1 // SPDX-License-Identifier: GPL-2.0
3 * Main bcache entry point - handle a read or a write request and decide what to
4 * do with it; the make_request functions are called by the block layer.
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
14 #include "writeback.h"
16 #include <linux/module.h>
17 #include <linux/hash.h>
18 #include <linux/random.h>
19 #include <linux/backing-dev.h>
21 #include <trace/events/bcache.h>
23 #define CUTOFF_CACHE_ADD 95
24 #define CUTOFF_CACHE_READA 90
26 struct kmem_cache
*bch_search_cache
;
28 static void bch_data_insert_start(struct closure
*cl
);
30 static unsigned int cache_mode(struct cached_dev
*dc
)
32 return BDEV_CACHE_MODE(&dc
->sb
);
35 static bool verify(struct cached_dev
*dc
)
40 static void bio_csum(struct bio
*bio
, struct bkey
*k
)
43 struct bvec_iter iter
;
46 bio_for_each_segment(bv
, bio
, iter
) {
47 void *d
= kmap(bv
.bv_page
) + bv
.bv_offset
;
49 csum
= bch_crc64_update(csum
, d
, bv
.bv_len
);
53 k
->ptr
[KEY_PTRS(k
)] = csum
& (~0ULL >> 1);
56 /* Insert data into cache */
58 static void bch_data_insert_keys(struct closure
*cl
)
60 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
61 atomic_t
*journal_ref
= NULL
;
62 struct bkey
*replace_key
= op
->replace
? &op
->replace_key
: NULL
;
66 * If we're looping, might already be waiting on
67 * another journal write - can't wait on more than one journal write at
70 * XXX: this looks wrong
73 while (atomic_read(&s
->cl
.remaining
) & CLOSURE_WAITING
)
78 journal_ref
= bch_journal(op
->c
, &op
->insert_keys
,
79 op
->flush_journal
? cl
: NULL
);
81 ret
= bch_btree_insert(op
->c
, &op
->insert_keys
,
82 journal_ref
, replace_key
);
84 op
->replace_collision
= true;
86 op
->status
= BLK_STS_RESOURCE
;
87 op
->insert_data_done
= true;
91 atomic_dec_bug(journal_ref
);
93 if (!op
->insert_data_done
) {
94 continue_at(cl
, bch_data_insert_start
, op
->wq
);
98 bch_keylist_free(&op
->insert_keys
);
102 static int bch_keylist_realloc(struct keylist
*l
, unsigned int u64s
,
105 size_t oldsize
= bch_keylist_nkeys(l
);
106 size_t newsize
= oldsize
+ u64s
;
109 * The journalling code doesn't handle the case where the keys to insert
110 * is bigger than an empty write: If we just return -ENOMEM here,
111 * bch_data_insert_keys() will insert the keys created so far
112 * and finish the rest when the keylist is empty.
114 if (newsize
* sizeof(uint64_t) > block_bytes(c
) - sizeof(struct jset
))
117 return __bch_keylist_realloc(l
, u64s
);
120 static void bch_data_invalidate(struct closure
*cl
)
122 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
123 struct bio
*bio
= op
->bio
;
125 pr_debug("invalidating %i sectors from %llu",
126 bio_sectors(bio
), (uint64_t) bio
->bi_iter
.bi_sector
);
128 while (bio_sectors(bio
)) {
129 unsigned int sectors
= min(bio_sectors(bio
),
130 1U << (KEY_SIZE_BITS
- 1));
132 if (bch_keylist_realloc(&op
->insert_keys
, 2, op
->c
))
135 bio
->bi_iter
.bi_sector
+= sectors
;
136 bio
->bi_iter
.bi_size
-= sectors
<< 9;
138 bch_keylist_add(&op
->insert_keys
,
140 bio
->bi_iter
.bi_sector
,
144 op
->insert_data_done
= true;
145 /* get in bch_data_insert() */
148 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
151 static void bch_data_insert_error(struct closure
*cl
)
153 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
156 * Our data write just errored, which means we've got a bunch of keys to
157 * insert that point to data that wasn't successfully written.
159 * We don't have to insert those keys but we still have to invalidate
160 * that region of the cache - so, if we just strip off all the pointers
161 * from the keys we'll accomplish just that.
164 struct bkey
*src
= op
->insert_keys
.keys
, *dst
= op
->insert_keys
.keys
;
166 while (src
!= op
->insert_keys
.top
) {
167 struct bkey
*n
= bkey_next(src
);
169 SET_KEY_PTRS(src
, 0);
170 memmove(dst
, src
, bkey_bytes(src
));
172 dst
= bkey_next(dst
);
176 op
->insert_keys
.top
= dst
;
178 bch_data_insert_keys(cl
);
181 static void bch_data_insert_endio(struct bio
*bio
)
183 struct closure
*cl
= bio
->bi_private
;
184 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
186 if (bio
->bi_status
) {
187 /* TODO: We could try to recover from this. */
189 op
->status
= bio
->bi_status
;
190 else if (!op
->replace
)
191 set_closure_fn(cl
, bch_data_insert_error
, op
->wq
);
193 set_closure_fn(cl
, NULL
, NULL
);
196 bch_bbio_endio(op
->c
, bio
, bio
->bi_status
, "writing data to cache");
199 static void bch_data_insert_start(struct closure
*cl
)
201 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
202 struct bio
*bio
= op
->bio
, *n
;
205 return bch_data_invalidate(cl
);
207 if (atomic_sub_return(bio_sectors(bio
), &op
->c
->sectors_to_gc
) < 0)
211 * Journal writes are marked REQ_PREFLUSH; if the original write was a
212 * flush, it'll wait on the journal write.
