2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 #include <linux/export.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
25 * Inode locking rules:
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
40 * inode->i_sb->s_inode_list_lock
42 * Inode LRU list locks
48 * inode->i_sb->s_inode_list_lock
55 static unsigned int i_hash_mask __read_mostly
;
56 static unsigned int i_hash_shift __read_mostly
;
57 static struct hlist_head
*inode_hashtable __read_mostly
;
58 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(inode_hash_lock
);
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
64 const struct address_space_operations empty_aops
= {
66 EXPORT_SYMBOL(empty_aops
);
69 * Statistics gathering..
71 struct inodes_stat_t inodes_stat
;
73 static DEFINE_PER_CPU(unsigned long, nr_inodes
);
74 static DEFINE_PER_CPU(unsigned long, nr_unused
);
76 static struct kmem_cache
*inode_cachep __read_mostly
;
78 static long get_nr_inodes(void)
82 for_each_possible_cpu(i
)
83 sum
+= per_cpu(nr_inodes
, i
);
84 return sum
< 0 ? 0 : sum
;
87 static inline long get_nr_inodes_unused(void)
91 for_each_possible_cpu(i
)
92 sum
+= per_cpu(nr_unused
, i
);
93 return sum
< 0 ? 0 : sum
;
96 long get_nr_dirty_inodes(void)
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty
= get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty
> 0 ? nr_dirty
: 0;
104 * Handle nr_inode sysctl
107 int proc_nr_inodes(struct ctl_table
*table
, int write
,
108 void __user
*buffer
, size_t *lenp
, loff_t
*ppos
)
110 inodes_stat
.nr_inodes
= get_nr_inodes();
111 inodes_stat
.nr_unused
= get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
116 static int no_open(struct inode
*inode
, struct file
*file
)
122 * inode_init_always - perform inode structure intialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
129 int inode_init_always(struct super_block
*sb
, struct inode
*inode
)
131 static const struct inode_operations empty_iops
;
132 static const struct file_operations no_open_fops
= {.open
= no_open
};
133 struct address_space
*const mapping
= &inode
->i_data
;
136 inode
->i_blkbits
= sb
->s_blocksize_bits
;
138 atomic_set(&inode
->i_count
, 1);
139 inode
->i_op
= &empty_iops
;
140 inode
->i_fop
= &no_open_fops
;
141 inode
->__i_nlink
= 1;
142 inode
->i_opflags
= 0;
143 i_uid_write(inode
, 0);
144 i_gid_write(inode
, 0);
145 atomic_set(&inode
->i_writecount
, 0);
149 inode
->i_generation
= 0;
150 inode
->i_pipe
= NULL
;
151 inode
->i_bdev
= NULL
;
152 inode
->i_cdev
= NULL
;
153 inode
->i_link
= NULL
;
154 inode
->i_dir_seq
= 0;
156 inode
->dirtied_when
= 0;
158 #ifdef CONFIG_CGROUP_WRITEBACK
159 inode
->i_wb_frn_winner
= 0;
160 inode
->i_wb_frn_avg_time
= 0;
161 inode
->i_wb_frn_history
= 0;
164 if (security_inode_alloc(inode
))
166 spin_lock_init(&inode
->i_lock
);
167 lockdep_set_class(&inode
->i_lock
, &sb
->s_type
->i_lock_key
);
169 init_rwsem(&inode
->i_rwsem
);
170 lockdep_set_class(&inode
->i_rwsem
, &sb
->s_type
->i_mutex_key
);
172 atomic_set(&inode
->i_dio_count
, 0);
174 mapping
->a_ops
= &empty_aops
;
175 mapping
->host
= inode
;
177 atomic_set(&mapping
->i_mmap_writable
, 0);
178 mapping_set_gfp_mask(mapping
, GFP_HIGHUSER_MOVABLE
);
179 mapping
->private_data
= NULL
;
180 mapping
->writeback_index
= 0;
181 inode
->i_private
= NULL
;
182 inode
->i_mapping
= mapping
;
183 INIT_HLIST_HEAD(&inode
->i_dentry
); /* buggered by rcu freeing */
184 #ifdef CONFIG_FS_POSIX_ACL
185 inode
->i_acl
= inode
->i_default_acl
= ACL_NOT_CACHED
;
188 #ifdef CONFIG_FSNOTIFY
189 inode
->i_fsnotify_mask
= 0;
191 inode
->i_flctx
= NULL
;
192 this_cpu_inc(nr_inodes
);
198 EXPORT_SYMBOL(inode_init_always
);
200 static struct inode
*alloc_inode(struct super_block
*sb
)
204 if (sb
->s_op
->alloc_inode
)
205 inode
= sb
->s_op
->alloc_inode(sb
);
207 inode
= kmem_cache_alloc(inode_cachep
, GFP_KERNEL
);
212 if (unlikely(inode_init_always(sb
, inode
))) {
213 if (inode
->i_sb
->s_op
->destroy_inode
)
214 inode
->i_sb
->s_op
->destroy_inode(inode
);
216 kmem_cache_free(inode_cachep
, inode
);
223 void free_inode_nonrcu(struct inode
*inode
)
225 kmem_cache_free(inode_cachep
, inode
);
227 EXPORT_SYMBOL(free_inode_nonrcu
);
229 void __destroy_inode(struct inode
*inode
)
231 BUG_ON(inode_has_buffers(inode
));
232 inode_detach_wb(inode
);
233 security_inode_free(inode
);
234 fsnotify_inode_delete(inode
);
235 locks_free_lock_context(inode
);
236 if (!inode
->i_nlink
) {
237 WARN_ON(atomic_long_read(&inode
->i_sb
->s_remove_count
) == 0);
238 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
241 #ifdef CONFIG_FS_POSIX_ACL
242 if (inode
->i_acl
&& !is_uncached_acl(inode
->i_acl
))
243 posix_acl_release(inode
->i_acl
);
244 if (inode
->i_default_acl
&& !is_uncached_acl(inode
->i_default_acl
))
245 posix_acl_release(inode
->i_default_acl
);
247 this_cpu_dec(nr_inodes
);
249 EXPORT_SYMBOL(__destroy_inode
);
251 static void i_callback(struct rcu_head
*head
)
253 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
254 kmem_cache_free(inode_cachep
, inode
);
257 static void destroy_inode(struct inode
*inode
)
259 BUG_ON(!list_empty(&inode
->i_lru
));
260 __destroy_inode(inode
);
261 if (inode
->i_sb
->s_op
->destroy_inode
)
262 inode
->i_sb
->s_op
->destroy_inode(inode
);
264 call_rcu(&inode
->i_rcu
, i_callback
);
268 * drop_nlink - directly drop an inode's link count
271 * This is a low-level filesystem helper to replace any
272 * direct filesystem manipulation of i_nlink. In cases
273 * where we are attempting to track writes to the
274 * filesystem, a decrement to zero means an imminent
275 * write when the file is truncated and actually unlinked
278 void drop_nlink(struct inode
*inode
)
280 WARN_ON(inode
->i_nlink
== 0);
283 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
285 EXPORT_SYMBOL(drop_nlink
);
288 * clear_nlink - directly zero an inode's link count
291 * This is a low-level filesystem helper to replace any
292 * direct filesystem manipulation of i_nlink. See
293 * drop_nlink() for why we care about i_nlink hitting zero.
