2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 #include "xfs_shared.h"
20 #include "xfs_format.h"
21 #include "xfs_log_format.h"
22 #include "xfs_trans_resv.h"
23 #include "xfs_mount.h"
24 #include "xfs_inode.h"
25 #include "xfs_trans.h"
26 #include "xfs_inode_item.h"
27 #include "xfs_alloc.h"
28 #include "xfs_error.h"
29 #include "xfs_iomap.h"
30 #include "xfs_trace.h"
32 #include "xfs_bmap_util.h"
33 #include "xfs_bmap_btree.h"
34 #include <linux/gfp.h>
35 #include <linux/mpage.h>
36 #include <linux/pagevec.h>
37 #include <linux/writeback.h>
39 /* flags for direct write completions */
40 #define XFS_DIO_FLAG_UNWRITTEN (1 << 0)
41 #define XFS_DIO_FLAG_APPEND (1 << 1)
44 * structure owned by writepages passed to individual writepage calls
46 struct xfs_writepage_ctx
{
47 struct xfs_bmbt_irec imap
;
50 struct xfs_ioend
*ioend
;
60 struct buffer_head
*bh
, *head
;
62 *delalloc
= *unwritten
= 0;
64 bh
= head
= page_buffers(page
);
66 if (buffer_unwritten(bh
))
68 else if (buffer_delay(bh
))
70 } while ((bh
= bh
->b_this_page
) != head
);
74 xfs_find_bdev_for_inode(
77 struct xfs_inode
*ip
= XFS_I(inode
);
78 struct xfs_mount
*mp
= ip
->i_mount
;
80 if (XFS_IS_REALTIME_INODE(ip
))
81 return mp
->m_rtdev_targp
->bt_bdev
;
83 return mp
->m_ddev_targp
->bt_bdev
;
87 * We're now finished for good with this page. Update the page state via the
88 * associated buffer_heads, paying attention to the start and end offsets that
89 * we need to process on the page.
91 * Landmine Warning: bh->b_end_io() will call end_page_writeback() on the last
92 * buffer in the IO. Once it does this, it is unsafe to access the bufferhead or
93 * the page at all, as we may be racing with memory reclaim and it can free both
94 * the bufferhead chain and the page as it will see the page as clean and
98 xfs_finish_page_writeback(
100 struct bio_vec
*bvec
,
103 unsigned int end
= bvec
->bv_offset
+ bvec
->bv_len
- 1;
104 struct buffer_head
*head
, *bh
, *next
;
105 unsigned int off
= 0;
108 ASSERT(bvec
->bv_offset
< PAGE_SIZE
);
109 ASSERT((bvec
->bv_offset
& ((1 << inode
->i_blkbits
) - 1)) == 0);
110 ASSERT(end
< PAGE_SIZE
);
111 ASSERT((bvec
->bv_len
& ((1 << inode
->i_blkbits
) - 1)) == 0);
113 bh
= head
= page_buffers(bvec
->bv_page
);
117 next
= bh
->b_this_page
;
118 if (off
< bvec
->bv_offset
)
122 bh
->b_end_io(bh
, !error
);
125 } while ((bh
= next
) != head
);
129 * We're now finished for good with this ioend structure. Update the page
130 * state, release holds on bios, and finally free up memory. Do not use the
135 struct xfs_ioend
*ioend
,
138 struct inode
*inode
= ioend
->io_inode
;
139 struct bio
*last
= ioend
->io_bio
;
140 struct bio
*bio
, *next
;
142 for (bio
= &ioend
->io_inline_bio
; bio
; bio
= next
) {
143 struct bio_vec
*bvec
;
147 * For the last bio, bi_private points to the ioend, so we
148 * need to explicitly end the iteration here.
153 next
= bio
->bi_private
;
155 /* walk each page on bio, ending page IO on them */
156 bio_for_each_segment_all(bvec
, bio
, i
)
157 xfs_finish_page_writeback(inode
, bvec
, error
);
164 * Fast and loose check if this write could update the on-disk inode size.
166 static inline bool xfs_ioend_is_append(struct xfs_ioend
*ioend
)
168 return ioend
->io_offset
+ ioend
->io_size
>
169 XFS_I(ioend
->io_inode
)->i_d
.di_size
;
173 xfs_setfilesize_trans_alloc(
174 struct xfs_ioend
*ioend
)
176 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
177 struct xfs_trans
*tp
;
180 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_fsyncts
, 0, 0, 0, &tp
);
184 ioend
->io_append_trans
= tp
;
187 * We may pass freeze protection with a transaction. So tell lockdep
190 __sb_writers_release(ioend
->io_inode
->i_sb
, SB_FREEZE_FS
);
192 * We hand off the transaction to the completion thread now, so
193 * clear the flag here.
195 current_restore_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
200 * Update on-disk file size now that data has been written to disk.
204 struct xfs_inode
*ip
,
205 struct xfs_trans
*tp
,
211 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
212 isize
= xfs_new_eof(ip
, offset
+ size
);
214 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
215 xfs_trans_cancel(tp
);
219 trace_xfs_setfilesize(ip
, offset
, size
);
221 ip
->i_d
.di_size
= isize
;
222 xfs_trans_ijoin(tp
, ip
, XFS_ILOCK_EXCL
);
223 xfs_trans_log_inode(tp
, ip
, XFS_ILOG_CORE
);
225 return xfs_trans_commit(tp
);
229 xfs_setfilesize_ioend(
230 struct xfs_ioend
*ioend
,
233 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
234 struct xfs_trans
*tp
= ioend
->io_append_trans
;
237 * The transaction may have been allocated in the I/O submission thread,
238 * thus we need to mark ourselves as being in a transaction manually.