214 bio
->bi_opf
&= ~(REQ_PREFLUSH
|REQ_FUA
);
219 struct bio_set
*split
= &op
->c
->bio_split
;
221 /* 1 for the device pointer and 1 for the chksum */
222 if (bch_keylist_realloc(&op
->insert_keys
,
223 3 + (op
->csum
? 1 : 0),
225 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
229 k
= op
->insert_keys
.top
;
231 SET_KEY_INODE(k
, op
->inode
);
232 SET_KEY_OFFSET(k
, bio
->bi_iter
.bi_sector
);
234 if (!bch_alloc_sectors(op
->c
, k
, bio_sectors(bio
),
235 op
->write_point
, op
->write_prio
,
239 n
= bio_next_split(bio
, KEY_SIZE(k
), GFP_NOIO
, split
);
241 n
->bi_end_io
= bch_data_insert_endio
;
245 SET_KEY_DIRTY(k
, true);
247 for (i
= 0; i
< KEY_PTRS(k
); i
++)
248 SET_GC_MARK(PTR_BUCKET(op
->c
, k
, i
),
252 SET_KEY_CSUM(k
, op
->csum
);
256 trace_bcache_cache_insert(k
);
257 bch_keylist_push(&op
->insert_keys
);
259 bio_set_op_attrs(n
, REQ_OP_WRITE
, 0);
260 bch_submit_bbio(n
, op
->c
, k
, 0);
263 op
->insert_data_done
= true;
264 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
267 /* bch_alloc_sectors() blocks if s->writeback = true */
268 BUG_ON(op
->writeback
);
271 * But if it's not a writeback write we'd rather just bail out if
272 * there aren't any buckets ready to write to - it might take awhile and
273 * we might be starving btree writes for gc or something.
278 * Writethrough write: We can't complete the write until we've
279 * updated the index. But we don't want to delay the write while
280 * we wait for buckets to be freed up, so just invalidate the
284 return bch_data_invalidate(cl
);
287 * From a cache miss, we can just insert the keys for the data
288 * we have written or bail out if we didn't do anything.
290 op
->insert_data_done
= true;
293 if (!bch_keylist_empty(&op
->insert_keys
))
294 continue_at(cl
, bch_data_insert_keys
, op
->wq
);
301 * bch_data_insert - stick some data in the cache
302 * @cl: closure pointer.
304 * This is the starting point for any data to end up in a cache device; it could
305 * be from a normal write, or a writeback write, or a write to a flash only
306 * volume - it's also used by the moving garbage collector to compact data in
307 * mostly empty buckets.
309 * It first writes the data to the cache, creating a list of keys to be inserted
310 * (if the data had to be fragmented there will be multiple keys); after the
311 * data is written it calls bch_journal, and after the keys have been added to
312 * the next journal write they're inserted into the btree.
314 * It inserts the data in s->cache_bio; bi_sector is used for the key offset,
315 * and op->inode is used for the key inode.
317 * If s->bypass is true, instead of inserting the data it invalidates the
318 * region of the cache represented by s->cache_bio and op->inode.
320 void bch_data_insert(struct closure
*cl
)
322 struct data_insert_op
*op
= container_of(cl
, struct data_insert_op
, cl
);
324 trace_bcache_write(op
->c
, op
->inode
, op
->bio
,
325 op
->writeback
, op
->bypass
);
327 bch_keylist_init(&op
->insert_keys
);
329 bch_data_insert_start(cl
);
334 unsigned int bch_get_congested(struct cache_set
*c
)
339 if (!c
->congested_read_threshold_us
&&
340 !c
->congested_write_threshold_us
)
343 i
= (local_clock_us() - c
->congested_last_us
) / 1024;
347 i
+= atomic_read(&c
->congested
);
354 i
= fract_exp_two(i
, 6);
356 rand
= get_random_int();
357 i
-= bitmap_weight(&rand
, BITS_PER_LONG
);
359 return i
> 0 ? i
: 1;
362 static void add_sequential(struct task_struct
*t
)
364 ewma_add(t
->sequential_io_avg
,
365 t
->sequential_io
, 8, 0);
367 t
->sequential_io
= 0;
370 static struct hlist_head
*iohash(struct cached_dev
*dc
, uint64_t k
)
372 return &dc
->io_hash
[hash_64(k
, RECENT_IO_BITS
)];
375 static bool check_should_bypass(struct cached_dev
*dc
, struct bio
*bio
)
377 struct cache_set
*c
= dc
->disk
.c
;
378 unsigned int mode
= cache_mode(dc
);
379 unsigned int sectors
, congested
= bch_get_congested(c
);
380 struct task_struct
*task
= current
;
383 if (test_bit(BCACHE_DEV_DETACHING
, &dc
->disk
.flags
) ||
384 c
->gc_stats
.in_use
> CUTOFF_CACHE_ADD
||
385 (bio_op(bio
) == REQ_OP_DISCARD
))
388 if (mode
== CACHE_MODE_NONE
||
389 (mode
== CACHE_MODE_WRITEAROUND
&&
390 op_is_write(bio_op(bio
))))
394 * Flag for bypass if the IO is for read-ahead or background,
395 * unless the read-ahead request is for metadata (eg, for gfs2).
