4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
67 * dentry->d_inode->i_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
76 * dentry->d_parent->d_lock
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
84 int sysctl_vfs_cache_pressure __read_mostly
= 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
87 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
89 EXPORT_SYMBOL(rename_lock
);
91 static struct kmem_cache
*dentry_cache __read_mostly
;
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
102 static unsigned int d_hash_mask __read_mostly
;
103 static unsigned int d_hash_shift __read_mostly
;
105 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
107 static inline struct hlist_bl_head
*d_hash(const struct dentry
*parent
,
110 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
111 return dentry_hashtable
+ hash_32(hash
, d_hash_shift
);
114 /* Statistics gathering. */
115 struct dentry_stat_t dentry_stat
= {
119 static DEFINE_PER_CPU(long, nr_dentry
);
120 static DEFINE_PER_CPU(long, nr_dentry_unused
);
122 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
125 * Here we resort to our own counters instead of using generic per-cpu counters
126 * for consistency with what the vfs inode code does. We are expected to harvest
127 * better code and performance by having our own specialized counters.
129 * Please note that the loop is done over all possible CPUs, not over all online
130 * CPUs. The reason for this is that we don't want to play games with CPUs going
131 * on and off. If one of them goes off, we will just keep their counters.
133 * glommer: See cffbc8a for details, and if you ever intend to change this,
134 * please update all vfs counters to match.
136 static long get_nr_dentry(void)
140 for_each_possible_cpu(i
)
141 sum
+= per_cpu(nr_dentry
, i
);
142 return sum
< 0 ? 0 : sum
;
145 static long get_nr_dentry_unused(void)
149 for_each_possible_cpu(i
)
150 sum
+= per_cpu(nr_dentry_unused
, i
);
151 return sum
< 0 ? 0 : sum
;
154 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
155 size_t *lenp
, loff_t
*ppos
)
157 dentry_stat
.nr_dentry
= get_nr_dentry();
158 dentry_stat
.nr_unused
= get_nr_dentry_unused();
159 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
164 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
165 * The strings are both count bytes long, and count is non-zero.
167 #ifdef CONFIG_DCACHE_WORD_ACCESS
169 #include <asm/word-at-a-time.h>
171 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
172 * aligned allocation for this particular component. We don't
173 * strictly need the load_unaligned_zeropad() safety, but it
174 * doesn't hurt either.
176 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
177 * need the careful unaligned handling.
179 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
181 unsigned long a
,b
,mask
;
184 a
= *(unsigned long *)cs
;
185 b
= load_unaligned_zeropad(ct
);
186 if (tcount
< sizeof(unsigned long))
188 if (unlikely(a
!= b
))
190 cs
+= sizeof(unsigned long);
191 ct
+= sizeof(unsigned long);
192 tcount
-= sizeof(unsigned long);
196 mask
= bytemask_from_count(tcount
);
197 return unlikely(!!((a
^ b
) & mask
));
202 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
216 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
218 const unsigned char *cs
;
220 * Be careful about RCU walk racing with rename:
221 * use ACCESS_ONCE to fetch the name pointer.
223 * NOTE! Even if a rename will mean that the length
224 * was not loaded atomically, we don't care. The
225 * RCU walk will check the sequence count eventually,
226 * and catch it. And we won't overrun the buffer,
227 * because we're reading the name pointer atomically,
228 * and a dentry name is guaranteed to be properly
229 * terminated with a NUL byte.
231 * End result: even if 'len' is wrong, we'll exit
232 * early because the data cannot match (there can
233 * be no NUL in the ct/tcount data)
235 cs
= ACCESS_ONCE(dentry
->d_name
.name
);
236 smp_read_barrier_depends();
237 return dentry_string_cmp(cs
, ct
, tcount
);
240 struct external_name
{
243 struct rcu_head head
;
245 unsigned char name
[];
248 static inline struct external_name
*external_name(struct dentry
*dentry
)
250 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
253 static void __d_free(struct rcu_head
*head
)
255 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
257 kmem_cache_free(dentry_cache
, dentry
);
260 static void __d_free_external(struct rcu_head
*head
)
262 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
263 kfree(external_name(dentry
));
264 kmem_cache_free(dentry_cache
, dentry
);
267 static inline int dname_external(const struct dentry
*dentry
)
269 return dentry
->d_name
.name
!= dentry
->d_iname
;
272 static inline void __d_set_inode_and_type(struct dentry
*dentry
,
278 dentry
->d_inode
= inode
;
279 flags
= READ_ONCE(dentry
->d_flags
);
280 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
282 WRITE_ONCE(dentry
->d_flags
, flags
);
285 static inline void __d_clear_type_and_inode(struct dentry
*dentry
)
287 unsigned flags
= READ_ONCE(dentry
->d_flags
);
289 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
290 WRITE_ONCE(dentry
->d_flags
, flags
);
291 dentry
->d_inode
= NULL
;
294 static void dentry_free(struct dentry
*dentry
)
296 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
297 if (unlikely(dname_external(dentry
))) {
298 struct external_name
*p
= external_name(dentry
);
299 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
300 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
304 /* if dentry was never visible to RCU, immediate free is OK */
305 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
306 __d_free(&dentry
->d_u
.d_rcu
);
308 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
312 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
313 * @dentry: the target dentry
314 * After this call, in-progress rcu-walk path lookup will fail. This
315 * should be called after unhashing, and after changing d_inode (if
316 * the dentry has not already been unhashed).
318 static inline void dentry_rcuwalk_invalidate(struct dentry
*dentry
)
320 lockdep_assert_held(&dentry
->d_lock
);
321 /* Go through am invalidation barrier */
322 write_seqcount_invalidate(&dentry
->d_seq
);
326 * Release the dentry's inode, using the filesystem
327 * d_iput() operation if defined. Dentry has no refcount
330 static void dentry_iput(struct dentry
* dentry
)
331 __releases(dentry
->d_lock
)
332 __releases(dentry
->d_inode
->i_lock
)
334 struct inode
*inode
= dentry
->d_inode
;
336 __d_clear_type_and_inode(dentry
);
337 hlist_del_init(&dentry
->d_u
.d_alias
);
338 spin_unlock(&dentry
->d_lock
);
339 spin_unlock(&inode
->i_lock
);
341 fsnotify_inoderemove(inode
);
342 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
343 dentry
->d_op
->d_iput(dentry
, inode
);
347 spin_unlock(&dentry
->d_lock
);
352 * Release the dentry's inode, using the filesystem
353 * d_iput() operation if defined. dentry remains in-use.
355 static void dentry_unlink_inode(struct dentry
* dentry
)
356 __releases(dentry
->d_lock
)
357 __releases(dentry
->d_inode
->i_lock
)
359 struct inode
*inode
= dentry
->d_inode
;
361 raw_write_seqcount_begin(&dentry
->d_seq
);
362 __d_clear_type_and_inode(dentry
);
363 hlist_del_init(&dentry
->d_u
.d_alias
);
364 raw_write_seqcount_end(&dentry
->d_seq
);
365 spin_unlock(&dentry
->d_lock
);
366 spin_unlock(&inode
->i_lock
);
368 fsnotify_inoderemove(inode
);
369 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
370 dentry
->d_op
->d_iput(dentry
, inode
);
376 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
377 * is in use - which includes both the "real" per-superblock
378 * LRU list _and_ the DCACHE_SHRINK_LIST use.
380 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
381 * on the shrink list (ie not on the superblock LRU list).
383 * The per-cpu "nr_dentry_unused" counters are updated with
384 * the DCACHE_LRU_LIST bit.
386 * These helper functions make sure we always follow the
387 * rules. d_lock must be held by the caller.
389 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
390 static void d_lru_add(struct dentry
*dentry
)
392 D_FLAG_VERIFY(dentry
, 0);
393 dentry
->d_flags
|= DCACHE_LRU_LIST
;
394 this_cpu_inc(nr_dentry_unused
);
395 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
398 static void d_lru_del(struct dentry
*dentry
)
400 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
401 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
402 this_cpu_dec(nr_dentry_unused
);
403 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
406 static void d_shrink_del(struct dentry
*dentry
)
408 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
409 list_del_init(&dentry
->d_lru
);
410 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
411 this_cpu_dec(nr_dentry_unused
);
414 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
416 D_FLAG_VERIFY(dentry
, 0);
417 list_add(&dentry
->d_lru
, list
);
418 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
419 this_cpu_inc(nr_dentry_unused
);
423 * These can only be called under the global LRU lock, ie during the
424 * callback for freeing the LRU list. "isolate" removes it from the
425 * LRU lists entirely, while shrink_move moves it to the indicated
428 static void d_lru_isolate(struct list_lru_one
*lru
, struct dentry
*dentry
)
430 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
431 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
432 this_cpu_dec(nr_dentry_unused
);
433 list_lru_isolate(lru
, &dentry
->d_lru
);
436 static void d_lru_shrink_move(struct list_lru_one
*lru
, struct dentry
*dentry
,
437 struct list_head
*list
)
439 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
440 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
441 list_lru_isolate_move(lru
, &dentry
->d_lru
, list
);
445 * dentry_lru_(add|del)_list) must be called with d_lock held.
447 static void dentry_lru_add(struct dentry
*dentry
)
449 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
454 * d_drop - drop a dentry
455 * @dentry: dentry to drop
457 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
458 * be found through a VFS lookup any more. Note that this is different from
459 * deleting the dentry - d_delete will try to mark the dentry negative if
460 * possible, giving a successful _negative_ lookup, while d_drop will
461 * just make the cache lookup fail.
463 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
464 * reason (NFS timeouts or autofs deletes).
466 * __d_drop requires dentry->d_lock.
468 void __d_drop(struct dentry
*dentry
)
470 if (!d_unhashed(dentry
)) {
471 struct hlist_bl_head
*b
;
473 * Hashed dentries are normally on the dentry hashtable,
474 * with the exception of those newly allocated by
475 * d_obtain_alias, which are always IS_ROOT:
477 if (unlikely(IS_ROOT(dentry
)))
478 b
= &dentry
->d_sb
->s_anon
;
480 b
= d_hash(dentry
->d_parent
, dentry
->d_name
.hash
);
483 __hlist_bl_del(&dentry
->d_hash
);
484 dentry
->d_hash
.pprev
= NULL
;
486 dentry_rcuwalk_invalidate(dentry
);
489 EXPORT_SYMBOL(__d_drop
);
491 void d_drop(struct dentry
*dentry
)
493 spin_lock(&dentry
->d_lock
);
495 spin_unlock(&dentry
->d_lock
);
497 EXPORT_SYMBOL(d_drop
);
499 static void __dentry_kill(struct dentry
*dentry
)
501 struct dentry
*parent
= NULL
;
502 bool can_free
= true;
503 if (!IS_ROOT(dentry
))
504 parent
= dentry
->d_parent
;
507 * The dentry is now unrecoverably dead to the world.
