2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
54 #include "inode-map.h"
56 #include "rcu-string.h"
58 #include "dev-replace.h"
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65 * structures are incorrect, as the timespec structure from userspace
66 * is 4 bytes too small. We define these alternatives here to teach
67 * the kernel about the 32-bit struct packing.
69 struct btrfs_ioctl_timespec_32
{
72 } __attribute__ ((__packed__
));
74 struct btrfs_ioctl_received_subvol_args_32
{
75 char uuid
[BTRFS_UUID_SIZE
]; /* in */
76 __u64 stransid
; /* in */
77 __u64 rtransid
; /* out */
78 struct btrfs_ioctl_timespec_32 stime
; /* in */
79 struct btrfs_ioctl_timespec_32 rtime
; /* out */
81 __u64 reserved
[16]; /* in */
82 } __attribute__ ((__packed__
));
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 struct btrfs_ioctl_received_subvol_args_32)
89 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
90 u64 off
, u64 olen
, u64 olen_aligned
, u64 destoff
);
92 /* Mask out flags that are inappropriate for the given type of inode. */
93 static inline __u32
btrfs_mask_flags(umode_t mode
, __u32 flags
)
97 else if (S_ISREG(mode
))
98 return flags
& ~FS_DIRSYNC_FL
;
100 return flags
& (FS_NODUMP_FL
| FS_NOATIME_FL
);
104 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
106 static unsigned int btrfs_flags_to_ioctl(unsigned int flags
)
108 unsigned int iflags
= 0;
110 if (flags
& BTRFS_INODE_SYNC
)
111 iflags
|= FS_SYNC_FL
;
112 if (flags
& BTRFS_INODE_IMMUTABLE
)
113 iflags
|= FS_IMMUTABLE_FL
;
114 if (flags
& BTRFS_INODE_APPEND
)
115 iflags
|= FS_APPEND_FL
;
116 if (flags
& BTRFS_INODE_NODUMP
)
117 iflags
|= FS_NODUMP_FL
;
118 if (flags
& BTRFS_INODE_NOATIME
)
119 iflags
|= FS_NOATIME_FL
;
120 if (flags
& BTRFS_INODE_DIRSYNC
)
121 iflags
|= FS_DIRSYNC_FL
;
122 if (flags
& BTRFS_INODE_NODATACOW
)
123 iflags
|= FS_NOCOW_FL
;
125 if ((flags
& BTRFS_INODE_COMPRESS
) && !(flags
& BTRFS_INODE_NOCOMPRESS
))
126 iflags
|= FS_COMPR_FL
;
127 else if (flags
& BTRFS_INODE_NOCOMPRESS
)
128 iflags
|= FS_NOCOMP_FL
;
134 * Update inode->i_flags based on the btrfs internal flags.
136 void btrfs_update_iflags(struct inode
*inode
)
138 struct btrfs_inode
*ip
= BTRFS_I(inode
);
139 unsigned int new_fl
= 0;
141 if (ip
->flags
& BTRFS_INODE_SYNC
)
143 if (ip
->flags
& BTRFS_INODE_IMMUTABLE
)
144 new_fl
|= S_IMMUTABLE
;
145 if (ip
->flags
& BTRFS_INODE_APPEND
)
147 if (ip
->flags
& BTRFS_INODE_NOATIME
)
149 if (ip
->flags
& BTRFS_INODE_DIRSYNC
)
152 set_mask_bits(&inode
->i_flags
,
153 S_SYNC
| S_APPEND
| S_IMMUTABLE
| S_NOATIME
| S_DIRSYNC
,
158 * Inherit flags from the parent inode.
160 * Currently only the compression flags and the cow flags are inherited.
162 void btrfs_inherit_iflags(struct inode
*inode
, struct inode
*dir
)
169 flags
= BTRFS_I(dir
)->flags
;
171 if (flags
& BTRFS_INODE_NOCOMPRESS
) {
172 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_COMPRESS
;
173 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NOCOMPRESS
;
174 } else if (flags
& BTRFS_INODE_COMPRESS
) {
175 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
176 BTRFS_I(inode
)->flags
|= BTRFS_INODE_COMPRESS
;
179 if (flags
& BTRFS_INODE_NODATACOW
) {
180 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATACOW
;
181 if (S_ISREG(inode
->i_mode
))
182 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
;
185 btrfs_update_iflags(inode
);
188 static int btrfs_ioctl_getflags(struct file
*file
, void __user
*arg
)
190 struct btrfs_inode
*ip
= BTRFS_I(file_inode(file
));
191 unsigned int flags
= btrfs_flags_to_ioctl(ip
->flags
);
193 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
198 static int check_flags(unsigned int flags
)
200 if (flags
& ~(FS_IMMUTABLE_FL
| FS_APPEND_FL
| \
201 FS_NOATIME_FL
| FS_NODUMP_FL
| \
202 FS_SYNC_FL
| FS_DIRSYNC_FL
| \
203 FS_NOCOMP_FL
| FS_COMPR_FL
|
207 if ((flags
& FS_NOCOMP_FL
) && (flags
& FS_COMPR_FL
))
213 static int btrfs_ioctl_setflags(struct file
*file
, void __user
*arg
)
215 struct inode
*inode
= file_inode(file
);
216 struct btrfs_inode
*ip
= BTRFS_I(inode
);
217 struct btrfs_root
*root
= ip
->root
;
218 struct btrfs_trans_handle
*trans
;
219 unsigned int flags
, oldflags
;
222 unsigned int i_oldflags
;
225 if (!inode_owner_or_capable(inode
))
228 if (btrfs_root_readonly(root
))
231 if (copy_from_user(&flags
, arg
, sizeof(flags
)))
234 ret
= check_flags(flags
);
238 ret
= mnt_want_write_file(file
);
242 mutex_lock(&inode
->i_mutex
);
244 ip_oldflags
= ip
->flags
;
245 i_oldflags
= inode
->i_flags
;
246 mode
= inode
->i_mode
;
248 flags
= btrfs_mask_flags(inode
->i_mode
, flags
);
249 oldflags
= btrfs_flags_to_ioctl(ip
->flags
);
250 if ((flags
^ oldflags
) & (FS_APPEND_FL
| FS_IMMUTABLE_FL
)) {
251 if (!capable(CAP_LINUX_IMMUTABLE
)) {
257 if (flags
& FS_SYNC_FL
)
258 ip
->flags
|= BTRFS_INODE_SYNC
;
260 ip
->flags
&= ~BTRFS_INODE_SYNC
;
261 if (flags
& FS_IMMUTABLE_FL
)
262 ip
->flags
|= BTRFS_INODE_IMMUTABLE
;
264 ip
->flags
&= ~BTRFS_INODE_IMMUTABLE
;
265 if (flags
& FS_APPEND_FL
)
266 ip
->flags
|= BTRFS_INODE_APPEND
;
268 ip
->flags
&= ~BTRFS_INODE_APPEND
;
269 if (flags
& FS_NODUMP_FL
)
270 ip
->flags
|= BTRFS_INODE_NODUMP
;
272 ip
->flags
&= ~BTRFS_INODE_NODUMP
;
273 if (flags
& FS_NOATIME_FL
)
274 ip
->flags
|= BTRFS_INODE_NOATIME
;
276 ip
->flags
&= ~BTRFS_INODE_NOATIME
;
277 if (flags
& FS_DIRSYNC_FL
)
278 ip
->flags
|= BTRFS_INODE_DIRSYNC
;
280 ip
->flags
&= ~BTRFS_INODE_DIRSYNC
;
281 if (flags
& FS_NOCOW_FL
) {
284 * It's safe to turn csums off here, no extents exist.
285 * Otherwise we want the flag to reflect the real COW
286 * status of the file and will not set it.
288 if (inode
->i_size
== 0)
289 ip
->flags
|= BTRFS_INODE_NODATACOW
290 | BTRFS_INODE_NODATASUM
;
292 ip
->flags
|= BTRFS_INODE_NODATACOW
;
296 * Revert back under same assuptions as above
299 if (inode
->i_size
== 0)
300 ip
->flags
&= ~(BTRFS_INODE_NODATACOW
301 | BTRFS_INODE_NODATASUM
);
303 ip
->flags
&= ~BTRFS_INODE_NODATACOW
;
308 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
309 * flag may be changed automatically if compression code won't make
312 if (flags
& FS_NOCOMP_FL
) {
313 ip
->flags
&= ~BTRFS_INODE_COMPRESS
;
314 ip
->flags
|= BTRFS_INODE_NOCOMPRESS
;
316 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
317 if (ret
&& ret
!= -ENODATA
)
319 } else if (flags
& FS_COMPR_FL
) {
322 ip
->flags
|= BTRFS_INODE_COMPRESS
;
323 ip
->flags
&= ~BTRFS_INODE_NOCOMPRESS
;
325 if (root
->fs_info
->compress_type
== BTRFS_COMPRESS_LZO
)
329 ret
= btrfs_set_prop(inode
, "btrfs.compression",
330 comp
, strlen(comp
), 0);
335 ret
= btrfs_set_prop(inode
, "btrfs.compression", NULL
, 0, 0);
336 if (ret
&& ret
!= -ENODATA
)
338 ip
->flags
&= ~(BTRFS_INODE_COMPRESS
| BTRFS_INODE_NOCOMPRESS
);
341 trans
= btrfs_start_transaction(root
, 1);
343 ret
= PTR_ERR(trans
);
347 btrfs_update_iflags(inode
);
348 inode_inc_iversion(inode
);
349 inode
->i_ctime
= CURRENT_TIME
;
350 ret
= btrfs_update_inode(trans
, root
, inode
);
352 btrfs_end_transaction(trans
, root
);
355 ip
->flags
= ip_oldflags
;
356 inode
->i_flags
= i_oldflags
;
360 mutex_unlock(&inode
->i_mutex
);
361 mnt_drop_write_file(file
);
365 static int btrfs_ioctl_getversion(struct file
*file
, int __user
*arg
)
367 struct inode
*inode
= file_inode(file
);
369 return put_user(inode
->i_generation
, arg
);
372 static noinline
int btrfs_ioctl_fitrim(struct file
*file
, void __user
*arg
)
374 struct btrfs_fs_info
*fs_info
= btrfs_sb(file_inode(file
)->i_sb
);
375 struct btrfs_device
*device
;
376 struct request_queue
*q
;
377 struct fstrim_range range
;
378 u64 minlen
= ULLONG_MAX
;
380 u64 total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
383 if (!capable(CAP_SYS_ADMIN
))
387 list_for_each_entry_rcu(device
, &fs_info
->fs_devices
->devices
,
391 q
= bdev_get_queue(device
->bdev
);
392 if (blk_queue_discard(q
)) {
394 minlen
= min((u64
)q
->limits
.discard_granularity
,
402 if (copy_from_user(&range
, arg
, sizeof(range
)))
404 if (range
.start
> total_bytes
||
405 range
.len
< fs_info
->sb
->s_blocksize
)
408 range
.len
= min(range
.len
, total_bytes
- range
.start
);
409 range
.minlen
= max(range
.minlen
, minlen
);
410 ret
= btrfs_trim_fs(fs_info
->tree_root
, &range
);
414 if (copy_to_user(arg
, &range
, sizeof(range
)))
420 int btrfs_is_empty_uuid(u8
*uuid
)
424 for (i
= 0; i
< BTRFS_UUID_SIZE
; i
++) {
431 static noinline
int create_subvol(struct inode
*dir
,
432 struct dentry
*dentry
,
433 char *name
, int namelen
,
435 struct btrfs_qgroup_inherit
*inherit
)
437 struct btrfs_trans_handle
*trans
;
438 struct btrfs_key key
;
439 struct btrfs_root_item root_item
;
440 struct btrfs_inode_item
*inode_item
;
441 struct extent_buffer
*leaf
;
442 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
443 struct btrfs_root
*new_root
;
444 struct btrfs_block_rsv block_rsv
;
445 struct timespec cur_time
= CURRENT_TIME
;
450 u64 new_dirid
= BTRFS_FIRST_FREE_OBJECTID
;
455 ret
= btrfs_find_free_objectid(root
->fs_info
->tree_root
, &objectid
);
460 * Don't create subvolume whose level is not zero. Or qgroup will be
461 * screwed up since it assume subvolme qgroup's level to be 0.
463 if (btrfs_qgroup_level(objectid
))
466 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
468 * The same as the snapshot creation, please see the comment
469 * of create_snapshot().
471 ret
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
472 8, &qgroup_reserved
, false);
476 trans
= btrfs_start_transaction(root
, 0);
478 ret
= PTR_ERR(trans
);
479 btrfs_subvolume_release_metadata(root
, &block_rsv
,
483 trans
->block_rsv
= &block_rsv
;
484 trans
->bytes_reserved
= block_rsv
.size
;
486 ret
= btrfs_qgroup_inherit(trans
, root
->fs_info
, 0, objectid
, inherit
);
490 leaf
= btrfs_alloc_tree_block(trans
, root
, 0, objectid
, NULL
, 0, 0, 0);
496 memset_extent_buffer(leaf
, 0, 0, sizeof(struct btrfs_header
));
497 btrfs_set_header_bytenr(leaf
, leaf
->start
);
498 btrfs_set_header_generation(leaf
, trans
->transid
);
499 btrfs_set_header_backref_rev(leaf
, BTRFS_MIXED_BACKREF_REV
);
500 btrfs_set_header_owner(leaf
, objectid
);
502 write_extent_buffer(leaf
, root
->fs_info
->fsid
, btrfs_header_fsid(),
504 write_extent_buffer(leaf
, root
->fs_info
->chunk_tree_uuid
,
505 btrfs_header_chunk_tree_uuid(leaf
),
507 btrfs_mark_buffer_dirty(leaf
);
509 memset(&root_item
, 0, sizeof(root_item
));
511 inode_item
= &root_item
.inode
;
512 btrfs_set_stack_inode_generation(inode_item
, 1);
513 btrfs_set_stack_inode_size(inode_item
, 3);
514 btrfs_set_stack_inode_nlink(inode_item
, 1);
515 btrfs_set_stack_inode_nbytes(inode_item
, root
->nodesize
);
516 btrfs_set_stack_inode_mode(inode_item
, S_IFDIR
| 0755);
518 btrfs_set_root_flags(&root_item
, 0);
519 btrfs_set_root_limit(&root_item
, 0);
520 btrfs_set_stack_inode_flags(inode_item
, BTRFS_INODE_ROOT_ITEM_INIT
);
522 btrfs_set_root_bytenr(&root_item
, leaf
->start
);
523 btrfs_set_root_generation(&root_item
, trans
->transid
);
524 btrfs_set_root_level(&root_item
, 0);
525 btrfs_set_root_refs(&root_item
, 1);
526 btrfs_set_root_used(&root_item
, leaf
->len
);
527 btrfs_set_root_last_snapshot(&root_item
, 0);
529 btrfs_set_root_generation_v2(&root_item
,
530 btrfs_root_generation(&root_item
));
531 uuid_le_gen(&new_uuid
);
532 memcpy(root_item
.uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
533 btrfs_set_stack_timespec_sec(&root_item
.otime
, cur_time
.tv_sec
);
534 btrfs_set_stack_timespec_nsec(&root_item
.otime
, cur_time
.tv_nsec
);
535 root_item
.ctime
= root_item
.otime
;
536 btrfs_set_root_ctransid(&root_item
, trans
->transid
);
537 btrfs_set_root_otransid(&root_item
, trans
->transid
);
539 btrfs_tree_unlock(leaf
);
540 free_extent_buffer(leaf
);
543 btrfs_set_root_dirid(&root_item
, new_dirid
);
545 key
.objectid
= objectid
;
547 key
.type
= BTRFS_ROOT_ITEM_KEY
;
548 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
, &key
,
553 key
.offset
= (u64
)-1;
554 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
555 if (IS_ERR(new_root
)) {
556 btrfs_abort_transaction(trans
, root
, PTR_ERR(new_root
));
557 ret
= PTR_ERR(new_root
);
561 btrfs_record_root_in_trans(trans
, new_root
);
563 ret
= btrfs_create_subvol_root(trans
, new_root
, root
, new_dirid
);
565 /* We potentially lose an unused inode item here */
566 btrfs_abort_transaction(trans
, root
, ret
);
570 mutex_lock(&new_root
->objectid_mutex
);
571 new_root
->highest_objectid
= new_dirid
;
572 mutex_unlock(&new_root
->objectid_mutex
);
575 * insert the directory item
577 ret
= btrfs_set_inode_index(dir
, &index
);
579 btrfs_abort_transaction(trans
, root
, ret
);
583 ret
= btrfs_insert_dir_item(trans
, root
,
584 name
, namelen
, dir
, &key
,
585 BTRFS_FT_DIR
, index
);
587 btrfs_abort_transaction(trans
, root
, ret
);
591 btrfs_i_size_write(dir
, dir
->i_size
+ namelen
* 2);
592 ret
= btrfs_update_inode(trans
, root
, dir
);
595 ret
= btrfs_add_root_ref(trans
, root
->fs_info
->tree_root
,
596 objectid
, root
->root_key
.objectid
,
597 btrfs_ino(dir
), index
, name
, namelen
);
600 ret
= btrfs_uuid_tree_add(trans
, root
->fs_info
->uuid_root
,
601 root_item
.uuid
, BTRFS_UUID_KEY_SUBVOL
,
604 btrfs_abort_transaction(trans
, root
, ret
);
607 trans
->block_rsv
= NULL
;
608 trans
->bytes_reserved
= 0;
609 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
612 *async_transid
= trans
->transid
;
613 err
= btrfs_commit_transaction_async(trans
, root
, 1);
615 err
= btrfs_commit_transaction(trans
, root
);
617 err
= btrfs_commit_transaction(trans
, root
);
623 inode
= btrfs_lookup_dentry(dir
, dentry
);
625 return PTR_ERR(inode
);
626 d_instantiate(dentry
, inode
);
631 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root
*root
)
637 prepare_to_wait(&root
->subv_writers
->wait
, &wait
,
638 TASK_UNINTERRUPTIBLE
);
640 writers
= percpu_counter_sum(&root
->subv_writers
->counter
);
644 finish_wait(&root
->subv_writers
->wait
, &wait
);
648 static int create_snapshot(struct btrfs_root
*root
, struct inode
*dir
,
649 struct dentry
*dentry
, char *name
, int namelen
,
650 u64
*async_transid
, bool readonly
,
651 struct btrfs_qgroup_inherit
*inherit
)
654 struct btrfs_pending_snapshot
*pending_snapshot
;
655 struct btrfs_trans_handle
*trans
;
658 if (!test_bit(BTRFS_ROOT_REF_COWS
, &root
->state
))
661 atomic_inc(&root
->will_be_snapshoted
);
662 smp_mb__after_atomic();
663 btrfs_wait_for_no_snapshoting_writes(root
);
665 ret
= btrfs_start_delalloc_inodes(root
, 0);
669 btrfs_wait_ordered_extents(root
, -1);
671 pending_snapshot
= kzalloc(sizeof(*pending_snapshot
), GFP_NOFS
);
672 if (!pending_snapshot
) {
677 btrfs_init_block_rsv(&pending_snapshot
->block_rsv
,
678 BTRFS_BLOCK_RSV_TEMP
);
680 * 1 - parent dir inode
683 * 2 - root ref/backref
684 * 1 - root of snapshot
687 ret
= btrfs_subvolume_reserve_metadata(BTRFS_I(dir
)->root
,
688 &pending_snapshot
->block_rsv
, 8,
689 &pending_snapshot
->qgroup_reserved
,
694 pending_snapshot
->dentry
= dentry
;
695 pending_snapshot
->root
= root
;
696 pending_snapshot
->readonly
= readonly
;
697 pending_snapshot
->dir
= dir
;
698 pending_snapshot
->inherit
= inherit
;
700 trans
= btrfs_start_transaction(root
, 0);
702 ret
= PTR_ERR(trans
);
706 spin_lock(&root
->fs_info
->trans_lock
);
707 list_add(&pending_snapshot
->list
,
708 &trans
->transaction
->pending_snapshots
);
709 spin_unlock(&root
->fs_info
->trans_lock
);
711 *async_transid
= trans
->transid
;
712 ret
= btrfs_commit_transaction_async(trans
,
713 root
->fs_info
->extent_root
, 1);
715 ret
= btrfs_commit_transaction(trans
, root
);
717 ret
= btrfs_commit_transaction(trans
,
718 root
->fs_info
->extent_root
);
723 ret
= pending_snapshot
->error
;
727 ret
= btrfs_orphan_cleanup(pending_snapshot
->snap
);
731 inode
= btrfs_lookup_dentry(d_inode(dentry
->d_parent
), dentry
);
733 ret
= PTR_ERR(inode
);
737 d_instantiate(dentry
, inode
);
740 btrfs_subvolume_release_metadata(BTRFS_I(dir
)->root
,
741 &pending_snapshot
->block_rsv
,
742 pending_snapshot
->qgroup_reserved
);
744 kfree(pending_snapshot
);
746 if (atomic_dec_and_test(&root
->will_be_snapshoted
))
747 wake_up_atomic_t(&root
->will_be_snapshoted
);
751 /* copy of may_delete in fs/namei.c()
752 * Check whether we can remove a link victim from directory dir, check
753 * whether the type of victim is right.
