4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/dev-tools/kmemleak.rst.
27 * The following locks and mutexes are used by kmemleak:
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
56 * Locks and mutexes are acquired/nested in the following order:
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched/signal.h>
77 #include <linux/sched/task.h>
78 #include <linux/sched/task_stack.h>
79 #include <linux/jiffies.h>
80 #include <linux/delay.h>
81 #include <linux/export.h>
82 #include <linux/kthread.h>
83 #include <linux/rbtree.h>
85 #include <linux/debugfs.h>
86 #include <linux/seq_file.h>
87 #include <linux/cpumask.h>
88 #include <linux/spinlock.h>
89 #include <linux/module.h>
90 #include <linux/mutex.h>
91 #include <linux/rcupdate.h>
92 #include <linux/stacktrace.h>
93 #include <linux/cache.h>
94 #include <linux/percpu.h>
95 #include <linux/memblock.h>
96 #include <linux/pfn.h>
97 #include <linux/mmzone.h>
98 #include <linux/slab.h>
99 #include <linux/thread_info.h>
100 #include <linux/err.h>
101 #include <linux/uaccess.h>
102 #include <linux/string.h>
103 #include <linux/nodemask.h>
104 #include <linux/mm.h>
105 #include <linux/workqueue.h>
106 #include <linux/crc32.h>
108 #include <asm/sections.h>
109 #include <asm/processor.h>
110 #include <linux/atomic.h>
112 #include <linux/kasan.h>
113 #include <linux/kmemleak.h>
114 #include <linux/memory_hotplug.h>
117 * Kmemleak configuration and common defines.
119 #define MAX_TRACE 16 /* stack trace length */
120 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
121 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
122 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
123 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
125 #define BYTES_PER_POINTER sizeof(void *)
127 /* GFP bitmask for kmemleak internal allocations */
128 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
129 __GFP_NORETRY | __GFP_NOMEMALLOC | \
130 __GFP_NOWARN | __GFP_NOFAIL)
132 /* scanning area inside a memory block */
133 struct kmemleak_scan_area
{
134 struct hlist_node node
;
139 #define KMEMLEAK_GREY 0
140 #define KMEMLEAK_BLACK -1
143 * Structure holding the metadata for each allocated memory block.
144 * Modifications to such objects should be made while holding the
145 * object->lock. Insertions or deletions from object_list, gray_list or
146 * rb_node are already protected by the corresponding locks or mutex (see
147 * the notes on locking above). These objects are reference-counted
148 * (use_count) and freed using the RCU mechanism.
150 struct kmemleak_object
{
152 unsigned int flags
; /* object status flags */
153 struct list_head object_list
;
154 struct list_head gray_list
;
155 struct rb_node rb_node
;
156 struct rcu_head rcu
; /* object_list lockless traversal */
157 /* object usage count; object freed when use_count == 0 */
159 unsigned long pointer
;
161 /* pass surplus references to this pointer */
162 unsigned long excess_ref
;
163 /* minimum number of a pointers found before it is considered leak */
165 /* the total number of pointers found pointing to this object */
167 /* checksum for detecting modified objects */
169 /* memory ranges to be scanned inside an object (empty for all) */
170 struct hlist_head area_list
;
171 unsigned long trace
[MAX_TRACE
];
172 unsigned int trace_len
;
173 unsigned long jiffies
; /* creation timestamp */
174 pid_t pid
; /* pid of the current task */
175 char comm
[TASK_COMM_LEN
]; /* executable name */
178 /* flag representing the memory block allocation status */
179 #define OBJECT_ALLOCATED (1 << 0)
180 /* flag set after the first reporting of an unreference object */
181 #define OBJECT_REPORTED (1 << 1)
182 /* flag set to not scan the object */
183 #define OBJECT_NO_SCAN (1 << 2)
185 #define HEX_PREFIX " "
186 /* number of bytes to print per line; must be 16 or 32 */
187 #define HEX_ROW_SIZE 16
188 /* number of bytes to print at a time (1, 2, 4, 8) */
189 #define HEX_GROUP_SIZE 1
190 /* include ASCII after the hex output */
192 /* max number of lines to be printed */
193 #define HEX_MAX_LINES 2
195 /* the list of all allocated objects */
196 static LIST_HEAD(object_list
);
197 /* the list of gray-colored objects (see color_gray comment below) */
198 static LIST_HEAD(gray_list
);
199 /* search tree for object boundaries */
200 static struct rb_root object_tree_root
= RB_ROOT
;
201 /* rw_lock protecting the access to object_list and object_tree_root */
202 static DEFINE_RWLOCK(kmemleak_lock
);
204 /* allocation caches for kmemleak internal data */
205 static struct kmem_cache
*object_cache
;
206 static struct kmem_cache
*scan_area_cache
;
208 /* set if tracing memory operations is enabled */
209 static int kmemleak_enabled
;
210 /* same as above but only for the kmemleak_free() callback */
211 static int kmemleak_free_enabled
;
212 /* set in the late_initcall if there were no errors */
213 static int kmemleak_initialized
;
214 /* enables or disables early logging of the memory operations */
215 static int kmemleak_early_log
= 1;
216 /* set if a kmemleak warning was issued */
217 static int kmemleak_warning
;
218 /* set if a fatal kmemleak error has occurred */
219 static int kmemleak_error
;
221 /* minimum and maximum address that may be valid pointers */
222 static unsigned long min_addr
= ULONG_MAX
;
223 static unsigned long max_addr
;
225 static struct task_struct
*scan_thread
;
226 /* used to avoid reporting of recently allocated objects */
227 static unsigned long jiffies_min_age
;
228 static unsigned long jiffies_last_scan
;
229 /* delay between automatic memory scannings */
230 static signed long jiffies_scan_wait
;
231 /* enables or disables the task stacks scanning */
232 static int kmemleak_stack_scan
= 1;
233 /* protects the memory scanning, parameters and debug/kmemleak file access */
234 static DEFINE_MUTEX(scan_mutex
);
235 /* setting kmemleak=on, will set this var, skipping the disable */
236 static int kmemleak_skip_disable
;
237 /* If there are leaks that can be reported */
238 static bool kmemleak_found_leaks
;
240 static bool kmemleak_verbose
;
241 module_param_named(verbose
, kmemleak_verbose
, bool, 0600);
244 * Early object allocation/freeing logging. Kmemleak is initialized after the
245 * kernel allocator. However, both the kernel allocator and kmemleak may
246 * allocate memory blocks which need to be tracked. Kmemleak defines an
247 * arbitrary buffer to hold the allocation/freeing information before it is
251 /* kmemleak operation type for early logging */
254 KMEMLEAK_ALLOC_PERCPU
,
257 KMEMLEAK_FREE_PERCPU
,
262 KMEMLEAK_SET_EXCESS_REF
266 * Structure holding the information passed to kmemleak callbacks during the
270 int op_type
; /* kmemleak operation type */
271 int min_count
; /* minimum reference count */
272 const void *ptr
; /* allocated/freed memory block */
274 size_t size
; /* memory block size */
275 unsigned long excess_ref
; /* surplus reference passing */
277 unsigned long trace
[MAX_TRACE
]; /* stack trace */
278 unsigned int trace_len
; /* stack trace length */
281 /* early logging buffer and current position */
282 static struct early_log
283 early_log
[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE
] __initdata
;
284 static int crt_early_log __initdata
;
286 static void kmemleak_disable(void);
289 * Print a warning and dump the stack trace.
