, TASK_UNINTERRUPTIBLE
);
2307 mutex_unlock(&root
->log_mutex
);
2309 if (root
->fs_info
->last_trans_log_full_commit
!=
2310 trans
->transid
&& root
->log_transid
< transid
+ 2 &&
2311 atomic_read(&root
->log_commit
[index
]))
2314 finish_wait(&root
->log_commit_wait
[index
], &wait
);
2315 mutex_lock(&root
->log_mutex
);
2316 } while (root
->fs_info
->last_trans_log_full_commit
!=
2317 trans
->transid
&& root
->log_transid
< transid
+ 2 &&
2318 atomic_read(&root
->log_commit
[index
]));
2322 static void wait_for_writer(struct btrfs_trans_handle
*trans
,
2323 struct btrfs_root
*root
)
2326 while (root
->fs_info
->last_trans_log_full_commit
!=
2327 trans
->transid
&& atomic_read(&root
->log_writers
)) {
2328 prepare_to_wait(&root
->log_writer_wait
,
2329 &wait
, TASK_UNINTERRUPTIBLE
);
2330 mutex_unlock(&root
->log_mutex
);
2331 if (root
->fs_info
->last_trans_log_full_commit
!=
2332 trans
->transid
&& atomic_read(&root
->log_writers
))
2334 mutex_lock(&root
->log_mutex
);
2335 finish_wait(&root
->log_writer_wait
, &wait
);
2340 * btrfs_sync_log does sends a given tree log down to the disk and
2341 * updates the super blocks to record it. When this call is done,
2342 * you know that any inodes previously logged are safely on disk only
2345 * Any other return value means you need to call btrfs_commit_transaction.
2346 * Some of the edge cases for fsyncing directories that have had unlinks
2347 * or renames done in the past mean that sometimes the only safe
2348 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2349 * that has happened.
2351 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
2352 struct btrfs_root
*root
)
2358 struct btrfs_root
*log
= root
->log_root
;
2359 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
2360 unsigned long log_transid
= 0;
2362 mutex_lock(&root
->log_mutex
);
2363 log_transid
= root
->log_transid
;
2364 index1
= root
->log_transid
% 2;
2365 if (atomic_read(&root
->log_commit
[index1
])) {
2366 wait_log_commit(trans
, root
, root
->log_transid
);
2367 mutex_unlock(&root
->log_mutex
);
2370 atomic_set(&root
->log_commit
[index1
], 1);
2372 /* wait for previous tree log sync to complete */
2373 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2374 wait_log_commit(trans
, root
, root
->log_transid
- 1);
2376 int batch
= atomic_read(&root
->log_batch
);
2377 /* when we're on an ssd, just kick the log commit out */
2378 if (!btrfs_test_opt(root
, SSD
) && root
->log_multiple_pids
) {
2379 mutex_unlock(&root
->log_mutex
);
2380 schedule_timeout_uninterruptible(1);
2381 mutex_lock(&root
->log_mutex
);
2383 wait_for_writer(trans
, root
);
2384 if (batch
== atomic_read(&root
->log_batch
))
2388 /* bail out if we need to do a full commit */
2389 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2391 btrfs_free_logged_extents(log
, log_transid
);
2392 mutex_unlock(&root
->log_mutex
);
2396 if (log_transid
% 2 == 0)
2397 mark
= EXTENT_DIRTY
;
2401 /* we start IO on all the marked extents here, but we don't actually
2402 * wait for them until later.
2404 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2406 btrfs_abort_transaction(trans
, root
, ret
);
2407 btrfs_free_logged_extents(log
, log_transid
);
2408 mutex_unlock(&root
->log_mutex
);
2412 btrfs_set_root_node(&log
->root_item
, log
->node
);
2414 root
->log_transid
++;
2415 log
->log_transid
= root
->log_transid
;
2416 root
->log_start_pid
= 0;
2419 * IO has been started, blocks of the log tree have WRITTEN flag set
2420 * in their headers. new modifications of the log will be written to
2421 * new positions. so it's safe to allow log writers to go in.
2423 mutex_unlock(&root
->log_mutex
);
2425 mutex_lock(&log_root_tree
->log_mutex
);
2426 atomic_inc(&log_root_tree
->log_batch
);
2427 atomic_inc(&log_root_tree
->log_writers
);
2428 mutex_unlock(&log_root_tree
->log_mutex
);
2430 ret
= update_log_root(trans
, log
);
2432 mutex_lock(&log_root_tree
->log_mutex
);
2433 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2435 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2436 wake_up(&log_root_tree
->log_writer_wait
);
2440 if (ret
!= -ENOSPC
) {
2441 btrfs_abort_transaction(trans
, root
, ret
);
2442 mutex_unlock(&log_root_tree
->log_mutex
);
2445 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2446 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2447 btrfs_free_logged_extents(log
, log_transid
);
2448 mutex_unlock(&log_root_tree
->log_mutex
);
2453 index2
= log_root_tree
->log_transid
% 2;
2454 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2455 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2456 wait_log_commit(trans
, log_root_tree
,
2457 log_root_tree
->log_transid
);
2458 btrfs_free_logged_extents(log
, log_transid
);
2459 mutex_unlock(&log_root_tree
->log_mutex
);
2463 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2465 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2466 wait_log_commit(trans
, log_root_tree
,
2467 log_root_tree
->log_transid
- 1);
2470 wait_for_writer(trans
, log_root_tree
);
2473 * now that we've moved on to the tree of log tree roots,
2474 * check the full commit flag again
2476 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2477 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2478 btrfs_free_logged_extents(log
, log_transid
);
2479 mutex_unlock(&log_root_tree
->log_mutex
);
2481 goto out_wake_log_root
;
2484 ret
= btrfs_write_and_wait_marked_extents(log_root_tree
,
2485 &log_root_tree
->dirty_log_pages
,
2486 EXTENT_DIRTY
| EXTENT_NEW
);
2488 btrfs_abort_transaction(trans
, root
, ret
);
2489 btrfs_free_logged_extents(log
, log_transid
);
2490 mutex_unlock(&log_root_tree
->log_mutex
);
2491 goto out_wake_log_root
;
2493 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2494 btrfs_wait_logged_extents(log
, log_transid
);
2496 btrfs_set_super_log_root(root
->fs_info
->super_for_commit
,
2497 log_root_tree
->node
->start
);
2498 btrfs_set_super_log_root_level(root
->fs_info
->super_for_commit
,
2499 btrfs_header_level(log_root_tree
->node
));
2501 log_root_tree
->log_transid
++;
2504 mutex_unlock(&log_root_tree
->log_mutex
);
2507 * nobody else is going to jump in and write the the ctree
2508 * super here because the log_commit atomic below is protecting
2509 * us. We must be called with a transaction handle pinning
2510 * the running transaction open, so a full commit can't hop
2511 * in and cause problems either.
