powerpc: Convert cmp to cmpd in idle enter sequence
[linux/fpc-iii.git] / fs / namespace.c
blob556721fb0cf672c910bbffff0942b7c38d63a28a
1 /*
2 * linux/fs/namespace.c
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/idr.h>
19 #include <linux/init.h> /* init_rootfs */
20 #include <linux/fs_struct.h> /* get_fs_root et.al. */
21 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
22 #include <linux/uaccess.h>
23 #include <linux/proc_ns.h>
24 #include <linux/magic.h>
25 #include <linux/bootmem.h>
26 #include <linux/task_work.h>
27 #include "pnode.h"
28 #include "internal.h"
30 static unsigned int m_hash_mask __read_mostly;
31 static unsigned int m_hash_shift __read_mostly;
32 static unsigned int mp_hash_mask __read_mostly;
33 static unsigned int mp_hash_shift __read_mostly;
35 static __initdata unsigned long mhash_entries;
36 static int __init set_mhash_entries(char *str)
38 if (!str)
39 return 0;
40 mhash_entries = simple_strtoul(str, &str, 0);
41 return 1;
43 __setup("mhash_entries=", set_mhash_entries);
45 static __initdata unsigned long mphash_entries;
46 static int __init set_mphash_entries(char *str)
48 if (!str)
49 return 0;
50 mphash_entries = simple_strtoul(str, &str, 0);
51 return 1;
53 __setup("mphash_entries=", set_mphash_entries);
55 static u64 event;
56 static DEFINE_IDA(mnt_id_ida);
57 static DEFINE_IDA(mnt_group_ida);
58 static DEFINE_SPINLOCK(mnt_id_lock);
59 static int mnt_id_start = 0;
60 static int mnt_group_start = 1;
62 static struct hlist_head *mount_hashtable __read_mostly;
63 static struct hlist_head *mountpoint_hashtable __read_mostly;
64 static struct kmem_cache *mnt_cache __read_mostly;
65 static DECLARE_RWSEM(namespace_sem);
67 /* /sys/fs */
68 struct kobject *fs_kobj;
69 EXPORT_SYMBOL_GPL(fs_kobj);
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
79 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
81 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85 tmp = tmp + (tmp >> m_hash_shift);
86 return &mount_hashtable[tmp & m_hash_mask];
89 static inline struct hlist_head *mp_hash(struct dentry *dentry)
91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92 tmp = tmp + (tmp >> mp_hash_shift);
93 return &mountpoint_hashtable[tmp & mp_hash_mask];
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
100 static int mnt_alloc_id(struct mount *mnt)
102 int res;
104 retry:
105 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106 spin_lock(&mnt_id_lock);
107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108 if (!res)
109 mnt_id_start = mnt->mnt_id + 1;
110 spin_unlock(&mnt_id_lock);
111 if (res == -EAGAIN)
112 goto retry;
114 return res;
117 static void mnt_free_id(struct mount *mnt)
119 int id = mnt->mnt_id;
120 spin_lock(&mnt_id_lock);
121 ida_remove(&mnt_id_ida, id);
122 if (mnt_id_start > id)
123 mnt_id_start = id;
124 spin_unlock(&mnt_id_lock);
128 * Allocate a new peer group ID
130 * mnt_group_ida is protected by namespace_sem
132 static int mnt_alloc_group_id(struct mount *mnt)
134 int res;
136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137 return -ENOMEM;
139 res = ida_get_new_above(&mnt_group_ida,
140 mnt_group_start,
141 &mnt->mnt_group_id);
142 if (!res)
143 mnt_group_start = mnt->mnt_group_id + 1;
145 return res;
149 * Release a peer group ID
151 void mnt_release_group_id(struct mount *mnt)
153 int id = mnt->mnt_group_id;
154 ida_remove(&mnt_group_ida, id);
155 if (mnt_group_start > id)
156 mnt_group_start = id;
157 mnt->mnt_group_id = 0;
161 * vfsmount lock must be held for read
163 static inline void mnt_add_count(struct mount *mnt, int n)
165 #ifdef CONFIG_SMP
166 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167 #else
168 preempt_disable();
169 mnt->mnt_count += n;
170 preempt_enable();
171 #endif
175 * vfsmount lock must be held for write
177 unsigned int mnt_get_count(struct mount *mnt)
179 #ifdef CONFIG_SMP
180 unsigned int count = 0;
181 int cpu;
183 for_each_possible_cpu(cpu) {
184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
187 return count;
188 #else
189 return mnt->mnt_count;
190 #endif
193 static void drop_mountpoint(struct fs_pin *p)
195 struct mount *m = container_of(p, struct mount, mnt_umount);
196 dput(m->mnt_ex_mountpoint);
197 pin_remove(p);
198 mntput(&m->mnt);
201 static struct mount *alloc_vfsmnt(const char *name)
203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204 if (mnt) {
205 int err;
207 err = mnt_alloc_id(mnt);
208 if (err)
209 goto out_free_cache;
211 if (name) {
212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
213 if (!mnt->mnt_devname)
214 goto out_free_id;
217 #ifdef CONFIG_SMP
218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219 if (!mnt->mnt_pcp)
220 goto out_free_devname;
222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
223 #else
224 mnt->mnt_count = 1;
225 mnt->mnt_writers = 0;
226 #endif
228 INIT_HLIST_NODE(&mnt->mnt_hash);
229 INIT_LIST_HEAD(&mnt->mnt_child);
230 INIT_LIST_HEAD(&mnt->mnt_mounts);
231 INIT_LIST_HEAD(&mnt->mnt_list);
232 INIT_LIST_HEAD(&mnt->mnt_expire);
233 INIT_LIST_HEAD(&mnt->mnt_share);
234 INIT_LIST_HEAD(&mnt->mnt_slave_list);
235 INIT_LIST_HEAD(&mnt->mnt_slave);
236 INIT_HLIST_NODE(&mnt->mnt_mp_list);
237 #ifdef CONFIG_FSNOTIFY
238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
239 #endif
240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
242 return mnt;
244 #ifdef CONFIG_SMP
245 out_free_devname:
246 kfree_const(mnt->mnt_devname);
247 #endif
248 out_free_id:
249 mnt_free_id(mnt);
250 out_free_cache:
251 kmem_cache_free(mnt_cache, mnt);
252 return NULL;
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*. This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
274 int __mnt_is_readonly(struct vfsmount *mnt)
276 if (mnt->mnt_flags & MNT_READONLY)
277 return 1;
278 if (mnt->mnt_sb->s_flags & MS_RDONLY)
279 return 1;
280 return 0;
282 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
284 static inline void mnt_inc_writers(struct mount *mnt)
286 #ifdef CONFIG_SMP
287 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288 #else
289 mnt->mnt_writers++;
290 #endif
293 static inline void mnt_dec_writers(struct mount *mnt)
295 #ifdef CONFIG_SMP
296 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297 #else
298 mnt->mnt_writers--;
299 #endif
302 static unsigned int mnt_get_writers(struct mount *mnt)
304 #ifdef CONFIG_SMP
305 unsigned int count = 0;
306 int cpu;
308 for_each_possible_cpu(cpu) {
309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
312 return count;
313 #else
314 return mnt->mnt_writers;
315 #endif
318 static int mnt_is_readonly(struct vfsmount *mnt)
320 if (mnt->mnt_sb->s_readonly_remount)
321 return 1;
322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323 smp_rmb();
324 return __mnt_is_readonly(mnt);
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink(). We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
343 int __mnt_want_write(struct vfsmount *m)
345 struct mount *mnt = real_mount(m);
346 int ret = 0;
348 preempt_disable();
349 mnt_inc_writers(mnt);
351 * The store to mnt_inc_writers must be visible before we pass
352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353 * incremented count after it has set MNT_WRITE_HOLD.
355 smp_mb();
356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357 cpu_relax();
359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360 * be set to match its requirements. So we must not load that until
361 * MNT_WRITE_HOLD is cleared.
363 smp_rmb();
364 if (mnt_is_readonly(m)) {
365 mnt_dec_writers(mnt);
366 ret = -EROFS;
368 preempt_enable();
370 return ret;
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success. When the write operation is
380 * finished, mnt_drop_write() must be called. This is effectively a refcount.
382 int mnt_want_write(struct vfsmount *m)
384 int ret;
386 sb_start_write(m->mnt_sb);
387 ret = __mnt_want_write(m);
388 if (ret)
389 sb_end_write(m->mnt_sb);
390 return ret;
392 EXPORT_SYMBOL_GPL(mnt_want_write);
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
406 int mnt_clone_write(struct vfsmount *mnt)
408 /* superblock may be r/o */
409 if (__mnt_is_readonly(mnt))
410 return -EROFS;
411 preempt_disable();
412 mnt_inc_writers(real_mount(mnt));
413 preempt_enable();
414 return 0;
416 EXPORT_SYMBOL_GPL(mnt_clone_write);
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
425 int __mnt_want_write_file(struct file *file)
427 if (!(file->f_mode & FMODE_WRITER))
428 return __mnt_want_write(file->f_path.mnt);
429 else
430 return mnt_clone_write(file->f_path.mnt);
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
440 int mnt_want_write_file(struct file *file)
442 int ret;
444 sb_start_write(file->f_path.mnt->mnt_sb);
445 ret = __mnt_want_write_file(file);
446 if (ret)
447 sb_end_write(file->f_path.mnt->mnt_sb);
448 return ret;
450 EXPORT_SYMBOL_GPL(mnt_want_write_file);
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
456 * Tells the low-level filesystem that we are done
457 * performing writes to it. Must be matched with
458 * __mnt_want_write() call above.
460 void __mnt_drop_write(struct vfsmount *mnt)
462 preempt_disable();
463 mnt_dec_writers(real_mount(mnt));
464 preempt_enable();
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again. Must be matched with
473 * mnt_want_write() call above.
475 void mnt_drop_write(struct vfsmount *mnt)
477 __mnt_drop_write(mnt);
478 sb_end_write(mnt->mnt_sb);
480 EXPORT_SYMBOL_GPL(mnt_drop_write);
482 void __mnt_drop_write_file(struct file *file)
484 __mnt_drop_write(file->f_path.mnt);
487 void mnt_drop_write_file(struct file *file)
489 mnt_drop_write(file->f_path.mnt);
491 EXPORT_SYMBOL(mnt_drop_write_file);
493 static int mnt_make_readonly(struct mount *mnt)
495 int ret = 0;
497 lock_mount_hash();
498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501 * should be visible before we do.
503 smp_mb();
506 * With writers on hold, if this value is zero, then there are
507 * definitely no active writers (although held writers may subsequently
508 * increment the count, they'll have to wait, and decrement it after
509 * seeing MNT_READONLY).
511 * It is OK to have counter incremented on one CPU and decremented on
512 * another: the sum will add up correctly. The danger would be when we
513 * sum up each counter, if we read a counter before it is incremented,
514 * but then read another CPU's count which it has been subsequently
515 * decremented from -- we would see more decrements than we should.