291 #define kmemleak_warn(x...) do { \
294 kmemleak_warning = 1; \
298 * Macro invoked when a serious kmemleak condition occurred and cannot be
299 * recovered from. Kmemleak will be disabled and further allocation/freeing
300 * tracing no longer available.
302 #define kmemleak_stop(x...) do { \
304 kmemleak_disable(); \
307 #define warn_or_seq_printf(seq, fmt, ...) do { \
309 seq_printf(seq, fmt, ##__VA_ARGS__); \
311 pr_warn(fmt, ##__VA_ARGS__); \
314 static void warn_or_seq_hex_dump(struct seq_file
*seq
, int prefix_type
,
315 int rowsize
, int groupsize
, const void *buf
,
316 size_t len
, bool ascii
)
319 seq_hex_dump(seq
, HEX_PREFIX
, prefix_type
, rowsize
, groupsize
,
322 print_hex_dump(KERN_WARNING
, pr_fmt(HEX_PREFIX
), prefix_type
,
323 rowsize
, groupsize
, buf
, len
, ascii
);
327 * Printing of the objects hex dump to the seq file. The number of lines to be
328 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
329 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
330 * with the object->lock held.
332 static void hex_dump_object(struct seq_file
*seq
,
333 struct kmemleak_object
*object
)
335 const u8
*ptr
= (const u8
*)object
->pointer
;
338 /* limit the number of lines to HEX_MAX_LINES */
339 len
= min_t(size_t, object
->size
, HEX_MAX_LINES
* HEX_ROW_SIZE
);
341 warn_or_seq_printf(seq
, " hex dump (first %zu bytes):\n", len
);
342 kasan_disable_current();
343 warn_or_seq_hex_dump(seq
, DUMP_PREFIX_NONE
, HEX_ROW_SIZE
,
344 HEX_GROUP_SIZE
, ptr
, len
, HEX_ASCII
);
345 kasan_enable_current();
349 * Object colors, encoded with count and min_count:
350 * - white - orphan object, not enough references to it (count < min_count)
351 * - gray - not orphan, not marked as false positive (min_count == 0) or
352 * sufficient references to it (count >= min_count)
353 * - black - ignore, it doesn't contain references (e.g. text section)
354 * (min_count == -1). No function defined for this color.
355 * Newly created objects don't have any color assigned (object->count == -1)
356 * before the next memory scan when they become white.
358 static bool color_white(const struct kmemleak_object
*object
)
360 return object
->count
!= KMEMLEAK_BLACK
&&
361 object
->count
< object
->min_count
;
364 static bool color_gray(const struct kmemleak_object
*object
)
366 return object
->min_count
!= KMEMLEAK_BLACK
&&
367 object
->count
>= object
->min_count
;
371 * Objects are considered unreferenced only if their color is white, they have
372 * not be deleted and have a minimum age to avoid false positives caused by
373 * pointers temporarily stored in CPU registers.
375 static bool unreferenced_object(struct kmemleak_object
*object
)
377 return (color_white(object
) && object
->flags
& OBJECT_ALLOCATED
) &&
378 time_before_eq(object
->jiffies
+ jiffies_min_age
,
383 * Printing of the unreferenced objects information to the seq file. The
384 * print_unreferenced function must be called with the object->lock held.
386 static void print_unreferenced(struct seq_file
*seq
,
387 struct kmemleak_object
*object
)
390 unsigned int msecs_age
= jiffies_to_msecs(jiffies
- object
->jiffies
);
392 warn_or_seq_printf(seq
, "unreferenced object 0x%08lx (size %zu):\n",
393 object
->pointer
, object
->size
);
394 warn_or_seq_printf(seq
, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
395 object
->comm
, object
->pid
, object
->jiffies
,
396 msecs_age
/ 1000, msecs_age
% 1000);
397 hex_dump_object(seq
, object
);
398 warn_or_seq_printf(seq
, " backtrace:\n");
400 for (i
= 0; i
< object
->trace_len
; i
++) {
401 void *ptr
= (void *)object
->trace
[i
];
402 warn_or_seq_printf(seq
, " [<%p>] %pS\n", ptr
, ptr
);
407 * Print the kmemleak_object information. This function is used mainly for
408 * debugging special cases when kmemleak operations. It must be called with
409 * the object->lock held.
411 static void dump_object_info(struct kmemleak_object
*object
)
413 struct stack_trace trace
;
415 trace
.nr_entries
= object
->trace_len
;
416 trace
.entries
= object
->trace
;
418 pr_notice("Object 0x%08lx (size %zu):\n",
419 object
->pointer
, object
->size
);
420 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
421 object
->comm
, object
->pid
, object
->jiffies
);
422 pr_notice(" min_count = %d\n", object
->min_count
);
423 pr_notice(" count = %d\n", object
->count
);
424 pr_notice(" flags = 0x%x\n", object
->flags
);
425 pr_notice(" checksum = %u\n", object
->checksum
);
426 pr_notice(" backtrace:\n");
427 print_stack_trace(&trace
, 4);
431 * Look-up a memory block metadata (kmemleak_object) in the object search
432 * tree based on a pointer value. If alias is 0, only values pointing to the
433 * beginning of the memory block are allowed. The kmemleak_lock must be held
434 * when calling this function.
436 static struct kmemleak_object
*lookup_object(unsigned long ptr
, int alias
)
438 struct rb_node
*rb
= object_tree_root
.rb_node
;
441 struct kmemleak_object
*object
=
442 rb_entry(rb
, struct kmemleak_object
, rb_node
);
443 if (ptr
< object
->pointer
)
444 rb
= object
->rb_node
.rb_left
;
445 else if (object
->pointer
+ object
->size
<= ptr
)
446 rb
= object
->rb_node
.rb_right
;
447 else if (object
->pointer
== ptr
|| alias
)
450 kmemleak_warn("Found object by alias at 0x%08lx\n",
452 dump_object_info(object
);
460 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
461 * that once an object's use_count reached 0, the RCU freeing was already
462 * registered and the object should no longer be used. This function must be
463 * called under the protection of rcu_read_lock().
465 static int get_object(struct kmemleak_object
*object
)
467 return atomic_inc_not_zero(&object
->use_count
);
471 * RCU callback to free a kmemleak_object.
473 static void free_object_rcu(struct rcu_head
*rcu
)
475 struct hlist_node
*tmp
;
476 struct kmemleak_scan_area
*area
;
477 struct kmemleak_object
*object
=
478 container_of(rcu
, struct kmemleak_object
, rcu
);
481 * Once use_count is 0 (guaranteed by put_object), there is no other
482 * code accessing this object, hence no need for locking.
484 hlist_for_each_entry_safe(area
, tmp
, &object
->area_list
, node
) {
485 hlist_del(&area
->node
);
486 kmem_cache_free(scan_area_cache
, area
);
488 kmem_cache_free(object_cache
, object
);
492 * Decrement the object use_count. Once the count is 0, free the object using
493 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
494 * delete_object() path, the delayed RCU freeing ensures that there is no
495 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
498 static void put_object(struct kmemleak_object
*object
)
500 if (!atomic_dec_and_test(&object
->use_count
))
503 /* should only get here after delete_object was called */
504 WARN_ON(object
->flags
& OBJECT_ALLOCATED
);
506 call_rcu(&object
->rcu
, free_object_rcu
);
510 * Look up an object in the object search tree and increase its use_count.