397 if (bio
->bi_opf
& (REQ_RAHEAD
|REQ_BACKGROUND
) &&
398 !(bio
->bi_opf
& REQ_PRIO
))
401 if (bio
->bi_iter
.bi_sector
& (c
->sb
.block_size
- 1) ||
402 bio_sectors(bio
) & (c
->sb
.block_size
- 1)) {
403 pr_debug("skipping unaligned io");
407 if (bypass_torture_test(dc
)) {
408 if ((get_random_int() & 3) == 3)
414 if (!congested
&& !dc
->sequential_cutoff
)
417 spin_lock(&dc
->io_lock
);
419 hlist_for_each_entry(i
, iohash(dc
, bio
->bi_iter
.bi_sector
), hash
)
420 if (i
->last
== bio
->bi_iter
.bi_sector
&&
421 time_before(jiffies
, i
->jiffies
))
424 i
= list_first_entry(&dc
->io_lru
, struct io
, lru
);
426 add_sequential(task
);
429 if (i
->sequential
+ bio
->bi_iter
.bi_size
> i
->sequential
)
430 i
->sequential
+= bio
->bi_iter
.bi_size
;
432 i
->last
= bio_end_sector(bio
);
433 i
->jiffies
= jiffies
+ msecs_to_jiffies(5000);
434 task
->sequential_io
= i
->sequential
;
437 hlist_add_head(&i
->hash
, iohash(dc
, i
->last
));
438 list_move_tail(&i
->lru
, &dc
->io_lru
);
440 spin_unlock(&dc
->io_lock
);
442 sectors
= max(task
->sequential_io
,
443 task
->sequential_io_avg
) >> 9;
445 if (dc
->sequential_cutoff
&&
446 sectors
>= dc
->sequential_cutoff
>> 9) {
447 trace_bcache_bypass_sequential(bio
);
451 if (congested
&& sectors
>= congested
) {
452 trace_bcache_bypass_congested(bio
);
457 bch_rescale_priorities(c
, bio_sectors(bio
));
460 bch_mark_sectors_bypassed(c
, dc
, bio_sectors(bio
));
467 /* Stack frame for bio_complete */
471 struct bio
*orig_bio
;
472 struct bio
*cache_miss
;
473 struct bcache_device
*d
;
475 unsigned int insert_bio_sectors
;
476 unsigned int recoverable
:1;
477 unsigned int write
:1;
478 unsigned int read_dirty_data
:1;
479 unsigned int cache_missed
:1;
481 unsigned long start_time
;
484 struct data_insert_op iop
;
487 static void bch_cache_read_endio(struct bio
*bio
)
489 struct bbio
*b
= container_of(bio
, struct bbio
, bio
);
490 struct closure
*cl
= bio
->bi_private
;
491 struct search
*s
= container_of(cl
, struct search
, cl
);
494 * If the bucket was reused while our bio was in flight, we might have
495 * read the wrong data. Set s->error but not error so it doesn't get
496 * counted against the cache device, but we'll still reread the data
497 * from the backing device.
501 s
->iop
.status
= bio
->bi_status
;
502 else if (!KEY_DIRTY(&b
->key
) &&
503 ptr_stale(s
->iop
.c
, &b
->key
, 0)) {
504 atomic_long_inc(&s
->iop
.c
->cache_read_races
);
505 s
->iop
.status
= BLK_STS_IOERR
;
508 bch_bbio_endio(s
->iop
.c
, bio
, bio
->bi_status
, "reading from cache");
512 * Read from a single key, handling the initial cache miss if the key starts in
513 * the middle of the bio
515 static int cache_lookup_fn(struct btree_op
*op
, struct btree
*b
, struct bkey
*k
)
517 struct search
*s
= container_of(op
, struct search
, op
);
518 struct bio
*n
, *bio
= &s
->bio
.bio
;
519 struct bkey
*bio_key
;
522 if (bkey_cmp(k
, &KEY(s
->iop
.inode
, bio
->bi_iter
.bi_sector
, 0)) <= 0)
525 if (KEY_INODE(k
) != s
->iop
.inode
||
526 KEY_START(k
) > bio
->bi_iter
.bi_sector
) {
527 unsigned int bio_sectors
= bio_sectors(bio
);
528 unsigned int sectors
= KEY_INODE(k
) == s
->iop
.inode
529 ? min_t(uint64_t, INT_MAX
,
530 KEY_START(k
) - bio
->bi_iter
.bi_sector
)
532 int ret
= s
->d
->cache_miss(b
, s
, bio
, sectors
);
534 if (ret
!= MAP_CONTINUE
)
537 /* if this was a complete miss we shouldn't get here */
538 BUG_ON(bio_sectors
<= sectors
);
544 /* XXX: figure out best pointer - for multiple cache devices */
547 PTR_BUCKET(b
->c
, k
, ptr
)->prio
= INITIAL_PRIO
;
550 s
->read_dirty_data
= true;
552 n
= bio_next_split(bio
, min_t(uint64_t, INT_MAX
,
553 KEY_OFFSET(k
) - bio
->bi_iter
.bi_sector
),
554 GFP_NOIO
, &s
->d
->bio_split
);
556 bio_key
= &container_of(n
, struct bbio
, bio
)->key
;
557 bch_bkey_copy_single_ptr(bio_key
, k
, ptr
);
559 bch_cut_front(&KEY(s
->iop
.inode
, n
->bi_iter
.bi_sector
, 0), bio_key
);
560 bch_cut_back(&KEY(s
->iop
.inode
, bio_end_sector(n
), 0), bio_key
);
562 n
->bi_end_io
= bch_cache_read_endio
;
563 n
->bi_private
= &s
->cl
;
566 * The bucket we're reading from might be reused while our bio
567 * is in flight, and we could then end up reading the wrong
570 * We guard against this by checking (in cache_read_endio()) if
571 * the pointer is stale again; if so, we treat it as an error
572 * and reread from the backing device (but we don't pass that
573 * error up anywhere).