239 * Similarly for freeze protection.
241 current_set_flags_nested(&tp
->t_pflags
, PF_FSTRANS
);
242 __sb_writers_acquired(VFS_I(ip
)->i_sb
, SB_FREEZE_FS
);
244 /* we abort the update if there was an IO error */
246 xfs_trans_cancel(tp
);
250 return xfs_setfilesize(ip
, tp
, ioend
->io_offset
, ioend
->io_size
);
254 * IO write completion.
258 struct work_struct
*work
)
260 struct xfs_ioend
*ioend
=
261 container_of(work
, struct xfs_ioend
, io_work
);
262 struct xfs_inode
*ip
= XFS_I(ioend
->io_inode
);
263 int error
= ioend
->io_bio
->bi_error
;
266 * Set an error if the mount has shut down and proceed with end I/O
267 * processing so it can perform whatever cleanups are necessary.
269 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
273 * For unwritten extents we need to issue transactions to convert a
274 * range to normal written extens after the data I/O has finished.
275 * Detecting and handling completion IO errors is done individually
276 * for each case as different cleanup operations need to be performed
279 if (ioend
->io_type
== XFS_IO_UNWRITTEN
) {
282 error
= xfs_iomap_write_unwritten(ip
, ioend
->io_offset
,
284 } else if (ioend
->io_append_trans
) {
285 error
= xfs_setfilesize_ioend(ioend
, error
);
287 ASSERT(!xfs_ioend_is_append(ioend
));
291 xfs_destroy_ioend(ioend
, error
);
298 struct xfs_ioend
*ioend
= bio
->bi_private
;
299 struct xfs_mount
*mp
= XFS_I(ioend
->io_inode
)->i_mount
;
301 if (ioend
->io_type
== XFS_IO_UNWRITTEN
)
302 queue_work(mp
->m_unwritten_workqueue
, &ioend
->io_work
);
303 else if (ioend
->io_append_trans
)
304 queue_work(mp
->m_data_workqueue
, &ioend
->io_work
);
306 xfs_destroy_ioend(ioend
, bio
->bi_error
);
313 struct xfs_bmbt_irec
*imap
,
316 struct xfs_inode
*ip
= XFS_I(inode
);
317 struct xfs_mount
*mp
= ip
->i_mount
;
318 ssize_t count
= 1 << inode
->i_blkbits
;
319 xfs_fileoff_t offset_fsb
, end_fsb
;
321 int bmapi_flags
= XFS_BMAPI_ENTIRE
;
324 if (XFS_FORCED_SHUTDOWN(mp
))
327 if (type
== XFS_IO_UNWRITTEN
)
328 bmapi_flags
|= XFS_BMAPI_IGSTATE
;
330 xfs_ilock(ip
, XFS_ILOCK_SHARED
);
331 ASSERT(ip
->i_d
.di_format
!= XFS_DINODE_FMT_BTREE
||
332 (ip
->i_df
.if_flags
& XFS_IFEXTENTS
));
333 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
335 if (offset
+ count
> mp
->m_super
->s_maxbytes
)
336 count
= mp
->m_super
->s_maxbytes
- offset
;
337 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ count
);
338 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
339 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
340 imap
, &nimaps
, bmapi_flags
);
341 xfs_iunlock(ip
, XFS_ILOCK_SHARED
);
346 if (type
== XFS_IO_DELALLOC
&&
347 (!nimaps
|| isnullstartblock(imap
->br_startblock
))) {
348 error
= xfs_iomap_write_allocate(ip
, offset
, imap
);
350 trace_xfs_map_blocks_alloc(ip
, offset
, count
, type
, imap
);
355 if (type
== XFS_IO_UNWRITTEN
) {
357 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
358 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
362 trace_xfs_map_blocks_found(ip
, offset
, count
, type
, imap
);
369 struct xfs_bmbt_irec
*imap
,
372 offset
>>= inode
->i_blkbits
;
374 return offset
>= imap
->br_startoff
&&
375 offset
< imap
->br_startoff
+ imap
->br_blockcount
;
379 xfs_start_buffer_writeback(
380 struct buffer_head
*bh
)
382 ASSERT(buffer_mapped(bh
));
383 ASSERT(buffer_locked(bh
));
384 ASSERT(!buffer_delay(bh
));
385 ASSERT(!buffer_unwritten(bh
));
387 mark_buffer_async_write(bh
);
388 set_buffer_uptodate(bh
);
389 clear_buffer_dirty(bh
);
393 xfs_start_page_writeback(
397 ASSERT(PageLocked(page
));
398 ASSERT(!PageWriteback(page
));
401 * if the page was not fully cleaned, we need to ensure that the higher
402 * layers come back to it correctly. That means we need to keep the page
403 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
404 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
405 * write this page in this writeback sweep will be made.
408 clear_page_dirty_for_io(page
);
409 set_page_writeback(page
);
411 set_page_writeback_keepwrite(page
);
416 static inline int xfs_bio_add_buffer(struct bio
*bio
, struct buffer_head
*bh
)
418 return bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
422 * Submit the bio for an ioend. We are passed an ioend with a bio attached to
423 * it, and we submit that bio. The ioend may be used for multiple bio
424 * submissions, so we only want to allocate an append transaction for the ioend
425 * once. In the case of multiple bio submission, each bio will take an IO
426 * reference to the ioend to ensure that the ioend completion is only done once
427 * all bios have been submitted and the ioend is really done.