509 lockref_mark_dead(&dentry
->d_lockref
);
512 * inform the fs via d_prune that this dentry is about to be
513 * unhashed and destroyed.
515 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
516 dentry
->d_op
->d_prune(dentry
);
518 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
519 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
522 /* if it was on the hash then remove it */
524 __list_del_entry(&dentry
->d_child
);
526 * Inform d_walk() that we are no longer attached to the
529 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
531 spin_unlock(&parent
->d_lock
);
534 * dentry_iput drops the locks, at which point nobody (except
535 * transient RCU lookups) can reach this dentry.
537 BUG_ON(dentry
->d_lockref
.count
> 0);
538 this_cpu_dec(nr_dentry
);
539 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
540 dentry
->d_op
->d_release(dentry
);
542 spin_lock(&dentry
->d_lock
);
543 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
544 dentry
->d_flags
|= DCACHE_MAY_FREE
;
547 spin_unlock(&dentry
->d_lock
);
548 if (likely(can_free
))
553 * Finish off a dentry we've decided to kill.
554 * dentry->d_lock must be held, returns with it unlocked.
555 * If ref is non-zero, then decrement the refcount too.
556 * Returns dentry requiring refcount drop, or NULL if we're done.
558 static struct dentry
*dentry_kill(struct dentry
*dentry
)
559 __releases(dentry
->d_lock
)
561 struct inode
*inode
= dentry
->d_inode
;
562 struct dentry
*parent
= NULL
;
564 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
567 if (!IS_ROOT(dentry
)) {
568 parent
= dentry
->d_parent
;
569 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
571 spin_unlock(&inode
->i_lock
);
576 __dentry_kill(dentry
);
580 spin_unlock(&dentry
->d_lock
);
581 return dentry
; /* try again with same dentry */
584 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
586 struct dentry
*parent
= dentry
->d_parent
;
589 if (unlikely(dentry
->d_lockref
.count
< 0))
591 if (likely(spin_trylock(&parent
->d_lock
)))
594 spin_unlock(&dentry
->d_lock
);
596 parent
= ACCESS_ONCE(dentry
->d_parent
);
597 spin_lock(&parent
->d_lock
);
599 * We can't blindly lock dentry until we are sure
600 * that we won't violate the locking order.
601 * Any changes of dentry->d_parent must have
602 * been done with parent->d_lock held, so
603 * spin_lock() above is enough of a barrier
604 * for checking if it's still our child.
606 if (unlikely(parent
!= dentry
->d_parent
)) {
607 spin_unlock(&parent
->d_lock
);
611 if (parent
!= dentry
)
612 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
619 * Try to do a lockless dput(), and return whether that was successful.
621 * If unsuccessful, we return false, having already taken the dentry lock.
623 * The caller needs to hold the RCU read lock, so that the dentry is
624 * guaranteed to stay around even if the refcount goes down to zero!
626 static inline bool fast_dput(struct dentry
*dentry
)
629 unsigned int d_flags
;
632 * If we have a d_op->d_delete() operation, we sould not
633 * let the dentry count go to zero, so use "put_or_lock".
635 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
))
636 return lockref_put_or_lock(&dentry
->d_lockref
);
639 * .. otherwise, we can try to just decrement the
640 * lockref optimistically.
642 ret
= lockref_put_return(&dentry
->d_lockref
);
645 * If the lockref_put_return() failed due to the lock being held
646 * by somebody else, the fast path has failed. We will need to
647 * get the lock, and then check the count again.
649 if (unlikely(ret
< 0)) {
650 spin_lock(&dentry
->d_lock
);
651 if (dentry
->d_lockref
.count
> 1) {
652 dentry
->d_lockref
.count
--;
653 spin_unlock(&dentry
->d_lock
);
660 * If we weren't the last ref, we're done.
666 * Careful, careful. The reference count went down
667 * to zero, but we don't hold the dentry lock, so
668 * somebody else could get it again, and do another
669 * dput(), and we need to not race with that.
671 * However, there is a very special and common case
672 * where we don't care, because there is nothing to
673 * do: the dentry is still hashed, it does not have
674 * a 'delete' op, and it's referenced and already on
677 * NOTE! Since we aren't locked, these values are
678 * not "stable". However, it is sufficient that at
679 * some point after we dropped the reference the
680 * dentry was hashed and the flags had the proper
681 * value. Other dentry users may have re-gotten
682 * a reference to the dentry and change that, but
683 * our work is done - we can leave the dentry
684 * around with a zero refcount.
687 d_flags
= ACCESS_ONCE(dentry
->d_flags
);
688 d_flags
&= DCACHE_REFERENCED
| DCACHE_LRU_LIST
| DCACHE_DISCONNECTED
;
690 /* Nothing to do? Dropping the reference was all we needed? */
691 if (d_flags
== (DCACHE_REFERENCED
| DCACHE_LRU_LIST
) && !d_unhashed(dentry
))
695 * Not the fast normal case? Get the lock. We've already decremented
696 * the refcount, but we'll need to re-check the situation after
699 spin_lock(&dentry
->d_lock
);
702 * Did somebody else grab a reference to it in the meantime, and
703 * we're no longer the last user after all? Alternatively, somebody
704 * else could have killed it and marked it dead. Either way, we
705 * don't need to do anything else.
707 if (dentry
->d_lockref
.count
) {
708 spin_unlock(&dentry
->d_lock
);
713 * Re-get the reference we optimistically dropped. We hold the
714 * lock, and we just tested that it was zero, so we can just
717 dentry
->d_lockref
.count
= 1;
725 * This is complicated by the fact that we do not want to put
726 * dentries that are no longer on any hash chain on the unused
727 * list: we'd much rather just get rid of them immediately.
729 * However, that implies that we have to traverse the dentry
730 * tree upwards to the parents which might _also_ now be
731 * scheduled for deletion (it may have been only waiting for
732 * its last child to go away).
734 * This tail recursion is done by hand as we don't want to depend
735 * on the compiler to always get this right (gcc generally doesn't).
736 * Real recursion would eat up our stack space.
740 * dput - release a dentry
741 * @dentry: dentry to release
743 * Release a dentry. This will drop the usage count and if appropriate
744 * call the dentry unlink method as well as removing it from the queues and
745 * releasing its resources. If the parent dentries were scheduled for release
746 * they too may now get deleted.
748 void dput(struct dentry
*dentry
)
750 if (unlikely(!dentry
))
757 if (likely(fast_dput(dentry
))) {
762 /* Slow case: now with the dentry lock held */
765 /* Unreachable? Get rid of it */
766 if (unlikely(d_unhashed(dentry
)))
769 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
772 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
773 if (dentry
->d_op
->d_delete(dentry
))
777 if (!(dentry
->d_flags
& DCACHE_REFERENCED
))
778 dentry
->d_flags
|= DCACHE_REFERENCED
;
779 dentry_lru_add(dentry
);
781 dentry
->d_lockref
.count
--;
782 spin_unlock(&dentry
->d_lock
);
786 dentry
= dentry_kill(dentry
);
795 /* This must be called with d_lock held */
796 static inline void __dget_dlock(struct dentry
*dentry
)
798 dentry
->d_lockref
.count
++;
801 static inline void __dget(struct dentry
*dentry
)
803 lockref_get(&dentry
->d_lockref
);
806 struct dentry
*dget_parent(struct dentry
*dentry
)
812 * Do optimistic parent lookup without any
816 ret
= ACCESS_ONCE(dentry
->d_parent
);
817 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
819 if (likely(gotref
)) {
820 if (likely(ret
== ACCESS_ONCE(dentry
->d_parent
)))
827 * Don't need rcu_dereference because we re-check it was correct under
831 ret
= dentry
->d_parent
;
832 spin_lock(&ret
->d_lock
);
833 if (unlikely(ret
!= dentry
->d_parent
)) {
834 spin_unlock(&ret
->d_lock
);
839 BUG_ON(!ret
->d_lockref
.count
);
840 ret
->d_lockref
.count
++;
841 spin_unlock(&ret
->d_lock
);
844 EXPORT_SYMBOL(dget_parent
);
847 * d_find_alias - grab a hashed alias of inode
848 * @inode: inode in question
850 * If inode has a hashed alias, or is a directory and has any alias,
851 * acquire the reference to alias and return it. Otherwise return NULL.
852 * Notice that if inode is a directory there can be only one alias and
853 * it can be unhashed only if it has no children, or if it is the root
854 * of a filesystem, or if the directory was renamed and d_revalidate
855 * was the first vfs operation to notice.
857 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
858 * any other hashed alias over that one.
860 static struct dentry
*__d_find_alias(struct inode
*inode
)
862 struct dentry
*alias
, *discon_alias
;
866 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
867 spin_lock(&alias
->d_lock
);
868 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
869 if (IS_ROOT(alias
) &&
870 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
871 discon_alias
= alias
;
874 spin_unlock(&alias
->d_lock
);
878 spin_unlock(&alias
->d_lock
);
881 alias
= discon_alias
;
882 spin_lock(&alias
->d_lock
);
883 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
885 spin_unlock(&alias
->d_lock
);
888 spin_unlock(&alias
->d_lock
);
894 struct dentry
*d_find_alias(struct inode
*inode
)
896 struct dentry
*de
= NULL
;
898 if (!hlist_empty(&inode
->i_dentry
)) {
899 spin_lock(&inode
->i_lock
);
900 de
= __d_find_alias(inode
);
901 spin_unlock(&inode
->i_lock
);
905 EXPORT_SYMBOL(d_find_alias
);
908 * Try to kill dentries associated with this inode.
909 * WARNING: you must own a reference to inode.