516 * MNT_WRITE_HOLD protects against this scenario, because
517 * mnt_want_write first increments count, then smp_mb, then spins on
518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519 * we're counting up here.
521 if (mnt_get_writers(mnt) > 0)
522 ret = -EBUSY;
523 else
524 mnt->mnt.mnt_flags |= MNT_READONLY;
526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527 * that become unheld will see MNT_READONLY.
529 smp_wmb();
530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531 unlock_mount_hash();
532 return ret;
535 static void __mnt_unmake_readonly(struct mount *mnt)
537 lock_mount_hash();
538 mnt->mnt.mnt_flags &= ~MNT_READONLY;
539 unlock_mount_hash();
542 int sb_prepare_remount_readonly(struct super_block *sb)
544 struct mount *mnt;
545 int err = 0;
547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
548 if (atomic_long_read(&sb->s_remove_count))
549 return -EBUSY;
551 lock_mount_hash();
552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555 smp_mb();
556 if (mnt_get_writers(mnt) > 0) {
557 err = -EBUSY;
558 break;
562 if (!err && atomic_long_read(&sb->s_remove_count))
563 err = -EBUSY;
565 if (!err) {
566 sb->s_readonly_remount = 1;
567 smp_wmb();
569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
573 unlock_mount_hash();
575 return err;
578 static void free_vfsmnt(struct mount *mnt)
580 kfree_const(mnt->mnt_devname);
581 #ifdef CONFIG_SMP
582 free_percpu(mnt->mnt_pcp);
583 #endif
584 kmem_cache_free(mnt_cache, mnt);
587 static void delayed_free_vfsmnt(struct rcu_head *head)
589 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
592 /* call under rcu_read_lock */
593 bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
595 struct mount *mnt;
596 if (read_seqretry(&mount_lock, seq))
597 return false;
598 if (bastard == NULL)
599 return true;
600 mnt = real_mount(bastard);
601 mnt_add_count(mnt, 1);
602 if (likely(!read_seqretry(&mount_lock, seq)))
603 return true;
604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605 mnt_add_count(mnt, -1);
606 return false;
608 rcu_read_unlock();
609 mntput(bastard);
610 rcu_read_lock();
611 return false;
615 * find the first mount at @dentry on vfsmount @mnt.
616 * call under rcu_read_lock()
618 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
620 struct hlist_head *head = m_hash(mnt, dentry);
621 struct mount *p;
623 hlist_for_each_entry_rcu(p, head, mnt_hash)
624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
625 return p;
626 return NULL;
630 * find the last mount at @dentry on vfsmount @mnt.
631 * mount_lock must be held.
633 struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
635 struct mount *p, *res = NULL;
636 p = __lookup_mnt(mnt, dentry);
637 if (!p)
638 goto out;
639 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
640 res = p;
641 hlist_for_each_entry_continue(p, mnt_hash) {
642 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
643 break;
644 if (!(p->mnt.mnt_flags & MNT_UMOUNT))
645 res = p;
647 out:
648 return res;
652 * lookup_mnt - Return the first child mount mounted at path
654 * "First" means first mounted chronologically. If you create the
655 * following mounts:
657 * mount /dev/sda1 /mnt
658 * mount /dev/sda2 /mnt
659 * mount /dev/sda3 /mnt
661 * Then lookup_mnt() on the base /mnt dentry in the root mount will
662 * return successively the root dentry and vfsmount of /dev/sda1, then
663 * /dev/sda2, then /dev/sda3, then NULL.
665 * lookup_mnt takes a reference to the found vfsmount.
667 struct vfsmount *lookup_mnt(struct path *path)
669 struct mount *child_mnt;
670 struct vfsmount *m;
671 unsigned seq;
673 rcu_read_lock();
674 do {
675 seq = read_seqbegin(&mount_lock);
676 child_mnt = __lookup_mnt(path->mnt, path->dentry);
677 m = child_mnt ? &child_mnt->mnt : NULL;
678 } while (!legitimize_mnt(m, seq));
679 rcu_read_unlock();
680 return m;
684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685 * current mount namespace.
687 * The common case is dentries are not mountpoints at all and that
688 * test is handled inline. For the slow case when we are actually
689 * dealing with a mountpoint of some kind, walk through all of the
690 * mounts in the current mount namespace and test to see if the dentry
691 * is a mountpoint.
693 * The mount_hashtable is not usable in the context because we
694 * need to identify all mounts that may be in the current mount
695 * namespace not just a mount that happens to have some specified
696 * parent mount.
698 bool __is_local_mountpoint(struct dentry *dentry)
700 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701 struct mount *mnt;
702 bool is_covered = false;
704 if (!d_mountpoint(dentry))
705 goto out;
707 down_read(&namespace_sem);
708 list_for_each_entry(mnt, &ns->list, mnt_list) {
709 is_covered = (mnt->mnt_mountpoint == dentry);
710 if (is_covered)
711 break;
713 up_read(&namespace_sem);
714 out:
715 return is_covered;
718 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
720 struct hlist_head *chain = mp_hash(dentry);
721 struct mountpoint *mp;
723 hlist_for_each_entry(mp, chain, m_hash) {
724 if (mp->m_dentry == dentry) {
725 /* might be worth a WARN_ON() */
726 if (d_unlinked(dentry))
727 return ERR_PTR(-ENOENT);
728 mp->m_count++;
729 return mp;
732 return NULL;
735 static struct mountpoint *new_mountpoint(struct dentry *dentry)
737 struct hlist_head *chain = mp_hash(dentry);
738 struct mountpoint *mp;
739 int ret;
741 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
742 if (!mp)
743 return ERR_PTR(-ENOMEM);
745 ret = d_set_mounted(dentry);
746 if (ret) {
747 kfree(mp);
748 return ERR_PTR(ret);
751 mp->m_dentry = dentry;
752 mp->m_count = 1;
753 hlist_add_head(&mp->m_hash, chain);
754 INIT_HLIST_HEAD(&mp->m_list);
755 return mp;
758 static void put_mountpoint(struct mountpoint *mp)
760 if (!--mp->m_count) {
761 struct dentry *dentry = mp->m_dentry;
762 BUG_ON(!hlist_empty(&mp->m_list));
763 spin_lock(&dentry->d_lock);
764 dentry->d_flags &= ~DCACHE_MOUNTED;
765 spin_unlock(&dentry->d_lock);
766 hlist_del(&mp->m_hash);
767 kfree(mp);
771 static inline int check_mnt(struct mount *mnt)
773 return mnt->mnt_ns == current->nsproxy->mnt_ns;
777 * vfsmount lock must be held for write
779 static void touch_mnt_namespace(struct mnt_namespace *ns)
781 if (ns) {
782 ns->event = ++event;
783 wake_up_interruptible(&ns->poll);
788 * vfsmount lock must be held for write
790 static void __touch_mnt_namespace(struct mnt_namespace *ns)
792 if (ns && ns->event != event) {
793 ns->event = event;
794 wake_up_interruptible(&ns->poll);
799 * vfsmount lock must be held for write
801 static void unhash_mnt(struct mount *mnt)
803 mnt->mnt_parent = mnt;
804 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805 list_del_init(&mnt->mnt_child);
806 hlist_del_init_rcu(&mnt->mnt_hash);
807 hlist_del_init(&mnt->mnt_mp_list);
808 put_mountpoint(mnt->mnt_mp);
809 mnt->mnt_mp = NULL;
813 * vfsmount lock must be held for write
815 static void detach_mnt(struct mount *mnt, struct path *old_path)
817 old_path->dentry = mnt->mnt_mountpoint;
818 old_path->mnt = &mnt->mnt_parent->mnt;
819 unhash_mnt(mnt);
823 * vfsmount lock must be held for write
825 static void umount_mnt(struct mount *mnt)
827 /* old mountpoint will be dropped when we can do that */
828 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
829 unhash_mnt(mnt);
833 * vfsmount lock must be held for write
835 void mnt_set_mountpoint(struct mount *mnt,
836 struct mountpoint *mp,
837 struct mount *child_mnt)
839 mp->m_count++;
840 mnt_add_count(mnt, 1); /* essentially, that's mntget */
841 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
842 child_mnt->mnt_parent = mnt;
843 child_mnt->mnt_mp = mp;
844 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
848 * vfsmount lock must be held for write
850 static void attach_mnt(struct mount *mnt,
851 struct mount *parent,
852 struct mountpoint *mp)
854 mnt_set_mountpoint(parent, mp, mnt);
855 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
856 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
859 static void attach_shadowed(struct mount *mnt,
860 struct mount *parent,
861 struct mount *shadows)
863 if (shadows) {
864 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
865 list_add(&mnt->mnt_child, &shadows->mnt_child);
866 } else {
867 hlist_add_head_rcu(&mnt->mnt_hash,
868 m_hash(&parent->mnt, mnt->mnt_mountpoint));
869 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
874 * vfsmount lock must be held for write
876 static void commit_tree(struct mount *mnt, struct mount *shadows)
878 struct mount *parent = mnt->mnt_parent;
879 struct mount *m;
880 LIST_HEAD(head);
881 struct mnt_namespace *n = parent->mnt_ns;
883 BUG_ON(parent == mnt);
885 list_add_tail(&head, &mnt->mnt_list);
886 list_for_each_entry(m, &head, mnt_list)
887 m->mnt_ns = n;
889 list_splice(&head, n->list.prev);
891 attach_shadowed(mnt, parent, shadows);
892 touch_mnt_namespace(n);
895 static struct mount *next_mnt(struct mount *p, struct mount *root)
897 struct list_head *next = p->mnt_mounts.next;
898 if (next == &p->mnt_mounts) {
899 while (1) {
900 if (p == root)
901 return NULL;
902 next = p->mnt_child.next;
903 if (next != &p->mnt_parent->mnt_mounts)
904 break;
905 p = p->mnt_parent;
908 return list_entry(next, struct mount, mnt_child);
911 static struct mount *skip_mnt_tree(struct mount *p)
913 struct list_head *prev = p->mnt_mounts.prev;
914 while (prev != &p->mnt_mounts) {
915 p = list_entry(prev, struct mount, mnt_child);
916 prev = p->mnt_mounts.prev;
918 return p;
921 struct vfsmount *
922 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
924 struct mount *mnt;
925 struct dentry *root;
927 if (!type)
928 return ERR_PTR(-ENODEV);
930 mnt = alloc_vfsmnt(name);
931 if (!mnt)
932 return ERR_PTR(-ENOMEM);
934 if (flags & MS_KERNMOUNT)
935 mnt->mnt.mnt_flags = MNT_INTERNAL;
937 root = mount_fs(type, flags, name, data);
938 if (IS_ERR(root)) {
939 mnt_free_id(mnt);
940 free_vfsmnt(mnt);
941 return ERR_CAST(root);
944 mnt->mnt.mnt_root = root;
945 mnt->mnt.mnt_sb = root->d_sb;
946 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
947 mnt->mnt_parent = mnt;
948 lock_mount_hash();
949 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
950 unlock_mount_hash();
951 return &mnt->mnt;
953 EXPORT_SYMBOL_GPL(vfs_kern_mount);
955 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
956 int flag)
958 struct super_block *sb = old->mnt.mnt_sb;
959 struct mount *mnt;
960 int err;
962 mnt = alloc_vfsmnt(old->mnt_devname);
963 if (!mnt)
964 return ERR_PTR(-ENOMEM);
966 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
967 mnt->mnt_group_id = 0; /* not a peer of original */
968 else
969 mnt->mnt_group_id = old->mnt_group_id;
971 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
972 err = mnt_alloc_group_id(mnt);
973 if (err)
974 goto out_free;
977 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
978 /* Don't allow unprivileged users to change mount flags */
979 if (flag & CL_UNPRIVILEGED) {
980 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
982 if (mnt->mnt.mnt_flags & MNT_READONLY)
983 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
985 if (mnt->mnt.mnt_flags & MNT_NODEV)
986 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
988 if (mnt->mnt.mnt_flags & MNT_NOSUID)
989 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
991 if (mnt->mnt.mnt_flags & MNT_NOEXEC)
992 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
995 /* Don't allow unprivileged users to reveal what is under a mount */
996 if ((flag & CL_UNPRIVILEGED) &&
997 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
998 mnt->mnt.mnt_flags |= MNT_LOCKED;
1000 atomic_inc(&sb->s_active);
1001 mnt->mnt.mnt_sb = sb;
1002 mnt->mnt.mnt_root = dget(root);
1003 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1004 mnt->mnt_parent = mnt;
1005 lock_mount_hash();
1006 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1007 unlock_mount_hash();
1009 if ((flag & CL_SLAVE) ||
1010 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1011 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1012 mnt->mnt_master = old;
1013 CLEAR_MNT_SHARED(mnt);
1014 } else if (!(flag & CL_PRIVATE)) {
1015 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1016 list_add(&mnt->mnt_share, &old->mnt_share);
1017 if (IS_MNT_SLAVE(old))
1018 list_add(&mnt->mnt_slave, &old->mnt_slave);
1019 mnt->mnt_master = old->mnt_master;
1021 if (flag & CL_MAKE_SHARED)
1022 set_mnt_shared(mnt);
1024 /* stick the duplicate mount on the same expiry list
1025 * as the original if that was on one */
1026 if (flag & CL_EXPIRE) {
1027 if (!list_empty(&old->mnt_expire))
1028 list_add(&mnt->mnt_expire, &old->mnt_expire);
1031 return mnt;
1033 out_free:
1034 mnt_free_id(mnt);
1035 free_vfsmnt(mnt);
1036 return ERR_PTR(err);
1039 static void cleanup_mnt(struct mount *mnt)
1042 * This probably indicates that somebody messed
1043 * up a mnt_want/drop_write() pair. If this
1044 * happens, the filesystem was probably unable
1045 * to make r/w->r/o transitions.