512 static struct kmemleak_object
*find_and_get_object(unsigned long ptr
, int alias
)
515 struct kmemleak_object
*object
;
518 read_lock_irqsave(&kmemleak_lock
, flags
);
519 object
= lookup_object(ptr
, alias
);
520 read_unlock_irqrestore(&kmemleak_lock
, flags
);
522 /* check whether the object is still available */
523 if (object
&& !get_object(object
))
531 * Look up an object in the object search tree and remove it from both
532 * object_tree_root and object_list. The returned object's use_count should be
533 * at least 1, as initially set by create_object().
535 static struct kmemleak_object
*find_and_remove_object(unsigned long ptr
, int alias
)
538 struct kmemleak_object
*object
;
540 write_lock_irqsave(&kmemleak_lock
, flags
);
541 object
= lookup_object(ptr
, alias
);
543 rb_erase(&object
->rb_node
, &object_tree_root
);
544 list_del_rcu(&object
->object_list
);
546 write_unlock_irqrestore(&kmemleak_lock
, flags
);
552 * Save stack trace to the given array of MAX_TRACE size.
554 static int __save_stack_trace(unsigned long *trace
)
556 struct stack_trace stack_trace
;
558 stack_trace
.max_entries
= MAX_TRACE
;
559 stack_trace
.nr_entries
= 0;
560 stack_trace
.entries
= trace
;
561 stack_trace
.skip
= 2;
562 save_stack_trace(&stack_trace
);
564 return stack_trace
.nr_entries
;
568 * Create the metadata (struct kmemleak_object) corresponding to an allocated
569 * memory block and add it to the object_list and object_tree_root.
571 static struct kmemleak_object
*create_object(unsigned long ptr
, size_t size
,
572 int min_count
, gfp_t gfp
)
575 struct kmemleak_object
*object
, *parent
;
576 struct rb_node
**link
, *rb_parent
;
578 object
= kmem_cache_alloc(object_cache
, gfp_kmemleak_mask(gfp
));
580 pr_warn("Cannot allocate a kmemleak_object structure\n");
585 INIT_LIST_HEAD(&object
->object_list
);
586 INIT_LIST_HEAD(&object
->gray_list
);
587 INIT_HLIST_HEAD(&object
->area_list
);
588 spin_lock_init(&object
->lock
);
589 atomic_set(&object
->use_count
, 1);
590 object
->flags
= OBJECT_ALLOCATED
;
591 object
->pointer
= ptr
;
593 object
->excess_ref
= 0;
594 object
->min_count
= min_count
;
595 object
->count
= 0; /* white color initially */
596 object
->jiffies
= jiffies
;
597 object
->checksum
= 0;
599 /* task information */
602 strncpy(object
->comm
, "hardirq", sizeof(object
->comm
));
603 } else if (in_softirq()) {
605 strncpy(object
->comm
, "softirq", sizeof(object
->comm
));
607 object
->pid
= current
->pid
;
609 * There is a small chance of a race with set_task_comm(),
610 * however using get_task_comm() here may cause locking
611 * dependency issues with current->alloc_lock. In the worst
612 * case, the command line is not correct.
614 strncpy(object
->comm
, current
->comm
, sizeof(object
->comm
));
617 /* kernel backtrace */
618 object
->trace_len
= __save_stack_trace(object
->trace
);
620 write_lock_irqsave(&kmemleak_lock
, flags
);
622 min_addr
= min(min_addr
, ptr
);
623 max_addr
= max(max_addr
, ptr
+ size
);
624 link
= &object_tree_root
.rb_node
;
628 parent
= rb_entry(rb_parent
, struct kmemleak_object
, rb_node
);
629 if (ptr
+ size
<= parent
->pointer
)
630 link
= &parent
->rb_node
.rb_left
;
631 else if (parent
->pointer
+ parent
->size
<= ptr
)
632 link
= &parent
->rb_node
.rb_right
;
634 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
637 * No need for parent->lock here since "parent" cannot
638 * be freed while the kmemleak_lock is held.
640 dump_object_info(parent
);
641 kmem_cache_free(object_cache
, object
);
646 rb_link_node(&object
->rb_node
, rb_parent
, link
);
647 rb_insert_color(&object
->rb_node
, &object_tree_root
);
649 list_add_tail_rcu(&object
->object_list
, &object_list
);
651 write_unlock_irqrestore(&kmemleak_lock
, flags
);
656 * Mark the object as not allocated and schedule RCU freeing via put_object().
658 static void __delete_object(struct kmemleak_object
*object
)
662 WARN_ON(!(object
->flags
& OBJECT_ALLOCATED
));
663 WARN_ON(atomic_read(&object
->use_count
) < 1);
666 * Locking here also ensures that the corresponding memory block
667 * cannot be freed when it is being scanned.
669 spin_lock_irqsave(&object
->lock
, flags
);
670 object
->flags
&= ~OBJECT_ALLOCATED
;
671 spin_unlock_irqrestore(&object
->lock
, flags
);
676 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
679 static void delete_object_full(unsigned long ptr
)
681 struct kmemleak_object
*object
;
683 object
= find_and_remove_object(ptr
, 0);
686 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
691 __delete_object(object
);
695 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
696 * delete it. If the memory block is partially freed, the function may create
697 * additional metadata for the remaining parts of the block.
699 static void delete_object_part(unsigned long ptr
, size_t size
)
701 struct kmemleak_object
*object
;
702 unsigned long start
, end
;
704 object
= find_and_remove_object(ptr
, 1);
707 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
714 * Create one or two objects that may result from the memory block
715 * split. Note that partial freeing is only done by free_bootmem() and
716 * this happens before kmemleak_init() is called. The path below is
717 * only executed during early log recording in kmemleak_init(), so
718 * GFP_KERNEL is enough.
720 start
= object
->pointer
;
721 end
= object
->pointer
+ object
->size
;
723 create_object(start
, ptr
- start
, object
->min_count
,
725 if (ptr
+ size
< end
)
726 create_object(ptr
+ size
, end
- ptr
- size
, object
->min_count
,
729 __delete_object(object
);
732 static void __paint_it(struct kmemleak_object
*object
, int color
)
734 object
->min_count
= color
;
735 if (color
== KMEMLEAK_BLACK
)
736 object
->flags
|= OBJECT_NO_SCAN
;
739 static void paint_it(struct kmemleak_object
*object
, int color
)
743 spin_lock_irqsave(&object
->lock
, flags
);
744 __paint_it(object
, color
);
745 spin_unlock_irqrestore(&object
->lock
, flags
);
748 static void paint_ptr(unsigned long ptr
, int color
)
750 struct kmemleak_object
*object
;
752 object
= find_and_get_object(ptr
, 0);
754 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
756 (color
== KMEMLEAK_GREY
) ? "Grey" :
757 (color
== KMEMLEAK_BLACK
) ? "Black" : "Unknown");
760 paint_it(object
, color
);
765 * Mark an object permanently as gray-colored so that it can no longer be
766 * reported as a leak. This is used in general to mark a false positive.
768 static void make_gray_object(unsigned long ptr
)
770 paint_ptr(ptr
, KMEMLEAK_GREY
);
774 * Mark the object as black-colored so that it is ignored from scans and
777 static void make_black_object(unsigned long ptr
)
779 paint_ptr(ptr
, KMEMLEAK_BLACK
);
783 * Add a scanning area to the object. If at least one such area is added,
784 * kmemleak will only scan these ranges rather than the whole memory block.