911 void d_prune_aliases(struct inode
*inode
)
913 struct dentry
*dentry
;
915 spin_lock(&inode
->i_lock
);
916 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
917 spin_lock(&dentry
->d_lock
);
918 if (!dentry
->d_lockref
.count
) {
919 struct dentry
*parent
= lock_parent(dentry
);
920 if (likely(!dentry
->d_lockref
.count
)) {
921 __dentry_kill(dentry
);
926 spin_unlock(&parent
->d_lock
);
928 spin_unlock(&dentry
->d_lock
);
930 spin_unlock(&inode
->i_lock
);
932 EXPORT_SYMBOL(d_prune_aliases
);
934 static void shrink_dentry_list(struct list_head
*list
)
936 struct dentry
*dentry
, *parent
;
938 while (!list_empty(list
)) {
940 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
941 spin_lock(&dentry
->d_lock
);
942 parent
= lock_parent(dentry
);
945 * The dispose list is isolated and dentries are not accounted
946 * to the LRU here, so we can simply remove it from the list
947 * here regardless of whether it is referenced or not.
949 d_shrink_del(dentry
);
952 * We found an inuse dentry which was not removed from
953 * the LRU because of laziness during lookup. Do not free it.
955 if (dentry
->d_lockref
.count
> 0) {
956 spin_unlock(&dentry
->d_lock
);
958 spin_unlock(&parent
->d_lock
);
963 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_KILLED
)) {
964 bool can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
965 spin_unlock(&dentry
->d_lock
);
967 spin_unlock(&parent
->d_lock
);
973 inode
= dentry
->d_inode
;
974 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
975 d_shrink_add(dentry
, list
);
976 spin_unlock(&dentry
->d_lock
);
978 spin_unlock(&parent
->d_lock
);
982 __dentry_kill(dentry
);
985 * We need to prune ancestors too. This is necessary to prevent
986 * quadratic behavior of shrink_dcache_parent(), but is also
987 * expected to be beneficial in reducing dentry cache
991 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
)) {
992 parent
= lock_parent(dentry
);
993 if (dentry
->d_lockref
.count
!= 1) {
994 dentry
->d_lockref
.count
--;
995 spin_unlock(&dentry
->d_lock
);
997 spin_unlock(&parent
->d_lock
);
1000 inode
= dentry
->d_inode
; /* can't be NULL */
1001 if (unlikely(!spin_trylock(&inode
->i_lock
))) {
1002 spin_unlock(&dentry
->d_lock
);
1004 spin_unlock(&parent
->d_lock
);
1008 __dentry_kill(dentry
);
1014 static enum lru_status
dentry_lru_isolate(struct list_head
*item
,
1015 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1017 struct list_head
*freeable
= arg
;
1018 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1022 * we are inverting the lru lock/dentry->d_lock here,
1023 * so use a trylock. If we fail to get the lock, just skip
1026 if (!spin_trylock(&dentry
->d_lock
))
1030 * Referenced dentries are still in use. If they have active
1031 * counts, just remove them from the LRU. Otherwise give them
1032 * another pass through the LRU.
1034 if (dentry
->d_lockref
.count
) {
1035 d_lru_isolate(lru
, dentry
);
1036 spin_unlock(&dentry
->d_lock
);
1040 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
1041 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
1042 spin_unlock(&dentry
->d_lock
);
1045 * The list move itself will be made by the common LRU code. At
1046 * this point, we've dropped the dentry->d_lock but keep the
1047 * lru lock. This is safe to do, since every list movement is
1048 * protected by the lru lock even if both locks are held.
1050 * This is guaranteed by the fact that all LRU management
1051 * functions are intermediated by the LRU API calls like
1052 * list_lru_add and list_lru_del. List movement in this file
1053 * only ever occur through this functions or through callbacks
1054 * like this one, that are called from the LRU API.
1056 * The only exceptions to this are functions like
1057 * shrink_dentry_list, and code that first checks for the
1058 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1059 * operating only with stack provided lists after they are
1060 * properly isolated from the main list. It is thus, always a
1066 d_lru_shrink_move(lru
, dentry
, freeable
);
1067 spin_unlock(&dentry
->d_lock
);
1073 * prune_dcache_sb - shrink the dcache
1075 * @sc: shrink control, passed to list_lru_shrink_walk()
1077 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1078 * is done when we need more memory and called from the superblock shrinker
1081 * This function may fail to free any resources if all the dentries are in
1084 long prune_dcache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
1089 freed
= list_lru_shrink_walk(&sb
->s_dentry_lru
, sc
,
1090 dentry_lru_isolate
, &dispose
);
1091 shrink_dentry_list(&dispose
);
1095 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
1096 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1098 struct list_head
*freeable
= arg
;
1099 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1102 * we are inverting the lru lock/dentry->d_lock here,
1103 * so use a trylock. If we fail to get the lock, just skip
1106 if (!spin_trylock(&dentry
->d_lock
))
1109 d_lru_shrink_move(lru
, dentry
, freeable
);
1110 spin_unlock(&dentry
->d_lock
);
1117 * shrink_dcache_sb - shrink dcache for a superblock
1120 * Shrink the dcache for the specified super block. This is used to free
1121 * the dcache before unmounting a file system.
1123 void shrink_dcache_sb(struct super_block
*sb
)
1130 freed
= list_lru_walk(&sb
->s_dentry_lru
,
1131 dentry_lru_isolate_shrink
, &dispose
, UINT_MAX
);
1133 this_cpu_sub(nr_dentry_unused
, freed
);
1134 shrink_dentry_list(&dispose
);
1135 } while (freed
> 0);
1137 EXPORT_SYMBOL(shrink_dcache_sb
);
1140 * enum d_walk_ret - action to talke during tree walk
1141 * @D_WALK_CONTINUE: contrinue walk
1142 * @D_WALK_QUIT: quit walk
1143 * @D_WALK_NORETRY: quit when retry is needed
1144 * @D_WALK_SKIP: skip this dentry and its children
1154 * d_walk - walk the dentry tree
1155 * @parent: start of walk
1156 * @data: data passed to @enter() and @finish()
1157 * @enter: callback when first entering the dentry
1158 * @finish: callback when successfully finished the walk
1160 * The @enter() and @finish() callbacks are called with d_lock held.
1162 static void d_walk(struct dentry
*parent
, void *data
,
1163 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1164 void (*finish
)(void *))
1166 struct dentry
*this_parent
;
1167 struct list_head
*next
;
1169 enum d_walk_ret ret
;
1173 read_seqbegin_or_lock(&rename_lock
, &seq
);
1174 this_parent
= parent
;
1175 spin_lock(&this_parent
->d_lock
);
1177 ret
= enter(data
, this_parent
);
1179 case D_WALK_CONTINUE
:
1184 case D_WALK_NORETRY
:
1189 next
= this_parent
->d_subdirs
.next
;
1191 while (next
!= &this_parent
->d_subdirs
) {
1192 struct list_head
*tmp
= next
;
1193 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1196 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1198 ret
= enter(data
, dentry
);
1200 case D_WALK_CONTINUE
:
1203 spin_unlock(&dentry
->d_lock
);
1205 case D_WALK_NORETRY
:
1209 spin_unlock(&dentry
->d_lock
);
1213 if (!list_empty(&dentry
->d_subdirs
)) {
1214 spin_unlock(&this_parent
->d_lock
);
1215 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1216 this_parent
= dentry
;
1217 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1220 spin_unlock(&dentry
->d_lock
);
1223 * All done at this level ... ascend and resume the search.
1227 if (this_parent
!= parent
) {
1228 struct dentry
*child
= this_parent
;
1229 this_parent
= child
->d_parent
;
1231 spin_unlock(&child
->d_lock
);
1232 spin_lock(&this_parent
->d_lock
);
1234 /* might go back up the wrong parent if we have had a rename. */
1235 if (need_seqretry(&rename_lock
, seq
))
1237 /* go into the first sibling still alive */
1239 next
= child
->d_child
.next
;
1240 if (next
== &this_parent
->d_subdirs
)
1242 child
= list_entry(next
, struct dentry
, d_child
);
1243 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1247 if (need_seqretry(&rename_lock
, seq
))
1254 spin_unlock(&this_parent
->d_lock
);
1255 done_seqretry(&rename_lock
, seq
);
1259 spin_unlock(&this_parent
->d_lock
);
1269 * Search for at least 1 mount point in the dentry's subdirs.
1270 * We descend to the next level whenever the d_subdirs
1271 * list is non-empty and continue searching.
1274 static enum d_walk_ret
check_mount(void *data
, struct dentry
*dentry
)
1277 if (d_mountpoint(dentry
)) {
1281 return D_WALK_CONTINUE
;
1285 * have_submounts - check for mounts over a dentry
1286 * @parent: dentry to check.
1288 * Return true if the parent or its subdirectories contain
1291 int have_submounts(struct dentry
*parent
)
1295 d_walk(parent
, &ret
, check_mount
, NULL
);
1299 EXPORT_SYMBOL(have_submounts
);
1302 * Called by mount code to set a mountpoint and check if the mountpoint is
1303 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1304 * subtree can become unreachable).
1306 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1307 * this reason take rename_lock and d_lock on dentry and ancestors.
1309 int d_set_mounted(struct dentry
*dentry
)
1313 write_seqlock(&rename_lock
);
1314 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1315 /* Need exclusion wrt. d_invalidate() */
1316 spin_lock(&p
->d_lock
);
1317 if (unlikely(d_unhashed(p
))) {
1318 spin_unlock(&p
->d_lock
);
1321 spin_unlock(&p
->d_lock
);
1323 spin_lock(&dentry
->d_lock
);
1324 if (!d_unlinked(dentry
)) {
1325 dentry
->d_flags
|= DCACHE_MOUNTED
;
1328 spin_unlock(&dentry
->d_lock
);
1330 write_sequnlock(&rename_lock
);
1335 * Search the dentry child list of the specified parent,
1336 * and move any unused dentries to the end of the unused
1337 * list for prune_dcache(). We descend to the next level
1338 * whenever the d_subdirs list is non-empty and continue
1341 * It returns zero iff there are no unused children,
1342 * otherwise it returns the number of children moved to
1343 * the end of the unused list. This may not be the total
1344 * number of unused children, because select_parent can
1345 * drop the lock and return early due to latency
1349 struct select_data
{
1350 struct dentry
*start
;
1351 struct list_head dispose
;
1355 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1357 struct select_data
*data
= _data
;
1358 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1360 if (data
->start
== dentry
)
1363 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1366 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1368 if (!dentry
->d_lockref
.count
) {
1369 d_shrink_add(dentry
, &data
->dispose
);
1374 * We can return to the caller if we have found some (this
1375 * ensures forward progress). We'll be coming back to find
1378 if (!list_empty(&data
->dispose
))
1379 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1385 * shrink_dcache_parent - prune dcache
1386 * @parent: parent of entries to prune
1388 * Prune the dcache to remove unused children of the parent dentry.