1048 * The locking used to deal with mnt_count decrement provides barriers,
1049 * so mnt_get_writers() below is safe.
1051 WARN_ON(mnt_get_writers(mnt));
1052 if (unlikely(mnt->mnt_pins.first))
1053 mnt_pin_kill(mnt);
1054 fsnotify_vfsmount_delete(&mnt->mnt);
1055 dput(mnt->mnt.mnt_root);
1056 deactivate_super(mnt->mnt.mnt_sb);
1057 mnt_free_id(mnt);
1058 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1061 static void __cleanup_mnt(struct rcu_head *head)
1063 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1066 static LLIST_HEAD(delayed_mntput_list);
1067 static void delayed_mntput(struct work_struct *unused)
1069 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1070 struct llist_node *next;
1072 for (; node; node = next) {
1073 next = llist_next(node);
1074 cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1077 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1079 static void mntput_no_expire(struct mount *mnt)
1081 rcu_read_lock();
1082 mnt_add_count(mnt, -1);
1083 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1084 rcu_read_unlock();
1085 return;
1087 lock_mount_hash();
1088 if (mnt_get_count(mnt)) {
1089 rcu_read_unlock();
1090 unlock_mount_hash();
1091 return;
1093 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1094 rcu_read_unlock();
1095 unlock_mount_hash();
1096 return;
1098 mnt->mnt.mnt_flags |= MNT_DOOMED;
1099 rcu_read_unlock();
1101 list_del(&mnt->mnt_instance);
1103 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1104 struct mount *p, *tmp;
1105 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1106 umount_mnt(p);
1109 unlock_mount_hash();
1111 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1112 struct task_struct *task = current;
1113 if (likely(!(task->flags & PF_KTHREAD))) {
1114 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1115 if (!task_work_add(task, &mnt->mnt_rcu, true))
1116 return;
1118 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1119 schedule_delayed_work(&delayed_mntput_work, 1);
1120 return;
1122 cleanup_mnt(mnt);
1125 void mntput(struct vfsmount *mnt)
1127 if (mnt) {
1128 struct mount *m = real_mount(mnt);
1129 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1130 if (unlikely(m->mnt_expiry_mark))
1131 m->mnt_expiry_mark = 0;
1132 mntput_no_expire(m);
1135 EXPORT_SYMBOL(mntput);
1137 struct vfsmount *mntget(struct vfsmount *mnt)
1139 if (mnt)
1140 mnt_add_count(real_mount(mnt), 1);
1141 return mnt;
1143 EXPORT_SYMBOL(mntget);
1145 struct vfsmount *mnt_clone_internal(struct path *path)
1147 struct mount *p;
1148 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1149 if (IS_ERR(p))
1150 return ERR_CAST(p);
1151 p->mnt.mnt_flags |= MNT_INTERNAL;
1152 return &p->mnt;
1155 static inline void mangle(struct seq_file *m, const char *s)
1157 seq_escape(m, s, " \t\n\\");
1161 * Simple .show_options callback for filesystems which don't want to
1162 * implement more complex mount option showing.
1164 * See also save_mount_options().
1166 int generic_show_options(struct seq_file *m, struct dentry *root)
1168 const char *options;
1170 rcu_read_lock();
1171 options = rcu_dereference(root->d_sb->s_options);
1173 if (options != NULL && options[0]) {
1174 seq_putc(m, ',');
1175 mangle(m, options);
1177 rcu_read_unlock();
1179 return 0;
1181 EXPORT_SYMBOL(generic_show_options);
1184 * If filesystem uses generic_show_options(), this function should be
1185 * called from the fill_super() callback.
1187 * The .remount_fs callback usually needs to be handled in a special
1188 * way, to make sure, that previous options are not overwritten if the
1189 * remount fails.
1191 * Also note, that if the filesystem's .remount_fs function doesn't
1192 * reset all options to their default value, but changes only newly
1193 * given options, then the displayed options will not reflect reality
1194 * any more.
1196 void save_mount_options(struct super_block *sb, char *options)
1198 BUG_ON(sb->s_options);
1199 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1201 EXPORT_SYMBOL(save_mount_options);
1203 void replace_mount_options(struct super_block *sb, char *options)
1205 char *old = sb->s_options;
1206 rcu_assign_pointer(sb->s_options, options);
1207 if (old) {
1208 synchronize_rcu();
1209 kfree(old);
1212 EXPORT_SYMBOL(replace_mount_options);
1214 #ifdef CONFIG_PROC_FS
1215 /* iterator; we want it to have access to namespace_sem, thus here... */
1216 static void *m_start(struct seq_file *m, loff_t *pos)
1218 struct proc_mounts *p = proc_mounts(m);
1220 down_read(&namespace_sem);
1221 if (p->cached_event == p->ns->event) {
1222 void *v = p->cached_mount;
1223 if (*pos == p->cached_index)
1224 return v;
1225 if (*pos == p->cached_index + 1) {
1226 v = seq_list_next(v, &p->ns->list, &p->cached_index);
1227 return p->cached_mount = v;
1231 p->cached_event = p->ns->event;
1232 p->cached_mount = seq_list_start(&p->ns->list, *pos);
1233 p->cached_index = *pos;
1234 return p->cached_mount;
1237 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1239 struct proc_mounts *p = proc_mounts(m);
1241 p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1242 p->cached_index = *pos;
1243 return p->cached_mount;
1246 static void m_stop(struct seq_file *m, void *v)
1248 up_read(&namespace_sem);
1251 static int m_show(struct seq_file *m, void *v)
1253 struct proc_mounts *p = proc_mounts(m);
1254 struct mount *r = list_entry(v, struct mount, mnt_list);
1255 return p->show(m, &r->mnt);
1258 const struct seq_operations mounts_op = {
1259 .start = m_start,
1260 .next = m_next,
1261 .stop = m_stop,
1262 .show = m_show,
1264 #endif /* CONFIG_PROC_FS */
1267 * may_umount_tree - check if a mount tree is busy
1268 * @mnt: root of mount tree
1270 * This is called to check if a tree of mounts has any
1271 * open files, pwds, chroots or sub mounts that are
1272 * busy.
1274 int may_umount_tree(struct vfsmount *m)
1276 struct mount *mnt = real_mount(m);
1277 int actual_refs = 0;
1278 int minimum_refs = 0;
1279 struct mount *p;
1280 BUG_ON(!m);
1282 /* write lock needed for mnt_get_count */
1283 lock_mount_hash();
1284 for (p = mnt; p; p = next_mnt(p, mnt)) {
1285 actual_refs += mnt_get_count(p);
1286 minimum_refs += 2;
1288 unlock_mount_hash();
1290 if (actual_refs > minimum_refs)
1291 return 0;
1293 return 1;
1296 EXPORT_SYMBOL(may_umount_tree);
1299 * may_umount - check if a mount point is busy
1300 * @mnt: root of mount
1302 * This is called to check if a mount point has any
1303 * open files, pwds, chroots or sub mounts. If the
1304 * mount has sub mounts this will return busy
1305 * regardless of whether the sub mounts are busy.
1307 * Doesn't take quota and stuff into account. IOW, in some cases it will
1308 * give false negatives. The main reason why it's here is that we need
1309 * a non-destructive way to look for easily umountable filesystems.
1311 int may_umount(struct vfsmount *mnt)
1313 int ret = 1;
1314 down_read(&namespace_sem);
1315 lock_mount_hash();
1316 if (propagate_mount_busy(real_mount(mnt), 2))
1317 ret = 0;
1318 unlock_mount_hash();
1319 up_read(&namespace_sem);
1320 return ret;
1323 EXPORT_SYMBOL(may_umount);
1325 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
1327 static void namespace_unlock(void)
1329 struct hlist_head head;
1331 hlist_move_list(&unmounted, &head);
1333 up_write(&namespace_sem);
1335 if (likely(hlist_empty(&head)))
1336 return;
1338 synchronize_rcu();
1340 group_pin_kill(&head);
1343 static inline void namespace_lock(void)
1345 down_write(&namespace_sem);
1348 enum umount_tree_flags {
1349 UMOUNT_SYNC = 1,
1350 UMOUNT_PROPAGATE = 2,
1351 UMOUNT_CONNECTED = 4,
1354 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1356 /* Leaving mounts connected is only valid for lazy umounts */
1357 if (how & UMOUNT_SYNC)
1358 return true;
1360 /* A mount without a parent has nothing to be connected to */
1361 if (!mnt_has_parent(mnt))
1362 return true;
1364 /* Because the reference counting rules change when mounts are
1365 * unmounted and connected, umounted mounts may not be
1366 * connected to mounted mounts.
