2 * Time of Day Clock support for the M48T35, M48T37, M48T59, and MC146818
3 * Real Time Clocks/Timekeepers.
5 * Author: Mark A. Greer
8 * 2001-2004 (c) MontaVista, Software, Inc. This file is licensed under
9 * the terms of the GNU General Public License version 2. This program
10 * is licensed "as is" without any warranty of any kind, whether express
13 #include <linux/errno.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/time.h>
17 #include <linux/timex.h>
18 #include <linux/bcd.h>
19 #include <linux/mc146818rtc.h>
21 #include <asm/machdep.h>
27 * Depending on the hardware on your board and your board design, the
28 * RTC/NVRAM may be accessed either directly (like normal memory) or via
29 * address/data registers. If your board uses the direct method, set
30 * 'nvram_data' to the base address of your nvram and leave 'nvram_as0' and
31 * 'nvram_as1' NULL. If your board uses address/data regs to access nvram,
32 * set 'nvram_as0' to the address of the lower byte, set 'nvram_as1' to the
33 * address of the upper byte (leave NULL if using mc146818), and set
34 * 'nvram_data' to the address of the 8-bit data register.
36 * In order to break the assumption that the RTC and NVRAM are accessed by
37 * the same mechanism, you need to explicitly set 'ppc_md.rtc_read_val' and
38 * 'ppc_md.rtc_write_val', otherwise the values of 'ppc_md.rtc_read_val'
39 * and 'ppc_md.rtc_write_val' will be used.
41 * Note: Even though the documentation for the various RTC chips say that it
42 * take up to a second before it starts updating once the 'R' bit is
43 * cleared, they always seem to update even though we bang on it many
44 * times a second. This is true, except for the Dallas Semi 1746/1747
45 * (possibly others). Those chips seem to have a real problem whenever
46 * we set the 'R' bit before reading them, they basically stop counting.
51 * 'todc_info' should be initialized in your *_setup.c file to
52 * point to a fully initialized 'todc_info_t' structure.
53 * This structure holds all the register offsets for your particular
55 * TODC_ALLOC()/TODC_INIT() will allocate and initialize this table for you.
58 #ifdef RTC_FREQ_SELECT
59 #undef RTC_FREQ_SELECT
60 #define RTC_FREQ_SELECT control_b /* Register A */
65 #define RTC_CONTROL control_a /* Register B */
70 #define RTC_INTR_FLAGS watchdog /* Register C */
75 #define RTC_VALID interrupts /* Register D */
78 /* Access routines when RTC accessed directly (like normal memory) */
80 todc_direct_read_val(int addr
)
82 return readb((void __iomem
*)(todc_info
->nvram_data
+ addr
));
86 todc_direct_write_val(int addr
, unsigned char val
)
88 writeb(val
, (void __iomem
*)(todc_info
->nvram_data
+ addr
));
92 /* Access routines for accessing m48txx type chips via addr/data regs */
94 todc_m48txx_read_val(int addr
)
96 outb(addr
, todc_info
->nvram_as0
);
97 outb(addr
>>todc_info
->as0_bits
, todc_info
->nvram_as1
);
98 return inb(todc_info
->nvram_data
);
102 todc_m48txx_write_val(int addr
, unsigned char val
)
104 outb(addr
, todc_info
->nvram_as0
);
105 outb(addr
>>todc_info
->as0_bits
, todc_info
->nvram_as1
);
106 outb(val
, todc_info
->nvram_data
);
110 /* Access routines for accessing mc146818 type chips via addr/data regs */
112 todc_mc146818_read_val(int addr
)
114 outb_p(addr
, todc_info
->nvram_as0
);
115 return inb_p(todc_info
->nvram_data
);
119 todc_mc146818_write_val(int addr
, unsigned char val
)
121 outb_p(addr
, todc_info
->nvram_as0
);
122 outb_p(val
, todc_info
->nvram_data
);
127 * Routines to make RTC chips with NVRAM buried behind an addr/data pair
128 * have the NVRAM and clock regs appear at the same level.
129 * The NVRAM will appear to start at addr 0 and the clock regs will appear
130 * to start immediately after the NVRAM (actually, start at offset
131 * todc_info->nvram_size).
