Merge tag 'tag-chrome-platform-for-v4.20' of git://git.kernel.org/pub/scm/linux/kerne...
[linux/fpc-iii.git] / drivers / md / raid10.c
blobb98e746e7fc4fd05fb8c0eaf2118f9f6a4f778d3
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/module.h>
25 #include <linux/seq_file.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/md_p.h>
29 #include <trace/events/block.h>
30 #include "md.h"
31 #include "raid10.h"
32 #include "raid0.h"
33 #include "md-bitmap.h"
36 * RAID10 provides a combination of RAID0 and RAID1 functionality.
37 * The layout of data is defined by
38 * chunk_size
39 * raid_disks
40 * near_copies (stored in low byte of layout)
41 * far_copies (stored in second byte of layout)
42 * far_offset (stored in bit 16 of layout )
43 * use_far_sets (stored in bit 17 of layout )
44 * use_far_sets_bugfixed (stored in bit 18 of layout )
46 * The data to be stored is divided into chunks using chunksize. Each device
47 * is divided into far_copies sections. In each section, chunks are laid out
48 * in a style similar to raid0, but near_copies copies of each chunk is stored
49 * (each on a different drive). The starting device for each section is offset
50 * near_copies from the starting device of the previous section. Thus there
51 * are (near_copies * far_copies) of each chunk, and each is on a different
52 * drive. near_copies and far_copies must be at least one, and their product
53 * is at most raid_disks.
55 * If far_offset is true, then the far_copies are handled a bit differently.
56 * The copies are still in different stripes, but instead of being very far
57 * apart on disk, there are adjacent stripes.
59 * The far and offset algorithms are handled slightly differently if
60 * 'use_far_sets' is true. In this case, the array's devices are grouped into
61 * sets that are (near_copies * far_copies) in size. The far copied stripes
62 * are still shifted by 'near_copies' devices, but this shifting stays confined
63 * to the set rather than the entire array. This is done to improve the number
64 * of device combinations that can fail without causing the array to fail.
65 * Example 'far' algorithm w/o 'use_far_sets' (each letter represents a chunk
66 * on a device):
67 * A B C D A B C D E
68 * ... ...
69 * D A B C E A B C D
70 * Example 'far' algorithm w/ 'use_far_sets' enabled (sets illustrated w/ []'s):
71 * [A B] [C D] [A B] [C D E]
72 * |...| |...| |...| | ... |
73 * [B A] [D C] [B A] [E C D]
77 * Number of guaranteed r10bios in case of extreme VM load:
79 #define NR_RAID10_BIOS 256
81 /* when we get a read error on a read-only array, we redirect to another
82 * device without failing the first device, or trying to over-write to
83 * correct the read error. To keep track of bad blocks on a per-bio
84 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
86 #define IO_BLOCKED ((struct bio *)1)
87 /* When we successfully write to a known bad-block, we need to remove the
88 * bad-block marking which must be done from process context. So we record
89 * the success by setting devs[n].bio to IO_MADE_GOOD
91 #define IO_MADE_GOOD ((struct bio *)2)
93 #define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
95 /* When there are this many requests queued to be written by
96 * the raid10 thread, we become 'congested' to provide back-pressure
97 * for writeback.
99 static int max_queued_requests = 1024;
101 static void allow_barrier(struct r10conf *conf);
102 static void lower_barrier(struct r10conf *conf);
103 static int _enough(struct r10conf *conf, int previous, int ignore);
104 static int enough(struct r10conf *conf, int ignore);
105 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
106 int *skipped);
107 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio);
108 static void end_reshape_write(struct bio *bio);
109 static void end_reshape(struct r10conf *conf);
111 #define raid10_log(md, fmt, args...) \
112 do { if ((md)->queue) blk_add_trace_msg((md)->queue, "raid10 " fmt, ##args); } while (0)
114 #include "raid1-10.c"
117 * for resync bio, r10bio pointer can be retrieved from the per-bio
118 * 'struct resync_pages'.
120 static inline struct r10bio *get_resync_r10bio(struct bio *bio)
122 return get_resync_pages(bio)->raid_bio;
125 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
127 struct r10conf *conf = data;
128 int size = offsetof(struct r10bio, devs[conf->copies]);
130 /* allocate a r10bio with room for raid_disks entries in the
131 * bios array */
132 return kzalloc(size, gfp_flags);
135 static void r10bio_pool_free(void *r10_bio, void *data)
137 kfree(r10_bio);
140 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
141 /* amount of memory to reserve for resync requests */
142 #define RESYNC_WINDOW (1024*1024)
143 /* maximum number of concurrent requests, memory permitting */
144 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
145 #define CLUSTER_RESYNC_WINDOW (32 * RESYNC_WINDOW)
146 #define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
149 * When performing a resync, we need to read and compare, so
150 * we need as many pages are there are copies.
151 * When performing a recovery, we need 2 bios, one for read,
152 * one for write (we recover only one drive per r10buf)
155 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
157 struct r10conf *conf = data;
158 struct r10bio *r10_bio;
159 struct bio *bio;
160 int j;
161 int nalloc, nalloc_rp;
162 struct resync_pages *rps;
164 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
165 if (!r10_bio)
166 return NULL;
168 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
169 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
170 nalloc = conf->copies; /* resync */
171 else
172 nalloc = 2; /* recovery */
174 /* allocate once for all bios */
175 if (!conf->have_replacement)
176 nalloc_rp = nalloc;
177 else
178 nalloc_rp = nalloc * 2;
179 rps = kmalloc_array(nalloc_rp, sizeof(struct resync_pages), gfp_flags);
180 if (!rps)
181 goto out_free_r10bio;
184 * Allocate bios.
186 for (j = nalloc ; j-- ; ) {
187 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
188 if (!bio)
189 goto out_free_bio;
190 r10_bio->devs[j].bio = bio;
191 if (!conf->have_replacement)
192 continue;
193 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
194 if (!bio)
195 goto out_free_bio;
196 r10_bio->devs[j].repl_bio = bio;
199 * Allocate RESYNC_PAGES data pages and attach them
200 * where needed.
202 for (j = 0; j < nalloc; j++) {
203 struct bio *rbio = r10_bio->devs[j].repl_bio;
204 struct resync_pages *rp, *rp_repl;
206 rp = &rps[j];
207 if (rbio)
208 rp_repl = &rps[nalloc + j];
210 bio = r10_bio->devs[j].bio;
212 if (!j || test_bit(MD_RECOVERY_SYNC,
213 &conf->mddev->recovery)) {
214 if (resync_alloc_pages(rp, gfp_flags))
215 goto out_free_pages;
216 } else {
217 memcpy(rp, &rps[0], sizeof(*rp));
218 resync_get_all_pages(rp);
221 rp->raid_bio = r10_bio;
222 bio->bi_private = rp;
223 if (rbio) {
224 memcpy(rp_repl, rp, sizeof(*rp));
225 rbio->bi_private = rp_repl;
229 return r10_bio;
231 out_free_pages:
232 while (--j >= 0)
233 resync_free_pages(&rps[j * 2]);
235 j = 0;
236 out_free_bio:
237 for ( ; j < nalloc; j++) {
238 if (r10_bio->devs[j].bio)
239 bio_put(r10_bio->devs[j].bio);
240 if (r10_bio->devs[j].repl_bio)
241 bio_put(r10_bio->devs[j].repl_bio);
243 kfree(rps);
244 out_free_r10bio:
245 r10bio_pool_free(r10_bio, conf);
246 return NULL;
249 static void r10buf_pool_free(void *__r10_bio, void *data)
251 struct r10conf *conf = data;
252 struct r10bio *r10bio = __r10_bio;
253 int j;
254 struct resync_pages *rp = NULL;
256 for (j = conf->copies; j--; ) {
257 struct bio *bio = r10bio->devs[j].bio;
259 if (bio) {
260 rp = get_resync_pages(bio);
261 resync_free_pages(rp);
262 bio_put(bio);
265 bio = r10bio->devs[j].repl_bio;
266 if (bio)
267 bio_put(bio);
270 /* resync pages array stored in the 1st bio's .bi_private */
271 kfree(rp);
273 r10bio_pool_free(r10bio, conf);
276 static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
278 int i;
280 for (i = 0; i < conf->copies; i++) {
281 struct bio **bio = & r10_bio->devs[i].bio;
282 if (!BIO_SPECIAL(*bio))
283 bio_put(*bio);
284 *bio = NULL;
285 bio = &r10_bio->devs[i].repl_bio;
286 if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
287 bio_put(*bio);
288 *bio = NULL;
292 static void free_r10bio(struct r10bio *r10_bio)
294 struct r10conf *conf = r10_bio->mddev->private;
296 put_all_bios(conf, r10_bio);
297 mempool_free(r10_bio, &conf->r10bio_pool);
300 static void put_buf(struct r10bio *r10_bio)
302 struct r10conf *conf = r10_bio->mddev->private;
304 mempool_free(r10_bio, &conf->r10buf_pool);
306 lower_barrier(conf);
309 static void reschedule_retry(struct r10bio *r10_bio)
311 unsigned long flags;
312 struct mddev *mddev = r10_bio->mddev;
313 struct r10conf *conf = mddev->private;
315 spin_lock_irqsave(&conf->device_lock, flags);
316 list_add(&r10_bio->retry_list, &conf->retry_list);
317 conf->nr_queued ++;
318 spin_unlock_irqrestore(&conf->device_lock, flags);
320 /* wake up frozen array... */
321 wake_up(&conf->wait_barrier);
323 md_wakeup_thread(mddev->thread);
327 * raid_end_bio_io() is called when we have finished servicing a mirrored
328 * operation and are ready to return a success/failure code to the buffer
329 * cache layer.
331 static void raid_end_bio_io(struct r10bio *r10_bio)
333 struct bio *bio = r10_bio->master_bio;
334 struct r10conf *conf = r10_bio->mddev->private;
336 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
337 bio->bi_status = BLK_STS_IOERR;
339 bio_endio(bio);
341 * Wake up any possible resync thread that waits for the device
342 * to go idle.
344 allow_barrier(conf);
346 free_r10bio(r10_bio);
350 * Update disk head position estimator based on IRQ completion info.
352 static inline void update_head_pos(int slot, struct r10bio *r10_bio)
354 struct r10conf *conf = r10_bio->mddev->private;
356 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
357 r10_bio->devs[slot].addr + (r10_bio->sectors);
361 * Find the disk number which triggered given bio
363 static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
364 struct bio *bio, int *slotp, int *replp)
366 int slot;
367 int repl = 0;
369 for (slot = 0; slot < conf->copies; slot++) {
370 if (r10_bio->devs[slot].bio == bio)
371 break;
372 if (r10_bio->devs[slot].repl_bio == bio) {
373 repl = 1;
374 break;
378 BUG_ON(slot == conf->copies);
379 update_head_pos(slot, r10_bio);
381 if (slotp)
382 *slotp = slot;
383 if (replp)
384 *replp = repl;
385 return r10_bio->devs[slot].devnum;
388 static void raid10_end_read_request(struct bio *bio)
390 int uptodate = !bio->bi_status;
391 struct r10bio *r10_bio = bio->bi_private;
392 int slot;
393 struct md_rdev *rdev;
394 struct r10conf *conf = r10_bio->mddev->private;
396 slot = r10_bio->read_slot;
397 rdev = r10_bio->devs[slot].rdev;
399 * this branch is our 'one mirror IO has finished' event handler:
401 update_head_pos(slot, r10_bio);
403 if (uptodate) {
405 * Set R10BIO_Uptodate in our master bio, so that
406 * we will return a good error code to the higher
407 * levels even if IO on some other mirrored buffer fails.
409 * The 'master' represents the composite IO operation to
410 * user-side. So if something waits for IO, then it will
411 * wait for the 'master' bio.
413 set_bit(R10BIO_Uptodate, &r10_bio->state);
414 } else {
415 /* If all other devices that store this block have
416 * failed, we want to return the error upwards rather
417 * than fail the last device. Here we redefine
418 * "uptodate" to mean "Don't want to retry"
420 if (!_enough(conf, test_bit(R10BIO_Previous, &r10_bio->state),
421 rdev->raid_disk))
422 uptodate = 1;
424 if (uptodate) {
425 raid_end_bio_io(r10_bio);
426 rdev_dec_pending(rdev, conf->mddev);
427 } else {
429 * oops, read error - keep the refcount on the rdev
431 char b[BDEVNAME_SIZE];
432 pr_err_ratelimited("md/raid10:%s: %s: rescheduling sector %llu\n",
433 mdname(conf->mddev),
434 bdevname(rdev->bdev, b),
435 (unsigned long long)r10_bio->sector);
436 set_bit(R10BIO_ReadError, &r10_bio->state);
437 reschedule_retry(r10_bio);
441 static void close_write(struct r10bio *r10_bio)
443 /* clear the bitmap if all writes complete successfully */
444 md_bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
445 r10_bio->sectors,
446 !test_bit(R10BIO_Degraded, &r10_bio->state),
448 md_write_end(r10_bio->mddev);
451 static void one_write_done(struct r10bio *r10_bio)
453 if (atomic_dec_and_test(&r10_bio->remaining)) {
454 if (test_bit(R10BIO_WriteError, &r10_bio->state))
455 reschedule_retry(r10_bio);
456 else {
457 close_write(r10_bio);
458 if (test_bit(R10BIO_MadeGood, &r10_bio->state))
459 reschedule_retry(r10_bio);
460 else
461 raid_end_bio_io(r10_bio);
466 static void raid10_end_write_request(struct bio *bio)
468 struct r10bio *r10_bio = bio->bi_private;
469 int dev;
470 int dec_rdev = 1;
471 struct r10conf *conf = r10_bio->mddev->private;
472 int slot, repl;
473 struct md_rdev *rdev = NULL;
474 struct bio *to_put = NULL;
475 bool discard_error;
477 discard_error = bio->bi_status && bio_op(bio) == REQ_OP_DISCARD;
479 dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
481 if (repl)
482 rdev = conf->mirrors[dev].replacement;
483 if (!rdev) {
484 smp_rmb();
485 repl = 0;
486 rdev = conf->mirrors[dev].rdev;
489 * this branch is our 'one mirror IO has finished' event handler:
491 if (bio->bi_status && !discard_error) {
492 if (repl)
493 /* Never record new bad blocks to replacement,
494 * just fail it.
496 md_error(rdev->mddev, rdev);
497 else {
498 set_bit(WriteErrorSeen, &rdev->flags);
499 if (!test_and_set_bit(WantReplacement, &rdev->flags))
500 set_bit(MD_RECOVERY_NEEDED,
501 &rdev->mddev->recovery);
503 dec_rdev = 0;
504 if (test_bit(FailFast, &rdev->flags) &&
505 (bio->bi_opf & MD_FAILFAST)) {
506 md_error(rdev->mddev, rdev);
507 if (!test_bit(Faulty, &rdev->flags))
508 /* This is the only remaining device,
509 * We need to retry the write without
510 * FailFast
512 set_bit(R10BIO_WriteError, &r10_bio->state);
513 else {
514 r10_bio->devs[slot].bio = NULL;
515 to_put = bio;
516 dec_rdev = 1;
518 } else
519 set_bit(R10BIO_WriteError, &r10_bio->state);
521 } else {
523 * Set R10BIO_Uptodate in our master bio, so that
524 * we will return a good error code for to the higher
525 * levels even if IO on some other mirrored buffer fails.
527 * The 'master' represents the composite IO operation to
528 * user-side. So if something waits for IO, then it will
529 * wait for the 'master' bio.
531 sector_t first_bad;
532 int bad_sectors;
535 * Do not set R10BIO_Uptodate if the current device is
536 * rebuilding or Faulty. This is because we cannot use
537 * such device for properly reading the data back (we could
538 * potentially use it, if the current write would have felt
539 * before rdev->recovery_offset, but for simplicity we don't
540 * check this here.
542 if (test_bit(In_sync, &rdev->flags) &&
543 !test_bit(Faulty, &rdev->flags))
544 set_bit(R10BIO_Uptodate, &r10_bio->state);
546 /* Maybe we can clear some bad blocks. */
547 if (is_badblock(rdev,
548 r10_bio->devs[slot].addr,
549 r10_bio->sectors,
550 &first_bad, &bad_sectors) && !discard_error) {
551 bio_put(bio);
552 if (repl)
553 r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
554 else
555 r10_bio->devs[slot].bio = IO_MADE_GOOD;
556 dec_rdev = 0;
557 set_bit(R10BIO_MadeGood, &r10_bio->state);
563 * Let's see if all mirrored write operations have finished
564 * already.
566 one_write_done(r10_bio);
567 if (dec_rdev)
568 rdev_dec_pending(rdev, conf->mddev);
569 if (to_put)
570 bio_put(to_put);
574 * RAID10 layout manager
575 * As well as the chunksize and raid_disks count, there are two
576 * parameters: near_copies and far_copies.
577 * near_copies * far_copies must be <= raid_disks.
578 * Normally one of these will be 1.
579 * If both are 1, we get raid0.
580 * If near_copies == raid_disks, we get raid1.
582 * Chunks are laid out in raid0 style with near_copies copies of the
583 * first chunk, followed by near_copies copies of the next chunk and
584 * so on.
585 * If far_copies > 1, then after 1/far_copies of the array has been assigned
586 * as described above, we start again with a device offset of near_copies.
587 * So we effectively have another copy of the whole array further down all
588 * the drives, but with blocks on different drives.
589 * With this layout, and block is never stored twice on the one device.
591 * raid10_find_phys finds the sector offset of a given virtual sector
592 * on each device that it is on.
594 * raid10_find_virt does the reverse mapping, from a device and a
595 * sector offset to a virtual address
598 static void __raid10_find_phys(struct geom *geo, struct r10bio *r10bio)
600 int n,f;
601 sector_t sector;
602 sector_t chunk;
603 sector_t stripe;
604 int dev;
605 int slot = 0;
606 int last_far_set_start, last_far_set_size;
608 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
609 last_far_set_start *= geo->far_set_size;
611 last_far_set_size = geo->far_set_size;
612 last_far_set_size += (geo->raid_disks % geo->far_set_size);
614 /* now calculate first sector/dev */
615 chunk = r10bio->sector >> geo->chunk_shift;
616 sector = r10bio->sector & geo->chunk_mask;
618 chunk *= geo->near_copies;
619 stripe = chunk;
620 dev = sector_div(stripe, geo->raid_disks);
621 if (geo->far_offset)
622 stripe *= geo->far_copies;
624 sector += stripe << geo->chunk_shift;
626 /* and calculate all the others */
627 for (n = 0; n < geo->near_copies; n++) {
628 int d = dev;
629 int set;
630 sector_t s = sector;
631 r10bio->devs[slot].devnum = d;
632 r10bio->devs[slot].addr = s;
633 slot++;
635 for (f = 1; f < geo->far_copies; f++) {
636 set = d / geo->far_set_size;
637 d += geo->near_copies;
639 if ((geo->raid_disks % geo->far_set_size) &&
640 (d > last_far_set_start)) {
641 d -= last_far_set_start;
642 d %= last_far_set_size;
643 d += last_far_set_start;
644 } else {
645 d %= geo->far_set_size;
646 d += geo->far_set_size * set;
648 s += geo->stride;
649 r10bio->devs[slot].devnum = d;
650 r10bio->devs[slot].addr = s;
651 slot++;
653 dev++;
654 if (dev >= geo->raid_disks) {
655 dev = 0;
656 sector += (geo->chunk_mask + 1);
661 static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
663 struct geom *geo = &conf->geo;
665 if (conf->reshape_progress != MaxSector &&
666 ((r10bio->sector >= conf->reshape_progress) !=
667 conf->mddev->reshape_backwards)) {
668 set_bit(R10BIO_Previous, &r10bio->state);
669 geo = &conf->prev;
670 } else
671 clear_bit(R10BIO_Previous, &r10bio->state);
673 __raid10_find_phys(geo, r10bio);
676 static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
678 sector_t offset, chunk, vchunk;
679 /* Never use conf->prev as this is only called during resync
680 * or recovery, so reshape isn't happening
682 struct geom *geo = &conf->geo;
683 int far_set_start = (dev / geo->far_set_size) * geo->far_set_size;
684 int far_set_size = geo->far_set_size;
685 int last_far_set_start;
687 if (geo->raid_disks % geo->far_set_size) {
688 last_far_set_start = (geo->raid_disks / geo->far_set_size) - 1;
689 last_far_set_start *= geo->far_set_size;
691 if (dev >= last_far_set_start) {
692 far_set_size = geo->far_set_size;
693 far_set_size += (geo->raid_disks % geo->far_set_size);
694 far_set_start = last_far_set_start;
698 offset = sector & geo->chunk_mask;
699 if (geo->far_offset) {
700 int fc;
701 chunk = sector >> geo->chunk_shift;
702 fc = sector_div(chunk, geo->far_copies);
703 dev -= fc * geo->near_copies;
704 if (dev < far_set_start)
705 dev += far_set_size;
706 } else {
707 while (sector >= geo->stride) {
708 sector -= geo->stride;
709 if (dev < (geo->near_copies + far_set_start))
710 dev += far_set_size - geo->near_copies;
711 else
712 dev -= geo->near_copies;
714 chunk = sector >> geo->chunk_shift;
716 vchunk = chunk * geo->raid_disks + dev;
717 sector_div(vchunk, geo->near_copies);
718 return (vchunk << geo->chunk_shift) + offset;
722 * This routine returns the disk from which the requested read should
723 * be done. There is a per-array 'next expected sequential IO' sector
724 * number - if this matches on the next IO then we use the last disk.