754 * 1. We can't do it if dir is read-only (done in permission())
755 * 2. We should have write and exec permissions on dir
756 * 3. We can't remove anything from append-only dir
757 * 4. We can't do anything with immutable dir (done in permission())
758 * 5. If the sticky bit on dir is set we should either
759 * a. be owner of dir, or
760 * b. be owner of victim, or
761 * c. have CAP_FOWNER capability
762 * 6. If the victim is append-only or immutable we can't do antyhing with
763 * links pointing to it.
764 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
765 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
766 * 9. We can't remove a root or mountpoint.
767 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
768 * nfs_async_unlink().
771 static int btrfs_may_delete(struct inode
*dir
, struct dentry
*victim
, int isdir
)
775 if (d_really_is_negative(victim
))
778 BUG_ON(d_inode(victim
->d_parent
) != dir
);
779 audit_inode_child(dir
, victim
, AUDIT_TYPE_CHILD_DELETE
);
781 error
= inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
786 if (check_sticky(dir
, d_inode(victim
)) || IS_APPEND(d_inode(victim
)) ||
787 IS_IMMUTABLE(d_inode(victim
)) || IS_SWAPFILE(d_inode(victim
)))
790 if (!d_is_dir(victim
))
794 } else if (d_is_dir(victim
))
798 if (victim
->d_flags
& DCACHE_NFSFS_RENAMED
)
803 /* copy of may_create in fs/namei.c() */
804 static inline int btrfs_may_create(struct inode
*dir
, struct dentry
*child
)
806 if (d_really_is_positive(child
))
810 return inode_permission(dir
, MAY_WRITE
| MAY_EXEC
);
814 * Create a new subvolume below @parent. This is largely modeled after
815 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
816 * inside this filesystem so it's quite a bit simpler.
818 static noinline
int btrfs_mksubvol(struct path
*parent
,
819 char *name
, int namelen
,
820 struct btrfs_root
*snap_src
,
821 u64
*async_transid
, bool readonly
,
822 struct btrfs_qgroup_inherit
*inherit
)
824 struct inode
*dir
= d_inode(parent
->dentry
);
825 struct dentry
*dentry
;
828 error
= mutex_lock_killable_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
832 dentry
= lookup_one_len(name
, parent
->dentry
, namelen
);
833 error
= PTR_ERR(dentry
);
838 if (d_really_is_positive(dentry
))
841 error
= btrfs_may_create(dir
, dentry
);
846 * even if this name doesn't exist, we may get hash collisions.
847 * check for them now when we can safely fail
849 error
= btrfs_check_dir_item_collision(BTRFS_I(dir
)->root
,
855 down_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
857 if (btrfs_root_refs(&BTRFS_I(dir
)->root
->root_item
) == 0)
861 error
= create_snapshot(snap_src
, dir
, dentry
, name
, namelen
,
862 async_transid
, readonly
, inherit
);
864 error
= create_subvol(dir
, dentry
, name
, namelen
,
865 async_transid
, inherit
);
868 fsnotify_mkdir(dir
, dentry
);
870 up_read(&BTRFS_I(dir
)->root
->fs_info
->subvol_sem
);
874 mutex_unlock(&dir
->i_mutex
);
879 * When we're defragging a range, we don't want to kick it off again
880 * if it is really just waiting for delalloc to send it down.
881 * If we find a nice big extent or delalloc range for the bytes in the
882 * file you want to defrag, we return 0 to let you know to skip this
885 static int check_defrag_in_cache(struct inode
*inode
, u64 offset
, u32 thresh
)
887 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
888 struct extent_map
*em
= NULL
;
889 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
892 read_lock(&em_tree
->lock
);
893 em
= lookup_extent_mapping(em_tree
, offset
, PAGE_CACHE_SIZE
);
894 read_unlock(&em_tree
->lock
);
897 end
= extent_map_end(em
);
899 if (end
- offset
> thresh
)
902 /* if we already have a nice delalloc here, just stop */
904 end
= count_range_bits(io_tree
, &offset
, offset
+ thresh
,
905 thresh
, EXTENT_DELALLOC
, 1);
912 * helper function to walk through a file and find extents
913 * newer than a specific transid, and smaller than thresh.
915 * This is used by the defragging code to find new and small
918 static int find_new_extents(struct btrfs_root
*root
,
919 struct inode
*inode
, u64 newer_than
,
920 u64
*off
, u32 thresh
)
922 struct btrfs_path
*path
;
923 struct btrfs_key min_key
;
924 struct extent_buffer
*leaf
;
925 struct btrfs_file_extent_item
*extent
;
928 u64 ino
= btrfs_ino(inode
);
930 path
= btrfs_alloc_path();
934 min_key
.objectid
= ino
;
935 min_key
.type
= BTRFS_EXTENT_DATA_KEY
;
936 min_key
.offset
= *off
;
939 ret
= btrfs_search_forward(root
, &min_key
, path
, newer_than
);
943 if (min_key
.objectid
!= ino
)
945 if (min_key
.type
!= BTRFS_EXTENT_DATA_KEY
)
948 leaf
= path
->nodes
[0];
949 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
950 struct btrfs_file_extent_item
);
952 type
= btrfs_file_extent_type(leaf
, extent
);
953 if (type
== BTRFS_FILE_EXTENT_REG
&&
954 btrfs_file_extent_num_bytes(leaf
, extent
) < thresh
&&
955 check_defrag_in_cache(inode
, min_key
.offset
, thresh
)) {
956 *off
= min_key
.offset
;
957 btrfs_free_path(path
);
962 if (path
->slots
[0] < btrfs_header_nritems(leaf
)) {
963 btrfs_item_key_to_cpu(leaf
, &min_key
, path
->slots
[0]);
967 if (min_key
.offset
== (u64
)-1)
971 btrfs_release_path(path
);
974 btrfs_free_path(path
);
978 static struct extent_map
*defrag_lookup_extent(struct inode
*inode
, u64 start
)
980 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
981 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
982 struct extent_map
*em
;
983 u64 len
= PAGE_CACHE_SIZE
;
986 * hopefully we have this extent in the tree already, try without
987 * the full extent lock
989 read_lock(&em_tree
->lock
);
990 em
= lookup_extent_mapping(em_tree
, start
, len
);
991 read_unlock(&em_tree
->lock
);
994 struct extent_state
*cached
= NULL
;
995 u64 end
= start
+ len
- 1;
997 /* get the big lock and read metadata off disk */
998 lock_extent_bits(io_tree
, start
, end
, 0, &cached
);
999 em
= btrfs_get_extent(inode
, NULL
, 0, start
, len
, 0);
1000 unlock_extent_cached(io_tree
, start
, end
, &cached
, GFP_NOFS
);
1009 static bool defrag_check_next_extent(struct inode
*inode
, struct extent_map
*em
)
1011 struct extent_map
*next
;
1014 /* this is the last extent */
1015 if (em
->start
+ em
->len
>= i_size_read(inode
))
1018 next
= defrag_lookup_extent(inode
, em
->start
+ em
->len
);
1019 if (!next
|| next
->block_start
>= EXTENT_MAP_LAST_BYTE
)
1021 else if ((em
->block_start
+ em
->block_len
== next
->block_start
) &&
1022 (em
->block_len
> 128 * 1024 && next
->block_len
> 128 * 1024))
1025 free_extent_map(next
);
1029 static int should_defrag_range(struct inode
*inode
, u64 start
, u32 thresh
,
1030 u64
*last_len
, u64
*skip
, u64
*defrag_end
,
1033 struct extent_map
*em
;
1035 bool next_mergeable
= true;
1038 * make sure that once we start defragging an extent, we keep on
1041 if (start
< *defrag_end
)
1046 em
= defrag_lookup_extent(inode
, start
);
1050 /* this will cover holes, and inline extents */
1051 if (em
->block_start
>= EXTENT_MAP_LAST_BYTE
) {
1056 next_mergeable
= defrag_check_next_extent(inode
, em
);
1058 * we hit a real extent, if it is big or the next extent is not a
1059 * real extent, don't bother defragging it
1061 if (!compress
&& (*last_len
== 0 || *last_len
>= thresh
) &&
1062 (em
->len
>= thresh
|| !next_mergeable
))
1066 * last_len ends up being a counter of how many bytes we've defragged.
1067 * every time we choose not to defrag an extent, we reset *last_len
1068 * so that the next tiny extent will force a defrag.
1070 * The end result of this is that tiny extents before a single big
1071 * extent will force at least part of that big extent to be defragged.
1074 *defrag_end
= extent_map_end(em
);
1077 *skip
= extent_map_end(em
);
1081 free_extent_map(em
);
1086 * it doesn't do much good to defrag one or two pages
1087 * at a time. This pulls in a nice chunk of pages
1088 * to COW and defrag.
1090 * It also makes sure the delalloc code has enough
1091 * dirty data to avoid making new small extents as part
1094 * It's a good idea to start RA on this range
1095 * before calling this.
1097 static int cluster_pages_for_defrag(struct inode
*inode
,
1098 struct page
**pages
,
1099 unsigned long start_index
,
1100 unsigned long num_pages
)
1102 unsigned long file_end
;
1103 u64 isize
= i_size_read(inode
);
1110 struct btrfs_ordered_extent
*ordered
;
1111 struct extent_state
*cached_state
= NULL
;
1112 struct extent_io_tree
*tree
;
1113 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
1115 file_end
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1116 if (!isize
|| start_index
> file_end
)
1119 page_cnt
= min_t(u64
, (u64
)num_pages
, (u64
)file_end
- start_index
+ 1);
1121 ret
= btrfs_delalloc_reserve_space(inode
,
1122 page_cnt
<< PAGE_CACHE_SHIFT
);
1126 tree
= &BTRFS_I(inode
)->io_tree
;
1128 /* step one, lock all the pages */
1129 for (i
= 0; i
< page_cnt
; i
++) {
1132 page
= find_or_create_page(inode
->i_mapping
,
1133 start_index
+ i
, mask
);
1137 page_start
= page_offset(page
);
1138 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
1140 lock_extent_bits(tree
, page_start
, page_end
,
1142 ordered
= btrfs_lookup_ordered_extent(inode
,
1144 unlock_extent_cached(tree
, page_start
, page_end
,
1145 &cached_state
, GFP_NOFS
);
1150 btrfs_start_ordered_extent(inode
, ordered
, 1);
1151 btrfs_put_ordered_extent(ordered
);
1154 * we unlocked the page above, so we need check if
1155 * it was released or not.
1157 if (page
->mapping
!= inode
->i_mapping
) {
1159 page_cache_release(page
);
1164 if (!PageUptodate(page
)) {
1165 btrfs_readpage(NULL
, page
);
1167 if (!PageUptodate(page
)) {
1169 page_cache_release(page
);
1175 if (page
->mapping
!= inode
->i_mapping
) {
1177 page_cache_release(page
);
1187 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1191 * so now we have a nice long stream of locked
1192 * and up to date pages, lets wait on them
1194 for (i
= 0; i
< i_done
; i
++)
1195 wait_on_page_writeback(pages
[i
]);
1197 page_start
= page_offset(pages
[0]);
1198 page_end
= page_offset(pages
[i_done
- 1]) + PAGE_CACHE_SIZE
;
1200 lock_extent_bits(&BTRFS_I(inode
)->io_tree
,
1201 page_start
, page_end
- 1, 0, &cached_state
);
1202 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, page_start
,
1203 page_end
- 1, EXTENT_DIRTY
| EXTENT_DELALLOC
|
1204 EXTENT_DO_ACCOUNTING
| EXTENT_DEFRAG
, 0, 0,
1205 &cached_state
, GFP_NOFS
);
1207 if (i_done
!= page_cnt
) {
1208 spin_lock(&BTRFS_I(inode
)->lock
);
1209 BTRFS_I(inode
)->outstanding_extents
++;
1210 spin_unlock(&BTRFS_I(inode
)->lock
);
1211 btrfs_delalloc_release_space(inode
,
1212 (page_cnt
- i_done
) << PAGE_CACHE_SHIFT
);
1216 set_extent_defrag(&BTRFS_I(inode
)->io_tree
, page_start
, page_end
- 1,
1217 &cached_state
, GFP_NOFS
);
1219 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
,
1220 page_start
, page_end
- 1, &cached_state
,
1223 for (i
= 0; i
< i_done
; i
++) {
1224 clear_page_dirty_for_io(pages
[i
]);
1225 ClearPageChecked(pages
[i
]);
1226 set_page_extent_mapped(pages
[i
]);
1227 set_page_dirty(pages
[i
]);
1228 unlock_page(pages
[i
]);
1229 page_cache_release(pages
[i
]);
1233 for (i
= 0; i
< i_done
; i
++) {
1234 unlock_page(pages
[i
]);
1235 page_cache_release(pages
[i
]);
1237 btrfs_delalloc_release_space(inode
, page_cnt
<< PAGE_CACHE_SHIFT
);
1242 int btrfs_defrag_file(struct inode
*inode
, struct file
*file
,
1243 struct btrfs_ioctl_defrag_range_args
*range
,
1244 u64 newer_than
, unsigned long max_to_defrag
)
1246 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1247 struct file_ra_state
*ra
= NULL
;
1248 unsigned long last_index
;
1249 u64 isize
= i_size_read(inode
);
1253 u64 newer_off
= range
->start
;
1255 unsigned long ra_index
= 0;
1257 int defrag_count
= 0;
1258 int compress_type
= BTRFS_COMPRESS_ZLIB
;
1259 u32 extent_thresh
= range
->extent_thresh
;
1260 unsigned long max_cluster
= (256 * 1024) >> PAGE_CACHE_SHIFT
;
1261 unsigned long cluster
= max_cluster
;
1262 u64 new_align
= ~((u64
)128 * 1024 - 1);
1263 struct page
**pages
= NULL
;
1268 if (range
->start
>= isize
)
1271 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1272 if (range
->compress_type
> BTRFS_COMPRESS_TYPES
)
1274 if (range
->compress_type
)
1275 compress_type
= range
->compress_type
;
1278 if (extent_thresh
== 0)
1279 extent_thresh
= 256 * 1024;
1282 * if we were not given a file, allocate a readahead
1286 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
1289 file_ra_state_init(ra
, inode
->i_mapping
);
1294 pages
= kmalloc_array(max_cluster
, sizeof(struct page
*),
1301 /* find the last page to defrag */
1302 if (range
->start
+ range
->len
> range
->start
) {
1303 last_index
= min_t(u64
, isize
- 1,
1304 range
->start
+ range
->len
- 1) >> PAGE_CACHE_SHIFT
;
1306 last_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1310 ret
= find_new_extents(root
, inode
, newer_than
,
1311 &newer_off
, 64 * 1024);
1313 range
->start
= newer_off
;
1315 * we always align our defrag to help keep
1316 * the extents in the file evenly spaced
1318 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1322 i
= range
->start
>> PAGE_CACHE_SHIFT
;
1325 max_to_defrag
= last_index
+ 1;
1328 * make writeback starts from i, so the defrag range can be
1329 * written sequentially.