134 todc_read_val(int addr
)
138 if (todc_info
->sw_flags
& TODC_FLAG_2_LEVEL_NVRAM
) {
139 if (addr
< todc_info
->nvram_size
) { /* NVRAM */
140 ppc_md
.rtc_write_val(todc_info
->nvram_addr_reg
, addr
);
141 val
= ppc_md
.rtc_read_val(todc_info
->nvram_data_reg
);
143 else { /* Clock Reg */
144 addr
-= todc_info
->nvram_size
;
145 val
= ppc_md
.rtc_read_val(addr
);
149 val
= ppc_md
.rtc_read_val(addr
);
156 todc_write_val(int addr
, u_char val
)
158 if (todc_info
->sw_flags
& TODC_FLAG_2_LEVEL_NVRAM
) {
159 if (addr
< todc_info
->nvram_size
) { /* NVRAM */
160 ppc_md
.rtc_write_val(todc_info
->nvram_addr_reg
, addr
);
161 ppc_md
.rtc_write_val(todc_info
->nvram_data_reg
, val
);
163 else { /* Clock Reg */
164 addr
-= todc_info
->nvram_size
;
165 ppc_md
.rtc_write_val(addr
, val
);
169 ppc_md
.rtc_write_val(addr
, val
);
176 * There is some ugly stuff in that there are assumptions for the mc146818.
179 * - todc_info->control_a has the offset as mc146818 Register B reg
180 * - todc_info->control_b has the offset as mc146818 Register A reg
181 * - m48txx control reg's write enable or 'W' bit is same as
182 * mc146818 Register B 'SET' bit (i.e., 0x80)
184 * These assumptions were made to make the code simpler.
191 if (!ppc_md
.rtc_read_val
)
192 ppc_md
.rtc_read_val
= ppc_md
.nvram_read_val
;
193 if (!ppc_md
.rtc_write_val
)
194 ppc_md
.rtc_write_val
= ppc_md
.nvram_write_val
;
196 cntl_b
= todc_read_val(todc_info
->control_b
);
198 if (todc_info
->rtc_type
== TODC_TYPE_MC146818
) {
199 if ((cntl_b
& 0x70) != 0x20) {
200 printk(KERN_INFO
"TODC %s %s\n",
201 "real-time-clock was stopped.",
207 todc_write_val(todc_info
->control_b
, cntl_b
);
208 } else if (todc_info
->rtc_type
== TODC_TYPE_DS17285
) {
211 mode
= todc_read_val(TODC_TYPE_DS17285_CNTL_A
);
212 /* Make sure countdown clear is not set */
214 /* Enable oscillator, extended register set */
216 todc_write_val(TODC_TYPE_DS17285_CNTL_A
, mode
);
218 } else if (todc_info
->rtc_type
== TODC_TYPE_DS1501
) {
221 todc_info
->enable_read
= TODC_DS1501_CNTL_B_TE
;
222 todc_info
->enable_write
= TODC_DS1501_CNTL_B_TE
;
224 month
= todc_read_val(todc_info
->month
);
226 if ((month
& 0x80) == 0x80) {
227 printk(KERN_INFO
"TODC %s %s\n",
228 "real-time-clock was stopped.",
231 todc_write_val(todc_info
->month
, month
);
234 cntl_b
&= ~TODC_DS1501_CNTL_B_TE
;
235 todc_write_val(todc_info
->control_b
, cntl_b
);
236 } else { /* must be a m48txx type */
239 todc_info
->enable_read
= TODC_MK48TXX_CNTL_A_R
;
240 todc_info
->enable_write
= TODC_MK48TXX_CNTL_A_W
;
242 cntl_a
= todc_read_val(todc_info
->control_a
);
244 /* Check & clear STOP bit in control B register */
245 if (cntl_b
& TODC_MK48TXX_DAY_CB
) {
246 printk(KERN_INFO
"TODC %s %s\n",
247 "real-time-clock was stopped.",
250 cntl_a
|= todc_info
->enable_write
;
251 cntl_b
&= ~TODC_MK48TXX_DAY_CB
;/* Start Oscil */
253 todc_write_val(todc_info
->control_a
, cntl_a
);
254 todc_write_val(todc_info
->control_b
, cntl_b
);
257 /* Make sure READ & WRITE bits are cleared. */
258 cntl_a
&= ~(todc_info
->enable_write
|
259 todc_info
->enable_read
);
260 todc_write_val(todc_info
->control_a
, cntl_a
);
267 * There is some ugly stuff in that there are assumptions that for a mc146818,
268 * the todc_info->control_a has the offset of the mc146818 Register B reg and
269 * that the register'ss 'SET' bit is the same as the m48txx's write enable
270 * bit in the control register of the m48txx (i.e., 0x80).