576 __bch_submit_bbio(n
, b
->c
);
577 return n
== bio
? MAP_DONE
: MAP_CONTINUE
;
580 static void cache_lookup(struct closure
*cl
)
582 struct search
*s
= container_of(cl
, struct search
, iop
.cl
);
583 struct bio
*bio
= &s
->bio
.bio
;
584 struct cached_dev
*dc
;
587 bch_btree_op_init(&s
->op
, -1);
589 ret
= bch_btree_map_keys(&s
->op
, s
->iop
.c
,
590 &KEY(s
->iop
.inode
, bio
->bi_iter
.bi_sector
, 0),
591 cache_lookup_fn
, MAP_END_KEY
);
592 if (ret
== -EAGAIN
) {
593 continue_at(cl
, cache_lookup
, bcache_wq
);
598 * We might meet err when searching the btree, If that happens, we will
599 * get negative ret, in this scenario we should not recover data from
600 * backing device (when cache device is dirty) because we don't know
601 * whether bkeys the read request covered are all clean.
603 * And after that happened, s->iop.status is still its initial value
604 * before we submit s->bio.bio
607 BUG_ON(ret
== -EINTR
);
608 if (s
->d
&& s
->d
->c
&&
609 !UUID_FLASH_ONLY(&s
->d
->c
->uuids
[s
->d
->id
])) {
610 dc
= container_of(s
->d
, struct cached_dev
, disk
);
611 if (dc
&& atomic_read(&dc
->has_dirty
))
612 s
->recoverable
= false;
615 s
->iop
.status
= BLK_STS_IOERR
;
621 /* Common code for the make_request functions */
623 static void request_endio(struct bio
*bio
)
625 struct closure
*cl
= bio
->bi_private
;
627 if (bio
->bi_status
) {
628 struct search
*s
= container_of(cl
, struct search
, cl
);
630 s
->iop
.status
= bio
->bi_status
;
631 /* Only cache read errors are recoverable */
632 s
->recoverable
= false;
639 static void backing_request_endio(struct bio
*bio
)
641 struct closure
*cl
= bio
->bi_private
;
643 if (bio
->bi_status
) {
644 struct search
*s
= container_of(cl
, struct search
, cl
);
645 struct cached_dev
*dc
= container_of(s
->d
,
646 struct cached_dev
, disk
);
648 * If a bio has REQ_PREFLUSH for writeback mode, it is
649 * speically assembled in cached_dev_write() for a non-zero
650 * write request which has REQ_PREFLUSH. we don't set
651 * s->iop.status by this failure, the status will be decided
652 * by result of bch_data_insert() operation.
654 if (unlikely(s
->iop
.writeback
&&
655 bio
->bi_opf
& REQ_PREFLUSH
)) {
656 pr_err("Can't flush %s: returned bi_status %i",
657 dc
->backing_dev_name
, bio
->bi_status
);
659 /* set to orig_bio->bi_status in bio_complete() */
660 s
->iop
.status
= bio
->bi_status
;
662 s
->recoverable
= false;
663 /* should count I/O error for backing device here */
664 bch_count_backing_io_errors(dc
, bio
);
671 static void bio_complete(struct search
*s
)
674 generic_end_io_acct(s
->d
->disk
->queue
, bio_op(s
->orig_bio
),
675 &s
->d
->disk
->part0
, s
->start_time
);
677 trace_bcache_request_end(s
->d
, s
->orig_bio
);
678 s
->orig_bio
->bi_status
= s
->iop
.status
;
679 bio_endio(s
->orig_bio
);
684 static void do_bio_hook(struct search
*s
,
685 struct bio
*orig_bio
,
686 bio_end_io_t
*end_io_fn
)
688 struct bio
*bio
= &s
->bio
.bio
;
690 bio_init(bio
, NULL
, 0);
691 __bio_clone_fast(bio
, orig_bio
);
693 * bi_end_io can be set separately somewhere else, e.g. the
695 * - cache_bio->bi_end_io from cached_dev_cache_miss()
696 * - n->bi_end_io from cache_lookup_fn()
698 bio
->bi_end_io
= end_io_fn
;
699 bio
->bi_private
= &s
->cl
;
704 static void search_free(struct closure
*cl
)
706 struct search
*s
= container_of(cl
, struct search
, cl
);
708 atomic_dec(&s
->d
->c
->search_inflight
);
714 closure_debug_destroy(cl
);
715 mempool_free(s
, &s
->d
->c
->search
);
718 static inline struct search
*search_alloc(struct bio
*bio
,
719 struct bcache_device
*d
)
723 s
= mempool_alloc(&d
->c
->search
, GFP_NOIO
);
725 closure_init(&s
->cl
, NULL
);
726 do_bio_hook(s
, bio
, request_endio
);
727 atomic_inc(&d
->c
->search_inflight
);
730 s
->cache_miss
= NULL
;
734 s
->write
= op_is_write(bio_op(bio
));
735 s
->read_dirty_data
= 0;
736 s
->start_time
= jiffies
;
740 s
->iop
.inode
= d
->id
;
741 s
->iop
.write_point
= hash_long((unsigned long) current
, 16);
742 s
->iop
.write_prio
= 0;