2513 btrfs_scrub_pause_super(root
);
2514 ret
= write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2515 btrfs_scrub_continue_super(root
);
2517 btrfs_abort_transaction(trans
, root
, ret
);
2518 goto out_wake_log_root
;
2521 mutex_lock(&root
->log_mutex
);
2522 if (root
->last_log_commit
< log_transid
)
2523 root
->last_log_commit
= log_transid
;
2524 mutex_unlock(&root
->log_mutex
);
2527 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2529 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2530 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2532 atomic_set(&root
->log_commit
[index1
], 0);
2534 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2535 wake_up(&root
->log_commit_wait
[index1
]);
2539 static void free_log_tree(struct btrfs_trans_handle
*trans
,
2540 struct btrfs_root
*log
)
2545 struct walk_control wc
= {
2547 .process_func
= process_one_buffer
2551 ret
= walk_log_tree(trans
, log
, &wc
);
2553 /* I don't think this can happen but just in case */
2555 btrfs_abort_transaction(trans
, log
, ret
);
2559 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2560 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
,
2565 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
2566 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
2570 * We may have short-circuited the log tree with the full commit logic
2571 * and left ordered extents on our list, so clear these out to keep us
2572 * from leaking inodes and memory.
2574 btrfs_free_logged_extents(log
, 0);
2575 btrfs_free_logged_extents(log
, 1);
2577 free_extent_buffer(log
->node
);
2582 * free all the extents used by the tree log. This should be called
2583 * at commit time of the full transaction
2585 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
2587 if (root
->log_root
) {
2588 free_log_tree(trans
, root
->log_root
);
2589 root
->log_root
= NULL
;
2594 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
2595 struct btrfs_fs_info
*fs_info
)
2597 if (fs_info
->log_root_tree
) {
2598 free_log_tree(trans
, fs_info
->log_root_tree
);
2599 fs_info
->log_root_tree
= NULL
;
2605 * If both a file and directory are logged, and unlinks or renames are
2606 * mixed in, we have a few interesting corners:
2608 * create file X in dir Y
2609 * link file X to X.link in dir Y
2611 * unlink file X but leave X.link
2614 * After a crash we would expect only X.link to exist. But file X
2615 * didn't get fsync'd again so the log has back refs for X and X.link.
2617 * We solve this by removing directory entries and inode backrefs from the
2618 * log when a file that was logged in the current transaction is
2619 * unlinked. Any later fsync will include the updated log entries, and
2620 * we'll be able to reconstruct the proper directory items from backrefs.
2622 * This optimizations allows us to avoid relogging the entire inode
2623 * or the entire directory.
2625 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
2626 struct btrfs_root
*root
,
2627 const char *name
, int name_len
,
2628 struct inode
*dir
, u64 index
)
2630 struct btrfs_root
*log
;
2631 struct btrfs_dir_item
*di
;
2632 struct btrfs_path
*path
;
2636 u64 dir_ino
= btrfs_ino(dir
);
2638 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
2641 ret
= join_running_log_trans(root
);
2645 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
2647 log
= root
->log_root
;
2648 path
= btrfs_alloc_path();
2654 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
2655 name
, name_len
, -1);
2661 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2662 bytes_del
+= name_len
;
2668 btrfs_release_path(path
);
2669 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
2670 index
, name
, name_len
, -1);
2676 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2677 bytes_del
+= name_len
;
2684 /* update the directory size in the log to reflect the names
2688 struct btrfs_key key
;
2690 key
.objectid
= dir_ino
;
2692 key
.type
= BTRFS_INODE_ITEM_KEY
;
2693 btrfs_release_path(path
);
2695 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
2701 struct btrfs_inode_item
*item
;
2704 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2705 struct btrfs_inode_item
);
2706 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
2707 if (i_size
> bytes_del
)
2708 i_size
-= bytes_del
;
2711 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
2712 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2715 btrfs_release_path(path
);
2718 btrfs_free_path(path
);
2720 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
2721 if (ret
== -ENOSPC
) {
2722 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2725 btrfs_abort_transaction(trans
, root
, ret
);
2727 btrfs_end_log_trans(root
);
2732 /* see comments for btrfs_del_dir_entries_in_log */
2733 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
2734 struct btrfs_root
*root
,
2735 const char *name
, int name_len
,
2736 struct inode
*inode
, u64 dirid
)
2738 struct btrfs_root
*log
;
2742 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
2745 ret
= join_running_log_trans(root
);
2748 log
= root
->log_root
;
2749 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2751 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
2753 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2754 if (ret
== -ENOSPC
) {
2755 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2757 } else if (ret
< 0 && ret
!= -ENOENT
)
2758 btrfs_abort_transaction(trans
, root
, ret
);
2759 btrfs_end_log_trans(root
);
2765 * creates a range item in the log for 'dirid'. first_offset and
2766 * last_offset tell us which parts of the key space the log should
2767 * be considered authoritative for.