295 void clear_nlink(struct inode
*inode
)
297 if (inode
->i_nlink
) {
298 inode
->__i_nlink
= 0;
299 atomic_long_inc(&inode
->i_sb
->s_remove_count
);
302 EXPORT_SYMBOL(clear_nlink
);
305 * set_nlink - directly set an inode's link count
307 * @nlink: new nlink (should be non-zero)
309 * This is a low-level filesystem helper to replace any
310 * direct filesystem manipulation of i_nlink.
312 void set_nlink(struct inode
*inode
, unsigned int nlink
)
317 /* Yes, some filesystems do change nlink from zero to one */
318 if (inode
->i_nlink
== 0)
319 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
321 inode
->__i_nlink
= nlink
;
324 EXPORT_SYMBOL(set_nlink
);
327 * inc_nlink - directly increment an inode's link count
330 * This is a low-level filesystem helper to replace any
331 * direct filesystem manipulation of i_nlink. Currently,
332 * it is only here for parity with dec_nlink().
334 void inc_nlink(struct inode
*inode
)
336 if (unlikely(inode
->i_nlink
== 0)) {
337 WARN_ON(!(inode
->i_state
& I_LINKABLE
));
338 atomic_long_dec(&inode
->i_sb
->s_remove_count
);
343 EXPORT_SYMBOL(inc_nlink
);
345 void address_space_init_once(struct address_space
*mapping
)
347 memset(mapping
, 0, sizeof(*mapping
));
348 INIT_RADIX_TREE(&mapping
->page_tree
, GFP_ATOMIC
| __GFP_ACCOUNT
);
349 spin_lock_init(&mapping
->tree_lock
);
350 init_rwsem(&mapping
->i_mmap_rwsem
);
351 INIT_LIST_HEAD(&mapping
->private_list
);
352 spin_lock_init(&mapping
->private_lock
);
353 mapping
->i_mmap
= RB_ROOT
;
355 EXPORT_SYMBOL(address_space_init_once
);
358 * These are initializations that only need to be done
359 * once, because the fields are idempotent across use
360 * of the inode, so let the slab aware of that.
362 void inode_init_once(struct inode
*inode
)
364 memset(inode
, 0, sizeof(*inode
));
365 INIT_HLIST_NODE(&inode
->i_hash
);
366 INIT_LIST_HEAD(&inode
->i_devices
);
367 INIT_LIST_HEAD(&inode
->i_io_list
);
368 INIT_LIST_HEAD(&inode
->i_wb_list
);
369 INIT_LIST_HEAD(&inode
->i_lru
);
370 address_space_init_once(&inode
->i_data
);
371 i_size_ordered_init(inode
);
372 #ifdef CONFIG_FSNOTIFY
373 INIT_HLIST_HEAD(&inode
->i_fsnotify_marks
);
376 EXPORT_SYMBOL(inode_init_once
);
378 static void init_once(void *foo
)
380 struct inode
*inode
= (struct inode
*) foo
;
382 inode_init_once(inode
);
386 * inode->i_lock must be held
388 void __iget(struct inode
*inode
)
390 atomic_inc(&inode
->i_count
);
394 * get additional reference to inode; caller must already hold one.
396 void ihold(struct inode
*inode
)
398 WARN_ON(atomic_inc_return(&inode
->i_count
) < 2);
400 EXPORT_SYMBOL(ihold
);
402 static void inode_lru_list_add(struct inode
*inode
)
404 if (list_lru_add(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
405 this_cpu_inc(nr_unused
);
409 * Add inode to LRU if needed (inode is unused and clean).
411 * Needs inode->i_lock held.
413 void inode_add_lru(struct inode
*inode
)
415 if (!(inode
->i_state
& (I_DIRTY_ALL
| I_SYNC
|
416 I_FREEING
| I_WILL_FREE
)) &&
417 !atomic_read(&inode
->i_count
) && inode
->i_sb
->s_flags
& MS_ACTIVE
)
418 inode_lru_list_add(inode
);
422 static void inode_lru_list_del(struct inode
*inode
)
425 if (list_lru_del(&inode
->i_sb
->s_inode_lru
, &inode
->i_lru
))
426 this_cpu_dec(nr_unused
);
430 * inode_sb_list_add - add inode to the superblock list of inodes
431 * @inode: inode to add
433 void inode_sb_list_add(struct inode
*inode
)
435 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
436 list_add(&inode
->i_sb_list
, &inode
->i_sb
->s_inodes
);
437 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
439 EXPORT_SYMBOL_GPL(inode_sb_list_add
);
441 static inline void inode_sb_list_del(struct inode
*inode
)
443 if (!list_empty(&inode
->i_sb_list
)) {
444 spin_lock(&inode
->i_sb
->s_inode_list_lock
);
445 list_del_init(&inode
->i_sb_list
);
446 spin_unlock(&inode
->i_sb
->s_inode_list_lock
);
450 static unsigned long hash(struct super_block
*sb
, unsigned long hashval
)
454 tmp
= (hashval
* (unsigned long)sb
) ^ (GOLDEN_RATIO_PRIME
+ hashval
) /
456 tmp
= tmp
^ ((tmp
^ GOLDEN_RATIO_PRIME
) >> i_hash_shift
);
457 return tmp
& i_hash_mask
;
461 * __insert_inode_hash - hash an inode
462 * @inode: unhashed inode
463 * @hashval: unsigned long value used to locate this object in the
466 * Add an inode to the inode hash for this superblock.
468 void __insert_inode_hash(struct inode
*inode
, unsigned long hashval
)
470 struct hlist_head
*b
= inode_hashtable
+ hash(inode
->i_sb
, hashval
);
472 spin_lock(&inode_hash_lock
);
473 spin_lock(&inode
->i_lock
);
474 hlist_add_head(&inode
->i_hash
, b
);
475 spin_unlock(&inode
->i_lock
);
476 spin_unlock(&inode_hash_lock
);
478 EXPORT_SYMBOL(__insert_inode_hash
);
481 * __remove_inode_hash - remove an inode from the hash
482 * @inode: inode to unhash
484 * Remove an inode from the superblock.
486 void __remove_inode_hash(struct inode
*inode
)
488 spin_lock(&inode_hash_lock
);
489 spin_lock(&inode
->i_lock
);
490 hlist_del_init(&inode
->i_hash
);
491 spin_unlock(&inode
->i_lock
);
492 spin_unlock(&inode_hash_lock
);
494 EXPORT_SYMBOL(__remove_inode_hash
);
496 void clear_inode(struct inode
*inode
)
500 * We have to cycle tree_lock here because reclaim can be still in the
501 * process of removing the last page (in __delete_from_page_cache())
502 * and we must not free mapping under it.
504 spin_lock_irq(&inode
->i_data
.tree_lock
);
505 BUG_ON(inode
->i_data
.nrpages
);
506 BUG_ON(inode
->i_data
.nrexceptional
);
507 spin_unlock_irq(&inode
->i_data
.tree_lock
);
508 BUG_ON(!list_empty(&inode
->i_data
.private_list
));
509 BUG_ON(!(inode
->i_state
& I_FREEING
));
510 BUG_ON(inode
->i_state
& I_CLEAR
);
511 BUG_ON(!list_empty(&inode
->i_wb_list
));
512 /* don't need i_lock here, no concurrent mods to i_state */
513 inode
->i_state
= I_FREEING
| I_CLEAR
;
515 EXPORT_SYMBOL(clear_inode
);
518 * Free the inode passed in, removing it from the lists it is still connected
519 * to. We remove any pages still attached to the inode and wait for any IO that
520 * is still in progress before finally destroying the inode.