1368 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1369 return true;
1371 /* Has it been requested that the mount remain connected? */
1372 if (how & UMOUNT_CONNECTED)
1373 return false;
1375 /* Is the mount locked such that it needs to remain connected? */
1376 if (IS_MNT_LOCKED(mnt))
1377 return false;
1379 /* By default disconnect the mount */
1380 return true;
1384 * mount_lock must be held
1385 * namespace_sem must be held for write
1387 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1389 LIST_HEAD(tmp_list);
1390 struct mount *p;
1392 if (how & UMOUNT_PROPAGATE)
1393 propagate_mount_unlock(mnt);
1395 /* Gather the mounts to umount */
1396 for (p = mnt; p; p = next_mnt(p, mnt)) {
1397 p->mnt.mnt_flags |= MNT_UMOUNT;
1398 list_move(&p->mnt_list, &tmp_list);
1401 /* Hide the mounts from mnt_mounts */
1402 list_for_each_entry(p, &tmp_list, mnt_list) {
1403 list_del_init(&p->mnt_child);
1406 /* Add propogated mounts to the tmp_list */
1407 if (how & UMOUNT_PROPAGATE)
1408 propagate_umount(&tmp_list);
1410 while (!list_empty(&tmp_list)) {
1411 bool disconnect;
1412 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1413 list_del_init(&p->mnt_expire);
1414 list_del_init(&p->mnt_list);
1415 __touch_mnt_namespace(p->mnt_ns);
1416 p->mnt_ns = NULL;
1417 if (how & UMOUNT_SYNC)
1418 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1420 disconnect = disconnect_mount(p, how);
1422 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1423 disconnect ? &unmounted : NULL);
1424 if (mnt_has_parent(p)) {
1425 mnt_add_count(p->mnt_parent, -1);
1426 if (!disconnect) {
1427 /* Don't forget about p */
1428 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1429 } else {
1430 umount_mnt(p);
1433 change_mnt_propagation(p, MS_PRIVATE);
1437 static void shrink_submounts(struct mount *mnt);
1439 static int do_umount(struct mount *mnt, int flags)
1441 struct super_block *sb = mnt->mnt.mnt_sb;
1442 int retval;
1444 retval = security_sb_umount(&mnt->mnt, flags);
1445 if (retval)
1446 return retval;
1449 * Allow userspace to request a mountpoint be expired rather than
1450 * unmounting unconditionally. Unmount only happens if:
1451 * (1) the mark is already set (the mark is cleared by mntput())
1452 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1454 if (flags & MNT_EXPIRE) {
1455 if (&mnt->mnt == current->fs->root.mnt ||
1456 flags & (MNT_FORCE | MNT_DETACH))
1457 return -EINVAL;
1460 * probably don't strictly need the lock here if we examined
1461 * all race cases, but it's a slowpath.
1463 lock_mount_hash();
1464 if (mnt_get_count(mnt) != 2) {
1465 unlock_mount_hash();
1466 return -EBUSY;
1468 unlock_mount_hash();
1470 if (!xchg(&mnt->mnt_expiry_mark, 1))
1471 return -EAGAIN;
1475 * If we may have to abort operations to get out of this
1476 * mount, and they will themselves hold resources we must
1477 * allow the fs to do things. In the Unix tradition of
1478 * 'Gee thats tricky lets do it in userspace' the umount_begin
1479 * might fail to complete on the first run through as other tasks
1480 * must return, and the like. Thats for the mount program to worry
1481 * about for the moment.
1484 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1485 sb->s_op->umount_begin(sb);
1489 * No sense to grab the lock for this test, but test itself looks
1490 * somewhat bogus. Suggestions for better replacement?
1491 * Ho-hum... In principle, we might treat that as umount + switch
1492 * to rootfs. GC would eventually take care of the old vfsmount.
1493 * Actually it makes sense, especially if rootfs would contain a
1494 * /reboot - static binary that would close all descriptors and
1495 * call reboot(9). Then init(8) could umount root and exec /reboot.
1497 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1499 * Special case for "unmounting" root ...
1500 * we just try to remount it readonly.
1502 if (!capable(CAP_SYS_ADMIN))
1503 return -EPERM;
1504 down_write(&sb->s_umount);
1505 if (!(sb->s_flags & MS_RDONLY))
1506 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1507 up_write(&sb->s_umount);
1508 return retval;
1511 namespace_lock();
1512 lock_mount_hash();
1513 event++;
1515 if (flags & MNT_DETACH) {
1516 if (!list_empty(&mnt->mnt_list))
1517 umount_tree(mnt, UMOUNT_PROPAGATE);
1518 retval = 0;
1519 } else {
1520 shrink_submounts(mnt);
1521 retval = -EBUSY;
1522 if (!propagate_mount_busy(mnt, 2)) {
1523 if (!list_empty(&mnt->mnt_list))
1524 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1525 retval = 0;
1528 unlock_mount_hash();
1529 namespace_unlock();
1530 return retval;
1534 * __detach_mounts - lazily unmount all mounts on the specified dentry
1536 * During unlink, rmdir, and d_drop it is possible to loose the path
1537 * to an existing mountpoint, and wind up leaking the mount.
1538 * detach_mounts allows lazily unmounting those mounts instead of
1539 * leaking them.
1541 * The caller may hold dentry->d_inode->i_mutex.
1543 void __detach_mounts(struct dentry *dentry)
1545 struct mountpoint *mp;
1546 struct mount *mnt;
1548 namespace_lock();
1549 mp = lookup_mountpoint(dentry);
1550 if (IS_ERR_OR_NULL(mp))
1551 goto out_unlock;
1553 lock_mount_hash();
1554 event++;
1555 while (!hlist_empty(&mp->m_list)) {
1556 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1557 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1558 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1559 umount_mnt(mnt);
1561 else umount_tree(mnt, UMOUNT_CONNECTED);
1563 unlock_mount_hash();
1564 put_mountpoint(mp);
1565 out_unlock:
1566 namespace_unlock();
1570 * Is the caller allowed to modify his namespace?
1572 static inline bool may_mount(void)
1574 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1578 * Now umount can handle mount points as well as block devices.
1579 * This is important for filesystems which use unnamed block devices.
1581 * We now support a flag for forced unmount like the other 'big iron'
1582 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1585 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1587 struct path path;
1588 struct mount *mnt;
1589 int retval;
1590 int lookup_flags = 0;
1592 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1593 return -EINVAL;
1595 if (!may_mount())
1596 return -EPERM;
1598 if (!(flags & UMOUNT_NOFOLLOW))
1599 lookup_flags |= LOOKUP_FOLLOW;
1601 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1602 if (retval)
1603 goto out;
1604 mnt = real_mount(path.mnt);
1605 retval = -EINVAL;
1606 if (path.dentry != path.mnt->mnt_root)
1607 goto dput_and_out;
1608 if (!check_mnt(mnt))
1609 goto dput_and_out;
1610 if (mnt->mnt.mnt_flags & MNT_LOCKED)
1611 goto dput_and_out;
1612 retval = -EPERM;
1613 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1614 goto dput_and_out;
1616 retval = do_umount(mnt, flags);
1617 dput_and_out:
1618 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1619 dput(path.dentry);
1620 mntput_no_expire(mnt);
1621 out:
1622 return retval;
1625 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1628 * The 2.0 compatible umount. No flags.
1630 SYSCALL_DEFINE1(oldumount, char __user *, name)
1632 return sys_umount(name, 0);
1635 #endif
1637 static bool is_mnt_ns_file(struct dentry *dentry)
1639 /* Is this a proxy for a mount namespace? */
1640 return dentry->d_op == &ns_dentry_operations &&
1641 dentry->d_fsdata == &mntns_operations;
1644 struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1646 return container_of(ns, struct mnt_namespace, ns);
1649 static bool mnt_ns_loop(struct dentry *dentry)
1651 /* Could bind mounting the mount namespace inode cause a
1652 * mount namespace loop?
1654 struct mnt_namespace *mnt_ns;
1655 if (!is_mnt_ns_file(dentry))
1656 return false;
1658 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1659 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1662 struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1663 int flag)
1665 struct mount *res, *p, *q, *r, *parent;
1667 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1668 return ERR_PTR(-EINVAL);
1670 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1671 return ERR_PTR(-EINVAL);
1673 res = q = clone_mnt(mnt, dentry, flag);
1674 if (IS_ERR(q))
1675 return q;
1677 q->mnt_mountpoint = mnt->mnt_mountpoint;
1679 p = mnt;
1680 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1681 struct mount *s;
1682 if (!is_subdir(r->mnt_mountpoint, dentry))
1683 continue;
1685 for (s = r; s; s = next_mnt(s, r)) {
1686 struct mount *t = NULL;
1687 if (!(flag & CL_COPY_UNBINDABLE) &&
1688 IS_MNT_UNBINDABLE(s)) {
1689 s = skip_mnt_tree(s);
1690 continue;
1692 if (!(flag & CL_COPY_MNT_NS_FILE) &&
1693 is_mnt_ns_file(s->mnt.mnt_root)) {
1694 s = skip_mnt_tree(s);
1695 continue;
1697 while (p != s->mnt_parent) {
1698 p = p->mnt_parent;
1699 q = q->mnt_parent;
1701 p = s;
1702 parent = q;
1703 q = clone_mnt(p, p->mnt.mnt_root, flag);
1704 if (IS_ERR(q))
1705 goto out;
1706 lock_mount_hash();
1707 list_add_tail(&q->mnt_list, &res->mnt_list);
1708 mnt_set_mountpoint(parent, p->mnt_mp, q);
1709 if (!list_empty(&parent->mnt_mounts)) {
1710 t = list_last_entry(&parent->mnt_mounts,
1711 struct mount, mnt_child);
1712 if (t->mnt_mp != p->mnt_mp)
1713 t = NULL;
1715 attach_shadowed(q, parent, t);
1716 unlock_mount_hash();
1719 return res;
1720 out:
1721 if (res) {
1722 lock_mount_hash();
1723 umount_tree(res, UMOUNT_SYNC);
1724 unlock_mount_hash();
1726 return q;
1729 /* Caller should check returned pointer for errors */
1731 struct vfsmount *collect_mounts(struct path *path)
1733 struct mount *tree;
1734 namespace_lock();
1735 if (!check_mnt(real_mount(path->mnt)))
1736 tree = ERR_PTR(-EINVAL);
1737 else
1738 tree = copy_tree(real_mount(path->mnt), path->dentry,
1739 CL_COPY_ALL | CL_PRIVATE);
1740 namespace_unlock();
1741 if (IS_ERR(tree))
1742 return ERR_CAST(tree);
1743 return &tree->mnt;
1746 void drop_collected_mounts(struct vfsmount *mnt)
1748 namespace_lock();
1749 lock_mount_hash();
1750 umount_tree(real_mount(mnt), UMOUNT_SYNC);
1751 unlock_mount_hash();
1752 namespace_unlock();
1756 * clone_private_mount - create a private clone of a path
1758 * This creates a new vfsmount, which will be the clone of @path. The new will
1759 * not be attached anywhere in the namespace and will be private (i.e. changes
1760 * to the originating mount won't be propagated into this).