2769 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
2770 struct btrfs_root
*log
,
2771 struct btrfs_path
*path
,
2772 int key_type
, u64 dirid
,
2773 u64 first_offset
, u64 last_offset
)
2776 struct btrfs_key key
;
2777 struct btrfs_dir_log_item
*item
;
2779 key
.objectid
= dirid
;
2780 key
.offset
= first_offset
;
2781 if (key_type
== BTRFS_DIR_ITEM_KEY
)
2782 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
2784 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
2785 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
2789 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2790 struct btrfs_dir_log_item
);
2791 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
2792 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2793 btrfs_release_path(path
);
2798 * log all the items included in the current transaction for a given
2799 * directory. This also creates the range items in the log tree required
2800 * to replay anything deleted before the fsync
2802 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
2803 struct btrfs_root
*root
, struct inode
*inode
,
2804 struct btrfs_path
*path
,
2805 struct btrfs_path
*dst_path
, int key_type
,
2806 u64 min_offset
, u64
*last_offset_ret
)
2808 struct btrfs_key min_key
;
2809 struct btrfs_key max_key
;
2810 struct btrfs_root
*log
= root
->log_root
;
2811 struct extent_buffer
*src
;
2816 u64 first_offset
= min_offset
;
2817 u64 last_offset
= (u64
)-1;
2818 u64 ino
= btrfs_ino(inode
);
2820 log
= root
->log_root
;
2821 max_key
.objectid
= ino
;
2822 max_key
.offset
= (u64
)-1;
2823 max_key
.type
= key_type
;
2825 min_key
.objectid
= ino
;
2826 min_key
.type
= key_type
;
2827 min_key
.offset
= min_offset
;
2829 path
->keep_locks
= 1;
2831 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2832 path
, trans
->transid
);
2835 * we didn't find anything from this transaction, see if there
2836 * is anything at all
2838 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
2839 min_key
.objectid
= ino
;
2840 min_key
.type
= key_type
;
2841 min_key
.offset
= (u64
)-1;
2842 btrfs_release_path(path
);
2843 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2845 btrfs_release_path(path
);
2848 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
2850 /* if ret == 0 there are items for this type,
2851 * create a range to tell us the last key of this type.
2852 * otherwise, there are no items in this directory after
2853 * *min_offset, and we create a range to indicate that.
2856 struct btrfs_key tmp
;
2857 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
2859 if (key_type
== tmp
.type
)
2860 first_offset
= max(min_offset
, tmp
.offset
) + 1;
2865 /* go backward to find any previous key */
2866 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
2868 struct btrfs_key tmp
;
2869 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2870 if (key_type
== tmp
.type
) {
2871 first_offset
= tmp
.offset
;
2872 ret
= overwrite_item(trans
, log
, dst_path
,
2873 path
->nodes
[0], path
->slots
[0],
2881 btrfs_release_path(path
);
2883 /* find the first key from this transaction again */
2884 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2891 * we have a block from this transaction, log every item in it
2892 * from our directory
2895 struct btrfs_key tmp
;
2896 src
= path
->nodes
[0];
2897 nritems
= btrfs_header_nritems(src
);
2898 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2899 btrfs_item_key_to_cpu(src
, &min_key
, i
);
2901 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
2903 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
2910 path
->slots
[0] = nritems
;
2913 * look ahead to the next item and see if it is also
2914 * from this directory and from this transaction
2916 ret
= btrfs_next_leaf(root
, path
);
2918 last_offset
= (u64
)-1;
2921 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2922 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
2923 last_offset
= (u64
)-1;
2926 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
2927 ret
= overwrite_item(trans
, log
, dst_path
,
2928 path
->nodes
[0], path
->slots
[0],
2933 last_offset
= tmp
.offset
;
2938 btrfs_release_path(path
);
2939 btrfs_release_path(dst_path
);
2942 *last_offset_ret
= last_offset
;
2944 * insert the log range keys to indicate where the log
2947 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
2948 ino
, first_offset
, last_offset
);
2956 * logging directories is very similar to logging inodes, We find all the items
2957 * from the current transaction and write them to the log.
2959 * The recovery code scans the directory in the subvolume, and if it finds a
2960 * key in the range logged that is not present in the log tree, then it means
2961 * that dir entry was unlinked during the transaction.
2963 * In order for that scan to work, we must include one key smaller than
2964 * the smallest logged by this transaction and one key larger than the largest
2965 * key logged by this transaction.
2967 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
2968 struct btrfs_root
*root
, struct inode
*inode
,
2969 struct btrfs_path
*path
,
2970 struct btrfs_path
*dst_path
)
2975 int key_type
= BTRFS_DIR_ITEM_KEY
;
2981 ret
= log_dir_items(trans
, root
, inode
, path
,
2982 dst_path
, key_type
, min_key
,
2986 if (max_key
== (u64
)-1)
2988 min_key
= max_key
+ 1;
2991 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
2992 key_type
= BTRFS_DIR_INDEX_KEY
;
2999 * a helper function to drop items from the log before we relog an
3000 * inode. max_key_type indicates the highest item type to remove.
3001 * This cannot be run for file data extents because it does not
3002 * free the extents they point to.