522 * An inode must already be marked I_FREEING so that we avoid the inode being
523 * moved back onto lists if we race with other code that manipulates the lists
524 * (e.g. writeback_single_inode). The caller is responsible for setting this.
526 * An inode must already be removed from the LRU list before being evicted from
527 * the cache. This should occur atomically with setting the I_FREEING state
528 * flag, so no inodes here should ever be on the LRU when being evicted.
530 static void evict(struct inode
*inode
)
532 const struct super_operations
*op
= inode
->i_sb
->s_op
;
534 BUG_ON(!(inode
->i_state
& I_FREEING
));
535 BUG_ON(!list_empty(&inode
->i_lru
));
537 if (!list_empty(&inode
->i_io_list
))
538 inode_io_list_del(inode
);
540 inode_sb_list_del(inode
);
543 * Wait for flusher thread to be done with the inode so that filesystem
544 * does not start destroying it while writeback is still running. Since
545 * the inode has I_FREEING set, flusher thread won't start new work on
546 * the inode. We just have to wait for running writeback to finish.
548 inode_wait_for_writeback(inode
);
550 if (op
->evict_inode
) {
551 op
->evict_inode(inode
);
553 truncate_inode_pages_final(&inode
->i_data
);
556 if (S_ISBLK(inode
->i_mode
) && inode
->i_bdev
)
558 if (S_ISCHR(inode
->i_mode
) && inode
->i_cdev
)
561 remove_inode_hash(inode
);
563 spin_lock(&inode
->i_lock
);
564 wake_up_bit(&inode
->i_state
, __I_NEW
);
565 BUG_ON(inode
->i_state
!= (I_FREEING
| I_CLEAR
));
566 spin_unlock(&inode
->i_lock
);
568 destroy_inode(inode
);
572 * dispose_list - dispose of the contents of a local list
573 * @head: the head of the list to free
575 * Dispose-list gets a local list with local inodes in it, so it doesn't
576 * need to worry about list corruption and SMP locks.
578 static void dispose_list(struct list_head
*head
)
580 while (!list_empty(head
)) {
583 inode
= list_first_entry(head
, struct inode
, i_lru
);
584 list_del_init(&inode
->i_lru
);
592 * evict_inodes - evict all evictable inodes for a superblock
593 * @sb: superblock to operate on
595 * Make sure that no inodes with zero refcount are retained. This is
596 * called by superblock shutdown after having MS_ACTIVE flag removed,
597 * so any inode reaching zero refcount during or after that call will
598 * be immediately evicted.
600 void evict_inodes(struct super_block
*sb
)
602 struct inode
*inode
, *next
;
606 spin_lock(&sb
->s_inode_list_lock
);
607 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
608 if (atomic_read(&inode
->i_count
))
611 spin_lock(&inode
->i_lock
);
612 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
613 spin_unlock(&inode
->i_lock
);
617 inode
->i_state
|= I_FREEING
;
618 inode_lru_list_del(inode
);
619 spin_unlock(&inode
->i_lock
);
620 list_add(&inode
->i_lru
, &dispose
);
623 * We can have a ton of inodes to evict at unmount time given
624 * enough memory, check to see if we need to go to sleep for a
625 * bit so we don't livelock.
627 if (need_resched()) {
628 spin_unlock(&sb
->s_inode_list_lock
);
630 dispose_list(&dispose
);
634 spin_unlock(&sb
->s_inode_list_lock
);
636 dispose_list(&dispose
);
640 * invalidate_inodes - attempt to free all inodes on a superblock
641 * @sb: superblock to operate on
642 * @kill_dirty: flag to guide handling of dirty inodes
644 * Attempts to free all inodes for a given superblock. If there were any
645 * busy inodes return a non-zero value, else zero.
646 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
649 int invalidate_inodes(struct super_block
*sb
, bool kill_dirty
)
652 struct inode
*inode
, *next
;
655 spin_lock(&sb
->s_inode_list_lock
);
656 list_for_each_entry_safe(inode
, next
, &sb
->s_inodes
, i_sb_list
) {
657 spin_lock(&inode
->i_lock
);
658 if (inode
->i_state
& (I_NEW
| I_FREEING
| I_WILL_FREE
)) {
659 spin_unlock(&inode
->i_lock
);
662 if (inode
->i_state
& I_DIRTY_ALL
&& !kill_dirty
) {
663 spin_unlock(&inode
->i_lock
);
667 if (atomic_read(&inode
->i_count
)) {
668 spin_unlock(&inode
->i_lock
);
673 inode
->i_state
|= I_FREEING
;
674 inode_lru_list_del(inode
);
675 spin_unlock(&inode
->i_lock
);
676 list_add(&inode
->i_lru
, &dispose
);
678 spin_unlock(&sb
->s_inode_list_lock
);
680 dispose_list(&dispose
);
686 * Isolate the inode from the LRU in preparation for freeing it.
688 * Any inodes which are pinned purely because of attached pagecache have their
689 * pagecache removed. If the inode has metadata buffers attached to
690 * mapping->private_list then try to remove them.
692 * If the inode has the I_REFERENCED flag set, then it means that it has been
693 * used recently - the flag is set in iput_final(). When we encounter such an
694 * inode, clear the flag and move it to the back of the LRU so it gets another
695 * pass through the LRU before it gets reclaimed. This is necessary because of
696 * the fact we are doing lazy LRU updates to minimise lock contention so the
697 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
698 * with this flag set because they are the inodes that are out of order.
700 static enum lru_status
inode_lru_isolate(struct list_head
*item
,
701 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
703 struct list_head
*freeable
= arg
;
704 struct inode
*inode
= container_of(item
, struct inode
, i_lru
);
707 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
708 * If we fail to get the lock, just skip it.
710 if (!spin_trylock(&inode
->i_lock
))
714 * Referenced or dirty inodes are still in use. Give them another pass
715 * through the LRU as we canot reclaim them now.
717 if (atomic_read(&inode
->i_count
) ||
718 (inode
->i_state
& ~I_REFERENCED
)) {
719 list_lru_isolate(lru
, &inode
->i_lru
);
720 spin_unlock(&inode
->i_lock
);
721 this_cpu_dec(nr_unused
);
725 /* recently referenced inodes get one more pass */
726 if (inode
->i_state
& I_REFERENCED
) {
727 inode
->i_state
&= ~I_REFERENCED
;
728 spin_unlock(&inode
->i_lock
);
732 if (inode_has_buffers(inode
) || inode
->i_data
.nrpages
) {
734 spin_unlock(&inode
->i_lock
);
735 spin_unlock(lru_lock
);
736 if (remove_inode_buffers(inode
)) {
738 reap
= invalidate_mapping_pages(&inode
->i_data
, 0, -1);
739 if (current_is_kswapd())
740 __count_vm_events(KSWAPD_INODESTEAL
, reap
);
742 __count_vm_events(PGINODESTEAL
, reap
);
743 if (current
->reclaim_state
)
744 current
->reclaim_state
->reclaimed_slab
+= reap
;
751 WARN_ON(inode
->i_state
& I_NEW
);
752 inode
->i_state
|= I_FREEING
;
753 list_lru_isolate_move(lru
, &inode
->i_lru
, freeable
);
754 spin_unlock(&inode
->i_lock
);
756 this_cpu_dec(nr_unused
);
761 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
762 * This is called from the superblock shrinker function with a number of inodes
763 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
764 * then are freed outside inode_lock by dispose_list().