1762 * Release with mntput().
1764 struct vfsmount *clone_private_mount(struct path *path)
1766 struct mount *old_mnt = real_mount(path->mnt);
1767 struct mount *new_mnt;
1769 if (IS_MNT_UNBINDABLE(old_mnt))
1770 return ERR_PTR(-EINVAL);
1772 down_read(&namespace_sem);
1773 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1774 up_read(&namespace_sem);
1775 if (IS_ERR(new_mnt))
1776 return ERR_CAST(new_mnt);
1778 return &new_mnt->mnt;
1780 EXPORT_SYMBOL_GPL(clone_private_mount);
1782 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1783 struct vfsmount *root)
1785 struct mount *mnt;
1786 int res = f(root, arg);
1787 if (res)
1788 return res;
1789 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1790 res = f(&mnt->mnt, arg);
1791 if (res)
1792 return res;
1794 return 0;
1797 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1799 struct mount *p;
1801 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1802 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1803 mnt_release_group_id(p);
1807 static int invent_group_ids(struct mount *mnt, bool recurse)
1809 struct mount *p;
1811 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1812 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1813 int err = mnt_alloc_group_id(p);
1814 if (err) {
1815 cleanup_group_ids(mnt, p);
1816 return err;
1821 return 0;
1825 * @source_mnt : mount tree to be attached
1826 * @nd : place the mount tree @source_mnt is attached
1827 * @parent_nd : if non-null, detach the source_mnt from its parent and
1828 * store the parent mount and mountpoint dentry.
1829 * (done when source_mnt is moved)
1831 * NOTE: in the table below explains the semantics when a source mount
1832 * of a given type is attached to a destination mount of a given type.
1833 * ---------------------------------------------------------------------------
1834 * | BIND MOUNT OPERATION |
1835 * |**************************************************************************
1836 * | source-->| shared | private | slave | unbindable |
1837 * | dest | | | | |
1838 * | | | | | | |
1839 * | v | | | | |
1840 * |**************************************************************************
1841 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1842 * | | | | | |
1843 * |non-shared| shared (+) | private | slave (*) | invalid |
1844 * ***************************************************************************
1845 * A bind operation clones the source mount and mounts the clone on the
1846 * destination mount.
1848 * (++) the cloned mount is propagated to all the mounts in the propagation
1849 * tree of the destination mount and the cloned mount is added to
1850 * the peer group of the source mount.
1851 * (+) the cloned mount is created under the destination mount and is marked
1852 * as shared. The cloned mount is added to the peer group of the source
1853 * mount.
1854 * (+++) the mount is propagated to all the mounts in the propagation tree
1855 * of the destination mount and the cloned mount is made slave
1856 * of the same master as that of the source mount. The cloned mount
1857 * is marked as 'shared and slave'.
1858 * (*) the cloned mount is made a slave of the same master as that of the
1859 * source mount.
1861 * ---------------------------------------------------------------------------
1862 * | MOVE MOUNT OPERATION |
1863 * |**************************************************************************
1864 * | source-->| shared | private | slave | unbindable |
1865 * | dest | | | | |
1866 * | | | | | | |
1867 * | v | | | | |
1868 * |**************************************************************************
1869 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1870 * | | | | | |
1871 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1872 * ***************************************************************************
1874 * (+) the mount is moved to the destination. And is then propagated to
1875 * all the mounts in the propagation tree of the destination mount.
1876 * (+*) the mount is moved to the destination.
1877 * (+++) the mount is moved to the destination and is then propagated to
1878 * all the mounts belonging to the destination mount's propagation tree.
1879 * the mount is marked as 'shared and slave'.
1880 * (*) the mount continues to be a slave at the new location.
1882 * if the source mount is a tree, the operations explained above is
1883 * applied to each mount in the tree.
1884 * Must be called without spinlocks held, since this function can sleep
1885 * in allocations.
1887 static int attach_recursive_mnt(struct mount *source_mnt,
1888 struct mount *dest_mnt,
1889 struct mountpoint *dest_mp,
1890 struct path *parent_path)
1892 HLIST_HEAD(tree_list);
1893 struct mount *child, *p;
1894 struct hlist_node *n;
1895 int err;
1897 if (IS_MNT_SHARED(dest_mnt)) {
1898 err = invent_group_ids(source_mnt, true);
1899 if (err)
1900 goto out;
1901 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1902 lock_mount_hash();
1903 if (err)
1904 goto out_cleanup_ids;
1905 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1906 set_mnt_shared(p);
1907 } else {
1908 lock_mount_hash();
1910 if (parent_path) {
1911 detach_mnt(source_mnt, parent_path);
1912 attach_mnt(source_mnt, dest_mnt, dest_mp);
1913 touch_mnt_namespace(source_mnt->mnt_ns);
1914 } else {
1915 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1916 commit_tree(source_mnt, NULL);
1919 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1920 struct mount *q;
1921 hlist_del_init(&child->mnt_hash);
1922 q = __lookup_mnt_last(&child->mnt_parent->mnt,
1923 child->mnt_mountpoint);
1924 commit_tree(child, q);
1926 unlock_mount_hash();
1928 return 0;
1930 out_cleanup_ids:
1931 while (!hlist_empty(&tree_list)) {
1932 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1933 umount_tree(child, UMOUNT_SYNC);
1935 unlock_mount_hash();
1936 cleanup_group_ids(source_mnt, NULL);
1937 out:
1938 return err;
1941 static struct mountpoint *lock_mount(struct path *path)
1943 struct vfsmount *mnt;
1944 struct dentry *dentry = path->dentry;
1945 retry:
1946 mutex_lock(&dentry->d_inode->i_mutex);
1947 if (unlikely(cant_mount(dentry))) {
1948 mutex_unlock(&dentry->d_inode->i_mutex);
1949 return ERR_PTR(-ENOENT);
1951 namespace_lock();
1952 mnt = lookup_mnt(path);
1953 if (likely(!mnt)) {
1954 struct mountpoint *mp = lookup_mountpoint(dentry);
1955 if (!mp)
1956 mp = new_mountpoint(dentry);
1957 if (IS_ERR(mp)) {
1958 namespace_unlock();
1959 mutex_unlock(&dentry->d_inode->i_mutex);
1960 return mp;
1962 return mp;
1964 namespace_unlock();
1965 mutex_unlock(&path->dentry->d_inode->i_mutex);
1966 path_put(path);
1967 path->mnt = mnt;
1968 dentry = path->dentry = dget(mnt->mnt_root);
1969 goto retry;
1972 static void unlock_mount(struct mountpoint *where)
1974 struct dentry *dentry = where->m_dentry;
1975 put_mountpoint(where);
1976 namespace_unlock();
1977 mutex_unlock(&dentry->d_inode->i_mutex);
1980 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1982 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1983 return -EINVAL;
1985 if (d_is_dir(mp->m_dentry) !=
1986 d_is_dir(mnt->mnt.mnt_root))
1987 return -ENOTDIR;
1989 return attach_recursive_mnt(mnt, p, mp, NULL);
1993 * Sanity check the flags to change_mnt_propagation.
1996 static int flags_to_propagation_type(int flags)
1998 int type = flags & ~(MS_REC | MS_SILENT);
2000 /* Fail if any non-propagation flags are set */
2001 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2002 return 0;
2003 /* Only one propagation flag should be set */
2004 if (!is_power_of_2(type))
2005 return 0;
2006 return type;
2010 * recursively change the type of the mountpoint.
2012 static int do_change_type(struct path *path, int flag)
2014 struct mount *m;
2015 struct mount *mnt = real_mount(path->mnt);
2016 int recurse = flag & MS_REC;
2017 int type;
2018 int err = 0;
2020 if (path->dentry != path->mnt->mnt_root)
2021 return -EINVAL;
2023 type = flags_to_propagation_type(flag);
2024 if (!type)
2025 return -EINVAL;
2027 namespace_lock();
2028 if (type == MS_SHARED) {
2029 err = invent_group_ids(mnt, recurse);
2030 if (err)
2031 goto out_unlock;
2034 lock_mount_hash();
2035 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2036 change_mnt_propagation(m, type);
2037 unlock_mount_hash();
2039 out_unlock:
2040 namespace_unlock();
2041 return err;
2044 static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2046 struct mount *child;
2047 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2048 if (!is_subdir(child->mnt_mountpoint, dentry))
2049 continue;
2051 if (child->mnt.mnt_flags & MNT_LOCKED)
2052 return true;
2054 return false;
2058 * do loopback mount.
2060 static int do_loopback(struct path *path, const char *old_name,
2061 int recurse)
2063 struct path old_path;
2064 struct mount *mnt = NULL, *old, *parent;
2065 struct mountpoint *mp;
2066 int err;
2067 if (!old_name || !*old_name)
2068 return -EINVAL;
2069 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2070 if (err)
2071 return err;
2073 err = -EINVAL;
2074 if (mnt_ns_loop(old_path.dentry))
2075 goto out;
2077 mp = lock_mount(path);
2078 err = PTR_ERR(mp);
2079 if (IS_ERR(mp))
2080 goto out;
2082 old = real_mount(old_path.mnt);
2083 parent = real_mount(path->mnt);
2085 err = -EINVAL;
2086 if (IS_MNT_UNBINDABLE(old))
2087 goto out2;
2089 if (!check_mnt(parent))
2090 goto out2;
2092 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2093 goto out2;
2095 if (!recurse && has_locked_children(old, old_path.dentry))
2096 goto out2;
2098 if (recurse)
2099 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2100 else
2101 mnt = clone_mnt(old, old_path.dentry, 0);
2103 if (IS_ERR(mnt)) {
2104 err = PTR_ERR(mnt);
2105 goto out2;
2108 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2110 err = graft_tree(mnt, parent, mp);
2111 if (err) {
2112 lock_mount_hash();
2113 umount_tree(mnt, UMOUNT_SYNC);
2114 unlock_mount_hash();
2116 out2:
2117 unlock_mount(mp);
2118 out:
2119 path_put(&old_path);
2120 return err;
2123 static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2125 int error = 0;
2126 int readonly_request = 0;
2128 if (ms_flags & MS_RDONLY)
2129 readonly_request = 1;
2130 if (readonly_request == __mnt_is_readonly(mnt))
2131 return 0;
2133 if (readonly_request)
2134 error = mnt_make_readonly(real_mount(mnt));
2135 else
2136 __mnt_unmake_readonly(real_mount(mnt));
2137 return error;
2141 * change filesystem flags. dir should be a physical root of filesystem.