1390 void shrink_dcache_parent(struct dentry
*parent
)
1393 struct select_data data
;
1395 INIT_LIST_HEAD(&data
.dispose
);
1396 data
.start
= parent
;
1399 d_walk(parent
, &data
, select_collect
, NULL
);
1403 shrink_dentry_list(&data
.dispose
);
1407 EXPORT_SYMBOL(shrink_dcache_parent
);
1409 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1411 /* it has busy descendents; complain about those instead */
1412 if (!list_empty(&dentry
->d_subdirs
))
1413 return D_WALK_CONTINUE
;
1415 /* root with refcount 1 is fine */
1416 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1417 return D_WALK_CONTINUE
;
1419 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1420 " still in use (%d) [unmount of %s %s]\n",
1423 dentry
->d_inode
->i_ino
: 0UL,
1425 dentry
->d_lockref
.count
,
1426 dentry
->d_sb
->s_type
->name
,
1427 dentry
->d_sb
->s_id
);
1429 return D_WALK_CONTINUE
;
1432 static void do_one_tree(struct dentry
*dentry
)
1434 shrink_dcache_parent(dentry
);
1435 d_walk(dentry
, dentry
, umount_check
, NULL
);
1441 * destroy the dentries attached to a superblock on unmounting
1443 void shrink_dcache_for_umount(struct super_block
*sb
)
1445 struct dentry
*dentry
;
1447 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1449 dentry
= sb
->s_root
;
1451 do_one_tree(dentry
);
1453 while (!hlist_bl_empty(&sb
->s_anon
)) {
1454 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
));
1455 do_one_tree(dentry
);
1459 struct detach_data
{
1460 struct select_data select
;
1461 struct dentry
*mountpoint
;
1463 static enum d_walk_ret
detach_and_collect(void *_data
, struct dentry
*dentry
)
1465 struct detach_data
*data
= _data
;
1467 if (d_mountpoint(dentry
)) {
1468 __dget_dlock(dentry
);
1469 data
->mountpoint
= dentry
;
1473 return select_collect(&data
->select
, dentry
);
1476 static void check_and_drop(void *_data
)
1478 struct detach_data
*data
= _data
;
1480 if (!data
->mountpoint
&& !data
->select
.found
)
1481 __d_drop(data
->select
.start
);
1485 * d_invalidate - detach submounts, prune dcache, and drop
1486 * @dentry: dentry to invalidate (aka detach, prune and drop)
1490 * The final d_drop is done as an atomic operation relative to
1491 * rename_lock ensuring there are no races with d_set_mounted. This
1492 * ensures there are no unhashed dentries on the path to a mountpoint.
1494 void d_invalidate(struct dentry
*dentry
)
1497 * If it's already been dropped, return OK.
1499 spin_lock(&dentry
->d_lock
);
1500 if (d_unhashed(dentry
)) {
1501 spin_unlock(&dentry
->d_lock
);
1504 spin_unlock(&dentry
->d_lock
);
1506 /* Negative dentries can be dropped without further checks */
1507 if (!dentry
->d_inode
) {
1513 struct detach_data data
;
1515 data
.mountpoint
= NULL
;
1516 INIT_LIST_HEAD(&data
.select
.dispose
);
1517 data
.select
.start
= dentry
;
1518 data
.select
.found
= 0;
1520 d_walk(dentry
, &data
, detach_and_collect
, check_and_drop
);
1522 if (data
.select
.found
)
1523 shrink_dentry_list(&data
.select
.dispose
);
1525 if (data
.mountpoint
) {
1526 detach_mounts(data
.mountpoint
);
1527 dput(data
.mountpoint
);
1530 if (!data
.mountpoint
&& !data
.select
.found
)
1536 EXPORT_SYMBOL(d_invalidate
);
1539 * __d_alloc - allocate a dcache entry
1540 * @sb: filesystem it will belong to
1541 * @name: qstr of the name
1543 * Allocates a dentry. It returns %NULL if there is insufficient memory
1544 * available. On a success the dentry is returned. The name passed in is
1545 * copied and the copy passed in may be reused after this call.
1548 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1550 struct dentry
*dentry
;
1553 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1558 * We guarantee that the inline name is always NUL-terminated.
1559 * This way the memcpy() done by the name switching in rename
1560 * will still always have a NUL at the end, even if we might
1561 * be overwriting an internal NUL character
1563 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1564 if (name
->len
> DNAME_INLINE_LEN
-1) {
1565 size_t size
= offsetof(struct external_name
, name
[1]);
1566 struct external_name
*p
= kmalloc(size
+ name
->len
, GFP_KERNEL
);
1568 kmem_cache_free(dentry_cache
, dentry
);
1571 atomic_set(&p
->u
.count
, 1);
1573 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS
))
1574 kasan_unpoison_shadow(dname
,
1575 round_up(name
->len
+ 1, sizeof(unsigned long)));
1577 dname
= dentry
->d_iname
;
1580 dentry
->d_name
.len
= name
->len
;
1581 dentry
->d_name
.hash
= name
->hash
;
1582 memcpy(dname
, name
->name
, name
->len
);
1583 dname
[name
->len
] = 0;
1585 /* Make sure we always see the terminating NUL character */
1587 dentry
->d_name
.name
= dname
;
1589 dentry
->d_lockref
.count
= 1;
1590 dentry
->d_flags
= 0;
1591 spin_lock_init(&dentry
->d_lock
);
1592 seqcount_init(&dentry
->d_seq
);
1593 dentry
->d_inode
= NULL
;
1594 dentry
->d_parent
= dentry
;
1596 dentry
->d_op
= NULL
;
1597 dentry
->d_fsdata
= NULL
;
1598 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1599 INIT_LIST_HEAD(&dentry
->d_lru
);
1600 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1601 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1602 INIT_LIST_HEAD(&dentry
->d_child
);
1603 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1605 this_cpu_inc(nr_dentry
);
1611 * d_alloc - allocate a dcache entry
1612 * @parent: parent of entry to allocate
1613 * @name: qstr of the name
1615 * Allocates a dentry. It returns %NULL if there is insufficient memory
1616 * available. On a success the dentry is returned. The name passed in is
1617 * copied and the copy passed in may be reused after this call.
1619 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1621 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1624 dentry
->d_flags
|= DCACHE_RCUACCESS
;
1625 spin_lock(&parent
->d_lock
);
1627 * don't need child lock because it is not subject
1628 * to concurrency here
1630 __dget_dlock(parent
);
1631 dentry
->d_parent
= parent
;
1632 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1633 spin_unlock(&parent
->d_lock
);
1637 EXPORT_SYMBOL(d_alloc
);
1640 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1641 * @sb: the superblock
1642 * @name: qstr of the name
1644 * For a filesystem that just pins its dentries in memory and never
1645 * performs lookups at all, return an unhashed IS_ROOT dentry.
1647 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1649 return __d_alloc(sb
, name
);
1651 EXPORT_SYMBOL(d_alloc_pseudo
);
1653 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1658 q
.len
= strlen(name
);
1659 q
.hash
= full_name_hash(q
.name
, q
.len
);
1660 return d_alloc(parent
, &q
);
1662 EXPORT_SYMBOL(d_alloc_name
);
1664 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1666 WARN_ON_ONCE(dentry
->d_op
);
1667 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1669 DCACHE_OP_REVALIDATE
|
1670 DCACHE_OP_WEAK_REVALIDATE
|
1672 DCACHE_OP_SELECT_INODE
));
1677 dentry
->d_flags
|= DCACHE_OP_HASH
;
1679 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1680 if (op
->d_revalidate
)
1681 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1682 if (op
->d_weak_revalidate
)
1683 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1685 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1687 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1688 if (op
->d_select_inode
)
1689 dentry
->d_flags
|= DCACHE_OP_SELECT_INODE
;
1692 EXPORT_SYMBOL(d_set_d_op
);
1696 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1697 * @dentry - The dentry to mark
1699 * Mark a dentry as falling through to the lower layer (as set with
1700 * d_pin_lower()). This flag may be recorded on the medium.
1702 void d_set_fallthru(struct dentry
*dentry
)
1704 spin_lock(&dentry
->d_lock
);
1705 dentry
->d_flags
|= DCACHE_FALLTHRU
;
1706 spin_unlock(&dentry
->d_lock
);
1708 EXPORT_SYMBOL(d_set_fallthru
);
1710 static unsigned d_flags_for_inode(struct inode
*inode
)
1712 unsigned add_flags
= DCACHE_REGULAR_TYPE
;
1715 return DCACHE_MISS_TYPE
;
1717 if (S_ISDIR(inode
->i_mode
)) {
1718 add_flags
= DCACHE_DIRECTORY_TYPE
;
1719 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1720 if (unlikely(!inode
->i_op
->lookup
))
1721 add_flags
= DCACHE_AUTODIR_TYPE
;
1723 inode
->i_opflags
|= IOP_LOOKUP
;
1725 goto type_determined
;
1728 if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1729 if (unlikely(inode
->i_op
->follow_link
)) {
1730 add_flags
= DCACHE_SYMLINK_TYPE
;
1731 goto type_determined
;
1733 inode
->i_opflags
|= IOP_NOFOLLOW
;
1736 if (unlikely(!S_ISREG(inode
->i_mode
)))
1737 add_flags
= DCACHE_SPECIAL_TYPE
;
1740 if (unlikely(IS_AUTOMOUNT(inode
)))
1741 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1745 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1747 unsigned add_flags
= d_flags_for_inode(inode
);
1749 spin_lock(&dentry
->d_lock
);
1751 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1752 raw_write_seqcount_begin(&dentry
->d_seq
);
1753 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1754 raw_write_seqcount_end(&dentry
->d_seq
);
1755 spin_unlock(&dentry
->d_lock
);
1756 fsnotify_d_instantiate(dentry
, inode
);
1760 * d_instantiate - fill in inode information for a dentry
1761 * @entry: dentry to complete
1762 * @inode: inode to attach to this dentry
1764 * Fill in inode information in the entry.