3004 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
3005 struct btrfs_root
*log
,
3006 struct btrfs_path
*path
,
3007 u64 objectid
, int max_key_type
)
3010 struct btrfs_key key
;
3011 struct btrfs_key found_key
;
3014 key
.objectid
= objectid
;
3015 key
.type
= max_key_type
;
3016 key
.offset
= (u64
)-1;
3019 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
3020 BUG_ON(ret
== 0); /* Logic error */
3024 if (path
->slots
[0] == 0)
3028 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3031 if (found_key
.objectid
!= objectid
)
3034 found_key
.offset
= 0;
3036 ret
= btrfs_bin_search(path
->nodes
[0], &found_key
, 0,
3039 ret
= btrfs_del_items(trans
, log
, path
, start_slot
,
3040 path
->slots
[0] - start_slot
+ 1);
3042 * If start slot isn't 0 then we don't need to re-search, we've
3043 * found the last guy with the objectid in this tree.
3045 if (ret
|| start_slot
!= 0)
3047 btrfs_release_path(path
);
3049 btrfs_release_path(path
);
3055 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3056 struct extent_buffer
*leaf
,
3057 struct btrfs_inode_item
*item
,
3058 struct inode
*inode
, int log_inode_only
)
3060 struct btrfs_map_token token
;
3062 btrfs_init_map_token(&token
);
3064 if (log_inode_only
) {
3065 /* set the generation to zero so the recover code
3066 * can tell the difference between an logging
3067 * just to say 'this inode exists' and a logging
3068 * to say 'update this inode with these values'
3070 btrfs_set_token_inode_generation(leaf
, item
, 0, &token
);
3071 btrfs_set_token_inode_size(leaf
, item
, 0, &token
);
3073 btrfs_set_token_inode_generation(leaf
, item
,
3074 BTRFS_I(inode
)->generation
,
3076 btrfs_set_token_inode_size(leaf
, item
, inode
->i_size
, &token
);
3079 btrfs_set_token_inode_uid(leaf
, item
, i_uid_read(inode
), &token
);
3080 btrfs_set_token_inode_gid(leaf
, item
, i_gid_read(inode
), &token
);
3081 btrfs_set_token_inode_mode(leaf
, item
, inode
->i_mode
, &token
);
3082 btrfs_set_token_inode_nlink(leaf
, item
, inode
->i_nlink
, &token
);
3084 btrfs_set_token_timespec_sec(leaf
, btrfs_inode_atime(item
),
3085 inode
->i_atime
.tv_sec
, &token
);
3086 btrfs_set_token_timespec_nsec(leaf
, btrfs_inode_atime(item
),
3087 inode
->i_atime
.tv_nsec
, &token
);
3089 btrfs_set_token_timespec_sec(leaf
, btrfs_inode_mtime(item
),
3090 inode
->i_mtime
.tv_sec
, &token
);
3091 btrfs_set_token_timespec_nsec(leaf
, btrfs_inode_mtime(item
),
3092 inode
->i_mtime
.tv_nsec
, &token
);
3094 btrfs_set_token_timespec_sec(leaf
, btrfs_inode_ctime(item
),
3095 inode
->i_ctime
.tv_sec
, &token
);
3096 btrfs_set_token_timespec_nsec(leaf
, btrfs_inode_ctime(item
),
3097 inode
->i_ctime
.tv_nsec
, &token
);
3099 btrfs_set_token_inode_nbytes(leaf
, item
, inode_get_bytes(inode
),
3102 btrfs_set_token_inode_sequence(leaf
, item
, inode
->i_version
, &token
);
3103 btrfs_set_token_inode_transid(leaf
, item
, trans
->transid
, &token
);
3104 btrfs_set_token_inode_rdev(leaf
, item
, inode
->i_rdev
, &token
);
3105 btrfs_set_token_inode_flags(leaf
, item
, BTRFS_I(inode
)->flags
, &token
);
3106 btrfs_set_token_inode_block_group(leaf
, item
, 0, &token
);
3109 static int log_inode_item(struct btrfs_trans_handle
*trans
,
3110 struct btrfs_root
*log
, struct btrfs_path
*path
,
3111 struct inode
*inode
)
3113 struct btrfs_inode_item
*inode_item
;
3114 struct btrfs_key key
;
3117 memcpy(&key
, &BTRFS_I(inode
)->location
, sizeof(key
));
3118 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
3119 sizeof(*inode_item
));
3120 if (ret
&& ret
!= -EEXIST
)
3122 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3123 struct btrfs_inode_item
);
3124 fill_inode_item(trans
, path
->nodes
[0], inode_item
, inode
, 0);
3125 btrfs_release_path(path
);
3129 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
3130 struct inode
*inode
,
3131 struct btrfs_path
*dst_path
,
3132 struct extent_buffer
*src
,
3133 int start_slot
, int nr
, int inode_only
)
3135 unsigned long src_offset
;
3136 unsigned long dst_offset
;
3137 struct btrfs_root
*log
= BTRFS_I(inode
)->root
->log_root
;
3138 struct btrfs_file_extent_item
*extent
;
3139 struct btrfs_inode_item
*inode_item
;
3141 struct btrfs_key
*ins_keys
;
3145 struct list_head ordered_sums
;
3146 int skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3148 INIT_LIST_HEAD(&ordered_sums
);
3150 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
3151 nr
* sizeof(u32
), GFP_NOFS
);
3155 ins_sizes
= (u32
*)ins_data
;
3156 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
3158 for (i
= 0; i
< nr
; i
++) {
3159 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
3160 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
3162 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
3163 ins_keys
, ins_sizes
, nr
);
3169 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
3170 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
3171 dst_path
->slots
[0]);
3173 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
3175 if (ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
3176 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
3178 struct btrfs_inode_item
);
3179 fill_inode_item(trans
, dst_path
->nodes
[0], inode_item
,
3180 inode
, inode_only
== LOG_INODE_EXISTS
);
3182 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
3183 src_offset
, ins_sizes
[i
]);
3186 /* take a reference on file data extents so that truncates
3187 * or deletes of this inode don't have to relog the inode
3190 if (btrfs_key_type(ins_keys
+ i
) == BTRFS_EXTENT_DATA_KEY
&&
3193 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
3194 struct btrfs_file_extent_item
);
3196 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
3199 found_type
= btrfs_file_extent_type(src
, extent
);
3200 if (found_type
== BTRFS_FILE_EXTENT_REG
) {
3202 ds
= btrfs_file_extent_disk_bytenr(src
,
3204 /* ds == 0 is a hole */
3208 dl
= btrfs_file_extent_disk_num_bytes(src
,
3210 cs
= btrfs_file_extent_offset(src
, extent
);
3211 cl
= btrfs_file_extent_num_bytes(src
,
3213 if (btrfs_file_extent_compression(src
,
3219 ret
= btrfs_lookup_csums_range(
3220 log
->fs_info
->csum_root
,
3221 ds
+ cs
, ds
+ cs
+ cl
- 1,
3224 btrfs_release_path(dst_path
);
3232 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
3233 btrfs_release_path(dst_path
);
3237 * we have to do this after the loop above to avoid changing the
3238 * log tree while trying to change the log tree.