786 static void add_scan_area(unsigned long ptr
, size_t size
, gfp_t gfp
)
789 struct kmemleak_object
*object
;
790 struct kmemleak_scan_area
*area
;
792 object
= find_and_get_object(ptr
, 1);
794 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
799 area
= kmem_cache_alloc(scan_area_cache
, gfp_kmemleak_mask(gfp
));
801 pr_warn("Cannot allocate a scan area\n");
805 spin_lock_irqsave(&object
->lock
, flags
);
806 if (size
== SIZE_MAX
) {
807 size
= object
->pointer
+ object
->size
- ptr
;
808 } else if (ptr
+ size
> object
->pointer
+ object
->size
) {
809 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr
);
810 dump_object_info(object
);
811 kmem_cache_free(scan_area_cache
, area
);
815 INIT_HLIST_NODE(&area
->node
);
819 hlist_add_head(&area
->node
, &object
->area_list
);
821 spin_unlock_irqrestore(&object
->lock
, flags
);
827 * Any surplus references (object already gray) to 'ptr' are passed to
828 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
829 * vm_struct may be used as an alternative reference to the vmalloc'ed object
830 * (see free_thread_stack()).
832 static void object_set_excess_ref(unsigned long ptr
, unsigned long excess_ref
)
835 struct kmemleak_object
*object
;
837 object
= find_and_get_object(ptr
, 0);
839 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
844 spin_lock_irqsave(&object
->lock
, flags
);
845 object
->excess_ref
= excess_ref
;
846 spin_unlock_irqrestore(&object
->lock
, flags
);
851 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
852 * pointer. Such object will not be scanned by kmemleak but references to it
855 static void object_no_scan(unsigned long ptr
)
858 struct kmemleak_object
*object
;
860 object
= find_and_get_object(ptr
, 0);
862 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr
);
866 spin_lock_irqsave(&object
->lock
, flags
);
867 object
->flags
|= OBJECT_NO_SCAN
;
868 spin_unlock_irqrestore(&object
->lock
, flags
);
873 * Log an early kmemleak_* call to the early_log buffer. These calls will be
874 * processed later once kmemleak is fully initialized.
876 static void __init
log_early(int op_type
, const void *ptr
, size_t size
,
880 struct early_log
*log
;
882 if (kmemleak_error
) {
883 /* kmemleak stopped recording, just count the requests */
888 if (crt_early_log
>= ARRAY_SIZE(early_log
)) {
895 * There is no need for locking since the kernel is still in UP mode
896 * at this stage. Disabling the IRQs is enough.
898 local_irq_save(flags
);
899 log
= &early_log
[crt_early_log
];
900 log
->op_type
= op_type
;
903 log
->min_count
= min_count
;
904 log
->trace_len
= __save_stack_trace(log
->trace
);
906 local_irq_restore(flags
);
910 * Log an early allocated block and populate the stack trace.
912 static void early_alloc(struct early_log
*log
)
914 struct kmemleak_object
*object
;
918 if (!kmemleak_enabled
|| !log
->ptr
|| IS_ERR(log
->ptr
))
922 * RCU locking needed to ensure object is not freed via put_object().
925 object
= create_object((unsigned long)log
->ptr
, log
->size
,
926 log
->min_count
, GFP_ATOMIC
);
929 spin_lock_irqsave(&object
->lock
, flags
);
930 for (i
= 0; i
< log
->trace_len
; i
++)
931 object
->trace
[i
] = log
->trace
[i
];
932 object
->trace_len
= log
->trace_len
;
933 spin_unlock_irqrestore(&object
->lock
, flags
);
939 * Log an early allocated block and populate the stack trace.
941 static void early_alloc_percpu(struct early_log
*log
)
944 const void __percpu
*ptr
= log
->ptr
;
946 for_each_possible_cpu(cpu
) {
947 log
->ptr
= per_cpu_ptr(ptr
, cpu
);
953 * kmemleak_alloc - register a newly allocated object
954 * @ptr: pointer to beginning of the object
955 * @size: size of the object
956 * @min_count: minimum number of references to this object. If during memory
957 * scanning a number of references less than @min_count is found,
958 * the object is reported as a memory leak. If @min_count is 0,
959 * the object is never reported as a leak. If @min_count is -1,
960 * the object is ignored (not scanned and not reported as a leak)
961 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
963 * This function is called from the kernel allocators when a new object
964 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
966 void __ref
kmemleak_alloc(const void *ptr
, size_t size
, int min_count
,
969 pr_debug("%s(0x%p, %zu, %d)\n", __func__
, ptr
, size
, min_count
);
971 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
972 create_object((unsigned long)ptr
, size
, min_count
, gfp
);
973 else if (kmemleak_early_log
)
974 log_early(KMEMLEAK_ALLOC
, ptr
, size
, min_count
);
976 EXPORT_SYMBOL_GPL(kmemleak_alloc
);
979 * kmemleak_alloc_percpu - register a newly allocated __percpu object
980 * @ptr: __percpu pointer to beginning of the object
981 * @size: size of the object
982 * @gfp: flags used for kmemleak internal memory allocations
984 * This function is called from the kernel percpu allocator when a new object
985 * (memory block) is allocated (alloc_percpu).
987 void __ref
kmemleak_alloc_percpu(const void __percpu
*ptr
, size_t size
,
992 pr_debug("%s(0x%p, %zu)\n", __func__
, ptr
, size
);
995 * Percpu allocations are only scanned and not reported as leaks
996 * (min_count is set to 0).
998 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
999 for_each_possible_cpu(cpu
)
1000 create_object((unsigned long)per_cpu_ptr(ptr
, cpu
),
1002 else if (kmemleak_early_log
)
1003 log_early(KMEMLEAK_ALLOC_PERCPU
, ptr
, size
, 0);
1005 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu
);
1008 * kmemleak_vmalloc - register a newly vmalloc'ed object
1009 * @area: pointer to vm_struct
1010 * @size: size of the object
1011 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1013 * This function is called from the vmalloc() kernel allocator when a new
1014 * object (memory block) is allocated.
1016 void __ref
kmemleak_vmalloc(const struct vm_struct
*area
, size_t size
, gfp_t gfp
)
1018 pr_debug("%s(0x%p, %zu)\n", __func__
, area
, size
);
1021 * A min_count = 2 is needed because vm_struct contains a reference to
1022 * the virtual address of the vmalloc'ed block.
1024 if (kmemleak_enabled
) {
1025 create_object((unsigned long)area
->addr
, size
, 2, gfp
);
1026 object_set_excess_ref((unsigned long)area
,
1027 (unsigned long)area
->addr
);
1028 } else if (kmemleak_early_log
) {
1029 log_early(KMEMLEAK_ALLOC
, area
->addr
, size
, 2);
1030 /* reusing early_log.size for storing area->addr */
1031 log_early(KMEMLEAK_SET_EXCESS_REF
,
1032 area
, (unsigned long)area
->addr
, 0);
1035 EXPORT_SYMBOL_GPL(kmemleak_vmalloc
);
1038 * kmemleak_free - unregister a previously registered object
1039 * @ptr: pointer to beginning of the object
1041 * This function is called from the kernel allocators when an object (memory
1042 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1044 void __ref
kmemleak_free(const void *ptr
)
1046 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1048 if (kmemleak_free_enabled
&& ptr
&& !IS_ERR(ptr
))
1049 delete_object_full((unsigned long)ptr
);
1050 else if (kmemleak_early_log
)
1051 log_early(KMEMLEAK_FREE
, ptr
, 0, 0);
1053 EXPORT_SYMBOL_GPL(kmemleak_free
);
1056 * kmemleak_free_part - partially unregister a previously registered object
1057 * @ptr: pointer to the beginning or inside the object. This also
1058 * represents the start of the range to be freed
1059 * @size: size to be unregistered
1061 * This function is called when only a part of a memory block is freed
1062 * (usually from the bootmem allocator).