1766 * This turns negative dentries into productive full members
1769 * NOTE! This assumes that the inode count has been incremented
1770 * (or otherwise set) by the caller to indicate that it is now
1771 * in use by the dcache.
1774 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1776 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1778 spin_lock(&inode
->i_lock
);
1779 __d_instantiate(entry
, inode
);
1781 spin_unlock(&inode
->i_lock
);
1782 security_d_instantiate(entry
, inode
);
1784 EXPORT_SYMBOL(d_instantiate
);
1787 * d_instantiate_unique - instantiate a non-aliased dentry
1788 * @entry: dentry to instantiate
1789 * @inode: inode to attach to this dentry
1791 * Fill in inode information in the entry. On success, it returns NULL.
1792 * If an unhashed alias of "entry" already exists, then we return the
1793 * aliased dentry instead and drop one reference to inode.
1795 * Note that in order to avoid conflicts with rename() etc, the caller
1796 * had better be holding the parent directory semaphore.
1798 * This also assumes that the inode count has been incremented
1799 * (or otherwise set) by the caller to indicate that it is now
1800 * in use by the dcache.
1802 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1803 struct inode
*inode
)
1805 struct dentry
*alias
;
1806 int len
= entry
->d_name
.len
;
1807 const char *name
= entry
->d_name
.name
;
1808 unsigned int hash
= entry
->d_name
.hash
;
1811 __d_instantiate(entry
, NULL
);
1815 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
1817 * Don't need alias->d_lock here, because aliases with
1818 * d_parent == entry->d_parent are not subject to name or
1819 * parent changes, because the parent inode i_mutex is held.
1821 if (alias
->d_name
.hash
!= hash
)
1823 if (alias
->d_parent
!= entry
->d_parent
)
1825 if (alias
->d_name
.len
!= len
)
1827 if (dentry_cmp(alias
, name
, len
))
1833 __d_instantiate(entry
, inode
);
1837 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1839 struct dentry
*result
;
1841 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1844 spin_lock(&inode
->i_lock
);
1845 result
= __d_instantiate_unique(entry
, inode
);
1847 spin_unlock(&inode
->i_lock
);
1850 security_d_instantiate(entry
, inode
);
1854 BUG_ON(!d_unhashed(result
));
1859 EXPORT_SYMBOL(d_instantiate_unique
);
1862 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1863 * @entry: dentry to complete
1864 * @inode: inode to attach to this dentry
1866 * Fill in inode information in the entry. If a directory alias is found, then
1867 * return an error (and drop inode). Together with d_materialise_unique() this
1868 * guarantees that a directory inode may never have more than one alias.
1870 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1872 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1874 spin_lock(&inode
->i_lock
);
1875 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1876 spin_unlock(&inode
->i_lock
);
1880 __d_instantiate(entry
, inode
);
1881 spin_unlock(&inode
->i_lock
);
1882 security_d_instantiate(entry
, inode
);
1886 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1888 struct dentry
*d_make_root(struct inode
*root_inode
)
1890 struct dentry
*res
= NULL
;
1893 static const struct qstr name
= QSTR_INIT("/", 1);
1895 res
= __d_alloc(root_inode
->i_sb
, &name
);
1897 d_instantiate(res
, root_inode
);
1903 EXPORT_SYMBOL(d_make_root
);
1905 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1907 struct dentry
*alias
;
1909 if (hlist_empty(&inode
->i_dentry
))
1911 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
1917 * d_find_any_alias - find any alias for a given inode
1918 * @inode: inode to find an alias for
1920 * If any aliases exist for the given inode, take and return a
1921 * reference for one of them. If no aliases exist, return %NULL.
1923 struct dentry
*d_find_any_alias(struct inode
*inode
)
1927 spin_lock(&inode
->i_lock
);
1928 de
= __d_find_any_alias(inode
);
1929 spin_unlock(&inode
->i_lock
);
1932 EXPORT_SYMBOL(d_find_any_alias
);
1934 static struct dentry
*__d_obtain_alias(struct inode
*inode
, int disconnected
)
1936 static const struct qstr anonstring
= QSTR_INIT("/", 1);
1942 return ERR_PTR(-ESTALE
);
1944 return ERR_CAST(inode
);
1946 res
= d_find_any_alias(inode
);
1950 tmp
= __d_alloc(inode
->i_sb
, &anonstring
);
1952 res
= ERR_PTR(-ENOMEM
);
1956 spin_lock(&inode
->i_lock
);
1957 res
= __d_find_any_alias(inode
);
1959 spin_unlock(&inode
->i_lock
);
1964 /* attach a disconnected dentry */
1965 add_flags
= d_flags_for_inode(inode
);
1968 add_flags
|= DCACHE_DISCONNECTED
;
1970 spin_lock(&tmp
->d_lock
);
1971 __d_set_inode_and_type(tmp
, inode
, add_flags
);
1972 hlist_add_head(&tmp
->d_u
.d_alias
, &inode
->i_dentry
);
1973 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1974 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1975 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1976 spin_unlock(&tmp
->d_lock
);
1977 spin_unlock(&inode
->i_lock
);
1978 security_d_instantiate(tmp
, inode
);
1983 if (res
&& !IS_ERR(res
))
1984 security_d_instantiate(res
, inode
);
1990 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1991 * @inode: inode to allocate the dentry for
1993 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1994 * similar open by handle operations. The returned dentry may be anonymous,
1995 * or may have a full name (if the inode was already in the cache).
1997 * When called on a directory inode, we must ensure that the inode only ever
1998 * has one dentry. If a dentry is found, that is returned instead of
1999 * allocating a new one.
2001 * On successful return, the reference to the inode has been transferred
2002 * to the dentry. In case of an error the reference on the inode is released.
2003 * To make it easier to use in export operations a %NULL or IS_ERR inode may
2004 * be passed in and the error will be propagated to the return value,
2005 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
2007 struct dentry
*d_obtain_alias(struct inode
*inode
)
2009 return __d_obtain_alias(inode
, 1);
2011 EXPORT_SYMBOL(d_obtain_alias
);
2014 * d_obtain_root - find or allocate a dentry for a given inode
2015 * @inode: inode to allocate the dentry for
2017 * Obtain an IS_ROOT dentry for the root of a filesystem.
2019 * We must ensure that directory inodes only ever have one dentry. If a
2020 * dentry is found, that is returned instead of allocating a new one.
2022 * On successful return, the reference to the inode has been transferred
2023 * to the dentry. In case of an error the reference on the inode is
2024 * released. A %NULL or IS_ERR inode may be passed in and will be the
2025 * error will be propagate to the return value, with a %NULL @inode
2026 * replaced by ERR_PTR(-ESTALE).
2028 struct dentry
*d_obtain_root(struct inode
*inode
)
2030 return __d_obtain_alias(inode
, 0);
2032 EXPORT_SYMBOL(d_obtain_root
);
2035 * d_add_ci - lookup or allocate new dentry with case-exact name
2036 * @inode: the inode case-insensitive lookup has found
2037 * @dentry: the negative dentry that was passed to the parent's lookup func
2038 * @name: the case-exact name to be associated with the returned dentry
2040 * This is to avoid filling the dcache with case-insensitive names to the
2041 * same inode, only the actual correct case is stored in the dcache for
2042 * case-insensitive filesystems.
2044 * For a case-insensitive lookup match and if the the case-exact dentry
2045 * already exists in in the dcache, use it and return it.
2047 * If no entry exists with the exact case name, allocate new dentry with
2048 * the exact case, and return the spliced entry.
2050 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
2053 struct dentry
*found
;
2057 * First check if a dentry matching the name already exists,
2058 * if not go ahead and create it now.
2060 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
2062 new = d_alloc(dentry
->d_parent
, name
);
2064 found
= ERR_PTR(-ENOMEM
);
2066 found
= d_splice_alias(inode
, new);
2077 EXPORT_SYMBOL(d_add_ci
);
2080 * Do the slow-case of the dentry name compare.
2082 * Unlike the dentry_cmp() function, we need to atomically
2083 * load the name and length information, so that the
2084 * filesystem can rely on them, and can use the 'name' and
2085 * 'len' information without worrying about walking off the
2086 * end of memory etc.
2088 * Thus the read_seqcount_retry() and the "duplicate" info
2089 * in arguments (the low-level filesystem should not look
2090 * at the dentry inode or name contents directly, since
2091 * rename can change them while we're in RCU mode).
2093 enum slow_d_compare
{
2099 static noinline
enum slow_d_compare
slow_dentry_cmp(
2100 const struct dentry
*parent
,
2101 struct dentry
*dentry
,
2103 const struct qstr
*name
)
2105 int tlen
= dentry
->d_name
.len
;
2106 const char *tname
= dentry
->d_name
.name
;
2108 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2110 return D_COMP_SEQRETRY
;
2112 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
2113 return D_COMP_NOMATCH
;
2118 * __d_lookup_rcu - search for a dentry (racy, store-free)
2119 * @parent: parent dentry
2120 * @name: qstr of name we wish to find
2121 * @seqp: returns d_seq value at the point where the dentry was found
2122 * Returns: dentry, or NULL
2124 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2125 * resolution (store-free path walking) design described in
2126 * Documentation/filesystems/path-lookup.txt.
2128 * This is not to be used outside core vfs.
2130 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2131 * held, and rcu_read_lock held. The returned dentry must not be stored into
2132 * without taking d_lock and checking d_seq sequence count against @seq
2135 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2138 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2139 * the returned dentry, so long as its parent's seqlock is checked after the
2140 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2141 * is formed, giving integrity down the path walk.
2143 * NOTE! The caller *has* to check the resulting dentry against the sequence
2144 * number we've returned before using any of the resulting dentry state!
2146 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2147 const struct qstr
*name
,
2150 u64 hashlen
= name
->hash_len
;
2151 const unsigned char *str
= name
->name
;
2152 struct hlist_bl_head
*b
= d_hash(parent
, hashlen_hash(hashlen
));
2153 struct hlist_bl_node
*node
;
2154 struct dentry
*dentry
;
2157 * Note: There is significant duplication with __d_lookup_rcu which is
2158 * required to prevent single threaded performance regressions
2159 * especially on architectures where smp_rmb (in seqcounts) are costly.