725 * There is also a per-disk 'last know head position' sector that is
726 * maintained from IRQ contexts, both the normal and the resync IO
727 * completion handlers update this position correctly. If there is no
728 * perfect sequential match then we pick the disk whose head is closest.
730 * If there are 2 mirrors in the same 2 devices, performance degrades
731 * because position is mirror, not device based.
733 * The rdev for the device selected will have nr_pending incremented.
737 * FIXME: possibly should rethink readbalancing and do it differently
738 * depending on near_copies / far_copies geometry.
740 static struct md_rdev *read_balance(struct r10conf *conf,
741 struct r10bio *r10_bio,
742 int *max_sectors)
744 const sector_t this_sector = r10_bio->sector;
745 int disk, slot;
746 int sectors = r10_bio->sectors;
747 int best_good_sectors;
748 sector_t new_distance, best_dist;
749 struct md_rdev *best_rdev, *rdev = NULL;
750 int do_balance;
751 int best_slot;
752 struct geom *geo = &conf->geo;
754 raid10_find_phys(conf, r10_bio);
755 rcu_read_lock();
756 best_slot = -1;
757 best_rdev = NULL;
758 best_dist = MaxSector;
759 best_good_sectors = 0;
760 do_balance = 1;
761 clear_bit(R10BIO_FailFast, &r10_bio->state);
763 * Check if we can balance. We can balance on the whole
764 * device if no resync is going on (recovery is ok), or below
765 * the resync window. We take the first readable disk when
766 * above the resync window.
768 if ((conf->mddev->recovery_cp < MaxSector
769 && (this_sector + sectors >= conf->next_resync)) ||
770 (mddev_is_clustered(conf->mddev) &&
771 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
772 this_sector + sectors)))
773 do_balance = 0;
775 for (slot = 0; slot < conf->copies ; slot++) {
776 sector_t first_bad;
777 int bad_sectors;
778 sector_t dev_sector;
780 if (r10_bio->devs[slot].bio == IO_BLOCKED)
781 continue;
782 disk = r10_bio->devs[slot].devnum;
783 rdev = rcu_dereference(conf->mirrors[disk].replacement);
784 if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
785 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
786 rdev = rcu_dereference(conf->mirrors[disk].rdev);
787 if (rdev == NULL ||
788 test_bit(Faulty, &rdev->flags))
789 continue;
790 if (!test_bit(In_sync, &rdev->flags) &&
791 r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
792 continue;
794 dev_sector = r10_bio->devs[slot].addr;
795 if (is_badblock(rdev, dev_sector, sectors,
796 &first_bad, &bad_sectors)) {
797 if (best_dist < MaxSector)
798 /* Already have a better slot */
799 continue;
800 if (first_bad <= dev_sector) {
801 /* Cannot read here. If this is the
802 * 'primary' device, then we must not read
803 * beyond 'bad_sectors' from another device.
805 bad_sectors -= (dev_sector - first_bad);
806 if (!do_balance && sectors > bad_sectors)
807 sectors = bad_sectors;
808 if (best_good_sectors > sectors)
809 best_good_sectors = sectors;
810 } else {
811 sector_t good_sectors =
812 first_bad - dev_sector;
813 if (good_sectors > best_good_sectors) {
814 best_good_sectors = good_sectors;
815 best_slot = slot;
816 best_rdev = rdev;
818 if (!do_balance)
819 /* Must read from here */
820 break;
822 continue;
823 } else
824 best_good_sectors = sectors;
826 if (!do_balance)
827 break;
829 if (best_slot >= 0)
830 /* At least 2 disks to choose from so failfast is OK */
831 set_bit(R10BIO_FailFast, &r10_bio->state);
832 /* This optimisation is debatable, and completely destroys
833 * sequential read speed for 'far copies' arrays. So only
834 * keep it for 'near' arrays, and review those later.
836 if (geo->near_copies > 1 && !atomic_read(&rdev->nr_pending))
837 new_distance = 0;
839 /* for far > 1 always use the lowest address */
840 else if (geo->far_copies > 1)
841 new_distance = r10_bio->devs[slot].addr;
842 else
843 new_distance = abs(r10_bio->devs[slot].addr -
844 conf->mirrors[disk].head_position);
845 if (new_distance < best_dist) {
846 best_dist = new_distance;
847 best_slot = slot;
848 best_rdev = rdev;
851 if (slot >= conf->copies) {
852 slot = best_slot;
853 rdev = best_rdev;
856 if (slot >= 0) {
857 atomic_inc(&rdev->nr_pending);
858 r10_bio->read_slot = slot;
859 } else
860 rdev = NULL;
861 rcu_read_unlock();
862 *max_sectors = best_good_sectors;
864 return rdev;
867 static int raid10_congested(struct mddev *mddev, int bits)
869 struct r10conf *conf = mddev->private;
870 int i, ret = 0;
872 if ((bits & (1 << WB_async_congested)) &&
873 conf->pending_count >= max_queued_requests)
874 return 1;
876 rcu_read_lock();
877 for (i = 0;
878 (i < conf->geo.raid_disks || i < conf->prev.raid_disks)
879 && ret == 0;
880 i++) {
881 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
882 if (rdev && !test_bit(Faulty, &rdev->flags)) {
883 struct request_queue *q = bdev_get_queue(rdev->bdev);
885 ret |= bdi_congested(q->backing_dev_info, bits);
888 rcu_read_unlock();
889 return ret;
892 static void flush_pending_writes(struct r10conf *conf)
894 /* Any writes that have been queued but are awaiting
895 * bitmap updates get flushed here.
897 spin_lock_irq(&conf->device_lock);
899 if (conf->pending_bio_list.head) {
900 struct blk_plug plug;
901 struct bio *bio;
903 bio = bio_list_get(&conf->pending_bio_list);
904 conf->pending_count = 0;
905 spin_unlock_irq(&conf->device_lock);
908 * As this is called in a wait_event() loop (see freeze_array),
909 * current->state might be TASK_UNINTERRUPTIBLE which will
910 * cause a warning when we prepare to wait again. As it is
911 * rare that this path is taken, it is perfectly safe to force
912 * us to go around the wait_event() loop again, so the warning
913 * is a false-positive. Silence the warning by resetting
914 * thread state
916 __set_current_state(TASK_RUNNING);
918 blk_start_plug(&plug);
919 /* flush any pending bitmap writes to disk
920 * before proceeding w/ I/O */
921 md_bitmap_unplug(conf->mddev->bitmap);
922 wake_up(&conf->wait_barrier);
924 while (bio) { /* submit pending writes */
925 struct bio *next = bio->bi_next;
926 struct md_rdev *rdev = (void*)bio->bi_disk;
927 bio->bi_next = NULL;
928 bio_set_dev(bio, rdev->bdev);
929 if (test_bit(Faulty, &rdev->flags)) {
930 bio_io_error(bio);
931 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
932 !blk_queue_discard(bio->bi_disk->queue)))
933 /* Just ignore it */
934 bio_endio(bio);
935 else
936 generic_make_request(bio);
937 bio = next;
939 blk_finish_plug(&plug);
940 } else
941 spin_unlock_irq(&conf->device_lock);
944 /* Barriers....
945 * Sometimes we need to suspend IO while we do something else,
946 * either some resync/recovery, or reconfigure the array.
947 * To do this we raise a 'barrier'.
948 * The 'barrier' is a counter that can be raised multiple times
949 * to count how many activities are happening which preclude
950 * normal IO.
951 * We can only raise the barrier if there is no pending IO.
952 * i.e. if nr_pending == 0.
953 * We choose only to raise the barrier if no-one is waiting for the
954 * barrier to go down. This means that as soon as an IO request
955 * is ready, no other operations which require a barrier will start
956 * until the IO request has had a chance.
958 * So: regular IO calls 'wait_barrier'. When that returns there
959 * is no backgroup IO happening, It must arrange to call
960 * allow_barrier when it has finished its IO.
961 * backgroup IO calls must call raise_barrier. Once that returns
962 * there is no normal IO happeing. It must arrange to call
963 * lower_barrier when the particular background IO completes.
966 static void raise_barrier(struct r10conf *conf, int force)
968 BUG_ON(force && !conf->barrier);
969 spin_lock_irq(&conf->resync_lock);
971 /* Wait until no block IO is waiting (unless 'force') */
972 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
973 conf->resync_lock);
975 /* block any new IO from starting */
976 conf->barrier++;
978 /* Now wait for all pending IO to complete */
979 wait_event_lock_irq(conf->wait_barrier,
980 !atomic_read(&conf->nr_pending) && conf->barrier < RESYNC_DEPTH,
981 conf->resync_lock);
983 spin_unlock_irq(&conf->resync_lock);
986 static void lower_barrier(struct r10conf *conf)
988 unsigned long flags;
989 spin_lock_irqsave(&conf->resync_lock, flags);
990 conf->barrier--;
991 spin_unlock_irqrestore(&conf->resync_lock, flags);
992 wake_up(&conf->wait_barrier);
995 static void wait_barrier(struct r10conf *conf)
997 spin_lock_irq(&conf->resync_lock);
998 if (conf->barrier) {
999 conf->nr_waiting++;
1000 /* Wait for the barrier to drop.
1001 * However if there are already pending
1002 * requests (preventing the barrier from
1003 * rising completely), and the
1004 * pre-process bio queue isn't empty,
1005 * then don't wait, as we need to empty
1006 * that queue to get the nr_pending
1007 * count down.
1009 raid10_log(conf->mddev, "wait barrier");
1010 wait_event_lock_irq(conf->wait_barrier,
1011 !conf->barrier ||
1012 (atomic_read(&conf->nr_pending) &&
1013 current->bio_list &&
1014 (!bio_list_empty(&current->bio_list[0]) ||
1015 !bio_list_empty(&current->bio_list[1]))),
1016 conf->resync_lock);
1017 conf->nr_waiting--;
1018 if (!conf->nr_waiting)
1019 wake_up(&conf->wait_barrier);
1021 atomic_inc(&conf->nr_pending);
1022 spin_unlock_irq(&conf->resync_lock);
1025 static void allow_barrier(struct r10conf *conf)
1027 if ((atomic_dec_and_test(&conf->nr_pending)) ||
1028 (conf->array_freeze_pending))
1029 wake_up(&conf->wait_barrier);
1032 static void freeze_array(struct r10conf *conf, int extra)
1034 /* stop syncio and normal IO and wait for everything to
1035 * go quiet.
1036 * We increment barrier and nr_waiting, and then
1037 * wait until nr_pending match nr_queued+extra
1038 * This is called in the context of one normal IO request
1039 * that has failed. Thus any sync request that might be pending
1040 * will be blocked by nr_pending, and we need to wait for
1041 * pending IO requests to complete or be queued for re-try.
1042 * Thus the number queued (nr_queued) plus this request (extra)
1043 * must match the number of pending IOs (nr_pending) before
1044 * we continue.
1046 spin_lock_irq(&conf->resync_lock);
1047 conf->array_freeze_pending++;
1048 conf->barrier++;
1049 conf->nr_waiting++;
1050 wait_event_lock_irq_cmd(conf->wait_barrier,
1051 atomic_read(&conf->nr_pending) == conf->nr_queued+extra,
1052 conf->resync_lock,
1053 flush_pending_writes(conf));
1055 conf->array_freeze_pending--;
1056 spin_unlock_irq(&conf->resync_lock);
1059 static void unfreeze_array(struct r10conf *conf)
1061 /* reverse the effect of the freeze */
1062 spin_lock_irq(&conf->resync_lock);
1063 conf->barrier--;
1064 conf->nr_waiting--;
1065 wake_up(&conf->wait_barrier);
1066 spin_unlock_irq(&conf->resync_lock);
1069 static sector_t choose_data_offset(struct r10bio *r10_bio,
1070 struct md_rdev *rdev)
1072 if (!test_bit(MD_RECOVERY_RESHAPE, &rdev->mddev->recovery) ||
1073 test_bit(R10BIO_Previous, &r10_bio->state))
1074 return rdev->data_offset;
1075 else
1076 return rdev->new_data_offset;
1079 struct raid10_plug_cb {
1080 struct blk_plug_cb cb;
1081 struct bio_list pending;
1082 int pending_cnt;
1085 static void raid10_unplug(struct blk_plug_cb *cb, bool from_schedule)
1087 struct raid10_plug_cb *plug = container_of(cb, struct raid10_plug_cb,
1088 cb);
1089 struct mddev *mddev = plug->cb.data;
1090 struct r10conf *conf = mddev->private;
1091 struct bio *bio;
1093 if (from_schedule || current->bio_list) {
1094 spin_lock_irq(&conf->device_lock);
1095 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1096 conf->pending_count += plug->pending_cnt;
1097 spin_unlock_irq(&conf->device_lock);
1098 wake_up(&conf->wait_barrier);
1099 md_wakeup_thread(mddev->thread);
1100 kfree(plug);
1101 return;
1104 /* we aren't scheduling, so we can do the write-out directly. */
1105 bio = bio_list_get(&plug->pending);
1106 md_bitmap_unplug(mddev->bitmap);
1107 wake_up(&conf->wait_barrier);
1109 while (bio) { /* submit pending writes */
1110 struct bio *next = bio->bi_next;
1111 struct md_rdev *rdev = (void*)bio->bi_disk;
1112 bio->bi_next = NULL;
1113 bio_set_dev(bio, rdev->bdev);
1114 if (test_bit(Faulty, &rdev->flags)) {
1115 bio_io_error(bio);
1116 } else if (unlikely((bio_op(bio) == REQ_OP_DISCARD) &&
1117 !blk_queue_discard(bio->bi_disk->queue)))
1118 /* Just ignore it */
1119 bio_endio(bio);
1120 else
1121 generic_make_request(bio);
1122 bio = next;
1124 kfree(plug);
1127 static void raid10_read_request(struct mddev *mddev, struct bio *bio,
1128 struct r10bio *r10_bio)
1130 struct r10conf *conf = mddev->private;
1131 struct bio *read_bio;
1132 const int op = bio_op(bio);
1133 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1134 int max_sectors;
1135 sector_t sectors;
1136 struct md_rdev *rdev;
1137 char b[BDEVNAME_SIZE];
1138 int slot = r10_bio->read_slot;
1139 struct md_rdev *err_rdev = NULL;
1140 gfp_t gfp = GFP_NOIO;
1142 if (r10_bio->devs[slot].rdev) {
1144 * This is an error retry, but we cannot
1145 * safely dereference the rdev in the r10_bio,
1146 * we must use the one in conf.
1147 * If it has already been disconnected (unlikely)
1148 * we lose the device name in error messages.
1150 int disk;
1152 * As we are blocking raid10, it is a little safer to
1153 * use __GFP_HIGH.
1155 gfp = GFP_NOIO | __GFP_HIGH;
1157 rcu_read_lock();
1158 disk = r10_bio->devs[slot].devnum;
1159 err_rdev = rcu_dereference(conf->mirrors[disk].rdev);
1160 if (err_rdev)
1161 bdevname(err_rdev->bdev, b);
1162 else {
1163 strcpy(b, "???");
1164 /* This never gets dereferenced */
1165 err_rdev = r10_bio->devs[slot].rdev;
1167 rcu_read_unlock();
1170 * Register the new request and wait if the reconstruction
1171 * thread has put up a bar for new requests.
1172 * Continue immediately if no resync is active currently.
1174 wait_barrier(conf);
1176 sectors = r10_bio->sectors;
1177 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1178 bio->bi_iter.bi_sector < conf->reshape_progress &&
1179 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1181 * IO spans the reshape position. Need to wait for reshape to
1182 * pass
1184 raid10_log(conf->mddev, "wait reshape");
1185 allow_barrier(conf);
1186 wait_event(conf->wait_barrier,
1187 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1188 conf->reshape_progress >= bio->bi_iter.bi_sector +
1189 sectors);
1190 wait_barrier(conf);
1193 rdev = read_balance(conf, r10_bio, &max_sectors);
1194 if (!rdev) {
1195 if (err_rdev) {
1196 pr_crit_ratelimited("md/raid10:%s: %s: unrecoverable I/O read error for block %llu\n",
1197 mdname(mddev), b,
1198 (unsigned long long)r10_bio->sector);
1200 raid_end_bio_io(r10_bio);
1201 return;
1203 if (err_rdev)
1204 pr_err_ratelimited("md/raid10:%s: %s: redirecting sector %llu to another mirror\n",
1205 mdname(mddev),
1206 bdevname(rdev->bdev, b),
1207 (unsigned long long)r10_bio->sector);
1208 if (max_sectors < bio_sectors(bio)) {
1209 struct bio *split = bio_split(bio, max_sectors,
1210 gfp, &conf->bio_split);
1211 bio_chain(split, bio);
1212 generic_make_request(bio);
1213 bio = split;
1214 r10_bio->master_bio = bio;
1215 r10_bio->sectors = max_sectors;
1217 slot = r10_bio->read_slot;
1219 read_bio = bio_clone_fast(bio, gfp, &mddev->bio_set);
1221 r10_bio->devs[slot].bio = read_bio;
1222 r10_bio->devs[slot].rdev = rdev;
1224 read_bio->bi_iter.bi_sector = r10_bio->devs[slot].addr +
1225 choose_data_offset(r10_bio, rdev);
1226 bio_set_dev(read_bio, rdev->bdev);
1227 read_bio->bi_end_io = raid10_end_read_request;
1228 bio_set_op_attrs(read_bio, op, do_sync);
1229 if (test_bit(FailFast, &rdev->flags) &&
1230 test_bit(R10BIO_FailFast, &r10_bio->state))
1231 read_bio->bi_opf |= MD_FAILFAST;
1232 read_bio->bi_private = r10_bio;
1234 if (mddev->gendisk)
1235 trace_block_bio_remap(read_bio->bi_disk->queue,
1236 read_bio, disk_devt(mddev->gendisk),
1237 r10_bio->sector);
1238 generic_make_request(read_bio);
1239 return;
1242 static void raid10_write_one_disk(struct mddev *mddev, struct r10bio *r10_bio,
1243 struct bio *bio, bool replacement,
1244 int n_copy)
1246 const int op = bio_op(bio);
1247 const unsigned long do_sync = (bio->bi_opf & REQ_SYNC);
1248 const unsigned long do_fua = (bio->bi_opf & REQ_FUA);
1249 unsigned long flags;
1250 struct blk_plug_cb *cb;
1251 struct raid10_plug_cb *plug = NULL;
1252 struct r10conf *conf = mddev->private;
1253 struct md_rdev *rdev;
1254 int devnum = r10_bio->devs[n_copy].devnum;
1255 struct bio *mbio;
1257 if (replacement) {
1258 rdev = conf->mirrors[devnum].replacement;
1259 if (rdev == NULL) {
1260 /* Replacement just got moved to main 'rdev' */
1261 smp_mb();
1262 rdev = conf->mirrors[devnum].rdev;
1264 } else
1265 rdev = conf->mirrors[devnum].rdev;
1267 mbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
1268 if (replacement)
1269 r10_bio->devs[n_copy].repl_bio = mbio;
1270 else
1271 r10_bio->devs[n_copy].bio = mbio;
1273 mbio->bi_iter.bi_sector = (r10_bio->devs[n_copy].addr +
1274 choose_data_offset(r10_bio, rdev));
1275 bio_set_dev(mbio, rdev->bdev);
1276 mbio->bi_end_io = raid10_end_write_request;
1277 bio_set_op_attrs(mbio, op, do_sync | do_fua);
1278 if (!replacement && test_bit(FailFast,
1279 &conf->mirrors[devnum].rdev->flags)
1280 && enough(conf, devnum))
1281 mbio->bi_opf |= MD_FAILFAST;
1282 mbio->bi_private = r10_bio;
1284 if (conf->mddev->gendisk)
1285 trace_block_bio_remap(mbio->bi_disk->queue,
1286 mbio, disk_devt(conf->mddev->gendisk),
1287 r10_bio->sector);
1288 /* flush_pending_writes() needs access to the rdev so...*/
1289 mbio->bi_disk = (void *)rdev;
1291 atomic_inc(&r10_bio->remaining);
1293 cb = blk_check_plugged(raid10_unplug, mddev, sizeof(*plug));
1294 if (cb)
1295 plug = container_of(cb, struct raid10_plug_cb, cb);
1296 else
1297 plug = NULL;
1298 if (plug) {
1299 bio_list_add(&plug->pending, mbio);
1300 plug->pending_cnt++;
1301 } else {
1302 spin_lock_irqsave(&conf->device_lock, flags);
1303 bio_list_add(&conf->pending_bio_list, mbio);
1304 conf->pending_count++;
1305 spin_unlock_irqrestore(&conf->device_lock, flags);
1306 md_wakeup_thread(mddev->thread);
1310 static void raid10_write_request(struct mddev *mddev, struct bio *bio,
1311 struct r10bio *r10_bio)
1313 struct r10conf *conf = mddev->private;
1314 int i;
1315 struct md_rdev *blocked_rdev;
1316 sector_t sectors;
1317 int max_sectors;
1319 if ((mddev_is_clustered(mddev) &&
1320 md_cluster_ops->area_resyncing(mddev, WRITE,
1321 bio->bi_iter.bi_sector,
1322 bio_end_sector(bio)))) {
1323 DEFINE_WAIT(w);
1324 for (;;) {
1325 prepare_to_wait(&conf->wait_barrier,
1326 &w, TASK_IDLE);
1327 if (!md_cluster_ops->area_resyncing(mddev, WRITE,
1328 bio->bi_iter.bi_sector, bio_end_sector(bio)))
1329 break;
1330 schedule();
1332 finish_wait(&conf->wait_barrier, &w);
1336 * Register the new request and wait if the reconstruction
1337 * thread has put up a bar for new requests.