1331 if (i
< inode
->i_mapping
->writeback_index
)
1332 inode
->i_mapping
->writeback_index
= i
;
1334 while (i
<= last_index
&& defrag_count
< max_to_defrag
&&
1335 (i
< DIV_ROUND_UP(i_size_read(inode
), PAGE_CACHE_SIZE
))) {
1337 * make sure we stop running if someone unmounts
1340 if (!(inode
->i_sb
->s_flags
& MS_ACTIVE
))
1343 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1344 printk(KERN_DEBUG
"BTRFS: defrag_file cancelled\n");
1349 if (!should_defrag_range(inode
, (u64
)i
<< PAGE_CACHE_SHIFT
,
1350 extent_thresh
, &last_len
, &skip
,
1351 &defrag_end
, range
->flags
&
1352 BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1355 * the should_defrag function tells us how much to skip
1356 * bump our counter by the suggested amount
1358 next
= DIV_ROUND_UP(skip
, PAGE_CACHE_SIZE
);
1359 i
= max(i
+ 1, next
);
1364 cluster
= (PAGE_CACHE_ALIGN(defrag_end
) >>
1365 PAGE_CACHE_SHIFT
) - i
;
1366 cluster
= min(cluster
, max_cluster
);
1368 cluster
= max_cluster
;
1371 if (i
+ cluster
> ra_index
) {
1372 ra_index
= max(i
, ra_index
);
1373 btrfs_force_ra(inode
->i_mapping
, ra
, file
, ra_index
,
1375 ra_index
+= max_cluster
;
1378 mutex_lock(&inode
->i_mutex
);
1379 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)
1380 BTRFS_I(inode
)->force_compress
= compress_type
;
1381 ret
= cluster_pages_for_defrag(inode
, pages
, i
, cluster
);
1383 mutex_unlock(&inode
->i_mutex
);
1387 defrag_count
+= ret
;
1388 balance_dirty_pages_ratelimited(inode
->i_mapping
);
1389 mutex_unlock(&inode
->i_mutex
);
1392 if (newer_off
== (u64
)-1)
1398 newer_off
= max(newer_off
+ 1,
1399 (u64
)i
<< PAGE_CACHE_SHIFT
);
1401 ret
= find_new_extents(root
, inode
,
1402 newer_than
, &newer_off
,
1405 range
->start
= newer_off
;
1406 i
= (newer_off
& new_align
) >> PAGE_CACHE_SHIFT
;
1413 last_len
+= ret
<< PAGE_CACHE_SHIFT
;
1421 if ((range
->flags
& BTRFS_DEFRAG_RANGE_START_IO
)) {
1422 filemap_flush(inode
->i_mapping
);
1423 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT
,
1424 &BTRFS_I(inode
)->runtime_flags
))
1425 filemap_flush(inode
->i_mapping
);
1428 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
1429 /* the filemap_flush will queue IO into the worker threads, but
1430 * we have to make sure the IO is actually started and that
1431 * ordered extents get created before we return
1433 atomic_inc(&root
->fs_info
->async_submit_draining
);
1434 while (atomic_read(&root
->fs_info
->nr_async_submits
) ||
1435 atomic_read(&root
->fs_info
->async_delalloc_pages
)) {
1436 wait_event(root
->fs_info
->async_submit_wait
,
1437 (atomic_read(&root
->fs_info
->nr_async_submits
) == 0 &&
1438 atomic_read(&root
->fs_info
->async_delalloc_pages
) == 0));
1440 atomic_dec(&root
->fs_info
->async_submit_draining
);
1443 if (range
->compress_type
== BTRFS_COMPRESS_LZO
) {
1444 btrfs_set_fs_incompat(root
->fs_info
, COMPRESS_LZO
);
1450 if (range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
) {
1451 mutex_lock(&inode
->i_mutex
);
1452 BTRFS_I(inode
)->force_compress
= BTRFS_COMPRESS_NONE
;
1453 mutex_unlock(&inode
->i_mutex
);
1461 static noinline
int btrfs_ioctl_resize(struct file
*file
,
1467 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
1468 struct btrfs_ioctl_vol_args
*vol_args
;
1469 struct btrfs_trans_handle
*trans
;
1470 struct btrfs_device
*device
= NULL
;
1473 char *devstr
= NULL
;
1477 if (!capable(CAP_SYS_ADMIN
))
1480 ret
= mnt_want_write_file(file
);
1484 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
1486 mnt_drop_write_file(file
);
1487 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
1490 mutex_lock(&root
->fs_info
->volume_mutex
);
1491 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1492 if (IS_ERR(vol_args
)) {
1493 ret
= PTR_ERR(vol_args
);
1497 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1499 sizestr
= vol_args
->name
;
1500 devstr
= strchr(sizestr
, ':');
1502 sizestr
= devstr
+ 1;
1504 devstr
= vol_args
->name
;
1505 ret
= kstrtoull(devstr
, 10, &devid
);
1512 btrfs_info(root
->fs_info
, "resizing devid %llu", devid
);
1515 device
= btrfs_find_device(root
->fs_info
, devid
, NULL
, NULL
);
1517 btrfs_info(root
->fs_info
, "resizer unable to find device %llu",
1523 if (!device
->writeable
) {
1524 btrfs_info(root
->fs_info
,
1525 "resizer unable to apply on readonly device %llu",
1531 if (!strcmp(sizestr
, "max"))
1532 new_size
= device
->bdev
->bd_inode
->i_size
;
1534 if (sizestr
[0] == '-') {
1537 } else if (sizestr
[0] == '+') {
1541 new_size
= memparse(sizestr
, &retptr
);
1542 if (*retptr
!= '\0' || new_size
== 0) {
1548 if (device
->is_tgtdev_for_dev_replace
) {
1553 old_size
= btrfs_device_get_total_bytes(device
);
1556 if (new_size
> old_size
) {
1560 new_size
= old_size
- new_size
;
1561 } else if (mod
> 0) {
1562 if (new_size
> ULLONG_MAX
- old_size
) {
1566 new_size
= old_size
+ new_size
;
1569 if (new_size
< 256 * 1024 * 1024) {
1573 if (new_size
> device
->bdev
->bd_inode
->i_size
) {
1578 new_size
= div_u64(new_size
, root
->sectorsize
);
1579 new_size
*= root
->sectorsize
;
1581 printk_in_rcu(KERN_INFO
"BTRFS: new size for %s is %llu\n",
1582 rcu_str_deref(device
->name
), new_size
);
1584 if (new_size
> old_size
) {
1585 trans
= btrfs_start_transaction(root
, 0);
1586 if (IS_ERR(trans
)) {
1587 ret
= PTR_ERR(trans
);
1590 ret
= btrfs_grow_device(trans
, device
, new_size
);
1591 btrfs_commit_transaction(trans
, root
);
1592 } else if (new_size
< old_size
) {
1593 ret
= btrfs_shrink_device(device
, new_size
);
1594 } /* equal, nothing need to do */
1599 mutex_unlock(&root
->fs_info
->volume_mutex
);
1600 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
1601 mnt_drop_write_file(file
);
1605 static noinline
int btrfs_ioctl_snap_create_transid(struct file
*file
,
1606 char *name
, unsigned long fd
, int subvol
,
1607 u64
*transid
, bool readonly
,
1608 struct btrfs_qgroup_inherit
*inherit
)
1613 if (!S_ISDIR(file_inode(file
)->i_mode
))
1616 ret
= mnt_want_write_file(file
);
1620 namelen
= strlen(name
);
1621 if (strchr(name
, '/')) {
1623 goto out_drop_write
;
1626 if (name
[0] == '.' &&
1627 (namelen
== 1 || (name
[1] == '.' && namelen
== 2))) {
1629 goto out_drop_write
;
1633 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1634 NULL
, transid
, readonly
, inherit
);
1636 struct fd src
= fdget(fd
);
1637 struct inode
*src_inode
;
1640 goto out_drop_write
;
1643 src_inode
= file_inode(src
.file
);
1644 if (src_inode
->i_sb
!= file_inode(file
)->i_sb
) {
1645 btrfs_info(BTRFS_I(file_inode(file
))->root
->fs_info
,
1646 "Snapshot src from another FS");
1648 } else if (!inode_owner_or_capable(src_inode
)) {
1650 * Subvolume creation is not restricted, but snapshots
1651 * are limited to own subvolumes only
1655 ret
= btrfs_mksubvol(&file
->f_path
, name
, namelen
,
1656 BTRFS_I(src_inode
)->root
,
1657 transid
, readonly
, inherit
);
1662 mnt_drop_write_file(file
);
1667 static noinline
int btrfs_ioctl_snap_create(struct file
*file
,
1668 void __user
*arg
, int subvol
)
1670 struct btrfs_ioctl_vol_args
*vol_args
;
1673 if (!S_ISDIR(file_inode(file
)->i_mode
))
1676 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1677 if (IS_ERR(vol_args
))
1678 return PTR_ERR(vol_args
);
1679 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
1681 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1682 vol_args
->fd
, subvol
,
1689 static noinline
int btrfs_ioctl_snap_create_v2(struct file
*file
,
1690 void __user
*arg
, int subvol
)
1692 struct btrfs_ioctl_vol_args_v2
*vol_args
;
1696 bool readonly
= false;
1697 struct btrfs_qgroup_inherit
*inherit
= NULL
;
1699 if (!S_ISDIR(file_inode(file
)->i_mode
))
1702 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
1703 if (IS_ERR(vol_args
))
1704 return PTR_ERR(vol_args
);
1705 vol_args
->name
[BTRFS_SUBVOL_NAME_MAX
] = '\0';
1707 if (vol_args
->flags
&
1708 ~(BTRFS_SUBVOL_CREATE_ASYNC
| BTRFS_SUBVOL_RDONLY
|
1709 BTRFS_SUBVOL_QGROUP_INHERIT
)) {
1714 if (vol_args
->flags
& BTRFS_SUBVOL_CREATE_ASYNC
)
1716 if (vol_args
->flags
& BTRFS_SUBVOL_RDONLY
)
1718 if (vol_args
->flags
& BTRFS_SUBVOL_QGROUP_INHERIT
) {
1719 if (vol_args
->size
> PAGE_CACHE_SIZE
) {
1723 inherit
= memdup_user(vol_args
->qgroup_inherit
, vol_args
->size
);
1724 if (IS_ERR(inherit
)) {
1725 ret
= PTR_ERR(inherit
);
1730 ret
= btrfs_ioctl_snap_create_transid(file
, vol_args
->name
,
1731 vol_args
->fd
, subvol
, ptr
,
1736 if (ptr
&& copy_to_user(arg
+
1737 offsetof(struct btrfs_ioctl_vol_args_v2
,
1749 static noinline
int btrfs_ioctl_subvol_getflags(struct file
*file
,
1752 struct inode
*inode
= file_inode(file
);
1753 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1757 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
)
1760 down_read(&root
->fs_info
->subvol_sem
);
1761 if (btrfs_root_readonly(root
))
1762 flags
|= BTRFS_SUBVOL_RDONLY
;
1763 up_read(&root
->fs_info
->subvol_sem
);
1765 if (copy_to_user(arg
, &flags
, sizeof(flags
)))
1771 static noinline
int btrfs_ioctl_subvol_setflags(struct file
*file
,
1774 struct inode
*inode
= file_inode(file
);
1775 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
1776 struct btrfs_trans_handle
*trans
;
1781 if (!inode_owner_or_capable(inode
))
1784 ret
= mnt_want_write_file(file
);
1788 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
1790 goto out_drop_write
;
1793 if (copy_from_user(&flags
, arg
, sizeof(flags
))) {
1795 goto out_drop_write
;
1798 if (flags
& BTRFS_SUBVOL_CREATE_ASYNC
) {
1800 goto out_drop_write
;
1803 if (flags
& ~BTRFS_SUBVOL_RDONLY
) {
1805 goto out_drop_write
;
1808 down_write(&root
->fs_info
->subvol_sem
);
1811 if (!!(flags
& BTRFS_SUBVOL_RDONLY
) == btrfs_root_readonly(root
))
1814 root_flags
= btrfs_root_flags(&root
->root_item
);
1815 if (flags
& BTRFS_SUBVOL_RDONLY
) {
1816 btrfs_set_root_flags(&root
->root_item
,
1817 root_flags
| BTRFS_ROOT_SUBVOL_RDONLY
);
1820 * Block RO -> RW transition if this subvolume is involved in
1823 spin_lock(&root
->root_item_lock
);
1824 if (root
->send_in_progress
== 0) {
1825 btrfs_set_root_flags(&root
->root_item
,
1826 root_flags
& ~BTRFS_ROOT_SUBVOL_RDONLY
);
1827 spin_unlock(&root
->root_item_lock
);
1829 spin_unlock(&root
->root_item_lock
);
1830 btrfs_warn(root
->fs_info
,
1831 "Attempt to set subvolume %llu read-write during send",
1832 root
->root_key
.objectid
);
1838 trans
= btrfs_start_transaction(root
, 1);
1839 if (IS_ERR(trans
)) {
1840 ret
= PTR_ERR(trans
);
1844 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
1845 &root
->root_key
, &root
->root_item
);
1847 btrfs_commit_transaction(trans
, root
);
1850 btrfs_set_root_flags(&root
->root_item
, root_flags
);
1852 up_write(&root
->fs_info
->subvol_sem
);
1854 mnt_drop_write_file(file
);
1860 * helper to check if the subvolume references other subvolumes
1862 static noinline
int may_destroy_subvol(struct btrfs_root
*root
)
1864 struct btrfs_path
*path
;
1865 struct btrfs_dir_item
*di
;
1866 struct btrfs_key key
;
1870 path
= btrfs_alloc_path();
1874 /* Make sure this root isn't set as the default subvol */
1875 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
1876 di
= btrfs_lookup_dir_item(NULL
, root
->fs_info
->tree_root
, path
,
1877 dir_id
, "default", 7, 0);
1878 if (di
&& !IS_ERR(di
)) {
1879 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1880 if (key
.objectid
== root
->root_key
.objectid
) {
1882 btrfs_err(root
->fs_info
, "deleting default subvolume "
1883 "%llu is not allowed", key
.objectid
);
1886 btrfs_release_path(path
);
1889 key
.objectid
= root
->root_key
.objectid
;
1890 key
.type
= BTRFS_ROOT_REF_KEY
;
1891 key
.offset
= (u64
)-1;
1893 ret
= btrfs_search_slot(NULL
, root
->fs_info
->tree_root
,
1900 if (path
->slots
[0] > 0) {
1902 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1903 if (key
.objectid
== root
->root_key
.objectid
&&
1904 key
.type
== BTRFS_ROOT_REF_KEY
)
1908 btrfs_free_path(path
);
1912 static noinline
int key_in_sk(struct btrfs_key
*key
,
1913 struct btrfs_ioctl_search_key
*sk
)
1915 struct btrfs_key test
;
1918 test
.objectid
= sk
->min_objectid
;
1919 test
.type
= sk
->min_type
;
1920 test
.offset
= sk
->min_offset
;
1922 ret
= btrfs_comp_cpu_keys(key
, &test
);
1926 test
.objectid
= sk
->max_objectid
;
1927 test
.type
= sk
->max_type
;
1928 test
.offset
= sk
->max_offset
;
1930 ret
= btrfs_comp_cpu_keys(key
, &test
);
1936 static noinline
int copy_to_sk(struct btrfs_root
*root
,
1937 struct btrfs_path
*path
,
1938 struct btrfs_key
*key
,
1939 struct btrfs_ioctl_search_key
*sk
,
1942 unsigned long *sk_offset
,
1946 struct extent_buffer
*leaf
;
1947 struct btrfs_ioctl_search_header sh
;
1948 unsigned long item_off
;
1949 unsigned long item_len
;
1955 leaf
= path
->nodes
[0];
1956 slot
= path
->slots
[0];
1957 nritems
= btrfs_header_nritems(leaf
);
1959 if (btrfs_header_generation(leaf
) > sk
->max_transid
) {
1963 found_transid
= btrfs_header_generation(leaf
);
1965 for (i
= slot
; i
< nritems
; i
++) {
1966 item_off
= btrfs_item_ptr_offset(leaf
, i
);
1967 item_len
= btrfs_item_size_nr(leaf
, i
);
1969 btrfs_item_key_to_cpu(leaf
, key
, i
);
1970 if (!key_in_sk(key
, sk
))
1973 if (sizeof(sh
) + item_len
> *buf_size
) {
1980 * return one empty item back for v1, which does not
1984 *buf_size
= sizeof(sh
) + item_len
;
1989 if (sizeof(sh
) + item_len
+ *sk_offset
> *buf_size
) {
1994 sh
.objectid
= key
->objectid
;
1995 sh
.offset
= key
->offset
;
1996 sh
.type
= key
->type
;
1998 sh
.transid
= found_transid
;
2000 /* copy search result header */
2001 if (copy_to_user(ubuf
+ *sk_offset
, &sh
, sizeof(sh
))) {
2006 *sk_offset
+= sizeof(sh
);
2009 char __user
*up
= ubuf
+ *sk_offset
;
2011 if (read_extent_buffer_to_user(leaf
, up
,
2012 item_off
, item_len
)) {
2017 *sk_offset
+= item_len
;
2021 if (ret
) /* -EOVERFLOW from above */
2024 if (*num_found
>= sk
->nr_items
) {
2031 if (key
->offset
< (u64
)-1 && key
->offset
< sk
->max_offset
)
2033 else if (key
->type
< (u8
)-1 && key
->type
< sk
->max_type
) {
2036 } else if (key
->objectid
< (u64
)-1 && key
->objectid
< sk
->max_objectid
) {
2044 * 0: all items from this leaf copied, continue with next
2045 * 1: * more items can be copied, but unused buffer is too small
2046 * * all items were found
2047 * Either way, it will stops the loop which iterates to the next
2049 * -EOVERFLOW: item was to large for buffer
2050 * -EFAULT: could not copy extent buffer back to userspace
2055 static noinline
int search_ioctl(struct inode
*inode
,
2056 struct btrfs_ioctl_search_key
*sk
,
2060 struct btrfs_root
*root
;
2061 struct btrfs_key key
;
2062 struct btrfs_path
*path
;
2063 struct btrfs_fs_info
*info
= BTRFS_I(inode
)->root
->fs_info
;
2066 unsigned long sk_offset
= 0;
2068 if (*buf_size
< sizeof(struct btrfs_ioctl_search_header
)) {
2069 *buf_size
= sizeof(struct btrfs_ioctl_search_header
);
2073 path
= btrfs_alloc_path();
2077 if (sk
->tree_id
== 0) {
2078 /* search the root of the inode that was passed */
2079 root
= BTRFS_I(inode
)->root
;
2081 key
.objectid
= sk
->tree_id
;
2082 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2083 key
.offset
= (u64
)-1;
2084 root
= btrfs_read_fs_root_no_name(info
, &key
);
2086 printk(KERN_ERR
"BTRFS: could not find root %llu\n",
2088 btrfs_free_path(path
);
2093 key
.objectid
= sk
->min_objectid
;
2094 key
.type
= sk
->min_type
;
2095 key
.offset
= sk
->min_offset
;
2098 ret
= btrfs_search_forward(root
, &key
, path
, sk
->min_transid
);
2104 ret
= copy_to_sk(root
, path
, &key
, sk
, buf_size
, ubuf
,
2105 &sk_offset
, &num_found
);
2106 btrfs_release_path(path
);
2114 sk
->nr_items
= num_found
;
2115 btrfs_free_path(path
);
2119 static noinline
int btrfs_ioctl_tree_search(struct file
*file
,
2122 struct btrfs_ioctl_search_args __user
*uargs
;
2123 struct btrfs_ioctl_search_key sk
;
2124 struct inode
*inode
;
2128 if (!capable(CAP_SYS_ADMIN
))
2131 uargs
= (struct btrfs_ioctl_search_args __user
*)argp
;
2133 if (copy_from_user(&sk
, &uargs
->key
, sizeof(sk
)))
2136 buf_size
= sizeof(uargs
->buf
);
2138 inode
= file_inode(file
);
2139 ret
= search_ioctl(inode
, &sk
, &buf_size
, uargs
->buf
);
2142 * In the origin implementation an overflow is handled by returning a
2143 * search header with a len of zero, so reset ret.