429 * If @fail is non-zero, it means that we have a situation where some part of
430 * the submission process has failed after we have marked paged for writeback
431 * and unlocked them. In this situation, we need to fail the bio and ioend
432 * rather than submit it to IO. This typically only happens on a filesystem
437 struct writeback_control
*wbc
,
438 struct xfs_ioend
*ioend
,
441 /* Reserve log space if we might write beyond the on-disk inode size. */
443 ioend
->io_type
!= XFS_IO_UNWRITTEN
&&
444 xfs_ioend_is_append(ioend
) &&
445 !ioend
->io_append_trans
)
446 status
= xfs_setfilesize_trans_alloc(ioend
);
448 ioend
->io_bio
->bi_private
= ioend
;
449 ioend
->io_bio
->bi_end_io
= xfs_end_bio
;
450 bio_set_op_attrs(ioend
->io_bio
, REQ_OP_WRITE
,
451 (wbc
->sync_mode
== WB_SYNC_ALL
) ? WRITE_SYNC
: 0);
453 * If we are failing the IO now, just mark the ioend with an
454 * error and finish it. This will run IO completion immediately
455 * as there is only one reference to the ioend at this point in
459 ioend
->io_bio
->bi_error
= status
;
460 bio_endio(ioend
->io_bio
);
464 submit_bio(ioend
->io_bio
);
469 xfs_init_bio_from_bh(
471 struct buffer_head
*bh
)
473 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
474 bio
->bi_bdev
= bh
->b_bdev
;
477 static struct xfs_ioend
*
482 struct buffer_head
*bh
)
484 struct xfs_ioend
*ioend
;
487 bio
= bio_alloc_bioset(GFP_NOFS
, BIO_MAX_PAGES
, xfs_ioend_bioset
);
488 xfs_init_bio_from_bh(bio
, bh
);
490 ioend
= container_of(bio
, struct xfs_ioend
, io_inline_bio
);
491 INIT_LIST_HEAD(&ioend
->io_list
);
492 ioend
->io_type
= type
;
493 ioend
->io_inode
= inode
;
495 ioend
->io_offset
= offset
;
496 INIT_WORK(&ioend
->io_work
, xfs_end_io
);
497 ioend
->io_append_trans
= NULL
;
503 * Allocate a new bio, and chain the old bio to the new one.
505 * Note that we have to do perform the chaining in this unintuitive order
506 * so that the bi_private linkage is set up in the right direction for the
507 * traversal in xfs_destroy_ioend().
511 struct xfs_ioend
*ioend
,
512 struct writeback_control
*wbc
,
513 struct buffer_head
*bh
)
517 new = bio_alloc(GFP_NOFS
, BIO_MAX_PAGES
);
518 xfs_init_bio_from_bh(new, bh
);
520 bio_chain(ioend
->io_bio
, new);
521 bio_get(ioend
->io_bio
); /* for xfs_destroy_ioend */
522 bio_set_op_attrs(ioend
->io_bio
, REQ_OP_WRITE
,
523 (wbc
->sync_mode
== WB_SYNC_ALL
) ? WRITE_SYNC
: 0);
524 submit_bio(ioend
->io_bio
);
529 * Test to see if we've been building up a completion structure for
530 * earlier buffers -- if so, we try to append to this ioend if we
531 * can, otherwise we finish off any current ioend and start another.
532 * Return the ioend we finished off so that the caller can submit it
533 * once it has finished processing the dirty page.
538 struct buffer_head
*bh
,
540 struct xfs_writepage_ctx
*wpc
,
541 struct writeback_control
*wbc
,
542 struct list_head
*iolist
)
544 if (!wpc
->ioend
|| wpc
->io_type
!= wpc
->ioend
->io_type
||
545 bh
->b_blocknr
!= wpc
->last_block
+ 1 ||
546 offset
!= wpc
->ioend
->io_offset
+ wpc
->ioend
->io_size
) {
548 list_add(&wpc
->ioend
->io_list
, iolist
);
549 wpc
->ioend
= xfs_alloc_ioend(inode
, wpc
->io_type
, offset
, bh
);
553 * If the buffer doesn't fit into the bio we need to allocate a new
554 * one. This shouldn't happen more than once for a given buffer.
556 while (xfs_bio_add_buffer(wpc
->ioend
->io_bio
, bh
) != bh
->b_size
)
557 xfs_chain_bio(wpc
->ioend
, wbc
, bh
);
559 wpc
->ioend
->io_size
+= bh
->b_size
;
560 wpc
->last_block
= bh
->b_blocknr
;
561 xfs_start_buffer_writeback(bh
);
567 struct buffer_head
*bh
,
568 struct xfs_bmbt_irec
*imap
,
572 struct xfs_mount
*m
= XFS_I(inode
)->i_mount
;
573 xfs_off_t iomap_offset
= XFS_FSB_TO_B(m
, imap
->br_startoff
);
574 xfs_daddr_t iomap_bn
= xfs_fsb_to_db(XFS_I(inode
), imap
->br_startblock
);
576 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
577 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
579 bn
= (iomap_bn
>> (inode
->i_blkbits
- BBSHIFT
)) +
580 ((offset
- iomap_offset
) >> inode
->i_blkbits
);
582 ASSERT(bn
|| XFS_IS_REALTIME_INODE(XFS_I(inode
)));
585 set_buffer_mapped(bh
);
591 struct buffer_head
*bh
,
592 struct xfs_bmbt_irec
*imap
,
595 ASSERT(imap
->br_startblock
!= HOLESTARTBLOCK
);
596 ASSERT(imap
->br_startblock
!= DELAYSTARTBLOCK
);
598 xfs_map_buffer(inode
, bh
, imap
, offset
);
599 set_buffer_mapped(bh
);
600 clear_buffer_delay(bh
);
601 clear_buffer_unwritten(bh
);
605 * Test if a given page contains at least one buffer of a given @type.
606 * If @check_all_buffers is true, then we walk all the buffers in the page to
607 * try to find one of the type passed in. If it is not set, then the caller only
608 * needs to check the first buffer on the page for a match.