2142 * If you've mounted a non-root directory somewhere and want to do remount
2143 * on it - tough luck.
2145 static int do_remount(struct path *path, int flags, int mnt_flags,
2146 void *data)
2148 int err;
2149 struct super_block *sb = path->mnt->mnt_sb;
2150 struct mount *mnt = real_mount(path->mnt);
2152 if (!check_mnt(mnt))
2153 return -EINVAL;
2155 if (path->dentry != path->mnt->mnt_root)
2156 return -EINVAL;
2158 /* Don't allow changing of locked mnt flags.
2160 * No locks need to be held here while testing the various
2161 * MNT_LOCK flags because those flags can never be cleared
2162 * once they are set.
2164 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2165 !(mnt_flags & MNT_READONLY)) {
2166 return -EPERM;
2168 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2169 !(mnt_flags & MNT_NODEV)) {
2170 /* Was the nodev implicitly added in mount? */
2171 if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2172 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2173 mnt_flags |= MNT_NODEV;
2174 } else {
2175 return -EPERM;
2178 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2179 !(mnt_flags & MNT_NOSUID)) {
2180 return -EPERM;
2182 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2183 !(mnt_flags & MNT_NOEXEC)) {
2184 return -EPERM;
2186 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2187 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2188 return -EPERM;
2191 err = security_sb_remount(sb, data);
2192 if (err)
2193 return err;
2195 down_write(&sb->s_umount);
2196 if (flags & MS_BIND)
2197 err = change_mount_flags(path->mnt, flags);
2198 else if (!capable(CAP_SYS_ADMIN))
2199 err = -EPERM;
2200 else
2201 err = do_remount_sb(sb, flags, data, 0);
2202 if (!err) {
2203 lock_mount_hash();
2204 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2205 mnt->mnt.mnt_flags = mnt_flags;
2206 touch_mnt_namespace(mnt->mnt_ns);
2207 unlock_mount_hash();
2209 up_write(&sb->s_umount);
2210 return err;
2213 static inline int tree_contains_unbindable(struct mount *mnt)
2215 struct mount *p;
2216 for (p = mnt; p; p = next_mnt(p, mnt)) {
2217 if (IS_MNT_UNBINDABLE(p))
2218 return 1;
2220 return 0;
2223 static int do_move_mount(struct path *path, const char *old_name)
2225 struct path old_path, parent_path;
2226 struct mount *p;
2227 struct mount *old;
2228 struct mountpoint *mp;
2229 int err;
2230 if (!old_name || !*old_name)
2231 return -EINVAL;
2232 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2233 if (err)
2234 return err;
2236 mp = lock_mount(path);
2237 err = PTR_ERR(mp);
2238 if (IS_ERR(mp))
2239 goto out;
2241 old = real_mount(old_path.mnt);
2242 p = real_mount(path->mnt);
2244 err = -EINVAL;
2245 if (!check_mnt(p) || !check_mnt(old))
2246 goto out1;
2248 if (old->mnt.mnt_flags & MNT_LOCKED)
2249 goto out1;
2251 err = -EINVAL;
2252 if (old_path.dentry != old_path.mnt->mnt_root)
2253 goto out1;
2255 if (!mnt_has_parent(old))
2256 goto out1;
2258 if (d_is_dir(path->dentry) !=
2259 d_is_dir(old_path.dentry))
2260 goto out1;
2262 * Don't move a mount residing in a shared parent.
2264 if (IS_MNT_SHARED(old->mnt_parent))
2265 goto out1;
2267 * Don't move a mount tree containing unbindable mounts to a destination
2268 * mount which is shared.
2270 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2271 goto out1;
2272 err = -ELOOP;
2273 for (; mnt_has_parent(p); p = p->mnt_parent)
2274 if (p == old)
2275 goto out1;
2277 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2278 if (err)
2279 goto out1;
2281 /* if the mount is moved, it should no longer be expire
2282 * automatically */
2283 list_del_init(&old->mnt_expire);
2284 out1:
2285 unlock_mount(mp);
2286 out:
2287 if (!err)
2288 path_put(&parent_path);
2289 path_put(&old_path);
2290 return err;
2293 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2295 int err;
2296 const char *subtype = strchr(fstype, '.');
2297 if (subtype) {
2298 subtype++;
2299 err = -EINVAL;
2300 if (!subtype[0])
2301 goto err;
2302 } else
2303 subtype = "";
2305 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2306 err = -ENOMEM;
2307 if (!mnt->mnt_sb->s_subtype)
2308 goto err;
2309 return mnt;
2311 err:
2312 mntput(mnt);
2313 return ERR_PTR(err);
2317 * add a mount into a namespace's mount tree
2319 static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2321 struct mountpoint *mp;
2322 struct mount *parent;
2323 int err;
2325 mnt_flags &= ~MNT_INTERNAL_FLAGS;
2327 mp = lock_mount(path);
2328 if (IS_ERR(mp))
2329 return PTR_ERR(mp);
2331 parent = real_mount(path->mnt);
2332 err = -EINVAL;
2333 if (unlikely(!check_mnt(parent))) {
2334 /* that's acceptable only for automounts done in private ns */
2335 if (!(mnt_flags & MNT_SHRINKABLE))
2336 goto unlock;
2337 /* ... and for those we'd better have mountpoint still alive */
2338 if (!parent->mnt_ns)
2339 goto unlock;
2342 /* Refuse the same filesystem on the same mount point */
2343 err = -EBUSY;
2344 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2345 path->mnt->mnt_root == path->dentry)
2346 goto unlock;
2348 err = -EINVAL;
2349 if (d_is_symlink(newmnt->mnt.mnt_root))
2350 goto unlock;
2352 newmnt->mnt.mnt_flags = mnt_flags;
2353 err = graft_tree(newmnt, parent, mp);
2355 unlock:
2356 unlock_mount(mp);
2357 return err;
2360 static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
2363 * create a new mount for userspace and request it to be added into the
2364 * namespace's tree
2366 static int do_new_mount(struct path *path, const char *fstype, int flags,
2367 int mnt_flags, const char *name, void *data)
2369 struct file_system_type *type;
2370 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2371 struct vfsmount *mnt;
2372 int err;
2374 if (!fstype)
2375 return -EINVAL;
2377 type = get_fs_type(fstype);
2378 if (!type)
2379 return -ENODEV;
2381 if (user_ns != &init_user_ns) {
2382 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2383 put_filesystem(type);
2384 return -EPERM;
2386 /* Only in special cases allow devices from mounts
2387 * created outside the initial user namespace.
2389 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2390 flags |= MS_NODEV;
2391 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2393 if (type->fs_flags & FS_USERNS_VISIBLE) {
2394 if (!fs_fully_visible(type, &mnt_flags)) {
2395 put_filesystem(type);
2396 return -EPERM;
2401 mnt = vfs_kern_mount(type, flags, name, data);
2402 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2403 !mnt->mnt_sb->s_subtype)
2404 mnt = fs_set_subtype(mnt, fstype);
2406 put_filesystem(type);
2407 if (IS_ERR(mnt))
2408 return PTR_ERR(mnt);
2410 err = do_add_mount(real_mount(mnt), path, mnt_flags);
2411 if (err)
2412 mntput(mnt);
2413 return err;
2416 int finish_automount(struct vfsmount *m, struct path *path)
2418 struct mount *mnt = real_mount(m);
2419 int err;
2420 /* The new mount record should have at least 2 refs to prevent it being
2421 * expired before we get a chance to add it
2423 BUG_ON(mnt_get_count(mnt) < 2);
2425 if (m->mnt_sb == path->mnt->mnt_sb &&
2426 m->mnt_root == path->dentry) {
2427 err = -ELOOP;
2428 goto fail;
2431 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2432 if (!err)
2433 return 0;
2434 fail:
2435 /* remove m from any expiration list it may be on */
2436 if (!list_empty(&mnt->mnt_expire)) {
2437 namespace_lock();
2438 list_del_init(&mnt->mnt_expire);
2439 namespace_unlock();
2441 mntput(m);
2442 mntput(m);
2443 return err;
2447 * mnt_set_expiry - Put a mount on an expiration list
2448 * @mnt: The mount to list.
2449 * @expiry_list: The list to add the mount to.
2451 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2453 namespace_lock();
2455 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2457 namespace_unlock();
2459 EXPORT_SYMBOL(mnt_set_expiry);
2462 * process a list of expirable mountpoints with the intent of discarding any
2463 * mountpoints that aren't in use and haven't been touched since last we came
2464 * here
2466 void mark_mounts_for_expiry(struct list_head *mounts)
2468 struct mount *mnt, *next;
2469 LIST_HEAD(graveyard);
2471 if (list_empty(mounts))
2472 return;
2474 namespace_lock();
2475 lock_mount_hash();
2477 /* extract from the expiration list every vfsmount that matches the
2478 * following criteria:
2479 * - only referenced by its parent vfsmount
2480 * - still marked for expiry (marked on the last call here; marks are
2481 * cleared by mntput())
2483 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2484 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2485 propagate_mount_busy(mnt, 1))
2486 continue;
2487 list_move(&mnt->mnt_expire, &graveyard);
2489 while (!list_empty(&graveyard)) {
2490 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2491 touch_mnt_namespace(mnt->mnt_ns);
2492 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2494 unlock_mount_hash();
2495 namespace_unlock();
2498 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2501 * Ripoff of 'select_parent()'
2503 * search the list of submounts for a given mountpoint, and move any
2504 * shrinkable submounts to the 'graveyard' list.
2506 static int select_submounts(struct mount *parent, struct list_head *graveyard)
2508 struct mount *this_parent = parent;
2509 struct list_head *next;
2510 int found = 0;
2512 repeat:
2513 next = this_parent->mnt_mounts.next;
2514 resume:
2515 while (next != &this_parent->mnt_mounts) {
2516 struct list_head *tmp = next;
2517 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2519 next = tmp->next;
2520 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2521 continue;
2523 * Descend a level if the d_mounts list is non-empty.