272 * It was done to make the code look simpler.
275 todc_get_rtc_time(void)
277 uint year
= 0, mon
= 0, day
= 0, hour
= 0, min
= 0, sec
= 0;
279 u_char save_control
, uip
= 0;
281 spin_lock(&rtc_lock
);
282 save_control
= todc_read_val(todc_info
->control_a
);
284 if (todc_info
->rtc_type
!= TODC_TYPE_MC146818
) {
287 switch (todc_info
->rtc_type
) {
288 case TODC_TYPE_DS1553
:
289 case TODC_TYPE_DS1557
:
290 case TODC_TYPE_DS1743
:
291 case TODC_TYPE_DS1746
: /* XXXX BAD HACK -> FIX */
292 case TODC_TYPE_DS1747
:
293 case TODC_TYPE_DS17285
:
296 todc_write_val(todc_info
->control_a
,
297 (save_control
| todc_info
->enable_read
));
304 for (i
=0; i
<limit
; i
++) {
305 if (todc_info
->rtc_type
== TODC_TYPE_MC146818
) {
306 uip
= todc_read_val(todc_info
->RTC_FREQ_SELECT
);
309 sec
= todc_read_val(todc_info
->seconds
) & 0x7f;
310 min
= todc_read_val(todc_info
->minutes
) & 0x7f;
311 hour
= todc_read_val(todc_info
->hours
) & 0x3f;
312 day
= todc_read_val(todc_info
->day_of_month
) & 0x3f;
313 mon
= todc_read_val(todc_info
->month
) & 0x1f;
314 year
= todc_read_val(todc_info
->year
) & 0xff;
316 if (todc_info
->rtc_type
== TODC_TYPE_MC146818
) {
317 uip
|= todc_read_val(todc_info
->RTC_FREQ_SELECT
);
318 if ((uip
& RTC_UIP
) == 0) break;
322 if (todc_info
->rtc_type
!= TODC_TYPE_MC146818
) {
323 switch (todc_info
->rtc_type
) {
324 case TODC_TYPE_DS1553
:
325 case TODC_TYPE_DS1557
:
326 case TODC_TYPE_DS1743
:
327 case TODC_TYPE_DS1746
: /* XXXX BAD HACK -> FIX */
328 case TODC_TYPE_DS1747
:
329 case TODC_TYPE_DS17285
:
332 save_control
&= ~(todc_info
->enable_read
);
333 todc_write_val(todc_info
->control_a
,
337 spin_unlock(&rtc_lock
);
339 if ((todc_info
->rtc_type
!= TODC_TYPE_MC146818
) ||
340 ((save_control
& RTC_DM_BINARY
) == 0) ||
356 return mktime(year
, mon
, day
, hour
, min
, sec
);
360 todc_set_rtc_time(unsigned long nowtime
)
363 u_char save_control
, save_freq_select
= 0;
365 spin_lock(&rtc_lock
);
368 save_control
= todc_read_val(todc_info
->control_a
);
370 /* Assuming MK48T59_RTC_CA_WRITE & RTC_SET are equal */
371 todc_write_val(todc_info
->control_a
,
372 (save_control
| todc_info
->enable_write
));
373 save_control
&= ~(todc_info
->enable_write
); /* in case it was set */
375 if (todc_info
->rtc_type
== TODC_TYPE_MC146818
) {
376 save_freq_select
= todc_read_val(todc_info
->RTC_FREQ_SELECT
);
377 todc_write_val(todc_info
->RTC_FREQ_SELECT
,
378 save_freq_select
| RTC_DIV_RESET2
);
382 tm
.tm_year
= (tm
.tm_year
- 1900) % 100;
384 if ((todc_info
->rtc_type
!= TODC_TYPE_MC146818
) ||
385 ((save_control
& RTC_DM_BINARY
) == 0) ||
388 BIN_TO_BCD(tm
.tm_sec
);
389 BIN_TO_BCD(tm
.tm_min
);
390 BIN_TO_BCD(tm
.tm_hour
);
391 BIN_TO_BCD(tm
.tm_mon
);
392 BIN_TO_BCD(tm