3241 while (!list_empty(&ordered_sums
)) {
3242 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
3243 struct btrfs_ordered_sum
,
3246 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
3247 list_del(&sums
->list
);
3253 static int extent_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3255 struct extent_map
*em1
, *em2
;
3257 em1
= list_entry(a
, struct extent_map
, list
);
3258 em2
= list_entry(b
, struct extent_map
, list
);
3260 if (em1
->start
< em2
->start
)
3262 else if (em1
->start
> em2
->start
)
3267 static int log_one_extent(struct btrfs_trans_handle
*trans
,
3268 struct inode
*inode
, struct btrfs_root
*root
,
3269 struct extent_map
*em
, struct btrfs_path
*path
)
3271 struct btrfs_root
*log
= root
->log_root
;
3272 struct btrfs_file_extent_item
*fi
;
3273 struct extent_buffer
*leaf
;
3274 struct btrfs_ordered_extent
*ordered
;
3275 struct list_head ordered_sums
;
3276 struct btrfs_map_token token
;
3277 struct btrfs_key key
;
3278 u64 mod_start
= em
->mod_start
;
3279 u64 mod_len
= em
->mod_len
;
3282 u64 extent_offset
= em
->start
- em
->orig_start
;
3285 int index
= log
->log_transid
% 2;
3286 bool skip_csum
= BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
;
3288 ret
= __btrfs_drop_extents(trans
, log
, inode
, path
, em
->start
,
3289 em
->start
+ em
->len
, NULL
, 0);
3293 INIT_LIST_HEAD(&ordered_sums
);
3294 btrfs_init_map_token(&token
);
3295 key
.objectid
= btrfs_ino(inode
);
3296 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3297 key
.offset
= em
->start
;
3299 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*fi
));
3302 leaf
= path
->nodes
[0];
3303 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
3304 struct btrfs_file_extent_item
);
3306 btrfs_set_token_file_extent_generation(leaf
, fi
, em
->generation
,
3308 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
)) {
3310 btrfs_set_token_file_extent_type(leaf
, fi
,
3311 BTRFS_FILE_EXTENT_PREALLOC
,
3314 btrfs_set_token_file_extent_type(leaf
, fi
,
3315 BTRFS_FILE_EXTENT_REG
,
3317 if (em
->block_start
== 0)
3321 block_len
= max(em
->block_len
, em
->orig_block_len
);
3322 if (em
->compress_type
!= BTRFS_COMPRESS_NONE
) {
3323 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
3326 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
3328 } else if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
3329 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
,
3331 extent_offset
, &token
);
3332 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, block_len
,
3335 btrfs_set_token_file_extent_disk_bytenr(leaf
, fi
, 0, &token
);
3336 btrfs_set_token_file_extent_disk_num_bytes(leaf
, fi
, 0,
3340 btrfs_set_token_file_extent_offset(leaf
, fi
,
3341 em
->start
- em
->orig_start
,
3343 btrfs_set_token_file_extent_num_bytes(leaf
, fi
, em
->len
, &token
);
3344 btrfs_set_token_file_extent_ram_bytes(leaf
, fi
, em
->ram_bytes
, &token
);
3345 btrfs_set_token_file_extent_compression(leaf
, fi
, em
->compress_type
,
3347 btrfs_set_token_file_extent_encryption(leaf
, fi
, 0, &token
);
3348 btrfs_set_token_file_extent_other_encoding(leaf
, fi
, 0, &token
);
3349 btrfs_mark_buffer_dirty(leaf
);
3351 btrfs_release_path(path
);
3359 if (em
->compress_type
) {
3361 csum_len
= block_len
;
3365 * First check and see if our csums are on our outstanding ordered
3369 spin_lock_irq(&log
->log_extents_lock
[index
]);
3370 list_for_each_entry(ordered
, &log
->logged_list
[index
], log_list
) {
3371 struct btrfs_ordered_sum
*sum
;
3376 if (ordered
->inode
!= inode
)
3379 if (ordered
->file_offset
+ ordered
->len
<= mod_start
||
3380 mod_start
+ mod_len
<= ordered
->file_offset
)
3384 * We are going to copy all the csums on this ordered extent, so
3385 * go ahead and adjust mod_start and mod_len in case this
3386 * ordered extent has already been logged.