766 long prune_icache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
771 freed
= list_lru_shrink_walk(&sb
->s_inode_lru
, sc
,
772 inode_lru_isolate
, &freeable
);
773 dispose_list(&freeable
);
777 static void __wait_on_freeing_inode(struct inode
*inode
);
779 * Called with the inode lock held.
781 static struct inode
*find_inode(struct super_block
*sb
,
782 struct hlist_head
*head
,
783 int (*test
)(struct inode
*, void *),
786 struct inode
*inode
= NULL
;
789 hlist_for_each_entry(inode
, head
, i_hash
) {
790 if (inode
->i_sb
!= sb
)
792 if (!test(inode
, data
))
794 spin_lock(&inode
->i_lock
);
795 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
796 __wait_on_freeing_inode(inode
);
800 spin_unlock(&inode
->i_lock
);
807 * find_inode_fast is the fast path version of find_inode, see the comment at
808 * iget_locked for details.
810 static struct inode
*find_inode_fast(struct super_block
*sb
,
811 struct hlist_head
*head
, unsigned long ino
)
813 struct inode
*inode
= NULL
;
816 hlist_for_each_entry(inode
, head
, i_hash
) {
817 if (inode
->i_ino
!= ino
)
819 if (inode
->i_sb
!= sb
)
821 spin_lock(&inode
->i_lock
);
822 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
823 __wait_on_freeing_inode(inode
);
827 spin_unlock(&inode
->i_lock
);
834 * Each cpu owns a range of LAST_INO_BATCH numbers.
835 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
836 * to renew the exhausted range.
838 * This does not significantly increase overflow rate because every CPU can
839 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
840 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
841 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
842 * overflow rate by 2x, which does not seem too significant.
844 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
845 * error if st_ino won't fit in target struct field. Use 32bit counter
846 * here to attempt to avoid that.
848 #define LAST_INO_BATCH 1024
849 static DEFINE_PER_CPU(unsigned int, last_ino
);
851 unsigned int get_next_ino(void)
853 unsigned int *p
= &get_cpu_var(last_ino
);
854 unsigned int res
= *p
;
857 if (unlikely((res
& (LAST_INO_BATCH
-1)) == 0)) {
858 static atomic_t shared_last_ino
;
859 int next
= atomic_add_return(LAST_INO_BATCH
, &shared_last_ino
);
861 res
= next
- LAST_INO_BATCH
;
866 /* get_next_ino should not provide a 0 inode number */
870 put_cpu_var(last_ino
);
873 EXPORT_SYMBOL(get_next_ino
);
876 * new_inode_pseudo - obtain an inode
879 * Allocates a new inode for given superblock.
880 * Inode wont be chained in superblock s_inodes list
882 * - fs can't be unmount
883 * - quotas, fsnotify, writeback can't work
885 struct inode
*new_inode_pseudo(struct super_block
*sb
)
887 struct inode
*inode
= alloc_inode(sb
);
890 spin_lock(&inode
->i_lock
);
892 spin_unlock(&inode
->i_lock
);
893 INIT_LIST_HEAD(&inode
->i_sb_list
);
899 * new_inode - obtain an inode
902 * Allocates a new inode for given superblock. The default gfp_mask
903 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
904 * If HIGHMEM pages are unsuitable or it is known that pages allocated
905 * for the page cache are not reclaimable or migratable,
906 * mapping_set_gfp_mask() must be called with suitable flags on the
907 * newly created inode's mapping
910 struct inode
*new_inode(struct super_block
*sb
)
914 spin_lock_prefetch(&sb
->s_inode_list_lock
);
916 inode
= new_inode_pseudo(sb
);
918 inode_sb_list_add(inode
);
921 EXPORT_SYMBOL(new_inode
);
923 #ifdef CONFIG_DEBUG_LOCK_ALLOC
924 void lockdep_annotate_inode_mutex_key(struct inode
*inode
)
926 if (S_ISDIR(inode
->i_mode
)) {
927 struct file_system_type
*type
= inode
->i_sb
->s_type
;
929 /* Set new key only if filesystem hasn't already changed it */
930 if (lockdep_match_class(&inode
->i_rwsem
, &type
->i_mutex_key
)) {
932 * ensure nobody is actually holding i_mutex
934 // mutex_destroy(&inode->i_mutex);
935 init_rwsem(&inode
->i_rwsem
);
936 lockdep_set_class(&inode
->i_rwsem
,
937 &type
->i_mutex_dir_key
);
941 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key
);
945 * unlock_new_inode - clear the I_NEW state and wake up any waiters
946 * @inode: new inode to unlock
948 * Called when the inode is fully initialised to clear the new state of the
949 * inode and wake up anyone waiting for the inode to finish initialisation.
951 void unlock_new_inode(struct inode
*inode
)
953 lockdep_annotate_inode_mutex_key(inode
);
954 spin_lock(&inode
->i_lock
);
955 WARN_ON(!(inode
->i_state
& I_NEW
));
956 inode
->i_state
&= ~I_NEW
;
958 wake_up_bit(&inode
->i_state
, __I_NEW
);
959 spin_unlock(&inode
->i_lock
);
961 EXPORT_SYMBOL(unlock_new_inode
);
964 * lock_two_nondirectories - take two i_mutexes on non-directory objects
966 * Lock any non-NULL argument that is not a directory.
967 * Zero, one or two objects may be locked by this function.
969 * @inode1: first inode to lock
970 * @inode2: second inode to lock
972 void lock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
975 swap(inode1
, inode2
);
977 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
979 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
980 inode_lock_nested(inode2
, I_MUTEX_NONDIR2
);
982 EXPORT_SYMBOL(lock_two_nondirectories
);
985 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
986 * @inode1: first inode to unlock
987 * @inode2: second inode to unlock
989 void unlock_two_nondirectories(struct inode
*inode1
, struct inode
*inode2
)
991 if (inode1
&& !S_ISDIR(inode1
->i_mode
))
992 inode_unlock(inode1
);
993 if (inode2
&& !S_ISDIR(inode2
->i_mode
) && inode2
!= inode1
)
994 inode_unlock(inode2
);
996 EXPORT_SYMBOL(unlock_two_nondirectories
);
999 * iget5_locked - obtain an inode from a mounted file system
1000 * @sb: super block of file system
1001 * @hashval: hash value (usually inode number) to get
1002 * @test: callback used for comparisons between inodes
1003 * @set: callback used to initialize a new struct inode
1004 * @data: opaque data pointer to pass to @test and @set
1006 * Search for the inode specified by @hashval and @data in the inode cache,
1007 * and if present it is return it with an increased reference count. This is
1008 * a generalized version of iget_locked() for file systems where the inode
1009 * number is not sufficient for unique identification of an inode.
1011 * If the inode is not in cache, allocate a new inode and return it locked,
1012 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1013 * before unlocking it via unlock_new_inode().