2160 * Keep the two functions in sync.
2164 * The hash list is protected using RCU.
2166 * Carefully use d_seq when comparing a candidate dentry, to avoid
2167 * races with d_move().
2169 * It is possible that concurrent renames can mess up our list
2170 * walk here and result in missing our dentry, resulting in the
2171 * false-negative result. d_lookup() protects against concurrent
2172 * renames using rename_lock seqlock.
2174 * See Documentation/filesystems/path-lookup.txt for more details.
2176 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2181 * The dentry sequence count protects us from concurrent
2182 * renames, and thus protects parent and name fields.
2184 * The caller must perform a seqcount check in order
2185 * to do anything useful with the returned dentry.
2187 * NOTE! We do a "raw" seqcount_begin here. That means that
2188 * we don't wait for the sequence count to stabilize if it
2189 * is in the middle of a sequence change. If we do the slow
2190 * dentry compare, we will do seqretries until it is stable,
2191 * and if we end up with a successful lookup, we actually
2192 * want to exit RCU lookup anyway.
2194 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2195 if (dentry
->d_parent
!= parent
)
2197 if (d_unhashed(dentry
))
2200 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2201 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2204 switch (slow_dentry_cmp(parent
, dentry
, seq
, name
)) {
2207 case D_COMP_NOMATCH
:
2214 if (dentry
->d_name
.hash_len
!= hashlen
)
2217 if (!dentry_cmp(dentry
, str
, hashlen_len(hashlen
)))
2224 * d_lookup - search for a dentry
2225 * @parent: parent dentry
2226 * @name: qstr of name we wish to find
2227 * Returns: dentry, or NULL
2229 * d_lookup searches the children of the parent dentry for the name in
2230 * question. If the dentry is found its reference count is incremented and the
2231 * dentry is returned. The caller must use dput to free the entry when it has
2232 * finished using it. %NULL is returned if the dentry does not exist.
2234 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2236 struct dentry
*dentry
;
2240 seq
= read_seqbegin(&rename_lock
);
2241 dentry
= __d_lookup(parent
, name
);
2244 } while (read_seqretry(&rename_lock
, seq
));
2247 EXPORT_SYMBOL(d_lookup
);
2250 * __d_lookup - search for a dentry (racy)
2251 * @parent: parent dentry
2252 * @name: qstr of name we wish to find
2253 * Returns: dentry, or NULL
2255 * __d_lookup is like d_lookup, however it may (rarely) return a
2256 * false-negative result due to unrelated rename activity.
2258 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2259 * however it must be used carefully, eg. with a following d_lookup in
2260 * the case of failure.
2262 * __d_lookup callers must be commented.
2264 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2266 unsigned int len
= name
->len
;
2267 unsigned int hash
= name
->hash
;
2268 const unsigned char *str
= name
->name
;
2269 struct hlist_bl_head
*b
= d_hash(parent
, hash
);
2270 struct hlist_bl_node
*node
;
2271 struct dentry
*found
= NULL
;
2272 struct dentry
*dentry
;
2275 * Note: There is significant duplication with __d_lookup_rcu which is
2276 * required to prevent single threaded performance regressions
2277 * especially on architectures where smp_rmb (in seqcounts) are costly.
2278 * Keep the two functions in sync.
2282 * The hash list is protected using RCU.
2284 * Take d_lock when comparing a candidate dentry, to avoid races
2287 * It is possible that concurrent renames can mess up our list
2288 * walk here and result in missing our dentry, resulting in the
2289 * false-negative result. d_lookup() protects against concurrent
2290 * renames using rename_lock seqlock.
2292 * See Documentation/filesystems/path-lookup.txt for more details.
2296 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2298 if (dentry
->d_name
.hash
!= hash
)
2301 spin_lock(&dentry
->d_lock
);
2302 if (dentry
->d_parent
!= parent
)
2304 if (d_unhashed(dentry
))
2308 * It is safe to compare names since d_move() cannot
2309 * change the qstr (protected by d_lock).
2311 if (parent
->d_flags
& DCACHE_OP_COMPARE
) {
2312 int tlen
= dentry
->d_name
.len
;
2313 const char *tname
= dentry
->d_name
.name
;
2314 if (parent
->d_op
->d_compare(parent
, dentry
, tlen
, tname
, name
))
2317 if (dentry
->d_name
.len
!= len
)
2319 if (dentry_cmp(dentry
, str
, len
))
2323 dentry
->d_lockref
.count
++;
2325 spin_unlock(&dentry
->d_lock
);
2328 spin_unlock(&dentry
->d_lock
);
2336 * d_hash_and_lookup - hash the qstr then search for a dentry
2337 * @dir: Directory to search in
2338 * @name: qstr of name we wish to find
2340 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2342 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2345 * Check for a fs-specific hash function. Note that we must
2346 * calculate the standard hash first, as the d_op->d_hash()
2347 * routine may choose to leave the hash value unchanged.
2349 name
->hash
= full_name_hash(name
->name
, name
->len
);
2350 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2351 int err
= dir
->d_op
->d_hash(dir
, name
);
2352 if (unlikely(err
< 0))
2353 return ERR_PTR(err
);
2355 return d_lookup(dir
, name
);
2357 EXPORT_SYMBOL(d_hash_and_lookup
);
2360 * When a file is deleted, we have two options:
2361 * - turn this dentry into a negative dentry
2362 * - unhash this dentry and free it.
2364 * Usually, we want to just turn this into
2365 * a negative dentry, but if anybody else is
2366 * currently using the dentry or the inode
2367 * we can't do that and we fall back on removing
2368 * it from the hash queues and waiting for
2369 * it to be deleted later when it has no users
2373 * d_delete - delete a dentry
2374 * @dentry: The dentry to delete
2376 * Turn the dentry into a negative dentry if possible, otherwise
2377 * remove it from the hash queues so it can be deleted later
2380 void d_delete(struct dentry
* dentry
)
2382 struct inode
*inode
;
2385 * Are we the only user?
2388 spin_lock(&dentry
->d_lock
);
2389 inode
= dentry
->d_inode
;
2390 isdir
= S_ISDIR(inode
->i_mode
);
2391 if (dentry
->d_lockref
.count
== 1) {
2392 if (!spin_trylock(&inode
->i_lock
)) {
2393 spin_unlock(&dentry
->d_lock
);
2397 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2398 dentry_unlink_inode(dentry
);
2399 fsnotify_nameremove(dentry
, isdir
);
2403 if (!d_unhashed(dentry
))
2406 spin_unlock(&dentry
->d_lock
);
2408 fsnotify_nameremove(dentry
, isdir
);
2410 EXPORT_SYMBOL(d_delete
);
2412 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2414 BUG_ON(!d_unhashed(entry
));
2416 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2420 static void _d_rehash(struct dentry
* entry
)
2422 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
2426 * d_rehash - add an entry back to the hash
2427 * @entry: dentry to add to the hash
2429 * Adds a dentry to the hash according to its name.
2432 void d_rehash(struct dentry
* entry
)
2434 spin_lock(&entry
->d_lock
);
2436 spin_unlock(&entry
->d_lock
);
2438 EXPORT_SYMBOL(d_rehash
);
2441 * dentry_update_name_case - update case insensitive dentry with a new name
2442 * @dentry: dentry to be updated
2445 * Update a case insensitive dentry with new case of name.
2447 * dentry must have been returned by d_lookup with name @name. Old and new
2448 * name lengths must match (ie. no d_compare which allows mismatched name
2451 * Parent inode i_mutex must be held over d_lookup and into this call (to
2452 * keep renames and concurrent inserts, and readdir(2) away).
2454 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2456 BUG_ON(!mutex_is_locked(&dentry
->d_parent
->d_inode
->i_mutex
));
2457 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2459 spin_lock(&dentry
->d_lock
);
2460 write_seqcount_begin(&dentry
->d_seq
);
2461 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2462 write_seqcount_end(&dentry
->d_seq
);
2463 spin_unlock(&dentry
->d_lock
);
2465 EXPORT_SYMBOL(dentry_update_name_case
);
2467 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2469 if (unlikely(dname_external(target
))) {
2470 if (unlikely(dname_external(dentry
))) {
2472 * Both external: swap the pointers
2474 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2477 * dentry:internal, target:external. Steal target's
2478 * storage and make target internal.
2480 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2481 dentry
->d_name
.len
+ 1);
2482 dentry
->d_name
.name
= target
->d_name
.name
;
2483 target
->d_name
.name
= target
->d_iname
;
2486 if (unlikely(dname_external(dentry
))) {
2488 * dentry:external, target:internal. Give dentry's
2489 * storage to target and make dentry internal
2491 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2492 target
->d_name
.len
+ 1);
2493 target
->d_name
.name
= dentry
->d_name
.name
;
2494 dentry
->d_name
.name
= dentry
->d_iname
;
2497 * Both are internal.
2500 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2501 kmemcheck_mark_initialized(dentry
->d_iname
, DNAME_INLINE_LEN
);
2502 kmemcheck_mark_initialized(target
->d_iname
, DNAME_INLINE_LEN
);
2503 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2504 swap(((long *) &dentry
->d_iname
)[i
],
2505 ((long *) &target
->d_iname
)[i
]);
2509 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2512 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2514 struct external_name
*old_name
= NULL
;
2515 if (unlikely(dname_external(dentry
)))
2516 old_name
= external_name(dentry
);
2517 if (unlikely(dname_external(target
))) {
2518 atomic_inc(&external_name(target
)->u
.count
);
2519 dentry
->d_name
= target
->d_name
;
2521 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2522 target
->d_name
.len
+ 1);
2523 dentry
->d_name
.name
= dentry
->d_iname
;
2524 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2526 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2527 kfree_rcu(old_name
, u
.head
);
2530 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2533 * XXXX: do we really need to take target->d_lock?