1064 void __ref
kmemleak_free_part(const void *ptr
, size_t size
)
1066 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1068 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1069 delete_object_part((unsigned long)ptr
, size
);
1070 else if (kmemleak_early_log
)
1071 log_early(KMEMLEAK_FREE_PART
, ptr
, size
, 0);
1073 EXPORT_SYMBOL_GPL(kmemleak_free_part
);
1076 * kmemleak_free_percpu - unregister a previously registered __percpu object
1077 * @ptr: __percpu pointer to beginning of the object
1079 * This function is called from the kernel percpu allocator when an object
1080 * (memory block) is freed (free_percpu).
1082 void __ref
kmemleak_free_percpu(const void __percpu
*ptr
)
1086 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1088 if (kmemleak_free_enabled
&& ptr
&& !IS_ERR(ptr
))
1089 for_each_possible_cpu(cpu
)
1090 delete_object_full((unsigned long)per_cpu_ptr(ptr
,
1092 else if (kmemleak_early_log
)
1093 log_early(KMEMLEAK_FREE_PERCPU
, ptr
, 0, 0);
1095 EXPORT_SYMBOL_GPL(kmemleak_free_percpu
);
1098 * kmemleak_update_trace - update object allocation stack trace
1099 * @ptr: pointer to beginning of the object
1101 * Override the object allocation stack trace for cases where the actual
1102 * allocation place is not always useful.
1104 void __ref
kmemleak_update_trace(const void *ptr
)
1106 struct kmemleak_object
*object
;
1107 unsigned long flags
;
1109 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1111 if (!kmemleak_enabled
|| IS_ERR_OR_NULL(ptr
))
1114 object
= find_and_get_object((unsigned long)ptr
, 1);
1117 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1123 spin_lock_irqsave(&object
->lock
, flags
);
1124 object
->trace_len
= __save_stack_trace(object
->trace
);
1125 spin_unlock_irqrestore(&object
->lock
, flags
);
1129 EXPORT_SYMBOL(kmemleak_update_trace
);
1132 * kmemleak_not_leak - mark an allocated object as false positive
1133 * @ptr: pointer to beginning of the object
1135 * Calling this function on an object will cause the memory block to no longer
1136 * be reported as leak and always be scanned.
1138 void __ref
kmemleak_not_leak(const void *ptr
)
1140 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1142 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1143 make_gray_object((unsigned long)ptr
);
1144 else if (kmemleak_early_log
)
1145 log_early(KMEMLEAK_NOT_LEAK
, ptr
, 0, 0);
1147 EXPORT_SYMBOL(kmemleak_not_leak
);
1150 * kmemleak_ignore - ignore an allocated object
1151 * @ptr: pointer to beginning of the object
1153 * Calling this function on an object will cause the memory block to be
1154 * ignored (not scanned and not reported as a leak). This is usually done when
1155 * it is known that the corresponding block is not a leak and does not contain
1156 * any references to other allocated memory blocks.
1158 void __ref
kmemleak_ignore(const void *ptr
)
1160 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1162 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1163 make_black_object((unsigned long)ptr
);
1164 else if (kmemleak_early_log
)
1165 log_early(KMEMLEAK_IGNORE
, ptr
, 0, 0);
1167 EXPORT_SYMBOL(kmemleak_ignore
);
1170 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1171 * @ptr: pointer to beginning or inside the object. This also
1172 * represents the start of the scan area
1173 * @size: size of the scan area
1174 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1176 * This function is used when it is known that only certain parts of an object
1177 * contain references to other objects. Kmemleak will only scan these areas
1178 * reducing the number false negatives.
1180 void __ref
kmemleak_scan_area(const void *ptr
, size_t size
, gfp_t gfp
)
1182 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1184 if (kmemleak_enabled
&& ptr
&& size
&& !IS_ERR(ptr
))
1185 add_scan_area((unsigned long)ptr
, size
, gfp
);
1186 else if (kmemleak_early_log
)
1187 log_early(KMEMLEAK_SCAN_AREA
, ptr
, size
, 0);
1189 EXPORT_SYMBOL(kmemleak_scan_area
);
1192 * kmemleak_no_scan - do not scan an allocated object
1193 * @ptr: pointer to beginning of the object
1195 * This function notifies kmemleak not to scan the given memory block. Useful
1196 * in situations where it is known that the given object does not contain any
1197 * references to other objects. Kmemleak will not scan such objects reducing
1198 * the number of false negatives.
1200 void __ref
kmemleak_no_scan(const void *ptr
)
1202 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1204 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1205 object_no_scan((unsigned long)ptr
);
1206 else if (kmemleak_early_log
)
1207 log_early(KMEMLEAK_NO_SCAN
, ptr
, 0, 0);
1209 EXPORT_SYMBOL(kmemleak_no_scan
);
1212 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1214 * @phys: physical address of the object
1215 * @size: size of the object
1216 * @min_count: minimum number of references to this object.
1217 * See kmemleak_alloc()
1218 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1220 void __ref
kmemleak_alloc_phys(phys_addr_t phys
, size_t size
, int min_count
,
1223 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1224 kmemleak_alloc(__va(phys
), size
, min_count
, gfp
);
1226 EXPORT_SYMBOL(kmemleak_alloc_phys
);
1229 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1230 * physical address argument
1231 * @phys: physical address if the beginning or inside an object. This
1232 * also represents the start of the range to be freed
1233 * @size: size to be unregistered
1235 void __ref
kmemleak_free_part_phys(phys_addr_t phys
, size_t size
)
1237 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1238 kmemleak_free_part(__va(phys
), size
);
1240 EXPORT_SYMBOL(kmemleak_free_part_phys
);
1243 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1245 * @phys: physical address of the object
1247 void __ref
kmemleak_not_leak_phys(phys_addr_t phys
)
1249 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1250 kmemleak_not_leak(__va(phys
));
1252 EXPORT_SYMBOL(kmemleak_not_leak_phys
);
1255 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1257 * @phys: physical address of the object
1259 void __ref
kmemleak_ignore_phys(phys_addr_t phys
)
1261 if (!IS_ENABLED(CONFIG_HIGHMEM
) || PHYS_PFN(phys
) < max_low_pfn
)
1262 kmemleak_ignore(__va(phys
));
1264 EXPORT_SYMBOL(kmemleak_ignore_phys
);
1267 * Update an object's checksum and return true if it was modified.
1269 static bool update_checksum(struct kmemleak_object
*object
)
1271 u32 old_csum
= object
->checksum
;
1273 kasan_disable_current();
1274 object
->checksum
= crc32(0, (void *)object
->pointer
, object
->size
);
1275 kasan_enable_current();
1277 return object
->checksum
!= old_csum
;
1281 * Update an object's references. object->lock must be held by the caller.