1015 * Note both @test and @set are called with the inode_hash_lock held, so can't
1018 struct inode
*iget5_locked(struct super_block
*sb
, unsigned long hashval
,
1019 int (*test
)(struct inode
*, void *),
1020 int (*set
)(struct inode
*, void *), void *data
)
1022 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1023 struct inode
*inode
;
1025 spin_lock(&inode_hash_lock
);
1026 inode
= find_inode(sb
, head
, test
, data
);
1027 spin_unlock(&inode_hash_lock
);
1030 wait_on_inode(inode
);
1034 inode
= alloc_inode(sb
);
1038 spin_lock(&inode_hash_lock
);
1039 /* We released the lock, so.. */
1040 old
= find_inode(sb
, head
, test
, data
);
1042 if (set(inode
, data
))
1045 spin_lock(&inode
->i_lock
);
1046 inode
->i_state
= I_NEW
;
1047 hlist_add_head(&inode
->i_hash
, head
);
1048 spin_unlock(&inode
->i_lock
);
1049 inode_sb_list_add(inode
);
1050 spin_unlock(&inode_hash_lock
);
1052 /* Return the locked inode with I_NEW set, the
1053 * caller is responsible for filling in the contents
1059 * Uhhuh, somebody else created the same inode under
1060 * us. Use the old inode instead of the one we just
1063 spin_unlock(&inode_hash_lock
);
1064 destroy_inode(inode
);
1066 wait_on_inode(inode
);
1071 spin_unlock(&inode_hash_lock
);
1072 destroy_inode(inode
);
1075 EXPORT_SYMBOL(iget5_locked
);
1078 * iget_locked - obtain an inode from a mounted file system
1079 * @sb: super block of file system
1080 * @ino: inode number to get
1082 * Search for the inode specified by @ino in the inode cache and if present
1083 * return it with an increased reference count. This is for file systems
1084 * where the inode number is sufficient for unique identification of an inode.
1086 * If the inode is not in cache, allocate a new inode and return it locked,
1087 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1088 * before unlocking it via unlock_new_inode().
1090 struct inode
*iget_locked(struct super_block
*sb
, unsigned long ino
)
1092 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1093 struct inode
*inode
;
1095 spin_lock(&inode_hash_lock
);
1096 inode
= find_inode_fast(sb
, head
, ino
);
1097 spin_unlock(&inode_hash_lock
);
1099 wait_on_inode(inode
);
1103 inode
= alloc_inode(sb
);
1107 spin_lock(&inode_hash_lock
);
1108 /* We released the lock, so.. */
1109 old
= find_inode_fast(sb
, head
, ino
);
1112 spin_lock(&inode
->i_lock
);
1113 inode
->i_state
= I_NEW
;
1114 hlist_add_head(&inode
->i_hash
, head
);
1115 spin_unlock(&inode
->i_lock
);
1116 inode_sb_list_add(inode
);
1117 spin_unlock(&inode_hash_lock
);
1119 /* Return the locked inode with I_NEW set, the
1120 * caller is responsible for filling in the contents
1126 * Uhhuh, somebody else created the same inode under
1127 * us. Use the old inode instead of the one we just
1130 spin_unlock(&inode_hash_lock
);
1131 destroy_inode(inode
);
1133 wait_on_inode(inode
);
1137 EXPORT_SYMBOL(iget_locked
);
1140 * search the inode cache for a matching inode number.
1141 * If we find one, then the inode number we are trying to
1142 * allocate is not unique and so we should not use it.
1144 * Returns 1 if the inode number is unique, 0 if it is not.
1146 static int test_inode_iunique(struct super_block
*sb
, unsigned long ino
)
1148 struct hlist_head
*b
= inode_hashtable
+ hash(sb
, ino
);
1149 struct inode
*inode
;
1151 spin_lock(&inode_hash_lock
);
1152 hlist_for_each_entry(inode
, b
, i_hash
) {
1153 if (inode
->i_ino
== ino
&& inode
->i_sb
== sb
) {
1154 spin_unlock(&inode_hash_lock
);
1158 spin_unlock(&inode_hash_lock
);
1164 * iunique - get a unique inode number
1166 * @max_reserved: highest reserved inode number
1168 * Obtain an inode number that is unique on the system for a given
1169 * superblock. This is used by file systems that have no natural
1170 * permanent inode numbering system. An inode number is returned that
1171 * is higher than the reserved limit but unique.
1174 * With a large number of inodes live on the file system this function
1175 * currently becomes quite slow.
1177 ino_t
iunique(struct super_block
*sb
, ino_t max_reserved
)
1180 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1181 * error if st_ino won't fit in target struct field. Use 32bit counter
1182 * here to attempt to avoid that.
1184 static DEFINE_SPINLOCK(iunique_lock
);
1185 static unsigned int counter
;
1188 spin_lock(&iunique_lock
);
1190 if (counter
<= max_reserved
)
1191 counter
= max_reserved
+ 1;
1193 } while (!test_inode_iunique(sb
, res
));
1194 spin_unlock(&iunique_lock
);
1198 EXPORT_SYMBOL(iunique
);
1200 struct inode
*igrab(struct inode
*inode
)
1202 spin_lock(&inode
->i_lock
);
1203 if (!(inode
->i_state
& (I_FREEING
|I_WILL_FREE
))) {
1205 spin_unlock(&inode
->i_lock
);
1207 spin_unlock(&inode
->i_lock
);
1209 * Handle the case where s_op->clear_inode is not been
1210 * called yet, and somebody is calling igrab
1211 * while the inode is getting freed.
1217 EXPORT_SYMBOL(igrab
);
1220 * ilookup5_nowait - search for an inode in the inode cache
1221 * @sb: super block of file system to search
1222 * @hashval: hash value (usually inode number) to search for
1223 * @test: callback used for comparisons between inodes
1224 * @data: opaque data pointer to pass to @test
1226 * Search for the inode specified by @hashval and @data in the inode cache.
1227 * If the inode is in the cache, the inode is returned with an incremented
1230 * Note: I_NEW is not waited upon so you have to be very careful what you do
1231 * with the returned inode. You probably should be using ilookup5() instead.
1233 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1235 struct inode
*ilookup5_nowait(struct super_block
*sb
, unsigned long hashval
,
1236 int (*test
)(struct inode
*, void *), void *data
)
1238 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1239 struct inode
*inode
;
1241 spin_lock(&inode_hash_lock
);
1242 inode
= find_inode(sb
, head
, test
, data
);
1243 spin_unlock(&inode_hash_lock
);
1247 EXPORT_SYMBOL(ilookup5_nowait
);
1250 * ilookup5 - search for an inode in the inode cache
1251 * @sb: super block of file system to search
1252 * @hashval: hash value (usually inode number) to search for
1253 * @test: callback used for comparisons between inodes
1254 * @data: opaque data pointer to pass to @test
1256 * Search for the inode specified by @hashval and @data in the inode cache,
1257 * and if the inode is in the cache, return the inode with an incremented
1258 * reference count. Waits on I_NEW before returning the inode.
1259 * returned with an incremented reference count.
1261 * This is a generalized version of ilookup() for file systems where the
1262 * inode number is not sufficient for unique identification of an inode.
1264 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1266 struct inode
*ilookup5(struct super_block
*sb
, unsigned long hashval
,
1267 int (*test
)(struct inode
*, void *), void *data
)
1269 struct inode
*inode
= ilookup5_nowait(sb
, hashval
, test
, data
);
1272 wait_on_inode(inode
);
1275 EXPORT_SYMBOL(ilookup5
);
1278 * ilookup - search for an inode in the inode cache
1279 * @sb: super block of file system to search
1280 * @ino: inode number to search for
1282 * Search for the inode @ino in the inode cache, and if the inode is in the
1283 * cache, the inode is returned with an incremented reference count.