745 s
->iop
.flush_journal
= op_is_flush(bio
->bi_opf
);
746 s
->iop
.wq
= bcache_wq
;
753 static void cached_dev_bio_complete(struct closure
*cl
)
755 struct search
*s
= container_of(cl
, struct search
, cl
);
756 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
764 static void cached_dev_cache_miss_done(struct closure
*cl
)
766 struct search
*s
= container_of(cl
, struct search
, cl
);
768 if (s
->iop
.replace_collision
)
769 bch_mark_cache_miss_collision(s
->iop
.c
, s
->d
);
772 bio_free_pages(s
->iop
.bio
);
774 cached_dev_bio_complete(cl
);
777 static void cached_dev_read_error(struct closure
*cl
)
779 struct search
*s
= container_of(cl
, struct search
, cl
);
780 struct bio
*bio
= &s
->bio
.bio
;
783 * If read request hit dirty data (s->read_dirty_data is true),
784 * then recovery a failed read request from cached device may
785 * get a stale data back. So read failure recovery is only
786 * permitted when read request hit clean data in cache device,
787 * or when cache read race happened.
789 if (s
->recoverable
&& !s
->read_dirty_data
) {
790 /* Retry from the backing device: */
791 trace_bcache_read_retry(s
->orig_bio
);
794 do_bio_hook(s
, s
->orig_bio
, backing_request_endio
);
796 /* XXX: invalidate cache */
798 /* I/O request sent to backing device */
799 closure_bio_submit(s
->iop
.c
, bio
, cl
);
802 continue_at(cl
, cached_dev_cache_miss_done
, NULL
);
805 static void cached_dev_read_done(struct closure
*cl
)
807 struct search
*s
= container_of(cl
, struct search
, cl
);
808 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
811 * We had a cache miss; cache_bio now contains data ready to be inserted
814 * First, we copy the data we just read from cache_bio's bounce buffers
815 * to the buffers the original bio pointed to:
819 bio_reset(s
->iop
.bio
);
820 s
->iop
.bio
->bi_iter
.bi_sector
=
821 s
->cache_miss
->bi_iter
.bi_sector
;
822 bio_copy_dev(s
->iop
.bio
, s
->cache_miss
);
823 s
->iop
.bio
->bi_iter
.bi_size
= s
->insert_bio_sectors
<< 9;
824 bch_bio_map(s
->iop
.bio
, NULL
);
826 bio_copy_data(s
->cache_miss
, s
->iop
.bio
);
828 bio_put(s
->cache_miss
);
829 s
->cache_miss
= NULL
;
832 if (verify(dc
) && s
->recoverable
&& !s
->read_dirty_data
)
833 bch_data_verify(dc
, s
->orig_bio
);
838 !test_bit(CACHE_SET_STOPPING
, &s
->iop
.c
->flags
)) {
839 BUG_ON(!s
->iop
.replace
);
840 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
843 continue_at(cl
, cached_dev_cache_miss_done
, NULL
);
846 static void cached_dev_read_done_bh(struct closure
*cl
)
848 struct search
*s
= container_of(cl
, struct search
, cl
);
849 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
851 bch_mark_cache_accounting(s
->iop
.c
, s
->d
,
852 !s
->cache_missed
, s
->iop
.bypass
);
853 trace_bcache_read(s
->orig_bio
, !s
->cache_missed
, s
->iop
.bypass
);
856 continue_at_nobarrier(cl
, cached_dev_read_error
, bcache_wq
);
857 else if (s
->iop
.bio
|| verify(dc
))
858 continue_at_nobarrier(cl
, cached_dev_read_done
, bcache_wq
);
860 continue_at_nobarrier(cl
, cached_dev_bio_complete
, NULL
);
863 static int cached_dev_cache_miss(struct btree
*b
, struct search
*s
,
864 struct bio
*bio
, unsigned int sectors
)
866 int ret
= MAP_CONTINUE
;
867 unsigned int reada
= 0;
868 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
869 struct bio
*miss
, *cache_bio
;
873 if (s
->cache_miss
|| s
->iop
.bypass
) {
874 miss
= bio_next_split(bio
, sectors
, GFP_NOIO
, &s
->d
->bio_split
);
875 ret
= miss
== bio
? MAP_DONE
: MAP_CONTINUE
;
879 if (!(bio
->bi_opf
& REQ_RAHEAD
) &&
880 !(bio
->bi_opf
& REQ_PRIO
) &&
881 s
->iop
.c
->gc_stats
.in_use
< CUTOFF_CACHE_READA
)
882 reada
= min_t(sector_t
, dc
->readahead
>> 9,
883 get_capacity(bio
->bi_disk
) - bio_end_sector(bio
));
885 s
->insert_bio_sectors
= min(sectors
, bio_sectors(bio
) + reada
);
887 s
->iop
.replace_key
= KEY(s
->iop
.inode
,
888 bio
->bi_iter
.bi_sector
+ s
->insert_bio_sectors
,
889 s
->insert_bio_sectors
);
891 ret
= bch_btree_insert_check_key(b
, &s
->op
, &s
->iop