1338 * Continue immediately if no resync is active currently.
1340 wait_barrier(conf);
1342 sectors = r10_bio->sectors;
1343 while (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1344 bio->bi_iter.bi_sector < conf->reshape_progress &&
1345 bio->bi_iter.bi_sector + sectors > conf->reshape_progress) {
1347 * IO spans the reshape position. Need to wait for reshape to
1348 * pass
1350 raid10_log(conf->mddev, "wait reshape");
1351 allow_barrier(conf);
1352 wait_event(conf->wait_barrier,
1353 conf->reshape_progress <= bio->bi_iter.bi_sector ||
1354 conf->reshape_progress >= bio->bi_iter.bi_sector +
1355 sectors);
1356 wait_barrier(conf);
1359 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
1360 (mddev->reshape_backwards
1361 ? (bio->bi_iter.bi_sector < conf->reshape_safe &&
1362 bio->bi_iter.bi_sector + sectors > conf->reshape_progress)
1363 : (bio->bi_iter.bi_sector + sectors > conf->reshape_safe &&
1364 bio->bi_iter.bi_sector < conf->reshape_progress))) {
1365 /* Need to update reshape_position in metadata */
1366 mddev->reshape_position = conf->reshape_progress;
1367 set_mask_bits(&mddev->sb_flags, 0,
1368 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1369 md_wakeup_thread(mddev->thread);
1370 raid10_log(conf->mddev, "wait reshape metadata");
1371 wait_event(mddev->sb_wait,
1372 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags));
1374 conf->reshape_safe = mddev->reshape_position;
1377 if (conf->pending_count >= max_queued_requests) {
1378 md_wakeup_thread(mddev->thread);
1379 raid10_log(mddev, "wait queued");
1380 wait_event(conf->wait_barrier,
1381 conf->pending_count < max_queued_requests);
1383 /* first select target devices under rcu_lock and
1384 * inc refcount on their rdev. Record them by setting
1385 * bios[x] to bio
1386 * If there are known/acknowledged bad blocks on any device
1387 * on which we have seen a write error, we want to avoid
1388 * writing to those blocks. This potentially requires several
1389 * writes to write around the bad blocks. Each set of writes
1390 * gets its own r10_bio with a set of bios attached.
1393 r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
1394 raid10_find_phys(conf, r10_bio);
1395 retry_write:
1396 blocked_rdev = NULL;
1397 rcu_read_lock();
1398 max_sectors = r10_bio->sectors;
1400 for (i = 0; i < conf->copies; i++) {
1401 int d = r10_bio->devs[i].devnum;
1402 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
1403 struct md_rdev *rrdev = rcu_dereference(
1404 conf->mirrors[d].replacement);
1405 if (rdev == rrdev)
1406 rrdev = NULL;
1407 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1408 atomic_inc(&rdev->nr_pending);
1409 blocked_rdev = rdev;
1410 break;
1412 if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
1413 atomic_inc(&rrdev->nr_pending);
1414 blocked_rdev = rrdev;
1415 break;
1417 if (rdev && (test_bit(Faulty, &rdev->flags)))
1418 rdev = NULL;
1419 if (rrdev && (test_bit(Faulty, &rrdev->flags)))
1420 rrdev = NULL;
1422 r10_bio->devs[i].bio = NULL;
1423 r10_bio->devs[i].repl_bio = NULL;
1425 if (!rdev && !rrdev) {
1426 set_bit(R10BIO_Degraded, &r10_bio->state);
1427 continue;
1429 if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
1430 sector_t first_bad;
1431 sector_t dev_sector = r10_bio->devs[i].addr;
1432 int bad_sectors;
1433 int is_bad;
1435 is_bad = is_badblock(rdev, dev_sector, max_sectors,
1436 &first_bad, &bad_sectors);
1437 if (is_bad < 0) {
1438 /* Mustn't write here until the bad block
1439 * is acknowledged
1441 atomic_inc(&rdev->nr_pending);
1442 set_bit(BlockedBadBlocks, &rdev->flags);
1443 blocked_rdev = rdev;
1444 break;
1446 if (is_bad && first_bad <= dev_sector) {
1447 /* Cannot write here at all */
1448 bad_sectors -= (dev_sector - first_bad);
1449 if (bad_sectors < max_sectors)
1450 /* Mustn't write more than bad_sectors
1451 * to other devices yet
1453 max_sectors = bad_sectors;
1454 /* We don't set R10BIO_Degraded as that
1455 * only applies if the disk is missing,
1456 * so it might be re-added, and we want to
1457 * know to recover this chunk.
1458 * In this case the device is here, and the
1459 * fact that this chunk is not in-sync is
1460 * recorded in the bad block log.
1462 continue;
1464 if (is_bad) {
1465 int good_sectors = first_bad - dev_sector;
1466 if (good_sectors < max_sectors)
1467 max_sectors = good_sectors;
1470 if (rdev) {
1471 r10_bio->devs[i].bio = bio;
1472 atomic_inc(&rdev->nr_pending);
1474 if (rrdev) {
1475 r10_bio->devs[i].repl_bio = bio;
1476 atomic_inc(&rrdev->nr_pending);
1479 rcu_read_unlock();
1481 if (unlikely(blocked_rdev)) {
1482 /* Have to wait for this device to get unblocked, then retry */
1483 int j;
1484 int d;
1486 for (j = 0; j < i; j++) {
1487 if (r10_bio->devs[j].bio) {
1488 d = r10_bio->devs[j].devnum;
1489 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1491 if (r10_bio->devs[j].repl_bio) {
1492 struct md_rdev *rdev;
1493 d = r10_bio->devs[j].devnum;
1494 rdev = conf->mirrors[d].replacement;
1495 if (!rdev) {
1496 /* Race with remove_disk */
1497 smp_mb();
1498 rdev = conf->mirrors[d].rdev;
1500 rdev_dec_pending(rdev, mddev);
1503 allow_barrier(conf);
1504 raid10_log(conf->mddev, "wait rdev %d blocked", blocked_rdev->raid_disk);
1505 md_wait_for_blocked_rdev(blocked_rdev, mddev);
1506 wait_barrier(conf);
1507 goto retry_write;
1510 if (max_sectors < r10_bio->sectors)
1511 r10_bio->sectors = max_sectors;
1513 if (r10_bio->sectors < bio_sectors(bio)) {
1514 struct bio *split = bio_split(bio, r10_bio->sectors,
1515 GFP_NOIO, &conf->bio_split);
1516 bio_chain(split, bio);
1517 generic_make_request(bio);
1518 bio = split;
1519 r10_bio->master_bio = bio;
1522 atomic_set(&r10_bio->remaining, 1);
1523 md_bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
1525 for (i = 0; i < conf->copies; i++) {
1526 if (r10_bio->devs[i].bio)
1527 raid10_write_one_disk(mddev, r10_bio, bio, false, i);
1528 if (r10_bio->devs[i].repl_bio)
1529 raid10_write_one_disk(mddev, r10_bio, bio, true, i);
1531 one_write_done(r10_bio);
1534 static void __make_request(struct mddev *mddev, struct bio *bio, int sectors)
1536 struct r10conf *conf = mddev->private;
1537 struct r10bio *r10_bio;
1539 r10_bio = mempool_alloc(&conf->r10bio_pool, GFP_NOIO);
1541 r10_bio->master_bio = bio;
1542 r10_bio->sectors = sectors;
1544 r10_bio->mddev = mddev;
1545 r10_bio->sector = bio->bi_iter.bi_sector;
1546 r10_bio->state = 0;
1547 memset(r10_bio->devs, 0, sizeof(r10_bio->devs[0]) * conf->copies);
1549 if (bio_data_dir(bio) == READ)
1550 raid10_read_request(mddev, bio, r10_bio);
1551 else
1552 raid10_write_request(mddev, bio, r10_bio);
1555 static bool raid10_make_request(struct mddev *mddev, struct bio *bio)
1557 struct r10conf *conf = mddev->private;
1558 sector_t chunk_mask = (conf->geo.chunk_mask & conf->prev.chunk_mask);
1559 int chunk_sects = chunk_mask + 1;
1560 int sectors = bio_sectors(bio);
1562 if (unlikely(bio->bi_opf & REQ_PREFLUSH)) {
1563 md_flush_request(mddev, bio);
1564 return true;
1567 if (!md_write_start(mddev, bio))
1568 return false;
1571 * If this request crosses a chunk boundary, we need to split
1572 * it.
1574 if (unlikely((bio->bi_iter.bi_sector & chunk_mask) +
1575 sectors > chunk_sects
1576 && (conf->geo.near_copies < conf->geo.raid_disks
1577 || conf->prev.near_copies <
1578 conf->prev.raid_disks)))
1579 sectors = chunk_sects -
1580 (bio->bi_iter.bi_sector &
1581 (chunk_sects - 1));
1582 __make_request(mddev, bio, sectors);
1584 /* In case raid10d snuck in to freeze_array */
1585 wake_up(&conf->wait_barrier);
1586 return true;
1589 static void raid10_status(struct seq_file *seq, struct mddev *mddev)
1591 struct r10conf *conf = mddev->private;
1592 int i;
1594 if (conf->geo.near_copies < conf->geo.raid_disks)
1595 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
1596 if (conf->geo.near_copies > 1)
1597 seq_printf(seq, " %d near-copies", conf->geo.near_copies);
1598 if (conf->geo.far_copies > 1) {
1599 if (conf->geo.far_offset)
1600 seq_printf(seq, " %d offset-copies", conf->geo.far_copies);
1601 else
1602 seq_printf(seq, " %d far-copies", conf->geo.far_copies);
1603 if (conf->geo.far_set_size != conf->geo.raid_disks)
1604 seq_printf(seq, " %d devices per set", conf->geo.far_set_size);
1606 seq_printf(seq, " [%d/%d] [", conf->geo.raid_disks,
1607 conf->geo.raid_disks - mddev->degraded);
1608 rcu_read_lock();
1609 for (i = 0; i < conf->geo.raid_disks; i++) {
1610 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1611 seq_printf(seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1613 rcu_read_unlock();
1614 seq_printf(seq, "]");
1617 /* check if there are enough drives for
1618 * every block to appear on atleast one.
1619 * Don't consider the device numbered 'ignore'
1620 * as we might be about to remove it.
1622 static int _enough(struct r10conf *conf, int previous, int ignore)
1624 int first = 0;
1625 int has_enough = 0;
1626 int disks, ncopies;
1627 if (previous) {
1628 disks = conf->prev.raid_disks;
1629 ncopies = conf->prev.near_copies;
1630 } else {
1631 disks = conf->geo.raid_disks;
1632 ncopies = conf->geo.near_copies;
1635 rcu_read_lock();
1636 do {
1637 int n = conf->copies;
1638 int cnt = 0;
1639 int this = first;
1640 while (n--) {
1641 struct md_rdev *rdev;
1642 if (this != ignore &&
1643 (rdev = rcu_dereference(conf->mirrors[this].rdev)) &&
1644 test_bit(In_sync, &rdev->flags))
1645 cnt++;
1646 this = (this+1) % disks;
1648 if (cnt == 0)
1649 goto out;
1650 first = (first + ncopies) % disks;
1651 } while (first != 0);
1652 has_enough = 1;
1653 out:
1654 rcu_read_unlock();
1655 return has_enough;
1658 static int enough(struct r10conf *conf, int ignore)
1660 /* when calling 'enough', both 'prev' and 'geo' must
1661 * be stable.
1662 * This is ensured if ->reconfig_mutex or ->device_lock
1663 * is held.
1665 return _enough(conf, 0, ignore) &&
1666 _enough(conf, 1, ignore);
1669 static void raid10_error(struct mddev *mddev, struct md_rdev *rdev)
1671 char b[BDEVNAME_SIZE];
1672 struct r10conf *conf = mddev->private;
1673 unsigned long flags;
1676 * If it is not operational, then we have already marked it as dead
1677 * else if it is the last working disks, ignore the error, let the
1678 * next level up know.
1679 * else mark the drive as failed
1681 spin_lock_irqsave(&conf->device_lock, flags);
1682 if (test_bit(In_sync, &rdev->flags)
1683 && !enough(conf, rdev->raid_disk)) {
1685 * Don't fail the drive, just return an IO error.
1687 spin_unlock_irqrestore(&conf->device_lock, flags);
1688 return;
1690 if (test_and_clear_bit(In_sync, &rdev->flags))
1691 mddev->degraded++;
1693 * If recovery is running, make sure it aborts.
1695 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1696 set_bit(Blocked, &rdev->flags);
1697 set_bit(Faulty, &rdev->flags);
1698 set_mask_bits(&mddev->sb_flags, 0,
1699 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1700 spin_unlock_irqrestore(&conf->device_lock, flags);
1701 pr_crit("md/raid10:%s: Disk failure on %s, disabling device.\n"
1702 "md/raid10:%s: Operation continuing on %d devices.\n",
1703 mdname(mddev), bdevname(rdev->bdev, b),
1704 mdname(mddev), conf->geo.raid_disks - mddev->degraded);
1707 static void print_conf(struct r10conf *conf)
1709 int i;
1710 struct md_rdev *rdev;
1712 pr_debug("RAID10 conf printout:\n");
1713 if (!conf) {
1714 pr_debug("(!conf)\n");
1715 return;
1717 pr_debug(" --- wd:%d rd:%d\n", conf->geo.raid_disks - conf->mddev->degraded,
1718 conf->geo.raid_disks);
1720 /* This is only called with ->reconfix_mutex held, so
1721 * rcu protection of rdev is not needed */
1722 for (i = 0; i < conf->geo.raid_disks; i++) {
1723 char b[BDEVNAME_SIZE];
1724 rdev = conf->mirrors[i].rdev;
1725 if (rdev)
1726 pr_debug(" disk %d, wo:%d, o:%d, dev:%s\n",
1727 i, !test_bit(In_sync, &rdev->flags),
1728 !test_bit(Faulty, &rdev->flags),
1729 bdevname(rdev->bdev,b));
1733 static void close_sync(struct r10conf *conf)
1735 wait_barrier(conf);
1736 allow_barrier(conf);
1738 mempool_exit(&conf->r10buf_pool);
1741 static int raid10_spare_active(struct mddev *mddev)
1743 int i;
1744 struct r10conf *conf = mddev->private;
1745 struct raid10_info *tmp;
1746 int count = 0;
1747 unsigned long flags;
1750 * Find all non-in_sync disks within the RAID10 configuration
1751 * and mark them in_sync
1753 for (i = 0; i < conf->geo.raid_disks; i++) {
1754 tmp = conf->mirrors + i;
1755 if (tmp->replacement
1756 && tmp->replacement->recovery_offset == MaxSector
1757 && !test_bit(Faulty, &tmp->replacement->flags)
1758 && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
1759 /* Replacement has just become active */
1760 if (!tmp->rdev
1761 || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
1762 count++;
1763 if (tmp->rdev) {
1764 /* Replaced device not technically faulty,
1765 * but we need to be sure it gets removed
1766 * and never re-added.
1768 set_bit(Faulty, &tmp->rdev->flags);
1769 sysfs_notify_dirent_safe(
1770 tmp->rdev->sysfs_state);
1772 sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
1773 } else if (tmp->rdev
1774 && tmp->rdev->recovery_offset == MaxSector
1775 && !test_bit(Faulty, &tmp->rdev->flags)
1776 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1777 count++;
1778 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
1781 spin_lock_irqsave(&conf->device_lock, flags);
1782 mddev->degraded -= count;
1783 spin_unlock_irqrestore(&conf->device_lock, flags);
1785 print_conf(conf);
1786 return count;
1789 static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1791 struct r10conf *conf = mddev->private;
1792 int err = -EEXIST;
1793 int mirror;
1794 int first = 0;
1795 int last = conf->geo.raid_disks - 1;
1797 if (mddev->recovery_cp < MaxSector)
1798 /* only hot-add to in-sync arrays, as recovery is
1799 * very different from resync
1801 return -EBUSY;
1802 if (rdev->saved_raid_disk < 0 && !_enough(conf, 1, -1))
1803 return -EINVAL;
1805 if (md_integrity_add_rdev(rdev, mddev))
1806 return -ENXIO;
1808 if (rdev->raid_disk >= 0)
1809 first = last = rdev->raid_disk;
1811 if (rdev->saved_raid_disk >= first &&
1812 rdev->saved_raid_disk < conf->geo.raid_disks &&
1813 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1814 mirror = rdev->saved_raid_disk;
1815 else
1816 mirror = first;
1817 for ( ; mirror <= last ; mirror++) {
1818 struct raid10_info *p = &conf->mirrors[mirror];
1819 if (p->recovery_disabled == mddev->recovery_disabled)
1820 continue;
1821 if (p->rdev) {
1822 if (!test_bit(WantReplacement, &p->rdev->flags) ||
1823 p->replacement != NULL)
1824 continue;
1825 clear_bit(In_sync, &rdev->flags);
1826 set_bit(Replacement, &rdev->flags);
1827 rdev->raid_disk = mirror;
1828 err = 0;
1829 if (mddev->gendisk)
1830 disk_stack_limits(mddev->gendisk, rdev->bdev,
1831 rdev->data_offset << 9);
1832 conf->fullsync = 1;
1833 rcu_assign_pointer(p->replacement, rdev);
1834 break;
1837 if (mddev->gendisk)
1838 disk_stack_limits(mddev->gendisk, rdev->bdev,
1839 rdev->data_offset << 9);
1841 p->head_position = 0;
1842 p->recovery_disabled = mddev->recovery_disabled - 1;
1843 rdev->raid_disk = mirror;
1844 err = 0;
1845 if (rdev->saved_raid_disk != mirror)
1846 conf->fullsync = 1;
1847 rcu_assign_pointer(p->rdev, rdev);
1848 break;
1850 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
1851 blk_queue_flag_set(QUEUE_FLAG_DISCARD, mddev->queue);
1853 print_conf(conf);
1854 return err;
1857 static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1859 struct r10conf *conf = mddev->private;
1860 int err = 0;
1861 int number = rdev->raid_disk;
1862 struct md_rdev **rdevp;
1863 struct raid10_info *p = conf->mirrors + number;
1865 print_conf(conf);
1866 if (rdev == p->rdev)
1867 rdevp = &p->rdev;
1868 else if (rdev == p->replacement)
1869 rdevp = &p->replacement;
1870 else
1871 return 0;
1873 if (test_bit(In_sync, &rdev->flags) ||
1874 atomic_read(&rdev->nr_pending)) {
1875 err = -EBUSY;
1876 goto abort;
1878 /* Only remove non-faulty devices if recovery
1879 * is not possible.
1881 if (!test_bit(Faulty, &rdev->flags) &&
1882 mddev->recovery_disabled != p->recovery_disabled &&
1883 (!p->replacement || p->replacement == rdev) &&
1884 number < conf->geo.raid_disks &&
1885 enough(conf, -1)) {
1886 err = -EBUSY;
1887 goto abort;
1889 *rdevp = NULL;
1890 if (!test_bit(RemoveSynchronized, &rdev->flags)) {
1891 synchronize_rcu();
1892 if (atomic_read(&rdev->nr_pending)) {
1893 /* lost the race, try later */
1894 err = -EBUSY;
1895 *rdevp = rdev;
1896 goto abort;
1899 if (p->replacement) {
1900 /* We must have just cleared 'rdev' */
1901 p->rdev = p->replacement;
1902 clear_bit(Replacement, &p->replacement->flags);
1903 smp_mb(); /* Make sure other CPUs may see both as identical
1904 * but will never see neither -- if they are careful.