1285 struct inode
*ilookup(struct super_block
*sb
, unsigned long ino
)
1287 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1288 struct inode
*inode
;
1290 spin_lock(&inode_hash_lock
);
1291 inode
= find_inode_fast(sb
, head
, ino
);
1292 spin_unlock(&inode_hash_lock
);
1295 wait_on_inode(inode
);
1298 EXPORT_SYMBOL(ilookup
);
1301 * find_inode_nowait - find an inode in the inode cache
1302 * @sb: super block of file system to search
1303 * @hashval: hash value (usually inode number) to search for
1304 * @match: callback used for comparisons between inodes
1305 * @data: opaque data pointer to pass to @match
1307 * Search for the inode specified by @hashval and @data in the inode
1308 * cache, where the helper function @match will return 0 if the inode
1309 * does not match, 1 if the inode does match, and -1 if the search
1310 * should be stopped. The @match function must be responsible for
1311 * taking the i_lock spin_lock and checking i_state for an inode being
1312 * freed or being initialized, and incrementing the reference count
1313 * before returning 1. It also must not sleep, since it is called with
1314 * the inode_hash_lock spinlock held.
1316 * This is a even more generalized version of ilookup5() when the
1317 * function must never block --- find_inode() can block in
1318 * __wait_on_freeing_inode() --- or when the caller can not increment
1319 * the reference count because the resulting iput() might cause an
1320 * inode eviction. The tradeoff is that the @match funtion must be
1321 * very carefully implemented.
1323 struct inode
*find_inode_nowait(struct super_block
*sb
,
1324 unsigned long hashval
,
1325 int (*match
)(struct inode
*, unsigned long,
1329 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1330 struct inode
*inode
, *ret_inode
= NULL
;
1333 spin_lock(&inode_hash_lock
);
1334 hlist_for_each_entry(inode
, head
, i_hash
) {
1335 if (inode
->i_sb
!= sb
)
1337 mval
= match(inode
, hashval
, data
);
1345 spin_unlock(&inode_hash_lock
);
1348 EXPORT_SYMBOL(find_inode_nowait
);
1350 int insert_inode_locked(struct inode
*inode
)
1352 struct super_block
*sb
= inode
->i_sb
;
1353 ino_t ino
= inode
->i_ino
;
1354 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, ino
);
1357 struct inode
*old
= NULL
;
1358 spin_lock(&inode_hash_lock
);
1359 hlist_for_each_entry(old
, head
, i_hash
) {
1360 if (old
->i_ino
!= ino
)
1362 if (old
->i_sb
!= sb
)
1364 spin_lock(&old
->i_lock
);
1365 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1366 spin_unlock(&old
->i_lock
);
1372 spin_lock(&inode
->i_lock
);
1373 inode
->i_state
|= I_NEW
;
1374 hlist_add_head(&inode
->i_hash
, head
);
1375 spin_unlock(&inode
->i_lock
);
1376 spin_unlock(&inode_hash_lock
);
1380 spin_unlock(&old
->i_lock
);
1381 spin_unlock(&inode_hash_lock
);
1383 if (unlikely(!inode_unhashed(old
))) {
1390 EXPORT_SYMBOL(insert_inode_locked
);
1392 int insert_inode_locked4(struct inode
*inode
, unsigned long hashval
,
1393 int (*test
)(struct inode
*, void *), void *data
)
1395 struct super_block
*sb
= inode
->i_sb
;
1396 struct hlist_head
*head
= inode_hashtable
+ hash(sb
, hashval
);
1399 struct inode
*old
= NULL
;
1401 spin_lock(&inode_hash_lock
);
1402 hlist_for_each_entry(old
, head
, i_hash
) {
1403 if (old
->i_sb
!= sb
)
1405 if (!test(old
, data
))
1407 spin_lock(&old
->i_lock
);
1408 if (old
->i_state
& (I_FREEING
|I_WILL_FREE
)) {
1409 spin_unlock(&old
->i_lock
);
1415 spin_lock(&inode
->i_lock
);
1416 inode
->i_state
|= I_NEW
;
1417 hlist_add_head(&inode
->i_hash
, head
);
1418 spin_unlock(&inode
->i_lock
);
1419 spin_unlock(&inode_hash_lock
);
1423 spin_unlock(&old
->i_lock
);
1424 spin_unlock(&inode_hash_lock
);
1426 if (unlikely(!inode_unhashed(old
))) {
1433 EXPORT_SYMBOL(insert_inode_locked4
);
1436 int generic_delete_inode(struct inode
*inode
)
1440 EXPORT_SYMBOL(generic_delete_inode
);
1443 * Called when we're dropping the last reference
1446 * Call the FS "drop_inode()" function, defaulting to
1447 * the legacy UNIX filesystem behaviour. If it tells
1448 * us to evict inode, do so. Otherwise, retain inode
1449 * in cache if fs is alive, sync and evict if fs is
1452 static void iput_final(struct inode
*inode
)
1454 struct super_block
*sb
= inode
->i_sb
;
1455 const struct super_operations
*op
= inode
->i_sb
->s_op
;
1458 WARN_ON(inode
->i_state
& I_NEW
);
1461 drop
= op
->drop_inode(inode
);
1463 drop
= generic_drop_inode(inode
);
1465 if (!drop
&& (sb
->s_flags
& MS_ACTIVE
)) {
1466 inode
->i_state
|= I_REFERENCED
;
1467 inode_add_lru(inode
);
1468 spin_unlock(&inode
->i_lock
);
1473 inode
->i_state
|= I_WILL_FREE
;
1474 spin_unlock(&inode
->i_lock
);
1475 write_inode_now(inode
, 1);
1476 spin_lock(&inode
->i_lock
);
1477 WARN_ON(inode
->i_state
& I_NEW
);
1478 inode
->i_state
&= ~I_WILL_FREE
;
1481 inode
->i_state
|= I_FREEING
;
1482 if (!list_empty(&inode
->i_lru
))
1483 inode_lru_list_del(inode
);
1484 spin_unlock(&inode
->i_lock
);
1490 * iput - put an inode
1491 * @inode: inode to put
1493 * Puts an inode, dropping its usage count. If the inode use count hits
1494 * zero, the inode is then freed and may also be destroyed.
1496 * Consequently, iput() can sleep.
1498 void iput(struct inode
*inode
)
1502 BUG_ON(inode
->i_state
& I_CLEAR
);
1504 if (atomic_dec_and_lock(&inode
->i_count
, &inode
->i_lock
)) {
1505 if (inode
->i_nlink
&& (inode
->i_state
& I_DIRTY_TIME
)) {
1506 atomic_inc(&inode
->i_count
);
1507 inode
->i_state
&= ~I_DIRTY_TIME
;
1508 spin_unlock(&inode
->i_lock
);
1509 trace_writeback_lazytime_iput(inode
);
1510 mark_inode_dirty_sync(inode
);
1516 EXPORT_SYMBOL(iput
);
1519 * bmap - find a block number in a file
1520 * @inode: inode of file
1521 * @block: block to find
1523 * Returns the block number on the device holding the inode that
1524 * is the disk block number for the block of the file requested.
1525 * That is, asked for block 4 of inode 1 the function will return the
1526 * disk block relative to the disk start that holds that block of the
1529 sector_t
bmap(struct inode
*inode
, sector_t block
)
1532 if (inode
->i_mapping
->a_ops
->bmap
)
1533 res
= inode
->i_mapping
->a_ops
->bmap(inode
->i_mapping
, block
);
1536 EXPORT_SYMBOL(bmap
);
1539 * With relative atime, only update atime if the previous atime is
1540 * earlier than either the ctime or mtime or if at least a day has
1541 * passed since the last atime update.