2525 if (!list_empty(&mnt->mnt_mounts)) {
2526 this_parent = mnt;
2527 goto repeat;
2530 if (!propagate_mount_busy(mnt, 1)) {
2531 list_move_tail(&mnt->mnt_expire, graveyard);
2532 found++;
2536 * All done at this level ... ascend and resume the search
2538 if (this_parent != parent) {
2539 next = this_parent->mnt_child.next;
2540 this_parent = this_parent->mnt_parent;
2541 goto resume;
2543 return found;
2547 * process a list of expirable mountpoints with the intent of discarding any
2548 * submounts of a specific parent mountpoint
2550 * mount_lock must be held for write
2552 static void shrink_submounts(struct mount *mnt)
2554 LIST_HEAD(graveyard);
2555 struct mount *m;
2557 /* extract submounts of 'mountpoint' from the expiration list */
2558 while (select_submounts(mnt, &graveyard)) {
2559 while (!list_empty(&graveyard)) {
2560 m = list_first_entry(&graveyard, struct mount,
2561 mnt_expire);
2562 touch_mnt_namespace(m->mnt_ns);
2563 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2569 * Some copy_from_user() implementations do not return the exact number of
2570 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2571 * Note that this function differs from copy_from_user() in that it will oops
2572 * on bad values of `to', rather than returning a short copy.
2574 static long exact_copy_from_user(void *to, const void __user * from,
2575 unsigned long n)
2577 char *t = to;
2578 const char __user *f = from;
2579 char c;
2581 if (!access_ok(VERIFY_READ, from, n))
2582 return n;
2584 while (n) {
2585 if (__get_user(c, f)) {
2586 memset(t, 0, n);
2587 break;
2589 *t++ = c;
2590 f++;
2591 n--;
2593 return n;
2596 int copy_mount_options(const void __user * data, unsigned long *where)
2598 int i;
2599 unsigned long page;
2600 unsigned long size;
2602 *where = 0;
2603 if (!data)
2604 return 0;
2606 if (!(page = __get_free_page(GFP_KERNEL)))
2607 return -ENOMEM;
2609 /* We only care that *some* data at the address the user
2610 * gave us is valid. Just in case, we'll zero
2611 * the remainder of the page.
2613 /* copy_from_user cannot cross TASK_SIZE ! */
2614 size = TASK_SIZE - (unsigned long)data;
2615 if (size > PAGE_SIZE)
2616 size = PAGE_SIZE;
2618 i = size - exact_copy_from_user((void *)page, data, size);
2619 if (!i) {
2620 free_page(page);
2621 return -EFAULT;
2623 if (i != PAGE_SIZE)
2624 memset((char *)page + i, 0, PAGE_SIZE - i);
2625 *where = page;
2626 return 0;
2629 char *copy_mount_string(const void __user *data)
2631 return data ? strndup_user(data, PAGE_SIZE) : NULL;
2635 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2636 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2638 * data is a (void *) that can point to any structure up to
2639 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2640 * information (or be NULL).
2642 * Pre-0.97 versions of mount() didn't have a flags word.
2643 * When the flags word was introduced its top half was required
2644 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2645 * Therefore, if this magic number is present, it carries no information
2646 * and must be discarded.
2648 long do_mount(const char *dev_name, const char __user *dir_name,
2649 const char *type_page, unsigned long flags, void *data_page)
2651 struct path path;
2652 int retval = 0;
2653 int mnt_flags = 0;
2655 /* Discard magic */
2656 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2657 flags &= ~MS_MGC_MSK;
2659 /* Basic sanity checks */
2660 if (data_page)
2661 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2663 /* ... and get the mountpoint */
2664 retval = user_path(dir_name, &path);
2665 if (retval)
2666 return retval;
2668 retval = security_sb_mount(dev_name, &path,
2669 type_page, flags, data_page);
2670 if (!retval && !may_mount())
2671 retval = -EPERM;
2672 if (retval)
2673 goto dput_out;
2675 /* Default to relatime unless overriden */
2676 if (!(flags & MS_NOATIME))
2677 mnt_flags |= MNT_RELATIME;
2679 /* Separate the per-mountpoint flags */
2680 if (flags & MS_NOSUID)
2681 mnt_flags |= MNT_NOSUID;
2682 if (flags & MS_NODEV)
2683 mnt_flags |= MNT_NODEV;
2684 if (flags & MS_NOEXEC)
2685 mnt_flags |= MNT_NOEXEC;
2686 if (flags & MS_NOATIME)
2687 mnt_flags |= MNT_NOATIME;
2688 if (flags & MS_NODIRATIME)
2689 mnt_flags |= MNT_NODIRATIME;
2690 if (flags & MS_STRICTATIME)
2691 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2692 if (flags & MS_RDONLY)
2693 mnt_flags |= MNT_READONLY;
2695 /* The default atime for remount is preservation */
2696 if ((flags & MS_REMOUNT) &&
2697 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2698 MS_STRICTATIME)) == 0)) {
2699 mnt_flags &= ~MNT_ATIME_MASK;
2700 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2703 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2704 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2705 MS_STRICTATIME);
2707 if (flags & MS_REMOUNT)
2708 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2709 data_page);
2710 else if (flags & MS_BIND)
2711 retval = do_loopback(&path, dev_name, flags & MS_REC);
2712 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2713 retval = do_change_type(&path, flags);
2714 else if (flags & MS_MOVE)
2715 retval = do_move_mount(&path, dev_name);
2716 else
2717 retval = do_new_mount(&path, type_page, flags, mnt_flags,
2718 dev_name, data_page);
2719 dput_out:
2720 path_put(&path);
2721 return retval;
2724 static void free_mnt_ns(struct mnt_namespace *ns)
2726 ns_free_inum(&ns->ns);
2727 put_user_ns(ns->user_ns);
2728 kfree(ns);
2732 * Assign a sequence number so we can detect when we attempt to bind
2733 * mount a reference to an older mount namespace into the current
2734 * mount namespace, preventing reference counting loops. A 64bit
2735 * number incrementing at 10Ghz will take 12,427 years to wrap which
2736 * is effectively never, so we can ignore the possibility.
2738 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2740 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2742 struct mnt_namespace *new_ns;
2743 int ret;
2745 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2746 if (!new_ns)
2747 return ERR_PTR(-ENOMEM);
2748 ret = ns_alloc_inum(&new_ns->ns);
2749 if (ret) {
2750 kfree(new_ns);
2751 return ERR_PTR(ret);
2753 new_ns->ns.ops = &mntns_operations;
2754 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2755 atomic_set(&new_ns->count, 1);
2756 new_ns->root = NULL;
2757 INIT_LIST_HEAD(&new_ns->list);
2758 init_waitqueue_head(&new_ns->poll);
2759 new_ns->event = 0;
2760 new_ns->user_ns = get_user_ns(user_ns);
2761 return new_ns;
2764 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2765 struct user_namespace *user_ns, struct fs_struct *new_fs)
2767 struct mnt_namespace *new_ns;
2768 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2769 struct mount *p, *q;
2770 struct mount *old;
2771 struct mount *new;
2772 int copy_flags;
2774 BUG_ON(!ns);
2776 if (likely(!(flags & CLONE_NEWNS))) {
2777 get_mnt_ns(ns);
2778 return ns;
2781 old = ns->root;
2783 new_ns = alloc_mnt_ns(user_ns);
2784 if (IS_ERR(new_ns))
2785 return new_ns;
2787 namespace_lock();
2788 /* First pass: copy the tree topology */
2789 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2790 if (user_ns != ns->user_ns)
2791 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2792 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2793 if (IS_ERR(new)) {
2794 namespace_unlock();
2795 free_mnt_ns(new_ns);
2796 return ERR_CAST(new);
2798 new_ns->root = new;
2799 list_add_tail(&new_ns->list, &new->mnt_list);
2802 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2803 * as belonging to new namespace. We have already acquired a private
2804 * fs_struct, so tsk->fs->lock is not needed.
2806 p = old;
2807 q = new;
2808 while (p) {
2809 q->mnt_ns = new_ns;
2810 if (new_fs) {
2811 if (&p->mnt == new_fs->root.mnt) {
2812 new_fs->root.mnt = mntget(&q->mnt);
2813 rootmnt = &p->mnt;
2815 if (&p->mnt == new_fs->pwd.mnt) {
2816 new_fs->pwd.mnt = mntget(&q->mnt);
2817 pwdmnt = &p->mnt;
2820 p = next_mnt(p, old);
2821 q = next_mnt(q, new);
2822 if (!q)
2823 break;
2824 while (p->mnt.mnt_root != q->mnt.mnt_root)
2825 p = next_mnt(p, old);
2827 namespace_unlock();
2829 if (rootmnt)
2830 mntput(rootmnt);
2831 if (pwdmnt)
2832 mntput(pwdmnt);
2834 return new_ns;
2838 * create_mnt_ns - creates a private namespace and adds a root filesystem
2839 * @mnt: pointer to the new root filesystem mountpoint
2841 static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2843 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2844 if (!IS_ERR(new_ns)) {
2845 struct mount *mnt = real_mount(m);
2846 mnt->mnt_ns = new_ns;
2847 new_ns->root = mnt;
2848 list_add(&mnt->mnt_list, &new_ns->list);
2849 } else {
2850 mntput(m);
2852 return new_ns;
2855 struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2857 struct mnt_namespace *ns;
2858 struct super_block *s;
2859 struct path path;
2860 int err;
2862 ns = create_mnt_ns(mnt);
2863 if (IS_ERR(ns))
2864 return ERR_CAST(ns);
2866 err = vfs_path_lookup(mnt->mnt_root, mnt,
2867 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2869 put_mnt_ns(ns);
2871 if (err)
2872 return ERR_PTR(err);
2874 /* trade a vfsmount reference for active sb one */
2875 s = path.mnt->mnt_sb;
2876 atomic_inc(&s->s_active);
2877 mntput(path.mnt);
2878 /* lock the sucker */
2879 down_write(&s->s_umount);
2880 /* ... and return the root of (sub)tree on it */
2881 return path.dentry;
2883 EXPORT_SYMBOL(mount_subtree);
2885 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2886 char __user *, type, unsigned long, flags, void __user *, data)
2888 int ret;
2889 char *kernel_type;
2890 char *kernel_dev;
2891 unsigned long data_page;
2893 kernel_type = copy_mount_string(type);
2894 ret = PTR_ERR(kernel_type);
2895 if (IS_ERR(kernel_type))
2896 goto out_type;
2898 kernel_dev = copy_mount_string(dev_name);
2899 ret = PTR_ERR(kernel_dev);
2900 if (IS_ERR(kernel_dev))
2901 goto out_dev;
2903 ret = copy_mount_options(data, &data_page);
2904 if (ret < 0)
2905 goto out_data;
2907 ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2908 (void *) data_page);
2910 free_page(data_page);
2911 out_data:
2912 kfree(kernel_dev);
2913 out_dev:
2914 kfree(kernel_type);
2915 out_type:
2916 return ret;
2920 * Return true if path is reachable from root
2922 * namespace_sem or mount_lock is held
2924 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2925 const struct path *root)
2927 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2928 dentry = mnt->mnt_mountpoint;
2929 mnt = mnt->mnt_parent;
2931 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2934 int path_is_under(struct path *path1, struct path *path2)
2936 int res;
2937 read_seqlock_excl(&mount_lock);
2938 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2939 read_sequnlock_excl(&mount_lock);
2940 return res;
2942 EXPORT_SYMBOL(path_is_under);
2945 * pivot_root Semantics:
2946 * Moves the root file system of the current process to the directory put_old,
2947 * makes new_root as the new root file system of the current process, and sets
2948 * root/cwd of all processes which had them on the current root to new_root.