.replace_key
);
895 s
->iop
.replace
= true;
897 miss
= bio_next_split(bio
, sectors
, GFP_NOIO
, &s
->d
->bio_split
);
899 /* btree_search_recurse()'s btree iterator is no good anymore */
900 ret
= miss
== bio
? MAP_DONE
: -EINTR
;
902 cache_bio
= bio_alloc_bioset(GFP_NOWAIT
,
903 DIV_ROUND_UP(s
->insert_bio_sectors
, PAGE_SECTORS
),
904 &dc
->disk
.bio_split
);
908 cache_bio
->bi_iter
.bi_sector
= miss
->bi_iter
.bi_sector
;
909 bio_copy_dev(cache_bio
, miss
);
910 cache_bio
->bi_iter
.bi_size
= s
->insert_bio_sectors
<< 9;
912 cache_bio
->bi_end_io
= backing_request_endio
;
913 cache_bio
->bi_private
= &s
->cl
;
915 bch_bio_map(cache_bio
, NULL
);
916 if (bch_bio_alloc_pages(cache_bio
, __GFP_NOWARN
|GFP_NOIO
))
920 bch_mark_cache_readahead(s
->iop
.c
, s
->d
);
922 s
->cache_miss
= miss
;
923 s
->iop
.bio
= cache_bio
;
925 /* I/O request sent to backing device */
926 closure_bio_submit(s
->iop
.c
, cache_bio
, &s
->cl
);
932 miss
->bi_end_io
= backing_request_endio
;
933 miss
->bi_private
= &s
->cl
;
934 /* I/O request sent to backing device */
935 closure_bio_submit(s
->iop
.c
, miss
, &s
->cl
);
939 static void cached_dev_read(struct cached_dev
*dc
, struct search
*s
)
941 struct closure
*cl
= &s
->cl
;
943 closure_call(&s
->iop
.cl
, cache_lookup
, NULL
, cl
);
944 continue_at(cl
, cached_dev_read_done_bh
, NULL
);
949 static void cached_dev_write_complete(struct closure
*cl
)
951 struct search
*s
= container_of(cl
, struct search
, cl
);
952 struct cached_dev
*dc
= container_of(s
->d
, struct cached_dev
, disk
);
954 up_read_non_owner(&dc
->writeback_lock
);
955 cached_dev_bio_complete(cl
);
958 static void cached_dev_write(struct cached_dev
*dc
, struct search
*s
)
960 struct closure
*cl
= &s
->cl
;
961 struct bio
*bio
= &s
->bio
.bio
;
962 struct bkey start
= KEY(dc
->disk
.id
, bio
->bi_iter
.bi_sector
, 0);
963 struct bkey end
= KEY(dc
->disk
.id
, bio_end_sector(bio
), 0);
965 bch_keybuf_check_overlapping(&s
->iop
.c
->moving_gc_keys
, &start
, &end
);
967 down_read_non_owner(&dc
->writeback_lock
);
968 if (bch_keybuf_check_overlapping(&dc
->writeback_keys
, &start
, &end
)) {
970 * We overlap with some dirty data undergoing background
971 * writeback, force this write to writeback
973 s
->iop
.bypass
= false;
974 s
->iop
.writeback
= true;
978 * Discards aren't _required_ to do anything, so skipping if
979 * check_overlapping returned true is ok
981 * But check_overlapping drops dirty keys for which io hasn't started,
982 * so we still want to call it.
984 if (bio_op(bio
) == REQ_OP_DISCARD
)
985 s
->iop
.bypass
= true;
987 if (should_writeback(dc
, s
->orig_bio
,
990 s
->iop
.bypass
= false;
991 s
->iop
.writeback
= true;
995 s
->iop
.bio
= s
->orig_bio
;
998 if (bio_op(bio
) == REQ_OP_DISCARD
&&
999 !blk_queue_discard(bdev_get_queue(dc
->bdev
)))
1002 /* I/O request sent to backing device */
1003 bio
->bi_end_io
= backing_request_endio
;
1004 closure_bio_submit(s
->iop
.c
, bio
, cl
);
1006 } else if (s
->iop
.writeback
) {
1007 bch_writeback_add(dc
);
1010 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1012 * Also need to send a flush to the backing
1017 flush
= bio_alloc_bioset(GFP_NOIO
, 0,
1018 &dc
->disk
.bio_split
);
1020 s
->iop
.status
= BLK_STS_RESOURCE
;
1023 bio_copy_dev(flush
, bio
);
1024 flush
->bi_end_io
= backing_request_endio
;
1025 flush
->bi_private
= cl
;
1026 flush
->bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
;
1027 /* I/O request sent to backing device */
1028 closure_bio_submit(s
->iop
.c
, flush
, cl
);
1031 s
->iop
.bio
= bio_clone_fast(bio
, GFP_NOIO
, &dc
->disk
.bio_split
);
1032 /* I/O request sent to backing device */
1033 bio
->bi_end_io
= backing_request_endio
;
1034 closure_bio_submit(s
->iop
.c
, bio
, cl
);
1038 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
1039 continue_at(cl
, cached_dev_write_complete
, NULL
);
1042 static void cached_dev_nodata(struct closure
*cl
)
1044 struct search
*s
= container_of(cl
, struct search
, cl
);
1045 struct bio
*bio
= &s
->bio
.bio
;