1543 static int relatime_need_update(struct vfsmount
*mnt
, struct inode
*inode
,
1544 struct timespec now
)
1547 if (!(mnt
->mnt_flags
& MNT_RELATIME
))
1550 * Is mtime younger than atime? If yes, update atime:
1552 if (timespec_compare(&inode
->i_mtime
, &inode
->i_atime
) >= 0)
1555 * Is ctime younger than atime? If yes, update atime:
1557 if (timespec_compare(&inode
->i_ctime
, &inode
->i_atime
) >= 0)
1561 * Is the previous atime value older than a day? If yes,
1564 if ((long)(now
.tv_sec
- inode
->i_atime
.tv_sec
) >= 24*60*60)
1567 * Good, we can skip the atime update:
1572 int generic_update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1574 int iflags
= I_DIRTY_TIME
;
1576 if (flags
& S_ATIME
)
1577 inode
->i_atime
= *time
;
1578 if (flags
& S_VERSION
)
1579 inode_inc_iversion(inode
);
1580 if (flags
& S_CTIME
)
1581 inode
->i_ctime
= *time
;
1582 if (flags
& S_MTIME
)
1583 inode
->i_mtime
= *time
;
1585 if (!(inode
->i_sb
->s_flags
& MS_LAZYTIME
) || (flags
& S_VERSION
))
1586 iflags
|= I_DIRTY_SYNC
;
1587 __mark_inode_dirty(inode
, iflags
);
1590 EXPORT_SYMBOL(generic_update_time
);
1593 * This does the actual work of updating an inodes time or version. Must have
1594 * had called mnt_want_write() before calling this.
1596 static int update_time(struct inode
*inode
, struct timespec
*time
, int flags
)
1598 int (*update_time
)(struct inode
*, struct timespec
*, int);
1600 update_time
= inode
->i_op
->update_time
? inode
->i_op
->update_time
:
1601 generic_update_time
;
1603 return update_time(inode
, time
, flags
);
1607 * touch_atime - update the access time
1608 * @path: the &struct path to update
1609 * @inode: inode to update
1611 * Update the accessed time on an inode and mark it for writeback.
1612 * This function automatically handles read only file systems and media,
1613 * as well as the "noatime" flag and inode specific "noatime" markers.
1615 bool atime_needs_update(const struct path
*path
, struct inode
*inode
)
1617 struct vfsmount
*mnt
= path
->mnt
;
1618 struct timespec now
;
1620 if (inode
->i_flags
& S_NOATIME
)
1623 /* Atime updates will likely cause i_uid and i_gid to be written
1624 * back improprely if their true value is unknown to the vfs.
1626 if (HAS_UNMAPPED_ID(inode
))
1629 if (IS_NOATIME(inode
))
1631 if ((inode
->i_sb
->s_flags
& MS_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1634 if (mnt
->mnt_flags
& MNT_NOATIME
)
1636 if ((mnt
->mnt_flags
& MNT_NODIRATIME
) && S_ISDIR(inode
->i_mode
))
1639 now
= current_fs_time(inode
->i_sb
);
1641 if (!relatime_need_update(mnt
, inode
, now
))
1644 if (timespec_equal(&inode
->i_atime
, &now
))
1650 void touch_atime(const struct path
*path
)
1652 struct vfsmount
*mnt
= path
->mnt
;
1653 struct inode
*inode
= d_inode(path
->dentry
);
1654 struct timespec now
;
1656 if (!atime_needs_update(path
, inode
))
1659 if (!sb_start_write_trylock(inode
->i_sb
))
1662 if (__mnt_want_write(mnt
) != 0)
1665 * File systems can error out when updating inodes if they need to
1666 * allocate new space to modify an inode (such is the case for
1667 * Btrfs), but since we touch atime while walking down the path we
1668 * really don't care if we failed to update the atime of the file,
1669 * so just ignore the return value.
1670 * We may also fail on filesystems that have the ability to make parts
1671 * of the fs read only, e.g. subvolumes in Btrfs.
1673 now
= current_fs_time(inode
->i_sb
);
1674 update_time(inode
, &now
, S_ATIME
);
1675 __mnt_drop_write(mnt
);
1677 sb_end_write(inode
->i_sb
);
1679 EXPORT_SYMBOL(touch_atime
);
1682 * The logic we want is
1684 * if suid or (sgid and xgrp)
1687 int should_remove_suid(struct dentry
*dentry
)
1689 umode_t mode
= d_inode(dentry
)->i_mode
;
1692 /* suid always must be killed */
1693 if (unlikely(mode
& S_ISUID
))
1694 kill
= ATTR_KILL_SUID
;
1697 * sgid without any exec bits is just a mandatory locking mark; leave
1698 * it alone. If some exec bits are set, it's a real sgid; kill it.
1700 if (unlikely((mode
& S_ISGID
) && (mode
& S_IXGRP
)))
1701 kill
|= ATTR_KILL_SGID
;
1703 if (unlikely(kill
&& !capable(CAP_FSETID
) && S_ISREG(mode
)))
1708 EXPORT_SYMBOL(should_remove_suid
);
1711 * Return mask of changes for notify_change() that need to be done as a
1712 * response to write or truncate. Return 0 if nothing has to be changed.
1713 * Negative value on error (change should be denied).
1715 int dentry_needs_remove_privs(struct dentry
*dentry
)
1717 struct inode
*inode
= d_inode(dentry
);
1721 if (IS_NOSEC(inode
))
1724 mask
= should_remove_suid(dentry
);
1725 ret
= security_inode_need_killpriv(dentry
);
1729 mask
|= ATTR_KILL_PRIV
;
1733 static int __remove_privs(struct dentry
*dentry
, int kill
)
1735 struct iattr newattrs
;
1737 newattrs
.ia_valid
= ATTR_FORCE
| kill
;
1739 * Note we call this on write, so notify_change will not
1740 * encounter any conflicting delegations:
1742 return notify_change(dentry
, &newattrs
, NULL
);
1746 * Remove special file priviledges (suid, capabilities) when file is written
1749 int file_remove_privs(struct file
*file
)
1751 struct dentry
*dentry
= file_dentry(file
);
1752 struct inode
*inode
= file_inode(file
);
1756 /* Fast path for nothing security related */
1757 if (IS_NOSEC(inode
))
1760 kill
= dentry_needs_remove_privs(dentry
);
1764 error
= __remove_privs(dentry
, kill
);
1766 inode_has_no_xattr(inode
);
1770 EXPORT_SYMBOL(file_remove_privs
);
1773 * file_update_time - update mtime and ctime time
1774 * @file: file accessed
1776 * Update the mtime and ctime members of an inode and mark the inode
1777 * for writeback. Note that this function is meant exclusively for
1778 * usage in the file write path of filesystems, and filesystems may
1779 * choose to explicitly ignore update via this function with the
1780 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1781 * timestamps are handled by the server. This can return an error for
1782 * file systems who need to allocate space in order to update an inode.