2950 * Restrictions:
2951 * The new_root and put_old must be directories, and must not be on the
2952 * same file system as the current process root. The put_old must be
2953 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2954 * pointed to by put_old must yield the same directory as new_root. No other
2955 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2957 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2958 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2959 * in this situation.
2961 * Notes:
2962 * - we don't move root/cwd if they are not at the root (reason: if something
2963 * cared enough to change them, it's probably wrong to force them elsewhere)
2964 * - it's okay to pick a root that isn't the root of a file system, e.g.
2965 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2966 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2967 * first.
2969 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2970 const char __user *, put_old)
2972 struct path new, old, parent_path, root_parent, root;
2973 struct mount *new_mnt, *root_mnt, *old_mnt;
2974 struct mountpoint *old_mp, *root_mp;
2975 int error;
2977 if (!may_mount())
2978 return -EPERM;
2980 error = user_path_dir(new_root, &new);
2981 if (error)
2982 goto out0;
2984 error = user_path_dir(put_old, &old);
2985 if (error)
2986 goto out1;
2988 error = security_sb_pivotroot(&old, &new);
2989 if (error)
2990 goto out2;
2992 get_fs_root(current->fs, &root);
2993 old_mp = lock_mount(&old);
2994 error = PTR_ERR(old_mp);
2995 if (IS_ERR(old_mp))
2996 goto out3;
2998 error = -EINVAL;
2999 new_mnt = real_mount(new.mnt);
3000 root_mnt = real_mount(root.mnt);
3001 old_mnt = real_mount(old.mnt);
3002 if (IS_MNT_SHARED(old_mnt) ||
3003 IS_MNT_SHARED(new_mnt->mnt_parent) ||
3004 IS_MNT_SHARED(root_mnt->mnt_parent))
3005 goto out4;
3006 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3007 goto out4;
3008 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3009 goto out4;
3010 error = -ENOENT;
3011 if (d_unlinked(new.dentry))
3012 goto out4;
3013 error = -EBUSY;
3014 if (new_mnt == root_mnt || old_mnt == root_mnt)
3015 goto out4; /* loop, on the same file system */
3016 error = -EINVAL;
3017 if (root.mnt->mnt_root != root.dentry)
3018 goto out4; /* not a mountpoint */
3019 if (!mnt_has_parent(root_mnt))
3020 goto out4; /* not attached */
3021 root_mp = root_mnt->mnt_mp;
3022 if (new.mnt->mnt_root != new.dentry)
3023 goto out4; /* not a mountpoint */
3024 if (!mnt_has_parent(new_mnt))
3025 goto out4; /* not attached */
3026 /* make sure we can reach put_old from new_root */
3027 if (!is_path_reachable(old_mnt, old.dentry, &new))
3028 goto out4;
3029 /* make certain new is below the root */
3030 if (!is_path_reachable(new_mnt, new.dentry, &root))
3031 goto out4;
3032 root_mp->m_count++; /* pin it so it won't go away */
3033 lock_mount_hash();
3034 detach_mnt(new_mnt, &parent_path);
3035 detach_mnt(root_mnt, &root_parent);
3036 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3037 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3038 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3040 /* mount old root on put_old */
3041 attach_mnt(root_mnt, old_mnt, old_mp);
3042 /* mount new_root on / */
3043 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3044 touch_mnt_namespace(current->nsproxy->mnt_ns);
3045 /* A moved mount should not expire automatically */
3046 list_del_init(&new_mnt->mnt_expire);
3047 unlock_mount_hash();
3048 chroot_fs_refs(&root, &new);
3049 put_mountpoint(root_mp);
3050 error = 0;
3051 out4:
3052 unlock_mount(old_mp);
3053 if (!error) {
3054 path_put(&root_parent);
3055 path_put(&parent_path);
3057 out3:
3058 path_put(&root);
3059 out2:
3060 path_put(&old);
3061 out1:
3062 path_put(&new);
3063 out0:
3064 return error;
3067 static void __init init_mount_tree(void)
3069 struct vfsmount *mnt;
3070 struct mnt_namespace *ns;
3071 struct path root;
3072 struct file_system_type *type;
3074 type = get_fs_type("rootfs");
3075 if (!type)
3076 panic("Can't find rootfs type");
3077 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3078 put_filesystem(type);
3079 if (IS_ERR(mnt))
3080 panic("Can't create rootfs");
3082 ns = create_mnt_ns(mnt);
3083 if (IS_ERR(ns))
3084 panic("Can't allocate initial namespace");
3086 init_task.nsproxy->mnt_ns = ns;
3087 get_mnt_ns(ns);
3089 root.mnt = mnt;
3090 root.dentry = mnt->mnt_root;
3091 mnt->mnt_flags |= MNT_LOCKED;
3093 set_fs_pwd(current->fs, &root);
3094 set_fs_root(current->fs, &root);
3097 void __init mnt_init(void)
3099 unsigned u;
3100 int err;
3102 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3103 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3105 mount_hashtable = alloc_large_system_hash("Mount-cache",
3106 sizeof(struct hlist_head),
3107 mhash_entries, 19,
3109 &m_hash_shift, &m_hash_mask, 0, 0);
3110 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3111 sizeof(struct hlist_head),
3112 mphash_entries, 19,
3114 &mp_hash_shift, &mp_hash_mask, 0, 0);
3116 if (!mount_hashtable || !mountpoint_hashtable)
3117 panic("Failed to allocate mount hash table\n");
3119 for (u = 0; u <= m_hash_mask; u++)
3120 INIT_HLIST_HEAD(&mount_hashtable[u]);
3121 for (u = 0; u <= mp_hash_mask; u++)
3122 INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3124 kernfs_init();
3126 err = sysfs_init();
3127 if (err)
3128 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3129 __func__, err);
3130 fs_kobj = kobject_create_and_add("fs", NULL);
3131 if (!fs_kobj)
3132 printk(KERN_WARNING "%s: kobj create error\n", __func__);
3133 init_rootfs();
3134 init_mount_tree();
3137 void put_mnt_ns(struct mnt_namespace *ns)
3139 if (!atomic_dec_and_test(&ns->count))
3140 return;
3141 drop_collected_mounts(&ns->root->mnt);
3142 free_mnt_ns(ns);
3145 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3147 struct vfsmount *mnt;
3148 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3149 if (!IS_ERR(mnt)) {
3151 * it is a longterm mount, don't release mnt until
3152 * we unmount before file sys is unregistered
3154 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3156 return mnt;
3158 EXPORT_SYMBOL_GPL(kern_mount_data);
3160 void kern_unmount(struct vfsmount *mnt)
3162 /* release long term mount so mount point can be released */
3163 if (!IS_ERR_OR_NULL(mnt)) {
3164 real_mount(mnt)->mnt_ns = NULL;
3165 synchronize_rcu(); /* yecchhh... */
3166 mntput(mnt);
3169 EXPORT_SYMBOL(kern_unmount);
3171 bool our_mnt(struct vfsmount *mnt)
3173 return check_mnt(real_mount(mnt));
3176 bool current_chrooted(void)
3178 /* Does the current process have a non-standard root */
3179 struct path ns_root;
3180 struct path fs_root;
3181 bool chrooted;
3183 /* Find the namespace root */
3184 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3185 ns_root.dentry = ns_root.mnt->mnt_root;
3186 path_get(&ns_root);
3187 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3190 get_fs_root(current->fs, &fs_root);
3192 chrooted = !path_equal(&fs_root, &ns_root);
3194 path_put(&fs_root);
3195 path_put(&ns_root);
3197 return chrooted;
3200 static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
3202 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3203 int new_flags = *new_mnt_flags;
3204 struct mount *mnt;
3205 bool visible = false;
3207 if (unlikely(!ns))
3208 return false;
3210 down_read(&namespace_sem);
3211 list_for_each_entry(mnt, &ns->list, mnt_list) {
3212 struct mount *child;
3213 if (mnt->mnt.mnt_sb->s_type != type)
3214 continue;
3216 /* This mount is not fully visible if it's root directory
3217 * is not the root directory of the filesystem.
3219 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3220 continue;
3222 /* Verify the mount flags are equal to or more permissive
3223 * than the proposed new mount.
3225 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
3226 !(new_flags & MNT_READONLY))
3227 continue;
3228 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
3229 !(new_flags & MNT_NODEV))
3230 continue;
3231 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
3232 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3233 continue;
3235 /* This mount is not fully visible if there are any
3236 * locked child mounts that cover anything except for
3237 * empty directories.
3239 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3240 struct inode *inode = child->mnt_mountpoint->d_inode;
3241 /* Only worry about locked mounts */
3242 if (!(child->mnt.mnt_flags & MNT_LOCKED))
3243 continue;
3244 /* Is the directory permanetly empty? */
3245 if (!is_empty_dir_inode(inode))
3246 goto next;
3248 /* Preserve the locked attributes */
3249 *new_mnt_flags |= mnt->mnt.mnt_flags & (MNT_LOCK_READONLY | \
3250 MNT_LOCK_NODEV | \
3251 MNT_LOCK_ATIME);
3252 visible = true;
3253 goto found;
3254 next: ;
3256 found:
3257 up_read(&namespace_sem);
3258 return visible;
3261 static struct ns_common *mntns_get(struct task_struct *task)
3263 struct ns_common *ns = NULL;
3264 struct nsproxy *nsproxy;
3266 task_lock(task);
3267 nsproxy = task->nsproxy;
3268 if (nsproxy) {
3269 ns = &nsproxy->mnt_ns->ns;
3270 get_mnt_ns(to_mnt_ns(ns));
3272 task_unlock(task);
3274 return ns;
3277 static void mntns_put(struct ns_common *ns)
3279 put_mnt_ns(to_mnt_ns(ns));
3282 static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3284 struct fs_struct *fs = current->fs;
3285 struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3286 struct path root;
3288 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3289 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3290 !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3291 return -EPERM;
3293 if (fs->users != 1)
3294 return -EINVAL;
3296 get_mnt_ns(mnt_ns);
3297 put_mnt_ns(nsproxy->mnt_ns);
3298 nsproxy->mnt_ns = mnt_ns;
3300 /* Find the root */
3301 root.mnt = &mnt_ns->root->mnt;
3302 root.dentry = mnt_ns->root->mnt.mnt_root;
3303 path_get(&root);
3304 while(d_mountpoint(root.dentry) && follow_down_one(&root))
3307 /* Update the pwd and root */
3308 set_fs_pwd(fs, &root);
3309 set_fs_root(fs, &root);
3311 path_put(&root);
3312 return 0;
3315 const struct proc_ns_operations mntns_operations = {
3316 .name = "mnt",
3317 .type = CLONE_NEWNS,
3318 .get = mntns_get,
3319 .put = mntns_put,
3320 .install = mntns_install,