2535 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2536 spin_lock(&target
->d_parent
->d_lock
);
2538 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2539 spin_lock(&dentry
->d_parent
->d_lock
);
2540 spin_lock_nested(&target
->d_parent
->d_lock
,
2541 DENTRY_D_LOCK_NESTED
);
2543 spin_lock(&target
->d_parent
->d_lock
);
2544 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2545 DENTRY_D_LOCK_NESTED
);
2548 if (target
< dentry
) {
2549 spin_lock_nested(&target
->d_lock
, 2);
2550 spin_lock_nested(&dentry
->d_lock
, 3);
2552 spin_lock_nested(&dentry
->d_lock
, 2);
2553 spin_lock_nested(&target
->d_lock
, 3);
2557 static void dentry_unlock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2559 if (target
->d_parent
!= dentry
->d_parent
)
2560 spin_unlock(&dentry
->d_parent
->d_lock
);
2561 if (target
->d_parent
!= target
)
2562 spin_unlock(&target
->d_parent
->d_lock
);
2563 spin_unlock(&target
->d_lock
);
2564 spin_unlock(&dentry
->d_lock
);
2568 * When switching names, the actual string doesn't strictly have to
2569 * be preserved in the target - because we're dropping the target
2570 * anyway. As such, we can just do a simple memcpy() to copy over
2571 * the new name before we switch, unless we are going to rehash
2572 * it. Note that if we *do* unhash the target, we are not allowed
2573 * to rehash it without giving it a new name/hash key - whether
2574 * we swap or overwrite the names here, resulting name won't match
2575 * the reality in filesystem; it's only there for d_path() purposes.
2576 * Note that all of this is happening under rename_lock, so the
2577 * any hash lookup seeing it in the middle of manipulations will
2578 * be discarded anyway. So we do not care what happens to the hash
2582 * __d_move - move a dentry
2583 * @dentry: entry to move
2584 * @target: new dentry
2585 * @exchange: exchange the two dentries
2587 * Update the dcache to reflect the move of a file name. Negative
2588 * dcache entries should not be moved in this way. Caller must hold
2589 * rename_lock, the i_mutex of the source and target directories,
2590 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2592 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2595 if (!dentry
->d_inode
)
2596 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2598 BUG_ON(d_ancestor(dentry
, target
));
2599 BUG_ON(d_ancestor(target
, dentry
));
2601 dentry_lock_for_move(dentry
, target
);
2603 write_seqcount_begin(&dentry
->d_seq
);
2604 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2606 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2609 * Move the dentry to the target hash queue. Don't bother checking
2610 * for the same hash queue because of how unlikely it is.
2613 __d_rehash(dentry
, d_hash(target
->d_parent
, target
->d_name
.hash
));
2616 * Unhash the target (d_delete() is not usable here). If exchanging
2617 * the two dentries, then rehash onto the other's hash queue.
2622 d_hash(dentry
->d_parent
, dentry
->d_name
.hash
));
2625 /* Switch the names.. */
2627 swap_names(dentry
, target
);
2629 copy_name(dentry
, target
);
2631 /* ... and switch them in the tree */
2632 if (IS_ROOT(dentry
)) {
2633 /* splicing a tree */
2634 dentry
->d_flags
|= DCACHE_RCUACCESS
;
2635 dentry
->d_parent
= target
->d_parent
;
2636 target
->d_parent
= target
;
2637 list_del_init(&target
->d_child
);
2638 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2640 /* swapping two dentries */
2641 swap(dentry
->d_parent
, target
->d_parent
);
2642 list_move(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2643 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2645 fsnotify_d_move(target
);
2646 fsnotify_d_move(dentry
);
2649 write_seqcount_end(&target
->d_seq
);
2650 write_seqcount_end(&dentry
->d_seq
);
2652 dentry_unlock_for_move(dentry
, target
);
2656 * d_move - move a dentry
2657 * @dentry: entry to move
2658 * @target: new dentry
2660 * Update the dcache to reflect the move of a file name. Negative
2661 * dcache entries should not be moved in this way. See the locking
2662 * requirements for __d_move.
2664 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2666 write_seqlock(&rename_lock
);
2667 __d_move(dentry
, target
, false);
2668 write_sequnlock(&rename_lock
);
2670 EXPORT_SYMBOL(d_move
);
2673 * d_exchange - exchange two dentries
2674 * @dentry1: first dentry
2675 * @dentry2: second dentry
2677 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2679 write_seqlock(&rename_lock
);
2681 WARN_ON(!dentry1
->d_inode
);
2682 WARN_ON(!dentry2
->d_inode
);
2683 WARN_ON(IS_ROOT(dentry1
));
2684 WARN_ON(IS_ROOT(dentry2
));
2686 __d_move(dentry1
, dentry2
, true);
2688 write_sequnlock(&rename_lock
);
2692 * d_ancestor - search for an ancestor
2693 * @p1: ancestor dentry
2696 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2697 * an ancestor of p2, else NULL.
2699 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2703 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2704 if (p
->d_parent
== p1
)
2711 * This helper attempts to cope with remotely renamed directories
2713 * It assumes that the caller is already holding
2714 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
2716 * Note: If ever the locking in lock_rename() changes, then please
2717 * remember to update this too...
2719 static int __d_unalias(struct inode
*inode
,
2720 struct dentry
*dentry
, struct dentry
*alias
)
2722 struct mutex
*m1
= NULL
, *m2
= NULL
;
2725 /* If alias and dentry share a parent, then no extra locks required */
2726 if (alias
->d_parent
== dentry
->d_parent
)
2729 /* See lock_rename() */
2730 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2732 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2733 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
2735 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
2737 __d_move(alias
, dentry
, false);
2740 spin_unlock(&inode
->i_lock
);
2749 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2750 * @inode: the inode which may have a disconnected dentry
2751 * @dentry: a negative dentry which we want to point to the inode.
2753 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2754 * place of the given dentry and return it, else simply d_add the inode
2755 * to the dentry and return NULL.
2757 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2758 * we should error out: directories can't have multiple aliases.
2760 * This is needed in the lookup routine of any filesystem that is exportable
2761 * (via knfsd) so that we can build dcache paths to directories effectively.
2763 * If a dentry was found and moved, then it is returned. Otherwise NULL
2764 * is returned. This matches the expected return value of ->lookup.
2766 * Cluster filesystems may call this function with a negative, hashed dentry.
2767 * In that case, we know that the inode will be a regular file, and also this
2768 * will only occur during atomic_open. So we need to check for the dentry
2769 * being already hashed only in the final case.
2771 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
2774 return ERR_CAST(inode
);
2776 BUG_ON(!d_unhashed(dentry
));
2779 __d_instantiate(dentry
, NULL
);
2782 spin_lock(&inode
->i_lock
);
2783 if (S_ISDIR(inode
->i_mode
)) {
2784 struct dentry
*new = __d_find_any_alias(inode
);
2785 if (unlikely(new)) {
2786 write_seqlock(&rename_lock
);
2787 if (unlikely(d_ancestor(new, dentry
))) {
2788 write_sequnlock(&rename_lock
);
2789 spin_unlock(&inode
->i_lock
);
2791 new = ERR_PTR(-ELOOP
);
2792 pr_warn_ratelimited(
2793 "VFS: Lookup of '%s' in %s %s"
2794 " would have caused loop\n",
2795 dentry
->d_name
.name
,
2796 inode
->i_sb
->s_type
->name
,
2798 } else if (!IS_ROOT(new)) {
2799 int err
= __d_unalias(inode
, dentry
, new);
2800 write_sequnlock(&rename_lock
);
2806 __d_move(new, dentry
, false);
2807 write_sequnlock(&rename_lock
);
2808 spin_unlock(&inode
->i_lock
);
2809 security_d_instantiate(new, inode
);
2815 /* already taking inode->i_lock, so d_add() by hand */
2816 __d_instantiate(dentry
, inode
);
2817 spin_unlock(&inode
->i_lock
);
2819 security_d_instantiate(dentry
, inode
);
2823 EXPORT_SYMBOL(d_splice_alias
);
2825 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
2829 return -ENAMETOOLONG
;
2831 memcpy(*buffer
, str
, namelen
);
2836 * prepend_name - prepend a pathname in front of current buffer pointer
2837 * @buffer: buffer pointer
2838 * @buflen: allocated length of the buffer
2839 * @name: name string and length qstr structure
2841 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
2842 * make sure that either the old or the new name pointer and length are
2843 * fetched. However, there may be mismatch between length and pointer.
2844 * The length cannot be trusted, we need to copy it byte-by-byte until
2845 * the length is reached or a null byte is found. It also prepends "/" at
2846 * the beginning of the name. The sequence number check at the caller will
2847 * retry it again when a d_move() does happen. So any garbage in the buffer
2848 * due to mismatched pointer and length will be discarded.
2850 * Data dependency barrier is needed to make sure that we see that terminating
2851 * NUL. Alpha strikes again, film at 11...
2853 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
2855 const char *dname
= ACCESS_ONCE(name
->name
);
2856 u32 dlen
= ACCESS_ONCE(name
->len
);
2859 smp_read_barrier_depends();
2861 *buflen
-= dlen
+ 1;
2863 return -ENAMETOOLONG
;
2864 p
= *buffer
-= dlen
+ 1;
2876 * prepend_path - Prepend path string to a buffer
2877 * @path: the dentry/vfsmount to report
2878 * @root: root vfsmnt/dentry
2879 * @buffer: pointer to the end of the buffer
2880 * @buflen: pointer to buffer length
2882 * The function will first try to write out the pathname without taking any
2883 * lock other than the RCU read lock to make sure that dentries won't go away.
2884 * It only checks the sequence number of the global rename_lock as any change
2885 * in the dentry's d_seq will be preceded by changes in the rename_lock
2886 * sequence number. If the sequence number had been changed, it will restart
2887 * the whole pathname back-tracing sequence again by taking the rename_lock.
2888 * In this case, there is no need to take the RCU read lock as the recursive
2889 * parent pointer references will keep the dentry chain alive as long as no
2890 * rename operation is performed.