2145 if (ret
== -EOVERFLOW
)
2148 if (ret
== 0 && copy_to_user(&uargs
->key
, &sk
, sizeof(sk
)))
2153 static noinline
int btrfs_ioctl_tree_search_v2(struct file
*file
,
2156 struct btrfs_ioctl_search_args_v2 __user
*uarg
;
2157 struct btrfs_ioctl_search_args_v2 args
;
2158 struct inode
*inode
;
2161 const size_t buf_limit
= 16 * 1024 * 1024;
2163 if (!capable(CAP_SYS_ADMIN
))
2166 /* copy search header and buffer size */
2167 uarg
= (struct btrfs_ioctl_search_args_v2 __user
*)argp
;
2168 if (copy_from_user(&args
, uarg
, sizeof(args
)))
2171 buf_size
= args
.buf_size
;
2173 if (buf_size
< sizeof(struct btrfs_ioctl_search_header
))
2176 /* limit result size to 16MB */
2177 if (buf_size
> buf_limit
)
2178 buf_size
= buf_limit
;
2180 inode
= file_inode(file
);
2181 ret
= search_ioctl(inode
, &args
.key
, &buf_size
,
2182 (char *)(&uarg
->buf
[0]));
2183 if (ret
== 0 && copy_to_user(&uarg
->key
, &args
.key
, sizeof(args
.key
)))
2185 else if (ret
== -EOVERFLOW
&&
2186 copy_to_user(&uarg
->buf_size
, &buf_size
, sizeof(buf_size
)))
2193 * Search INODE_REFs to identify path name of 'dirid' directory
2194 * in a 'tree_id' tree. and sets path name to 'name'.
2196 static noinline
int btrfs_search_path_in_tree(struct btrfs_fs_info
*info
,
2197 u64 tree_id
, u64 dirid
, char *name
)
2199 struct btrfs_root
*root
;
2200 struct btrfs_key key
;
2206 struct btrfs_inode_ref
*iref
;
2207 struct extent_buffer
*l
;
2208 struct btrfs_path
*path
;
2210 if (dirid
== BTRFS_FIRST_FREE_OBJECTID
) {
2215 path
= btrfs_alloc_path();
2219 ptr
= &name
[BTRFS_INO_LOOKUP_PATH_MAX
];
2221 key
.objectid
= tree_id
;
2222 key
.type
= BTRFS_ROOT_ITEM_KEY
;
2223 key
.offset
= (u64
)-1;
2224 root
= btrfs_read_fs_root_no_name(info
, &key
);
2226 printk(KERN_ERR
"BTRFS: could not find root %llu\n", tree_id
);
2231 key
.objectid
= dirid
;
2232 key
.type
= BTRFS_INODE_REF_KEY
;
2233 key
.offset
= (u64
)-1;
2236 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2240 ret
= btrfs_previous_item(root
, path
, dirid
,
2241 BTRFS_INODE_REF_KEY
);
2251 slot
= path
->slots
[0];
2252 btrfs_item_key_to_cpu(l
, &key
, slot
);
2254 iref
= btrfs_item_ptr(l
, slot
, struct btrfs_inode_ref
);
2255 len
= btrfs_inode_ref_name_len(l
, iref
);
2257 total_len
+= len
+ 1;
2259 ret
= -ENAMETOOLONG
;
2264 read_extent_buffer(l
, ptr
, (unsigned long)(iref
+ 1), len
);
2266 if (key
.offset
== BTRFS_FIRST_FREE_OBJECTID
)
2269 btrfs_release_path(path
);
2270 key
.objectid
= key
.offset
;
2271 key
.offset
= (u64
)-1;
2272 dirid
= key
.objectid
;
2274 memmove(name
, ptr
, total_len
);
2275 name
[total_len
] = '\0';
2278 btrfs_free_path(path
);
2282 static noinline
int btrfs_ioctl_ino_lookup(struct file
*file
,
2285 struct btrfs_ioctl_ino_lookup_args
*args
;
2286 struct inode
*inode
;
2289 if (!capable(CAP_SYS_ADMIN
))
2292 args
= memdup_user(argp
, sizeof(*args
));
2294 return PTR_ERR(args
);
2296 inode
= file_inode(file
);
2298 if (args
->treeid
== 0)
2299 args
->treeid
= BTRFS_I(inode
)->root
->root_key
.objectid
;
2301 ret
= btrfs_search_path_in_tree(BTRFS_I(inode
)->root
->fs_info
,
2302 args
->treeid
, args
->objectid
,
2305 if (ret
== 0 && copy_to_user(argp
, args
, sizeof(*args
)))
2312 static noinline
int btrfs_ioctl_snap_destroy(struct file
*file
,
2315 struct dentry
*parent
= file
->f_path
.dentry
;
2316 struct dentry
*dentry
;
2317 struct inode
*dir
= d_inode(parent
);
2318 struct inode
*inode
;
2319 struct btrfs_root
*root
= BTRFS_I(dir
)->root
;
2320 struct btrfs_root
*dest
= NULL
;
2321 struct btrfs_ioctl_vol_args
*vol_args
;
2322 struct btrfs_trans_handle
*trans
;
2323 struct btrfs_block_rsv block_rsv
;
2325 u64 qgroup_reserved
;
2330 if (!S_ISDIR(dir
->i_mode
))
2333 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2334 if (IS_ERR(vol_args
))
2335 return PTR_ERR(vol_args
);
2337 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2338 namelen
= strlen(vol_args
->name
);
2339 if (strchr(vol_args
->name
, '/') ||
2340 strncmp(vol_args
->name
, "..", namelen
) == 0) {
2345 err
= mnt_want_write_file(file
);
2350 err
= mutex_lock_killable_nested(&dir
->i_mutex
, I_MUTEX_PARENT
);
2352 goto out_drop_write
;
2353 dentry
= lookup_one_len(vol_args
->name
, parent
, namelen
);
2354 if (IS_ERR(dentry
)) {
2355 err
= PTR_ERR(dentry
);
2356 goto out_unlock_dir
;
2359 if (d_really_is_negative(dentry
)) {
2364 inode
= d_inode(dentry
);
2365 dest
= BTRFS_I(inode
)->root
;
2366 if (!capable(CAP_SYS_ADMIN
)) {
2368 * Regular user. Only allow this with a special mount
2369 * option, when the user has write+exec access to the
2370 * subvol root, and when rmdir(2) would have been
2373 * Note that this is _not_ check that the subvol is
2374 * empty or doesn't contain data that we wouldn't
2375 * otherwise be able to delete.
2377 * Users who want to delete empty subvols should try
2381 if (!btrfs_test_opt(root
, USER_SUBVOL_RM_ALLOWED
))
2385 * Do not allow deletion if the parent dir is the same
2386 * as the dir to be deleted. That means the ioctl
2387 * must be called on the dentry referencing the root
2388 * of the subvol, not a random directory contained
2395 err
= inode_permission(inode
, MAY_WRITE
| MAY_EXEC
);
2400 /* check if subvolume may be deleted by a user */
2401 err
= btrfs_may_delete(dir
, dentry
, 1);
2405 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
2410 mutex_lock(&inode
->i_mutex
);
2413 * Don't allow to delete a subvolume with send in progress. This is
2414 * inside the i_mutex so the error handling that has to drop the bit
2415 * again is not run concurrently.
2417 spin_lock(&dest
->root_item_lock
);
2418 root_flags
= btrfs_root_flags(&dest
->root_item
);
2419 if (dest
->send_in_progress
== 0) {
2420 btrfs_set_root_flags(&dest
->root_item
,
2421 root_flags
| BTRFS_ROOT_SUBVOL_DEAD
);
2422 spin_unlock(&dest
->root_item_lock
);
2424 spin_unlock(&dest
->root_item_lock
);
2425 btrfs_warn(root
->fs_info
,
2426 "Attempt to delete subvolume %llu during send",
2427 dest
->root_key
.objectid
);
2429 goto out_unlock_inode
;
2432 down_write(&root
->fs_info
->subvol_sem
);
2434 err
= may_destroy_subvol(dest
);
2438 btrfs_init_block_rsv(&block_rsv
, BTRFS_BLOCK_RSV_TEMP
);
2440 * One for dir inode, two for dir entries, two for root
2443 err
= btrfs_subvolume_reserve_metadata(root
, &block_rsv
,
2444 5, &qgroup_reserved
, true);
2448 trans
= btrfs_start_transaction(root
, 0);
2449 if (IS_ERR(trans
)) {
2450 err
= PTR_ERR(trans
);
2453 trans
->block_rsv
= &block_rsv
;
2454 trans
->bytes_reserved
= block_rsv
.size
;
2456 ret
= btrfs_unlink_subvol(trans
, root
, dir
,
2457 dest
->root_key
.objectid
,
2458 dentry
->d_name
.name
,
2459 dentry
->d_name
.len
);
2462 btrfs_abort_transaction(trans
, root
, ret
);
2466 btrfs_record_root_in_trans(trans
, dest
);
2468 memset(&dest
->root_item
.drop_progress
, 0,
2469 sizeof(dest
->root_item
.drop_progress
));
2470 dest
->root_item
.drop_level
= 0;
2471 btrfs_set_root_refs(&dest
->root_item
, 0);
2473 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED
, &dest
->state
)) {
2474 ret
= btrfs_insert_orphan_item(trans
,
2475 root
->fs_info
->tree_root
,
2476 dest
->root_key
.objectid
);
2478 btrfs_abort_transaction(trans
, root
, ret
);
2484 ret
= btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
2485 dest
->root_item
.uuid
, BTRFS_UUID_KEY_SUBVOL
,
2486 dest
->root_key
.objectid
);
2487 if (ret
&& ret
!= -ENOENT
) {
2488 btrfs_abort_transaction(trans
, root
, ret
);
2492 if (!btrfs_is_empty_uuid(dest
->root_item
.received_uuid
)) {
2493 ret
= btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
2494 dest
->root_item
.received_uuid
,
2495 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
2496 dest
->root_key
.objectid
);
2497 if (ret
&& ret
!= -ENOENT
) {
2498 btrfs_abort_transaction(trans
, root
, ret
);
2505 trans
->block_rsv
= NULL
;
2506 trans
->bytes_reserved
= 0;
2507 ret
= btrfs_end_transaction(trans
, root
);
2510 inode
->i_flags
|= S_DEAD
;
2512 btrfs_subvolume_release_metadata(root
, &block_rsv
, qgroup_reserved
);
2514 up_write(&root
->fs_info
->subvol_sem
);
2516 spin_lock(&dest
->root_item_lock
);
2517 root_flags
= btrfs_root_flags(&dest
->root_item
);
2518 btrfs_set_root_flags(&dest
->root_item
,
2519 root_flags
& ~BTRFS_ROOT_SUBVOL_DEAD
);
2520 spin_unlock(&dest
->root_item_lock
);
2523 mutex_unlock(&inode
->i_mutex
);
2525 d_invalidate(dentry
);
2526 btrfs_invalidate_inodes(dest
);
2528 ASSERT(dest
->send_in_progress
== 0);
2531 if (dest
->ino_cache_inode
) {
2532 iput(dest
->ino_cache_inode
);
2533 dest
->ino_cache_inode
= NULL
;
2539 mutex_unlock(&dir
->i_mutex
);
2541 mnt_drop_write_file(file
);
2547 static int btrfs_ioctl_defrag(struct file
*file
, void __user
*argp
)
2549 struct inode
*inode
= file_inode(file
);
2550 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2551 struct btrfs_ioctl_defrag_range_args
*range
;
2554 ret
= mnt_want_write_file(file
);
2558 if (btrfs_root_readonly(root
)) {
2563 switch (inode
->i_mode
& S_IFMT
) {
2565 if (!capable(CAP_SYS_ADMIN
)) {
2569 ret
= btrfs_defrag_root(root
);
2572 ret
= btrfs_defrag_root(root
->fs_info
->extent_root
);
2575 if (!(file
->f_mode
& FMODE_WRITE
)) {
2580 range
= kzalloc(sizeof(*range
), GFP_KERNEL
);
2587 if (copy_from_user(range
, argp
,
2593 /* compression requires us to start the IO */
2594 if ((range
->flags
& BTRFS_DEFRAG_RANGE_COMPRESS
)) {
2595 range
->flags
|= BTRFS_DEFRAG_RANGE_START_IO
;
2596 range
->extent_thresh
= (u32
)-1;
2599 /* the rest are all set to zero by kzalloc */
2600 range
->len
= (u64
)-1;
2602 ret
= btrfs_defrag_file(file_inode(file
), file
,
2612 mnt_drop_write_file(file
);
2616 static long btrfs_ioctl_add_dev(struct btrfs_root
*root
, void __user
*arg
)
2618 struct btrfs_ioctl_vol_args
*vol_args
;
2621 if (!capable(CAP_SYS_ADMIN
))
2624 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2626 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2629 mutex_lock(&root
->fs_info
->volume_mutex
);
2630 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2631 if (IS_ERR(vol_args
)) {
2632 ret
= PTR_ERR(vol_args
);
2636 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2637 ret
= btrfs_init_new_device(root
, vol_args
->name
);
2640 btrfs_info(root
->fs_info
, "disk added %s",vol_args
->name
);
2644 mutex_unlock(&root
->fs_info
->volume_mutex
);
2645 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2649 static long btrfs_ioctl_rm_dev(struct file
*file
, void __user
*arg
)
2651 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
2652 struct btrfs_ioctl_vol_args
*vol_args
;
2655 if (!capable(CAP_SYS_ADMIN
))
2658 ret
= mnt_want_write_file(file
);
2662 vol_args
= memdup_user(arg
, sizeof(*vol_args
));
2663 if (IS_ERR(vol_args
)) {
2664 ret
= PTR_ERR(vol_args
);
2668 vol_args
->name
[BTRFS_PATH_NAME_MAX
] = '\0';
2670 if (atomic_xchg(&root
->fs_info
->mutually_exclusive_operation_running
,
2672 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
2676 mutex_lock(&root
->fs_info
->volume_mutex
);
2677 ret
= btrfs_rm_device(root
, vol_args
->name
);
2678 mutex_unlock(&root
->fs_info
->volume_mutex
);
2679 atomic_set(&root
->fs_info
->mutually_exclusive_operation_running
, 0);
2682 btrfs_info(root
->fs_info
, "disk deleted %s",vol_args
->name
);
2687 mnt_drop_write_file(file
);
2691 static long btrfs_ioctl_fs_info(struct btrfs_root
*root
, void __user
*arg
)
2693 struct btrfs_ioctl_fs_info_args
*fi_args
;
2694 struct btrfs_device
*device
;
2695 struct btrfs_device
*next
;
2696 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2699 fi_args
= kzalloc(sizeof(*fi_args
), GFP_KERNEL
);
2703 mutex_lock(&fs_devices
->device_list_mutex
);
2704 fi_args
->num_devices
= fs_devices
->num_devices
;
2705 memcpy(&fi_args
->fsid
, root
->fs_info
->fsid
, sizeof(fi_args
->fsid
));
2707 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
2708 if (device
->devid
> fi_args
->max_id
)
2709 fi_args
->max_id
= device
->devid
;
2711 mutex_unlock(&fs_devices
->device_list_mutex
);
2713 fi_args
->nodesize
= root
->fs_info
->super_copy
->nodesize
;
2714 fi_args
->sectorsize
= root
->fs_info
->super_copy
->sectorsize
;
2715 fi_args
->clone_alignment
= root
->fs_info
->super_copy
->sectorsize
;
2717 if (copy_to_user(arg
, fi_args
, sizeof(*fi_args
)))
2724 static long btrfs_ioctl_dev_info(struct btrfs_root
*root
, void __user
*arg
)
2726 struct btrfs_ioctl_dev_info_args
*di_args
;
2727 struct btrfs_device
*dev
;
2728 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
2730 char *s_uuid
= NULL
;
2732 di_args
= memdup_user(arg
, sizeof(*di_args
));
2733 if (IS_ERR(di_args
))
2734 return PTR_ERR(di_args
);
2736 if (!btrfs_is_empty_uuid(di_args
->uuid
))
2737 s_uuid
= di_args
->uuid
;
2739 mutex_lock(&fs_devices
->device_list_mutex
);
2740 dev
= btrfs_find_device(root
->fs_info
, di_args
->devid
, s_uuid
, NULL
);
2747 di_args
->devid
= dev
->devid
;
2748 di_args
->bytes_used
= btrfs_device_get_bytes_used(dev
);
2749 di_args
->total_bytes
= btrfs_device_get_total_bytes(dev
);
2750 memcpy(di_args
->uuid
, dev
->uuid
, sizeof(di_args
->uuid
));
2752 struct rcu_string
*name
;
2755 name
= rcu_dereference(dev
->name
);
2756 strncpy(di_args
->path
, name
->str
, sizeof(di_args
->path
));
2758 di_args
->path
[sizeof(di_args
->path
) - 1] = 0;
2760 di_args
->path
[0] = '\0';
2764 mutex_unlock(&fs_devices
->device_list_mutex
);
2765 if (ret
== 0 && copy_to_user(arg
, di_args
, sizeof(*di_args
)))
2772 static struct page
*extent_same_get_page(struct inode
*inode
, u64 off
)
2776 struct extent_io_tree
*tree
= &BTRFS_I(inode
)->io_tree
;
2778 index
= off
>> PAGE_CACHE_SHIFT
;
2780 page
= grab_cache_page(inode
->i_mapping
, index
);
2784 if (!PageUptodate(page
)) {
2785 if (extent_read_full_page_nolock(tree
, page
, btrfs_get_extent
,
2789 if (!PageUptodate(page
)) {
2791 page_cache_release(page
);
2800 static inline void lock_extent_range(struct inode
*inode
, u64 off
, u64 len
)
2802 /* do any pending delalloc/csum calc on src, one way or
2803 another, and lock file content */
2805 struct btrfs_ordered_extent
*ordered
;
2806 lock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2807 ordered
= btrfs_lookup_first_ordered_extent(inode
,
2810 ordered
->file_offset
+ ordered
->len
<= off
||
2811 ordered
->file_offset
>= off
+ len
) &&
2812 !test_range_bit(&BTRFS_I(inode
)->io_tree
, off
,
2813 off
+ len
- 1, EXTENT_DELALLOC
, 0, NULL
)) {
2815 btrfs_put_ordered_extent(ordered
);
2818 unlock_extent(&BTRFS_I(inode
)->io_tree
, off
, off
+ len
- 1);
2820 btrfs_put_ordered_extent(ordered
);
2821 btrfs_wait_ordered_range(inode
, off
, len
);
2825 static void btrfs_double_unlock(struct inode
*inode1
, u64 loff1
,
2826 struct inode
*inode2
, u64 loff2
, u64 len
)
2828 unlock_extent(&BTRFS_I(inode1
)->io_tree
, loff1
, loff1
+ len
- 1);
2829 unlock_extent(&BTRFS_I(inode2
)->io_tree
, loff2
, loff2
+ len
- 1);
2831 mutex_unlock(&inode1
->i_mutex
);
2832 mutex_unlock(&inode2
->i_mutex
);
2835 static void btrfs_double_lock(struct inode
*inode1
, u64 loff1
,
2836 struct inode
*inode2
, u64 loff2
, u64 len
)
2838 if (inode1
< inode2
) {
2839 swap(inode1
, inode2
);
2843 mutex_lock_nested(&inode1
->i_mutex
, I_MUTEX_PARENT
);
2844 lock_extent_range(inode1
, loff1
, len
);
2845 if (inode1
!= inode2
) {
2846 mutex_lock_nested(&inode2
->i_mutex
, I_MUTEX_CHILD
);
2847 lock_extent_range(inode2
, loff2
, len
);
2851 static int btrfs_cmp_data(struct inode
*src
, u64 loff
, struct inode
*dst
,
2852 u64 dst_loff
, u64 len
)
2855 struct page
*src_page
, *dst_page
;
2856 unsigned int cmp_len
= PAGE_CACHE_SIZE
;
2857 void *addr
, *dst_addr
;
2860 if (len
< PAGE_CACHE_SIZE
)
2863 src_page
= extent_same_get_page(src
, loff
);
2866 dst_page
= extent_same_get_page(dst
, dst_loff
);
2868 page_cache_release(src_page
);
2871 addr
= kmap_atomic(src_page
);
2872 dst_addr
= kmap_atomic(dst_page
);
2874 flush_dcache_page(src_page
);
2875 flush_dcache_page(dst_page
);
2877 if (memcmp(addr
, dst_addr
, cmp_len
))
2878 ret
= BTRFS_SAME_DATA_DIFFERS
;
2880 kunmap_atomic(addr
);
2881 kunmap_atomic(dst_addr
);
2882 page_cache_release(src_page
);
2883 page_cache_release(dst_page
);
2889 dst_loff
+= cmp_len
;
2896 static int extent_same_check_offsets(struct inode
*inode
, u64 off
, u64 len
)
2898 u64 bs
= BTRFS_I(inode
)->root
->fs_info
->sb
->s_blocksize
;
2900 if (off
+ len
> inode
->i_size
|| off
+ len
< off
)
2902 /* Check that we are block aligned - btrfs_clone() requires this */
2903 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
))
2909 static int btrfs_extent_same(struct inode
*src
, u64 loff
, u64 len
,
2910 struct inode
*dst
, u64 dst_loff
)
2915 * btrfs_clone() can't handle extents in the same file
2916 * yet. Once that works, we can drop this check and replace it
2917 * with a check for the same inode, but overlapping extents.