.tm_mday
);
393 BIN_TO_BCD(tm
.tm_year
);
396 todc_write_val(todc_info
->seconds
, tm
.tm_sec
);
397 todc_write_val(todc_info
->minutes
, tm
.tm_min
);
398 todc_write_val(todc_info
->hours
, tm
.tm_hour
);
399 todc_write_val(todc_info
->month
, tm
.tm_mon
);
400 todc_write_val(todc_info
->day_of_month
, tm
.tm_mday
);
401 todc_write_val(todc_info
->year
, tm
.tm_year
);
403 todc_write_val(todc_info
->control_a
, save_control
);
405 if (todc_info
->rtc_type
== TODC_TYPE_MC146818
) {
406 todc_write_val(todc_info
->RTC_FREQ_SELECT
, save_freq_select
);
408 spin_unlock(&rtc_lock
);
414 * Manipulates read bit to reliably read seconds at a high rate.
416 static unsigned char __init
todc_read_timereg(int addr
)
418 unsigned char save_control
= 0, val
;
420 switch (todc_info
->rtc_type
) {
421 case TODC_TYPE_DS1553
:
422 case TODC_TYPE_DS1557
:
423 case TODC_TYPE_DS1746
: /* XXXX BAD HACK -> FIX */
424 case TODC_TYPE_DS1747
:
425 case TODC_TYPE_DS17285
:
426 case TODC_TYPE_MC146818
:
429 save_control
= todc_read_val(todc_info
->control_a
);
430 todc_write_val(todc_info
->control_a
,
431 (save_control
| todc_info
->enable_read
));
433 val
= todc_read_val(addr
);
435 switch (todc_info
->rtc_type
) {
436 case TODC_TYPE_DS1553
:
437 case TODC_TYPE_DS1557
:
438 case TODC_TYPE_DS1746
: /* XXXX BAD HACK -> FIX */
439 case TODC_TYPE_DS1747
:
440 case TODC_TYPE_DS17285
:
441 case TODC_TYPE_MC146818
:
444 save_control
&= ~(todc_info
->enable_read
);
445 todc_write_val(todc_info
->control_a
, save_control
);
452 * This was taken from prep_setup.c
453 * Use the NVRAM RTC to time a second to calibrate the decrementer.
456 todc_calibrate_decr(void)
466 * Actually this is bad for precision, we should have a loop in
467 * which we only read the seconds counter. todc_read_val writes
468 * the address bytes on every call and this takes a lot of time.
469 * Perhaps an nvram_wait_change method returning a time
470 * stamp with a loop count as parameter would be the solution.
473 * Need to make sure the tbl doesn't roll over so if tbu increments
474 * during this test, we need to do it again.
478 sec
= todc_read_timereg(todc_info
->seconds
) & 0x7f;
483 for (i
= 0 ; i
< 10000000 ; i
++) {/* may take up to 1 second */
486 if ((todc_read_timereg(todc_info
->seconds
) & 0x7f) != sec
) {
491 sec
= todc_read_timereg(todc_info
->seconds
) & 0x7f;
493 for (i
= 0 ; i
< 10000000 ; i
++) { /* Should take 1 second */
496 if ((todc_read_timereg(todc_info
->seconds
) & 0x7f) != sec
) {
502 } while ((get_tbu() != tbu
) && (++loop_count
< 2));
504 printk("time_init: decrementer frequency = %lu.%.6lu MHz\n",
505 freq
/1000000, freq
%1000000);
507 tb_ticks_per_jiffy
= freq
/ HZ
;
508 tb_to_us
= mulhwu_scale_factor(freq
, 1000000);