1047 if (s
->iop
.flush_journal
)
1048 bch_journal_meta(s
->iop
.c
, cl
);
1050 /* If it's a flush, we send the flush to the backing device too */
1051 bio
->bi_end_io
= backing_request_endio
;
1052 closure_bio_submit(s
->iop
.c
, bio
, cl
);
1054 continue_at(cl
, cached_dev_bio_complete
, NULL
);
1057 struct detached_dev_io_private
{
1058 struct bcache_device
*d
;
1059 unsigned long start_time
;
1060 bio_end_io_t
*bi_end_io
;
1064 static void detached_dev_end_io(struct bio
*bio
)
1066 struct detached_dev_io_private
*ddip
;
1068 ddip
= bio
->bi_private
;
1069 bio
->bi_end_io
= ddip
->bi_end_io
;
1070 bio
->bi_private
= ddip
->bi_private
;
1072 generic_end_io_acct(ddip
->d
->disk
->queue
, bio_op(bio
),
1073 &ddip
->d
->disk
->part0
, ddip
->start_time
);
1075 if (bio
->bi_status
) {
1076 struct cached_dev
*dc
= container_of(ddip
->d
,
1077 struct cached_dev
, disk
);
1078 /* should count I/O error for backing device here */
1079 bch_count_backing_io_errors(dc
, bio
);
1083 bio
->bi_end_io(bio
);
1086 static void detached_dev_do_request(struct bcache_device
*d
, struct bio
*bio
)
1088 struct detached_dev_io_private
*ddip
;
1089 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1092 * no need to call closure_get(&dc->disk.cl),
1093 * because upper layer had already opened bcache device,
1094 * which would call closure_get(&dc->disk.cl)
1096 ddip
= kzalloc(sizeof(struct detached_dev_io_private
), GFP_NOIO
);
1098 ddip
->start_time
= jiffies
;
1099 ddip
->bi_end_io
= bio
->bi_end_io
;
1100 ddip
->bi_private
= bio
->bi_private
;
1101 bio
->bi_end_io
= detached_dev_end_io
;
1102 bio
->bi_private
= ddip
;
1104 if ((bio_op(bio
) == REQ_OP_DISCARD
) &&
1105 !blk_queue_discard(bdev_get_queue(dc
->bdev
)))
1106 bio
->bi_end_io(bio
);
1108 generic_make_request(bio
);
1111 static void quit_max_writeback_rate(struct cache_set
*c
,
1112 struct cached_dev
*this_dc
)
1115 struct bcache_device
*d
;
1116 struct cached_dev
*dc
;
1119 * mutex bch_register_lock may compete with other parallel requesters,
1120 * or attach/detach operations on other backing device. Waiting to
1121 * the mutex lock may increase I/O request latency for seconds or more.
1122 * To avoid such situation, if mutext_trylock() failed, only writeback
1123 * rate of current cached device is set to 1, and __update_write_back()
1124 * will decide writeback rate of other cached devices (remember now
1125 * c->idle_counter is 0 already).
1127 if (mutex_trylock(&bch_register_lock
)) {
1128 for (i
= 0; i
< c
->devices_max_used
; i
++) {
1132 if (UUID_FLASH_ONLY(&c
->uuids
[i
]))
1136 dc
= container_of(d
, struct cached_dev
, disk
);
1138 * set writeback rate to default minimum value,
1139 * then let update_writeback_rate() to decide the
1142 atomic_long_set(&dc
->writeback_rate
.rate
, 1);
1144 mutex_unlock(&bch_register_lock
);
1146 atomic_long_set(&this_dc
->writeback_rate
.rate
, 1);
1149 /* Cached devices - read & write stuff */
1151 static blk_qc_t
cached_dev_make_request(struct request_queue
*q
,
1155 struct bcache_device
*d
= bio
->bi_disk
->private_data
;
1156 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1157 int rw
= bio_data_dir(bio
);
1159 if (unlikely((d
->c
&& test_bit(CACHE_SET_IO_DISABLE
, &d
->c
->flags
)) ||
1161 bio
->bi_status
= BLK_STS_IOERR
;
1163 return BLK_QC_T_NONE
;
1167 if (atomic_read(&d
->c
->idle_counter
))
1168 atomic_set(&d
->c
->idle_counter
, 0);
1170 * If at_max_writeback_rate of cache set is true and new I/O
1171 * comes, quit max writeback rate of all cached devices
1172 * attached to this cache set, and set at_max_writeback_rate
1175 if (unlikely(atomic_read(&d
->c
->at_max_writeback_rate
) == 1)) {
1176 atomic_set(&d
->c
->at_max_writeback_rate
, 0);
1177 quit_max_writeback_rate(d
->c
, dc
);
1181 generic_start_io_acct(q
,
1186 bio_set_dev(bio
, dc
->bdev
);
1187 bio
->bi_iter
.bi_sector
+= dc
->sb
.data_offset
;
1189 if (cached_dev_get(dc
)) {
1190 s
= search_alloc(bio
, d
);
1191 trace_bcache_request_start(s
->d
, bio
);
1193 if (!bio
->bi_iter