1906 p->replacement = NULL;
1909 clear_bit(WantReplacement, &rdev->flags);
1910 err = md_integrity_register(mddev);
1912 abort:
1914 print_conf(conf);
1915 return err;
1918 static void __end_sync_read(struct r10bio *r10_bio, struct bio *bio, int d)
1920 struct r10conf *conf = r10_bio->mddev->private;
1922 if (!bio->bi_status)
1923 set_bit(R10BIO_Uptodate, &r10_bio->state);
1924 else
1925 /* The write handler will notice the lack of
1926 * R10BIO_Uptodate and record any errors etc
1928 atomic_add(r10_bio->sectors,
1929 &conf->mirrors[d].rdev->corrected_errors);
1931 /* for reconstruct, we always reschedule after a read.
1932 * for resync, only after all reads
1934 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1935 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1936 atomic_dec_and_test(&r10_bio->remaining)) {
1937 /* we have read all the blocks,
1938 * do the comparison in process context in raid10d
1940 reschedule_retry(r10_bio);
1944 static void end_sync_read(struct bio *bio)
1946 struct r10bio *r10_bio = get_resync_r10bio(bio);
1947 struct r10conf *conf = r10_bio->mddev->private;
1948 int d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
1950 __end_sync_read(r10_bio, bio, d);
1953 static void end_reshape_read(struct bio *bio)
1955 /* reshape read bio isn't allocated from r10buf_pool */
1956 struct r10bio *r10_bio = bio->bi_private;
1958 __end_sync_read(r10_bio, bio, r10_bio->read_slot);
1961 static void end_sync_request(struct r10bio *r10_bio)
1963 struct mddev *mddev = r10_bio->mddev;
1965 while (atomic_dec_and_test(&r10_bio->remaining)) {
1966 if (r10_bio->master_bio == NULL) {
1967 /* the primary of several recovery bios */
1968 sector_t s = r10_bio->sectors;
1969 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1970 test_bit(R10BIO_WriteError, &r10_bio->state))
1971 reschedule_retry(r10_bio);
1972 else
1973 put_buf(r10_bio);
1974 md_done_sync(mddev, s, 1);
1975 break;
1976 } else {
1977 struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
1978 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
1979 test_bit(R10BIO_WriteError, &r10_bio->state))
1980 reschedule_retry(r10_bio);
1981 else
1982 put_buf(r10_bio);
1983 r10_bio = r10_bio2;
1988 static void end_sync_write(struct bio *bio)
1990 struct r10bio *r10_bio = get_resync_r10bio(bio);
1991 struct mddev *mddev = r10_bio->mddev;
1992 struct r10conf *conf = mddev->private;
1993 int d;
1994 sector_t first_bad;
1995 int bad_sectors;
1996 int slot;
1997 int repl;
1998 struct md_rdev *rdev = NULL;
2000 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
2001 if (repl)
2002 rdev = conf->mirrors[d].replacement;
2003 else
2004 rdev = conf->mirrors[d].rdev;
2006 if (bio->bi_status) {
2007 if (repl)
2008 md_error(mddev, rdev);
2009 else {
2010 set_bit(WriteErrorSeen, &rdev->flags);
2011 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2012 set_bit(MD_RECOVERY_NEEDED,
2013 &rdev->mddev->recovery);
2014 set_bit(R10BIO_WriteError, &r10_bio->state);
2016 } else if (is_badblock(rdev,
2017 r10_bio->devs[slot].addr,
2018 r10_bio->sectors,
2019 &first_bad, &bad_sectors))
2020 set_bit(R10BIO_MadeGood, &r10_bio->state);
2022 rdev_dec_pending(rdev, mddev);
2024 end_sync_request(r10_bio);
2028 * Note: sync and recover and handled very differently for raid10
2029 * This code is for resync.
2030 * For resync, we read through virtual addresses and read all blocks.
2031 * If there is any error, we schedule a write. The lowest numbered
2032 * drive is authoritative.
2033 * However requests come for physical address, so we need to map.
2034 * For every physical address there are raid_disks/copies virtual addresses,
2035 * which is always are least one, but is not necessarly an integer.
2036 * This means that a physical address can span multiple chunks, so we may
2037 * have to submit multiple io requests for a single sync request.
2040 * We check if all blocks are in-sync and only write to blocks that
2041 * aren't in sync
2043 static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2045 struct r10conf *conf = mddev->private;
2046 int i, first;
2047 struct bio *tbio, *fbio;
2048 int vcnt;
2049 struct page **tpages, **fpages;
2051 atomic_set(&r10_bio->remaining, 1);
2053 /* find the first device with a block */
2054 for (i=0; i<conf->copies; i++)
2055 if (!r10_bio->devs[i].bio->bi_status)
2056 break;
2058 if (i == conf->copies)
2059 goto done;
2061 first = i;
2062 fbio = r10_bio->devs[i].bio;
2063 fbio->bi_iter.bi_size = r10_bio->sectors << 9;
2064 fbio->bi_iter.bi_idx = 0;
2065 fpages = get_resync_pages(fbio)->pages;
2067 vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
2068 /* now find blocks with errors */
2069 for (i=0 ; i < conf->copies ; i++) {
2070 int j, d;
2071 struct md_rdev *rdev;
2072 struct resync_pages *rp;
2074 tbio = r10_bio->devs[i].bio;
2076 if (tbio->bi_end_io != end_sync_read)
2077 continue;
2078 if (i == first)
2079 continue;
2081 tpages = get_resync_pages(tbio)->pages;
2082 d = r10_bio->devs[i].devnum;
2083 rdev = conf->mirrors[d].rdev;
2084 if (!r10_bio->devs[i].bio->bi_status) {
2085 /* We know that the bi_io_vec layout is the same for
2086 * both 'first' and 'i', so we just compare them.
2087 * All vec entries are PAGE_SIZE;
2089 int sectors = r10_bio->sectors;
2090 for (j = 0; j < vcnt; j++) {
2091 int len = PAGE_SIZE;
2092 if (sectors < (len / 512))
2093 len = sectors * 512;
2094 if (memcmp(page_address(fpages[j]),
2095 page_address(tpages[j]),
2096 len))
2097 break;
2098 sectors -= len/512;
2100 if (j == vcnt)
2101 continue;
2102 atomic64_add(r10_bio->sectors, &mddev->resync_mismatches);
2103 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
2104 /* Don't fix anything. */
2105 continue;
2106 } else if (test_bit(FailFast, &rdev->flags)) {
2107 /* Just give up on this device */
2108 md_error(rdev->mddev, rdev);
2109 continue;
2111 /* Ok, we need to write this bio, either to correct an
2112 * inconsistency or to correct an unreadable block.
2113 * First we need to fixup bv_offset, bv_len and
2114 * bi_vecs, as the read request might have corrupted these
2116 rp = get_resync_pages(tbio);
2117 bio_reset(tbio);
2119 md_bio_reset_resync_pages(tbio, rp, fbio->bi_iter.bi_size);
2121 rp->raid_bio = r10_bio;
2122 tbio->bi_private = rp;
2123 tbio->bi_iter.bi_sector = r10_bio->devs[i].addr;
2124 tbio->bi_end_io = end_sync_write;
2125 bio_set_op_attrs(tbio, REQ_OP_WRITE, 0);
2127 bio_copy_data(tbio, fbio);
2129 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2130 atomic_inc(&r10_bio->remaining);
2131 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(tbio));
2133 if (test_bit(FailFast, &conf->mirrors[d].rdev->flags))
2134 tbio->bi_opf |= MD_FAILFAST;
2135 tbio->bi_iter.bi_sector += conf->mirrors[d].rdev->data_offset;
2136 bio_set_dev(tbio, conf->mirrors[d].rdev->bdev);
2137 generic_make_request(tbio);
2140 /* Now write out to any replacement devices
2141 * that are active
2143 for (i = 0; i < conf->copies; i++) {
2144 int d;
2146 tbio = r10_bio->devs[i].repl_bio;
2147 if (!tbio || !tbio->bi_end_io)
2148 continue;
2149 if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
2150 && r10_bio->devs[i].bio != fbio)
2151 bio_copy_data(tbio, fbio);
2152 d = r10_bio->devs[i].devnum;
2153 atomic_inc(&r10_bio->remaining);
2154 md_sync_acct(conf->mirrors[d].replacement->bdev,
2155 bio_sectors(tbio));
2156 generic_make_request(tbio);
2159 done:
2160 if (atomic_dec_and_test(&r10_bio->remaining)) {
2161 md_done_sync(mddev, r10_bio->sectors, 1);
2162 put_buf(r10_bio);
2167 * Now for the recovery code.
2168 * Recovery happens across physical sectors.
2169 * We recover all non-is_sync drives by finding the virtual address of
2170 * each, and then choose a working drive that also has that virt address.
2171 * There is a separate r10_bio for each non-in_sync drive.
2172 * Only the first two slots are in use. The first for reading,
2173 * The second for writing.
2176 static void fix_recovery_read_error(struct r10bio *r10_bio)
2178 /* We got a read error during recovery.
2179 * We repeat the read in smaller page-sized sections.
2180 * If a read succeeds, write it to the new device or record
2181 * a bad block if we cannot.
2182 * If a read fails, record a bad block on both old and
2183 * new devices.
2185 struct mddev *mddev = r10_bio->mddev;
2186 struct r10conf *conf = mddev->private;
2187 struct bio *bio = r10_bio->devs[0].bio;
2188 sector_t sect = 0;
2189 int sectors = r10_bio->sectors;
2190 int idx = 0;
2191 int dr = r10_bio->devs[0].devnum;
2192 int dw = r10_bio->devs[1].devnum;
2193 struct page **pages = get_resync_pages(bio)->pages;
2195 while (sectors) {
2196 int s = sectors;
2197 struct md_rdev *rdev;
2198 sector_t addr;
2199 int ok;
2201 if (s > (PAGE_SIZE>>9))
2202 s = PAGE_SIZE >> 9;
2204 rdev = conf->mirrors[dr].rdev;
2205 addr = r10_bio->devs[0].addr + sect,
2206 ok = sync_page_io(rdev,
2207 addr,
2208 s << 9,
2209 pages[idx],
2210 REQ_OP_READ, 0, false);
2211 if (ok) {
2212 rdev = conf->mirrors[dw].rdev;
2213 addr = r10_bio->devs[1].addr + sect;
2214 ok = sync_page_io(rdev,
2215 addr,
2216 s << 9,
2217 pages[idx],
2218 REQ_OP_WRITE, 0, false);
2219 if (!ok) {
2220 set_bit(WriteErrorSeen, &rdev->flags);
2221 if (!test_and_set_bit(WantReplacement,
2222 &rdev->flags))
2223 set_bit(MD_RECOVERY_NEEDED,
2224 &rdev->mddev->recovery);
2227 if (!ok) {
2228 /* We don't worry if we cannot set a bad block -
2229 * it really is bad so there is no loss in not
2230 * recording it yet
2232 rdev_set_badblocks(rdev, addr, s, 0);
2234 if (rdev != conf->mirrors[dw].rdev) {
2235 /* need bad block on destination too */
2236 struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
2237 addr = r10_bio->devs[1].addr + sect;
2238 ok = rdev_set_badblocks(rdev2, addr, s, 0);
2239 if (!ok) {
2240 /* just abort the recovery */
2241 pr_notice("md/raid10:%s: recovery aborted due to read error\n",
2242 mdname(mddev));
2244 conf->mirrors[dw].recovery_disabled
2245 = mddev->recovery_disabled;
2246 set_bit(MD_RECOVERY_INTR,
2247 &mddev->recovery);
2248 break;
2253 sectors -= s;
2254 sect += s;
2255 idx++;
2259 static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
2261 struct r10conf *conf = mddev->private;
2262 int d;
2263 struct bio *wbio, *wbio2;
2265 if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
2266 fix_recovery_read_error(r10_bio);
2267 end_sync_request(r10_bio);
2268 return;
2272 * share the pages with the first bio
2273 * and submit the write request
2275 d = r10_bio->devs[1].devnum;
2276 wbio = r10_bio->devs[1].bio;
2277 wbio2 = r10_bio->devs[1].repl_bio;
2278 /* Need to test wbio2->bi_end_io before we call
2279 * generic_make_request as if the former is NULL,
2280 * the latter is free to free wbio2.
2282 if (wbio2 && !wbio2->bi_end_io)
2283 wbio2 = NULL;
2284 if (wbio->bi_end_io) {
2285 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2286 md_sync_acct(conf->mirrors[d].rdev->bdev, bio_sectors(wbio));
2287 generic_make_request(wbio);
2289 if (wbio2) {
2290 atomic_inc(&conf->mirrors[d].replacement->nr_pending);
2291 md_sync_acct(conf->mirrors[d].replacement->bdev,
2292 bio_sectors(wbio2));
2293 generic_make_request(wbio2);
2298 * Used by fix_read_error() to decay the per rdev read_errors.
2299 * We halve the read error count for every hour that has elapsed
2300 * since the last recorded read error.
2303 static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
2305 long cur_time_mon;
2306 unsigned long hours_since_last;
2307 unsigned int read_errors = atomic_read(&rdev->read_errors);
2309 cur_time_mon = ktime_get_seconds();
2311 if (rdev->last_read_error == 0) {
2312 /* first time we've seen a read error */
2313 rdev->last_read_error = cur_time_mon;
2314 return;
2317 hours_since_last = (long)(cur_time_mon -
2318 rdev->last_read_error) / 3600;
2320 rdev->last_read_error = cur_time_mon;
2323 * if hours_since_last is > the number of bits in read_errors
2324 * just set read errors to 0. We do this to avoid
2325 * overflowing the shift of read_errors by hours_since_last.
2327 if (hours_since_last >= 8 * sizeof(read_errors))
2328 atomic_set(&rdev->read_errors, 0);
2329 else
2330 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
2333 static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
2334 int sectors, struct page *page, int rw)
2336 sector_t first_bad;
2337 int bad_sectors;
2339 if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
2340 && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
2341 return -1;
2342 if (sync_page_io(rdev, sector, sectors << 9, page, rw, 0, false))
2343 /* success */
2344 return 1;
2345 if (rw == WRITE) {
2346 set_bit(WriteErrorSeen, &rdev->flags);
2347 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2348 set_bit(MD_RECOVERY_NEEDED,
2349 &rdev->mddev->recovery);
2351 /* need to record an error - either for the block or the device */
2352 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
2353 md_error(rdev->mddev, rdev);
2354 return 0;
2358 * This is a kernel thread which:
2360 * 1. Retries failed read operations on working mirrors.
2361 * 2. Updates the raid superblock when problems encounter.
2362 * 3. Performs writes following reads for array synchronising.
2365 static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
2367 int sect = 0; /* Offset from r10_bio->sector */
2368 int sectors = r10_bio->sectors;
2369 struct md_rdev *rdev;
2370 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
2371 int d = r10_bio->devs[r10_bio->read_slot].devnum;
2373 /* still own a reference to this rdev, so it cannot
2374 * have been cleared recently.
2376 rdev = conf->mirrors[d].rdev;
2378 if (test_bit(Faulty, &rdev->flags))
2379 /* drive has already been failed, just ignore any
2380 more fix_read_error() attempts */
2381 return;
2383 check_decay_read_errors(mddev, rdev);
2384 atomic_inc(&rdev->read_errors);
2385 if (atomic_read(&rdev->read_errors) > max_read_errors) {
2386 char b[BDEVNAME_SIZE];
2387 bdevname(rdev->bdev, b);
2389 pr_notice("md/raid10:%s: %s: Raid device exceeded read_error threshold [cur %d:max %d]\n",
2390 mdname(mddev), b,
2391 atomic_read(&rdev->read_errors), max_read_errors);
2392 pr_notice("md/raid10:%s: %s: Failing raid device\n",
2393 mdname(mddev), b);
2394 md_error(mddev, rdev);
2395 r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
2396 return;
2399 while(sectors) {
2400 int s = sectors;
2401 int sl = r10_bio->read_slot;
2402 int success = 0;
2403 int start;
2405 if (s > (PAGE_SIZE>>9))
2406 s = PAGE_SIZE >> 9;
2408 rcu_read_lock();
2409 do {
2410 sector_t first_bad;
2411 int bad_sectors;
2413 d = r10_bio->devs[sl].devnum;
2414 rdev = rcu_dereference(conf->mirrors[d].rdev);
2415 if (rdev &&
2416 test_bit(In_sync, &rdev->flags) &&
2417 !test_bit(Faulty, &rdev->flags) &&
2418 is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
2419 &first_bad, &bad_sectors) == 0) {
2420 atomic_inc(&rdev->nr_pending);
2421 rcu_read_unlock();
2422 success = sync_page_io(rdev,
2423 r10_bio->devs[sl].addr +
2424 sect,
2425 s<<9,
2426 conf->tmppage,
2427 REQ_OP_READ, 0, false);
2428 rdev_dec_pending(rdev, mddev);
2429 rcu_read_lock();
2430 if (success)
2431 break;
2433 sl++;
2434 if (sl == conf->copies)
2435 sl = 0;
2436 } while (!success && sl != r10_bio->read_slot);
2437 rcu_read_unlock();
2439 if (!success) {
2440 /* Cannot read from anywhere, just mark the block
2441 * as bad on the first device to discourage future
2442 * reads.
2444 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
2445 rdev = conf->mirrors[dn].rdev;
2447 if (!rdev_set_badblocks(
2448 rdev,
2449 r10_bio->devs[r10_bio->read_slot].addr
2450 + sect,
2451 s, 0)) {
2452 md_error(mddev, rdev);
2453 r10_bio->devs[r10_bio->read_slot].bio
2454 = IO_BLOCKED;
2456 break;
2459 start = sl;
2460 /* write it back and re-read */
2461 rcu_read_lock();
2462 while (sl != r10_bio->read_slot) {
2463 char b[BDEVNAME_SIZE];
2465 if (sl==0)
2466 sl = conf->copies;
2467 sl--;
2468 d = r10_bio->devs[sl].devnum;
2469 rdev = rcu_dereference(conf->mirrors[d].rdev);
2470 if (!rdev ||
2471 test_bit(Faulty, &rdev->flags) ||
2472 !test_bit(In_sync, &rdev->flags))
2473 continue;
2475 atomic_inc(&rdev->nr_pending);
2476 rcu_read_unlock();
2477 if (r10_sync_page_io(rdev,
2478 r10_bio->devs[sl].addr +
2479 sect,
2480 s, conf->tmppage, WRITE)
2481 == 0) {
2482 /* Well, this device is dead */
2483 pr_notice("md/raid10:%s: read correction write failed (%d sectors at %llu on %s)\n",
2484 mdname(mddev), s,
2485 (unsigned long long)(
2486 sect +
2487 choose_data_offset(r10_bio,
2488 rdev)),
2489 bdevname(rdev->bdev, b));
2490 pr_notice("md/raid10:%s: %s: failing drive\n",
2491 mdname(mddev),
2492 bdevname(rdev->bdev, b));
2494 rdev_dec_pending(rdev, mddev);
2495 rcu_read_lock();
2497 sl = start;
2498 while (sl != r10_bio->read_slot) {
2499 char b[BDEVNAME_SIZE];
2501 if (sl==0)
2502 sl = conf->copies;
2503 sl--;
2504 d = r10_bio->devs[sl].devnum;
2505 rdev = rcu_dereference(conf->mirrors[d].rdev);
2506 if (!rdev ||
2507 test_bit(Faulty, &rdev->flags) ||
2508 !test_bit(In_sync, &rdev->flags))
2509 continue;
2511 atomic_inc(&rdev->nr_pending);
2512 rcu_read_unlock();
2513 switch (r10_sync_page_io(rdev,
2514 r10_bio->devs[sl].addr +
2515 sect,
2516 s, conf->tmppage,
2517 READ)) {
2518 case 0:
2519 /* Well, this device is dead */
2520 pr_notice("md/raid10:%s: unable to read back corrected sectors (%d sectors at %llu on %s)\n",
2521 mdname(mddev), s,
2522 (unsigned long long)(
2523 sect +
2524 choose_data_offset(r10_bio, rdev)),
2525 bdevname(rdev->bdev, b));
2526 pr_notice("md/raid10:%s: %s: failing drive\n",
2527 mdname(mddev),
2528 bdevname(rdev->bdev, b));
2529 break;
2530 case 1:
2531 pr_info("md/raid10:%s: read error corrected (%d sectors at %llu on %s)\n",
2532 mdname(mddev), s,
2533 (unsigned long long)(
2534 sect +
2535 choose_data_offset(r10_bio, rdev)),
2536 bdevname(rdev->bdev, b));
2537 atomic_add(s, &rdev->corrected_errors);
2540 rdev_dec_pending(rdev, mddev);
2541 rcu_read_lock();
2543 rcu_read_unlock();
2545 sectors -= s;
2546 sect += s;
2550 static int narrow_write_error(struct r10bio *r10_bio, int i)
2552 struct bio *bio = r10_bio->master_bio;
2553 struct mddev *mddev = r10_bio->mddev;
2554 struct r10conf *conf = mddev->private;
2555 struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
2556 /* bio has the data to be written to slot 'i' where
2557 * we just recently had a write error.
2558 * We repeatedly clone the bio and trim down to one block,
2559 * then try the write. Where the write fails we record
2560 * a bad block.