1785 int file_update_time(struct file
*file
)
1787 struct inode
*inode
= file_inode(file
);
1788 struct timespec now
;
1792 /* First try to exhaust all avenues to not sync */
1793 if (IS_NOCMTIME(inode
))
1796 now
= current_fs_time(inode
->i_sb
);
1797 if (!timespec_equal(&inode
->i_mtime
, &now
))
1800 if (!timespec_equal(&inode
->i_ctime
, &now
))
1803 if (IS_I_VERSION(inode
))
1804 sync_it
|= S_VERSION
;
1809 /* Finally allowed to write? Takes lock. */
1810 if (__mnt_want_write_file(file
))
1813 ret
= update_time(inode
, &now
, sync_it
);
1814 __mnt_drop_write_file(file
);
1818 EXPORT_SYMBOL(file_update_time
);
1820 int inode_needs_sync(struct inode
*inode
)
1824 if (S_ISDIR(inode
->i_mode
) && IS_DIRSYNC(inode
))
1828 EXPORT_SYMBOL(inode_needs_sync
);
1831 * If we try to find an inode in the inode hash while it is being
1832 * deleted, we have to wait until the filesystem completes its
1833 * deletion before reporting that it isn't found. This function waits
1834 * until the deletion _might_ have completed. Callers are responsible
1835 * to recheck inode state.
1837 * It doesn't matter if I_NEW is not set initially, a call to
1838 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1841 static void __wait_on_freeing_inode(struct inode
*inode
)
1843 wait_queue_head_t
*wq
;
1844 DEFINE_WAIT_BIT(wait
, &inode
->i_state
, __I_NEW
);
1845 wq
= bit_waitqueue(&inode
->i_state
, __I_NEW
);
1846 prepare_to_wait(wq
, &wait
.wait
, TASK_UNINTERRUPTIBLE
);
1847 spin_unlock(&inode
->i_lock
);
1848 spin_unlock(&inode_hash_lock
);
1850 finish_wait(wq
, &wait
.wait
);
1851 spin_lock(&inode_hash_lock
);
1854 static __initdata
unsigned long ihash_entries
;
1855 static int __init
set_ihash_entries(char *str
)
1859 ihash_entries
= simple_strtoul(str
, &str
, 0);
1862 __setup("ihash_entries=", set_ihash_entries
);
1865 * Initialize the waitqueues and inode hash table.
1867 void __init
inode_init_early(void)
1871 /* If hashes are distributed across NUMA nodes, defer
1872 * hash allocation until vmalloc space is available.
1878 alloc_large_system_hash("Inode-cache",
1879 sizeof(struct hlist_head
),
1888 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1889 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1892 void __init
inode_init(void)
1896 /* inode slab cache */
1897 inode_cachep
= kmem_cache_create("inode_cache",
1898 sizeof(struct inode
),
1900 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
1901 SLAB_MEM_SPREAD
|SLAB_ACCOUNT
),
1904 /* Hash may have been set up in inode_init_early */
1909 alloc_large_system_hash("Inode-cache",
1910 sizeof(struct hlist_head
),
1919 for (loop
= 0; loop
< (1U << i_hash_shift
); loop
++)
1920 INIT_HLIST_HEAD(&inode_hashtable
[loop
]);
1923 void init_special_inode(struct inode
*inode
, umode_t mode
, dev_t rdev
)
1925 inode
->i_mode
= mode
;
1926 if (S_ISCHR(mode
)) {
1927 inode
->i_fop
= &def_chr_fops
;
1928 inode
->i_rdev
= rdev
;
1929 } else if (S_ISBLK(mode
)) {
1930 inode
->i_fop
= &def_blk_fops
;
1931 inode
->i_rdev
= rdev
;
1932 } else if (S_ISFIFO(mode
))
1933 inode
->i_fop
= &pipefifo_fops
;
1934 else if (S_ISSOCK(mode
))
1935 ; /* leave it no_open_fops */
1937 printk(KERN_DEBUG
"init_special_inode: bogus i_mode (%o) for"
1938 " inode %s:%lu\n", mode
, inode
->i_sb
->s_id
,
1941 EXPORT_SYMBOL(init_special_inode
);
1944 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1946 * @dir: Directory inode
1947 * @mode: mode of the new inode
1949 void inode_init_owner(struct inode
*inode
, const struct inode
*dir
,
1952 inode
->i_uid
= current_fsuid();
1953 if (dir
&& dir
->i_mode
& S_ISGID
) {
1954 inode
->i_gid
= dir
->i_gid
;
1958 inode
->i_gid
= current_fsgid();
1959 inode
->i_mode
= mode
;
1961 EXPORT_SYMBOL(inode_init_owner
);
1964 * inode_owner_or_capable - check current task permissions to inode
1965 * @inode: inode being checked
1967 * Return true if current either has CAP_FOWNER in a namespace with the
1968 * inode owner uid mapped, or owns the file.
1970 bool inode_owner_or_capable(const struct inode
*inode
)
1972 struct user_namespace
*ns
;
1974 if (uid_eq(current_fsuid(), inode
->i_uid
))
1977 ns
= current_user_ns();
1978 if (ns_capable(ns
, CAP_FOWNER
) && kuid_has_mapping(ns
, inode
->i_uid
))
1982 EXPORT_SYMBOL(inode_owner_or_capable
);
1985 * Direct i/o helper functions
1987 static void __inode_dio_wait(struct inode
*inode
)
1989 wait_queue_head_t
*wq
= bit_waitqueue(&inode
->i_state
, __I_DIO_WAKEUP
);
1990 DEFINE_WAIT_BIT(q
, &inode
->i_state
, __I_DIO_WAKEUP
);
1993 prepare_to_wait(wq
, &q
.wait
, TASK_UNINTERRUPTIBLE
);
1994 if (atomic_read(&inode
->i_dio_count
))
1996 } while (atomic_read(&inode
->i_dio_count
));
1997 finish_wait(wq
, &q
.wait
);
2001 * inode_dio_wait - wait for outstanding DIO requests to finish
2002 * @inode: inode to wait for
2004 * Waits for all pending direct I/O requests to finish so that we can
2005 * proceed with a truncate or equivalent operation.
2007 * Must be called under a lock that serializes taking new references
2008 * to i_dio_count, usually by inode->i_mutex.
2010 void inode_dio_wait(struct inode
*inode
)
2012 if (atomic_read(&inode
->i_dio_count
))
2013 __inode_dio_wait(inode
);
2015 EXPORT_SYMBOL(inode_dio_wait
);
2018 * inode_set_flags - atomically set some inode flags
2020 * Note: the caller should be holding i_mutex, or else be sure that
2021 * they have exclusive access to the inode structure (i.e., while the
2022 * inode is being instantiated). The reason for the cmpxchg() loop
2023 * --- which wouldn't be necessary if all code paths which modify
2024 * i_flags actually followed this rule, is that there is at least one
2025 * code path which doesn't today so we use cmpxchg() out of an abundance
2028 * In the long run, i_mutex is overkill, and we should probably look
2029 * at using the i_lock spinlock to protect i_flags, and then make sure
2030 * it is so documented in include/linux/fs.h and that all code follows
2031 * the locking convention!!
2033 void inode_set_flags(struct inode
*inode
, unsigned int flags
,
2036 unsigned int old_flags
, new_flags
;
2038 WARN_ON_ONCE(flags
& ~mask
);
2040 old_flags
= ACCESS_ONCE(inode
->i_flags
);
2041 new_flags
= (old_flags
& ~mask
) | flags
;
2042 } while (unlikely(cmpxchg(&inode
->i_flags
, old_flags
,
2043 new_flags
) != old_flags
));
2045 EXPORT_SYMBOL(inode_set_flags
);
2047 void inode_nohighmem(struct inode
*inode
)
2049 mapping_set_gfp_mask(inode
->i_mapping
, GFP_USER
);
2051 EXPORT_SYMBOL(inode_nohighmem
);