2925 btrfs_double_lock(src
, loff
, dst
, dst_loff
, len
);
2927 ret
= extent_same_check_offsets(src
, loff
, len
);
2931 ret
= extent_same_check_offsets(dst
, dst_loff
, len
);
2935 /* don't make the dst file partly checksummed */
2936 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
2937 (BTRFS_I(dst
)->flags
& BTRFS_INODE_NODATASUM
)) {
2942 ret
= btrfs_cmp_data(src
, loff
, dst
, dst_loff
, len
);
2944 ret
= btrfs_clone(src
, dst
, loff
, len
, len
, dst_loff
);
2947 btrfs_double_unlock(src
, loff
, dst
, dst_loff
, len
);
2952 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024)
2954 static long btrfs_ioctl_file_extent_same(struct file
*file
,
2955 struct btrfs_ioctl_same_args __user
*argp
)
2957 struct btrfs_ioctl_same_args
*same
= NULL
;
2958 struct btrfs_ioctl_same_extent_info
*info
;
2959 struct inode
*src
= file_inode(file
);
2965 u64 bs
= BTRFS_I(src
)->root
->fs_info
->sb
->s_blocksize
;
2966 bool is_admin
= capable(CAP_SYS_ADMIN
);
2969 if (!(file
->f_mode
& FMODE_READ
))
2972 ret
= mnt_want_write_file(file
);
2976 if (get_user(count
, &argp
->dest_count
)) {
2981 size
= offsetof(struct btrfs_ioctl_same_args __user
, info
[count
]);
2983 same
= memdup_user(argp
, size
);
2986 ret
= PTR_ERR(same
);
2991 off
= same
->logical_offset
;
2995 * Limit the total length we will dedupe for each operation.
2996 * This is intended to bound the total time spent in this
2997 * ioctl to something sane.
2999 if (len
> BTRFS_MAX_DEDUPE_LEN
)
3000 len
= BTRFS_MAX_DEDUPE_LEN
;
3002 if (WARN_ON_ONCE(bs
< PAGE_CACHE_SIZE
)) {
3004 * Btrfs does not support blocksize < page_size. As a
3005 * result, btrfs_cmp_data() won't correctly handle
3006 * this situation without an update.
3013 if (S_ISDIR(src
->i_mode
))
3017 if (!S_ISREG(src
->i_mode
))
3020 /* pre-format output fields to sane values */
3021 for (i
= 0; i
< count
; i
++) {
3022 same
->info
[i
].bytes_deduped
= 0ULL;
3023 same
->info
[i
].status
= 0;
3026 for (i
= 0, info
= same
->info
; i
< count
; i
++, info
++) {
3028 struct fd dst_file
= fdget(info
->fd
);
3029 if (!dst_file
.file
) {
3030 info
->status
= -EBADF
;
3033 dst
= file_inode(dst_file
.file
);
3035 if (!(is_admin
|| (dst_file
.file
->f_mode
& FMODE_WRITE
))) {
3036 info
->status
= -EINVAL
;
3037 } else if (file
->f_path
.mnt
!= dst_file
.file
->f_path
.mnt
) {
3038 info
->status
= -EXDEV
;
3039 } else if (S_ISDIR(dst
->i_mode
)) {
3040 info
->status
= -EISDIR
;
3041 } else if (!S_ISREG(dst
->i_mode
)) {
3042 info
->status
= -EACCES
;
3044 info
->status
= btrfs_extent_same(src
, off
, len
, dst
,
3045 info
->logical_offset
);
3046 if (info
->status
== 0)
3047 info
->bytes_deduped
+= len
;
3052 ret
= copy_to_user(argp
, same
, size
);
3057 mnt_drop_write_file(file
);
3062 /* Helper to check and see if this root currently has a ref on the given disk
3063 * bytenr. If it does then we need to update the quota for this root. This
3064 * doesn't do anything if quotas aren't enabled.
3066 static int check_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
3069 struct seq_list tree_mod_seq_elem
= SEQ_LIST_INIT(tree_mod_seq_elem
);
3070 struct ulist
*roots
;
3071 struct ulist_iterator uiter
;
3072 struct ulist_node
*root_node
= NULL
;
3075 if (!root
->fs_info
->quota_enabled
)
3078 btrfs_get_tree_mod_seq(root
->fs_info
, &tree_mod_seq_elem
);
3079 ret
= btrfs_find_all_roots(trans
, root
->fs_info
, disko
,
3080 tree_mod_seq_elem
.seq
, &roots
);
3084 ULIST_ITER_INIT(&uiter
);
3085 while ((root_node
= ulist_next(roots
, &uiter
))) {
3086 if (root_node
->val
== root
->objectid
) {
3093 btrfs_put_tree_mod_seq(root
->fs_info
, &tree_mod_seq_elem
);
3097 static int clone_finish_inode_update(struct btrfs_trans_handle
*trans
,
3098 struct inode
*inode
,
3103 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3106 inode_inc_iversion(inode
);
3107 inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
3109 * We round up to the block size at eof when determining which
3110 * extents to clone above, but shouldn't round up the file size.
3112 if (endoff
> destoff
+ olen
)
3113 endoff
= destoff
+ olen
;
3114 if (endoff
> inode
->i_size
)
3115 btrfs_i_size_write(inode
, endoff
);
3117 ret
= btrfs_update_inode(trans
, root
, inode
);
3119 btrfs_abort_transaction(trans
, root
, ret
);
3120 btrfs_end_transaction(trans
, root
);
3123 ret
= btrfs_end_transaction(trans
, root
);
3128 static void clone_update_extent_map(struct inode
*inode
,
3129 const struct btrfs_trans_handle
*trans
,
3130 const struct btrfs_path
*path
,
3131 const u64 hole_offset
,
3134 struct extent_map_tree
*em_tree
= &BTRFS_I(inode
)->extent_tree
;
3135 struct extent_map
*em
;
3138 em
= alloc_extent_map();
3140 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3141 &BTRFS_I(inode
)->runtime_flags
);
3146 struct btrfs_file_extent_item
*fi
;
3148 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3149 struct btrfs_file_extent_item
);
3150 btrfs_extent_item_to_extent_map(inode
, path
, fi
, false, em
);
3151 em
->generation
= -1;
3152 if (btrfs_file_extent_type(path
->nodes
[0], fi
) ==
3153 BTRFS_FILE_EXTENT_INLINE
)
3154 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3155 &BTRFS_I(inode
)->runtime_flags
);
3157 em
->start
= hole_offset
;
3159 em
->ram_bytes
= em
->len
;
3160 em
->orig_start
= hole_offset
;
3161 em
->block_start
= EXTENT_MAP_HOLE
;
3163 em
->orig_block_len
= 0;
3164 em
->compress_type
= BTRFS_COMPRESS_NONE
;
3165 em
->generation
= trans
->transid
;
3169 write_lock(&em_tree
->lock
);
3170 ret
= add_extent_mapping(em_tree
, em
, 1);
3171 write_unlock(&em_tree
->lock
);
3172 if (ret
!= -EEXIST
) {
3173 free_extent_map(em
);
3176 btrfs_drop_extent_cache(inode
, em
->start
,
3177 em
->start
+ em
->len
- 1, 0);
3181 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
3182 &BTRFS_I(inode
)->runtime_flags
);
3186 * Make sure we do not end up inserting an inline extent into a file that has
3187 * already other (non-inline) extents. If a file has an inline extent it can
3188 * not have any other extents and the (single) inline extent must start at the
3189 * file offset 0. Failing to respect these rules will lead to file corruption,
3190 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3192 * We can have extents that have been already written to disk or we can have
3193 * dirty ranges still in delalloc, in which case the extent maps and items are
3194 * created only when we run delalloc, and the delalloc ranges might fall outside
3195 * the range we are currently locking in the inode's io tree. So we check the
3196 * inode's i_size because of that (i_size updates are done while holding the
3197 * i_mutex, which we are holding here).
3198 * We also check to see if the inode has a size not greater than "datal" but has
3199 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3200 * protected against such concurrent fallocate calls by the i_mutex).
3202 * If the file has no extents but a size greater than datal, do not allow the
3203 * copy because we would need turn the inline extent into a non-inline one (even
3204 * with NO_HOLES enabled). If we find our destination inode only has one inline
3205 * extent, just overwrite it with the source inline extent if its size is less
3206 * than the source extent's size, or we could copy the source inline extent's
3207 * data into the destination inode's inline extent if the later is greater then
3210 static int clone_copy_inline_extent(struct inode
*src
,
3212 struct btrfs_trans_handle
*trans
,
3213 struct btrfs_path
*path
,
3214 struct btrfs_key
*new_key
,
3215 const u64 drop_start
,
3221 struct btrfs_root
*root
= BTRFS_I(dst
)->root
;
3222 const u64 aligned_end
= ALIGN(new_key
->offset
+ datal
,
3225 struct btrfs_key key
;
3227 if (new_key
->offset
> 0)
3230 key
.objectid
= btrfs_ino(dst
);
3231 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3233 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
3236 } else if (ret
> 0) {
3237 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
3238 ret
= btrfs_next_leaf(root
, path
);
3242 goto copy_inline_extent
;
3244 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
3245 if (key
.objectid
== btrfs_ino(dst
) &&
3246 key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3247 ASSERT(key
.offset
> 0);
3250 } else if (i_size_read(dst
) <= datal
) {
3251 struct btrfs_file_extent_item
*ei
;
3255 * If the file size is <= datal, make sure there are no other
3256 * extents following (can happen do to an fallocate call with
3257 * the flag FALLOC_FL_KEEP_SIZE).
3259 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3260 struct btrfs_file_extent_item
);
3262 * If it's an inline extent, it can not have other extents
3265 if (btrfs_file_extent_type(path
->nodes
[0], ei
) ==
3266 BTRFS_FILE_EXTENT_INLINE
)
3267 goto copy_inline_extent
;
3269 ext_len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
3270 if (ext_len
> aligned_end
)
3273 ret
= btrfs_next_item(root
, path
);
3276 } else if (ret
== 0) {
3277 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3279 if (key
.objectid
== btrfs_ino(dst
) &&
3280 key
.type
== BTRFS_EXTENT_DATA_KEY
)
3287 * We have no extent items, or we have an extent at offset 0 which may
3288 * or may not be inlined. All these cases are dealt the same way.
3290 if (i_size_read(dst
) > datal
) {
3292 * If the destination inode has an inline extent...
3293 * This would require copying the data from the source inline
3294 * extent into the beginning of the destination's inline extent.
3295 * But this is really complex, both extents can be compressed
3296 * or just one of them, which would require decompressing and
3297 * re-compressing data (which could increase the new compressed
3298 * size, not allowing the compressed data to fit anymore in an
3300 * So just don't support this case for now (it should be rare,
3301 * we are not really saving space when cloning inline extents).
3306 btrfs_release_path(path
);
3307 ret
= btrfs_drop_extents(trans
, root
, dst
, drop_start
, aligned_end
, 1);
3310 ret
= btrfs_insert_empty_item(trans
, root
, path
, new_key
, size
);
3315 const u32 start
= btrfs_file_extent_calc_inline_size(0);
3317 memmove(inline_data
+ start
, inline_data
+ start
+ skip
, datal
);
3320 write_extent_buffer(path
->nodes
[0], inline_data
,
3321 btrfs_item_ptr_offset(path
->nodes
[0],
3324 inode_add_bytes(dst
, datal
);
3330 * btrfs_clone() - clone a range from inode file to another
3332 * @src: Inode to clone from
3333 * @inode: Inode to clone to
3334 * @off: Offset within source to start clone from
3335 * @olen: Original length, passed by user, of range to clone
3336 * @olen_aligned: Block-aligned value of olen, extent_same uses
3337 * identical values here
3338 * @destoff: Offset within @inode to start clone
3340 static int btrfs_clone(struct inode
*src
, struct inode
*inode
,
3341 const u64 off
, const u64 olen
, const u64 olen_aligned
,
3344 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3345 struct btrfs_path
*path
= NULL
;
3346 struct extent_buffer
*leaf
;
3347 struct btrfs_trans_handle
*trans
;
3349 struct btrfs_key key
;
3354 const u64 len
= olen_aligned
;
3356 u64 last_dest_end
= destoff
;
3359 buf
= vmalloc(root
->nodesize
);
3363 path
= btrfs_alloc_path();
3371 key
.objectid
= btrfs_ino(src
);
3372 key
.type
= BTRFS_EXTENT_DATA_KEY
;
3376 u64 next_key_min_offset
= key
.offset
+ 1;
3379 * note the key will change type as we walk through the
3382 path
->leave_spinning
= 1;
3383 ret
= btrfs_search_slot(NULL
, BTRFS_I(src
)->root
, &key
, path
,
3388 * First search, if no extent item that starts at offset off was
3389 * found but the previous item is an extent item, it's possible
3390 * it might overlap our target range, therefore process it.
3392 if (key
.offset
== off
&& ret
> 0 && path
->slots
[0] > 0) {
3393 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
3394 path
->slots
[0] - 1);
3395 if (key
.type
== BTRFS_EXTENT_DATA_KEY
)
3399 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3402 if (path
->slots
[0] >= nritems
) {
3403 ret
= btrfs_next_leaf(BTRFS_I(src
)->root
, path
);
3408 nritems
= btrfs_header_nritems(path
->nodes
[0]);
3410 leaf
= path
->nodes
[0];
3411 slot
= path
->slots
[0];
3413 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
3414 if (key
.type
> BTRFS_EXTENT_DATA_KEY
||
3415 key
.objectid
!= btrfs_ino(src
))
3418 if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
3419 struct btrfs_file_extent_item
*extent
;
3422 struct btrfs_key new_key
;
3423 u64 disko
= 0, diskl
= 0;
3424 u64 datao
= 0, datal
= 0;
3428 extent
= btrfs_item_ptr(leaf
, slot
,
3429 struct btrfs_file_extent_item
);
3430 comp
= btrfs_file_extent_compression(leaf
, extent
);
3431 type
= btrfs_file_extent_type(leaf
, extent
);
3432 if (type
== BTRFS_FILE_EXTENT_REG
||
3433 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3434 disko
= btrfs_file_extent_disk_bytenr(leaf
,
3436 diskl
= btrfs_file_extent_disk_num_bytes(leaf
,
3438 datao
= btrfs_file_extent_offset(leaf
, extent
);
3439 datal
= btrfs_file_extent_num_bytes(leaf
,
3441 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3442 /* take upper bound, may be compressed */
3443 datal
= btrfs_file_extent_ram_bytes(leaf
,
3448 * The first search might have left us at an extent
3449 * item that ends before our target range's start, can
3450 * happen if we have holes and NO_HOLES feature enabled.
3452 if (key
.offset
+ datal
<= off
) {
3455 } else if (key
.offset
>= off
+ len
) {
3458 next_key_min_offset
= key
.offset
+ datal
;
3459 size
= btrfs_item_size_nr(leaf
, slot
);
3460 read_extent_buffer(leaf
, buf
,
3461 btrfs_item_ptr_offset(leaf
, slot
),
3464 btrfs_release_path(path
);
3465 path
->leave_spinning
= 0;
3467 memcpy(&new_key
, &key
, sizeof(new_key
));
3468 new_key
.objectid
= btrfs_ino(inode
);
3469 if (off
<= key
.offset
)
3470 new_key
.offset
= key
.offset
+ destoff
- off
;
3472 new_key
.offset
= destoff
;
3475 * Deal with a hole that doesn't have an extent item
3476 * that represents it (NO_HOLES feature enabled).
3477 * This hole is either in the middle of the cloning
3478 * range or at the beginning (fully overlaps it or
3479 * partially overlaps it).