2561 * It is conceivable that the bio doesn't exactly align with
2562 * blocks. We must handle this.
2564 * We currently own a reference to the rdev.
2567 int block_sectors;
2568 sector_t sector;
2569 int sectors;
2570 int sect_to_write = r10_bio->sectors;
2571 int ok = 1;
2573 if (rdev->badblocks.shift < 0)
2574 return 0;
2576 block_sectors = roundup(1 << rdev->badblocks.shift,
2577 bdev_logical_block_size(rdev->bdev) >> 9);
2578 sector = r10_bio->sector;
2579 sectors = ((r10_bio->sector + block_sectors)
2580 & ~(sector_t)(block_sectors - 1))
2581 - sector;
2583 while (sect_to_write) {
2584 struct bio *wbio;
2585 sector_t wsector;
2586 if (sectors > sect_to_write)
2587 sectors = sect_to_write;
2588 /* Write at 'sector' for 'sectors' */
2589 wbio = bio_clone_fast(bio, GFP_NOIO, &mddev->bio_set);
2590 bio_trim(wbio, sector - bio->bi_iter.bi_sector, sectors);
2591 wsector = r10_bio->devs[i].addr + (sector - r10_bio->sector);
2592 wbio->bi_iter.bi_sector = wsector +
2593 choose_data_offset(r10_bio, rdev);
2594 bio_set_dev(wbio, rdev->bdev);
2595 bio_set_op_attrs(wbio, REQ_OP_WRITE, 0);
2597 if (submit_bio_wait(wbio) < 0)
2598 /* Failure! */
2599 ok = rdev_set_badblocks(rdev, wsector,
2600 sectors, 0)
2601 && ok;
2603 bio_put(wbio);
2604 sect_to_write -= sectors;
2605 sector += sectors;
2606 sectors = block_sectors;
2608 return ok;
2611 static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
2613 int slot = r10_bio->read_slot;
2614 struct bio *bio;
2615 struct r10conf *conf = mddev->private;
2616 struct md_rdev *rdev = r10_bio->devs[slot].rdev;
2618 /* we got a read error. Maybe the drive is bad. Maybe just
2619 * the block and we can fix it.
2620 * We freeze all other IO, and try reading the block from
2621 * other devices. When we find one, we re-write
2622 * and check it that fixes the read error.
2623 * This is all done synchronously while the array is
2624 * frozen.
2626 bio = r10_bio->devs[slot].bio;
2627 bio_put(bio);
2628 r10_bio->devs[slot].bio = NULL;
2630 if (mddev->ro)
2631 r10_bio->devs[slot].bio = IO_BLOCKED;
2632 else if (!test_bit(FailFast, &rdev->flags)) {
2633 freeze_array(conf, 1);
2634 fix_read_error(conf, mddev, r10_bio);
2635 unfreeze_array(conf);
2636 } else
2637 md_error(mddev, rdev);
2639 rdev_dec_pending(rdev, mddev);
2640 allow_barrier(conf);
2641 r10_bio->state = 0;
2642 raid10_read_request(mddev, r10_bio->master_bio, r10_bio);
2645 static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
2647 /* Some sort of write request has finished and it
2648 * succeeded in writing where we thought there was a
2649 * bad block. So forget the bad block.
2650 * Or possibly if failed and we need to record
2651 * a bad block.
2653 int m;
2654 struct md_rdev *rdev;
2656 if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
2657 test_bit(R10BIO_IsRecover, &r10_bio->state)) {
2658 for (m = 0; m < conf->copies; m++) {
2659 int dev = r10_bio->devs[m].devnum;
2660 rdev = conf->mirrors[dev].rdev;
2661 if (r10_bio->devs[m].bio == NULL ||
2662 r10_bio->devs[m].bio->bi_end_io == NULL)
2663 continue;
2664 if (!r10_bio->devs[m].bio->bi_status) {
2665 rdev_clear_badblocks(
2666 rdev,
2667 r10_bio->devs[m].addr,
2668 r10_bio->sectors, 0);
2669 } else {
2670 if (!rdev_set_badblocks(
2671 rdev,
2672 r10_bio->devs[m].addr,
2673 r10_bio->sectors, 0))
2674 md_error(conf->mddev, rdev);
2676 rdev = conf->mirrors[dev].replacement;
2677 if (r10_bio->devs[m].repl_bio == NULL ||
2678 r10_bio->devs[m].repl_bio->bi_end_io == NULL)
2679 continue;
2681 if (!r10_bio->devs[m].repl_bio->bi_status) {
2682 rdev_clear_badblocks(
2683 rdev,
2684 r10_bio->devs[m].addr,
2685 r10_bio->sectors, 0);
2686 } else {
2687 if (!rdev_set_badblocks(
2688 rdev,
2689 r10_bio->devs[m].addr,
2690 r10_bio->sectors, 0))
2691 md_error(conf->mddev, rdev);
2694 put_buf(r10_bio);
2695 } else {
2696 bool fail = false;
2697 for (m = 0; m < conf->copies; m++) {
2698 int dev = r10_bio->devs[m].devnum;
2699 struct bio *bio = r10_bio->devs[m].bio;
2700 rdev = conf->mirrors[dev].rdev;
2701 if (bio == IO_MADE_GOOD) {
2702 rdev_clear_badblocks(
2703 rdev,
2704 r10_bio->devs[m].addr,
2705 r10_bio->sectors, 0);
2706 rdev_dec_pending(rdev, conf->mddev);
2707 } else if (bio != NULL && bio->bi_status) {
2708 fail = true;
2709 if (!narrow_write_error(r10_bio, m)) {
2710 md_error(conf->mddev, rdev);
2711 set_bit(R10BIO_Degraded,
2712 &r10_bio->state);
2714 rdev_dec_pending(rdev, conf->mddev);
2716 bio = r10_bio->devs[m].repl_bio;
2717 rdev = conf->mirrors[dev].replacement;
2718 if (rdev && bio == IO_MADE_GOOD) {
2719 rdev_clear_badblocks(
2720 rdev,
2721 r10_bio->devs[m].addr,
2722 r10_bio->sectors, 0);
2723 rdev_dec_pending(rdev, conf->mddev);
2726 if (fail) {
2727 spin_lock_irq(&conf->device_lock);
2728 list_add(&r10_bio->retry_list, &conf->bio_end_io_list);
2729 conf->nr_queued++;
2730 spin_unlock_irq(&conf->device_lock);
2732 * In case freeze_array() is waiting for condition
2733 * nr_pending == nr_queued + extra to be true.
2735 wake_up(&conf->wait_barrier);
2736 md_wakeup_thread(conf->mddev->thread);
2737 } else {
2738 if (test_bit(R10BIO_WriteError,
2739 &r10_bio->state))
2740 close_write(r10_bio);
2741 raid_end_bio_io(r10_bio);
2746 static void raid10d(struct md_thread *thread)
2748 struct mddev *mddev = thread->mddev;
2749 struct r10bio *r10_bio;
2750 unsigned long flags;
2751 struct r10conf *conf = mddev->private;
2752 struct list_head *head = &conf->retry_list;
2753 struct blk_plug plug;
2755 md_check_recovery(mddev);
2757 if (!list_empty_careful(&conf->bio_end_io_list) &&
2758 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2759 LIST_HEAD(tmp);
2760 spin_lock_irqsave(&conf->device_lock, flags);
2761 if (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2762 while (!list_empty(&conf->bio_end_io_list)) {
2763 list_move(conf->bio_end_io_list.prev, &tmp);
2764 conf->nr_queued--;
2767 spin_unlock_irqrestore(&conf->device_lock, flags);
2768 while (!list_empty(&tmp)) {
2769 r10_bio = list_first_entry(&tmp, struct r10bio,
2770 retry_list);
2771 list_del(&r10_bio->retry_list);
2772 if (mddev->degraded)
2773 set_bit(R10BIO_Degraded, &r10_bio->state);
2775 if (test_bit(R10BIO_WriteError,
2776 &r10_bio->state))
2777 close_write(r10_bio);
2778 raid_end_bio_io(r10_bio);
2782 blk_start_plug(&plug);
2783 for (;;) {
2785 flush_pending_writes(conf);
2787 spin_lock_irqsave(&conf->device_lock, flags);
2788 if (list_empty(head)) {
2789 spin_unlock_irqrestore(&conf->device_lock, flags);
2790 break;
2792 r10_bio = list_entry(head->prev, struct r10bio, retry_list);
2793 list_del(head->prev);
2794 conf->nr_queued--;
2795 spin_unlock_irqrestore(&conf->device_lock, flags);
2797 mddev = r10_bio->mddev;
2798 conf = mddev->private;
2799 if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
2800 test_bit(R10BIO_WriteError, &r10_bio->state))
2801 handle_write_completed(conf, r10_bio);
2802 else if (test_bit(R10BIO_IsReshape, &r10_bio->state))
2803 reshape_request_write(mddev, r10_bio);
2804 else if (test_bit(R10BIO_IsSync, &r10_bio->state))
2805 sync_request_write(mddev, r10_bio);
2806 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
2807 recovery_request_write(mddev, r10_bio);
2808 else if (test_bit(R10BIO_ReadError, &r10_bio->state))
2809 handle_read_error(mddev, r10_bio);
2810 else
2811 WARN_ON_ONCE(1);
2813 cond_resched();
2814 if (mddev->sb_flags & ~(1<<MD_SB_CHANGE_PENDING))
2815 md_check_recovery(mddev);
2817 blk_finish_plug(&plug);
2820 static int init_resync(struct r10conf *conf)
2822 int ret, buffs, i;
2824 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
2825 BUG_ON(mempool_initialized(&conf->r10buf_pool));
2826 conf->have_replacement = 0;
2827 for (i = 0; i < conf->geo.raid_disks; i++)
2828 if (conf->mirrors[i].replacement)
2829 conf->have_replacement = 1;
2830 ret = mempool_init(&conf->r10buf_pool, buffs,
2831 r10buf_pool_alloc, r10buf_pool_free, conf);
2832 if (ret)
2833 return ret;
2834 conf->next_resync = 0;
2835 return 0;
2838 static struct r10bio *raid10_alloc_init_r10buf(struct r10conf *conf)
2840 struct r10bio *r10bio = mempool_alloc(&conf->r10buf_pool, GFP_NOIO);
2841 struct rsync_pages *rp;
2842 struct bio *bio;
2843 int nalloc;
2844 int i;
2846 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery) ||
2847 test_bit(MD_RECOVERY_RESHAPE, &conf->mddev->recovery))
2848 nalloc = conf->copies; /* resync */
2849 else
2850 nalloc = 2; /* recovery */
2852 for (i = 0; i < nalloc; i++) {
2853 bio = r10bio->devs[i].bio;
2854 rp = bio->bi_private;
2855 bio_reset(bio);
2856 bio->bi_private = rp;
2857 bio = r10bio->devs[i].repl_bio;
2858 if (bio) {
2859 rp = bio->bi_private;
2860 bio_reset(bio);
2861 bio->bi_private = rp;
2864 return r10bio;
2868 * Set cluster_sync_high since we need other nodes to add the
2869 * range [cluster_sync_low, cluster_sync_high] to suspend list.
2871 static void raid10_set_cluster_sync_high(struct r10conf *conf)
2873 sector_t window_size;
2874 int extra_chunk, chunks;
2877 * First, here we define "stripe" as a unit which across
2878 * all member devices one time, so we get chunks by use
2879 * raid_disks / near_copies. Otherwise, if near_copies is
2880 * close to raid_disks, then resync window could increases
2881 * linearly with the increase of raid_disks, which means
2882 * we will suspend a really large IO window while it is not
2883 * necessary. If raid_disks is not divisible by near_copies,
2884 * an extra chunk is needed to ensure the whole "stripe" is
2885 * covered.
2888 chunks = conf->geo.raid_disks / conf->geo.near_copies;
2889 if (conf->geo.raid_disks % conf->geo.near_copies == 0)
2890 extra_chunk = 0;
2891 else
2892 extra_chunk = 1;
2893 window_size = (chunks + extra_chunk) * conf->mddev->chunk_sectors;
2896 * At least use a 32M window to align with raid1's resync window
2898 window_size = (CLUSTER_RESYNC_WINDOW_SECTORS > window_size) ?
2899 CLUSTER_RESYNC_WINDOW_SECTORS : window_size;
2901 conf->cluster_sync_high = conf->cluster_sync_low + window_size;
2905 * perform a "sync" on one "block"
2907 * We need to make sure that no normal I/O request - particularly write
2908 * requests - conflict with active sync requests.
2910 * This is achieved by tracking pending requests and a 'barrier' concept
2911 * that can be installed to exclude normal IO requests.
2913 * Resync and recovery are handled very differently.
2914 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
2916 * For resync, we iterate over virtual addresses, read all copies,
2917 * and update if there are differences. If only one copy is live,
2918 * skip it.
2919 * For recovery, we iterate over physical addresses, read a good
2920 * value for each non-in_sync drive, and over-write.
2922 * So, for recovery we may have several outstanding complex requests for a
2923 * given address, one for each out-of-sync device. We model this by allocating
2924 * a number of r10_bio structures, one for each out-of-sync device.
2925 * As we setup these structures, we collect all bio's together into a list
2926 * which we then process collectively to add pages, and then process again
2927 * to pass to generic_make_request.
2929 * The r10_bio structures are linked using a borrowed master_bio pointer.
2930 * This link is counted in ->remaining. When the r10_bio that points to NULL
2931 * has its remaining count decremented to 0, the whole complex operation
2932 * is complete.
2936 static sector_t raid10_sync_request(struct mddev *mddev, sector_t sector_nr,
2937 int *skipped)
2939 struct r10conf *conf = mddev->private;
2940 struct r10bio *r10_bio;
2941 struct bio *biolist = NULL, *bio;
2942 sector_t max_sector, nr_sectors;
2943 int i;
2944 int max_sync;
2945 sector_t sync_blocks;
2946 sector_t sectors_skipped = 0;
2947 int chunks_skipped = 0;
2948 sector_t chunk_mask = conf->geo.chunk_mask;
2949 int page_idx = 0;
2951 if (!mempool_initialized(&conf->r10buf_pool))
2952 if (init_resync(conf))
2953 return 0;
2956 * Allow skipping a full rebuild for incremental assembly
2957 * of a clean array, like RAID1 does.
2959 if (mddev->bitmap == NULL &&
2960 mddev->recovery_cp == MaxSector &&
2961 mddev->reshape_position == MaxSector &&
2962 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2963 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
2964 !test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
2965 conf->fullsync == 0) {
2966 *skipped = 1;
2967 return mddev->dev_sectors - sector_nr;
2970 skipped:
2971 max_sector = mddev->dev_sectors;
2972 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ||
2973 test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
2974 max_sector = mddev->resync_max_sectors;
2975 if (sector_nr >= max_sector) {
2976 conf->cluster_sync_low = 0;
2977 conf->cluster_sync_high = 0;
2979 /* If we aborted, we need to abort the
2980 * sync on the 'current' bitmap chucks (there can
2981 * be several when recovering multiple devices).
2982 * as we may have started syncing it but not finished.
2983 * We can find the current address in
2984 * mddev->curr_resync, but for recovery,
2985 * we need to convert that to several
2986 * virtual addresses.
2988 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
2989 end_reshape(conf);
2990 close_sync(conf);
2991 return 0;
2994 if (mddev->curr_resync < max_sector) { /* aborted */
2995 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
2996 md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
2997 &sync_blocks, 1);
2998 else for (i = 0; i < conf->geo.raid_disks; i++) {
2999 sector_t sect =
3000 raid10_find_virt(conf, mddev->curr_resync, i);
3001 md_bitmap_end_sync(mddev->bitmap, sect,
3002 &sync_blocks, 1);
3004 } else {
3005 /* completed sync */
3006 if ((!mddev->bitmap || conf->fullsync)
3007 && conf->have_replacement
3008 && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3009 /* Completed a full sync so the replacements
3010 * are now fully recovered.
3012 rcu_read_lock();
3013 for (i = 0; i < conf->geo.raid_disks; i++) {
3014 struct md_rdev *rdev =
3015 rcu_dereference(conf->mirrors[i].replacement);
3016 if (rdev)
3017 rdev->recovery_offset = MaxSector;
3019 rcu_read_unlock();
3021 conf->fullsync = 0;
3023 md_bitmap_close_sync(mddev->bitmap);
3024 close_sync(conf);
3025 *skipped = 1;
3026 return sectors_skipped;
3029 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3030 return reshape_request(mddev, sector_nr, skipped);
3032 if (chunks_skipped >= conf->geo.raid_disks) {
3033 /* if there has been nothing to do on any drive,
3034 * then there is nothing to do at all..
3036 *skipped = 1;
3037 return (max_sector - sector_nr) + sectors_skipped;
3040 if (max_sector > mddev->resync_max)
3041 max_sector = mddev->resync_max; /* Don't do IO beyond here */
3043 /* make sure whole request will fit in a chunk - if chunks
3044 * are meaningful
3046 if (conf->geo.near_copies < conf->geo.raid_disks &&
3047 max_sector > (sector_nr | chunk_mask))
3048 max_sector = (sector_nr | chunk_mask) + 1;
3051 * If there is non-resync activity waiting for a turn, then let it
3052 * though before starting on this new sync request.
3054 if (conf->nr_waiting)
3055 schedule_timeout_uninterruptible(1);
3057 /* Again, very different code for resync and recovery.
3058 * Both must result in an r10bio with a list of bios that
3059 * have bi_end_io, bi_sector, bi_disk set,
3060 * and bi_private set to the r10bio.
3061 * For recovery, we may actually create several r10bios
3062 * with 2 bios in each, that correspond to the bios in the main one.
3063 * In this case, the subordinate r10bios link back through a
3064 * borrowed master_bio pointer, and the counter in the master
3065 * includes a ref from each subordinate.
3067 /* First, we decide what to do and set ->bi_end_io
3068 * To end_sync_read if we want to read, and
3069 * end_sync_write if we will want to write.
3072 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
3073 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3074 /* recovery... the complicated one */
3075 int j;
3076 r10_bio = NULL;
3078 for (i = 0 ; i < conf->geo.raid_disks; i++) {
3079 int still_degraded;
3080 struct r10bio *rb2;
3081 sector_t sect;
3082 int must_sync;
3083 int any_working;
3084 int need_recover = 0;
3085 int need_replace = 0;
3086 struct raid10_info *mirror = &conf->mirrors[i];
3087 struct md_rdev *mrdev, *mreplace;
3089 rcu_read_lock();
3090 mrdev = rcu_dereference(mirror->rdev);
3091 mreplace = rcu_dereference(mirror->replacement);
3093 if (mrdev != NULL &&
3094 !test_bit(Faulty, &mrdev->flags) &&
3095 !test_bit(In_sync, &mrdev->flags))
3096 need_recover = 1;
3097 if (mreplace != NULL &&
3098 !test_bit(Faulty, &mreplace->flags))
3099 need_replace = 1;
3101 if (!need_recover && !need_replace) {
3102 rcu_read_unlock();
3103 continue;
3106 still_degraded = 0;
3107 /* want to reconstruct this device */
3108 rb2 = r10_bio;
3109 sect = raid10_find_virt(conf, sector_nr, i);
3110 if (sect >= mddev->resync_max_sectors) {
3111 /* last stripe is not complete - don't
3112 * try to recover this sector.