614 bool check_all_buffers
)
616 struct buffer_head
*bh
;
617 struct buffer_head
*head
;
619 if (PageWriteback(page
))
623 if (!page_has_buffers(page
))
626 bh
= head
= page_buffers(page
);
628 if (buffer_unwritten(bh
)) {
629 if (type
== XFS_IO_UNWRITTEN
)
631 } else if (buffer_delay(bh
)) {
632 if (type
== XFS_IO_DELALLOC
)
634 } else if (buffer_dirty(bh
) && buffer_mapped(bh
)) {
635 if (type
== XFS_IO_OVERWRITE
)
639 /* If we are only checking the first buffer, we are done now. */
640 if (!check_all_buffers
)
642 } while ((bh
= bh
->b_this_page
) != head
);
648 xfs_vm_invalidatepage(
653 trace_xfs_invalidatepage(page
->mapping
->host
, page
, offset
,
655 block_invalidatepage(page
, offset
, length
);
659 * If the page has delalloc buffers on it, we need to punch them out before we
660 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
661 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
662 * is done on that same region - the delalloc extent is returned when none is
663 * supposed to be there.
665 * We prevent this by truncating away the delalloc regions on the page before
666 * invalidating it. Because they are delalloc, we can do this without needing a
667 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
668 * truncation without a transaction as there is no space left for block
669 * reservation (typically why we see a ENOSPC in writeback).
671 * This is not a performance critical path, so for now just do the punching a
672 * buffer head at a time.
675 xfs_aops_discard_page(
678 struct inode
*inode
= page
->mapping
->host
;
679 struct xfs_inode
*ip
= XFS_I(inode
);
680 struct buffer_head
*bh
, *head
;
681 loff_t offset
= page_offset(page
);
683 if (!xfs_check_page_type(page
, XFS_IO_DELALLOC
, true))
686 if (XFS_FORCED_SHUTDOWN(ip
->i_mount
))
689 xfs_alert(ip
->i_mount
,
690 "page discard on page %p, inode 0x%llx, offset %llu.",
691 page
, ip
->i_ino
, offset
);
693 xfs_ilock(ip
, XFS_ILOCK_EXCL
);
694 bh
= head
= page_buffers(page
);
697 xfs_fileoff_t start_fsb
;
699 if (!buffer_delay(bh
))
702 start_fsb
= XFS_B_TO_FSBT(ip
->i_mount
, offset
);
703 error
= xfs_bmap_punch_delalloc_range(ip
, start_fsb
, 1);
705 /* something screwed, just bail */
706 if (!XFS_FORCED_SHUTDOWN(ip
->i_mount
)) {
707 xfs_alert(ip
->i_mount
,
708 "page discard unable to remove delalloc mapping.");
713 offset
+= 1 << inode
->i_blkbits
;
715 } while ((bh
= bh
->b_this_page
) != head
);
717 xfs_iunlock(ip
, XFS_ILOCK_EXCL
);
719 xfs_vm_invalidatepage(page
, 0, PAGE_SIZE
);
724 * We implement an immediate ioend submission policy here to avoid needing to
725 * chain multiple ioends and hence nest mempool allocations which can violate
726 * forward progress guarantees we need to provide. The current ioend we are
727 * adding buffers to is cached on the writepage context, and if the new buffer
728 * does not append to the cached ioend it will create a new ioend and cache that
731 * If a new ioend is created and cached, the old ioend is returned and queued
732 * locally for submission once the entire page is processed or an error has been
733 * detected. While ioends are submitted immediately after they are completed,
734 * batching optimisations are provided by higher level block plugging.
736 * At the end of a writeback pass, there will be a cached ioend remaining on the
737 * writepage context that the caller will need to submit.
741 struct xfs_writepage_ctx
*wpc
,
742 struct writeback_control
*wbc
,
746 __uint64_t end_offset
)
748 LIST_HEAD(submit_list
);
749 struct xfs_ioend
*ioend
, *next
;
750 struct buffer_head
*bh
, *head
;
751 ssize_t len
= 1 << inode
->i_blkbits
;
756 bh
= head
= page_buffers(page
);
757 offset
= page_offset(page
);
759 if (offset
>= end_offset
)
761 if (!buffer_uptodate(bh
))
765 * set_page_dirty dirties all buffers in a page, independent
766 * of their state. The dirty state however is entirely
767 * meaningless for holes (!mapped && uptodate), so skip
768 * buffers covering holes here.
770 if (!buffer_mapped(bh
) && buffer_uptodate(bh
)) {
771 wpc
->imap_valid
= false;
775 if (buffer_unwritten(bh
)) {
776 if (wpc
->io_type
!= XFS_IO_UNWRITTEN
) {
777 wpc
->io_type
= XFS_IO_UNWRITTEN
;
778 wpc
->imap_valid
= false;
780 } else if (buffer_delay(bh
)) {
781 if (wpc
->io_type
!= XFS_IO_DELALLOC
) {
782 wpc
->io_type
= XFS_IO_DELALLOC
;
783 wpc
->imap_valid
= false;
785 } else if (buffer_uptodate(bh
)) {
786 if (wpc
->io_type
!= XFS_IO_OVERWRITE
) {
787 wpc
->io_type
= XFS_IO_OVERWRITE
;
788 wpc
->imap_valid
= false;
791 if (PageUptodate(page
))
792 ASSERT(buffer_mapped(bh
));
794 * This buffer is not uptodate and will not be
795 * written to disk. Ensure that we will put any
796 * subsequent writeable buffers into a new
799 wpc
->imap_valid
= false;
804 wpc
->imap_valid
= xfs_imap_valid(inode
, &wpc
->imap
,
806 if (!wpc
->imap_valid
) {
807 error
= xfs_map_blocks(inode
, offset
, &wpc
->imap
,
811 wpc
->imap_valid
= xfs_imap_valid(inode
, &wpc
->imap
,
814 if (wpc
->imap_valid
) {
816 if (wpc
->io_type
!= XFS_IO_OVERWRITE
)
817 xfs_map_at_offset(inode
, bh
, &wpc
->imap
, offset
);
818 xfs_add_to_ioend(inode
, bh
, offset
, wpc
, wbc
, &submit_list
);
822 } while (offset
+= len
, ((bh
= bh
->b_this_page
) != head
));
824 if (uptodate
&& bh
== head
)
825 SetPageUptodate(page
);
827 ASSERT(wpc
->ioend
|| list_empty(&submit_list
));
831 * On error, we have to fail the ioend here because we have locked
832 * buffers in the ioend. If we don't do this, we'll deadlock
833 * invalidating the page as that tries to lock the buffers on the page.