1283 static void update_refs(struct kmemleak_object
*object
)
1285 if (!color_white(object
)) {
1286 /* non-orphan, ignored or new */
1291 * Increase the object's reference count (number of pointers to the
1292 * memory block). If this count reaches the required minimum, the
1293 * object's color will become gray and it will be added to the
1297 if (color_gray(object
)) {
1298 /* put_object() called when removing from gray_list */
1299 WARN_ON(!get_object(object
));
1300 list_add_tail(&object
->gray_list
, &gray_list
);
1305 * Memory scanning is a long process and it needs to be interruptable. This
1306 * function checks whether such interrupt condition occurred.
1308 static int scan_should_stop(void)
1310 if (!kmemleak_enabled
)
1314 * This function may be called from either process or kthread context,
1315 * hence the need to check for both stop conditions.
1318 return signal_pending(current
);
1320 return kthread_should_stop();
1326 * Scan a memory block (exclusive range) for valid pointers and add those
1327 * found to the gray list.
1329 static void scan_block(void *_start
, void *_end
,
1330 struct kmemleak_object
*scanned
)
1333 unsigned long *start
= PTR_ALIGN(_start
, BYTES_PER_POINTER
);
1334 unsigned long *end
= _end
- (BYTES_PER_POINTER
- 1);
1335 unsigned long flags
;
1337 read_lock_irqsave(&kmemleak_lock
, flags
);
1338 for (ptr
= start
; ptr
< end
; ptr
++) {
1339 struct kmemleak_object
*object
;
1340 unsigned long pointer
;
1341 unsigned long excess_ref
;
1343 if (scan_should_stop())
1346 kasan_disable_current();
1348 kasan_enable_current();
1350 if (pointer
< min_addr
|| pointer
>= max_addr
)
1354 * No need for get_object() here since we hold kmemleak_lock.
1355 * object->use_count cannot be dropped to 0 while the object
1356 * is still present in object_tree_root and object_list
1357 * (with updates protected by kmemleak_lock).
1359 object
= lookup_object(pointer
, 1);
1362 if (object
== scanned
)
1363 /* self referenced, ignore */
1367 * Avoid the lockdep recursive warning on object->lock being
1368 * previously acquired in scan_object(). These locks are
1369 * enclosed by scan_mutex.
1371 spin_lock_nested(&object
->lock
, SINGLE_DEPTH_NESTING
);
1372 /* only pass surplus references (object already gray) */
1373 if (color_gray(object
)) {
1374 excess_ref
= object
->excess_ref
;
1375 /* no need for update_refs() if object already gray */
1378 update_refs(object
);
1380 spin_unlock(&object
->lock
);
1383 object
= lookup_object(excess_ref
, 0);
1386 if (object
== scanned
)
1387 /* circular reference, ignore */
1389 spin_lock_nested(&object
->lock
, SINGLE_DEPTH_NESTING
);
1390 update_refs(object
);
1391 spin_unlock(&object
->lock
);
1394 read_unlock_irqrestore(&kmemleak_lock
, flags
);
1398 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1400 static void scan_large_block(void *start
, void *end
)
1404 while (start
< end
) {
1405 next
= min(start
+ MAX_SCAN_SIZE
, end
);
1406 scan_block(start
, next
, NULL
);
1413 * Scan a memory block corresponding to a kmemleak_object. A condition is
1414 * that object->use_count >= 1.
1416 static void scan_object(struct kmemleak_object
*object
)
1418 struct kmemleak_scan_area
*area
;
1419 unsigned long flags
;
1422 * Once the object->lock is acquired, the corresponding memory block
1423 * cannot be freed (the same lock is acquired in delete_object).
1425 spin_lock_irqsave(&object
->lock
, flags
);
1426 if (object
->flags
& OBJECT_NO_SCAN
)
1428 if (!(object
->flags
& OBJECT_ALLOCATED
))
1429 /* already freed object */
1431 if (hlist_empty(&object
->area_list
)) {
1432 void *start
= (void *)object
->pointer
;
1433 void *end
= (void *)(object
->pointer
+ object
->size
);
1437 next
= min(start
+ MAX_SCAN_SIZE
, end
);
1438 scan_block(start
, next
, object
);
1444 spin_unlock_irqrestore(&object
->lock
, flags
);
1446 spin_lock_irqsave(&object
->lock
, flags
);
1447 } while (object
->flags
& OBJECT_ALLOCATED
);
1449 hlist_for_each_entry(area
, &object
->area_list
, node
)
1450 scan_block((void *)area
->start
,
1451 (void *)(area
->start
+ area
->size
),
1454 spin_unlock_irqrestore(&object
->lock
, flags
);
1458 * Scan the objects already referenced (gray objects). More objects will be
1459 * referenced and, if there are no memory leaks, all the objects are scanned.
1461 static void scan_gray_list(void)
1463 struct kmemleak_object
*object
, *tmp
;
1466 * The list traversal is safe for both tail additions and removals
1467 * from inside the loop. The kmemleak objects cannot be freed from
1468 * outside the loop because their use_count was incremented.
1470 object
= list_entry(gray_list
.next
, typeof(*object
), gray_list
);
1471 while (&object
->gray_list
!= &gray_list
) {
1474 /* may add new objects to the list */
1475 if (!scan_should_stop())
1476 scan_object(object
);
1478 tmp
= list_entry(object
->gray_list
.next
, typeof(*object
),
1481 /* remove the object from the list and release it */
1482 list_del(&object
->gray_list
);
1487 WARN_ON(!list_empty(&gray_list
));
1491 * Scan data sections and all the referenced memory blocks allocated via the
1492 * kernel's standard allocators. This function must be called with the
1495 static void kmemleak_scan(void)
1497 unsigned long flags
;
1498 struct kmemleak_object
*object
;
1502 jiffies_last_scan
= jiffies
;
1504 /* prepare the kmemleak_object's */
1506 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1507 spin_lock_irqsave(&object
->lock
, flags
);
1510 * With a few exceptions there should be a maximum of
1511 * 1 reference to any object at this point.
1513 if (atomic_read(&object
->use_count
) > 1) {
1514 pr_debug("object->use_count = %d\n",
1515 atomic_read(&object
->use_count
));
1516 dump_object_info(object
);
1519 /* reset the reference count (whiten the object) */
1521 if (color_gray(object
) && get_object(object
))
1522 list_add_tail(&object
->gray_list
, &gray_list
);
1524 spin_unlock_irqrestore(&object
->lock
, flags
);
1528 /* data/bss scanning */
1529 scan_large_block(_sdata
, _edata
);
1530 scan_large_block(__bss_start
, __bss_stop
);
1531 scan_large_block(__start_ro_after_init
, __end_ro_after_init
);
1534 /* per-cpu sections scanning */
1535 for_each_possible_cpu(i
)
1536 scan_large_block(__per_cpu_start
+ per_cpu_offset(i
),
1537 __per_cpu_end
+ per_cpu_offset(i
));
1541 * Struct page scanning for each node.
1544 for_each_online_node(i
) {
1545 unsigned long start_pfn
= node_start_pfn(i
);
1546 unsigned long end_pfn
= node_end_pfn(i
);
1549 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1552 if (!pfn_valid(pfn
))
1554 page
= pfn_to_page(pfn
);
1555 /* only scan if page is in use */
1556 if (page_count(page
) == 0)
1558 scan_block(page
, page
+ 1, NULL
);
1566 * Scanning the task stacks (may introduce false negatives).