3114 rcu_read_unlock();
3115 continue;
3117 if (mreplace && test_bit(Faulty, &mreplace->flags))
3118 mreplace = NULL;
3119 /* Unless we are doing a full sync, or a replacement
3120 * we only need to recover the block if it is set in
3121 * the bitmap
3123 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3124 &sync_blocks, 1);
3125 if (sync_blocks < max_sync)
3126 max_sync = sync_blocks;
3127 if (!must_sync &&
3128 mreplace == NULL &&
3129 !conf->fullsync) {
3130 /* yep, skip the sync_blocks here, but don't assume
3131 * that there will never be anything to do here
3133 chunks_skipped = -1;
3134 rcu_read_unlock();
3135 continue;
3137 atomic_inc(&mrdev->nr_pending);
3138 if (mreplace)
3139 atomic_inc(&mreplace->nr_pending);
3140 rcu_read_unlock();
3142 r10_bio = raid10_alloc_init_r10buf(conf);
3143 r10_bio->state = 0;
3144 raise_barrier(conf, rb2 != NULL);
3145 atomic_set(&r10_bio->remaining, 0);
3147 r10_bio->master_bio = (struct bio*)rb2;
3148 if (rb2)
3149 atomic_inc(&rb2->remaining);
3150 r10_bio->mddev = mddev;
3151 set_bit(R10BIO_IsRecover, &r10_bio->state);
3152 r10_bio->sector = sect;
3154 raid10_find_phys(conf, r10_bio);
3156 /* Need to check if the array will still be
3157 * degraded
3159 rcu_read_lock();
3160 for (j = 0; j < conf->geo.raid_disks; j++) {
3161 struct md_rdev *rdev = rcu_dereference(
3162 conf->mirrors[j].rdev);
3163 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3164 still_degraded = 1;
3165 break;
3169 must_sync = md_bitmap_start_sync(mddev->bitmap, sect,
3170 &sync_blocks, still_degraded);
3172 any_working = 0;
3173 for (j=0; j<conf->copies;j++) {
3174 int k;
3175 int d = r10_bio->devs[j].devnum;
3176 sector_t from_addr, to_addr;
3177 struct md_rdev *rdev =
3178 rcu_dereference(conf->mirrors[d].rdev);
3179 sector_t sector, first_bad;
3180 int bad_sectors;
3181 if (!rdev ||
3182 !test_bit(In_sync, &rdev->flags))
3183 continue;
3184 /* This is where we read from */
3185 any_working = 1;
3186 sector = r10_bio->devs[j].addr;
3188 if (is_badblock(rdev, sector, max_sync,
3189 &first_bad, &bad_sectors)) {
3190 if (first_bad > sector)
3191 max_sync = first_bad - sector;
3192 else {
3193 bad_sectors -= (sector
3194 - first_bad);
3195 if (max_sync > bad_sectors)
3196 max_sync = bad_sectors;
3197 continue;
3200 bio = r10_bio->devs[0].bio;
3201 bio->bi_next = biolist;
3202 biolist = bio;
3203 bio->bi_end_io = end_sync_read;
3204 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3205 if (test_bit(FailFast, &rdev->flags))
3206 bio->bi_opf |= MD_FAILFAST;
3207 from_addr = r10_bio->devs[j].addr;
3208 bio->bi_iter.bi_sector = from_addr +
3209 rdev->data_offset;
3210 bio_set_dev(bio, rdev->bdev);
3211 atomic_inc(&rdev->nr_pending);
3212 /* and we write to 'i' (if not in_sync) */
3214 for (k=0; k<conf->copies; k++)
3215 if (r10_bio->devs[k].devnum == i)
3216 break;
3217 BUG_ON(k == conf->copies);
3218 to_addr = r10_bio->devs[k].addr;
3219 r10_bio->devs[0].devnum = d;
3220 r10_bio->devs[0].addr = from_addr;
3221 r10_bio->devs[1].devnum = i;
3222 r10_bio->devs[1].addr = to_addr;
3224 if (need_recover) {
3225 bio = r10_bio->devs[1].bio;
3226 bio->bi_next = biolist;
3227 biolist = bio;
3228 bio->bi_end_io = end_sync_write;
3229 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3230 bio->bi_iter.bi_sector = to_addr
3231 + mrdev->data_offset;
3232 bio_set_dev(bio, mrdev->bdev);
3233 atomic_inc(&r10_bio->remaining);
3234 } else
3235 r10_bio->devs[1].bio->bi_end_io = NULL;
3237 /* and maybe write to replacement */
3238 bio = r10_bio->devs[1].repl_bio;
3239 if (bio)
3240 bio->bi_end_io = NULL;
3241 /* Note: if need_replace, then bio
3242 * cannot be NULL as r10buf_pool_alloc will
3243 * have allocated it.
3245 if (!need_replace)
3246 break;
3247 bio->bi_next = biolist;
3248 biolist = bio;
3249 bio->bi_end_io = end_sync_write;
3250 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3251 bio->bi_iter.bi_sector = to_addr +
3252 mreplace->data_offset;
3253 bio_set_dev(bio, mreplace->bdev);
3254 atomic_inc(&r10_bio->remaining);
3255 break;
3257 rcu_read_unlock();
3258 if (j == conf->copies) {
3259 /* Cannot recover, so abort the recovery or
3260 * record a bad block */
3261 if (any_working) {
3262 /* problem is that there are bad blocks
3263 * on other device(s)
3265 int k;
3266 for (k = 0; k < conf->copies; k++)
3267 if (r10_bio->devs[k].devnum == i)
3268 break;
3269 if (!test_bit(In_sync,
3270 &mrdev->flags)
3271 && !rdev_set_badblocks(
3272 mrdev,
3273 r10_bio->devs[k].addr,
3274 max_sync, 0))
3275 any_working = 0;
3276 if (mreplace &&
3277 !rdev_set_badblocks(
3278 mreplace,
3279 r10_bio->devs[k].addr,
3280 max_sync, 0))
3281 any_working = 0;
3283 if (!any_working) {
3284 if (!test_and_set_bit(MD_RECOVERY_INTR,
3285 &mddev->recovery))
3286 pr_warn("md/raid10:%s: insufficient working devices for recovery.\n",
3287 mdname(mddev));
3288 mirror->recovery_disabled
3289 = mddev->recovery_disabled;
3291 put_buf(r10_bio);
3292 if (rb2)
3293 atomic_dec(&rb2->remaining);
3294 r10_bio = rb2;
3295 rdev_dec_pending(mrdev, mddev);
3296 if (mreplace)
3297 rdev_dec_pending(mreplace, mddev);
3298 break;
3300 rdev_dec_pending(mrdev, mddev);
3301 if (mreplace)
3302 rdev_dec_pending(mreplace, mddev);
3303 if (r10_bio->devs[0].bio->bi_opf & MD_FAILFAST) {
3304 /* Only want this if there is elsewhere to
3305 * read from. 'j' is currently the first
3306 * readable copy.
3308 int targets = 1;
3309 for (; j < conf->copies; j++) {
3310 int d = r10_bio->devs[j].devnum;
3311 if (conf->mirrors[d].rdev &&
3312 test_bit(In_sync,
3313 &conf->mirrors[d].rdev->flags))
3314 targets++;
3316 if (targets == 1)
3317 r10_bio->devs[0].bio->bi_opf
3318 &= ~MD_FAILFAST;
3321 if (biolist == NULL) {
3322 while (r10_bio) {
3323 struct r10bio *rb2 = r10_bio;
3324 r10_bio = (struct r10bio*) rb2->master_bio;
3325 rb2->master_bio = NULL;
3326 put_buf(rb2);
3328 goto giveup;
3330 } else {
3331 /* resync. Schedule a read for every block at this virt offset */
3332 int count = 0;
3335 * Since curr_resync_completed could probably not update in
3336 * time, and we will set cluster_sync_low based on it.
3337 * Let's check against "sector_nr + 2 * RESYNC_SECTORS" for
3338 * safety reason, which ensures curr_resync_completed is
3339 * updated in bitmap_cond_end_sync.
3341 md_bitmap_cond_end_sync(mddev->bitmap, sector_nr,
3342 mddev_is_clustered(mddev) &&
3343 (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
3345 if (!md_bitmap_start_sync(mddev->bitmap, sector_nr,
3346 &sync_blocks, mddev->degraded) &&
3347 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
3348 &mddev->recovery)) {
3349 /* We can skip this block */
3350 *skipped = 1;
3351 return sync_blocks + sectors_skipped;
3353 if (sync_blocks < max_sync)
3354 max_sync = sync_blocks;
3355 r10_bio = raid10_alloc_init_r10buf(conf);
3356 r10_bio->state = 0;
3358 r10_bio->mddev = mddev;
3359 atomic_set(&r10_bio->remaining, 0);
3360 raise_barrier(conf, 0);
3361 conf->next_resync = sector_nr;
3363 r10_bio->master_bio = NULL;
3364 r10_bio->sector = sector_nr;
3365 set_bit(R10BIO_IsSync, &r10_bio->state);
3366 raid10_find_phys(conf, r10_bio);
3367 r10_bio->sectors = (sector_nr | chunk_mask) - sector_nr + 1;
3369 for (i = 0; i < conf->copies; i++) {
3370 int d = r10_bio->devs[i].devnum;
3371 sector_t first_bad, sector;
3372 int bad_sectors;
3373 struct md_rdev *rdev;
3375 if (r10_bio->devs[i].repl_bio)
3376 r10_bio->devs[i].repl_bio->bi_end_io = NULL;
3378 bio = r10_bio->devs[i].bio;
3379 bio->bi_status = BLK_STS_IOERR;
3380 rcu_read_lock();
3381 rdev = rcu_dereference(conf->mirrors[d].rdev);
3382 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3383 rcu_read_unlock();
3384 continue;
3386 sector = r10_bio->devs[i].addr;
3387 if (is_badblock(rdev, sector, max_sync,
3388 &first_bad, &bad_sectors)) {
3389 if (first_bad > sector)
3390 max_sync = first_bad - sector;
3391 else {
3392 bad_sectors -= (sector - first_bad);
3393 if (max_sync > bad_sectors)
3394 max_sync = bad_sectors;
3395 rcu_read_unlock();
3396 continue;
3399 atomic_inc(&rdev->nr_pending);
3400 atomic_inc(&r10_bio->remaining);
3401 bio->bi_next = biolist;
3402 biolist = bio;
3403 bio->bi_end_io = end_sync_read;
3404 bio_set_op_attrs(bio, REQ_OP_READ, 0);
3405 if (test_bit(FailFast, &rdev->flags))
3406 bio->bi_opf |= MD_FAILFAST;
3407 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3408 bio_set_dev(bio, rdev->bdev);
3409 count++;
3411 rdev = rcu_dereference(conf->mirrors[d].replacement);
3412 if (rdev == NULL || test_bit(Faulty, &rdev->flags)) {
3413 rcu_read_unlock();
3414 continue;
3416 atomic_inc(&rdev->nr_pending);
3418 /* Need to set up for writing to the replacement */
3419 bio = r10_bio->devs[i].repl_bio;
3420 bio->bi_status = BLK_STS_IOERR;
3422 sector = r10_bio->devs[i].addr;
3423 bio->bi_next = biolist;
3424 biolist = bio;
3425 bio->bi_end_io = end_sync_write;
3426 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
3427 if (test_bit(FailFast, &rdev->flags))
3428 bio->bi_opf |= MD_FAILFAST;
3429 bio->bi_iter.bi_sector = sector + rdev->data_offset;
3430 bio_set_dev(bio, rdev->bdev);
3431 count++;
3432 rcu_read_unlock();
3435 if (count < 2) {
3436 for (i=0; i<conf->copies; i++) {
3437 int d = r10_bio->devs[i].devnum;
3438 if (r10_bio->devs[i].bio->bi_end_io)
3439 rdev_dec_pending(conf->mirrors[d].rdev,
3440 mddev);
3441 if (r10_bio->devs[i].repl_bio &&
3442 r10_bio->devs[i].repl_bio->bi_end_io)
3443 rdev_dec_pending(
3444 conf->mirrors[d].replacement,
3445 mddev);
3447 put_buf(r10_bio);
3448 biolist = NULL;
3449 goto giveup;
3453 nr_sectors = 0;
3454 if (sector_nr + max_sync < max_sector)
3455 max_sector = sector_nr + max_sync;
3456 do {
3457 struct page *page;
3458 int len = PAGE_SIZE;
3459 if (sector_nr + (len>>9) > max_sector)
3460 len = (max_sector - sector_nr) << 9;
3461 if (len == 0)
3462 break;
3463 for (bio= biolist ; bio ; bio=bio->bi_next) {
3464 struct resync_pages *rp = get_resync_pages(bio);
3465 page = resync_fetch_page(rp, page_idx);
3467 * won't fail because the vec table is big enough
3468 * to hold all these pages
3470 bio_add_page(bio, page, len, 0);
3472 nr_sectors += len>>9;
3473 sector_nr += len>>9;
3474 } while (++page_idx < RESYNC_PAGES);
3475 r10_bio->sectors = nr_sectors;
3477 if (mddev_is_clustered(mddev) &&
3478 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3479 /* It is resync not recovery */
3480 if (conf->cluster_sync_high < sector_nr + nr_sectors) {
3481 conf->cluster_sync_low = mddev->curr_resync_completed;
3482 raid10_set_cluster_sync_high(conf);
3483 /* Send resync message */
3484 md_cluster_ops->resync_info_update(mddev,
3485 conf->cluster_sync_low,
3486 conf->cluster_sync_high);
3488 } else if (mddev_is_clustered(mddev)) {
3489 /* This is recovery not resync */
3490 sector_t sect_va1, sect_va2;
3491 bool broadcast_msg = false;
3493 for (i = 0; i < conf->geo.raid_disks; i++) {
3495 * sector_nr is a device address for recovery, so we
3496 * need translate it to array address before compare
3497 * with cluster_sync_high.
3499 sect_va1 = raid10_find_virt(conf, sector_nr, i);
3501 if (conf->cluster_sync_high < sect_va1 + nr_sectors) {
3502 broadcast_msg = true;
3504 * curr_resync_completed is similar as
3505 * sector_nr, so make the translation too.
3507 sect_va2 = raid10_find_virt(conf,
3508 mddev->curr_resync_completed, i);
3510 if (conf->cluster_sync_low == 0 ||
3511 conf->cluster_sync_low > sect_va2)
3512 conf->cluster_sync_low = sect_va2;
3515 if (broadcast_msg) {
3516 raid10_set_cluster_sync_high(conf);
3517 md_cluster_ops->resync_info_update(mddev,
3518 conf->cluster_sync_low,
3519 conf->cluster_sync_high);
3523 while (biolist) {
3524 bio = biolist;
3525 biolist = biolist->bi_next;
3527 bio->bi_next = NULL;
3528 r10_bio = get_resync_r10bio(bio);
3529 r10_bio->sectors = nr_sectors;
3531 if (bio->bi_end_io == end_sync_read) {
3532 md_sync_acct_bio(bio, nr_sectors);
3533 bio->bi_status = 0;
3534 generic_make_request(bio);
3538 if (sectors_skipped)
3539 /* pretend they weren't skipped, it makes
3540 * no important difference in this case
3542 md_done_sync(mddev, sectors_skipped, 1);
3544 return sectors_skipped + nr_sectors;
3545 giveup:
3546 /* There is nowhere to write, so all non-sync
3547 * drives must be failed or in resync, all drives
3548 * have a bad block, so try the next chunk...
3550 if (sector_nr + max_sync < max_sector)
3551 max_sector = sector_nr + max_sync;
3553 sectors_skipped += (max_sector - sector_nr);
3554 chunks_skipped ++;
3555 sector_nr = max_sector;
3556 goto skipped;
3559 static sector_t
3560 raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
3562 sector_t size;
3563 struct r10conf *conf = mddev->private;
3565 if (!raid_disks)
3566 raid_disks = min(conf->geo.raid_disks,
3567 conf->prev.raid_disks);
3568 if (!sectors)
3569 sectors = conf->dev_sectors;
3571 size = sectors >> conf->geo.chunk_shift;
3572 sector_div(size, conf->geo.far_copies);
3573 size = size * raid_disks;
3574 sector_div(size, conf->geo.near_copies);
3576 return size << conf->geo.chunk_shift;
3579 static void calc_sectors(struct r10conf *conf, sector_t size)
3581 /* Calculate the number of sectors-per-device that will
3582 * actually be used, and set conf->dev_sectors and
3583 * conf->stride
3586 size = size >> conf->geo.chunk_shift;
3587 sector_div(size, conf->geo.far_copies);
3588 size = size * conf->geo.raid_disks;
3589 sector_div(size, conf->geo.near_copies);
3590 /* 'size' is now the number of chunks in the array */
3591 /* calculate "used chunks per device" */
3592 size = size * conf->copies;
3594 /* We need to round up when dividing by raid_disks to
3595 * get the stride size.
3597 size = DIV_ROUND_UP_SECTOR_T(size, conf->geo.raid_disks);
3599 conf->dev_sectors = size << conf->geo.chunk_shift;
3601 if (conf->geo.far_offset)
3602 conf->geo.stride = 1 << conf->geo.chunk_shift;
3603 else {
3604 sector_div(size, conf->geo.far_copies);
3605 conf->geo.stride = size << conf->geo.chunk_shift;
3609 enum geo_type {geo_new, geo_old, geo_start};
3610 static int setup_geo(struct geom *geo, struct mddev *mddev, enum geo_type new)
3612 int nc, fc, fo;
3613 int layout, chunk, disks;
3614 switch (new) {
3615 case geo_old:
3616 layout = mddev->layout;
3617 chunk = mddev->chunk_sectors;
3618 disks = mddev->raid_disks - mddev->delta_disks;
3619 break;
3620 case geo_new:
3621 layout = mddev->new_layout;
3622 chunk = mddev->new_chunk_sectors;
3623 disks = mddev->raid_disks;
3624 break;
3625 default: /* avoid 'may be unused' warnings */
3626 case geo_start: /* new when starting reshape - raid_disks not
3627 * updated yet. */
3628 layout = mddev->new_layout;
3629 chunk = mddev->new_chunk_sectors;
3630 disks = mddev->raid_disks + mddev->delta_disks;
3631 break;
3633 if (layout >> 19)
3634 return -1;
3635 if (chunk < (PAGE_SIZE >> 9) ||
3636 !is_power_of_2(chunk))
3637 return -2;
3638 nc = layout & 255;
3639 fc = (layout >> 8) & 255;
3640 fo = layout & (1<<16);
3641 geo->raid_disks = disks;
3642 geo->near_copies = nc;
3643 geo->far_copies = fc;
3644 geo->far_offset = fo;
3645 switch (layout >> 17) {
3646 case 0: /* original layout. simple but not always optimal */
3647 geo->far_set_size = disks;
3648 break;
3649 case 1: /* "improved" layout which was buggy. Hopefully no-one is
3650 * actually using this, but leave code here just in case.*/
3651 geo->far_set_size = disks/fc;
3652 WARN(geo->far_set_size < fc,
3653 "This RAID10 layout does not provide data safety - please backup and create new array\n");
3654 break;
3655 case 2: /* "improved" layout fixed to match documentation */
3656 geo->far_set_size = fc * nc;
3657 break;
3658 default: /* Not a valid layout */
3659 return -1;
3661 geo->chunk_mask = chunk - 1;
3662 geo->chunk_shift = ffz(~chunk);
3663 return nc*fc;
3666 static struct r10conf *setup_conf(struct mddev *mddev)
3668 struct r10conf *conf = NULL;
3669 int err = -EINVAL;
3670 struct geom geo;
3671 int copies;
3673 copies = setup_geo(&geo, mddev, geo_new);
3675 if (copies == -2) {
3676 pr_warn("md/raid10:%s: chunk size must be at least PAGE_SIZE(%ld) and be a power of 2.\n",
3677 mdname(mddev), PAGE_SIZE);
3678 goto out;
3681 if (copies < 2 || copies > mddev->raid_disks) {
3682 pr_warn("md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
3683 mdname(mddev), mddev->new_layout);
3684 goto out;
3687 err = -ENOMEM;
3688 conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
3689 if (!conf)
3690 goto out;
3692 /* FIXME calc properly */
3693 conf->mirrors = kcalloc(mddev->raid_disks + max(0, -mddev->delta_disks),
3694 sizeof(struct raid10_info),
3695 GFP_KERNEL);
3696 if (!conf->mirrors)
3697 goto out;
3699 conf->tmppage = alloc_page(GFP_KERNEL);
3700 if (!conf->tmppage)
3701 goto out;
3703 conf->geo = geo;
3704 conf->copies = copies;
3705 err = mempool_init(&conf->r10bio_pool, NR_RAID10_BIOS, r10bio_pool_alloc,
3706 r10bio_pool_free, conf);
3707 if (err)
3708 goto out;
3710 err = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
3711 if (err)
3712 goto out;
3714 calc_sectors(conf, mddev->dev_sectors);
3715 if (mddev->reshape_position == MaxSector) {
3716 conf->prev = conf->geo;
3717 conf->reshape_progress = MaxSector;
3718 } else {
3719 if (setup_geo(&conf->prev, mddev, geo_old) != conf->copies) {
3720 err = -EINVAL;
3721 goto out;
3723 conf->reshape_progress = mddev->reshape_position;
3724 if (conf->prev.far_offset)
3725 conf->prev.stride = 1 << conf->prev.chunk_shift;
3726 else
3727 /* far_copies must be 1 */
3728 conf->prev.stride = conf->dev_sectors;
3730 conf->reshape_safe = conf->reshape_progress;
3731 spin_lock_init(&conf->device_lock);
3732 INIT_LIST_HEAD(&conf->retry_list);
3733 INIT_LIST_HEAD(&conf->bio_end_io_list);
3735 spin_lock_init(&conf->resync_lock);
3736 init_waitqueue_head(&conf->wait_barrier);
3737 atomic_set(&conf->nr_pending, 0);
3739 err = -ENOMEM;
3740 conf->thread = md_register_thread(raid10d, mddev, "raid10");
3741 if (!conf->thread)
3742 goto out;
3744 conf->mddev = mddev;
3745 return conf;
3747 out:
3748 if (conf) {
3749 mempool_exit(&conf->r10bio_pool);
3750 kfree(conf->mirrors);
3751 safe_put_page(conf->tmppage);
3752 bioset_exit(&conf->bio_split);
3753 kfree(conf);
3755 return ERR_PTR(err);
3758 static int raid10_run(struct mddev *mddev)
3760 struct r10conf *conf;
3761 int i, disk_idx, chunk_size;
3762 struct raid10_info *disk;
3763 struct md_rdev *rdev;
3764 sector_t size;
3765 sector_t min_offset_diff = 0;
3766 int first = 1;
3767 bool discard_supported = false;
3769 if (mddev_init_writes_pending(mddev) < 0)
3770 return -ENOMEM;
3772 if (mddev->private == NULL) {
3773 conf = setup_conf(mddev);
3774 if (IS_ERR(conf))
3775 return PTR_ERR(conf);
3776 mddev->private = conf;
3778 conf = mddev->private;
3779 if (!conf)
3780 goto out;
3782 if (mddev_is_clustered(conf->mddev)) {
3783 int fc, fo;
3785 fc = (mddev->layout >> 8) & 255;
3786 fo = mddev->layout & (1<<16);
3787 if (fc > 1 || fo > 0) {
3788 pr_err("only near layout is supported by clustered"
3789 " raid10\n");
3790 goto out_free_conf;
3794 mddev->thread = conf->thread;
3795 conf->thread = NULL;
3797 chunk_size = mddev->chunk_sectors << 9;
3798 if (mddev->queue) {
3799 blk_queue_max_discard_sectors(mddev->queue,
3800 mddev->chunk_sectors);
3801 blk_queue_max_write_same_sectors(mddev->queue, 0);
3802 blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
3803 blk_queue_io_min(mddev->queue, chunk_size);
3804 if (conf->geo.raid_disks % conf->geo.near_copies)
3805 blk_queue_io_opt(mddev->queue, chunk_size * conf->geo.raid_disks);
3806 else
3807 blk_queue_io_opt(mddev->queue, chunk_size *
3808 (conf->geo.raid_disks / conf->geo.near_copies));
3811 rdev_for_each(rdev, mddev) {
3812 long long diff;
3814 disk_idx = rdev->raid_disk;
3815 if (disk_idx < 0)
3816 continue;
3817 if (disk_idx >= conf->geo.raid_disks &&
3818 disk_idx >= conf->prev.raid_disks)
3819 continue;
3820 disk = conf->mirrors + disk_idx;
3822 if (test_bit(Replacement, &rdev->flags)) {
3823 if (disk->replacement)
3824 goto out_free_conf;
3825 disk->replacement = rdev;
3826 } else {
3827 if (disk->rdev)
3828 goto out_free_conf;
3829 disk->rdev = rdev;
3831 diff = (rdev->new_data_offset - rdev->data_offset);
3832 if (!mddev->reshape_backwards)
3833 diff = -diff;
3834 if (diff < 0)
3835 diff = 0;
3836 if (first || diff < min_offset_diff)
3837 min_offset_diff = diff;
3839 if (mddev->gendisk)
3840 disk_stack_limits(mddev->gendisk, rdev->bdev,
3841 rdev->data_offset << 9);
3843 disk->head_position = 0;
3845 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
3846 discard_supported = true;
3847 first = 0;
3850 if (mddev->queue) {
3851 if (discard_supported)
3852 blk_queue_flag_set(QUEUE_FLAG_DISCARD,
3853 mddev->queue);
3854 else
3855 blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
3856 mddev->queue);
3858 /* need to check that every block has at least one working mirror */
3859 if (!enough(conf, -1)) {
3860 pr_err("md/raid10:%s: not enough operational mirrors.\n",
3861 mdname(mddev));
3862 goto out_free_conf;
3865 if (conf->reshape_progress != MaxSector) {
3866 /* must ensure that shape change is supported */
3867 if (conf->geo.far_copies != 1 &&
3868 conf->geo.far_offset == 0)
3869 goto out_free_conf;
3870 if (conf->prev.far_copies != 1 &&
3871 conf->prev.far_offset == 0)
3872 goto out_free_conf;
3875 mddev->degraded = 0;
3876 for (i = 0;
3877 i < conf->geo.raid_disks
3878 || i < conf->prev.raid_disks;
3879 i++) {
3881 disk = conf->mirrors + i;
3883 if (!disk->rdev && disk->replacement) {
3884 /* The replacement is all we have - use it */
3885 disk->rdev = disk->replacement;
3886 disk->replacement = NULL;
3887 clear_bit(Replacement, &disk->rdev->flags);
3890 if (!disk->rdev ||
3891 !test_bit(In_sync, &disk->rdev->flags)) {
3892 disk->head_position = 0;
3893 mddev->degraded++;
3894 if (disk->rdev &&
3895 disk->rdev->saved_raid_disk < 0)
3896 conf->fullsync = 1;
3899 if (disk->replacement &&
3900 !test_bit(In_sync, &disk->replacement->flags) &&
3901 disk->replacement->saved_raid_disk < 0) {
3902 conf->fullsync = 1;
3905 disk->recovery_disabled = mddev->recovery_disabled - 1;
3908 if (mddev->recovery_cp != MaxSector)
3909 pr_notice("md/raid10:%s: not clean -- starting background reconstruction\n",
3910 mdname(mddev));
3911 pr_info("md/raid10:%s: active with %d out of %d devices\n",
3912 mdname(mddev), conf->geo.raid_disks - mddev->degraded,
3913 conf->geo.raid_disks);
3915 * Ok, everything is just fine now
3917 mddev->dev_sectors = conf->dev_sectors;
3918 size = raid10_size(mddev, 0, 0);
3919 md_set_array_sectors(mddev, size);
3920 mddev->resync_max_sectors = size;
3921 set_bit(MD_FAILFAST_SUPPORTED, &mddev->flags);
3923 if (mddev->queue) {
3924 int stripe = conf->geo.raid_disks *
3925 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
3927 /* Calculate max read-ahead size.