834 * Also, because we may have set pages under writeback, we have to make
835 * sure we run IO completion to mark the error state of the IO
836 * appropriately, so we can't cancel the ioend directly here. That means
837 * we have to mark this page as under writeback if we included any
838 * buffers from it in the ioend chain so that completion treats it
841 * If we didn't include the page in the ioend, the on error we can
842 * simply discard and unlock it as there are no other users of the page
843 * or it's buffers right now. The caller will still need to trigger
844 * submission of outstanding ioends on the writepage context so they are
845 * treated correctly on error.
848 xfs_start_page_writeback(page
, !error
);
851 * Preserve the original error if there was one, otherwise catch
852 * submission errors here and propagate into subsequent ioend
855 list_for_each_entry_safe(ioend
, next
, &submit_list
, io_list
) {
858 list_del_init(&ioend
->io_list
);
859 error2
= xfs_submit_ioend(wbc
, ioend
, error
);
860 if (error2
&& !error
)
864 xfs_aops_discard_page(page
);
865 ClearPageUptodate(page
);
869 * We can end up here with no error and nothing to write if we
870 * race with a partial page truncate on a sub-page block sized
871 * filesystem. In that case we need to mark the page clean.
873 xfs_start_page_writeback(page
, 1);
874 end_page_writeback(page
);
877 mapping_set_error(page
->mapping
, error
);
882 * Write out a dirty page.
884 * For delalloc space on the page we need to allocate space and flush it.
885 * For unwritten space on the page we need to start the conversion to
886 * regular allocated space.
887 * For any other dirty buffer heads on the page we should flush them.
892 struct writeback_control
*wbc
,
895 struct xfs_writepage_ctx
*wpc
= data
;
896 struct inode
*inode
= page
->mapping
->host
;
898 __uint64_t end_offset
;
901 trace_xfs_writepage(inode
, page
, 0, 0);
903 ASSERT(page_has_buffers(page
));
906 * Refuse to write the page out if we are called from reclaim context.
908 * This avoids stack overflows when called from deeply used stacks in
909 * random callers for direct reclaim or memcg reclaim. We explicitly
910 * allow reclaim from kswapd as the stack usage there is relatively low.
912 * This should never happen except in the case of a VM regression so
915 if (WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
)) ==
920 * Given that we do not allow direct reclaim to call us, we should
921 * never be called while in a filesystem transaction.
923 if (WARN_ON_ONCE(current
->flags
& PF_FSTRANS
))
927 * Is this page beyond the end of the file?
929 * The page index is less than the end_index, adjust the end_offset
930 * to the highest offset that this page should represent.
931 * -----------------------------------------------------
932 * | file mapping | <EOF> |
933 * -----------------------------------------------------
934 * | Page ... | Page N-2 | Page N-1 | Page N | |
935 * ^--------------------------------^----------|--------
936 * | desired writeback range | see else |
937 * ---------------------------------^------------------|
939 offset
= i_size_read(inode
);
940 end_index
= offset
>> PAGE_SHIFT
;
941 if (page
->index
< end_index
)
942 end_offset
= (xfs_off_t
)(page
->index
+ 1) << PAGE_SHIFT
;
945 * Check whether the page to write out is beyond or straddles
947 * -------------------------------------------------------
948 * | file mapping | <EOF> |
949 * -------------------------------------------------------
950 * | Page ... | Page N-2 | Page N-1 | Page N | Beyond |
951 * ^--------------------------------^-----------|---------
953 * ---------------------------------^-----------|--------|
955 unsigned offset_into_page
= offset
& (PAGE_SIZE
- 1);
958 * Skip the page if it is fully outside i_size, e.g. due to a
959 * truncate operation that is in progress. We must redirty the
960 * page so that reclaim stops reclaiming it. Otherwise
961 * xfs_vm_releasepage() is called on it and gets confused.
963 * Note that the end_index is unsigned long, it would overflow
964 * if the given offset is greater than 16TB on 32-bit system
965 * and if we do check the page is fully outside i_size or not
966 * via "if (page->index >= end_index + 1)" as "end_index + 1"
967 * will be evaluated to 0. Hence this page will be redirtied
968 * and be written out repeatedly which would result in an
969 * infinite loop, the user program that perform this operation
970 * will hang. Instead, we can verify this situation by checking
971 * if the page to write is totally beyond the i_size or if it's
972 * offset is just equal to the EOF.
974 if (page
->index
> end_index
||
975 (page
->index
== end_index
&& offset_into_page
== 0))
979 * The page straddles i_size. It must be zeroed out on each
980 * and every writepage invocation because it may be mmapped.