1568 if (kmemleak_stack_scan
) {
1569 struct task_struct
*p
, *g
;
1571 read_lock(&tasklist_lock
);
1572 do_each_thread(g
, p
) {
1573 void *stack
= try_get_task_stack(p
);
1575 scan_block(stack
, stack
+ THREAD_SIZE
, NULL
);
1578 } while_each_thread(g
, p
);
1579 read_unlock(&tasklist_lock
);
1583 * Scan the objects already referenced from the sections scanned
1589 * Check for new or unreferenced objects modified since the previous
1590 * scan and color them gray until the next scan.
1593 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1594 spin_lock_irqsave(&object
->lock
, flags
);
1595 if (color_white(object
) && (object
->flags
& OBJECT_ALLOCATED
)
1596 && update_checksum(object
) && get_object(object
)) {
1597 /* color it gray temporarily */
1598 object
->count
= object
->min_count
;
1599 list_add_tail(&object
->gray_list
, &gray_list
);
1601 spin_unlock_irqrestore(&object
->lock
, flags
);
1606 * Re-scan the gray list for modified unreferenced objects.
1611 * If scanning was stopped do not report any new unreferenced objects.
1613 if (scan_should_stop())
1617 * Scanning result reporting.
1620 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1621 spin_lock_irqsave(&object
->lock
, flags
);
1622 if (unreferenced_object(object
) &&
1623 !(object
->flags
& OBJECT_REPORTED
)) {
1624 object
->flags
|= OBJECT_REPORTED
;
1626 if (kmemleak_verbose
)
1627 print_unreferenced(NULL
, object
);
1631 spin_unlock_irqrestore(&object
->lock
, flags
);
1636 kmemleak_found_leaks
= true;
1638 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1645 * Thread function performing automatic memory scanning. Unreferenced objects
1646 * at the end of a memory scan are reported but only the first time.
1648 static int kmemleak_scan_thread(void *arg
)
1650 static int first_run
= 1;
1652 pr_info("Automatic memory scanning thread started\n");
1653 set_user_nice(current
, 10);
1656 * Wait before the first scan to allow the system to fully initialize.
1659 signed long timeout
= msecs_to_jiffies(SECS_FIRST_SCAN
* 1000);
1661 while (timeout
&& !kthread_should_stop())
1662 timeout
= schedule_timeout_interruptible(timeout
);
1665 while (!kthread_should_stop()) {
1666 signed long timeout
= jiffies_scan_wait
;
1668 mutex_lock(&scan_mutex
);
1670 mutex_unlock(&scan_mutex
);
1672 /* wait before the next scan */
1673 while (timeout
&& !kthread_should_stop())
1674 timeout
= schedule_timeout_interruptible(timeout
);
1677 pr_info("Automatic memory scanning thread ended\n");
1683 * Start the automatic memory scanning thread. This function must be called
1684 * with the scan_mutex held.
1686 static void start_scan_thread(void)
1690 scan_thread
= kthread_run(kmemleak_scan_thread
, NULL
, "kmemleak");
1691 if (IS_ERR(scan_thread
)) {
1692 pr_warn("Failed to create the scan thread\n");
1698 * Stop the automatic memory scanning thread.
1700 static void stop_scan_thread(void)
1703 kthread_stop(scan_thread
);
1709 * Iterate over the object_list and return the first valid object at or after
1710 * the required position with its use_count incremented. The function triggers
1711 * a memory scanning when the pos argument points to the first position.
1713 static void *kmemleak_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1715 struct kmemleak_object
*object
;
1719 err
= mutex_lock_interruptible(&scan_mutex
);
1721 return ERR_PTR(err
);
1724 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1727 if (get_object(object
))
1736 * Return the next object in the object_list. The function decrements the
1737 * use_count of the previous object and increases that of the next one.
1739 static void *kmemleak_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1741 struct kmemleak_object
*prev_obj
= v
;
1742 struct kmemleak_object
*next_obj
= NULL
;
1743 struct kmemleak_object
*obj
= prev_obj
;
1747 list_for_each_entry_continue_rcu(obj
, &object_list
, object_list
) {
1748 if (get_object(obj
)) {
1754 put_object(prev_obj
);
1759 * Decrement the use_count of the last object required, if any.
1761 static void kmemleak_seq_stop(struct seq_file
*seq
, void *v
)
1765 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1766 * waiting was interrupted, so only release it if !IS_ERR.
1769 mutex_unlock(&scan_mutex
);
1776 * Print the information for an unreferenced object to the seq file.
1778 static int kmemleak_seq_show(struct seq_file
*seq
, void *v
)
1780 struct kmemleak_object
*object
= v
;
1781 unsigned long flags
;
1783 spin_lock_irqsave(&object
->lock
, flags
);
1784 if ((object
->flags
& OBJECT_REPORTED
) && unreferenced_object(object
))
1785 print_unreferenced(seq
, object
);
1786 spin_unlock_irqrestore(&object
->lock
, flags
);
1790 static const struct seq_operations kmemleak_seq_ops
= {
1791 .start
= kmemleak_seq_start
,
1792 .next
= kmemleak_seq_next
,
1793 .stop
= kmemleak_seq_stop
,
1794 .show
= kmemleak_seq_show
,
1797 static int kmemleak_open(struct inode
*inode
, struct file
*file
)
1799 return seq_open(file
, &kmemleak_seq_ops
);
1802 static int dump_str_object_info(const char *str
)
1804 unsigned long flags
;
1805 struct kmemleak_object
*object
;
1808 if (kstrtoul(str
, 0, &addr
))
1810 object
= find_and_get_object(addr
, 0);
1812 pr_info("Unknown object at 0x%08lx\n", addr
);
1816 spin_lock_irqsave(&object
->lock
, flags
);
1817 dump_object_info(object
);
1818 spin_unlock_irqrestore(&object
->lock
, flags
);
1825 * We use grey instead of black to ensure we can do future scans on the same
1826 * objects. If we did not do future scans these black objects could
1827 * potentially contain references to newly allocated objects in the future and
1828 * we'd end up with false positives.
1830 static void kmemleak_clear(void)
1832 struct kmemleak_object
*object
;
1833 unsigned long flags
;
1836 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1837 spin_lock_irqsave(&object
->lock
, flags
);
1838 if ((object
->flags
& OBJECT_REPORTED
) &&
1839 unreferenced_object(object
))
1840 __paint_it(object
, KMEMLEAK_GREY
);
1841 spin_unlock_irqrestore(&object
->lock
, flags
);
1845 kmemleak_found_leaks
= false;
1848 static void __kmemleak_do_cleanup(void);
1851 * File write operation to configure kmemleak at run-time. The following
1852 * commands can be written to the /sys/kernel/debug/kmemleak file:
1853 * off - disable kmemleak (irreversible)
1854 * stack=on - enable the task stacks scanning
1855 * stack=off - disable the tasks stacks scanning
1856 * scan=on - start the automatic memory scanning thread
1857 * scan=off - stop the automatic memory scanning thread
1858 * scan=... - set the automatic memory scanning period in seconds (0 to
1860 * scan - trigger a memory scan
1861 * clear - mark all current reported unreferenced kmemleak objects as
1862 * grey to ignore printing them, or free all kmemleak objects
1863 * if kmemleak has been disabled.