.bi_size
) {
1195 * can't call bch_journal_meta from under
1196 * generic_make_request
1198 continue_at_nobarrier(&s
->cl
,
1202 s
->iop
.bypass
= check_should_bypass(dc
, bio
);
1205 cached_dev_write(dc
, s
);
1207 cached_dev_read(dc
, s
);
1210 /* I/O request sent to backing device */
1211 detached_dev_do_request(d
, bio
);
1213 return BLK_QC_T_NONE
;
1216 static int cached_dev_ioctl(struct bcache_device
*d
, fmode_t mode
,
1217 unsigned int cmd
, unsigned long arg
)
1219 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1224 return __blkdev_driver_ioctl(dc
->bdev
, mode
, cmd
, arg
);
1227 static int cached_dev_congested(void *data
, int bits
)
1229 struct bcache_device
*d
= data
;
1230 struct cached_dev
*dc
= container_of(d
, struct cached_dev
, disk
);
1231 struct request_queue
*q
= bdev_get_queue(dc
->bdev
);
1234 if (bdi_congested(q
->backing_dev_info
, bits
))
1237 if (cached_dev_get(dc
)) {
1241 for_each_cache(ca
, d
->c
, i
) {
1242 q
= bdev_get_queue(ca
->bdev
);
1243 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
1252 void bch_cached_dev_request_init(struct cached_dev
*dc
)
1254 struct gendisk
*g
= dc
->disk
.disk
;
1256 g
->queue
->make_request_fn
= cached_dev_make_request
;
1257 g
->queue
->backing_dev_info
->congested_fn
= cached_dev_congested
;
1258 dc
->disk
.cache_miss
= cached_dev_cache_miss
;
1259 dc
->disk
.ioctl
= cached_dev_ioctl
;
1262 /* Flash backed devices */
1264 static int flash_dev_cache_miss(struct btree
*b
, struct search
*s
,
1265 struct bio
*bio
, unsigned int sectors
)
1267 unsigned int bytes
= min(sectors
, bio_sectors(bio
)) << 9;
1269 swap(bio
->bi_iter
.bi_size
, bytes
);
1271 swap(bio
->bi_iter
.bi_size
, bytes
);
1273 bio_advance(bio
, bytes
);
1275 if (!bio
->bi_iter
.bi_size
)
1278 return MAP_CONTINUE
;
1281 static void flash_dev_nodata(struct closure
*cl
)
1283 struct search
*s
= container_of(cl
, struct search
, cl
);
1285 if (s
->iop
.flush_journal
)
1286 bch_journal_meta(s
->iop
.c
, cl
);
1288 continue_at(cl
, search_free
, NULL
);
1291 static blk_qc_t
flash_dev_make_request(struct request_queue
*q
,
1296 struct bcache_device
*d
= bio
->bi_disk
->private_data
;
1298 if (unlikely(d
->c
&& test_bit(CACHE_SET_IO_DISABLE
, &d
->c
->flags
))) {
1299 bio
->bi_status
= BLK_STS_IOERR
;
1301 return BLK_QC_T_NONE
;
1304 generic_start_io_acct(q
, bio_op(bio
), bio_sectors(bio
), &d
->disk
->part0
);
1306 s
= search_alloc(bio
, d
);
1310 trace_bcache_request_start(s
->d
, bio
);
1312 if (!bio
->bi_iter
.bi_size
) {
1314 * can't call bch_journal_meta from under
1315 * generic_make_request
1317 continue_at_nobarrier(&s
->cl
,
1320 return BLK_QC_T_NONE
;
1321 } else if (bio_data_dir(bio
)) {
1322 bch_keybuf_check_overlapping(&s
->iop
.c
->moving_gc_keys
,
1323 &KEY(d
->id
, bio
->bi_iter
.bi_sector
, 0),
1324 &KEY(d
->id
, bio_end_sector(bio
), 0));
1326 s
->iop
.bypass
= (bio_op(bio
) == REQ_OP_DISCARD
) != 0;
1327 s
->iop
.writeback
= true;
1330 closure_call(&s
->iop
.cl
, bch_data_insert
, NULL
, cl
);
1332 closure_call(&s
->iop
.cl
, cache_lookup
, NULL
, cl
);
1335 continue_at(cl
, search_free
, NULL
);
1336 return BLK_QC_T_NONE
;
1339 static int flash_dev_ioctl(struct bcache_device
*d
, fmode_t mode
,
1340 unsigned int cmd
, unsigned long arg
)
1345 static int flash_dev_congested(void *data
, int bits
)
1347 struct bcache_device
*d
= data
;
1348 struct request_queue
*q
;
1353 for_each_cache(ca
, d
->c
, i
) {
1354 q
= bdev_get_queue(ca
->bdev
);
1355 ret
|= bdi_congested(q
->backing_dev_info
, bits
);
1361 void bch_flash_dev_request_init(struct bcache_device
*d
)
1363 struct gendisk
*g
= d
->disk
;
1365 g
->queue
->make_request_fn
= flash_dev_make_request
;
1366 g
->queue
->backing_dev_info
->congested_fn
= flash_dev_congested
;
1367 d
->cache_miss
= flash_dev_cache_miss
;
1368 d
->ioctl
= flash_dev_ioctl
;
1371 void bch_request_exit(void)
1373 kmem_cache_destroy(bch_search_cache
);
1376 int __init
bch_request_init(void)
1378 bch_search_cache
= KMEM_CACHE(search
, 0);
1379 if (!bch_search_cache
)