3481 if (new_key
.offset
!= last_dest_end
)
3482 drop_start
= last_dest_end
;
3484 drop_start
= new_key
.offset
;
3487 * 1 - adjusting old extent (we may have to split it)
3488 * 1 - add new extent
3491 trans
= btrfs_start_transaction(root
, 3);
3492 if (IS_ERR(trans
)) {
3493 ret
= PTR_ERR(trans
);
3497 if (type
== BTRFS_FILE_EXTENT_REG
||
3498 type
== BTRFS_FILE_EXTENT_PREALLOC
) {
3500 * a | --- range to clone ---| b
3501 * | ------------- extent ------------- |
3504 /* subtract range b */
3505 if (key
.offset
+ datal
> off
+ len
)
3506 datal
= off
+ len
- key
.offset
;
3508 /* subtract range a */
3509 if (off
> key
.offset
) {
3510 datao
+= off
- key
.offset
;
3511 datal
-= off
- key
.offset
;
3514 ret
= btrfs_drop_extents(trans
, root
, inode
,
3516 new_key
.offset
+ datal
,
3519 if (ret
!= -EOPNOTSUPP
)
3520 btrfs_abort_transaction(trans
,
3522 btrfs_end_transaction(trans
, root
);
3526 ret
= btrfs_insert_empty_item(trans
, root
, path
,
3529 btrfs_abort_transaction(trans
, root
,
3531 btrfs_end_transaction(trans
, root
);
3535 leaf
= path
->nodes
[0];
3536 slot
= path
->slots
[0];
3537 write_extent_buffer(leaf
, buf
,
3538 btrfs_item_ptr_offset(leaf
, slot
),
3541 extent
= btrfs_item_ptr(leaf
, slot
,
3542 struct btrfs_file_extent_item
);
3544 /* disko == 0 means it's a hole */
3548 btrfs_set_file_extent_offset(leaf
, extent
,
3550 btrfs_set_file_extent_num_bytes(leaf
, extent
,
3554 * We need to look up the roots that point at
3555 * this bytenr and see if the new root does. If
3556 * it does not we need to make sure we update
3557 * quotas appropriately.
3559 if (disko
&& root
!= BTRFS_I(src
)->root
&&
3560 disko
!= last_disko
) {
3561 no_quota
= check_ref(trans
, root
,
3564 btrfs_abort_transaction(trans
,
3567 btrfs_end_transaction(trans
,
3575 inode_add_bytes(inode
, datal
);
3576 ret
= btrfs_inc_extent_ref(trans
, root
,
3578 root
->root_key
.objectid
,
3580 new_key
.offset
- datao
,
3583 btrfs_abort_transaction(trans
,
3586 btrfs_end_transaction(trans
,
3592 } else if (type
== BTRFS_FILE_EXTENT_INLINE
) {
3596 if (off
> key
.offset
) {
3597 skip
= off
- key
.offset
;
3598 new_key
.offset
+= skip
;
3601 if (key
.offset
+ datal
> off
+ len
)
3602 trim
= key
.offset
+ datal
- (off
+ len
);
3604 if (comp
&& (skip
|| trim
)) {
3606 btrfs_end_transaction(trans
, root
);
3609 size
-= skip
+ trim
;
3610 datal
-= skip
+ trim
;
3612 ret
= clone_copy_inline_extent(src
, inode
,
3619 if (ret
!= -EOPNOTSUPP
)
3620 btrfs_abort_transaction(trans
,
3623 btrfs_end_transaction(trans
, root
);
3626 leaf
= path
->nodes
[0];
3627 slot
= path
->slots
[0];
3630 /* If we have an implicit hole (NO_HOLES feature). */
3631 if (drop_start
< new_key
.offset
)
3632 clone_update_extent_map(inode
, trans
,
3634 new_key
.offset
- drop_start
);
3636 clone_update_extent_map(inode
, trans
, path
, 0, 0);
3638 btrfs_mark_buffer_dirty(leaf
);
3639 btrfs_release_path(path
);
3641 last_dest_end
= ALIGN(new_key
.offset
+ datal
,
3643 ret
= clone_finish_inode_update(trans
, inode
,
3648 if (new_key
.offset
+ datal
>= destoff
+ len
)
3651 btrfs_release_path(path
);
3652 key
.offset
= next_key_min_offset
;
3656 if (last_dest_end
< destoff
+ len
) {
3658 * We have an implicit hole (NO_HOLES feature is enabled) that
3659 * fully or partially overlaps our cloning range at its end.
3661 btrfs_release_path(path
);
3664 * 1 - remove extent(s)
3667 trans
= btrfs_start_transaction(root
, 2);
3668 if (IS_ERR(trans
)) {
3669 ret
= PTR_ERR(trans
);
3672 ret
= btrfs_drop_extents(trans
, root
, inode
,
3673 last_dest_end
, destoff
+ len
, 1);
3675 if (ret
!= -EOPNOTSUPP
)
3676 btrfs_abort_transaction(trans
, root
, ret
);
3677 btrfs_end_transaction(trans
, root
);
3680 clone_update_extent_map(inode
, trans
, NULL
, last_dest_end
,
3681 destoff
+ len
- last_dest_end
);
3682 ret
= clone_finish_inode_update(trans
, inode
, destoff
+ len
,
3687 btrfs_free_path(path
);
3692 static noinline
long btrfs_ioctl_clone(struct file
*file
, unsigned long srcfd
,
3693 u64 off
, u64 olen
, u64 destoff
)
3695 struct inode
*inode
= file_inode(file
);
3696 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3701 u64 bs
= root
->fs_info
->sb
->s_blocksize
;
3706 * - split compressed inline extents. annoying: we need to
3707 * decompress into destination's address_space (the file offset
3708 * may change, so source mapping won't do), then recompress (or
3709 * otherwise reinsert) a subrange.
3711 * - split destination inode's inline extents. The inline extents can
3712 * be either compressed or non-compressed.
3715 /* the destination must be opened for writing */
3716 if (!(file
->f_mode
& FMODE_WRITE
) || (file
->f_flags
& O_APPEND
))
3719 if (btrfs_root_readonly(root
))
3722 ret
= mnt_want_write_file(file
);
3726 src_file
= fdget(srcfd
);
3727 if (!src_file
.file
) {
3729 goto out_drop_write
;
3733 if (src_file
.file
->f_path
.mnt
!= file
->f_path
.mnt
)
3736 src
= file_inode(src_file
.file
);
3742 /* the src must be open for reading */
3743 if (!(src_file
.file
->f_mode
& FMODE_READ
))
3746 /* don't make the dst file partly checksummed */
3747 if ((BTRFS_I(src
)->flags
& BTRFS_INODE_NODATASUM
) !=
3748 (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
))
3752 if (S_ISDIR(src
->i_mode
) || S_ISDIR(inode
->i_mode
))
3756 if (src
->i_sb
!= inode
->i_sb
)
3761 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_PARENT
);
3762 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_CHILD
);
3764 mutex_lock_nested(&src
->i_mutex
, I_MUTEX_PARENT
);
3765 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
3768 mutex_lock(&src
->i_mutex
);
3771 /* determine range to clone */
3773 if (off
+ len
> src
->i_size
|| off
+ len
< off
)
3776 olen
= len
= src
->i_size
- off
;
3777 /* if we extend to eof, continue to block boundary */
3778 if (off
+ len
== src
->i_size
)
3779 len
= ALIGN(src
->i_size
, bs
) - off
;
3786 /* verify the end result is block aligned */
3787 if (!IS_ALIGNED(off
, bs
) || !IS_ALIGNED(off
+ len
, bs
) ||
3788 !IS_ALIGNED(destoff
, bs
))
3791 /* verify if ranges are overlapped within the same file */
3793 if (destoff
+ len
> off
&& destoff
< off
+ len
)
3797 if (destoff
> inode
->i_size
) {
3798 ret
= btrfs_cont_expand(inode
, inode
->i_size
, destoff
);
3804 * Lock the target range too. Right after we replace the file extent
3805 * items in the fs tree (which now point to the cloned data), we might
3806 * have a worker replace them with extent items relative to a write
3807 * operation that was issued before this clone operation (i.e. confront
3808 * with inode.c:btrfs_finish_ordered_io).
3811 u64 lock_start
= min_t(u64
, off
, destoff
);
3812 u64 lock_len
= max_t(u64
, off
, destoff
) + len
- lock_start
;
3814 lock_extent_range(src
, lock_start
, lock_len
);
3816 lock_extent_range(src
, off
, len
);
3817 lock_extent_range(inode
, destoff
, len
);
3820 ret
= btrfs_clone(src
, inode
, off
, olen
, len
, destoff
);
3823 u64 lock_start
= min_t(u64
, off
, destoff
);
3824 u64 lock_end
= max_t(u64
, off
, destoff
) + len
- 1;
3826 unlock_extent(&BTRFS_I(src
)->io_tree
, lock_start
, lock_end
);
3828 unlock_extent(&BTRFS_I(src
)->io_tree
, off
, off
+ len
- 1);
3829 unlock_extent(&BTRFS_I(inode
)->io_tree
, destoff
,
3833 * Truncate page cache pages so that future reads will see the cloned
3834 * data immediately and not the previous data.
3836 truncate_inode_pages_range(&inode
->i_data
, destoff
,
3837 PAGE_CACHE_ALIGN(destoff
+ len
) - 1);
3841 mutex_unlock(&src
->i_mutex
);
3842 mutex_unlock(&inode
->i_mutex
);
3844 mutex_unlock(&inode
->i_mutex
);
3845 mutex_unlock(&src
->i_mutex
);
3848 mutex_unlock(&src
->i_mutex
);
3853 mnt_drop_write_file(file
);
3857 static long btrfs_ioctl_clone_range(struct file
*file
, void __user
*argp
)
3859 struct btrfs_ioctl_clone_range_args args
;
3861 if (copy_from_user(&args
, argp
, sizeof(args
)))
3863 return btrfs_ioctl_clone(file
, args
.src_fd
, args
.src_offset
,
3864 args
.src_length
, args
.dest_offset
);
3868 * there are many ways the trans_start and trans_end ioctls can lead
3869 * to deadlocks. They should only be used by applications that
3870 * basically own the machine, and have a very in depth understanding
3871 * of all the possible deadlocks and enospc problems.
3873 static long btrfs_ioctl_trans_start(struct file
*file
)
3875 struct inode
*inode
= file_inode(file
);
3876 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3877 struct btrfs_trans_handle
*trans
;
3881 if (!capable(CAP_SYS_ADMIN
))
3885 if (file
->private_data
)
3889 if (btrfs_root_readonly(root
))
3892 ret
= mnt_want_write_file(file
);
3896 atomic_inc(&root
->fs_info
->open_ioctl_trans
);
3899 trans
= btrfs_start_ioctl_transaction(root
);
3903 file
->private_data
= trans
;
3907 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
3908 mnt_drop_write_file(file
);
3913 static long btrfs_ioctl_default_subvol(struct file
*file
, void __user
*argp
)
3915 struct inode
*inode
= file_inode(file
);
3916 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3917 struct btrfs_root
*new_root
;
3918 struct btrfs_dir_item
*di
;
3919 struct btrfs_trans_handle
*trans
;
3920 struct btrfs_path
*path
;
3921 struct btrfs_key location
;
3922 struct btrfs_disk_key disk_key
;
3927 if (!capable(CAP_SYS_ADMIN
))
3930 ret
= mnt_want_write_file(file
);
3934 if (copy_from_user(&objectid
, argp
, sizeof(objectid
))) {
3940 objectid
= BTRFS_FS_TREE_OBJECTID
;
3942 location
.objectid
= objectid
;
3943 location
.type
= BTRFS_ROOT_ITEM_KEY
;
3944 location
.offset
= (u64
)-1;
3946 new_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
3947 if (IS_ERR(new_root
)) {
3948 ret
= PTR_ERR(new_root
);
3952 path
= btrfs_alloc_path();
3957 path
->leave_spinning
= 1;
3959 trans
= btrfs_start_transaction(root
, 1);
3960 if (IS_ERR(trans
)) {
3961 btrfs_free_path(path
);
3962 ret
= PTR_ERR(trans
);
3966 dir_id
= btrfs_super_root_dir(root
->fs_info
->super_copy
);
3967 di
= btrfs_lookup_dir_item(trans
, root
->fs_info
->tree_root
, path
,
3968 dir_id
, "default", 7, 1);
3969 if (IS_ERR_OR_NULL(di
)) {
3970 btrfs_free_path(path
);
3971 btrfs_end_transaction(trans
, root
);
3972 btrfs_err(new_root
->fs_info
, "Umm, you don't have the default dir"
3973 "item, this isn't going to work");
3978 btrfs_cpu_key_to_disk(&disk_key
, &new_root
->root_key
);
3979 btrfs_set_dir_item_key(path
->nodes
[0], di
, &disk_key
);
3980 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3981 btrfs_free_path(path
);
3983 btrfs_set_fs_incompat(root
->fs_info
, DEFAULT_SUBVOL
);
3984 btrfs_end_transaction(trans
, root
);
3986 mnt_drop_write_file(file
);
3990 void btrfs_get_block_group_info(struct list_head
*groups_list
,
3991 struct btrfs_ioctl_space_info
*space
)
3993 struct btrfs_block_group_cache
*block_group
;
3995 space
->total_bytes
= 0;
3996 space
->used_bytes
= 0;
3998 list_for_each_entry(block_group
, groups_list
, list
) {
3999 space
->flags
= block_group
->flags
;
4000 space
->total_bytes
+= block_group
->key
.offset
;
4001 space
->used_bytes
+=
4002 btrfs_block_group_used(&block_group
->item
);
4006 static long btrfs_ioctl_space_info(struct btrfs_root
*root
, void __user
*arg
)
4008 struct btrfs_ioctl_space_args space_args
;
4009 struct btrfs_ioctl_space_info space
;
4010 struct btrfs_ioctl_space_info
*dest
;
4011 struct btrfs_ioctl_space_info
*dest_orig
;
4012 struct btrfs_ioctl_space_info __user
*user_dest
;
4013 struct btrfs_space_info
*info
;
4014 u64 types
[] = {BTRFS_BLOCK_GROUP_DATA
,
4015 BTRFS_BLOCK_GROUP_SYSTEM
,
4016 BTRFS_BLOCK_GROUP_METADATA
,
4017 BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
};
4024 if (copy_from_user(&space_args
,
4025 (struct btrfs_ioctl_space_args __user
*)arg
,
4026 sizeof(space_args
)))
4029 for (i
= 0; i
< num_types
; i
++) {
4030 struct btrfs_space_info
*tmp
;
4034 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
4036 if (tmp
->flags
== types
[i
]) {
4046 down_read(&info
->groups_sem
);
4047 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4048 if (!list_empty(&info
->block_groups
[c
]))
4051 up_read(&info
->groups_sem
);
4055 * Global block reserve, exported as a space_info
4059 /* space_slots == 0 means they are asking for a count */
4060 if (space_args
.space_slots
== 0) {
4061 space_args
.total_spaces
= slot_count
;
4065 slot_count
= min_t(u64
, space_args
.space_slots
, slot_count
);
4067 alloc_size
= sizeof(*dest
) * slot_count
;
4069 /* we generally have at most 6 or so space infos, one for each raid
4070 * level. So, a whole page should be more than enough for everyone
4072 if (alloc_size
> PAGE_CACHE_SIZE
)
4075 space_args
.total_spaces
= 0;
4076 dest
= kmalloc(alloc_size
, GFP_NOFS
);
4081 /* now we have a buffer to copy into */
4082 for (i
= 0; i
< num_types
; i
++) {
4083 struct btrfs_space_info
*tmp
;
4090 list_for_each_entry_rcu(tmp
, &root
->fs_info
->space_info
,
4092 if (tmp
->flags
== types
[i
]) {
4101 down_read(&info
->groups_sem
);
4102 for (c
= 0; c
< BTRFS_NR_RAID_TYPES
; c
++) {
4103 if (!list_empty(&info
->block_groups
[c
])) {
4104 btrfs_get_block_group_info(
4105 &info
->block_groups
[c
], &space
);
4106 memcpy(dest
, &space
, sizeof(space
));
4108 space_args
.total_spaces
++;
4114 up_read(&info
->groups_sem
);
4118 * Add global block reserve
4121 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->global_block_rsv
;
4123 spin_lock(&block_rsv
->lock
);
4124 space
.total_bytes
= block_rsv
->size
;
4125 space
.used_bytes
= block_rsv
->size
- block_rsv
->reserved
;
4126 spin_unlock(&block_rsv
->lock
);
4127 space
.flags
= BTRFS_SPACE_INFO_GLOBAL_RSV
;
4128 memcpy(dest
, &space
, sizeof(space
));
4129 space_args
.total_spaces
++;
4132 user_dest
= (struct btrfs_ioctl_space_info __user
*)
4133 (arg
+ sizeof(struct btrfs_ioctl_space_args
));
4135 if (copy_to_user(user_dest
, dest_orig
, alloc_size
))
4140 if (ret
== 0 && copy_to_user(arg
, &space_args
, sizeof(space_args
)))
4147 * there are many ways the trans_start and trans_end ioctls can lead
4148 * to deadlocks. They should only be used by applications that
4149 * basically own the machine, and have a very in depth understanding
4150 * of all the possible deadlocks and enospc problems.