981 * "A file is mapped in multiples of the page size. For a file
982 * that is not a multiple of the page size, the remaining
983 * memory is zeroed when mapped, and writes to that region are
984 * not written out to the file."
986 zero_user_segment(page
, offset_into_page
, PAGE_SIZE
);
988 /* Adjust the end_offset to the end of file */
992 return xfs_writepage_map(wpc
, wbc
, inode
, page
, offset
, end_offset
);
995 redirty_page_for_writepage(wbc
, page
);
1003 struct writeback_control
*wbc
)
1005 struct xfs_writepage_ctx wpc
= {
1006 .io_type
= XFS_IO_INVALID
,
1010 ret
= xfs_do_writepage(page
, wbc
, &wpc
);
1012 ret
= xfs_submit_ioend(wbc
, wpc
.ioend
, ret
);
1018 struct address_space
*mapping
,
1019 struct writeback_control
*wbc
)
1021 struct xfs_writepage_ctx wpc
= {
1022 .io_type
= XFS_IO_INVALID
,
1026 xfs_iflags_clear(XFS_I(mapping
->host
), XFS_ITRUNCATED
);
1027 if (dax_mapping(mapping
))
1028 return dax_writeback_mapping_range(mapping
,
1029 xfs_find_bdev_for_inode(mapping
->host
), wbc
);
1031 ret
= write_cache_pages(mapping
, wbc
, xfs_do_writepage
, &wpc
);
1033 ret
= xfs_submit_ioend(wbc
, wpc
.ioend
, ret
);
1038 * Called to move a page into cleanable state - and from there
1039 * to be released. The page should already be clean. We always
1040 * have buffer heads in this call.
1042 * Returns 1 if the page is ok to release, 0 otherwise.
1049 int delalloc
, unwritten
;
1051 trace_xfs_releasepage(page
->mapping
->host
, page
, 0, 0);
1054 * mm accommodates an old ext3 case where clean pages might not have had
1055 * the dirty bit cleared. Thus, it can send actual dirty pages to
1056 * ->releasepage() via shrink_active_list(). Conversely,
1057 * block_invalidatepage() can send pages that are still marked dirty
1058 * but otherwise have invalidated buffers.
1060 * We've historically freed buffers on the latter. Instead, quietly
1061 * filter out all dirty pages to avoid spurious buffer state warnings.
1062 * This can likely be removed once shrink_active_list() is fixed.
1064 if (PageDirty(page
))
1067 xfs_count_page_state(page
, &delalloc
, &unwritten
);
1069 if (WARN_ON_ONCE(delalloc
))
1071 if (WARN_ON_ONCE(unwritten
))
1074 return try_to_free_buffers(page
);
1078 * When we map a DIO buffer, we may need to pass flags to
1079 * xfs_end_io_direct_write to tell it what kind of write IO we are doing.
1081 * Note that for DIO, an IO to the highest supported file block offset (i.e.
1082 * 2^63 - 1FSB bytes) will result in the offset + count overflowing a signed 64
1083 * bit variable. Hence if we see this overflow, we have to assume that the IO is
1084 * extending the file size. We won't know for sure until IO completion is run
1085 * and the actual max write offset is communicated to the IO completion
1090 struct inode
*inode
,
1091 struct buffer_head
*bh_result
,
1092 struct xfs_bmbt_irec
*imap
,
1095 uintptr_t *flags
= (uintptr_t *)&bh_result
->b_private
;
1096 xfs_off_t size
= bh_result
->b_size
;
1098 trace_xfs_get_blocks_map_direct(XFS_I(inode
), offset
, size
,
1099 ISUNWRITTEN(imap
) ? XFS_IO_UNWRITTEN
: XFS_IO_OVERWRITE
, imap
);
1101 if (ISUNWRITTEN(imap
)) {
1102 *flags
|= XFS_DIO_FLAG_UNWRITTEN
;
1103 set_buffer_defer_completion(bh_result
);
1104 } else if (offset
+ size
> i_size_read(inode
) || offset
+ size
< 0) {
1105 *flags
|= XFS_DIO_FLAG_APPEND
;
1106 set_buffer_defer_completion(bh_result
);
1111 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1112 * is, so that we can avoid repeated get_blocks calls.
1114 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1115 * for blocks beyond EOF must be marked new so that sub block regions can be
1116 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1117 * was just allocated or is unwritten, otherwise the callers would overwrite
1118 * existing data with zeros. Hence we have to split the mapping into a range up
1119 * to and including EOF, and a second mapping for beyond EOF.
1123 struct inode
*inode
,
1125 struct buffer_head
*bh_result
,
1126 struct xfs_bmbt_irec
*imap
,
1130 xfs_off_t mapping_size
;
1132 mapping_size
= imap
->br_startoff
+ imap
->br_blockcount
- iblock
;
1133 mapping_size
<<= inode
->i_blkbits
;
1135 ASSERT(mapping_size
> 0);
1136 if (mapping_size
> size
)
1137 mapping_size
= size
;
1138 if (offset
< i_size_read(inode
) &&
1139 offset
+ mapping_size
>= i_size_read(inode
)) {
1140 /* limit mapping to block that spans EOF */
1141 mapping_size
= roundup_64(i_size_read(inode
) - offset
,
1142 1 << inode
->i_blkbits
);
1144 if (mapping_size
> LONG_MAX
)
1145 mapping_size
= LONG_MAX
;
1147 bh_result
->b_size
= mapping_size
;
1152 struct inode
*inode
,
1154 struct buffer_head
*bh_result
,
1159 struct xfs_inode
*ip
= XFS_I(inode
);
1160 struct xfs_mount
*mp
= ip
->i_mount
;
1161 xfs_fileoff_t offset_fsb
, end_fsb
;
1164 struct xfs_bmbt_irec imap
;
1170 BUG_ON(create
&& !direct
);
1172 if (XFS_FORCED_SHUTDOWN(mp
))
1175 offset
= (xfs_off_t
)iblock
<< inode
->i_blkbits
;
1176 ASSERT(bh_result
->b_size
>= (1 << inode
->i_blkbits
));
1177 size
= bh_result
->b_size
;
1179 if (!create
&& offset
>= i_size_read(inode
))
1183 * Direct I/O is usually done on preallocated files, so try getting
1184 * a block mapping without an exclusive lock first.