3928 * We need to readahead at least twice a whole stripe....
3929 * maybe...
3931 stripe /= conf->geo.near_copies;
3932 if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
3933 mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
3936 if (md_integrity_register(mddev))
3937 goto out_free_conf;
3939 if (conf->reshape_progress != MaxSector) {
3940 unsigned long before_length, after_length;
3942 before_length = ((1 << conf->prev.chunk_shift) *
3943 conf->prev.far_copies);
3944 after_length = ((1 << conf->geo.chunk_shift) *
3945 conf->geo.far_copies);
3947 if (max(before_length, after_length) > min_offset_diff) {
3948 /* This cannot work */
3949 pr_warn("md/raid10: offset difference not enough to continue reshape\n");
3950 goto out_free_conf;
3952 conf->offset_diff = min_offset_diff;
3954 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
3955 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
3956 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
3957 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
3958 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
3959 "reshape");
3962 return 0;
3964 out_free_conf:
3965 md_unregister_thread(&mddev->thread);
3966 mempool_exit(&conf->r10bio_pool);
3967 safe_put_page(conf->tmppage);
3968 kfree(conf->mirrors);
3969 kfree(conf);
3970 mddev->private = NULL;
3971 out:
3972 return -EIO;
3975 static void raid10_free(struct mddev *mddev, void *priv)
3977 struct r10conf *conf = priv;
3979 mempool_exit(&conf->r10bio_pool);
3980 safe_put_page(conf->tmppage);
3981 kfree(conf->mirrors);
3982 kfree(conf->mirrors_old);
3983 kfree(conf->mirrors_new);
3984 bioset_exit(&conf->bio_split);
3985 kfree(conf);
3988 static void raid10_quiesce(struct mddev *mddev, int quiesce)
3990 struct r10conf *conf = mddev->private;
3992 if (quiesce)
3993 raise_barrier(conf, 0);
3994 else
3995 lower_barrier(conf);
3998 static int raid10_resize(struct mddev *mddev, sector_t sectors)
4000 /* Resize of 'far' arrays is not supported.
4001 * For 'near' and 'offset' arrays we can set the
4002 * number of sectors used to be an appropriate multiple
4003 * of the chunk size.
4004 * For 'offset', this is far_copies*chunksize.
4005 * For 'near' the multiplier is the LCM of
4006 * near_copies and raid_disks.
4007 * So if far_copies > 1 && !far_offset, fail.
4008 * Else find LCM(raid_disks, near_copy)*far_copies and
4009 * multiply by chunk_size. Then round to this number.
4010 * This is mostly done by raid10_size()
4012 struct r10conf *conf = mddev->private;
4013 sector_t oldsize, size;
4015 if (mddev->reshape_position != MaxSector)
4016 return -EBUSY;
4018 if (conf->geo.far_copies > 1 && !conf->geo.far_offset)
4019 return -EINVAL;
4021 oldsize = raid10_size(mddev, 0, 0);
4022 size = raid10_size(mddev, sectors, 0);
4023 if (mddev->external_size &&
4024 mddev->array_sectors > size)
4025 return -EINVAL;
4026 if (mddev->bitmap) {
4027 int ret = md_bitmap_resize(mddev->bitmap, size, 0, 0);
4028 if (ret)
4029 return ret;
4031 md_set_array_sectors(mddev, size);
4032 if (sectors > mddev->dev_sectors &&
4033 mddev->recovery_cp > oldsize) {
4034 mddev->recovery_cp = oldsize;
4035 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4037 calc_sectors(conf, sectors);
4038 mddev->dev_sectors = conf->dev_sectors;
4039 mddev->resync_max_sectors = size;
4040 return 0;
4043 static void *raid10_takeover_raid0(struct mddev *mddev, sector_t size, int devs)
4045 struct md_rdev *rdev;
4046 struct r10conf *conf;
4048 if (mddev->degraded > 0) {
4049 pr_warn("md/raid10:%s: Error: degraded raid0!\n",
4050 mdname(mddev));
4051 return ERR_PTR(-EINVAL);
4053 sector_div(size, devs);
4055 /* Set new parameters */
4056 mddev->new_level = 10;
4057 /* new layout: far_copies = 1, near_copies = 2 */
4058 mddev->new_layout = (1<<8) + 2;
4059 mddev->new_chunk_sectors = mddev->chunk_sectors;
4060 mddev->delta_disks = mddev->raid_disks;
4061 mddev->raid_disks *= 2;
4062 /* make sure it will be not marked as dirty */
4063 mddev->recovery_cp = MaxSector;
4064 mddev->dev_sectors = size;
4066 conf = setup_conf(mddev);
4067 if (!IS_ERR(conf)) {
4068 rdev_for_each(rdev, mddev)
4069 if (rdev->raid_disk >= 0) {
4070 rdev->new_raid_disk = rdev->raid_disk * 2;
4071 rdev->sectors = size;
4073 conf->barrier = 1;
4076 return conf;
4079 static void *raid10_takeover(struct mddev *mddev)
4081 struct r0conf *raid0_conf;
4083 /* raid10 can take over:
4084 * raid0 - providing it has only two drives
4086 if (mddev->level == 0) {
4087 /* for raid0 takeover only one zone is supported */
4088 raid0_conf = mddev->private;
4089 if (raid0_conf->nr_strip_zones > 1) {
4090 pr_warn("md/raid10:%s: cannot takeover raid 0 with more than one zone.\n",
4091 mdname(mddev));
4092 return ERR_PTR(-EINVAL);
4094 return raid10_takeover_raid0(mddev,
4095 raid0_conf->strip_zone->zone_end,
4096 raid0_conf->strip_zone->nb_dev);
4098 return ERR_PTR(-EINVAL);
4101 static int raid10_check_reshape(struct mddev *mddev)
4103 /* Called when there is a request to change
4104 * - layout (to ->new_layout)
4105 * - chunk size (to ->new_chunk_sectors)
4106 * - raid_disks (by delta_disks)
4107 * or when trying to restart a reshape that was ongoing.
4109 * We need to validate the request and possibly allocate
4110 * space if that might be an issue later.
4112 * Currently we reject any reshape of a 'far' mode array,
4113 * allow chunk size to change if new is generally acceptable,
4114 * allow raid_disks to increase, and allow
4115 * a switch between 'near' mode and 'offset' mode.
4117 struct r10conf *conf = mddev->private;
4118 struct geom geo;
4120 if (conf->geo.far_copies != 1 && !conf->geo.far_offset)
4121 return -EINVAL;
4123 if (setup_geo(&geo, mddev, geo_start) != conf->copies)
4124 /* mustn't change number of copies */
4125 return -EINVAL;
4126 if (geo.far_copies > 1 && !geo.far_offset)
4127 /* Cannot switch to 'far' mode */
4128 return -EINVAL;
4130 if (mddev->array_sectors & geo.chunk_mask)
4131 /* not factor of array size */
4132 return -EINVAL;
4134 if (!enough(conf, -1))
4135 return -EINVAL;
4137 kfree(conf->mirrors_new);
4138 conf->mirrors_new = NULL;
4139 if (mddev->delta_disks > 0) {
4140 /* allocate new 'mirrors' list */
4141 conf->mirrors_new =
4142 kcalloc(mddev->raid_disks + mddev->delta_disks,
4143 sizeof(struct raid10_info),
4144 GFP_KERNEL);
4145 if (!conf->mirrors_new)
4146 return -ENOMEM;
4148 return 0;
4152 * Need to check if array has failed when deciding whether to:
4153 * - start an array
4154 * - remove non-faulty devices
4155 * - add a spare
4156 * - allow a reshape
4157 * This determination is simple when no reshape is happening.
4158 * However if there is a reshape, we need to carefully check
4159 * both the before and after sections.
4160 * This is because some failed devices may only affect one
4161 * of the two sections, and some non-in_sync devices may
4162 * be insync in the section most affected by failed devices.
4164 static int calc_degraded(struct r10conf *conf)
4166 int degraded, degraded2;
4167 int i;
4169 rcu_read_lock();
4170 degraded = 0;
4171 /* 'prev' section first */
4172 for (i = 0; i < conf->prev.raid_disks; i++) {
4173 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4174 if (!rdev || test_bit(Faulty, &rdev->flags))
4175 degraded++;
4176 else if (!test_bit(In_sync, &rdev->flags))
4177 /* When we can reduce the number of devices in
4178 * an array, this might not contribute to
4179 * 'degraded'. It does now.
4181 degraded++;
4183 rcu_read_unlock();
4184 if (conf->geo.raid_disks == conf->prev.raid_disks)
4185 return degraded;
4186 rcu_read_lock();
4187 degraded2 = 0;
4188 for (i = 0; i < conf->geo.raid_disks; i++) {
4189 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
4190 if (!rdev || test_bit(Faulty, &rdev->flags))
4191 degraded2++;
4192 else if (!test_bit(In_sync, &rdev->flags)) {
4193 /* If reshape is increasing the number of devices,
4194 * this section has already been recovered, so
4195 * it doesn't contribute to degraded.
4196 * else it does.
4198 if (conf->geo.raid_disks <= conf->prev.raid_disks)
4199 degraded2++;
4202 rcu_read_unlock();
4203 if (degraded2 > degraded)
4204 return degraded2;
4205 return degraded;
4208 static int raid10_start_reshape(struct mddev *mddev)
4210 /* A 'reshape' has been requested. This commits
4211 * the various 'new' fields and sets MD_RECOVER_RESHAPE
4212 * This also checks if there are enough spares and adds them
4213 * to the array.
4214 * We currently require enough spares to make the final
4215 * array non-degraded. We also require that the difference
4216 * between old and new data_offset - on each device - is
4217 * enough that we never risk over-writing.
4220 unsigned long before_length, after_length;
4221 sector_t min_offset_diff = 0;
4222 int first = 1;
4223 struct geom new;
4224 struct r10conf *conf = mddev->private;
4225 struct md_rdev *rdev;
4226 int spares = 0;
4227 int ret;
4229 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4230 return -EBUSY;
4232 if (setup_geo(&new, mddev, geo_start) != conf->copies)
4233 return -EINVAL;
4235 before_length = ((1 << conf->prev.chunk_shift) *
4236 conf->prev.far_copies);
4237 after_length = ((1 << conf->geo.chunk_shift) *
4238 conf->geo.far_copies);
4240 rdev_for_each(rdev, mddev) {
4241 if (!test_bit(In_sync, &rdev->flags)
4242 && !test_bit(Faulty, &rdev->flags))
4243 spares++;
4244 if (rdev->raid_disk >= 0) {
4245 long long diff = (rdev->new_data_offset
4246 - rdev->data_offset);
4247 if (!mddev->reshape_backwards)
4248 diff = -diff;
4249 if (diff < 0)
4250 diff = 0;
4251 if (first || diff < min_offset_diff)
4252 min_offset_diff = diff;
4253 first = 0;
4257 if (max(before_length, after_length) > min_offset_diff)
4258 return -EINVAL;
4260 if (spares < mddev->delta_disks)
4261 return -EINVAL;
4263 conf->offset_diff = min_offset_diff;
4264 spin_lock_irq(&conf->device_lock);
4265 if (conf->mirrors_new) {
4266 memcpy(conf->mirrors_new, conf->mirrors,
4267 sizeof(struct raid10_info)*conf->prev.raid_disks);
4268 smp_mb();
4269 kfree(conf->mirrors_old);
4270 conf->mirrors_old = conf->mirrors;
4271 conf->mirrors = conf->mirrors_new;
4272 conf->mirrors_new = NULL;
4274 setup_geo(&conf->geo, mddev, geo_start);
4275 smp_mb();
4276 if (mddev->reshape_backwards) {
4277 sector_t size = raid10_size(mddev, 0, 0);
4278 if (size < mddev->array_sectors) {
4279 spin_unlock_irq(&conf->device_lock);
4280 pr_warn("md/raid10:%s: array size must be reduce before number of disks\n",
4281 mdname(mddev));
4282 return -EINVAL;
4284 mddev->resync_max_sectors = size;
4285 conf->reshape_progress = size;
4286 } else
4287 conf->reshape_progress = 0;
4288 conf->reshape_safe = conf->reshape_progress;
4289 spin_unlock_irq(&conf->device_lock);
4291 if (mddev->delta_disks && mddev->bitmap) {
4292 struct mdp_superblock_1 *sb = NULL;
4293 sector_t oldsize, newsize;
4295 oldsize = raid10_size(mddev, 0, 0);
4296 newsize = raid10_size(mddev, 0, conf->geo.raid_disks);
4298 if (!mddev_is_clustered(mddev)) {
4299 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4300 if (ret)
4301 goto abort;
4302 else
4303 goto out;
4306 rdev_for_each(rdev, mddev) {
4307 if (rdev->raid_disk > -1 &&
4308 !test_bit(Faulty, &rdev->flags))
4309 sb = page_address(rdev->sb_page);
4313 * some node is already performing reshape, and no need to
4314 * call md_bitmap_resize again since it should be called when
4315 * receiving BITMAP_RESIZE msg
4317 if ((sb && (le32_to_cpu(sb->feature_map) &
4318 MD_FEATURE_RESHAPE_ACTIVE)) || (oldsize == newsize))
4319 goto out;
4321 ret = md_bitmap_resize(mddev->bitmap, newsize, 0, 0);
4322 if (ret)
4323 goto abort;
4325 ret = md_cluster_ops->resize_bitmaps(mddev, newsize, oldsize);
4326 if (ret) {
4327 md_bitmap_resize(mddev->bitmap, oldsize, 0, 0);
4328 goto abort;
4331 out:
4332 if (mddev->delta_disks > 0) {
4333 rdev_for_each(rdev, mddev)
4334 if (rdev->raid_disk < 0 &&
4335 !test_bit(Faulty, &rdev->flags)) {
4336 if (raid10_add_disk(mddev, rdev) == 0) {
4337 if (rdev->raid_disk >=
4338 conf->prev.raid_disks)
4339 set_bit(In_sync, &rdev->flags);
4340 else
4341 rdev->recovery_offset = 0;
4343 if (sysfs_link_rdev(mddev, rdev))
4344 /* Failure here is OK */;
4346 } else if (rdev->raid_disk >= conf->prev.raid_disks
4347 && !test_bit(Faulty, &rdev->flags)) {
4348 /* This is a spare that was manually added */
4349 set_bit(In_sync, &rdev->flags);
4352 /* When a reshape changes the number of devices,
4353 * ->degraded is measured against the larger of the
4354 * pre and post numbers.
4356 spin_lock_irq(&conf->device_lock);
4357 mddev->degraded = calc_degraded(conf);
4358 spin_unlock_irq(&conf->device_lock);
4359 mddev->raid_disks = conf->geo.raid_disks;
4360 mddev->reshape_position = conf->reshape_progress;
4361 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4363 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4364 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4365 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
4366 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4367 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4369 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4370 "reshape");
4371 if (!mddev->sync_thread) {
4372 ret = -EAGAIN;
4373 goto abort;
4375 conf->reshape_checkpoint = jiffies;
4376 md_wakeup_thread(mddev->sync_thread);
4377 md_new_event(mddev);
4378 return 0;
4380 abort:
4381 mddev->recovery = 0;
4382 spin_lock_irq(&conf->device_lock);
4383 conf->geo = conf->prev;
4384 mddev->raid_disks = conf->geo.raid_disks;
4385 rdev_for_each(rdev, mddev)
4386 rdev->new_data_offset = rdev->data_offset;
4387 smp_wmb();
4388 conf->reshape_progress = MaxSector;
4389 conf->reshape_safe = MaxSector;
4390 mddev->reshape_position = MaxSector;
4391 spin_unlock_irq(&conf->device_lock);
4392 return ret;
4395 /* Calculate the last device-address that could contain
4396 * any block from the chunk that includes the array-address 's'
4397 * and report the next address.