4152 long btrfs_ioctl_trans_end(struct file
*file
)
4154 struct inode
*inode
= file_inode(file
);
4155 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4156 struct btrfs_trans_handle
*trans
;
4158 trans
= file
->private_data
;
4161 file
->private_data
= NULL
;
4163 btrfs_end_transaction(trans
, root
);
4165 atomic_dec(&root
->fs_info
->open_ioctl_trans
);
4167 mnt_drop_write_file(file
);
4171 static noinline
long btrfs_ioctl_start_sync(struct btrfs_root
*root
,
4174 struct btrfs_trans_handle
*trans
;
4178 trans
= btrfs_attach_transaction_barrier(root
);
4179 if (IS_ERR(trans
)) {
4180 if (PTR_ERR(trans
) != -ENOENT
)
4181 return PTR_ERR(trans
);
4183 /* No running transaction, don't bother */
4184 transid
= root
->fs_info
->last_trans_committed
;
4187 transid
= trans
->transid
;
4188 ret
= btrfs_commit_transaction_async(trans
, root
, 0);
4190 btrfs_end_transaction(trans
, root
);
4195 if (copy_to_user(argp
, &transid
, sizeof(transid
)))
4200 static noinline
long btrfs_ioctl_wait_sync(struct btrfs_root
*root
,
4206 if (copy_from_user(&transid
, argp
, sizeof(transid
)))
4209 transid
= 0; /* current trans */
4211 return btrfs_wait_for_commit(root
, transid
);
4214 static long btrfs_ioctl_scrub(struct file
*file
, void __user
*arg
)
4216 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4217 struct btrfs_ioctl_scrub_args
*sa
;
4220 if (!capable(CAP_SYS_ADMIN
))
4223 sa
= memdup_user(arg
, sizeof(*sa
));
4227 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
)) {
4228 ret
= mnt_want_write_file(file
);
4233 ret
= btrfs_scrub_dev(root
->fs_info
, sa
->devid
, sa
->start
, sa
->end
,
4234 &sa
->progress
, sa
->flags
& BTRFS_SCRUB_READONLY
,
4237 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4240 if (!(sa
->flags
& BTRFS_SCRUB_READONLY
))
4241 mnt_drop_write_file(file
);
4247 static long btrfs_ioctl_scrub_cancel(struct btrfs_root
*root
, void __user
*arg
)
4249 if (!capable(CAP_SYS_ADMIN
))
4252 return btrfs_scrub_cancel(root
->fs_info
);
4255 static long btrfs_ioctl_scrub_progress(struct btrfs_root
*root
,
4258 struct btrfs_ioctl_scrub_args
*sa
;
4261 if (!capable(CAP_SYS_ADMIN
))
4264 sa
= memdup_user(arg
, sizeof(*sa
));
4268 ret
= btrfs_scrub_progress(root
, sa
->devid
, &sa
->progress
);
4270 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4277 static long btrfs_ioctl_get_dev_stats(struct btrfs_root
*root
,
4280 struct btrfs_ioctl_get_dev_stats
*sa
;
4283 sa
= memdup_user(arg
, sizeof(*sa
));
4287 if ((sa
->flags
& BTRFS_DEV_STATS_RESET
) && !capable(CAP_SYS_ADMIN
)) {
4292 ret
= btrfs_get_dev_stats(root
, sa
);
4294 if (copy_to_user(arg
, sa
, sizeof(*sa
)))
4301 static long btrfs_ioctl_dev_replace(struct btrfs_root
*root
, void __user
*arg
)
4303 struct btrfs_ioctl_dev_replace_args
*p
;
4306 if (!capable(CAP_SYS_ADMIN
))
4309 p
= memdup_user(arg
, sizeof(*p
));
4314 case BTRFS_IOCTL_DEV_REPLACE_CMD_START
:
4315 if (root
->fs_info
->sb
->s_flags
& MS_RDONLY
) {
4320 &root
->fs_info
->mutually_exclusive_operation_running
,
4322 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4324 ret
= btrfs_dev_replace_start(root
, p
);
4326 &root
->fs_info
->mutually_exclusive_operation_running
,
4330 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS
:
4331 btrfs_dev_replace_status(root
->fs_info
, p
);
4334 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL
:
4335 ret
= btrfs_dev_replace_cancel(root
->fs_info
, p
);
4342 if (copy_to_user(arg
, p
, sizeof(*p
)))
4349 static long btrfs_ioctl_ino_to_path(struct btrfs_root
*root
, void __user
*arg
)
4355 struct btrfs_ioctl_ino_path_args
*ipa
= NULL
;
4356 struct inode_fs_paths
*ipath
= NULL
;
4357 struct btrfs_path
*path
;
4359 if (!capable(CAP_DAC_READ_SEARCH
))
4362 path
= btrfs_alloc_path();
4368 ipa
= memdup_user(arg
, sizeof(*ipa
));
4375 size
= min_t(u32
, ipa
->size
, 4096);
4376 ipath
= init_ipath(size
, root
, path
);
4377 if (IS_ERR(ipath
)) {
4378 ret
= PTR_ERR(ipath
);
4383 ret
= paths_from_inode(ipa
->inum
, ipath
);
4387 for (i
= 0; i
< ipath
->fspath
->elem_cnt
; ++i
) {
4388 rel_ptr
= ipath
->fspath
->val
[i
] -
4389 (u64
)(unsigned long)ipath
->fspath
->val
;
4390 ipath
->fspath
->val
[i
] = rel_ptr
;
4393 ret
= copy_to_user((void *)(unsigned long)ipa
->fspath
,
4394 (void *)(unsigned long)ipath
->fspath
, size
);
4401 btrfs_free_path(path
);
4408 static int build_ino_list(u64 inum
, u64 offset
, u64 root
, void *ctx
)
4410 struct btrfs_data_container
*inodes
= ctx
;
4411 const size_t c
= 3 * sizeof(u64
);
4413 if (inodes
->bytes_left
>= c
) {
4414 inodes
->bytes_left
-= c
;
4415 inodes
->val
[inodes
->elem_cnt
] = inum
;
4416 inodes
->val
[inodes
->elem_cnt
+ 1] = offset
;
4417 inodes
->val
[inodes
->elem_cnt
+ 2] = root
;
4418 inodes
->elem_cnt
+= 3;
4420 inodes
->bytes_missing
+= c
- inodes
->bytes_left
;
4421 inodes
->bytes_left
= 0;
4422 inodes
->elem_missed
+= 3;
4428 static long btrfs_ioctl_logical_to_ino(struct btrfs_root
*root
,
4433 struct btrfs_ioctl_logical_ino_args
*loi
;
4434 struct btrfs_data_container
*inodes
= NULL
;
4435 struct btrfs_path
*path
= NULL
;
4437 if (!capable(CAP_SYS_ADMIN
))
4440 loi
= memdup_user(arg
, sizeof(*loi
));
4447 path
= btrfs_alloc_path();
4453 size
= min_t(u32
, loi
->size
, 64 * 1024);
4454 inodes
= init_data_container(size
);
4455 if (IS_ERR(inodes
)) {
4456 ret
= PTR_ERR(inodes
);
4461 ret
= iterate_inodes_from_logical(loi
->logical
, root
->fs_info
, path
,
4462 build_ino_list
, inodes
);
4468 ret
= copy_to_user((void *)(unsigned long)loi
->inodes
,
4469 (void *)(unsigned long)inodes
, size
);
4474 btrfs_free_path(path
);
4481 void update_ioctl_balance_args(struct btrfs_fs_info
*fs_info
, int lock
,
4482 struct btrfs_ioctl_balance_args
*bargs
)
4484 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
4486 bargs
->flags
= bctl
->flags
;
4488 if (atomic_read(&fs_info
->balance_running
))
4489 bargs
->state
|= BTRFS_BALANCE_STATE_RUNNING
;
4490 if (atomic_read(&fs_info
->balance_pause_req
))
4491 bargs
->state
|= BTRFS_BALANCE_STATE_PAUSE_REQ
;
4492 if (atomic_read(&fs_info
->balance_cancel_req
))
4493 bargs
->state
|= BTRFS_BALANCE_STATE_CANCEL_REQ
;
4495 memcpy(&bargs
->data
, &bctl
->data
, sizeof(bargs
->data
));
4496 memcpy(&bargs
->meta
, &bctl
->meta
, sizeof(bargs
->meta
));
4497 memcpy(&bargs
->sys
, &bctl
->sys
, sizeof(bargs
->sys
));
4500 spin_lock(&fs_info
->balance_lock
);
4501 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4502 spin_unlock(&fs_info
->balance_lock
);
4504 memcpy(&bargs
->stat
, &bctl
->stat
, sizeof(bargs
->stat
));
4508 static long btrfs_ioctl_balance(struct file
*file
, void __user
*arg
)
4510 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4511 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4512 struct btrfs_ioctl_balance_args
*bargs
;
4513 struct btrfs_balance_control
*bctl
;
4514 bool need_unlock
; /* for mut. excl. ops lock */
4517 if (!capable(CAP_SYS_ADMIN
))
4520 ret
= mnt_want_write_file(file
);
4525 if (!atomic_xchg(&fs_info
->mutually_exclusive_operation_running
, 1)) {
4526 mutex_lock(&fs_info
->volume_mutex
);
4527 mutex_lock(&fs_info
->balance_mutex
);
4533 * mut. excl. ops lock is locked. Three possibilites:
4534 * (1) some other op is running
4535 * (2) balance is running
4536 * (3) balance is paused -- special case (think resume)
4538 mutex_lock(&fs_info
->balance_mutex
);
4539 if (fs_info
->balance_ctl
) {
4540 /* this is either (2) or (3) */
4541 if (!atomic_read(&fs_info
->balance_running
)) {
4542 mutex_unlock(&fs_info
->balance_mutex
);
4543 if (!mutex_trylock(&fs_info
->volume_mutex
))
4545 mutex_lock(&fs_info
->balance_mutex
);
4547 if (fs_info
->balance_ctl
&&
4548 !atomic_read(&fs_info
->balance_running
)) {
4550 need_unlock
= false;
4554 mutex_unlock(&fs_info
->balance_mutex
);
4555 mutex_unlock(&fs_info
->volume_mutex
);
4559 mutex_unlock(&fs_info
->balance_mutex
);
4565 mutex_unlock(&fs_info
->balance_mutex
);
4566 ret
= BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS
;
4571 BUG_ON(!atomic_read(&fs_info
->mutually_exclusive_operation_running
));
4574 bargs
= memdup_user(arg
, sizeof(*bargs
));
4575 if (IS_ERR(bargs
)) {
4576 ret
= PTR_ERR(bargs
);
4580 if (bargs
->flags
& BTRFS_BALANCE_RESUME
) {
4581 if (!fs_info
->balance_ctl
) {
4586 bctl
= fs_info
->balance_ctl
;
4587 spin_lock(&fs_info
->balance_lock
);
4588 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4589 spin_unlock(&fs_info
->balance_lock
);
4597 if (fs_info
->balance_ctl
) {
4602 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
4608 bctl
->fs_info
= fs_info
;
4610 memcpy(&bctl
->data
, &bargs
->data
, sizeof(bctl
->data
));
4611 memcpy(&bctl
->meta
, &bargs
->meta
, sizeof(bctl
->meta
));
4612 memcpy(&bctl
->sys
, &bargs
->sys
, sizeof(bctl
->sys
));
4614 bctl
->flags
= bargs
->flags
;
4616 /* balance everything - no filters */
4617 bctl
->flags
|= BTRFS_BALANCE_TYPE_MASK
;
4620 if (bctl
->flags
& ~(BTRFS_BALANCE_ARGS_MASK
| BTRFS_BALANCE_TYPE_MASK
)) {
4627 * Ownership of bctl and mutually_exclusive_operation_running
4628 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4629 * or, if restriper was paused all the way until unmount, in
4630 * free_fs_info. mutually_exclusive_operation_running is
4631 * cleared in __cancel_balance.
4633 need_unlock
= false;
4635 ret
= btrfs_balance(bctl
, bargs
);
4639 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4648 mutex_unlock(&fs_info
->balance_mutex
);
4649 mutex_unlock(&fs_info
->volume_mutex
);
4651 atomic_set(&fs_info
->mutually_exclusive_operation_running
, 0);
4653 mnt_drop_write_file(file
);
4657 static long btrfs_ioctl_balance_ctl(struct btrfs_root
*root
, int cmd
)
4659 if (!capable(CAP_SYS_ADMIN
))
4663 case BTRFS_BALANCE_CTL_PAUSE
:
4664 return btrfs_pause_balance(root
->fs_info
);
4665 case BTRFS_BALANCE_CTL_CANCEL
:
4666 return btrfs_cancel_balance(root
->fs_info
);
4672 static long btrfs_ioctl_balance_progress(struct btrfs_root
*root
,
4675 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4676 struct btrfs_ioctl_balance_args
*bargs
;
4679 if (!capable(CAP_SYS_ADMIN
))
4682 mutex_lock(&fs_info
->balance_mutex
);
4683 if (!fs_info
->balance_ctl
) {
4688 bargs
= kzalloc(sizeof(*bargs
), GFP_NOFS
);
4694 update_ioctl_balance_args(fs_info
, 1, bargs
);
4696 if (copy_to_user(arg
, bargs
, sizeof(*bargs
)))
4701 mutex_unlock(&fs_info
->balance_mutex
);
4705 static long btrfs_ioctl_quota_ctl(struct file
*file
, void __user
*arg
)
4707 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4708 struct btrfs_ioctl_quota_ctl_args
*sa
;
4709 struct btrfs_trans_handle
*trans
= NULL
;
4713 if (!capable(CAP_SYS_ADMIN
))
4716 ret
= mnt_want_write_file(file
);
4720 sa
= memdup_user(arg
, sizeof(*sa
));
4726 down_write(&root
->fs_info
->subvol_sem
);
4727 trans
= btrfs_start_transaction(root
->fs_info
->tree_root
, 2);
4728 if (IS_ERR(trans
)) {
4729 ret
= PTR_ERR(trans
);
4734 case BTRFS_QUOTA_CTL_ENABLE
:
4735 ret
= btrfs_quota_enable(trans
, root
->fs_info
);
4737 case BTRFS_QUOTA_CTL_DISABLE
:
4738 ret
= btrfs_quota_disable(trans
, root
->fs_info
);
4745 err
= btrfs_commit_transaction(trans
, root
->fs_info
->tree_root
);
4750 up_write(&root
->fs_info
->subvol_sem
);
4752 mnt_drop_write_file(file
);
4756 static long btrfs_ioctl_qgroup_assign(struct file
*file
, void __user
*arg
)
4758 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4759 struct btrfs_ioctl_qgroup_assign_args
*sa
;
4760 struct btrfs_trans_handle
*trans
;
4764 if (!capable(CAP_SYS_ADMIN
))
4767 ret
= mnt_want_write_file(file
);
4771 sa
= memdup_user(arg
, sizeof(*sa
));
4777 trans
= btrfs_join_transaction(root
);
4778 if (IS_ERR(trans
)) {
4779 ret
= PTR_ERR(trans
);
4783 /* FIXME: check if the IDs really exist */
4785 ret
= btrfs_add_qgroup_relation(trans
, root
->fs_info
,
4788 ret
= btrfs_del_qgroup_relation(trans
, root
->fs_info
,
4792 /* update qgroup status and info */
4793 err
= btrfs_run_qgroups(trans
, root
->fs_info
);
4795 btrfs_error(root
->fs_info
, ret
,
4796 "failed to update qgroup status and info\n");
4797 err
= btrfs_end_transaction(trans
, root
);
4804 mnt_drop_write_file(file
);
4808 static long btrfs_ioctl_qgroup_create(struct file
*file
, void __user
*arg
)
4810 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4811 struct btrfs_ioctl_qgroup_create_args
*sa
;
4812 struct btrfs_trans_handle
*trans
;
4816 if (!capable(CAP_SYS_ADMIN
))
4819 ret
= mnt_want_write_file(file
);
4823 sa
= memdup_user(arg
, sizeof(*sa
));
4829 if (!sa
->qgroupid
) {
4834 trans
= btrfs_join_transaction(root
);
4835 if (IS_ERR(trans
)) {
4836 ret
= PTR_ERR(trans
);
4840 /* FIXME: check if the IDs really exist */
4842 ret
= btrfs_create_qgroup(trans
, root
->fs_info
, sa
->qgroupid
);
4844 ret
= btrfs_remove_qgroup(trans
, root
->fs_info
, sa
->qgroupid
);
4847 err
= btrfs_end_transaction(trans
, root
);
4854 mnt_drop_write_file(file
);
4858 static long btrfs_ioctl_qgroup_limit(struct file
*file
, void __user
*arg
)
4860 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4861 struct btrfs_ioctl_qgroup_limit_args
*sa
;
4862 struct btrfs_trans_handle
*trans
;
4867 if (!capable(CAP_SYS_ADMIN
))
4870 ret
= mnt_want_write_file(file
);
4874 sa
= memdup_user(arg
, sizeof(*sa
));
4880 trans
= btrfs_join_transaction(root
);
4881 if (IS_ERR(trans
)) {
4882 ret
= PTR_ERR(trans
);
4886 qgroupid
= sa
->qgroupid
;
4888 /* take the current subvol as qgroup */
4889 qgroupid
= root
->root_key
.objectid
;
4892 /* FIXME: check if the IDs really exist */
4893 ret
= btrfs_limit_qgroup(trans
, root
->fs_info
, qgroupid
, &sa
->lim
);
4895 err
= btrfs_end_transaction(trans
, root
);
4902 mnt_drop_write_file(file
);
4906 static long btrfs_ioctl_quota_rescan(struct file
*file
, void __user
*arg
)
4908 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4909 struct btrfs_ioctl_quota_rescan_args
*qsa
;
4912 if (!capable(CAP_SYS_ADMIN
))
4915 ret
= mnt_want_write_file(file
);
4919 qsa
= memdup_user(arg
, sizeof(*qsa
));
4930 ret
= btrfs_qgroup_rescan(root
->fs_info
);
4935 mnt_drop_write_file(file
);
4939 static long btrfs_ioctl_quota_rescan_status(struct file
*file
, void __user
*arg
)
4941 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4942 struct btrfs_ioctl_quota_rescan_args
*qsa
;
4945 if (!capable(CAP_SYS_ADMIN
))
4948 qsa
= kzalloc(sizeof(*qsa
), GFP_NOFS
);
4952 if (root
->fs_info
->qgroup_flags
& BTRFS_QGROUP_STATUS_FLAG_RESCAN
) {
4954 qsa
->progress
= root
->fs_info
->qgroup_rescan_progress
.objectid
;
4957 if (copy_to_user(arg
, qsa
, sizeof(*qsa
)))
4964 static long btrfs_ioctl_quota_rescan_wait(struct file
*file
, void __user
*arg
)
4966 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
4968 if (!capable(CAP_SYS_ADMIN
))
4971 return btrfs_qgroup_wait_for_completion(root
->fs_info
);
4974 static long _btrfs_ioctl_set_received_subvol(struct file
*file
,
4975 struct btrfs_ioctl_received_subvol_args
*sa
)
4977 struct inode
*inode
= file_inode(file
);
4978 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4979 struct btrfs_root_item
*root_item
= &root
->root_item
;
4980 struct btrfs_trans_handle
*trans
;
4981 struct timespec ct
= CURRENT_TIME
;
4983 int received_uuid_changed
;
4985 if (!inode_owner_or_capable(inode
))
4988 ret
= mnt_want_write_file(file
);