1186 lockmode
= xfs_ilock_data_map_shared(ip
);
1188 ASSERT(offset
<= mp
->m_super
->s_maxbytes
);
1189 if (offset
+ size
> mp
->m_super
->s_maxbytes
)
1190 size
= mp
->m_super
->s_maxbytes
- offset
;
1191 end_fsb
= XFS_B_TO_FSB(mp
, (xfs_ufsize_t
)offset
+ size
);
1192 offset_fsb
= XFS_B_TO_FSBT(mp
, offset
);
1194 error
= xfs_bmapi_read(ip
, offset_fsb
, end_fsb
- offset_fsb
,
1195 &imap
, &nimaps
, XFS_BMAPI_ENTIRE
);
1199 /* for DAX, we convert unwritten extents directly */
1202 (imap
.br_startblock
== HOLESTARTBLOCK
||
1203 imap
.br_startblock
== DELAYSTARTBLOCK
) ||
1204 (IS_DAX(inode
) && ISUNWRITTEN(&imap
)))) {
1206 * xfs_iomap_write_direct() expects the shared lock. It
1207 * is unlocked on return.
1209 if (lockmode
== XFS_ILOCK_EXCL
)
1210 xfs_ilock_demote(ip
, lockmode
);
1212 error
= xfs_iomap_write_direct(ip
, offset
, size
,
1218 trace_xfs_get_blocks_alloc(ip
, offset
, size
,
1219 ISUNWRITTEN(&imap
) ? XFS_IO_UNWRITTEN
1220 : XFS_IO_DELALLOC
, &imap
);
1221 } else if (nimaps
) {
1222 trace_xfs_get_blocks_found(ip
, offset
, size
,
1223 ISUNWRITTEN(&imap
) ? XFS_IO_UNWRITTEN
1224 : XFS_IO_OVERWRITE
, &imap
);
1225 xfs_iunlock(ip
, lockmode
);
1227 trace_xfs_get_blocks_notfound(ip
, offset
, size
);
1231 if (IS_DAX(inode
) && create
) {
1232 ASSERT(!ISUNWRITTEN(&imap
));
1233 /* zeroing is not needed at a higher layer */
1237 /* trim mapping down to size requested */
1238 xfs_map_trim_size(inode
, iblock
, bh_result
, &imap
, offset
, size
);
1241 * For unwritten extents do not report a disk address in the buffered
1242 * read case (treat as if we're reading into a hole).
1244 if (imap
.br_startblock
!= HOLESTARTBLOCK
&&
1245 imap
.br_startblock
!= DELAYSTARTBLOCK
&&
1246 (create
|| !ISUNWRITTEN(&imap
))) {
1247 xfs_map_buffer(inode
, bh_result
, &imap
, offset
);
1248 if (ISUNWRITTEN(&imap
))
1249 set_buffer_unwritten(bh_result
);
1250 /* direct IO needs special help */
1253 ASSERT(!ISUNWRITTEN(&imap
));
1255 xfs_map_direct(inode
, bh_result
, &imap
, offset
);
1260 * If this is a realtime file, data may be on a different device.
1261 * to that pointed to from the buffer_head b_bdev currently.
1263 bh_result
->b_bdev
= xfs_find_bdev_for_inode(inode
);
1266 * If we previously allocated a block out beyond eof and we are now
1267 * coming back to use it then we will need to flag it as new even if it
1268 * has a disk address.
1270 * With sub-block writes into unwritten extents we also need to mark
1271 * the buffer as new so that the unwritten parts of the buffer gets
1275 ((!buffer_mapped(bh_result
) && !buffer_uptodate(bh_result
)) ||
1276 (offset
>= i_size_read(inode
)) ||
1277 (new || ISUNWRITTEN(&imap
))))
1278 set_buffer_new(bh_result
);
1280 BUG_ON(direct
&& imap
.br_startblock
== DELAYSTARTBLOCK
);
1285 xfs_iunlock(ip
, lockmode
);
1291 struct inode
*inode
,
1293 struct buffer_head
*bh_result
,
1296 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, false, false);
1300 xfs_get_blocks_direct(
1301 struct inode
*inode
,
1303 struct buffer_head
*bh_result
,
1306 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, true, false);
1310 xfs_get_blocks_dax_fault(
1311 struct inode
*inode
,
1313 struct buffer_head
*bh_result
,
1316 return __xfs_get_blocks(inode
, iblock
, bh_result
, create
, true, true);
1320 * Complete a direct I/O write request.
1322 * xfs_map_direct passes us some flags in the private data to tell us what to
1323 * do. If no flags are set, then the write IO is an overwrite wholly within
1324 * the existing allocated file size and so there is nothing for us to do.
1326 * Note that in this case the completion can be called in interrupt context,
1327 * whereas if we have flags set we will always be called in task context
1328 * (i.e. from a workqueue).
1331 xfs_end_io_direct_write(
1337 struct inode
*inode
= file_inode(iocb
->ki_filp
);
1338 struct xfs_inode
*ip
= XFS_I(inode
);
1339 struct xfs_mount
*mp
= ip
->i_mount
;
1340 uintptr_t flags
= (uintptr_t)private;
1343 trace_xfs_end_io_direct_write(ip
, offset
, size
);
1345 if (XFS_FORCED_SHUTDOWN(mp
))
1352 * The flags tell us whether we are doing unwritten extent conversions
1353 * or an append transaction that updates the on-disk file size. These
1354 * cases are the only cases where we should *potentially* be needing
1355 * to update the VFS inode size.