2892 static int prepend_path(const struct path
*path
,
2893 const struct path
*root
,
2894 char **buffer
, int *buflen
)
2896 struct dentry
*dentry
;
2897 struct vfsmount
*vfsmnt
;
2900 unsigned seq
, m_seq
= 0;
2906 read_seqbegin_or_lock(&mount_lock
, &m_seq
);
2913 dentry
= path
->dentry
;
2915 mnt
= real_mount(vfsmnt
);
2916 read_seqbegin_or_lock(&rename_lock
, &seq
);
2917 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
2918 struct dentry
* parent
;
2920 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
2921 struct mount
*parent
= ACCESS_ONCE(mnt
->mnt_parent
);
2923 if (dentry
!= vfsmnt
->mnt_root
) {
2930 if (mnt
!= parent
) {
2931 dentry
= ACCESS_ONCE(mnt
->mnt_mountpoint
);
2937 error
= is_mounted(vfsmnt
) ? 1 : 2;
2940 parent
= dentry
->d_parent
;
2942 error
= prepend_name(&bptr
, &blen
, &dentry
->d_name
);
2950 if (need_seqretry(&rename_lock
, seq
)) {
2954 done_seqretry(&rename_lock
, seq
);
2958 if (need_seqretry(&mount_lock
, m_seq
)) {
2962 done_seqretry(&mount_lock
, m_seq
);
2964 if (error
>= 0 && bptr
== *buffer
) {
2966 error
= -ENAMETOOLONG
;
2976 * __d_path - return the path of a dentry
2977 * @path: the dentry/vfsmount to report
2978 * @root: root vfsmnt/dentry
2979 * @buf: buffer to return value in
2980 * @buflen: buffer length
2982 * Convert a dentry into an ASCII path name.
2984 * Returns a pointer into the buffer or an error code if the
2985 * path was too long.
2987 * "buflen" should be positive.
2989 * If the path is not reachable from the supplied root, return %NULL.
2991 char *__d_path(const struct path
*path
,
2992 const struct path
*root
,
2993 char *buf
, int buflen
)
2995 char *res
= buf
+ buflen
;
2998 prepend(&res
, &buflen
, "\0", 1);
2999 error
= prepend_path(path
, root
, &res
, &buflen
);
3002 return ERR_PTR(error
);
3008 char *d_absolute_path(const struct path
*path
,
3009 char *buf
, int buflen
)
3011 struct path root
= {};
3012 char *res
= buf
+ buflen
;
3015 prepend(&res
, &buflen
, "\0", 1);
3016 error
= prepend_path(path
, &root
, &res
, &buflen
);
3021 return ERR_PTR(error
);
3026 * same as __d_path but appends "(deleted)" for unlinked files.
3028 static int path_with_deleted(const struct path
*path
,
3029 const struct path
*root
,
3030 char **buf
, int *buflen
)
3032 prepend(buf
, buflen
, "\0", 1);
3033 if (d_unlinked(path
->dentry
)) {
3034 int error
= prepend(buf
, buflen
, " (deleted)", 10);
3039 return prepend_path(path
, root
, buf
, buflen
);
3042 static int prepend_unreachable(char **buffer
, int *buflen
)
3044 return prepend(buffer
, buflen
, "(unreachable)", 13);
3047 static void get_fs_root_rcu(struct fs_struct
*fs
, struct path
*root
)
3052 seq
= read_seqcount_begin(&fs
->seq
);
3054 } while (read_seqcount_retry(&fs
->seq
, seq
));
3058 * d_path - return the path of a dentry
3059 * @path: path to report
3060 * @buf: buffer to return value in
3061 * @buflen: buffer length
3063 * Convert a dentry into an ASCII path name. If the entry has been deleted
3064 * the string " (deleted)" is appended. Note that this is ambiguous.
3066 * Returns a pointer into the buffer or an error code if the path was
3067 * too long. Note: Callers should use the returned pointer, not the passed
3068 * in buffer, to use the name! The implementation often starts at an offset
3069 * into the buffer, and may leave 0 bytes at the start.
3071 * "buflen" should be positive.
3073 char *d_path(const struct path
*path
, char *buf
, int buflen
)
3075 char *res
= buf
+ buflen
;
3080 * We have various synthetic filesystems that never get mounted. On
3081 * these filesystems dentries are never used for lookup purposes, and
3082 * thus don't need to be hashed. They also don't need a name until a
3083 * user wants to identify the object in /proc/pid/fd/. The little hack
3084 * below allows us to generate a name for these objects on demand:
3086 * Some pseudo inodes are mountable. When they are mounted
3087 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3088 * and instead have d_path return the mounted path.
3090 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
3091 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
3092 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
3095 get_fs_root_rcu(current
->fs
, &root
);
3096 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
3100 res
= ERR_PTR(error
);
3103 EXPORT_SYMBOL(d_path
);
3106 * Helper function for dentry_operations.d_dname() members
3108 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
3109 const char *fmt
, ...)
3115 va_start(args
, fmt
);
3116 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
3119 if (sz
> sizeof(temp
) || sz
> buflen
)
3120 return ERR_PTR(-ENAMETOOLONG
);
3122 buffer
+= buflen
- sz
;
3123 return memcpy(buffer
, temp
, sz
);
3126 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
3128 char *end
= buffer
+ buflen
;
3129 /* these dentries are never renamed, so d_lock is not needed */
3130 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
3131 prepend(&end
, &buflen
, dentry
->d_name
.name
, dentry
->d_name
.len
) ||
3132 prepend(&end
, &buflen
, "/", 1))
3133 end
= ERR_PTR(-ENAMETOOLONG
);
3136 EXPORT_SYMBOL(simple_dname
);
3139 * Write full pathname from the root of the filesystem into the buffer.
3141 static char *__dentry_path(struct dentry
*d
, char *buf
, int buflen
)
3143 struct dentry
*dentry
;
3156 prepend(&end
, &len
, "\0", 1);
3160 read_seqbegin_or_lock(&rename_lock
, &seq
);
3161 while (!IS_ROOT(dentry
)) {
3162 struct dentry
*parent
= dentry
->d_parent
;
3165 error
= prepend_name(&end
, &len
, &dentry
->d_name
);
3174 if (need_seqretry(&rename_lock
, seq
)) {
3178 done_seqretry(&rename_lock
, seq
);
3183 return ERR_PTR(-ENAMETOOLONG
);
3186 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
3188 return __dentry_path(dentry
, buf
, buflen
);
3190 EXPORT_SYMBOL(dentry_path_raw
);
3192 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
3197 if (d_unlinked(dentry
)) {
3199 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
3203 retval
= __dentry_path(dentry
, buf
, buflen
);
3204 if (!IS_ERR(retval
) && p
)
3205 *p
= '/'; /* restore '/' overriden with '\0' */
3208 return ERR_PTR(-ENAMETOOLONG
);
3211 static void get_fs_root_and_pwd_rcu(struct fs_struct
*fs
, struct path
*root
,
3217 seq
= read_seqcount_begin(&fs
->seq
);
3220 } while (read_seqcount_retry(&fs
->seq
, seq
));
3224 * NOTE! The user-level library version returns a
3225 * character pointer. The kernel system call just
3226 * returns the length of the buffer filled (which
3227 * includes the ending '\0' character), or a negative
3228 * error value. So libc would do something like
3230 * char *getcwd(char * buf, size_t size)
3234 * retval = sys_getcwd(buf, size);
3241 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
3244 struct path pwd
, root
;
3245 char *page
= __getname();
3251 get_fs_root_and_pwd_rcu(current
->fs
, &root
, &pwd
);
3254 if (!d_unlinked(pwd
.dentry
)) {
3256 char *cwd
= page
+ PATH_MAX
;
3257 int buflen
= PATH_MAX
;
3259 prepend(&cwd
, &buflen
, "\0", 1);
3260 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
3266 /* Unreachable from current root */
3268 error
= prepend_unreachable(&cwd
, &buflen
);
3274 len
= PATH_MAX
+ page
- cwd
;
3277 if (copy_to_user(buf
, cwd
, len
))
3290 * Test whether new_dentry is a subdirectory of old_dentry.
3292 * Trivially implemented using the dcache structure
3296 * is_subdir - is new dentry a subdirectory of old_dentry
3297 * @new_dentry: new dentry
3298 * @old_dentry: old dentry
3300 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
3301 * Returns 0 otherwise.
3302 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3305 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3310 if (new_dentry
== old_dentry
)
3314 /* for restarting inner loop in case of seq retry */
3315 seq
= read_seqbegin(&rename_lock
);
3317 * Need rcu_readlock to protect against the d_parent trashing
3321 if (d_ancestor(old_dentry
, new_dentry
))
3326 } while (read_seqretry(&rename_lock
, seq
));
3331 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3333 struct dentry
*root
= data
;
3334 if (dentry
!= root
) {
3335 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3338 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3339 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3340 dentry
->d_lockref
.count
--;
3343 return D_WALK_CONTINUE
;
3346 void d_genocide(struct dentry
*parent
)
3348 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3351 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3353 inode_dec_link_count(inode
);
3354 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3355 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3356 !d_unlinked(dentry
));
3357 spin_lock(&dentry
->d_parent
->d_lock
);
3358 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3359 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3360 (unsigned long long)inode
->i_ino
);
3361 spin_unlock(&dentry
->d_lock
);
3362 spin_unlock(&dentry
->d_parent
->d_lock
);
3363 d_instantiate(dentry
, inode
);
3365 EXPORT_SYMBOL(d_tmpfile
);
3367 static __initdata
unsigned long dhash_entries
;
3368 static int __init
set_dhash_entries(char *str
)
3372 dhash_entries
= simple_strtoul(str
, &str
, 0);
3375 __setup("dhash_entries=", set_dhash_entries
);
3377 static void __init
dcache_init_early(void)
3381 /* If hashes are distributed across NUMA nodes, defer
3382 * hash allocation until vmalloc space is available.
3388 alloc_large_system_hash("Dentry cache",
3389 sizeof(struct hlist_bl_head
),
3398 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3399 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3402 static void __init
dcache_init(void)
3407 * A constructor could be added for stable state like the lists,
3408 * but it is probably not worth it because of the cache nature
3411 dentry_cache
= KMEM_CACHE(dentry
,
3412 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
3414 /* Hash may have been set up in dcache_init_early */
3419 alloc_large_system_hash("Dentry cache",
3420 sizeof(struct hlist_bl_head
),
3429 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3430 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3433 /* SLAB cache for __getname() consumers */
3434 struct kmem_cache
*names_cachep __read_mostly
;
3435 EXPORT_SYMBOL(names_cachep
);
3437 EXPORT_SYMBOL(d_genocide
);
3439 void __init
vfs_caches_init_early(void)
3441 dcache_init_early();
3445 void __init
vfs_caches_init(unsigned long mempages
)
3447 unsigned long reserve
;
3449 /* Base hash sizes on available memory, with a reserve equal to
3450 150% of current kernel size */
3452 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
3453 mempages
-= reserve
;
3455 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3456 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3460 files_init(mempages
);