4992 down_write(&root
->fs_info
->subvol_sem
);
4994 if (btrfs_ino(inode
) != BTRFS_FIRST_FREE_OBJECTID
) {
4999 if (btrfs_root_readonly(root
)) {
5006 * 2 - uuid items (received uuid + subvol uuid)
5008 trans
= btrfs_start_transaction(root
, 3);
5009 if (IS_ERR(trans
)) {
5010 ret
= PTR_ERR(trans
);
5015 sa
->rtransid
= trans
->transid
;
5016 sa
->rtime
.sec
= ct
.tv_sec
;
5017 sa
->rtime
.nsec
= ct
.tv_nsec
;
5019 received_uuid_changed
= memcmp(root_item
->received_uuid
, sa
->uuid
,
5021 if (received_uuid_changed
&&
5022 !btrfs_is_empty_uuid(root_item
->received_uuid
))
5023 btrfs_uuid_tree_rem(trans
, root
->fs_info
->uuid_root
,
5024 root_item
->received_uuid
,
5025 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5026 root
->root_key
.objectid
);
5027 memcpy(root_item
->received_uuid
, sa
->uuid
, BTRFS_UUID_SIZE
);
5028 btrfs_set_root_stransid(root_item
, sa
->stransid
);
5029 btrfs_set_root_rtransid(root_item
, sa
->rtransid
);
5030 btrfs_set_stack_timespec_sec(&root_item
->stime
, sa
->stime
.sec
);
5031 btrfs_set_stack_timespec_nsec(&root_item
->stime
, sa
->stime
.nsec
);
5032 btrfs_set_stack_timespec_sec(&root_item
->rtime
, sa
->rtime
.sec
);
5033 btrfs_set_stack_timespec_nsec(&root_item
->rtime
, sa
->rtime
.nsec
);
5035 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
5036 &root
->root_key
, &root
->root_item
);
5038 btrfs_end_transaction(trans
, root
);
5041 if (received_uuid_changed
&& !btrfs_is_empty_uuid(sa
->uuid
)) {
5042 ret
= btrfs_uuid_tree_add(trans
, root
->fs_info
->uuid_root
,
5044 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
5045 root
->root_key
.objectid
);
5046 if (ret
< 0 && ret
!= -EEXIST
) {
5047 btrfs_abort_transaction(trans
, root
, ret
);
5051 ret
= btrfs_commit_transaction(trans
, root
);
5053 btrfs_abort_transaction(trans
, root
, ret
);
5058 up_write(&root
->fs_info
->subvol_sem
);
5059 mnt_drop_write_file(file
);
5064 static long btrfs_ioctl_set_received_subvol_32(struct file
*file
,
5067 struct btrfs_ioctl_received_subvol_args_32
*args32
= NULL
;
5068 struct btrfs_ioctl_received_subvol_args
*args64
= NULL
;
5071 args32
= memdup_user(arg
, sizeof(*args32
));
5072 if (IS_ERR(args32
)) {
5073 ret
= PTR_ERR(args32
);
5078 args64
= kmalloc(sizeof(*args64
), GFP_NOFS
);
5084 memcpy(args64
->uuid
, args32
->uuid
, BTRFS_UUID_SIZE
);
5085 args64
->stransid
= args32
->stransid
;
5086 args64
->rtransid
= args32
->rtransid
;
5087 args64
->stime
.sec
= args32
->stime
.sec
;
5088 args64
->stime
.nsec
= args32
->stime
.nsec
;
5089 args64
->rtime
.sec
= args32
->rtime
.sec
;
5090 args64
->rtime
.nsec
= args32
->rtime
.nsec
;
5091 args64
->flags
= args32
->flags
;
5093 ret
= _btrfs_ioctl_set_received_subvol(file
, args64
);
5097 memcpy(args32
->uuid
, args64
->uuid
, BTRFS_UUID_SIZE
);
5098 args32
->stransid
= args64
->stransid
;
5099 args32
->rtransid
= args64
->rtransid
;
5100 args32
->stime
.sec
= args64
->stime
.sec
;
5101 args32
->stime
.nsec
= args64
->stime
.nsec
;
5102 args32
->rtime
.sec
= args64
->rtime
.sec
;
5103 args32
->rtime
.nsec
= args64
->rtime
.nsec
;
5104 args32
->flags
= args64
->flags
;
5106 ret
= copy_to_user(arg
, args32
, sizeof(*args32
));
5117 static long btrfs_ioctl_set_received_subvol(struct file
*file
,
5120 struct btrfs_ioctl_received_subvol_args
*sa
= NULL
;
5123 sa
= memdup_user(arg
, sizeof(*sa
));
5130 ret
= _btrfs_ioctl_set_received_subvol(file
, sa
);
5135 ret
= copy_to_user(arg
, sa
, sizeof(*sa
));
5144 static int btrfs_ioctl_get_fslabel(struct file
*file
, void __user
*arg
)
5146 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5149 char label
[BTRFS_LABEL_SIZE
];
5151 spin_lock(&root
->fs_info
->super_lock
);
5152 memcpy(label
, root
->fs_info
->super_copy
->label
, BTRFS_LABEL_SIZE
);
5153 spin_unlock(&root
->fs_info
->super_lock
);
5155 len
= strnlen(label
, BTRFS_LABEL_SIZE
);
5157 if (len
== BTRFS_LABEL_SIZE
) {
5158 btrfs_warn(root
->fs_info
,
5159 "label is too long, return the first %zu bytes", --len
);
5162 ret
= copy_to_user(arg
, label
, len
);
5164 return ret
? -EFAULT
: 0;
5167 static int btrfs_ioctl_set_fslabel(struct file
*file
, void __user
*arg
)
5169 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5170 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
5171 struct btrfs_trans_handle
*trans
;
5172 char label
[BTRFS_LABEL_SIZE
];
5175 if (!capable(CAP_SYS_ADMIN
))
5178 if (copy_from_user(label
, arg
, sizeof(label
)))
5181 if (strnlen(label
, BTRFS_LABEL_SIZE
) == BTRFS_LABEL_SIZE
) {
5182 btrfs_err(root
->fs_info
, "unable to set label with more than %d bytes",
5183 BTRFS_LABEL_SIZE
- 1);
5187 ret
= mnt_want_write_file(file
);
5191 trans
= btrfs_start_transaction(root
, 0);
5192 if (IS_ERR(trans
)) {
5193 ret
= PTR_ERR(trans
);
5197 spin_lock(&root
->fs_info
->super_lock
);
5198 strcpy(super_block
->label
, label
);
5199 spin_unlock(&root
->fs_info
->super_lock
);
5200 ret
= btrfs_commit_transaction(trans
, root
);
5203 mnt_drop_write_file(file
);
5207 #define INIT_FEATURE_FLAGS(suffix) \
5208 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5209 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5210 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5212 static int btrfs_ioctl_get_supported_features(struct file
*file
,
5215 static struct btrfs_ioctl_feature_flags features
[3] = {
5216 INIT_FEATURE_FLAGS(SUPP
),
5217 INIT_FEATURE_FLAGS(SAFE_SET
),
5218 INIT_FEATURE_FLAGS(SAFE_CLEAR
)
5221 if (copy_to_user(arg
, &features
, sizeof(features
)))
5227 static int btrfs_ioctl_get_features(struct file
*file
, void __user
*arg
)
5229 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5230 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
5231 struct btrfs_ioctl_feature_flags features
;
5233 features
.compat_flags
= btrfs_super_compat_flags(super_block
);
5234 features
.compat_ro_flags
= btrfs_super_compat_ro_flags(super_block
);
5235 features
.incompat_flags
= btrfs_super_incompat_flags(super_block
);
5237 if (copy_to_user(arg
, &features
, sizeof(features
)))
5243 static int check_feature_bits(struct btrfs_root
*root
,
5244 enum btrfs_feature_set set
,
5245 u64 change_mask
, u64 flags
, u64 supported_flags
,
5246 u64 safe_set
, u64 safe_clear
)
5248 const char *type
= btrfs_feature_set_names
[set
];
5250 u64 disallowed
, unsupported
;
5251 u64 set_mask
= flags
& change_mask
;
5252 u64 clear_mask
= ~flags
& change_mask
;
5254 unsupported
= set_mask
& ~supported_flags
;
5256 names
= btrfs_printable_features(set
, unsupported
);
5258 btrfs_warn(root
->fs_info
,
5259 "this kernel does not support the %s feature bit%s",
5260 names
, strchr(names
, ',') ? "s" : "");
5263 btrfs_warn(root
->fs_info
,
5264 "this kernel does not support %s bits 0x%llx",
5269 disallowed
= set_mask
& ~safe_set
;
5271 names
= btrfs_printable_features(set
, disallowed
);
5273 btrfs_warn(root
->fs_info
,
5274 "can't set the %s feature bit%s while mounted",
5275 names
, strchr(names
, ',') ? "s" : "");
5278 btrfs_warn(root
->fs_info
,
5279 "can't set %s bits 0x%llx while mounted",
5284 disallowed
= clear_mask
& ~safe_clear
;
5286 names
= btrfs_printable_features(set
, disallowed
);
5288 btrfs_warn(root
->fs_info
,
5289 "can't clear the %s feature bit%s while mounted",
5290 names
, strchr(names
, ',') ? "s" : "");
5293 btrfs_warn(root
->fs_info
,
5294 "can't clear %s bits 0x%llx while mounted",
5302 #define check_feature(root, change_mask, flags, mask_base) \
5303 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \
5304 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5305 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5306 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5308 static int btrfs_ioctl_set_features(struct file
*file
, void __user
*arg
)
5310 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5311 struct btrfs_super_block
*super_block
= root
->fs_info
->super_copy
;
5312 struct btrfs_ioctl_feature_flags flags
[2];
5313 struct btrfs_trans_handle
*trans
;
5317 if (!capable(CAP_SYS_ADMIN
))
5320 if (copy_from_user(flags
, arg
, sizeof(flags
)))
5324 if (!flags
[0].compat_flags
&& !flags
[0].compat_ro_flags
&&
5325 !flags
[0].incompat_flags
)
5328 ret
= check_feature(root
, flags
[0].compat_flags
,
5329 flags
[1].compat_flags
, COMPAT
);
5333 ret
= check_feature(root
, flags
[0].compat_ro_flags
,
5334 flags
[1].compat_ro_flags
, COMPAT_RO
);
5338 ret
= check_feature(root
, flags
[0].incompat_flags
,
5339 flags
[1].incompat_flags
, INCOMPAT
);
5343 trans
= btrfs_start_transaction(root
, 0);
5345 return PTR_ERR(trans
);
5347 spin_lock(&root
->fs_info
->super_lock
);
5348 newflags
= btrfs_super_compat_flags(super_block
);
5349 newflags
|= flags
[0].compat_flags
& flags
[1].compat_flags
;
5350 newflags
&= ~(flags
[0].compat_flags
& ~flags
[1].compat_flags
);
5351 btrfs_set_super_compat_flags(super_block
, newflags
);
5353 newflags
= btrfs_super_compat_ro_flags(super_block
);
5354 newflags
|= flags
[0].compat_ro_flags
& flags
[1].compat_ro_flags
;
5355 newflags
&= ~(flags
[0].compat_ro_flags
& ~flags
[1].compat_ro_flags
);
5356 btrfs_set_super_compat_ro_flags(super_block
, newflags
);
5358 newflags
= btrfs_super_incompat_flags(super_block
);
5359 newflags
|= flags
[0].incompat_flags
& flags
[1].incompat_flags
;
5360 newflags
&= ~(flags
[0].incompat_flags
& ~flags
[1].incompat_flags
);
5361 btrfs_set_super_incompat_flags(super_block
, newflags
);
5362 spin_unlock(&root
->fs_info
->super_lock
);
5364 return btrfs_commit_transaction(trans
, root
);
5367 long btrfs_ioctl(struct file
*file
, unsigned int
5368 cmd
, unsigned long arg
)
5370 struct btrfs_root
*root
= BTRFS_I(file_inode(file
))->root
;
5371 void __user
*argp
= (void __user
*)arg
;
5374 case FS_IOC_GETFLAGS
:
5375 return btrfs_ioctl_getflags(file
, argp
);
5376 case FS_IOC_SETFLAGS
:
5377 return btrfs_ioctl_setflags(file
, argp
);
5378 case FS_IOC_GETVERSION
:
5379 return btrfs_ioctl_getversion(file
, argp
);
5381 return btrfs_ioctl_fitrim(file
, argp
);
5382 case BTRFS_IOC_SNAP_CREATE
:
5383 return btrfs_ioctl_snap_create(file
, argp
, 0);
5384 case BTRFS_IOC_SNAP_CREATE_V2
:
5385 return btrfs_ioctl_snap_create_v2(file
, argp
, 0);
5386 case BTRFS_IOC_SUBVOL_CREATE
:
5387 return btrfs_ioctl_snap_create(file
, argp
, 1);
5388 case BTRFS_IOC_SUBVOL_CREATE_V2
:
5389 return btrfs_ioctl_snap_create_v2(file
, argp
, 1);
5390 case BTRFS_IOC_SNAP_DESTROY
:
5391 return btrfs_ioctl_snap_destroy(file
, argp
);
5392 case BTRFS_IOC_SUBVOL_GETFLAGS
:
5393 return btrfs_ioctl_subvol_getflags(file
, argp
);
5394 case BTRFS_IOC_SUBVOL_SETFLAGS
:
5395 return btrfs_ioctl_subvol_setflags(file
, argp
);
5396 case BTRFS_IOC_DEFAULT_SUBVOL
:
5397 return btrfs_ioctl_default_subvol(file
, argp
);
5398 case BTRFS_IOC_DEFRAG
:
5399 return btrfs_ioctl_defrag(file
, NULL
);
5400 case BTRFS_IOC_DEFRAG_RANGE
:
5401 return btrfs_ioctl_defrag(file
, argp
);
5402 case BTRFS_IOC_RESIZE
:
5403 return btrfs_ioctl_resize(file
, argp
);
5404 case BTRFS_IOC_ADD_DEV
:
5405 return btrfs_ioctl_add_dev(root
, argp
);
5406 case BTRFS_IOC_RM_DEV
:
5407 return btrfs_ioctl_rm_dev(file
, argp
);
5408 case BTRFS_IOC_FS_INFO
:
5409 return btrfs_ioctl_fs_info(root
, argp
);
5410 case BTRFS_IOC_DEV_INFO
:
5411 return btrfs_ioctl_dev_info(root
, argp
);
5412 case BTRFS_IOC_BALANCE
:
5413 return btrfs_ioctl_balance(file
, NULL
);
5414 case BTRFS_IOC_CLONE
:
5415 return btrfs_ioctl_clone(file
, arg
, 0, 0, 0);
5416 case BTRFS_IOC_CLONE_RANGE
:
5417 return btrfs_ioctl_clone_range(file
, argp
);
5418 case BTRFS_IOC_TRANS_START
:
5419 return btrfs_ioctl_trans_start(file
);
5420 case BTRFS_IOC_TRANS_END
:
5421 return btrfs_ioctl_trans_end(file
);
5422 case BTRFS_IOC_TREE_SEARCH
:
5423 return btrfs_ioctl_tree_search(file
, argp
);
5424 case BTRFS_IOC_TREE_SEARCH_V2
:
5425 return btrfs_ioctl_tree_search_v2(file
, argp
);
5426 case BTRFS_IOC_INO_LOOKUP
:
5427 return btrfs_ioctl_ino_lookup(file
, argp
);
5428 case BTRFS_IOC_INO_PATHS
:
5429 return btrfs_ioctl_ino_to_path(root
, argp
);
5430 case BTRFS_IOC_LOGICAL_INO
:
5431 return btrfs_ioctl_logical_to_ino(root
, argp
);
5432 case BTRFS_IOC_SPACE_INFO
:
5433 return btrfs_ioctl_space_info(root
, argp
);
5434 case BTRFS_IOC_SYNC
: {
5437 ret
= btrfs_start_delalloc_roots(root
->fs_info
, 0, -1);
5440 ret
= btrfs_sync_fs(file_inode(file
)->i_sb
, 1);
5442 * The transaction thread may want to do more work,
5443 * namely it pokes the cleaner ktread that will start
5444 * processing uncleaned subvols.
5446 wake_up_process(root
->fs_info
->transaction_kthread
);
5449 case BTRFS_IOC_START_SYNC
:
5450 return btrfs_ioctl_start_sync(root
, argp
);
5451 case BTRFS_IOC_WAIT_SYNC
:
5452 return btrfs_ioctl_wait_sync(root
, argp
);
5453 case BTRFS_IOC_SCRUB
:
5454 return btrfs_ioctl_scrub(file
, argp
);
5455 case BTRFS_IOC_SCRUB_CANCEL
:
5456 return btrfs_ioctl_scrub_cancel(root
, argp
);
5457 case BTRFS_IOC_SCRUB_PROGRESS
:
5458 return btrfs_ioctl_scrub_progress(root
, argp
);
5459 case BTRFS_IOC_BALANCE_V2
:
5460 return btrfs_ioctl_balance(file
, argp
);
5461 case BTRFS_IOC_BALANCE_CTL
:
5462 return btrfs_ioctl_balance_ctl(root
, arg
);
5463 case BTRFS_IOC_BALANCE_PROGRESS
:
5464 return btrfs_ioctl_balance_progress(root
, argp
);
5465 case BTRFS_IOC_SET_RECEIVED_SUBVOL
:
5466 return btrfs_ioctl_set_received_subvol(file
, argp
);
5468 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32
:
5469 return btrfs_ioctl_set_received_subvol_32(file
, argp
);
5471 case BTRFS_IOC_SEND
:
5472 return btrfs_ioctl_send(file
, argp
);
5473 case BTRFS_IOC_GET_DEV_STATS
:
5474 return btrfs_ioctl_get_dev_stats(root
, argp
);
5475 case BTRFS_IOC_QUOTA_CTL
:
5476 return btrfs_ioctl_quota_ctl(file
, argp
);
5477 case BTRFS_IOC_QGROUP_ASSIGN
:
5478 return btrfs_ioctl_qgroup_assign(file
, argp
);
5479 case BTRFS_IOC_QGROUP_CREATE
:
5480 return btrfs_ioctl_qgroup_create(file
, argp
);
5481 case BTRFS_IOC_QGROUP_LIMIT
:
5482 return btrfs_ioctl_qgroup_limit(file
, argp
);
5483 case BTRFS_IOC_QUOTA_RESCAN
:
5484 return btrfs_ioctl_quota_rescan(file
, argp
);
5485 case BTRFS_IOC_QUOTA_RESCAN_STATUS
:
5486 return btrfs_ioctl_quota_rescan_status(file
, argp
);
5487 case BTRFS_IOC_QUOTA_RESCAN_WAIT
:
5488 return btrfs_ioctl_quota_rescan_wait(file
, argp
);
5489 case BTRFS_IOC_DEV_REPLACE
:
5490 return btrfs_ioctl_dev_replace(root
, argp
);
5491 case BTRFS_IOC_GET_FSLABEL
:
5492 return btrfs_ioctl_get_fslabel(file
, argp
);
5493 case BTRFS_IOC_SET_FSLABEL
:
5494 return btrfs_ioctl_set_fslabel(file
, argp
);
5495 case BTRFS_IOC_FILE_EXTENT_SAME
:
5496 return btrfs_ioctl_file_extent_same(file
, argp
);
5497 case BTRFS_IOC_GET_SUPPORTED_FEATURES
:
5498 return btrfs_ioctl_get_supported_features(file
, argp
);
5499 case BTRFS_IOC_GET_FEATURES
:
5500 return btrfs_ioctl_get_features(file
, argp
);
5501 case BTRFS_IOC_SET_FEATURES
:
5502 return btrfs_ioctl_set_features(file
, argp
);
5508 #ifdef CONFIG_COMPAT
5509 long btrfs_compat_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
5512 case FS_IOC32_GETFLAGS
:
5513 cmd
= FS_IOC_GETFLAGS
;
5515 case FS_IOC32_SETFLAGS
:
5516 cmd
= FS_IOC_SETFLAGS
;
5518 case FS_IOC32_GETVERSION
:
5519 cmd
= FS_IOC_GETVERSION
;
5522 return -ENOIOCTLCMD
;
5525 return btrfs_ioctl(file
, cmd
, (unsigned long) compat_ptr(arg
));