1358 ASSERT(offset
+ size
<= i_size_read(inode
));
1363 * We need to update the in-core inode size here so that we don't end up
1364 * with the on-disk inode size being outside the in-core inode size. We
1365 * have no other method of updating EOF for AIO, so always do it here
1368 * We need to lock the test/set EOF update as we can be racing with
1369 * other IO completions here to update the EOF. Failing to serialise
1370 * here can result in EOF moving backwards and Bad Things Happen when
1373 spin_lock(&ip
->i_flags_lock
);
1374 if (offset
+ size
> i_size_read(inode
))
1375 i_size_write(inode
, offset
+ size
);
1376 spin_unlock(&ip
->i_flags_lock
);
1378 if (flags
& XFS_DIO_FLAG_UNWRITTEN
) {
1379 trace_xfs_end_io_direct_write_unwritten(ip
, offset
, size
);
1381 error
= xfs_iomap_write_unwritten(ip
, offset
, size
);
1382 } else if (flags
& XFS_DIO_FLAG_APPEND
) {
1383 struct xfs_trans
*tp
;
1385 trace_xfs_end_io_direct_write_append(ip
, offset
, size
);
1387 error
= xfs_trans_alloc(mp
, &M_RES(mp
)->tr_fsyncts
, 0, 0, 0,
1390 error
= xfs_setfilesize(ip
, tp
, offset
, size
);
1399 struct iov_iter
*iter
)
1402 * We just need the method present so that open/fcntl allow direct I/O.
1409 struct address_space
*mapping
,
1412 struct inode
*inode
= (struct inode
*)mapping
->host
;
1413 struct xfs_inode
*ip
= XFS_I(inode
);
1415 trace_xfs_vm_bmap(XFS_I(inode
));
1416 xfs_ilock(ip
, XFS_IOLOCK_SHARED
);
1417 filemap_write_and_wait(mapping
);
1418 xfs_iunlock(ip
, XFS_IOLOCK_SHARED
);
1419 return generic_block_bmap(mapping
, block
, xfs_get_blocks
);
1424 struct file
*unused
,
1427 trace_xfs_vm_readpage(page
->mapping
->host
, 1);
1428 return mpage_readpage(page
, xfs_get_blocks
);
1433 struct file
*unused
,
1434 struct address_space
*mapping
,
1435 struct list_head
*pages
,
1438 trace_xfs_vm_readpages(mapping
->host
, nr_pages
);
1439 return mpage_readpages(mapping
, pages
, nr_pages
, xfs_get_blocks
);
1443 * This is basically a copy of __set_page_dirty_buffers() with one
1444 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1445 * dirty, we'll never be able to clean them because we don't write buffers
1446 * beyond EOF, and that means we can't invalidate pages that span EOF
1447 * that have been marked dirty. Further, the dirty state can leak into
1448 * the file interior if the file is extended, resulting in all sorts of
1449 * bad things happening as the state does not match the underlying data.
1451 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1452 * this only exist because of bufferheads and how the generic code manages them.
1455 xfs_vm_set_page_dirty(
1458 struct address_space
*mapping
= page
->mapping
;
1459 struct inode
*inode
= mapping
->host
;
1464 if (unlikely(!mapping
))
1465 return !TestSetPageDirty(page
);
1467 end_offset
= i_size_read(inode
);
1468 offset
= page_offset(page
);
1470 spin_lock(&mapping
->private_lock
);
1471 if (page_has_buffers(page
)) {
1472 struct buffer_head
*head
= page_buffers(page
);
1473 struct buffer_head
*bh
= head
;
1476 if (offset
< end_offset
)
1477 set_buffer_dirty(bh
);
1478 bh
= bh
->b_this_page
;
1479 offset
+= 1 << inode
->i_blkbits
;
1480 } while (bh
!= head
);
1483 * Lock out page->mem_cgroup migration to keep PageDirty
1484 * synchronized with per-memcg dirty page counters.
1486 lock_page_memcg(page
);
1487 newly_dirty
= !TestSetPageDirty(page
);
1488 spin_unlock(&mapping
->private_lock
);
1491 /* sigh - __set_page_dirty() is static, so copy it here, too */
1492 unsigned long flags
;
1494 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1495 if (page
->mapping
) { /* Race with truncate? */
1496 WARN_ON_ONCE(!PageUptodate(page
));
1497 account_page_dirtied(page
, mapping
);
1498 radix_tree_tag_set(&mapping
->page_tree
,
1499 page_index(page
), PAGECACHE_TAG_DIRTY
);
1501 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1503 unlock_page_memcg(page
);
1505 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1509 const struct address_space_operations xfs_address_space_operations
= {
1510 .readpage
= xfs_vm_readpage
,
1511 .readpages
= xfs_vm_readpages
,
1512 .writepage
= xfs_vm_writepage
,
1513 .writepages
= xfs_vm_writepages
,
1514 .set_page_dirty
= xfs_vm_set_page_dirty
,
1515 .releasepage
= xfs_vm_releasepage
,
1516 .invalidatepage
= xfs_vm_invalidatepage
,
1517 .bmap
= xfs_vm_bmap
,
1518 .direct_IO
= xfs_vm_direct_IO
,
1519 .migratepage
= buffer_migrate_page
,
1520 .is_partially_uptodate
= block_is_partially_uptodate
,
1521 .error_remove_page
= generic_error_remove_page
,