3388 if (ordered
->file_offset
> mod_start
) {
3389 if (ordered
->file_offset
+ ordered
->len
>=
3390 mod_start
+ mod_len
)
3391 mod_len
= ordered
->file_offset
- mod_start
;
3393 * If we have this case
3395 * |--------- logged extent ---------|
3396 * |----- ordered extent ----|
3398 * Just don't mess with mod_start and mod_len, we'll
3399 * just end up logging more csums than we need and it
3403 if (ordered
->file_offset
+ ordered
->len
<
3404 mod_start
+ mod_len
) {
3405 mod_len
= (mod_start
+ mod_len
) -
3406 (ordered
->file_offset
+ ordered
->len
);
3407 mod_start
= ordered
->file_offset
+
3415 * To keep us from looping for the above case of an ordered
3416 * extent that falls inside of the logged extent.
3418 if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM
,
3421 atomic_inc(&ordered
->refs
);
3422 spin_unlock_irq(&log
->log_extents_lock
[index
]);
3424 * we've dropped the lock, we must either break or
3425 * start over after this.
3428 wait_event(ordered
->wait
, ordered
->csum_bytes_left
== 0);
3430 list_for_each_entry(sum
, &ordered
->list
, list
) {
3431 ret
= btrfs_csum_file_blocks(trans
, log
, sum
);
3433 btrfs_put_ordered_extent(ordered
);
3437 btrfs_put_ordered_extent(ordered
);
3441 spin_unlock_irq(&log
->log_extents_lock
[index
]);
3444 if (!mod_len
|| ret
)
3447 csum_offset
= mod_start
- em
->start
;
3450 /* block start is already adjusted for the file extent offset. */
3451 ret
= btrfs_lookup_csums_range(log
->fs_info
->csum_root
,
3452 em
->block_start
+ csum_offset
,
3453 em
->block_start
+ csum_offset
+
3454 csum_len
- 1, &ordered_sums
, 0);
3458 while (!list_empty(&ordered_sums
)) {
3459 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
3460 struct btrfs_ordered_sum
,
3463 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
3464 list_del(&sums
->list
);
3471 static int btrfs_log_changed_extents(struct btrfs_trans_handle
*trans
,
3472 struct btrfs_root
*root
,
3473 struct inode
*inode
,
3474 struct btrfs_path
*path
)
3476 struct extent_map
*em
, *n
;
3477 struct list_head extents
;
3478 struct extent_map_tree
*tree
= &BTRFS_I(inode
)->extent_tree
;
3483 INIT_LIST_HEAD(&extents
);
3485 write_lock(&tree
->lock
);
3486 test_gen
= root
->fs_info
->last_trans_committed
;
3488 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
) {
3489 list_del_init(&em
->list
);
3492 * Just an arbitrary number, this can be really CPU intensive
3493 * once we start getting a lot of extents, and really once we
3494 * have a bunch of extents we just want to commit since it will
3497 if (++num
> 32768) {
3498 list_del_init(&tree
->modified_extents
);
3503 if (em
->generation
<= test_gen
)
3505 /* Need a ref to keep it from getting evicted from cache */
3506 atomic_inc(&em
->refs
);
3507 set_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
3508 list_add_tail(&em
->list
, &extents
);
3512 list_sort(NULL
, &extents
, extent_cmp
);
3515 while (!list_empty(&extents
)) {
3516 em
= list_entry(extents
.next
, struct extent_map
, list
);
3518 list_del_init(&em
->list
);
3521 * If we had an error we just need to delete everybody from our
3525 clear_em_logging(tree
, em
);
3526 free_extent_map(em
);
3530 write_unlock(&tree
->lock
);
3532 ret
= log_one_extent(trans
, inode
, root
, em
, path
);
3533 write_lock(&tree
->lock
);
3534 clear_em_logging(tree
, em
);
3535 free_extent_map(em
);
3537 WARN_ON(!list_empty(&extents
));
3538 write_unlock(&tree
->lock
);
3540 btrfs_release_path(path
);
3544 /* log a single inode in the tree log.
3545 * At least one parent directory for this inode must exist in the tree
3546 * or be logged already.
3548 * Any items from this inode changed by the current transaction are copied
3549 * to the log tree. An extra reference is taken on any extents in this
3550 * file, allowing us to avoid a whole pile of corner cases around logging
3551 * blocks that have been removed from the tree.
3553 * See LOG_INODE_ALL and related defines for a description of what inode_only
3556 * This handles both files and directories.
3558 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
3559 struct btrfs_root
*root
, struct inode
*inode
,
3562 struct btrfs_path
*path
;
3563 struct btrfs_path
*dst_path
;
3564 struct btrfs_key min_key
;
3565 struct btrfs_key max_key
;
3566 struct btrfs_root
*log
= root
->log_root
;
3567 struct extent_buffer
*src
= NULL
;
3571 int ins_start_slot
= 0;
3573 bool fast_search
= false;
3574 u64 ino
= btrfs_ino(inode
);
3576 path
= btrfs_alloc_path();
3579 dst_path
= btrfs_alloc_path();
3581 btrfs_free_path(path
);
3585 min_key
.objectid
= ino
;
3586 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
3589 max_key
.objectid
= ino
;
3592 /* today the code can only do partial logging of directories */
3593 if (S_ISDIR(inode
->i_mode
) ||
3594 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3595 &BTRFS_I(inode
)->runtime_flags
) &&
3596 inode_only
== LOG_INODE_EXISTS
))
3597 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
3599 max_key
.type
= (u8
)-1;
3600 max_key
.offset
= (u64
)-1;
3602 /* Only run delayed items if we are a dir or a new file */
3603 if (S_ISDIR(inode
->i_mode
) ||
3604 BTRFS_I(inode
)->generation
> root
->fs_info
->last_trans_committed
) {
3605 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
3607 btrfs_free_path(path
);
3608 btrfs_free_path(dst_path
);
3613 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
3615 btrfs_get_logged_extents(log
, inode
);
3618 * a brute force approach to making sure we get the most uptodate
3619 * copies of everything.