4398 * i.e. the address returned will be chunk-aligned and after
4399 * any data that is in the chunk containing 's'.
4401 static sector_t last_dev_address(sector_t s, struct geom *geo)
4403 s = (s | geo->chunk_mask) + 1;
4404 s >>= geo->chunk_shift;
4405 s *= geo->near_copies;
4406 s = DIV_ROUND_UP_SECTOR_T(s, geo->raid_disks);
4407 s *= geo->far_copies;
4408 s <<= geo->chunk_shift;
4409 return s;
4412 /* Calculate the first device-address that could contain
4413 * any block from the chunk that includes the array-address 's'.
4414 * This too will be the start of a chunk
4416 static sector_t first_dev_address(sector_t s, struct geom *geo)
4418 s >>= geo->chunk_shift;
4419 s *= geo->near_copies;
4420 sector_div(s, geo->raid_disks);
4421 s *= geo->far_copies;
4422 s <<= geo->chunk_shift;
4423 return s;
4426 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr,
4427 int *skipped)
4429 /* We simply copy at most one chunk (smallest of old and new)
4430 * at a time, possibly less if that exceeds RESYNC_PAGES,
4431 * or we hit a bad block or something.
4432 * This might mean we pause for normal IO in the middle of
4433 * a chunk, but that is not a problem as mddev->reshape_position
4434 * can record any location.
4436 * If we will want to write to a location that isn't
4437 * yet recorded as 'safe' (i.e. in metadata on disk) then
4438 * we need to flush all reshape requests and update the metadata.
4440 * When reshaping forwards (e.g. to more devices), we interpret
4441 * 'safe' as the earliest block which might not have been copied
4442 * down yet. We divide this by previous stripe size and multiply
4443 * by previous stripe length to get lowest device offset that we
4444 * cannot write to yet.
4445 * We interpret 'sector_nr' as an address that we want to write to.
4446 * From this we use last_device_address() to find where we might
4447 * write to, and first_device_address on the 'safe' position.
4448 * If this 'next' write position is after the 'safe' position,
4449 * we must update the metadata to increase the 'safe' position.
4451 * When reshaping backwards, we round in the opposite direction
4452 * and perform the reverse test: next write position must not be
4453 * less than current safe position.
4455 * In all this the minimum difference in data offsets
4456 * (conf->offset_diff - always positive) allows a bit of slack,
4457 * so next can be after 'safe', but not by more than offset_diff
4459 * We need to prepare all the bios here before we start any IO
4460 * to ensure the size we choose is acceptable to all devices.
4461 * The means one for each copy for write-out and an extra one for
4462 * read-in.
4463 * We store the read-in bio in ->master_bio and the others in
4464 * ->devs[x].bio and ->devs[x].repl_bio.
4466 struct r10conf *conf = mddev->private;
4467 struct r10bio *r10_bio;
4468 sector_t next, safe, last;
4469 int max_sectors;
4470 int nr_sectors;
4471 int s;
4472 struct md_rdev *rdev;
4473 int need_flush = 0;
4474 struct bio *blist;
4475 struct bio *bio, *read_bio;
4476 int sectors_done = 0;
4477 struct page **pages;
4479 if (sector_nr == 0) {
4480 /* If restarting in the middle, skip the initial sectors */
4481 if (mddev->reshape_backwards &&
4482 conf->reshape_progress < raid10_size(mddev, 0, 0)) {
4483 sector_nr = (raid10_size(mddev, 0, 0)
4484 - conf->reshape_progress);
4485 } else if (!mddev->reshape_backwards &&
4486 conf->reshape_progress > 0)
4487 sector_nr = conf->reshape_progress;
4488 if (sector_nr) {
4489 mddev->curr_resync_completed = sector_nr;
4490 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4491 *skipped = 1;
4492 return sector_nr;
4496 /* We don't use sector_nr to track where we are up to
4497 * as that doesn't work well for ->reshape_backwards.
4498 * So just use ->reshape_progress.
4500 if (mddev->reshape_backwards) {
4501 /* 'next' is the earliest device address that we might
4502 * write to for this chunk in the new layout
4504 next = first_dev_address(conf->reshape_progress - 1,
4505 &conf->geo);
4507 /* 'safe' is the last device address that we might read from
4508 * in the old layout after a restart
4510 safe = last_dev_address(conf->reshape_safe - 1,
4511 &conf->prev);
4513 if (next + conf->offset_diff < safe)
4514 need_flush = 1;
4516 last = conf->reshape_progress - 1;
4517 sector_nr = last & ~(sector_t)(conf->geo.chunk_mask
4518 & conf->prev.chunk_mask);
4519 if (sector_nr + RESYNC_BLOCK_SIZE/512 < last)
4520 sector_nr = last + 1 - RESYNC_BLOCK_SIZE/512;
4521 } else {
4522 /* 'next' is after the last device address that we
4523 * might write to for this chunk in the new layout
4525 next = last_dev_address(conf->reshape_progress, &conf->geo);
4527 /* 'safe' is the earliest device address that we might
4528 * read from in the old layout after a restart
4530 safe = first_dev_address(conf->reshape_safe, &conf->prev);
4532 /* Need to update metadata if 'next' might be beyond 'safe'
4533 * as that would possibly corrupt data
4535 if (next > safe + conf->offset_diff)
4536 need_flush = 1;
4538 sector_nr = conf->reshape_progress;
4539 last = sector_nr | (conf->geo.chunk_mask
4540 & conf->prev.chunk_mask);
4542 if (sector_nr + RESYNC_BLOCK_SIZE/512 <= last)
4543 last = sector_nr + RESYNC_BLOCK_SIZE/512 - 1;
4546 if (need_flush ||
4547 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4548 /* Need to update reshape_position in metadata */
4549 wait_barrier(conf);
4550 mddev->reshape_position = conf->reshape_progress;
4551 if (mddev->reshape_backwards)
4552 mddev->curr_resync_completed = raid10_size(mddev, 0, 0)
4553 - conf->reshape_progress;
4554 else
4555 mddev->curr_resync_completed = conf->reshape_progress;
4556 conf->reshape_checkpoint = jiffies;
4557 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
4558 md_wakeup_thread(mddev->thread);
4559 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
4560 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
4561 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
4562 allow_barrier(conf);
4563 return sectors_done;
4565 conf->reshape_safe = mddev->reshape_position;
4566 allow_barrier(conf);
4569 raise_barrier(conf, 0);
4570 read_more:
4571 /* Now schedule reads for blocks from sector_nr to last */
4572 r10_bio = raid10_alloc_init_r10buf(conf);
4573 r10_bio->state = 0;
4574 raise_barrier(conf, 1);
4575 atomic_set(&r10_bio->remaining, 0);
4576 r10_bio->mddev = mddev;
4577 r10_bio->sector = sector_nr;
4578 set_bit(R10BIO_IsReshape, &r10_bio->state);
4579 r10_bio->sectors = last - sector_nr + 1;
4580 rdev = read_balance(conf, r10_bio, &max_sectors);
4581 BUG_ON(!test_bit(R10BIO_Previous, &r10_bio->state));
4583 if (!rdev) {
4584 /* Cannot read from here, so need to record bad blocks
4585 * on all the target devices.
4587 // FIXME
4588 mempool_free(r10_bio, &conf->r10buf_pool);
4589 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4590 return sectors_done;
4593 read_bio = bio_alloc_mddev(GFP_KERNEL, RESYNC_PAGES, mddev);
4595 bio_set_dev(read_bio, rdev->bdev);
4596 read_bio->bi_iter.bi_sector = (r10_bio->devs[r10_bio->read_slot].addr
4597 + rdev->data_offset);
4598 read_bio->bi_private = r10_bio;
4599 read_bio->bi_end_io = end_reshape_read;
4600 bio_set_op_attrs(read_bio, REQ_OP_READ, 0);
4601 read_bio->bi_flags &= (~0UL << BIO_RESET_BITS);
4602 read_bio->bi_status = 0;
4603 read_bio->bi_vcnt = 0;
4604 read_bio->bi_iter.bi_size = 0;
4605 r10_bio->master_bio = read_bio;
4606 r10_bio->read_slot = r10_bio->devs[r10_bio->read_slot].devnum;
4609 * Broadcast RESYNC message to other nodes, so all nodes would not
4610 * write to the region to avoid conflict.
4612 if (mddev_is_clustered(mddev) && conf->cluster_sync_high <= sector_nr) {
4613 struct mdp_superblock_1 *sb = NULL;
4614 int sb_reshape_pos = 0;
4616 conf->cluster_sync_low = sector_nr;
4617 conf->cluster_sync_high = sector_nr + CLUSTER_RESYNC_WINDOW_SECTORS;
4618 sb = page_address(rdev->sb_page);
4619 if (sb) {
4620 sb_reshape_pos = le64_to_cpu(sb->reshape_position);
4622 * Set cluster_sync_low again if next address for array
4623 * reshape is less than cluster_sync_low. Since we can't
4624 * update cluster_sync_low until it has finished reshape.
4626 if (sb_reshape_pos < conf->cluster_sync_low)
4627 conf->cluster_sync_low = sb_reshape_pos;
4630 md_cluster_ops->resync_info_update(mddev, conf->cluster_sync_low,
4631 conf->cluster_sync_high);
4634 /* Now find the locations in the new layout */
4635 __raid10_find_phys(&conf->geo, r10_bio);
4637 blist = read_bio;
4638 read_bio->bi_next = NULL;
4640 rcu_read_lock();
4641 for (s = 0; s < conf->copies*2; s++) {
4642 struct bio *b;
4643 int d = r10_bio->devs[s/2].devnum;
4644 struct md_rdev *rdev2;
4645 if (s&1) {
4646 rdev2 = rcu_dereference(conf->mirrors[d].replacement);
4647 b = r10_bio->devs[s/2].repl_bio;
4648 } else {
4649 rdev2 = rcu_dereference(conf->mirrors[d].rdev);
4650 b = r10_bio->devs[s/2].bio;
4652 if (!rdev2 || test_bit(Faulty, &rdev2->flags))
4653 continue;
4655 bio_set_dev(b, rdev2->bdev);
4656 b->bi_iter.bi_sector = r10_bio->devs[s/2].addr +
4657 rdev2->new_data_offset;
4658 b->bi_end_io = end_reshape_write;
4659 bio_set_op_attrs(b, REQ_OP_WRITE, 0);
4660 b->bi_next = blist;
4661 blist = b;
4664 /* Now add as many pages as possible to all of these bios. */
4666 nr_sectors = 0;
4667 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4668 for (s = 0 ; s < max_sectors; s += PAGE_SIZE >> 9) {
4669 struct page *page = pages[s / (PAGE_SIZE >> 9)];
4670 int len = (max_sectors - s) << 9;
4671 if (len > PAGE_SIZE)
4672 len = PAGE_SIZE;
4673 for (bio = blist; bio ; bio = bio->bi_next) {
4675 * won't fail because the vec table is big enough
4676 * to hold all these pages
4678 bio_add_page(bio, page, len, 0);
4680 sector_nr += len >> 9;
4681 nr_sectors += len >> 9;
4683 rcu_read_unlock();
4684 r10_bio->sectors = nr_sectors;
4686 /* Now submit the read */
4687 md_sync_acct_bio(read_bio, r10_bio->sectors);
4688 atomic_inc(&r10_bio->remaining);
4689 read_bio->bi_next = NULL;
4690 generic_make_request(read_bio);
4691 sector_nr += nr_sectors;
4692 sectors_done += nr_sectors;
4693 if (sector_nr <= last)
4694 goto read_more;
4696 lower_barrier(conf);
4698 /* Now that we have done the whole section we can
4699 * update reshape_progress
4701 if (mddev->reshape_backwards)
4702 conf->reshape_progress -= sectors_done;
4703 else
4704 conf->reshape_progress += sectors_done;
4706 return sectors_done;
4709 static void end_reshape_request(struct r10bio *r10_bio);
4710 static int handle_reshape_read_error(struct mddev *mddev,
4711 struct r10bio *r10_bio);
4712 static void reshape_request_write(struct mddev *mddev, struct r10bio *r10_bio)
4714 /* Reshape read completed. Hopefully we have a block
4715 * to write out.
4716 * If we got a read error then we do sync 1-page reads from
4717 * elsewhere until we find the data - or give up.
4719 struct r10conf *conf = mddev->private;
4720 int s;
4722 if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
4723 if (handle_reshape_read_error(mddev, r10_bio) < 0) {
4724 /* Reshape has been aborted */
4725 md_done_sync(mddev, r10_bio->sectors, 0);
4726 return;
4729 /* We definitely have the data in the pages, schedule the
4730 * writes.
4732 atomic_set(&r10_bio->remaining, 1);
4733 for (s = 0; s < conf->copies*2; s++) {
4734 struct bio *b;
4735 int d = r10_bio->devs[s/2].devnum;
4736 struct md_rdev *rdev;
4737 rcu_read_lock();
4738 if (s&1) {
4739 rdev = rcu_dereference(conf->mirrors[d].replacement);
4740 b = r10_bio->devs[s/2].repl_bio;
4741 } else {
4742 rdev = rcu_dereference(conf->mirrors[d].rdev);
4743 b = r10_bio->devs[s/2].bio;
4745 if (!rdev || test_bit(Faulty, &rdev->flags)) {
4746 rcu_read_unlock();
4747 continue;
4749 atomic_inc(&rdev->nr_pending);
4750 rcu_read_unlock();
4751 md_sync_acct_bio(b, r10_bio->sectors);
4752 atomic_inc(&r10_bio->remaining);
4753 b->bi_next = NULL;
4754 generic_make_request(b);
4756 end_reshape_request(r10_bio);
4759 static void end_reshape(struct r10conf *conf)
4761 if (test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery))
4762 return;
4764 spin_lock_irq(&conf->device_lock);
4765 conf->prev = conf->geo;
4766 md_finish_reshape(conf->mddev);
4767 smp_wmb();
4768 conf->reshape_progress = MaxSector;
4769 conf->reshape_safe = MaxSector;
4770 spin_unlock_irq(&conf->device_lock);
4772 /* read-ahead size must cover two whole stripes, which is
4773 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4775 if (conf->mddev->queue) {
4776 int stripe = conf->geo.raid_disks *
4777 ((conf->mddev->chunk_sectors << 9) / PAGE_SIZE);
4778 stripe /= conf->geo.near_copies;
4779 if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
4780 conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
4782 conf->fullsync = 0;
4785 static void raid10_update_reshape_pos(struct mddev *mddev)
4787 struct r10conf *conf = mddev->private;
4788 sector_t lo, hi;
4790 md_cluster_ops->resync_info_get(mddev, &lo, &hi);
4791 if (((mddev->reshape_position <= hi) && (mddev->reshape_position >= lo))
4792 || mddev->reshape_position == MaxSector)
4793 conf->reshape_progress = mddev->reshape_position;
4794 else
4795 WARN_ON_ONCE(1);
4798 static int handle_reshape_read_error(struct mddev *mddev,
4799 struct r10bio *r10_bio)
4801 /* Use sync reads to get the blocks from somewhere else */
4802 int sectors = r10_bio->sectors;
4803 struct r10conf *conf = mddev->private;
4804 struct r10bio *r10b;
4805 int slot = 0;
4806 int idx = 0;
4807 struct page **pages;
4809 r10b = kmalloc(sizeof(*r10b) +
4810 sizeof(struct r10dev) * conf->copies, GFP_NOIO);
4811 if (!r10b) {
4812 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4813 return -ENOMEM;
4816 /* reshape IOs share pages from .devs[0].bio */
4817 pages = get_resync_pages(r10_bio->devs[0].bio)->pages;
4819 r10b->sector = r10_bio->sector;
4820 __raid10_find_phys(&conf->prev, r10b);
4822 while (sectors) {
4823 int s = sectors;
4824 int success = 0;
4825 int first_slot = slot;
4827 if (s > (PAGE_SIZE >> 9))
4828 s = PAGE_SIZE >> 9;
4830 rcu_read_lock();
4831 while (!success) {
4832 int d = r10b->devs[slot].devnum;
4833 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4834 sector_t addr;
4835 if (rdev == NULL ||
4836 test_bit(Faulty, &rdev->flags) ||
4837 !test_bit(In_sync, &rdev->flags))
4838 goto failed;
4840 addr = r10b->devs[slot].addr + idx * PAGE_SIZE;
4841 atomic_inc(&rdev->nr_pending);
4842 rcu_read_unlock();
4843 success = sync_page_io(rdev,
4844 addr,
4845 s << 9,
4846 pages[idx],
4847 REQ_OP_READ, 0, false);
4848 rdev_dec_pending(rdev, mddev);
4849 rcu_read_lock();
4850 if (success)
4851 break;
4852 failed:
4853 slot++;
4854 if (slot >= conf->copies)
4855 slot = 0;
4856 if (slot == first_slot)
4857 break;
4859 rcu_read_unlock();
4860 if (!success) {
4861 /* couldn't read this block, must give up */
4862 set_bit(MD_RECOVERY_INTR,
4863 &mddev->recovery);
4864 kfree(r10b);
4865 return -EIO;
4867 sectors -= s;
4868 idx++;
4870 kfree(r10b);
4871 return 0;
4874 static void end_reshape_write(struct bio *bio)
4876 struct r10bio *r10_bio = get_resync_r10bio(bio);
4877 struct mddev *mddev = r10_bio->mddev;
4878 struct r10conf *conf = mddev->private;
4879 int d;
4880 int slot;
4881 int repl;
4882 struct md_rdev *rdev = NULL;
4884 d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
4885 if (repl)
4886 rdev = conf->mirrors[d].replacement;
4887 if (!rdev) {
4888 smp_mb();
4889 rdev = conf->mirrors[d].rdev;
4892 if (bio->bi_status) {
4893 /* FIXME should record badblock */
4894 md_error(mddev, rdev);
4897 rdev_dec_pending(rdev, mddev);
4898 end_reshape_request(r10_bio);
4901 static void end_reshape_request(struct r10bio *r10_bio)
4903 if (!atomic_dec_and_test(&r10_bio->remaining))
4904 return;
4905 md_done_sync(r10_bio->mddev, r10_bio->sectors, 1);
4906 bio_put(r10_bio->master_bio);
4907 put_buf(r10_bio);
4910 static void raid10_finish_reshape(struct mddev *mddev)
4912 struct r10conf *conf = mddev->private;
4914 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
4915 return;
4917 if (mddev->delta_disks > 0) {
4918 if (mddev->recovery_cp > mddev->resync_max_sectors) {
4919 mddev->recovery_cp = mddev->resync_max_sectors;
4920 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4922 mddev->resync_max_sectors = mddev->array_sectors;
4923 } else {
4924 int d;
4925 rcu_read_lock();
4926 for (d = conf->geo.raid_disks ;
4927 d < conf->geo.raid_disks - mddev->delta_disks;
4928 d++) {
4929 struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
4930 if (rdev)
4931 clear_bit(In_sync, &rdev->flags);
4932 rdev = rcu_dereference(conf->mirrors[d].replacement);
4933 if (rdev)
4934 clear_bit(In_sync, &rdev->flags);
4936 rcu_read_unlock();
4938 mddev->layout = mddev->new_layout;
4939 mddev->chunk_sectors = 1 << conf->geo.chunk_shift;
4940 mddev->reshape_position = MaxSector;
4941 mddev->delta_disks = 0;
4942 mddev->reshape_backwards = 0;
4945 static struct md_personality raid10_personality =
4947 .name = "raid10",
4948 .level = 10,
4949 .owner = THIS_MODULE,
4950 .make_request = raid10_make_request,
4951 .run = raid10_run,
4952 .free = raid10_free,
4953 .status = raid10_status,
4954 .error_handler = raid10_error,
4955 .hot_add_disk = raid10_add_disk,
4956 .hot_remove_disk= raid10_remove_disk,
4957 .spare_active = raid10_spare_active,
4958 .sync_request = raid10_sync_request,
4959 .quiesce = raid10_quiesce,
4960 .size = raid10_size,
4961 .resize = raid10_resize,
4962 .takeover = raid10_takeover,
4963 .check_reshape = raid10_check_reshape,
4964 .start_reshape = raid10_start_reshape,
4965 .finish_reshape = raid10_finish_reshape,
4966 .update_reshape_pos = raid10_update_reshape_pos,
4967 .congested = raid10_congested,
4970 static int __init raid_init(void)
4972 return register_md_personality(&raid10_personality);
4975 static void raid_exit(void)
4977 unregister_md_personality(&raid10_personality);
4980 module_init(raid_init);
4981 module_exit(raid_exit);
4982 MODULE_LICENSE("GPL");
4983 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
4984 MODULE_ALIAS("md-personality-9"); /* RAID10 */
4985 MODULE_ALIAS("md-raid10");
4986 MODULE_ALIAS("md-level-10");
4988 module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);