1864 * dump=... - dump information about the object found at the given address
1866 static ssize_t
kmemleak_write(struct file
*file
, const char __user
*user_buf
,
1867 size_t size
, loff_t
*ppos
)
1873 buf_size
= min(size
, (sizeof(buf
) - 1));
1874 if (strncpy_from_user(buf
, user_buf
, buf_size
) < 0)
1878 ret
= mutex_lock_interruptible(&scan_mutex
);
1882 if (strncmp(buf
, "clear", 5) == 0) {
1883 if (kmemleak_enabled
)
1886 __kmemleak_do_cleanup();
1890 if (!kmemleak_enabled
) {
1895 if (strncmp(buf
, "off", 3) == 0)
1897 else if (strncmp(buf
, "stack=on", 8) == 0)
1898 kmemleak_stack_scan
= 1;
1899 else if (strncmp(buf
, "stack=off", 9) == 0)
1900 kmemleak_stack_scan
= 0;
1901 else if (strncmp(buf
, "scan=on", 7) == 0)
1902 start_scan_thread();
1903 else if (strncmp(buf
, "scan=off", 8) == 0)
1905 else if (strncmp(buf
, "scan=", 5) == 0) {
1908 ret
= kstrtoul(buf
+ 5, 0, &secs
);
1913 jiffies_scan_wait
= msecs_to_jiffies(secs
* 1000);
1914 start_scan_thread();
1916 } else if (strncmp(buf
, "scan", 4) == 0)
1918 else if (strncmp(buf
, "dump=", 5) == 0)
1919 ret
= dump_str_object_info(buf
+ 5);
1924 mutex_unlock(&scan_mutex
);
1928 /* ignore the rest of the buffer, only one command at a time */
1933 static const struct file_operations kmemleak_fops
= {
1934 .owner
= THIS_MODULE
,
1935 .open
= kmemleak_open
,
1937 .write
= kmemleak_write
,
1938 .llseek
= seq_lseek
,
1939 .release
= seq_release
,
1942 static void __kmemleak_do_cleanup(void)
1944 struct kmemleak_object
*object
;
1947 list_for_each_entry_rcu(object
, &object_list
, object_list
)
1948 delete_object_full(object
->pointer
);
1953 * Stop the memory scanning thread and free the kmemleak internal objects if
1954 * no previous scan thread (otherwise, kmemleak may still have some useful
1955 * information on memory leaks).
1957 static void kmemleak_do_cleanup(struct work_struct
*work
)
1961 mutex_lock(&scan_mutex
);
1963 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1964 * longer track object freeing. Ordering of the scan thread stopping and
1965 * the memory accesses below is guaranteed by the kthread_stop()
1968 kmemleak_free_enabled
= 0;
1969 mutex_unlock(&scan_mutex
);
1971 if (!kmemleak_found_leaks
)
1972 __kmemleak_do_cleanup();
1974 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1977 static DECLARE_WORK(cleanup_work
, kmemleak_do_cleanup
);
1980 * Disable kmemleak. No memory allocation/freeing will be traced once this
1981 * function is called. Disabling kmemleak is an irreversible operation.
1983 static void kmemleak_disable(void)
1985 /* atomically check whether it was already invoked */
1986 if (cmpxchg(&kmemleak_error
, 0, 1))
1989 /* stop any memory operation tracing */
1990 kmemleak_enabled
= 0;
1992 /* check whether it is too early for a kernel thread */
1993 if (kmemleak_initialized
)
1994 schedule_work(&cleanup_work
);
1996 kmemleak_free_enabled
= 0;
1998 pr_info("Kernel memory leak detector disabled\n");
2002 * Allow boot-time kmemleak disabling (enabled by default).
2004 static int __init
kmemleak_boot_config(char *str
)
2008 if (strcmp(str
, "off") == 0)
2010 else if (strcmp(str
, "on") == 0)
2011 kmemleak_skip_disable
= 1;
2016 early_param("kmemleak", kmemleak_boot_config
);
2018 static void __init
print_log_trace(struct early_log
*log
)
2020 struct stack_trace trace
;
2022 trace
.nr_entries
= log
->trace_len
;
2023 trace
.entries
= log
->trace
;
2025 pr_notice("Early log backtrace:\n");
2026 print_stack_trace(&trace
, 2);
2030 * Kmemleak initialization.
2032 void __init
kmemleak_init(void)
2035 unsigned long flags
;
2037 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2038 if (!kmemleak_skip_disable
) {
2039 kmemleak_early_log
= 0;
2045 jiffies_min_age
= msecs_to_jiffies(MSECS_MIN_AGE
);
2046 jiffies_scan_wait
= msecs_to_jiffies(SECS_SCAN_WAIT
* 1000);
2048 object_cache
= KMEM_CACHE(kmemleak_object
, SLAB_NOLEAKTRACE
);
2049 scan_area_cache
= KMEM_CACHE(kmemleak_scan_area
, SLAB_NOLEAKTRACE
);
2051 if (crt_early_log
> ARRAY_SIZE(early_log
))
2052 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2055 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2056 local_irq_save(flags
);
2057 kmemleak_early_log
= 0;
2058 if (kmemleak_error
) {
2059 local_irq_restore(flags
);
2062 kmemleak_enabled
= 1;
2063 kmemleak_free_enabled
= 1;
2065 local_irq_restore(flags
);
2068 * This is the point where tracking allocations is safe. Automatic
2069 * scanning is started during the late initcall. Add the early logged
2070 * callbacks to the kmemleak infrastructure.
2072 for (i
= 0; i
< crt_early_log
; i
++) {
2073 struct early_log
*log
= &early_log
[i
];
2075 switch (log
->op_type
) {
2076 case KMEMLEAK_ALLOC
:
2079 case KMEMLEAK_ALLOC_PERCPU
:
2080 early_alloc_percpu(log
);
2083 kmemleak_free(log
->ptr
);
2085 case KMEMLEAK_FREE_PART
:
2086 kmemleak_free_part(log
->ptr
, log
->size
);
2088 case KMEMLEAK_FREE_PERCPU
:
2089 kmemleak_free_percpu(log
->ptr
);
2091 case KMEMLEAK_NOT_LEAK
:
2092 kmemleak_not_leak(log
->ptr
);
2094 case KMEMLEAK_IGNORE
:
2095 kmemleak_ignore(log
->ptr
);
2097 case KMEMLEAK_SCAN_AREA
:
2098 kmemleak_scan_area(log
->ptr
, log
->size
, GFP_KERNEL
);
2100 case KMEMLEAK_NO_SCAN
:
2101 kmemleak_no_scan(log
->ptr
);
2103 case KMEMLEAK_SET_EXCESS_REF
:
2104 object_set_excess_ref((unsigned long)log
->ptr
,
2108 kmemleak_warn("Unknown early log operation: %d\n",
2112 if (kmemleak_warning
) {
2113 print_log_trace(log
);
2114 kmemleak_warning
= 0;
2120 * Late initialization function.
2122 static int __init
kmemleak_late_init(void)
2124 struct dentry
*dentry
;
2126 kmemleak_initialized
= 1;
2128 dentry
= debugfs_create_file("kmemleak", 0644, NULL
, NULL
,
2131 pr_warn("Failed to create the debugfs kmemleak file\n");
2133 if (kmemleak_error
) {
2135 * Some error occurred and kmemleak was disabled. There is a
2136 * small chance that kmemleak_disable() was called immediately
2137 * after setting kmemleak_initialized and we may end up with
2138 * two clean-up threads but serialized by scan_mutex.
2140 schedule_work(&cleanup_work
);
2144 mutex_lock(&scan_mutex
);
2145 start_scan_thread();
2146 mutex_unlock(&scan_mutex
);
2148 pr_info("Kernel memory leak detector initialized\n");
2152 late_initcall(kmemleak_late_init
);