3621 if (S_ISDIR(inode
->i_mode
)) {
3622 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
3624 if (inode_only
== LOG_INODE_EXISTS
)
3625 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
3626 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
3628 if (test_and_clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3629 &BTRFS_I(inode
)->runtime_flags
)) {
3630 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
3631 &BTRFS_I(inode
)->runtime_flags
);
3632 ret
= btrfs_truncate_inode_items(trans
, log
,
3634 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
3635 &BTRFS_I(inode
)->runtime_flags
)) {
3636 if (inode_only
== LOG_INODE_ALL
)
3638 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
3639 ret
= drop_objectid_items(trans
, log
, path
, ino
,
3642 if (inode_only
== LOG_INODE_ALL
)
3644 ret
= log_inode_item(trans
, log
, dst_path
, inode
);
3657 path
->keep_locks
= 1;
3661 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
3662 path
, trans
->transid
);
3666 /* note, ins_nr might be > 0 here, cleanup outside the loop */
3667 if (min_key
.objectid
!= ino
)
3669 if (min_key
.type
> max_key
.type
)
3672 src
= path
->nodes
[0];
3673 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
3676 } else if (!ins_nr
) {
3677 ins_start_slot
= path
->slots
[0];
3682 ret
= copy_items(trans
, inode
, dst_path
, src
, ins_start_slot
,
3683 ins_nr
, inode_only
);
3689 ins_start_slot
= path
->slots
[0];
3692 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3694 if (path
->slots
[0] < nritems
) {
3695 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
3700 ret
= copy_items(trans
, inode
, dst_path
, src
,
3702 ins_nr
, inode_only
);
3709 btrfs_release_path(path
);
3711 if (min_key
.offset
< (u64
)-1)
3713 else if (min_key
.type
< (u8
)-1)
3715 else if (min_key
.objectid
< (u64
)-1)
3721 ret
= copy_items(trans
, inode
, dst_path
, src
, ins_start_slot
,
3722 ins_nr
, inode_only
);
3732 btrfs_release_path(dst_path
);
3733 ret
= btrfs_log_changed_extents(trans
, root
, inode
, dst_path
);
3739 struct extent_map_tree
*tree
= &BTRFS_I(inode
)->extent_tree
;
3740 struct extent_map
*em
, *n
;
3742 write_lock(&tree
->lock
);
3743 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
)
3744 list_del_init(&em
->list
);
3745 write_unlock(&tree
->lock
);
3748 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
3749 btrfs_release_path(path
);
3750 btrfs_release_path(dst_path
);
3751 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
);
3757 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
3758 BTRFS_I(inode
)->last_log_commit
= BTRFS_I(inode
)->last_sub_trans
;
3761 btrfs_free_logged_extents(log
, log
->log_transid
);
3762 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
3764 btrfs_free_path(path
);
3765 btrfs_free_path(dst_path
);
3770 * follow the dentry parent pointers up the chain and see if any
3771 * of the directories in it require a full commit before they can
3772 * be logged. Returns zero if nothing special needs to be done or 1 if
3773 * a full commit is required.
3775 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
3776 struct inode
*inode
,
3777 struct dentry
*parent
,
3778 struct super_block
*sb
,
3782 struct btrfs_root
*root
;
3783 struct dentry
*old_parent
= NULL
;
3786 * for regular files, if its inode is already on disk, we don't
3787 * have to worry about the parents at all. This is because
3788 * we can use the last_unlink_trans field to record renames
3789 * and other fun in this file.
3791 if (S_ISREG(inode
->i_mode
) &&
3792 BTRFS_I(inode
)->generation
<= last_committed
&&
3793 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
3796 if (!S_ISDIR(inode
->i_mode
)) {
3797 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
3799 inode
= parent
->d_inode
;
3803 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
3806 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
3807 root
= BTRFS_I(inode
)->root
;
3810 * make sure any commits to the log are forced
3811 * to be full commits
3813 root
->fs_info
->last_trans_log_full_commit
=
3819 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
3822 if (IS_ROOT(parent
))
3825 parent
= dget_parent(parent
);
3827 old_parent
= parent
;
3828 inode
= parent
->d_inode
;
3837 * helper function around btrfs_log_inode to make sure newly created
3838 * parent directories also end up in the log. A minimal inode and backref
3839 * only logging is done of any parent directories that are older than
3840 * the last committed transaction
3842 static int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
3843 struct btrfs_root
*root
, struct inode
*inode
,
3844 struct dentry
*parent
, int exists_only
)
3846 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
3847 struct super_block
*sb
;
3848 struct dentry
*old_parent
= NULL
;
3850 u64 last_committed
= root
->fs_info
->last_trans_committed
;
3854 if (btrfs_test_opt(root
, NOTREELOG
)) {
3859 if (root
->fs_info
->last_trans_log_full_commit
>
3860 root
->fs_info
->last_trans_committed
) {
3865 if (root
!= BTRFS_I(inode
)->root
||
3866 btrfs_root_refs(&root
->root_item
) == 0) {
3871 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
3872 sb
, last_committed
);
3876 if (btrfs_inode_in_log(inode
, trans
->transid
)) {
3877 ret
= BTRFS_NO_LOG_SYNC
;
3881 ret
= start_log_trans(trans
, root
);
3885 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
3890 * for regular files, if its inode is already on disk, we don't
3891 * have to worry about the parents at all. This is because
3892 * we can use the last_unlink_trans field to record renames
3893 * and other fun in this file.
3895 if (S_ISREG(inode
->i_mode
) &&
3896 BTRFS_I(inode
)->generation
<= last_committed
&&
3897 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
) {
3902 inode_only
= LOG_INODE_EXISTS
;
3904 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
3907 inode
= parent
->d_inode
;
3908 if (root
!= BTRFS_I(inode
)->root
)
3911 if (BTRFS_I(inode
)->generation
>
3912 root
->fs_info
->last_trans_committed
) {
3913 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
3917 if (IS_ROOT(parent
))
3920 parent
= dget_parent(parent
);
3922 old_parent
= parent
;
3928 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
3931 btrfs_end_log_trans(root
);
3937 * it is not safe to log dentry if the chunk root has added new
3938 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3939 * If this returns 1, you must commit the transaction to safely get your
3942 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
3943 struct btrfs_root
*root
, struct dentry
*dentry
)
3945 struct dentry
*parent
= dget_parent(dentry
);
3948 ret
= btrfs_log_inode_parent(trans
, root
, dentry
->d_inode
, parent
, 0);
3955 * should be called during mount to recover any replay any log trees
3958 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
3961 struct btrfs_path
*path
;
3962 struct btrfs_trans_handle
*trans
;
3963 struct btrfs_key key
;
3964 struct btrfs_key found_key
;
3965 struct btrfs_key tmp_key
;
3966 struct btrfs_root
*log
;
3967 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
3968 struct walk_control wc
= {
3969 .process_func
= process_one_buffer
,
3973 path
= btrfs_alloc_path();
3977 fs_info
->log_root_recovering
= 1;
3979 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
3980 if (IS_ERR(trans
)) {
3981 ret
= PTR_ERR(trans
);
3988 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
3990 btrfs_error(fs_info
, ret
, "Failed to pin buffers while "
3991 "recovering log root tree.");
3996 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
3997 key
.offset
= (u64
)-1;
3998 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
4001 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
4004 btrfs_error(fs_info
, ret
,
4005 "Couldn't find tree log root.");
4009 if (path
->slots
[0] == 0)
4013 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
4015 btrfs_release_path(path
);
4016 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
4019 log
= btrfs_read_fs_root_no_radix(log_root_tree
,
4023 btrfs_error(fs_info
, ret
,
4024 "Couldn't read tree log root.");
4028 tmp_key
.objectid
= found_key
.offset
;
4029 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
4030 tmp_key
.offset
= (u64
)-1;
4032 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
4033 if (IS_ERR(wc
.replay_dest
)) {
4034 ret
= PTR_ERR(wc
.replay_dest
);
4035 free_extent_buffer(log
->node
);
4036 free_extent_buffer(log
->commit_root
);
4038 btrfs_error(fs_info
, ret
, "Couldn't read target root "
4039 "for tree log recovery.");
4043 wc
.replay_dest
->log_root
= log
;
4044 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
4045 ret
= walk_log_tree(trans
, log
, &wc
);
4047 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
4048 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
4052 key
.offset
= found_key
.offset
- 1;
4053 wc
.replay_dest
->log_root
= NULL
;
4054 free_extent_buffer(log
->node
);
4055 free_extent_buffer(log
->commit_root
);
4061 if (found_key
.offset
== 0)
4064 btrfs_release_path(path
);
4066 /* step one is to pin it all, step two is to replay just inodes */
4069 wc
.process_func
= replay_one_buffer
;
4070 wc
.stage
= LOG_WALK_REPLAY_INODES
;
4073 /* step three is to replay everything */
4074 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
4079 btrfs_free_path(path
);
4081 /* step 4: commit the transaction, which also unpins the blocks */
4082 ret
= btrfs_commit_transaction(trans
, fs_info
->tree_root
);
4086 free_extent_buffer(log_root_tree
->node
);
4087 log_root_tree
->log_root
= NULL
;
4088 fs_info
->log_root_recovering
= 0;
4089 kfree(log_root_tree
);
4094 btrfs_end_transaction(wc
.trans
, fs_info
->tree_root
);
4095 btrfs_free_path(path
);
4100 * there are some corner cases where we want to force a full
4101 * commit instead of allowing a directory to be logged.
4103 * They revolve around files there were unlinked from the directory, and
4104 * this function updates the parent directory so that a full commit is
4105 * properly done if it is fsync'd later after the unlinks are done.
4107 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
4108 struct inode
*dir
, struct inode
*inode
,
4112 * when we're logging a file, if it hasn't been renamed
4113 * or unlinked, and its inode is fully committed on disk,
4114 * we don't have to worry about walking up the directory chain
4115 * to log its parents.
4117 * So, we use the last_unlink_trans field to put this transid
4118 * into the file. When the file is logged we check it and
4119 * don't log the parents if the file is fully on disk.
4121 if (S_ISREG(inode
->i_mode
))
4122 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
4125 * if this directory was already logged any new
4126 * names for this file/dir will get recorded
4129 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
4133 * if the inode we're about to unlink was logged,
4134 * the log will be properly updated for any new names
4136 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
4140 * when renaming files across directories, if the directory
4141 * there we're unlinking from gets fsync'd later on, there's
4142 * no way to find the destination directory later and fsync it
4143 * properly. So, we have to be conservative and force commits
4144 * so the new name gets discovered.
4149 /* we can safely do the unlink without any special recording */
4153 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
4157 * Call this after adding a new name for a file and it will properly
4158 * update the log to reflect the new name.
4160 * It will return zero if all goes well, and it will return 1 if a
4161 * full transaction commit is required.
4163 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
4164 struct inode
*inode
, struct inode
*old_dir
,
4165 struct dentry
*parent
)
4167 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
4170 * this will force the logging code to walk the dentry chain
4173 if (S_ISREG(inode
->i_mode
))
4174 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
4177 * if this inode hasn't been logged and directory we're renaming it
4178 * from hasn't been logged, we don't need to log it
4180 if (BTRFS_I(inode
)->logged_trans
<=
4181 root
->fs_info
->last_trans_committed
&&
4182 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
4183 root
->fs_info
->last_trans_committed
))
4186 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 1);